

DETAILED CONDITION SURVEY REPORT

Site No. B26030042, Main Street, Alton Caledon, ON

Prepared for: GHD Limited

BCC Project No.: BCC19012 Report Date: May 31, 2019

Your Bridge & Concrete Inspection Specialists

Bridge Check Canada Ltd.
200 Viceroy Road, Unit 4, Vaughan, ON L4K 3N8
T 905-660-6608 F 905-660-6608
www.bridgecheckcanada.com

TABLE OF CONTENTS

	cation Sheet	
Key Plan		3
Summary of Sign	ificant Findings	5
1.0 Introduction	n	6
2.0 Methodolog	gy	6
3.0 Bridge Struc	cture	7
3.1 Asphalt \	Wearing Surface	7
3.2 Waterpro	oofing	7
3.3 Concrete	Peck	7
3.4 Deck Sof	fit and Fascia	9
3.5 Bridge A _l	pproaches	9
3.6 Deck Dra	sinage	10
3.7 Concrete	Parapet Walls	10
3.8 Concrete	e Sidewalk	10
3.9 Concrete	e Curb	11
3.10 End Pos	sts and Guiderails	11
4.0 Substructur	e Components	12
4.1 Abutmer	nt Walls	12
4.2 Wingwal	ls	13
4.3 Gabion V	Valls and Slopes	14
APPENDICES		
Appendix A	Detailed Condition Survey Summary Sheets	
	Covered Deck, Exposed Concrete Components, Expansion Joint, Drainage	
Appendix B	Survey Equipment and Calibration Procedures	
Appendix C	Core Photographs and Sketches	
	Core Logs	
Appendix E	Sawn Asphalt Sample Photographs	
Appendix F	Sawn Asphalt Sample Logs	
Appendix G	Site Photographs	
Appendix H	Laboratory Test Results	
Appendix I	General Arrangement Drawing	
Appendix J	ACAD Drawings	
	face Deterioration of Asphalt on Deck, Concrete Sidewalk, Curb and Parapet	Walls
	halt Thickness on Deck, Concrete Cover of Sidewalk, Curb and Parapet Walls	
•	rosion Potential of Deck, Sidewalk, Curb and Parapet Walls	
No. 4 Sur	face Deterioration of Soffit and Abutments	
No. 5 Sur	face Deterioration of Elevations	

No. 6 Concrete Cover and Corrosion Potential of Abutments and Wingwalls

Structure Identification Sheet

	STRUCTURE IDEN	TIFICATION SHEET	
GENERAL INFORMATION			
STRUCTURE NAME	Main Street, Alton		
SITE NUMBER	B26030042	DISTRICT NUMBER	N/A
HIGHWAY above	Main Street	Below	
TYPE OF STRUCTURE	Reinforced cast-in-place con	crete slab, rigid frame, vertical	legs
NUMBER OF SPANS	1	SPAN LENGTHS	9.30m
ROADWAY WIDTH	8.60m	YEAR BUILT	1969
DIRECTION OF STRUCTURE	North to South	_	
SEQUENCE NUMBER	N/A	TOWNSHIP N	UMBER N/A
LHRS NUMBER	N/A	MUNICIPAL BRIDGE N	UMBER N/A
LOCATION	0.02km north of Queen St	JURISD	Town of Caledon
INSPECTOR'S NAME	Alireza Keramati, P.Eng.		•
PARTY MEMBERS	Mohammad Abdollahi, P.Eng	g., Essam Elsayed, jason Murray	y, Matthew Abedi
DATE OF INSPECTION	17-Apr-19		
TEMPERATURE	14 °C	WI	EATHER cloudy-clear
MTO REGION	Central		AADT 815
DECK RIDING SURFACE	Asphalt		·
YEAR LAST REHABILITATED	N/A	_	
ENGINEER'S STAMP			

Key Plan

KEY PLAN

Site No. B26030042, Main Street, Alton Caledon, ON

Summary of Significant Findings

SUMMARY OF SIGNIFICANT FINDINGS Site B26030042, Main Street, Alton, Town of Caledon, ON

1.0 INTRODUCTION

Bridge Check Canada Ltd. was retained by GHD under Town of Caledon's RFP #2019-02 to carry out first time detailed bridge condition survey for Main Street, Alton (Site B26030042) located on Main Street, 0.02 km north of Queen Street in Caledon, Ontario. First time field investigations were carried out on April 17, 2019.

Site B26030042, constructed in 1969, is a single-span rigid frame reinforced cast-in-place concrete slab with vertical legs, overlain with an asphalt wearing surface and carries one traffic lane per direction of Main Street. The span length of the bridge is 9.30 m and the roadway width is 8.60 m. The structure has a north-to-south orientation. The outer limits of the structure contain concrete parapet wall and curb on the west side and concrete parapet wall and sidewalk on the east side. Photo P1 shows a view of the east elevation of the site. Photo P2 shows the west elevation.

East Elevation of Site B26030042, Main Street, Alton

The rehabilitation history of the bridge was not available.

2.0 METHODOLOGY

In general, the procedures followed to conduct the condition survey and delamination survey were those defined in Part 1 of the MTO Structure Rehabilitation Manual (2007). This assignment involved the observation and recording of surface defects, delamination detection, grid layouts (1.5 m x 1.5 m), concrete cores (100 mm ø), sawn asphalt samples, corrosion potential survey, and physical testing of the concrete cores.

The delaminations in the concrete were detected by striking the surface with a heavy hammer and noting the type of sound being emitted. Note that, while this method is quite reliable, it may not detect delaminations at a depth greater than 100 mm. The hammer sounding method was used for all

accessible vertical and overhead surfaces. The areas and locations of patches, spalls, delaminations, exposed reinforcement, honey-combing, wet areas, scaling and other observed defects were recorded.

A corrosion potential survey was conducted for the asphalt covered bridge deck, curb, sidewalk, and parapet walls. The survey was performed in accordance with the requirements of ASTM C876 and the MTO Structure Rehabilitation Manual. A positive ground connection was made directly to the reinforcing steel, at the locations shown on the accompanying drawings.

Nineteen (19) cores (11 cores in deck, one core in the north approach, five cores in the abutment walls, and two cores in the wingwalls) and eight sawn asphalt samples were extracted from the deck, in compliance with the requirements for selecting cores and sawn asphalt samples from deteriorated and sound areas. The inside of the coreholes were examined carefully for cracks and the condition of the concrete. The exposed surface of the concrete at the sawn asphalt samples was carefully examined for evidence of deterioration. All the test holes were reinstated to their original condition using MTO-approved products.

Enclosed with this report are detailed condition survey summary sheets, survey equipment and calibration procedures, core photos/sketches, core logs, sawn asphalt sample photos, sawn asphalt sample logs, site photos, laboratory test results, and drawings.

3.0 BRIDGE STRUCTURE

3.1 Asphalt Wearing Surface

The width and length of the asphalt is 8.60 m and 10.50 m respectively, with a total surveyed area of 90.30 m². The condition of the asphalt wearing surface on the bridge deck was identified through visual field observations and review of cores and sawn asphalt samples. Drawing 1 shows the defects on the asphalt wearing surface as well as the location of the cores and sawn asphalt samples. The general pavement surface condition is shown in Photos P3 to P8. The asphalt wearing surface on the concrete deck is generally in fair condition with unsealed transverse cracks (16.0 m), longitudinal cracks (27.0 m), and random cracks (42.0 m). The asphalt depth, measured in the drilled holes, coreholes, and sawn asphalt samples, varied from 60 mm to 110 mm with an average depth of 88 mm (refer to Drawing 2).

3.2 Waterproofing

No waterproofing system was encountered over the concrete on this bridge.

3.3 Concrete Deck

The concrete deck consists of a single-span rigid frame reinforced cast-in-place concrete slab with vertical legs, supported by abutments. The condition of the concrete deck was observed at 11 core locations and eight sawn asphalt sample locations. The inside of the coreholes and the exposed concrete surface at the sawn asphalt samples were examined carefully for cracks and other defects. Photos P62 to P70 show the inside of the coreholes. A review of the concrete cores revealed disintegrated concrete on top of cores C2, C5, C6, C7, C8, C9, C12. Visual review of the exposed concrete surface at the sawn

asphalt samples revealed disintegration, exposed and corroded reinforcement in SS5. Refer to the core and sawn asphalt sample logs and photos.

Concrete cover on the upper rebar layer was found to range from 100 to 125 mm with an average cover of 115 mm. Light rusting of the reinforcement steel was found in cores C3, C5, C6, C7, C8, C12. Severe rusting of the reinforcement was noted in core C9.

Corrosion potential values obtained from the half-cell test carried out in the asphalt covered deck ranged from -0.207 V to -0.468 V with an average value of -0.382 V. The half-cell survey indicated uncertain low corrosion activity for 35.7% (12.5%+23.2%) of the deck area, with values ranging from -0.200 V to -0.349 V. Probable active corrosion was detected for 64.3% (35.7%+28.6%) of the deck area with corrosion potential values more negative than -0.350 V. Drawing 3 shows the corrosion potential readings in deck.

Corrosion potential distribution in deck

Core C10 was tested for compressive strength of the hardened concrete in accordance with CSA A23.2-14-14C. The compressive strength of the hardened concrete for this core was found to be 49.5 MPa. This value is significantly higher than the minimum strength of 21 MPa specified on the structural drawings.

The chloride ion content was determined for five cores using MTO LS-417 "Method of Test for Determination of Total Chloride Ion in Concrete – Acid Soluble". These core samples were located at areas prone to salt exposure (e.g. along construction joints, low points of the deck, asphalt cracks). In addition, samples from other moderately exposed areas were also taken. The chloride ion content values, at the average concrete cover or at rebar level are summarized below.

Core No.	C4	C5	C6	C7	C11
Corrected Chloride Content (%)*	0.000	0.187	0.057	0.084	0.088
Corrosion Potential (V)	-0.251	-0.422	-0.371	-0.423	-0.326

^{*} Background chloride ion content was estimated to be 0.029% for parent concrete.

The chloride threshold value necessary to depassivate embedded steel and to allow the onset of corrosion (in the presence of oxygen and moisture) is generally taken as 0.025% by mass of concrete. The background chloride content is the lowest chloride content value for all of the cores tested for

chloride content. The "background" chlorides do not contribute to corrosion, and thus the results are corrected for the background chloride content. The corrected chloride content, at the rebar level, was above the chloride threshold level of 0.025% in all cores except C4. The results indicate that chloride contamination has extended to the upper rebar level in large areas of deck.

Based on the concrete removal policy outlined in the Structure Rehabilitation Manual, the following comments can be made:

- Since greater than 10% of the deck area is more negative than -0.350 V, the average chloride
 content at the reinforcing level is calculated using only the cores with corrosion potential more
 negative than -0.350 V. Therefore, the average adjusted chloride content at the reinforcing steel
 level is 0.109%.
- Based on the above, since the average adjusted chloride content at the top reinforcement level is greater than 0.05% by mass of concrete, concrete deck removal is recommended to include delaminated areas as well as areas with corrosion potential more negative than -0.350 V.

Core C3 was tested to determine the air void system of the hardened concrete in accordance with ASTM C457 using the Modified Point Count Method. Test results are summarized below:

Core No.	Air Content (%)	Specific Surface (mm ⁻¹)	Spacing Factor (mm)
C3	4.7	21.00	0.218

Concrete is normally considered to be properly air entrained if the air content exceeds 3.0%, the specific surface exceeds 24 mm⁻¹, and the average spacing factor is less than 0.200 mm. Therefore, the air void system for core C3 is considered marginal.

3.4 Deck Soffit and Fascia

A detailed visual inspection and hammer sounding of deck soffit and fascia were carried out. The deterioration is shown on Drawing 4 and in Photos P9 to P13. Access to the soffit was provided by means of small ladder, chest waders and delam 2000.

The bridge deck soffit and fascia, with a total surveyed area of 110.00 m², was in fair condition with clean/stained medium width cracks (26.0 m), delaminations (9.40 m²), and wet areas (19.60 m²). Medium corrosion was observed on the deck drain pipes.

3.5 Bridge Approaches

The asphalt wearing surface on the bridge approaches was generally in fair-to-good condition with unsealed cracks and settlements. Photos P14 to P16 show the general pavement condition on the approaches. Core C1 was taken from the north approach, where granular materials were encountered beneath 55 mm of asphalt.

3.6 Deck Drainage

Four steel drain pipes were located on deck, each having a 150 mm diametre and a 720 mm length (Photos P17 to P20). Medium corrosion was observed on the deck drain pipes, as shown in Photo P10. Deck drains were partially covered with dirt and debris. Catch basins were detected all four quadrants outside structure limits (Photos P21 to P23).

3.7 Concrete Parapet Walls

The concrete parapet walls, with a total surveyed area of 41.14 m², were in fair-to-good condition with clean/stained medium width cracks (4.0 m), delaminations (0.31 m²), spalls (0.22 m²), light scaling (16.20 m²). The surface deterioration is shown on Drawing 1 and in Photos P24 to P35. The cracks were mainly vertical. The concrete cover ranged from 69 mm to 99 mm, with average cover of 84 mm, as shown on Drawing 2.

A corrosion potential survey was conducted for the parapet walls. The survey was not performed on the end posts as there is no continuity in the approach sides. Corrosion potential values obtained from the half-cell test carried out in the parapet walls ranged from -0.224 V to -0.440 V with an average value of -0.339 V. The half-cell survey indicated uncertain low corrosion activity for 50.0% (25.0%+25.0%) of the parapet wall area, with values ranging from -0.200 V to -0.349 V. Probable active corrosion was detected for 50.0% (50.0%+0.0%) of the parapet wall area with corrosion potential values more negative than -0.350 V. Drawing 3 shows the corrosion potential readings in the parapet walls.

Corrosion potential distribution in the parapet walls

The steel handrails were generally in good condition with missing end caps at southeast and southwest corner and localized light surface rusting.

3.8 Concrete Sidewalk

The east sidewalk, with a total surveyed area of 38.75 m², was in fair condition with clean medium width cracks (1.0 m), clean wide width cracks (1.0 m), delaminations (0.29 m²), spalls (0.35 m²), light scaling (16.10 m²), medium scaling (3.40 m²). The surface deterioration is shown on Drawing 1 and in Photos P24 to P29. The concrete cover ranged from 95 mm to 119 mm, with average cover of 104 mm, as shown on Drawing 2.

Corrosion potential values obtained from the half-cell test carried out in the sidewalk ranged from -0.413 V to -0.461 V with an average value of -0.438 V. The half-cell survey indicated probable active corrosion for 100.0% (62.5%+37.5%) of the sidewalk area with corrosion potential values more negative than -0.350 V. Drawing 3 shows the corrosion potential readings in the east sidewalk.

Corrosion potential distribution in the east sidewalk

3.9 Concrete Curb

The west concrete curb, with a total surveyed area of 21.77 m², was in fair-to-good condition medium scaling (2.50 m²). The surface deterioration is shown on Drawing 1 and in Photos P30 to P35. The concrete cover ranged from 96 mm to 119 mm, with average cover of 106 mm, as shown on Drawing 2.

Corrosion potential values obtained from the half-cell test carried out in the curb ranged from -0.220 V to -0.373 V with an average value of -0.305 V. The half-cell survey indicated uncertain low corrosion activity for 87.5% (50.0%+37.5%) of the curb area, with values ranging from -0.200 V to -0.349 V. Probable active corrosion was detected for 12.5% (12.5%+0.0%) of the curb area with corrosion potential values more negative than -0.350 V. Drawing 3 shows the corrosion potential readings in the west curb.

Corrosion potential distribution in the west curb

3.10 End Posts and Guiderails

The concrete end posts were in fair-to-good condition with light scaling (Photos P36 to P40). The steel beam guiderails were in good condition (Photo P41).

4.0 SUBSTRUCTURE COMPONENTS

The abutment walls and wingwalls were inspected and hammer sounded to check for delaminations, where accessible. Field measurements are presented in the field summary sheets.

4.1 Abutment Walls

The exposed surfaces of the abutment walls were inspected and sounded to check for delaminations. The total surveyed area for the north and south abutments were 37.41 m² and 40.56 m², respectively. The deterioration is shown on Drawing 4. General views of the abutment walls are shown in Photos P42 to P46. The abutment walls were generally in fair-to-good condition. The field investigation of the north abutment wall revealed stained wide width cracks (4.0 m) and wet areas (1.21 m²). The field investigation of the south abutment wall revealed clean/stained medium width cracks (5.0 m). The cracks were mainly vertical.

The concrete cover for the north abutment wall ranged from 87 mm to 124 mm with an average cover of 102 mm, as shown on Drawing 6. The concrete cover for the south abutment wall ranged from 81 mm to 104 mm with an average cover of 92 mm, as shown on Drawing 6. Cores C13 to C17 were taken from the abutment walls at locations shown on Drawing 4. Photos P71 and P72 show the inside of the coreholes C13 and C15, respectively. No concrete defects were noted in the cores. Light rusting of the reinforcing steel was observed in cores C13, C15, C17. The corrected chloride content for cores C13 and C16 was found to be 0.000% and 0.011%, respectively, indicating no chloride contamination in these cores.

Corrosion potential values obtained from the half-cell test carried out in the north abutment wall ranged from –0.127 V to –0.412 V with an average value of –0.268 V. The half-cell survey indicated that 9.1% of the abutment area likely had no corrosion activity, with corrosion potential values between 0.000 V and -0.199 V. The half-cell survey indicated uncertain low corrosion activity for 77.3% (59.1%+18.2%) of the abutment wall area, with values ranging from -0.200 V to -0.349 V. Probable active corrosion was detected for 13.6% (13.6%+0.0%) of the abutment wall area with corrosion potential values more negative than -0.350 V. Drawing 6 shows the corrosion potential readings in the north abutment wall. Active corrosion was detected on the east side of the abutment wall.

Corrosion potential distribution in the north abutment wall

Corrosion potential values obtained from the half-cell test carried out in the south abutment wall ranged from -0.223 V to -0.423 V with an average value of -0.329 V. The half-cell survey indicated uncertain low corrosion activity for 68.2% (27.3%+40.9%) of the abutment wall area, with values ranging from -0.200 V to -0.349 V. Probable active corrosion was detected for 31.8% (31.8%+0.0%) of the abutment wall area with corrosion potential values more negative than -0.350 V. Drawing 6 shows the corrosion potential readings in the south abutment wall. Active corrosion was detected in the middle and west side of the abutment wall.

Corrosion potential distribution in the south abutment wall

4.2 Wingwalls

A detailed visual inspection and hammer sounding of the wingwalls were carried out. The deterioration is shown on Drawing 5 and in Photos P47 to P50.

The wingwalls, with a total surveyed area of 62.89 m², were in good condition with stained medium width cracks (1.0 m). The concrete cover for the wingwalls ranged from 67 mm to 125 mm with an average cover of 102 mm, as shown on Drawing 6. Cores C18 and C19 were taken from the wingwalls at locations shown on Drawing 5. Photo P73 shows the inside of the corehole C18. No defects were noted in the concrete cores. Reinforcing rebar, encountered in core C18, was found to be in good condition. A compressive strength of 47.1 MPa was obtained for core C18.

Corrosion potential values obtained from the half-cell test carried out in the wingwalls ranged from – 0.119 V to –0.412 V with an average value of –0.265 V. The half-cell survey indicated that 13.3% of the wingwall area likely had no corrosion activity, with corrosion potential values between 0.000 V and - 0.199 V. The half-cell survey indicated uncertain low corrosion activity for 79.6% (55.1%+24.5%) of the wingwall area, with values ranging from -0.200 V to -0.349 V. Probable active corrosion was detected for 7.1% (7.1%+0.0%) of the wingwall area with corrosion potential values more negative than -0.350 V. Drawing 6 shows the corrosion potential readings in the wingwalls.

Corrosion potential distribution in the wingwalls

4.3 Gabion Walls and Slopes

The gabion walls were found to be in fair-to-good condition with bulging, tilting, and damaged baskets (Photos P51 to P56). A section of southeast gabion has collapsed/overturned, as shown in Photo P54. The embankment slopes were in fair-to-good condition with evidence of minor soil erosion at bases, as shown in Photos P57 to P60.

Appendix A:

Detailed Condition Survey Summary Sheets

Asphalt Covered Deck, Exposed Concrete Components, Expansion Joint, Drainage

DETAILED CONDITION SURVEY SUMMARY SHEET ASPHALT COVERED DECK DECK RIDING SURFACE

Page 1 of 4

Site No. <u>B26030042</u>

1. Dimensions and Area of Survey

Width between N abutment curbs Length between abutment joints 8.60 m Width between S abutment curbs10.50 m Area of deck riding surface

8.60 m 90.30 m²

Remarks

Deck dimensions were taken from the structural drawings

2. Asphalt Surface Cracks

Orientation	Unsealed	Sealed	* Asphalt potholes/patches = 0.00 m ² * Asphalt Alligator Cracks = 0.00 m ² * Asphalt Ravelling = 0.00 m ²
Transverse	16.0	0.0	m
Longitudinal	27.0	0.0	m
Random	42.0	0.0	m

3. Asphalt Depth

Condition *	Depth				
Condition *	Min	Max	Avg		
F	60	110	88	mm	

^{*} G – Good, F – Fair, P – Poor, V - Variable Good to Poor

Remarks

Remarks

4. Waterproofing

Туре	Condition *	Conc. Bond *	Thickness (mm) **			
Туре	Condition	Colic. Bolia	Min	Max	Avg	
N/A	N/A	N/A	N/A	N/A	N/A	mı

^{*} G – Good, F – Fair, P – Poor, V - Variable Good to Poor

^{**} Report only thickness of waterproofing membrane but note presence of protection board

DETAILED CONDITION SURVEY SUMMARY SHEET ASPHALT COVERED DECK DECK RIDING SURFACE

Page 2 of 4

Site No. <u>B26030042</u>

5. Concrete Cover – Cores and Sawn Samples

Remarks

Minimum	Maximum	Average	
100	125	115	mm

Note: Only include covers for upper layer of rebars.

6. Corrosion Activity

Remarks

Minimum	Maximum	Average	
-0.207	-0.468	-0.382	V

0 to -0.20	-0.20 to -0.30	-0.30 to -0.35	-0.35 to -0.45	< -0.45	٧
0.0	11.3	20.9	32.2	25.8	m
0.0	12.5	23.2	35.7	28.6	%

Remarks

7. Defective Cores and Sawn Samples

	Cores and Sawn Samples						
Corrosion Activity (Volts)	Total in Each Area	Delaminated, Spalled, Severe Scaling and Disintegration *			Medium Scali	ing *	
		No.	m²	%	No.	m ²	%
0 to -0.20	0	0	0.0	0.0	0	0.0	0.0
-0.20 to -0.30	1	0	0.0	0.0	0	0.0	0.0
-0.30 to -0.35	6	0	0.0	0.0	0	0.0	0.0
-0.35 to -0.45	5	0	0.0	0.0	0	0.0	0.0
<-0.45	7	0	0.0	0.0	0	0.0	0.0

^{*} The percent calculation should be of the entire deck area investigated. The values obtained should be used with caution as large errors may occur when a small number of samples are used for the calculation or when the samples are not randomly distributed over the entire deck area.

DETAILED CONDITION SURVEY SUMMARY SHEET ASPHALT COVERED DECK DECK RIDING SURFACE

Page 3 of 4

Site No. <u>B26030042</u>

8. Adjusted Chloride Content Profile

*Background (original concrete) chloride content = 0.029

Remarks

Corrosion Activi	Corrosion Activity at Core Location		-0.20 to -0.35	≤-0.35
	0-10 mm	-	0.122	-
	20-30 mm	-	0.103	-
	40-50 mm	-	0.088	0.313
Chloride	60-70 mm	-	0.076	0.130
Content*	80-90 mm	-	0.051	0.107
	100-110 mm	-	0.000	0.109
	120-130 mm	-	-	0.061
	140-150 mm	-	-	0.040

^{*} Average chloride content as % chloride by weight of concrete after deducting background chlorides for all cores taken in each range of corrosion potential.

9. Chloride Content at Rebar Level

Core No.	C4	C5	C6	C7	C11	
Chloride	0.000	0.187	0.057	0.084	0.088	
Content*	0.000	0.167	0.057	0.064	0.088	
Corrosion	-0.251	-0.422	-0.371	-0.423	-0.326	
Potential	-0.251	-0.422	-0.571	-0.425	-0.526	
Core No.						
Chloride						
Content*						
Corrosion						
Potential						
Core No.						
Chloride						
Content*						
Corrosion						
Potential						

^{*} Chloride content as % chloride by weight of concrete after deducting background chlorides.

10. AC Resistance Test Data of Epoxy Coated Rebar

Measured AC Resistance between Connection #1 and #2						Calculated
Connection #1		Connection #2				
Connection #1	G1	G2	G3	G4	G5	Resistance *
G1	N/A	-	-	-	-	-
G2	•	N/A	-	-	-	-
G3	•	-	N/A	-	-	-
G4	-	-	-	N/A	-	-
G5	-	-	-	-	N/A	-

Remarks
Table # 10 is Not
Applicable.

* See Appendix 1E for calculating AC resistance contributed by individual rebar.

DETAILED CONDITION SURVEY SUMMARY SHEET ASPHALT COVERED DECK

Page 4 of 4

Site No. <u>B26030042</u>

Remarks

Table # 11 is Not Applicable.

DECK RIDING SURFACE

11. IR Drop and True Half Cell Potential Measurements of Epoxy Coated Rebar IR Drop Between Connection #1 and #2 True Half Cell Connection #1 Connection #2 (negative) G1 G2 G3 G4 G5 Potential * (positive) N/A G1 N/A G2 -

N/A

N/A

N/A

12. Concrete Air Entrainment

G3 G4

G5

		Yes	No	Marginal
Concrete Air Entrained?				
	C3			X

13. Compressive Strength

Average Compressive Strength 49.5 MPa

^{*} Half cell reading taken on the same rebar with the ground connection.

DETAILED CONDITION SURVEY SUMMARY SHEET

Page 1 of 4

EXPOSED CONCRETE COMPONENTS (Exposed Deck, Deck Soffit, Curbs, Medians, Sidewalks, Barrier/Parapet Walls, etc.): Use separate form for each component

Site No: B26030042

Component Type & Location: Soffit OSIM Identifier: Decks

1. Dimensions and Area

Width	10.85 m	Length	9.30 m	_ Height	0.62 to 0.95 m
Diameter	-	Total Area Surv	eyed	110.00 m	2

Remarks

Dimensions were taken from the

from the structural drawings & site

measurements

2. Cracks (medium and wide)

Ту	/pe	Transverse	Longitudinal	Other	Total	
Medium Width	Clean	0.0	4.0	0.0	26.0	1
wealum wiath	Stained	0.0	9.0	13.0		m
VAVialo VAVialelo	Clean	0.0	0.0	0.0	0.0	1
Wide Width	Stained	0.0	0.0	0.0	0.0	m

3. Alkali Aggregate Rea	ctic	r
-------------------------	------	---

Area of component with severe to very severe aggregate reaction 0.0 m²

4. Concrete Cover

Minimum	Maximum	Average	
-	-	-	mm

0 – 20 mm	-	40 – 60 mm	-	m ²
0 – 20 111111	-		-	%
20 – 40 mm	-	over 60 mm	-	m ²
	-	over oo min	-	%

Remarks

Table # 4 is Not Applicable.

Page 2 of 4

Site No: B26030042

Component Type & Location: Soffit OSIM Identifier: Decks

Remarks

Table # 5 is Not Applicable.

Remarks

5. Corrosion Activity

Minimum	Maximum	Average	
-	-	-	٧

0 to -0.20	-0.20 to -0.30	-0.30 to -0.35	-0.35 to -0.45	< -0.45	٧
-	-	-	-	-	m²
_	-	-	-	-	%

6. Delaminations and Spalls

*Wet areas =	= 19.60 m ²

Defect Type	Delaminations	Spalls	Patches	*We
Area (m²)	9.40	0.00	0.00	
Total Delamina	ntions and Spalls	Total Delaminations and Spalls in Areas ≤-0.35 V		
9.40 m²	8.5 %	N/A	N/A	

7 Scaling

7. Scaling		
Light	Medium	Severe to Very
Ligit	IVICUIUIII	Severe

Light	Medium	Severe	
0.00	0.00	0.00	m
0.0	0.0	0.0	%

8. Honeycombing

Total Area 0.00 m^2

Page 3 of 4

Site No: <u>B26030042</u>

Component Type & Location: Soffit OSIM Identifier: Decks

Remarks

Table # 9 and 10 are Not Applicable.

9. Adjusted Chloride Content Profile

orrajusta amerika contant rema					
Corrosion Activity at Core Location (volts)		0 to -0.20	-0.20 to -0.35	≤ -0.35	
	0-10 mm	1	-	-	
	20-30 mm	-	-	-	
Chloride	40-50 mm	-	-	-	
Content*	60-70 mm	-	-	-	
	80-90 mm	-	-	-	
	100-110 mm	-	-	-	

^{*} Average chloride content as % chloride by weight of concrete after deducting background chlorides for all cores taken in each range of corrosion potential.

10. Chloride Content at Rebar Level

Core No.	-	-	ı	-	ı	ı
Chloride						
Content*	-	-	-	-	-	-

^{*} Chloride content as % chloride by weight of concrete after deducting background chlorides.

Remarks

Table # 11 is Not Applicable.

11. AC Resistance Test Data of Epoxy Coated Rebar

	Measured AC Resistance between Connection #1 and #2						
Connection #1			Connection #2	on #2			
Connection #1	G1	G2	G3	G4	G5	Resistance *	
G1	N/A	-	-	-	-	-	
G2	-	N/A	-	-	-	-	
G3	-	-	N/A	-	-	-	
G4	-	-	-	N/A	-	-	
G5	-	-	-	-	N/A	-	

^{*} See Appendix 1E for calculating AC resistance contributed by individual rebar.

Page 4 of 4

Site No: B26030042

Component Type & Location: Soffit OSIM Identifier: Decks

Remarks
Table # 12 is Not
Applicable.

12. IR Drop and True Half Cell Potential Measurements of Epoxy Coated Rebar

	IR Drop Between Connection #1 and #2						
Connection #1		Connection #2 (negative)					
(positive)	G1	G2	G3	G4	G5	Potential *	
G1	N/A	-	•	-	-	-	
G2	•	N/A	•	-	-	-	
G3	-	-	N/A	-	-	-	
G4	-	-	-	N/A	-	-	
G5	-	-	-	-	N/A	-	

^{*} Half cell reading taken on the same rebar with the ground connection.

13. Concrete Air Entrainment

Concrete Air Entrained: <u>not tested</u>

14. Compressive Strength

Average Compressive Strength: <u>not tested</u>

DETAILED CONDITION SURVEY SUMMARY SHEET

Page 1 of 4

EXPOSED CONCRETE COMPONENTS (Exposed Deck, Deck Soffit, Curbs, Medians, Sidewalks, Barrier/Parapet Walls,

etc.): Use separate form for each component

Site No: <u>B26030042</u>

Component Type & Location: East Sidewalk OSIM Identifier: Sidewalks/curbs

1. Dimensions and Area

Width1.37 mLength23.92 mHeight0.25 mDiameter-Total Area Surveyed38.75 m²

Remarks

Dimensions were taken from the

structural drawings & site measurements

Remarks

2. Cracks (medium and wide)

Ту	/pe	Transverse	Longitudinal	Other	Total	meas
Medium Width	Clean	0.0	0.0	1.0	1.0	1
	Stained	0.0	0.0	0.0	1.0	m
Wide Width	Clean	0.0	0.0	1.0	1.0	
	Stained	0.0	0.0	0.0	1.0	m

3. Alkali Aggregate Reaction

Area of component with severe to very severe aggregate reaction

 0.0 m^2

4. Concrete Cover

Minimum	Maximum	Average	
95	119	104	mm

				_
0 – 20 mm	0.0	40 – 60 mm	0.0	m ²
	0.0	40 00 111111	0.0	%
20 – 40 mm	0.0	over 60 mm	38.8	m ²
20 40 111111	0.0	Over 00 mm	100.0	%

Page 2 of 4

Site No: B26030042

Component Type & Location: East Sidewalk OSIM Identifier: Sidewalks/curbs

Remarks

5. Corrosion Activity

Minimum	Maximum	Average	
-0.413	-0.461	-0.438	٧

0 to -0.20	-0.20 to -0.30	-0.30 to -0.35	-0.35 to -0.45	< -0.45	٧
0.0	0.0	0.0	24.2	14.5	m²
0.0	0.0	0.0	62.5	37.5	%

Remarks

6. Delaminations and Spalls

Defect Type	Delaminations	Spalls	Patches	*Wet a
Area (m²)	0.29	0.35	0.00	
Total Delamina	ations and Spalls		ations and Spalls in as ≤-0.35 V	
0.64 m²	1.7 %	N/A	N/A	

Wet areas = 0.00 m²

7. Scaling

Light	Medium	Severe to Very Severe	
16.10	3.40	0.00	m²
41.5	8.8	0.0	%

Remarks

8. Honeycombing

Total Area 0.00 m²

Page 3 of 4

Site No: B26030042

Component Type & Location: East Sidewalk OSIM Identifier: Sidewalks/curbs

Remarks

Table # 9 and 10 are Not Applicable.

9. Adjusted Chloride Content Profile

Corrosion Activity at Core Location (volts)		0 to -0.20	-0.20 to -0.35	≤ -0.35
	0-10 mm	-	-	-
	20-30 mm	-	-	-
Chloride	40-50 mm	-	-	-
Content*	60-70 mm	-	-	-
	80-90 mm	-	-	-
	100-110 mm	-	-	-

^{*} Average chloride content as % chloride by weight of concrete after deducting background chlorides for all cores taken in each range of corrosion potential.

10. Chloride Content at Rebar Level

Core No.	-	ı	-	-	ı	-
Chloride						
Content*	-	-	-	-	-	-

^{*} Chloride content as % chloride by weight of concrete after deducting background chlorides.

Remarks

Table # 11 is Not Applicable.

11. AC Resistance Test Data of Epoxy Coated Rebar

==									
	Measured AC Resistance between Connection #1 and #2								
Connection #1			Connection #2			Calculated AC			
Connection #1	G1	G2	G3	G4	G5	Resistance *			
G1	N/A	-	-	-	-	-			
G2	-	N/A	-	-	-	-			
G3	-	-	N/A	-	-	-			
G4	-	-	-	N/A	-	-			
G5	-	-	-	-	N/A	-			

^{*} See Appendix 1E for calculating AC resistance contributed by individual rebar.

Page 4 of 4

Site No: <u>B26030042</u>

Component Type & Location: East Sidewalk OSIM Identifier: Sidewalks/curbs

Remarks
Table # 12 is Not

Applicable.

12. IR Drop and True Half Cell Potential Measurements of Epoxy Coated Rebar

	IR Drop Between Connection #1 and #2							
Connection #1		Co	onnection #2 (negative)			True Half Cell Potential *		
(positive)	G1	G2	G3	G4	G5	Potential		
G1	N/A	-	-	-	-	-		
G2	1	N/A	-	-	-	-		
G3	-	-	N/A	-	-	-		
G4	-	-	-	N/A	-	-		
G5	-	-	-	-	N/A	-		

^{*} Half cell reading taken on the same rebar with the ground connection.

13. Concrete Air Entrainment

Concrete Air Entrained: <u>not tested</u>

14. Compressive Strength

Average Compressive Strength: <u>not tested</u>

DETAILED CONDITION SURVEY SUMMARY SHEET

Page 1 of 4

EXPOSED CONCRETE COMPONENTS (Exposed Deck, Deck Soffit, Curbs, Medians, Sidewalks, Barrier/Parapet Walls,

etc.): Use separate form for each component

Site No: B26030042

Component Type & Location: West Curb OSIM Identifier: Sidewalks/curbs

1. Dimensions and Area

Width 0.66 m 23.92 m Height Length 0.25 m Diameter Total Area Surveyed 21.77 m²

Remarks

Dimensions were taken from the

Remarks

2. Cracks (medium and wide)

2. Cracks (media	um and wide)					structural drawings & site
Ty	уре	Transverse	Longitudinal	Other	Total	measurements
Modium Width	Clean	0.0	0.0	0.0	0.0	
Medium Width	Stained	0.0	0.0	0.0	0.0	m
Mido Midth	Clean	0.0	0.0	0.0	0.0	
Wide Width	Stained	0.0	0.0	0.0	0.0	m

3.	Alka	li A	løgre	gate	Rea	ction

Area of component with severe to very severe aggregate reaction 0.0 m^2

4. Concrete Cov	er		
Minimum	Maximum	Average	
96	119	106	mm

0 – 20 mm	0.0	40 – 60 mm	0.0	m ²
	0.0	40 00 111111	0.0	%
20 – 40 mm	0.0	over 60 mm	21.8	m²
	0.0	Over 00 mm	100.0	%

Page 2 of 4

Site No: B26030042

Component Type & Location: West Curb

OSIM Identifier: Sidewalks/curbs

Remarks

5. Corrosion Activity

Minimum	Maximum	Average	
-0.220	-0.373	-0.305	V

v	< -0.45	-0.35 to -0.45	-0.30 to -0.35	-0.20 to -0.30	0 to -0.20
m²	0.0	2.7	8.2	10.9	0.0
%	0.0	12.5	37.5	50.0	0.0

Remarks

6. Delaminations and Spalls

Defect Type	ect Type Delaminations		Patches	*V
Area (m²)	0.00	0.00	0.00	
Total Delamina	ations and Spalls		ations and Spalls in as ≤-0.35 V	
0.00 m ²	0.0 %	N/A	N/A	

Wet areas = 0.00 m²

7. Scaling

Light	Medium	Severe to Very Severe	
0.00	2.50	0.00	m²
0.0	11.5	0.0	%

Remarks

8. Honeycombing

Total Area 0.00 m²

Page 3 of 4

Site No: <u>B26030042</u>

Component Type & Location: West Curb

OSIM Identifier: Sidewalks/curbs

Remarks

Table # 9 and 10 are Not Applicable.

9. Adjusted Chloride Content Profile

	y at Core Location olts)	0 to -0.20	-0.20 to -0.35	≤ -0.35
	0-10 mm	1	-	-
	20-30 mm	-	-	-
Chloride	40-50 mm	-	-	-
Content*	60-70 mm	-	-	-
	80-90 mm	-	-	-
	100-110 mm	-	-	-

^{*} Average chloride content as % chloride by weight of concrete after deducting background chlorides for all cores taken in each range of corrosion potential.

10. Chloride Content at Rebar Level

Core No.	-	ı	•	-	ı	-
Chloride						
Content*	-	-	-	-	-	-

^{*} Chloride content as % chloride by weight of concrete after deducting background chlorides.

Remarks

Table # 11 is Not Applicable.

11. AC Resistance Test Data of Epoxy Coated Rebar

	Measured	AC Resistance be	tween Connection #1	and #2		
Connection #1			Connection #2			Calculated AC
Connection #1	G1	G2	G3	G4	G5	Resistance *
G1	N/A	-	-	-	-	-
G2	-	N/A	-	-	-	-
G3	-	-	N/A	-	-	-
G4	-	-	-	N/A	-	-
G5	-	-	-	-	N/A	-

^{*} See Appendix 1E for calculating AC resistance contributed by individual rebar.

Page 4 of 4

Site No: <u>B26030042</u>

OSIM Identifier: Sidewalks/curbs

Remarks
Table # 12 is Not
Applicable.

12. IR Drop and True Half Cell Potential Measurements of Epoxy Coated Rebar

	IR	Drop Between C	onnection #1 and #2			True Half Cell
Connection #1		Co	nnection #2 (negative)			Potential *
(positive)	G1	G2	G3	G4	G5	Potential
G1	N/A	-	-	-	-	-
G2	•	N/A	-	-	-	-
G3	-	-	N/A	-	-	-
G4	-	-	-	N/A	-	-
G5	-	-	-	-	N/A	-

^{*} Half cell reading taken on the same rebar with the ground connection.

13. Concrete Air Entrainment

Component Type & Location: West Curb

Concrete Air Entrained: <u>not tested</u>

14. Compressive Strength

Average Compressive Strength: <u>not tested</u>

DETAILED CONDITION SURVEY SUMMARY SHEET

Page 1 of 4

EXPOSED CONCRETE COMPONENTS (Exposed Deck, Deck Soffit, Curbs, Medians, Sidewalks, Barrier/Parapet Walls,

etc.): Use separate form for each component

Site No: B26030042

Component Type & Location: East & West Parapet Walls

OSIM Identifier: Barriers

1.	Dim	ensio	ns ar	nd A	۱rea

 Width
 0.25 m
 Length
 23.92 m
 Height
 0.61 m

 Diameter
 Total Area Surveyed
 41.14 m²

Remarks

Dimensions were taken from the structural drawings & site

Remarks

uctural drawings & site measurements

2. Cracks (medium and wide)

Ту	/pe	Vertical	Horizontal	Diagonal	Total	
Medium Width	Clean	2.0	0.0	1.0	4.0	1
wiedium width	Stained	1.0	0.0	0.0	4.0	m
Wide Width	Clean	0.0	0.0	0.0	0.0	1
wide width	Stained	0.0	0.0	0.0	0.0	m

3. Alkali Aggregate Reaction

Area of component with severe to very severe aggregate reaction

0.0 m²

4. Concrete Cover

Minimum	Maximum	Average	
69	99	84	mm

0 – 20 mm	0.0	40 – 60 mm	0.0	m^2
0 20111111	0.0	40 00 111111	0.0	%
20 – 40 mm	0.0	over 60 mm	41.1	m²
20 40 111111	0.0	Over 30 mm	100.0	%

Page 2 of 4

Site No: <u>B26030042</u>

Component Type & Location: East & West Parapet Walls

OSIM Identifier: Barriers

Remarks

5. Corrosion Activity

Minimum	Maximum	Average	
-0.224	-0.440	-0.339	١

0 to -0.20	-0.20 to -0.30	-0.30 to -0.35	-0.35 to -0.45	< -0.45	٧
0.0	10.3	10.3	20.6	0.0	m
0.0	25.0	25.0	50.0	0.0	%

6. Delaminations and Spalls

Remarks

Defect Type	Delaminations	Spalls	Patches
Area (m²)	0.31	0.22	0.00
Total Delamina	tions and Spalls	Total Delaminations and Spalls in Areas ≤-0.35 V	
0.53 m²	1.3 %	N/A	N/A

*Wet areas = 0.00 m²

7. Scaling

Remarks

Light	Medium	Severe to Very Severe	
16.20	0.00	0.00	m
39.4	0.0	0.0	%

8. Honeycombing

Total Area 0.00 m²

Page 3 of 4

Site No:

B26030042

Component Type & Location: East & West Parapet Walls

OSIM Identifier: Barriers

Remarks

Table # 9 and 10 are Not Applicable.

9. Adjusted Chloride Content Profile

	y at Core Location olts)	0 to -0.20	-0.20 to -0.35	≤ -0.35
Chloride Content*	0-10 mm	1	1	-
	20-30 mm	-	-	-
	40-50 mm	-	-	-
	60-70 mm	-	-	-
	80-90 mm	-	-	-
	100-110 mm	-	-	-

^{*} Average chloride content as % chloride by weight of concrete after deducting background chlorides for all cores taken in each range of corrosion potential.

10. Chloride Content at Rebar Level

Core No.	-	-	-	1	ı	ı
Chloride						
Content*	-	-	-	-	-	-

^{*} Chloride content as % chloride by weight of concrete after deducting background chlorides.

Remarks

Table # 11 is Not Applicable.

11. AC Resistance Test Data of Epoxy Coated Rebar

Measured AC Resistance between Connection #1 and #2						
Connection #1	Connection #2					Calculated AC
Connection #1	G1	G2	G3	G4	G5	Resistance *
G1	N/A	-	-	-	-	-
G2	-	N/A	-	-	-	-
G3	-	-	N/A	-	-	-
G4	-	-	-	N/A	-	-
G5	-	-	-	-	N/A	-

^{*} See Appendix 1E for calculating AC resistance contributed by individual rebar.

Page 4 of 4

Site No: <u>B26030042</u>

Component Type & Location: East & West Parapet Walls

OSIM Identifier: Barriers

Remarks
Table # 12 is Not
Applicable.

12. IR Drop and True Half Cell Potential Measurements of Epoxy Coated Rebar

IR Drop Between Connection #1 and #2						True Half Cell
Connection #1		Co	nnection #2 (negative)			Potential *
(positive)	G1 G2 G3 G4 G5					
G1	N/A	-	-	-	-	-
G2	-	N/A	-	-	-	-
G3	-	-	N/A	-	-	-
G4	-	-	-	N/A	-	-
G5	-	-	-	-	N/A	-

^{*} Half cell reading taken on the same rebar with the ground connection.

13. Concrete Air Entrainment

Concrete Air Entrained: <u>not tested</u>

14. Compressive Strength

Average Compressive Strength: <u>not tested</u>

DETAILED CONDITION SURVEY SUMMARY SHEET

Page 1 of 4

EXPOSED CONCRETE COMPONENTS (Exposed Deck, Deck Soffit, Curbs, Medians, Sidewalks, Barrier/Parapet Walls, etc.): Use separate form for each component

Site No: B26030042

Component Type & Location: North Abutment Wall

OSIM Identifier: Abutments

1. Dimensions and Area

Width10.48 mLength-Height3.57 mDiameter-Total Area Surveyed37.41 m²

Remarks

Dimensions were taken from the

structural drawings & site measurements

2. Cracks (medium and wide)

					oti actarar arawing	
Ту	/pe	Vertical	Horizontal	Diagonal	Total	measuremer
Modium Width	Clean	0.0	0.0	0.0	0.0]
Medium Width	Stained	0.0	0.0	0.0	0.0	m
18/: al a 18/: al tala	Clean	0.0	0.0	0.0	4.0]
Wide Width	Stained	4.0	0.0	0.0	4.0	m

3. Alkali Aggregate Reaction

Area of component with severe to very severe aggregate reaction 0.0 m²

4. Concrete Cover

Minimum	Maximum	Average	
87	124	102	mm

0 – 20 mm	0.0	40 – 60 mm	0.0	m ²
0 – 20 11111	0.0	40 00 111111	0.0	%
20 – 40 mm	0.0	over 60 mm	37.4	m²
	0.0	over 60 mm	100.0	%

Page 2 of 4

OSIM Identifier: Abutments

Site No: <u>B26030042</u>

Component Type & Location: North Abutment Wall

Remarks

Remarks

Remarks

5. Corrosion Activity

Minimum	Maximum	Average	
-0.127	-0.412	-0.268	ν

0 to -0.20	-0.20 to -0.30	-0.30 to -0.35	-0.35 to -0.45	< -0.45	V
3.4	22.1	6.8	5.1	0.0	m²
9.1	59.1	18.2	13.6	0.0	%

6. Delaminations and Spalls

	*Wet areas = 1.21 m ²
s in	

Defect Type Delaminations		Spalls	Patches	
Area (m²) 0.00		0.00 0.00		
Total Delamina	ntions and Spalls		ations and Spalls in is ≤-0.35 V	
0.00 m ²	0.0 %	N/A	N/A	

7. Scaling

Light	Medium	Severe to Very						
8		Severe						
0.00	0.00	0.00	m ²					
0.0	0.0	0.0	%					

8. Honeycombing

Total Area 0.00 m²

Page 3 of 4

Site No:

B26030042

Component Type & Location: North Abutment Wall

OSIM Identifier: Abutments

Remarks

9. Adjusted Chloride Content Profile

Corrosion Activity at Core Location (volts)		0 to -0.20	-0.20 to -0.35	≤ -0.35
	0-10 mm	-	0.028	1
	20-30 mm	-	0.028	-
Chloride	40-50 mm	-	0.024	-
Content*	60-70 mm	-	0.010	-
	80-90 mm	-	0.000	-
	100-110 mm	-	-	-

^{*} Average chloride content as % chloride by weight of concrete after deducting background chlorides for all cores taken in each range of corrosion potential.

10. Chloride Content at Rebar Level

Core No.	C13	-	•	-	ı	ı
Chloride						
Content*	0.000	-	-	-	-	-

^{*} Chloride content as % chloride by weight of concrete after deducting background chlorides.

Remarks
Table # 11 is Not
Applicable.

11. AC Resistance Test Data of Epoxy Coated Rebar

Measured AC Resistance between Connection #1 and #2								
Connection #2						Calculated AC		
Connection #1	G1	G2	G3	G4	G5	Resistance *		
G1	N/A	-	-	-	-	-		
G2	-	N/A	-	-	-	-		
G3	-	-	N/A	-	-	-		
G4	-	-	-	N/A	-	-		
G5	-	-	-	-	N/A	-		

^{*} See Appendix 1E for calculating AC resistance contributed by individual rebar.

^{*}Background (substructure concrete) chloride content = 0.031

Page 4 of 4

Site No: <u>B26030042</u>

Component Type & Location: North Abutment Wall

OSIM Identifier: Abutments

Remarks
Table # 12 is Not
Applicable.

12. IR Drop and True Half Cell Potential Measurements of Epoxy Coated Rebar

22. It brop and reaction control of control of chord control of chord									
	IR Drop Between Connection #1 and #2								
Connection #1		Co	onnection #2 (negative)			True Half Cell Potential *			
(positive)	G1	G2	G3	G4	G5	Potential			
G1	N/A	-	-	-	-	-			
G2	-	N/A	-	-	-	-			
G3	-	-	N/A	-	-	-			
G4	-	-	-	N/A	-	-			
G5	-	-	-	-	N/A	-			

^{*} Half cell reading taken on the same rebar with the ground connection.

13. Concrete Air Entrainment

Concrete Air Entrained: <u>not tested</u>

14. Compressive Strength

Average Compressive Strength: <u>not tested</u>

DETAILED CONDITION SURVEY SUMMARY SHEET

Page 1 of 4

EXPOSED CONCRETE COMPONENTS (Exposed Deck, Deck Soffit, Curbs, Medians, Sidewalks, Barrier/Parapet Walls, etc.): Use separate form for each component

Site No: B26030042

Component Type & Location: South Abutment Wall

OSIM Identifier: Abutments

_								
1.	υı	me	ensi	on	s a	nd	Ar	ea

Width10.48 mLength-Height3.87 mDiameter-Total Area Surveyed40.56 m²

Remarks

Dimensions were taken from the structural drawings & site

structural drawings & site measurements

Remarks

2. Cracks (medium and wide)

Туре		Vertical	Horizontal	Diagonal	Total	
Medium Width	Clean	0.0	0.0	2.0	F 0	
wealum whath	Stained	1.0	1.0	1.0	5.0 r	m
Wide Width	Clean	0.0	0.0	0.0	0.0	
	Stained	0.0	0.0	0.0	0.0	m

3. Alkali Aggregate Reaction

Area of component with severe to very severe aggregate reaction

0.0 m²

4. Concrete Cover

_	T. CONCICTE COV	Ci	
	Minimum	Maximum	Average
ı	0.4	404	0.3

	0 – 20 mm	0.0	40 – 60 mm	0.0	m ²
	0 20111111	0.0	40 – 60 mm	0.0	%
	20 – 40 mm	0.0	over 60 mm	40.6	m ²
20 – 40 mm	0.0	Over 00 mm	100.0	%	

Page 2 of 4

OSIM Identifier: Abutments

Site No: B26030042

Component Type & Location: South Abutment Wall

Remarks

5. Corrosion Activity

Minimum	Maximum	Average	
-0.223	-0.423	-0.329	v

0 to -0.20	-0.20 to -0.30	-0.30 to -0.35	-0.35 to -0.45	< -0.45	٧
0.0	11.1	16.6	12.9	0.0	m²
0.0	27.3	40.9	31.8	0.0	%

Remarks

Remarks

6. Delaminations and Spalls

Defect Type	Delaminations	Spalls	Patches
Area (m²)	0.00	0.00	0.00
Total Delamina	tions and Spalls		ations and Spalls in s ≤-0.35 V
0.00 m ²	0.0 %	N/A	N/A

Wet areas = 0.00 m²

7. Scaling

			_
Light	Medium	Severe to Very Severe	
0.00	0.00	0.00	m
0.0	0.0	0.0	%

0.00 0.00 m²

8. Honeycombing

Total Area 0.00 m²

Page 3 of 4

Site No: <u>B26030042</u>

Component Type & Location: South Abutment Wall OSIM Identifier: Abutments

Remarks

9. Adjusted Chloride Content Profile

	y at Core Location olts)	0 to -0.20	-0.20 to -0.35	≤ -0.35
	0-10 mm	-	1	0.031
	20-30 mm	-	-	0.018
Chloride	40-50 mm	-	-	0.014
Content*	60-70 mm	-	-	0.011
	80-90 mm	-	-	0.011
	100-110 mm	-	-	0.010

^{*} Average chloride content as % chloride by weight of concrete after deducting background chlorides for all cores taken in each range of corrosion potential.

10. Chloride Content at Rebar Level

Core No.	C16	-	•	ı	ı	-
Chloride						
Content*	0.011	-	-	-	-	-

^{*} Chloride content as % chloride by weight of concrete after deducting background chlorides.

Remarks
Table # 11 is Not
Applicable.

11. AC Resistance Test Data of Epoxy Coated Rebar

Measured AC Resistance between Connection #1 and #2									
Connection #1			Connection #2			Calculated AC			
Connection #1	G1	G2	G3	G4	G5	Resistance *			
G1	N/A	-	-	-	-	-			
G2	-	N/A	-	-	-	-			
G3	-	-	N/A	-	-	-			
G4	-	-	-	N/A	-	-			
G5	-	-	-	-	N/A	-			

^{*} See Appendix 1E for calculating AC resistance contributed by individual rebar.

^{*}Background (substructure concrete) chloride content = 0.031

Page 4 of 4

Site No: <u>B26030042</u>

Component Type & Location: South Abutment Wall OSIM Identifier: Abutments

Remarks
Table # 12 is Not

Applicable.

12. IR Drop and True Half Cell Potential Measurements of Epoxy Coated Rebar

IR Drop Between Connection #1 and #2						
Connection #1		Co	nnection #2 (negative)			True Half Cell Potential *
(positive)	G1	G2	G3	G4	G5	Potential
G1	N/A	-	-	-	-	-
G2	1	N/A	-	-	-	-
G3	-	-	N/A	-	-	-
G4	-	-	-	N/A	-	-
G5	-	-	-	-	N/A	-

^{*} Half cell reading taken on the same rebar with the ground connection.

13. Concrete Air Entrainment

Concrete Air Entrained: <u>not tested</u>

14. Compressive Strength

Average Compressive Strength: <u>not tested</u>

DETAILED CONDITION SURVEY SUMMARY SHEET

Page 1 of 4

EXPOSED CONCRETE COMPONENTS (Exposed Deck, Deck Soffit, Curbs, Medians, Sidewalks, Barrier/Parapet Walls,

etc.): Use separate form for each component

Site No: B26030042

Component Type & Location: Wingwalls OSIM Identifier: Abutments

					_
1.	Din	1en:	sions	and	Area

Width	_	Length	7.31 m	_Height	Avg. 2.15 m
Diameter	-	Total Area Surve	eyed	62.89 m	2

Remarks

Dimensions were taken from the structural drawings & site

Remarks

2. Cracks (medium and wide)

Ty	/pe	Vertical	Horizontal	Diagonal	Total	measurements
Medium Width	Clean	0.0	0.0	0.0	1.0	
wealum wiath	Stained	0.0	0.0	1.0	1.0 m	m
Wide Width	Clean	0.0	0.0	0.0	0.0	
wide width	Stained	0.0	0.0	0.0	0.0	m

3. Alkali Aggregate Reaction

Area of component with severe to very severe aggregate reaction 0.0 m²

4. Concrete Cover							
	Minimum	Maximum	Average				
	67	125	102	lmm			

				_
0 – 20 mm	0.0	40 – 60 mm	0.0	m^2
	0.0	40 00 111111	0.0	%
20 – 40 mm	0.0	over 60 mm	62.9	m ²
	0.0	Over 00 mm	100.0	%

Page 2 of 4

Site No: <u>B26030042</u>

Component Type & Location: Wingwalls

OSIM Identifier: Abutments

Remarks

5. Corrosion Activity

Minimum	Maximum	Average	1
-0.119	-0.412	-0.265	١

0 1	to -0.20	-0.20 to -0.30	-0.30 to -0.35	-0.35 to -0.45	< -0.45	V
	8.4	34.7	15.4	4.5	0.0	m²
	13.3	55.1	24.5	7.1	0.0	%

6. Delaminations and Spalls

Remarks

Defect Type	Delaminations	Spalls	Patches	*Wet areas = 0.00 m ²
Area (m²)	0.00	0.00	0.00	
Total Delamina	ations and Spalls		nations and Spalls in ns ≤-0.35 V	
0.00 m ²	0.0 %	N/A	N/A	

7. Scaling

Remarks

Light	Medium	Severe to Very Severe	
0.00	0.00	0.00	m²
0.0	0.0	0.0	%

8. Honeycombing

Total Area 0.00 m²

Page 3 of 4

Site No:

B26030042

Component Type & Location: Wingwalls

OSIM Identifier: Abutments

Remarks

Table # 9 and 10 are Not Applicable.

9. Adjusted Chloride Content Profile

Corrosion Activity at Core Location (volts)		0 to -0.20	-0.20 to -0.35	≤ -0.35
	0-10 mm	-	-	-
	20-30 mm	-	-	-
Chloride	40-50 mm	-	-	-
Content*	60-70 mm	-	-	-
	80-90 mm	-	-	-
	100-110 mm	-	-	-

^{*} Average chloride content as % chloride by weight of concrete after deducting background chlorides for all cores taken in each range of corrosion potential.

10. Chloride Content at Rebar Level

Core No.	-	-	•	-	ı	-
Chloride						
Content*	-	-	-	-	-	-

^{*} Chloride content as % chloride by weight of concrete after deducting background chlorides.

<u>Remarks</u>

Table # 11 is Not Applicable.

11. AC Resistance Test Data of Epoxy Coated Rebar

Measured AC Resistance between Connection #1 and #2										
Connection #1		Connection #2								
Connection #1	G1	G1 G2 G3 G4 G5								
G1	N/A	-	-	-	-	-				
G2	-	N/A	-	-	-	-				
G3	-	-	N/A	-	-	-				
G4	-	-	-	N/A	-	-				
G5	-	-	-	-	N/A	-				

^{*} See Appendix 1E for calculating AC resistance contributed by individual rebar.

Page 4 of 4

Site No: B26030042

Component Type & Location: Wingwalls OSIM Identifier: Abutments

Remarks
Table # 12 is Not

Applicable.

12. IR Drop and True Half Cell Potential Measurements of Epoxy Coated Rebar

IR Drop Between Connection #1 and #2									
Connection #1		Connection #2 (negative)							
(positive)	G1	G5	Potential *						
G1	N/A	-	-	-	-	-			
G2	•	N/A	-	-	-	-			
G3	-	-	N/A	-	-	-			
G4	-	-	-	N/A	-	-			
G5	-	-	-	-	N/A	-			

^{*} Half cell reading taken on the same rebar with the ground connection.

13. Concrete Air Entrainment

Concrete Air Entrained: <u>not tested</u>

14. Compressive Strength

Average Compressive Strength: 47.1 MPa

CONDITION SURVEY SUMMARY SHEET - EXPANSION JOINTS

Site No. B26030042

Dimension Joint 1 Joint 2 Joint 3 Joint 4			Λ hd	hun a unta			Intous	adiata		Demonic	
N S Joint 3 Joint 4	Dimension	lo			nt 2		interm	ediate		Remarks	
a (mm)						Joi	nt 3	Join	nt 4		
b (mm)	a (mm)						-			a = Top face of parape	et
b' (mm)							-		-	wall / sidewalk wi	
C (mm)		2	250	2.	50		-		_	e = Top face of parap	et
d' (mm) 250 250 -		8	600	86	500		-		-	wall / curb width.	
d' (mm) 250 250 250	d (mm)	2	240	2	40		-		_	No expansion joints	
Depth of Asphalt @ Deck Side		2	250	2.	50		-		-	present in structure.	
1 (mm) 60 80	e (mm)	*25	4/991	*254	1/991		-		-		
2 (mm) 65 90	Depth of A	sphalt @	Deck Side			N/E	S/E	N/E	s/w		
3 (mm) 65 80 - - - -	1 (mm)					-	-	-	-		
Width: Top of Ballast Wall and End Dams Ballast End Dam Wall End Dam N/E S/W N/E S/W	2 (mm)					-	-	-	-		
Ballast End Dam Ballast Wall End Dam N/E S/W N/E S/W 1 (mm)	3 (mm)		65	8	30	-	-	-	<u> </u>		
1 (mm)	Width: To		t Wall and En		1	T	1	1	1		
2 (mm)			End Dam		End Dam	N/E	s/w	N/E	s/w		
3 (mm)	1 (mm)	-	-	-	-	-	-	-	-		
Gap Dimensions	2 (mm)	-	-	-	-	-	-	-	-		
1 (mm)	3 (mm)	-	-	-	-	-	-	-	-		
2 (mm) 3 (mm)	Gap Dime	nsions		1		T		T			
3 (mm)	1 (mm)		-		-		-		-		
Misc. Joint Details Skew Angle	2 (mm)		-		-				-		
Exp	3 (mm)		-		-				_		
Fixed		Details		Skew Ang							
Type										_	
Leaking - </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>,</td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td>					-	,	-			_	
Angle size Temp °C Deck 14°C Ambient 14°C JOINT DIMENSIONS W	Туре			T	-	T			-		
Temp °C Deck 14°C Ambient 14°C E JOINT DIMENSIONS W	Leaking										
E JOINT DIMENSIONS W											
a b X C/L d e Y						Aml	oient				
a b X C/L d e Y	E			JOINT DIME	NSIONS			'	W		
Typical Sections at Joints:	Typical Sections at J	oints:				3 d	d'	Y			

DRAINAGE

Site No. B26030042

Deck	Number	Туре	Length	Angle	Depth *
Drains	4	150mm steel pipe	720mm	N/A	20-30mm

^{*} For asphalt covered decks, recess depth in mm between top of asphalt and top of drain.

Catch Basins	YES	N/E x 1, N/W x 1, S/E x 1, S/W x 1
-----------------	-----	---------------------------------------

^{*} Identify location of catch basins as N/E, N/W, S/E etc. using the same direction of north as shown on the drawings.

Drainage Tubes	NO	Void Drains	NO
-------------------	----	----------------	----

Typical Condition of Deck Drain @ Northwest

Typical Condition of Catch Basin @ Southeast

Appendix B:

Survey Equipment and Calibration Procedures

SURVEY EQUIPMENT AND CALIBRATION PROCEDURES

Component Type:		Asphal	Asphalt Covered Bridge Deck			Site Nu	mber:	B26030042	
1.	Delaminations:								
	Weight of Ch	nain:		2.2	kį	g/m			
	Other Equip	ment:		lamme	er				<u> </u>
2.	Concrete Cover:								
	Covermeter	Make an	d Model:		EL	СОМЕТ	ER Protovale 331		
	Battery Chec	:k:	_	Readin	ng at Start o	f Test:		OK	
				Readin	ng at End of	Test:		OK	
	Concrete Co	ver Check	c :	Locatio	on of Check:	:		@ 'SS1'	
				Actual	Depth and	Rebar I	Diameter:	-	
				Readin	ng Before Te	st:	_	118 mm	
				Readin	ngs Each 30	minute	s During Test:	118 mm	
				Readin	ng at End of	Test:		118 mm	
3.	Corrosion Activity	y :							
	Half Cell Make a	nd Mode	ıl:		ľ	MC MIL	LER Electrode RE-3	a (3" ø)	
	Multimeter Mak	e and Mo	odel:		М	astercr	aft Digital Multimet	ter 3R93	
	Length and Gaug	ge of Lead	d Wires:				150 m of 18 gauge		
	Deck Temperatu	ıre:	Start of Te	st:	14	°C	End of Test:	14	°C
	Ambient Tempe	rature:	Start of Te	st:	14	°C	End of Test:	14	°C
	Battery Check:						O.K.		
	Ground Check:	Metho	d of Connec	tion:			self-tapping scr	ew	
		Groun	d Location:	@ C	Core C6, C7	C	heck Location:	@ Core	C3, C11
		Lead R	esistance:	1.	8 - 1.9 Ω	V	oltage Drop (mV's)	:0	.1
		Resista	ance ^c :	1.	8 - 1.9 Ω	R	esistance Reversed	: 1.8 -	1.9 Ω
	Grid Point Poter	itial Read	lings Check	- See T	able Below				

Location	Initial Reading	Check Reading ^a	Check Reading – Latex Concrete Overlay ^b
G1 / A1	-0.390/-0.468	-0.390/-0.468	-
G2 / A2	-0.368/-0.461	-0.368/-0.461	-
G3 / A3	-0.322/-0.394	-0.322/-0.394	-
G4 / A4	-0.327/-0.391	-0.327/-0.391	-
G5 / A5	-0.231/-0.378	-0.231/-0.378	-

Check at least five readings at beginning of test and each change in ground.

On decks with latex modified concrete overlay, check at least five locations by drilling holes through the latex concrete overlay into the original concrete substrate.

c Resistance is the net resistance after deducting the lead resistance.

Appendix C:

Core Photographs and Sketches

Core C19

Appendix D:

Core Logs

Page 1 of 7 Site: <u>B26030042</u>

		C1	C	2	(3
reen gridlines)	North	Approach	'A' ar	nd '8'	'E' and '(
Diameter, mm		100.0		100.0		0.0
sphalt, mm		55.0	70	0.0	9!	5.0
sphalt @ Nearest Grid Point		N/A	70	0.0	9!	5.0
oncrete, mm	,	*N/A	*N	I/A	16	0.0
s/no)		No	N	0	١	lo
sphalt ⁽¹⁾		G	(3	Ft	o G
(W/P) Type		N/A		N/A		/A
//P ⁽¹⁾		N/A	N,	/A	N	/A
, mm						/A
		P	i)		o G
crete ⁽²⁾		_	:	k		-
ebar ⁽³⁾		N/A	N	/A	L	.R
ntial		14/7			-0.461	
trength, MPa						
0-10 mm 20-30 mm 40-50 mm 60-70 mm 80-90 mm	Total	Corrected	Total	Corrected	Total	Corrected
Air Content,% Spec. Surf.,mm²/mm³ Spacing Factor, mm		1			21.00 0.218	
OKI						CC
f rebars and cover verlay, patch and thickness ed defects	*Granulai	r present.	*Disintegra the top.	ation at	@155mm	
	sphalt, mm sphalt @ Nearest Grid Point concrete, mm s/no) sphalt (1) sphalt (2) sphalt (1) sphalt (2) sphalt (1) sphalt (2) sphalt (sphalt, mm sphalt @ Nearest Grid Point concrete, mm s/no) sphalt (1) s (W/P) Type //P (1) , mm It or W/P to Concrete crete (2) ebar (3) ential trength, MPa 0-10 mm 20-30 mm 40-50 mm 60-70 mm 80-90 mm Air Content,% Spec. Surf.,mm²/mm³ Spacing Factor, mm ORY *Granular	North Approach 100.0 sphalt, mm 55.0 sphalt @ Nearest Grid Point N/A c/no) Sphalt (1) (W/P) Type N/A N/A N/A N/A N/A N/A N/A N/A	reen gridlines) North Approach 100.0 100.0 100.0 Sphalt, mm Sphalt @ Nearest Grid Point N/A Norcrete, mm No No No No No No No No No	North Approach (A' and '8') 100.0	North Approach

^{1.} Condition - G = Good, F = Fair, P = Poor.

^{2.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

^{3.} Condition Rebar - G = Good, LR = Light Rust, SR = Severe Rust, N/A = No rebar exposed Condition of Epoxy Coating – ECG = Good, ECF = Fair, ECP = Poor-rusted & debonded areas

Page 2 of 7 Site: <u>B26030042</u>

Core No.			C4	C5		C6	
Location (betw	een gridlines)	'G'	and '7'	'E' and '3'		'G' and '2'	
Diameter, mm		1	00.0	100.0		100.0	
Thickness of As	phalt, mm	(55.0	110	.0	80	0.0
Thickness of As	phalt @ Nearest Grid Point	(55.0	110	.0	80	0.0
Thickness of Co	oncrete, mm	1	70.0	125	.0	11	0.0
Full Depth (yes	/no)		No	No)	N	0
Condition of As	sphalt ⁽¹⁾		Р	F		ı)
Waterproofing	(W/P) Type	!	N/A		N/A		/A
Condition of W	/P ⁽¹⁾		N/A	N/A	4	N,	/A
W/P Thickness			N/A	N/A			/A
	t or W/P to Concrete		P	F		-)
Defects in Cond			-	*		,	k
Condition of Re	ebar ⁽³⁾		G	LR		L	R
Corrosion Pote		-0.251		-0.422		-0.371	
Compressive St	trength, MPa						
Chloride Content % Chloride by Weight of Concrete AIR VOIDS	0-10 mm 20-30 mm 40-50 mm 60-70 mm 80-90 mm 100-110 mm Air Content,% Spec. Surf.,mm ² /mm ³	Total 0.114 0.087 0.076 0.068 0.043 0.029	0.058 0.047 0.039 0.014	Total 0.342 0.223 0.210 0.216	0.313 0.194 0.181 0.187	Total 0.141 0.107 0.086	0.112 0.078 0.057
	Spacing Factor, mm						
TEST LABORAT	ORY	'	BCC				
 orientation of rebars and cover presence of overlay, patch and thickness other observed defects 		Rebar imprint @165mm (Transverse). Asphalt core damaged upon removal.		*40mm Disintegration at the top. 2xRebar imprint @120mm (Longitudinal - LR).		*65mm Disintegration at the top. Rebar imprint @100mm (Longitudinal - LR).	

^{1.} Condition - G = Good, F = Fair, P = Poor.

^{2.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

^{3.} Condition Rebar - G = Good, LR = Light Rust, SR = Severe Rust, N/A = No rebar exposed Condition of Epoxy Coating – ECG = Good, ECF = Fair, ECP = Poor-rusted & debonded areas

Page 3 of 7 Site: <u>B26030042</u>

Core No.			C7	C8		(C9
Location (betw	een gridlines)	'A' a	and '3'	'B' and '4'		'D' and '3'	
Diameter, mm		1	100.0		.0	100.0	
Thickness of As	phalt, mm	8	30.0	80.	0	9	0.0
Thickness of As	phalt @ Nearest Grid Point	8	30.0	80.	0	9	0.0
Thickness of Co	oncrete, mm	1	50.0	135	.0	12	25.0
Full Depth (yes			No	No)	1	Vo
Condition of As	sphalt ⁽¹⁾		P	Р			P
Waterproofing	(W/P) Type	1	N/A		N/A		I/A
Condition of W	/P ⁽¹⁾	1	N/A	N/A	A	N	I/A
W/P Thickness			N/A	N/A		N	I/A
Bond of Aspha	t or W/P to Concrete		Р	Р			Р
Defects in Cond	crete ⁽²⁾		*	*			*
Condition of Re	ebar ⁽³⁾		LR	LR	1		SR
Corrosion Pote	ntial	-0	-0.423		62	-0.455	
Compressive St	rength, MPa						
Chloride Content % Chloride by Weight of	0-10 mm 20-30 mm 40-50 mm 100-110 mm	Total 0.113	Corrected 0.084	Total	Corrected	Total	Corrected
Concrete	120-130 mm	0.090	0.061				
	140-150 mm	0.069	0.040				
AIR VOIDS	Air Content,% Spec. Surf.,mm ² /mm ³ Spacing Factor, mm						
TEST LABORAT	ORY						
REMARKS - orientation of rebars and cover - presence of overlay, patch and thickness - other observed defects		*95mm Disintegration at the top. Rebar imprint @120mm (Longitudinal - LR). Rebar imprint @150mm (Transverse - LR).		Disintegration at the top. Rebar imprint @130mm (Longitudinal - LR).		*50mm Disintegration at the top. Rebar imprint @115mm (Longitudinal - SR). Core damaged upor removal. Asphalt core damaged upon removal.	

^{1.} Condition - G = Good, F = Fair, P = Poor.

^{2.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

^{3.} Condition Rebar - G = Good, LR = Light Rust, SR = Severe Rust, N/A = No rebar exposed Condition of Epoxy Coating – ECG = Good, ECF = Fair, ECP = Poor-rusted & debonded areas

Page 4 of 7 Site: <u>B26030042</u>

					D200300-	_
		C10 C11		C12		
een gridlines)	'B'	and '6'	'B' and	'B' and '7'		nd '7'
	1	100.0	100.0		100.0	
sphalt, mm	1	105.0	65.	0	60	0.0
sphalt @ Nearest Grid Point	1	105.0	65.	0	60	0.0
oncrete, mm	2	225.0	155	.0	24	0.0
/no)		No	No)	N	No
sphalt ⁽¹⁾		F	F to	G		Р
(W/P) Type		N/A		N/A		/A
//P ⁽¹⁾		N/A	N/A	4	N	I/A
, mm						/ I/A
It or W/P to Concrete		F	F to	G		P
		-	-			*
ebar ⁽³⁾		N/A	G		LR	
ntial					-0.	412
trength, MPa		49.5				
0-10 mm 20-30 mm 40-50 mm 60-70 mm 80-90 mm	Total	Corrected	Total 0.188 0.177 0.158 0.141 0.117	0.159 0.148 0.129 0.112 0.088	Total	Corrected
Air Content,% Spec. Surf.,mm²/mm³ Spacing Factor, mm						
ORY		BCC				
REMARKS - orientation of rebars and cover - presence of overlay, patch and thickness - other observed defects			@145mm (Longitudina	al).	*35mm Disintegra the top. 25M-Reba (Transvers	ar @140m
	sphalt, mm sphalt @ Nearest Grid Point concrete, mm /no) sphalt (1) (W/P) Type (W/P) Type (Y/P (1) , mm (t or W/P to Concrete crete (2) ebar (3) ntial trength, MPa 0-10 mm 20-30 mm 40-50 mm 60-70 mm 80-90 mm Air Content,% Spec. Surf.,mm²/mm³ Spacing Factor, mm ORY	reen gridlines) sphalt, mm sphalt @ Nearest Grid Point concrete, mm /no) sphalt (11) (W/P) Type (W/P) Type sphalt (2) concrete crete (2) concrete crete (2) concrete crete (3) ntial crength, MPa 0-10 mm 20-30 mm 40-50 mm 60-70 mm 80-90 mm Air Content,% Spec. Surf.,mm²/mm³ Spacing Factor, mm ORY	reen gridlines) (B' and '6' 100.0 100.0 sphalt, mm 105.0 sphalt @ Nearest Grid Point 105.0 morete, mm 225.0 /no) Sphalt (1) (W/P) Type N/A (W/P) Type N/A N/A It or W/P to Concrete crete (2)	Bean gridlines B' and '6' B' and '6' B' and '6' B' and '100.0 100.0 100.0 100.0 100.0 100.0 105.0 65.0	B' and '6' B' and '7' 100.0 10	Bean gridlines B' and '6' B' and '7' A' a 100.0 10

^{1.} Condition - G = Good, F = Fair, P = Poor.

^{2.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

^{3.} Condition Rebar - G = Good, LR = Light Rust, SR = Severe Rust, N/A = No rebar exposed Condition of Epoxy Coating – ECG = Good, ECF = Fair, ECP = Poor-rusted & debonded areas

CORE LOG FOR EXPOSED CONCRETE

Page 5 of 7 Site: <u>B26030042</u>

Core No.		C	213	C1	4	С	:15
Location (between g	gridlines)	North Abutment		North Abutment		South Abutme	
Diameter, mm		10	0.00	100	0.0	10	0.0
Length, mm		10	0.00	185	5.0	9.	5.0
Full Depth (yes/no)		ı	No	N	0	١	No
Defects in Concrete	(1)		-	-			-
Condition of Rebar	(2)		LR	N/	A	ı	LR
Corrosion Potential		-0	.270	-0.2	.66	-0.	423
Compressive Streng	gth, MPa				1		
Content % 20-3 Chloride by Weight of Concrete 80-9 AIR VOIDS AIR Spe	LO mm 30 mm 50 mm 70 mm 90 mm Content,% ec. Surf.,mm²/mm³ acing Factor, mm	Total 0.059 0.059 0.055 0.041 0.031	0.028 0.028 0.024 0.010 0.000	Total	Corrected	Total	Corrected
REMARKS - orientation of reba - presence of overla - other observed de	y, patch and thickness	Rebar impi (Horizonta	rint @95mm I - LR).			Rebar imp @90mm (LR).	

^{1.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

^{2.} Condition Rebar - G = Good, LR = Light Rust, SR = Severe Rust, N/A = No rebar exposed Condition of Epoxy Coating – ECG = Good, ECF = Fair, ECP = Poor-rusted & debonded areas

CORE LOG FOR EXPOSED CONCRETE

Page 6 of 7 Site: <u>B26030042</u>

						1	
Core No.		C	216	C17		C	18
Location (between gridline	cation (between gridlines) South		Abutment	South Abutment		NW Wingwall	
Diameter, mm		10	0.00	100	.0	10	0.0
Length, mm		16	50.0	160	.0	16	0.0
Full Depth (yes/no)		I	No	No)	N	lo
Defects in Concrete (1)			-	-			_
Condition of Rebar ⁽²⁾		١	I/A	LR	2	(G
Corrosion Potential		-0	.423	-0.3	17	-0.	286
Compressive Strength, MP	a					47	7.1
Chloride Content % Chloride by Weight of Concrete AIR VOIDS Chloride by Weight of Concrete AIR VOIDS Concrete Spec. Surf. Spacing Fa	t,% ,mm²/mm³	Total 0.062 0.049 0.045 0.042 0.042	0.031 0.018 0.014 0.011 0.011 0.010	Total	Corrected	Total	Corrected
REMARKS - orientation of rebars and cover - presence of overlay, patch and thickness - other observed defects				Rebar impri @95mm (Vo LR).		Rebar imp @125mm (Horizonta	

^{1.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

^{2.} Condition Rebar - G = Good, LR = Light Rust, SR = Severe Rust, N/A = No rebar exposed Condition of Epoxy Coating – ECG = Good, ECF = Fair, ECP = Poor-rusted & debonded areas

CORE LOG FOR EXPOSED CONCRETE

Page 7 of 7 Site: <u>B26030042</u>

Core No.		(C19			
Location (betw	een gridlines)	SW V	Vingwall			
Diameter, mm		1	00.0			
Length, mm		1	60.0			
Full Depth (yes	/no)		No			
Defects in Conc	rete ⁽¹⁾		-			
Condition of Re	ebar ⁽²⁾	ı	N/A			
Corrosion Pote	ntial	-0).165			
Compressive St	rength, MPa		I	,	<u>, </u>	
Chloride Content % Chloride by Weight of Concrete AIR VOIDS	0-10 mm 20-30 mm 40-50 mm 60-70 mm 80-90 mm Air Content,% Spec. Surf.,mm²/mm³ Spacing Factor, mm	Total	Corrected			
	rebars and cover verlay, patch and thickness d defects					

^{1.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

^{2.} Condition Rebar - G = Good, LR = Light Rust, SR = Severe Rust, N/A = No rebar exposed Condition of Epoxy Coating – ECG = Good, ECF = Fair, ECP = Poor-rusted & debonded areas

Appendix E:

Sawn Asphalt Sample Photographs

Photo S1 – Sawn Sample SS1

Photo S2 – Sawn Sample SS2

Photo S3 – Sawn Sample SS3

Photo S4 – Sawn Sample SS4

Photo S5 – Sawn Sample SS5 (disintegration) note exposed and corroded rebar

Photo S6 – Sawn Sample SS5 (disintegration) note exposed and corroded rebar

Photo S7 - Sawn Sample SS6

Photo S8 – Sawn Sample SS7

Photo S9 – Sawn Sample SS8

Appendix F:

Sawn Asphalt Sample Logs

SAWN ASPHALT SAMPLE LOG

Page 1 of 3 Site No: <u>B26030042</u>

Sample No.	SS1	SS2	SS3
Location (between gridlines)	'F' and '7'	'E' and '5'	'G' and '3'
Size, mm X mm	280x220	250x240	300x260
Thickness of Asphalt, mm	90	105	95
Thickness of Asphalt @ Nearest Grid Point	90	105	95
Condition of Asphalt (1)	F	F	F
Waterproofing (W/P) Type	N/A	N/A	N/A
W/P Thickness, mm	N/A	N/A	N/A
Condition of W/P (1)	N/A	N/A	N/A
Bond of W/P to Asphalt	N/A	N/A	N/A
Bond of Asphalt or W/P to Concrete	F	F	F
Concrete Cover to Reinf., mm	118T	162T	89T
Defects in Concrete Surface (2)	-	-	-
Corrosion Potential on Concrete Surface	-0.305	-0.331	-0.322
Remarks			

^{1.} Condition - G = Good, F = Fair, P = Poor.

^{2.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

SAWN ASPHALT SAMPLE LOG

Page 2 of 3 Site No: <u>B26030042</u>

Sample No.	SS4	SS5	SS6
Location (between gridlines)	'D' and '1'	'A' and '1'	'B' and '3'
Size, mm X mm	250x250	260x250	270x230
Thickness of Asphalt, mm	90	80	95
Thickness of Asphalt @ Nearest Grid Point	90	80	95
Condition of Asphalt ⁽¹⁾	F	Р	F
Waterproofing (W/P) Type	N/A	N/A	N/A
W/P Thickness, mm	N/A	N/A	N/A
Condition of W/P (1)	N/A	N/A	N/A
Bond of W/P to Asphalt	N/A	N/A	N/A
Bond of Asphalt or W/P to Concrete	F	Р	F
Concrete Cover to Reinf., mm	105L	120T	118T
Defects in Concrete Surface (2)	-	*	-
Corrosion Potential on Concrete Surface	-0.461	-0.465	-0.460
Remarks		*145mm disintegration at the top. Rebar imprint @120mm (Transverse - LR).	

^{1.} Condition - G = Good, F = Fair, P = Poor.

^{2.} Defects - C = Cracked, D = Delamination, R = Rough, S = Scaling, S = Spalling

SAWN ASPHALT SAMPLE LOG

Page 3 of 3 Site No: <u>B26030042</u>

.0			<u> </u>			
Sample No.	SS7	SS8				
Location (between gridlines)	'C' and '5'	'B' and '7'				
Size, mm X mm	280x275	340x280				
Thickness of Asphalt, mm	100	65				
Thickness of Asphalt @ Nearest Grid Point	100	65				
Condition of Asphalt (1)	F to G	F to G				
Waterproofing (W/P) Type	N/A	N/A				
W/P Thickness, mm	N/A	N/A				
Condition of W/P (1)	N/A	N/A				
Bond of W/P to Asphalt	N/A	N/A				
Bond of Asphalt or W/P to Concrete	F	F				
Concrete Cover to Reinf., mm	125T	115L				
Defects in Concrete Surface (2)	-	-				
Corrosion Potential on Concrete Surface	-0.464	-0.322				
Remarks						

^{1.} Condition - G = Good, F = Fair, P = Poor.

^{2.} Defects - C = Cracked, D = Delamination, R = Rough, Sc = Scaling, S = Spalling

Appendix G:

Site Photographs

Photo P1 - East Elevation

Photo P2 - West Elevation

Photo P3 – Deck General View, looking north

Photo P4 – Deck General View, looking south

Photo P5 – Deck Wearing Surface (fair condition – unsealed cracks)

Photo P6 – Deck Wearing Surface (unsealed cracks)

Photo P7 - Deck Wearing Surface (unsealed cracks)

Photo P8 – Deck Wearing Surface (unsealed cracks) note minor settlement

Photo P9 – Soffit (fair condition – cracks, delamination and wet area)

Photo P10 – Soffit at North Abutment, east edge (cracks, delamination and wet area) note medium corrosion on deck drain

Photo P11 – Soffit at North Abutment (cracks, delamination and wet area)

Photo P12 – Soffit (cracks, delamination and wet area)

Photo P13 – Soffit (crack and wet area)

Photo P14 – North Approach Wearing Surface (fair condition – unsealed cracks) note settlement

Photo P15 - North Approach Wearing Surface (unsealed cracks) note settlement

Photo P16 – South Approach Wearing Surface (fair to good condition – unsealed cracks)

Photo P17 - Northeast Deck Drainage

Photo P18 – Northwest Deck Drainage

Photo P19 - Southeast Deck Drainage

Photo P20 – Southwest Deck Drainage

Photo P21 - Northeast Catch Basin

Photo P22 - Northwest Catch Basin

Photo P23 - Southeast Catch Basin

Photo P24 – East Sidewalk (fair condition – wide crack, spall, delamination and light/medium scaling) and Parapet Wall (fair to good condition – cracks, delamination and light scaling)

Photo P25 – East Parapet Wall (crack and light scaling)

Photo P26 - East Sidewalk (medium scaling)

Photo P27 - East Sidewalk (light/medium scaling)

Photo P28 – East Sidewalk @ South Approach (spall, delamination and light/medium scaling)

Photo P29 – East Sidewalk @ South Approach (spall and light scaling)

Photo P30 – West Curb (fair to good condition – cracks and medium scaling) **and Parapet Wall** (fair condition – cracks, spall and delamination)

Photo P31 – West Parapet Wall (spall and delamination)

Photo P32 – West Parapet Wall (spall and delamination)

Photo P33 – West Parapet Wall (crack, spall and delamination)

Photo P34 – West Curb (crack and medium scaling)

Photo P35 – West Curb (crack and medium scaling)

Photo P36 – Northeast End Post (fair to good condition – light scaling)

Photo P37 – Northeast End Post (light scaling)

Photo P38 – Northwest End Post (good condition)

Photo P39 – Southeast End Post note missing handrail end cap

Photo P40 – Southwest End Post note missing handrail end cap

Photo P41 – Southeast Guiderail (good condition)

Photo P42 – North Abutment (fair to good condition – wide crack and wet area)

Photo P43 – North Abutment (wide crack and wet area)

Photo P44 – North Abutment (wide crack and wet area)

Photo P45 – South Abutment (good condition – cracks)

Photo P46 – South Abutment (cracks)

Photo P47 – Northeast Wingwall (good condition)

Photo P48 – Northwest Wingwall (good condition)

Photo P49 – Southeast Wingwall (good condition)

Photo P50 – Southwest Wingwall (good condition)

Photo P51 – Northeast Gabion Wall (good condition)

Photo P52 – Northwest Gabion Wall (fair to good condition – bulging)

Photo P53 – Northwest Gabion Wall (bulging)

Photo P54 – Southeast Gabion Wall (fair condition – overturning)

Photo P55 – Southwest Gabion Wall (fair condition – overturning and damaged gabion basket)

Photo P56 – Southwest Gabion Wall (overturning and damaged gabion basket)

Photo P57 – Northeast Embankment (fair to good condition – soil erosion)

Photo P58 - Northwest Embankment (fair to good condition - soil erosion)

Photo P59 – Southeast Embankment (fair to good condition – soil erosion)

Photo P60 - Southwest Embankment (fair to good condition - soil erosion)

Photo P61 – Typical Condition of Inside Core – C1 (north approach; granular)

Photo P62 – Typical Condition of Inside Core – C4

Photo P63 – Typical Condition of Inside Core – C6 (disintegration)

Photo P64 – Typical Condition of Inside Core – C6 (disintegration)

Photo P65 – Typical Condition of Inside Core – C8 (disintegration)

Photo P66 – Typical Condition of Inside Core – C8 (disintegration)

Photo P67 – Typical Condition of Inside Core – C9 (disintegration)

Photo P68 – Typical Condition of Inside Core – C9 (disintegration)

Photo P69 – Typical Condition of Inside Core – C11 (inside SS8)

Photo P70 – Typical Condition of Inside Core – C12 (disintegration)

Photo P71 – Typical Condition of Inside Core – C13 (north abutment)

Photo P72 – Typical Condition of Inside Core – C15 (south abutment)

Photo P73 – Typical Condition of Inside Core – C18 (Northwest wingwall)

Photo P74 – Upstream

Photo P75 – Downstream

Appendix H:

Laboratory Test Results

COMPRESSIVE STRENGTH OF CONCRETE CORES

(CSA A23.2-14C)

Project No.:	BCC19012
Site No.:	B26030042
Location:	Main Street, Alton, 0.02 km north of Queen Street

Core ID	C10	C18
Location	Deck	South Abutment
Lab No.	L19-0138	L19-0142
Date Cast	-	-
Date Cored	Apr 17, 2019	Apr 17, 2019
Date Tested	Apr 23, 2019	Apr 23, 2019
Capped Height (mm)	190.0	124.1
Average Diameter (mm)	100.0	100.0
Density (kg/m³)	2328	2331
Corrected Compressive Strength (MPa)	49.5	47.1
* Direction of Loading	Same as	Perpendicular
Moisture Content at Time of Test	Moist	Moist
Remarks		

^{*}Relative to the direction of original placement.

Savio DeSouza, M.A.Sc., P.Eng. Senior Principal Engineer

TOTAL CHLORIDE ION CONTENT

(Testing Method: MTO LS - 417)

Project No.:	BCC19012
Site No.:	B26030042
Location:	Main Street, Alton , 0.02 km north of Queen Street

Core ID	Lab No.	Horizon from the Top of the Core (mm)	Chloride Ion Content (%)	Chloride Ion Content Corrected for Background* (%)
		0-10	0.114	0.085
		20-30	0.087	0.058
C4	L19-0134	40-50	0.076	0.047
C4		60-70	0.068	0.039
		80-90	0.043	0.014
		100-110	0.029	0.000
		40-50	0.342	0.313
C5	L19-0135	60-70	0.223	0.194
	L19-0133	80-90	0.210	0.181
		100-110	0.216	0.187
		60-70	0.141	0.112
C6	L19-0136	80-90	0.107	0.078
		100-110	0.086	0.057
		100-110	0.113	0.084
C7	L19-0137	120-130	0.090	0.061
		140-150	0.069	0.040
		0-10	0.188	0.159
		20-30	0.177	0.148
C11	L19-0139	40-50	0.158	0.129
		60-70	0.141	0.112
		80-90	0.117	0.088
		0-10	0.059	0.028
		20-30	0.059	0.028
C13	L19-0140	40-50	0.055	0.024
		60-70	0.041	0.010
		80-90	0.031	0.000
		0-10	0.062	0.031
	L19-0141	20-30	0.049	0.018
C16		40-50	0.045	0.014
C 16		60-70	0.042	0.011
		80-90	0.042	0.011
		100-110	0.041	0.010

c*Background chloride (original concrete) = 0.029

^{*}Background chloride (substructure concrete) =0.031

^{**}The threshold of chloride ion generally regarded to be able to initiate reinforcing bar corrosion is 0.025%.

Tested By: Shervin M Date Tested: May 6, 2019

Savio DeSouza, M.A.Sc., P.Eng. Senior Principal Engineer

AIR VOID TEST RESULTS

(Modified Point Count - ASTM C457, Procedure B)

Project No.:	BCC19012
Site No.:	B26030042
Location:	Main Street, Alton, 0.02 km north of Queen Street

Core ID	C3
Lab No.	L19-0133
Air Content (%)	4.7
Specific Surface (mm ⁻¹)	21.00
Spacing Factor (mm)	0.218
Length of Traverse (mm)	3819.2
Area Traversed (mm²)	11075.68
Average Chord Length	0.190
Number of Stops	1364
No. of Voids per mm	0.246
Paste-Air Ratio	4.92
Paste Content (%)	23.09
Aggregate Content (%)	72.22

Tested By: Brad Wiersma Date Tested: May 4. 2018

Savio DeSouza, M.A.Sc., P.Eng. Senior Principal Engineer

Appendix I:

General Arrangement Drawing

Appendix J:

ACAD Drawings

200 Viceroy Road, Unit 4 Vaughan, ON L4K 3N8 T: 905-660-6608 F: 905-660-6609 Main Street, Alton 0.02km North of Queen Street Site No. B26030042 Caledon, ON SURFACE DETERIORATION OF ASPHALT ON DECK, CONCRET SIDEWALK, CURB AND PARAPET WALLS

F re	Drawing No.:	1
	Project No.:	BCC19012
	Date:	May 2019
	Scale:	1:100
	Drawn by:	JL
	Checked by:	MA

200 Viceroy Road, Unit 4 Vaughan, ON L4K 3N8 T: 905-660-6608 F: 905-660-6609 PROJECT:

Main Street, Alton 0.02km North of Queen Street Site No. B26030042 Caledon, ON TITLE

ASPHALT THICKNESS ON DECK, CONCRETE COVER OF SIDEWALK, CURB AND PARAPET WALLS

Drawing No.:	2
Project No.:	BCC19012
Date:	May 2019
Scale:	1:100
Drawn bu	11

Drawn by: JL

Checked by: MA

200 Viceroy Road, Unit 4 Vaughan, ON L4K 3N8 T: 905-660-6608 F: 905-660-6609

Main Street, Alton 0.02km North of Queen Street Site No. B26030042 Caledon, ON TITLE

CORROSION POTENTIAL OF DECK, SIDEWALK, CURB AND PARAPET WALLS

1	Drawing No.:	3
	Project No.:	BCC19012
	Date:	May 2019
	Scale:	1:100
l	Drawn by:	Ш

Drawn by: JL

Checked by: MA

GEND:

© Drain

C1 Core Sample Location

SS1 Sawn Sample Location

Patched Spalls

Delaminations

Spalls

Light Scaling

Medium Scaling
Severe Scaling
Honeycombed Areas
Wet Areas

Concrete Pattern Cracks

Medium Concrete Cracks

✓ W — Wide Concrete Cracks

Medium Stained/

Efflorescence Cracks

Wide Stained/

Efflorescence Cracks

200 Viceroy Road, Unit 4 Vaughan, ON L4K 3N8 T: 905-660-6608 F: 905-660-6609

BRIDGE CHECK CANADA

PROJECT

Main Street, Alton 0.02km North of Queen Street Site No. B26030042 Caledon, ON TITLE

SURFACE DETERIORATION OF SOFFIT AND ABUTMENTS

			_
	Drawing No.:	4	
F	Project No.:	BCC19012	
	Date:	May 2019	
	Scale:	1:100	
	Drawn by:	JL	
	Checked by:	MA	

© Drain

C1 Core Sample Location

Patched Spalls

Delaminations

Spalls
Light Scaling

cation Ecci I

Medium Scaling Severe Scaling Honeycombed Areas Wet Areas

Concrete Pattern Cracks

✓ — Medium Concrete Cracks
 ✓ W — Wide Concrete Cracks
 Medium Stained/
 Efflorescence Cracks

200 Viceroy Road, Unit 4 Vaughan, ON L4K 3N8 T: 905-660-6608 F: 905-660-6609 PROJECT

Main Street, Alton 0.02km North of Queen Street Site No. B26030042 Caledon, ON TITLE

SURFACE DETERIORATION OF ELEVATIONS

Drawing No.:	5
Project No.:	BCC19012
Date:	May 2019
Scale:	1:100
Drawn by:	JL
Checked by:	MA

o⁸⁰ Asphalt Thickness-mm Concrete cover-mm

Cover over 60mm Cover from 40mm to 60mm -0.200 to -0.299 volts

AC Resistance test Location

© Ground Location ⊗ Ground Check Location

more negative than -0.450 volts Copper-Copper Sulphate Half-Cell Potential (negative volts x10⁻³) BWD-PARAPET wall dowel inspection AC Test Result

200 Viceroy Road, Unit 4 Vaughan, ON L4K 3N8 T: 905-660-6608 F: 905-660-6609 Main Street, Alton 0.02km North of Queen Street Site No. B26030042 Caledon, ON

CONCRETE COVER AND **CORROSION POTENTIAL OF** ABUTMENTS AND WINGWALL

	Drawing No.:	6
	Project No.:	BCC19012
:	Date:	May 2019
S	Scale:	1:100
	Drawn by:	JL
	Checked by:	MA