

HYDROGEOLOGIC EVALUATION UPDATE PROPOSED RESIDENTIAL SUBDIVISION WEST HALF OF LOT 22, CONCESSION 1 (ALBION) PART 1, PLAN 43R-3575 TOWN OF CALEDON, ONTARIO

Prepared For:

2031818 Ontario Limited c/o Lexis Bayview Developments 255 Duncan Mill Road, Suite 202 Toronto, Ontario M3B 3H9

Attention: Mr. Warren Li

File No. 13-13-3081-6 October 24, 2013

© Terraprobe Inc.

Distribution of Report:

- 2031818 Ontario Limited 1 Copy
- 1 Copy - Terraprobe Inc.

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250

Hamilton – Niagara 903 Barton Street, Unit 22 Stoney Creek, Ontario L8E (905) 643-7560 Fax: 643-7559 (705) 739-8355 Fax: 739-8369 www.terraprobe.ca

Central Ontario 220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8

Terraprobe Inc.

Northern Ontario

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

TABLE OF CONTENTS

SEC	SECTION PAGE (
1.0	INTRODUCTION			
	1.1	STUDY SCOPE AND PURPOSE		
	1.2	SUMMARY OF WORK PROGRAM		
2.0	SITE	AND PROJECT DESCRIPTION	3	
	2.1	SITE LOCATION AND PROJECT DESCRIPTION	3	
	2.2	REGIONAL PHYSIOGRAPHY	3	
	2.3	SITE TOPOGRAPHY AND DRAINAGE	4	
	2.4	SURROUNDING LAND USES AND SERVICING	4	
	2.5	REGIONAL GEOLOGY	4	
	2.6	REGIONAL HYDROGEOLOGY	5	
	2.7	GROUND WATER RESOURCES	6	
	2.8	RESULTS OF DOOR TO DOOR SURVEY	8	
	2.9	SITE INSPECTION TO ASSESS HYDROGEOLOGIC FEATURES	8	
	2.10	RESULTS OF PREVIOUS INVESTIGATIONS	9	
		2.10.1 2001 Geotechnical Investigation (File No. 01109)	9	
		2.10.2 2006 Hydrogeological Evaluation (File No. 1-05-0178)		
	2.11	GROUND WATER	11	
	2.12	REVIEW OF CURRENT REGULATORY REQUIREMENTS	12	
		2.12.1 The Town of Caledon	12	
	2.13	REVIEW OF OAK RIDGES MORAINE CONSERVATION PLAN	12	
		2.13.1 Section 26 - Hydrologically Sensitive Features	12	
		2.13.2 Section 28 - Well Head Protection Areas	13	
		2.13.3 Section 29 - Areas of High Aquifer Vulnerability	13	
		2.13.4 Section 30 - Land Form Conservation	14	
		2.13.5 Section 47 – Rapid Infiltration Basins and Columns	17	
		2.13.6 Watershed and Conservation Plans	17	
		2.13.7 Toronto and Region Conservation Authority	18	
		2.13.8 Ontario Ministry of Natural Resources	18	
		2.13.9 Other Regulatory Authorities	18	
	2.14	SUMMARY OF POTENTIAL HYDROGEOLOGICAL CONSTRAINTS TO SITE DEVELOPMENT.	18	
	2.15	REGIONAL CLIMATE	19	
	2.16	SITE INSPECTION TO ASSESS HYDROGEOLOGIC FEATURES	19	
3.0	DISC	CUSSION AND ANALYSIS	21	

	3.1	PROPOSED DEVELOPMENT PLAN	21
	3.2	PRINCIPAL HYDROGEOLOGIC FEATURES AND HYDROGEOLOGIC FUNCTION	21
	3.3	WATER BALANCE FOR PRE- AND POST- DEVELOPMENT	21
	3.4	PRE-DEVELOPMENT CONDITION	23
	3.5	POST-DEVELOPMENT CONDITION	23
	3.6	LOW IMPACT DEVELOPMENT TECHNIQUES	24
	3.7	SITE DESIGN MEASURES TO PRESERVE GROUND WATER CONDITIONS	25
		3.7.1 Maintenance of Ground Water Recharge Rates	25
		3.7.2 Maintenance of the Overall Continuity of the Ground Water and	
		Base Flow at the Site	
	3.8	SITE DESIGN MEASURES TO PRESERVE GROUND WATER CONDITIONS	
4.0	REQ	UIREMENT FOR FURTHER STUDY	27
5.0	SUM	IMARY AND CONCLUSIONS	
6.0	REC	OMMENDATIONS	
7.0	REFI	ERENCES	

TABLES:

- Table 2-1:
 Summary of Local Water Wells
- Table 2-2: Summary of Piezometers and Ground Levels (Terraprobe 2001)
- Table 2-3:
 Summary of Piezometers and Ground Levels (Terraprobe 2013)
- Table 3-1: Pre- Development Water Balance
- Table 3-2:
 Post-Development
 Water
 Balance

Table 3-3: Roof Infiltration Deficit and Volume of Available Roof Run -off

FIGURES:

- Figure 1: Site Location Plan
- Figure 2: Proposed Site Plan
- Figure 3: MOE Well Location Plan
- Figure 4: Hydrogeological Cross-Section A-A'
- Figure 5: Borehole Location Plan
- Figure 6: Surficial Geology of Oak Ridges Moraine
- Figure 7: Proposed Site & Surrounding Properties
- Figure 8: Oak Ridges Moraine Conservation Landform Areas
- Figure 9: Land Use Designations
- Figure 10: Oak Ridges Moraine Conservation Plan Aquifer Vulnerability Area
- Figure 11: Water Head Protection Area
- Figure 12: Area of Natural Significant
- Figure 13: Humber River Watershed
- Figure 14: Slope Classification:
- Figure 15: Steeply Sloping Land within the Development Areas

APPENDICES:

- Appendix A: MOE Water Well Records
- Appendix B: Borehole Logs and Grain Size Analysis (Previous Investigations)
- Appendix C: Detailed Water Balance
- Appendix D: Well Survey Letter

1.0 INTRODUCTION

1.1 Study Scope and Purpose

Terraprobe Inc. was retained by 2031818 Ontario Limited c/o Lexis Bayview Developments, to conduct a hydrogeologic evaluation update for proposed Residential Subdivision. The proposed development is located on the east side of Airport Road approximately 600 m north of Old Church Road in the community of Caledon East, Ontario. The subject site is identified as Proposed Lexis-Bayview Caledon East Subdivision. The subject site is roughly rectangular parcel occupying a total area of about 188,453 m² (18.85ha). The site configuration is shown on the attached proposed site plan Figure 1.

The purpose of the hydrogeologic evaluation update was to provide an assessment of geology and hydrogeologic considerations for the proposed development of the property with a residential subdivision. Specifically, this report provides the following:

- An assessment of hydrogeologic constraints based on a review of applicable requirements and guidelines including local sub-watershed studies, the Oak Ridges Moraine Conservation Plan and the Oak Ridges Moraine Conservation Act. Based on this assessment, conceptual design of mitigation measure was developed to ensure compliance with the ORMCP.
- Identification of any sensitive hydrogeologic features such as zones of significant ground water recharge and discharge.
- An assessment of hydrogeologic features and functions of the site.
- Recommendations regarding potential impact on existing water wells in the area and requirements for a construction monitoring program.

1.2 Summary of Work Program

The work program for the study consisted of the following:

- <u>Review of background information regarding site geology and hydrogeology.</u> This included a review of Ministry of the Environment (MOE) well records, geologic and topographic mapping and results of previous studies and subsurface investigations which Terraprobe has conducted in the area. In addition, ground water studies conducted by Region of Peel were reviewed.
- <u>Review of meteorological data</u>. A review of meteorological data was conducted to assess local climate.
- <u>Site inspection</u>. A detailed visual inspection of the site and surrounding areas was conducted to determine local topography and drainage, and an assessment of potentially hydrogeologically significant features.

- <u>Review of Previous Investigations</u>. A review of previous hydrogeologic and geotechnical investigations conducted at the site by Terraprobe, to assess shallow and ground water conditions and pertinent site information.
- <u>Assessment of Hydrogeologic Features</u>. An assessment of the existing hydrogeologic features and functions such as zones of significant ground water recharge and discharge at the site was completed.
- <u>Private Well Survey.</u> Door-to-door survey to identify the location and nature of private water wells in the area. A door-to-door survey was conducted for residences and businesses located within 500 m of the proposed development. The purpose of the survey was to confirm the locations and depths of water wells in the area. Where permitted, water level measurements were obtained from each well.
- <u>Assessment of hydrogeologic Features</u>. An assessment of hydrogeologic constraints based on a review of applicable requirements and guidelines including local subwatershed studies, the Oak Ridges Moraine Conservation Plan and the Oak Ridges Moraine Conservation Act.
- <u>Assessment of potential impacts.</u> An assessment of potential impacts to the shallow ground water system due to site development was completed. An assessment of appropriate mitigation measures to ensure that ground water function of the site is maintained following the development was completed.
- <u>Engineering analysis.</u> An analysis was completed to assess the potential impact of the development and underground servicing on local water quality and ground water levels.
- <u>Water Balance.</u> A water balance and assessment of infiltration rates for existing (predevelopment) and post development conditions was conducted.

2.0 SITE AND PROJECT DESCRIPTION

2.1 Site Location and Project Description

The site is located on the east side of Airport Road approximately 600 m north of Old Church Road in the community of Caledon East, Ontario. The subject site is roughly rectangular parcel occupying a total area of about 188,453 m^2 (18.85ha). The proposed development consists of two areas identified as (The southwestern portion development area and the north east portion development area). The areas were located within the entire site.

The western portion of the site is comprised of open fields, generally covered with grasses and shrubs. A wooded area is located at the extreme west end, fronting Airport Road. The eastern portion of the property is covered by dense forest. Boyce's Creek transverses the width of the property, entering at the north middle portion of the property and exiting close to the southeast corner of the property. The valley lands associated with Boyce's Creek are densely wooded with variety of trees, grass and weeds etc. The Property is bounded by Airport Road to the southwest and by residential properties to the northeast, northwest, and southeast.

It is proposed to develop a section of the southwestern portion of the property as a residential subdivision, this development is identified as Southwest Development Area on Figure 2. In addition, the northeast section of the property is proposed for residential development and identified as Northeast Development Area on Figure 2. The development will be serviced with municipal water, sanitary and storm sewers. The extreme western portion, the woodlots and the areas around Boyce's Creek will not be developed and would be part of the undeveloped green space.

2.2 Regional Physiography

From a regional perspective, the site is situated within the physiographic feature known as the Oak Ridges Moraine. The moraine forms a regional surface and ground water divide and is the highest point of land between Lake Ontario to the south and Lake Simcoe and Scugog to the north. The site is situated south of the height of land, on the southern slope of the moraine. The site is within the Humber River Watershed which extends to the southeast of the site all the way to Lake Ontario.

MOE well records for the area indicate sand and gravel aquifer beginning at a depth of approximately 8-30 m below the surface. The majority of water wells for this region are completed within this confined aquifer system. Municipal wells in the area are completed into a deeper aquifer system. The area is drained by several creeks which generally flow south toward Lake Ontario.

2.3 Site Topography and Drainage

The site is characterized by moderately to gently rolling lands, which generally slope down to the south and west, towards the Boyce's Creek. An Ontario Base map from 1984, which was based on aerial photography from 1982, was reviewed. The map showed the elevation of the property range from approximately 323.5 m at the south central portion of the site to approximately 315 at the northeast corner, and about 310 m to the southwest corner of the site. The overall slope of the property is generally to the south and west, at a gradient of less than 15%.

There are localized areas of steep slopes, sloping down towards Boyce's Creek, along its banks, which enters at the north middle portion of the site and exits close to the southeast corner. Another localized area of steep slopes is located in the south central portion of the site.

The site is situated within the Upper Humber River watershed. Overall drainage at the site is towards the south, towards Centreville Creek, located approximately 950 m south of the property.

The principal drainage feature on the site is Boyce's Creek, which flows in a southerly direction, in a meandering, well defined channel. There are no other permanent water courses or significant drainage features on the site.

Boyce's Creek receives ground water discharge, or base flow. Based on discussions with Toronto and Region Conservation Authority (TRCA) and observation, this discharge originates from on-site and offsite sources. The on-site discharge consists of localized seepage from the shallow overburden materials at the site.

2.4 Surrounding Land Uses and Servicing

The site is situated in a predominantly suburban/rural area. The surrounding lands to the northeast, northwest and southeast have been developed as residential properties. Airport Road borders the property to the west. The area west of Airport Road primarily consists of undeveloped wooded land.

2.5 Regional Geology

The site is situated in the physiographic region known as the Oak Ridges Moraine. The Oak Ridges Moraine is an area of ground water recharge for intermediate and deep ground water systems. Based on published geological information for the general area, the near surface overburden soil in the Caledon East area consists of ice contact stratified drift, composed of sand and gravel with interlayered till, silt and clay. The total overburden soil thickness in the moraine is variable, the thickness of overburden ranges from 30 m to over 115 m. Ordovician-aged red Shale bedrock deposits of the Queenston Formation are found beneath the moraine.

Regional geologic conditions were assessed on the basis of geologic mapping of the Oak Ridges Moraine for the area, as shown on the appended Figures 6.

2.6 Regional Hydrogeology

The hydrogeology of the moraine is complex due to local variations in soil type, topography, and surface drainage throughout the moraine area. However, there are generally three distinct ground water flow systems associated with the moraine. The shallow flow systems are confined to the upper soil strata. These systems are typically confined or semi-confined, and the water table is generally encountered within several metres of the ground surface. These upper shallow flow systems are generally short, with localized ground water recharge and discharge occurring over a relatively short flow path. Therefore, these systems are relatively localized in nature; hence any impact to the systems is also localized.

The intermediate and deep ground water flow systems consist of fine sand or gravel aquifers that are found beneath the overlying layers of glacial till. These intermediate and deep ground water systems obtain ground water recharge over a much broader area than the shallow flow systems. The intermediate and deep flow systems extend over a great distance, and may form aquifer or water bearing zones that are extensive over several kilometres. The deep and intermediate systems typically discharge near the base of the moraine into the well developed creek valleys of the Humber, Don, and Rouge Rivers. The shallow upper flow systems typically extend for distances of several hundred metres or less and discharge into local topographic lows, including tributaries and swales.

The ground water flow systems in the moraine follow local and regional topography. The shallow flow systems are typically a subdued reflection of local topography, with recharge over higher areas of ground, and local discharge in water courses, valleys, swales or wetlands. The intermediate and deeper flow systems follow regional topography. Since there is a divide formed by the height of land, the deeper flow systems in the vicinity of the site are generally directed southeast following the regional slope of the land.

A major feature in the Caledon East area is a meltwater channel composed of sand and gravel, which traverses the area in an east to west direction. The channel is located beneath the present day valley of Centreville Creek which runs east-west in the vicinity of Old Church Road. Meltwater channels of this type were formed as a result of the runoff of vast quantities of water from retreating ice masses during glaciation. The channels were subsequently tilled with coarse glavel sediments, largely of sand and gravel. This channel is an important local aquifer from which one of the municipal wells for Caledon East (Well No. 2) obtains its ground water supply.

The locations of MOE wells located within one km of the site are shown on Figure 3 and the crosssection is shown on Figure 4. The MOE well records are appended.

From the cross-section, four major units were identified in the vicinity of the subject property. At the surface is a thin layer of sand and silt material, which is underlain by a thick confining layer of glacial till.

Thin and discontinuous pockets of sand and gravel are present throughout the till layer. The glacial till is underlain by a sand and gravel layer, which is in turn underlain by shale bedrock.

The surficial sand and silt layer pinches out south of the subject property as it approaches the valley feature. The glacial till layer also thins out in this area, and is underlain by thick sand and gravel layer, associated with the above mentioned meltwater channel. The sand gravel layer pinches out to the north in the vicinity of the subject property. This sandy layer is confined by the overlying glacial till.

The MOE water well records reveals that the majority of the wells in the Caledon East area are completed in overburden aquifers. Wells completed into the shale bedrock are also present, but less common. One artesian well was recorded. The artesian well was located approximately 200 m northwest of the subject property. The well is denoted as 35 on Figure 3.

The ground water within the surficial material at the subject property flows to the south to Centreville Creek, located in the valley feature. The artesian well located at the northwest of the subject property, is completed in a sandy pocket in the glacial till indicates an upward gradient through the glacial till layer.

2.7 Ground Water Resources

The community of Caledon east is serviced with municipal ground water –based wells. The systems, which is owned and operated by Region of Peel consists of three wells and an in ground reservoir.

The three municipal wells are shown on Figure 3. Well No. 2 is located approximately 900 m south east of the site and is completed in fine sand at a depth of 31.4 m (103 ft). Well No. 3 is located approximately 800 m southeast of the site and is completed in overburden and extends to a depth of 48.2 m (158 ft). Well No. 4 is located approximately 1 km west of the site. It is complete in gravel at a depth of 56.7 m (186 ft).

Private individual wells are still used in the area. Piped municipal water is provided to the residences and business located within the limits of the Community of Caledon East.

The majority of wells are still used in the area are completed in sand and gravel layers within the overburden materials; however wells completed in the shale bedrock are also present. A meltwater channel composed of sand and gravel, acts as a major aquifer in the area. This channel is located in the vicinity of the Caledon East Well No.2 and traverses the area in an east to west direction.

Private well records on file with the Ministry of the Environment were reviewed for wells located in the study area. Records for wells situated within about 1,000 m of the site were reviewed to determine the nature of local ground water resources and water use. Information contained in these records provides data for determining the nature and use of local groundwater resources. Locations of those wells with available MOE records are shown on Figure 3. Cross sections were created using MOE well record data. Cross sections were plotted in Figure 4 to illustrate stratigraphy and water levels within the area. The

MOE well record data is presented in Appendix A. A summary of data obtained from these MOE records is presented in Table 2-1

Total Number of Wells	65
Wells completed in Overburden	52 (80%)
Wells completed in Bedrock	13 (20%)
Unknown2	0 (0%)
Depth Ranges	
Less than 15 m	12 (18.5%)
15 m to 30 m	32 (49%)
30 m to 45 m	13 (20%)
Greater than 45 m	8 (12.5%)
Water Use	
Domestic	38 (58.5%)
Public Supply	7 (11%)
Commercial	2 (3%)
Stock	1 (1.5%)
Municipal	5 (8%)
Unknown or Dry	11(18%)
Water Quality	
Fresh	41 (63%)
Saline	1 (1.5%)
Dry/ Unknown	23 (35.5%)
Reported Pumping Rates	
0 to 23 LPM (0 to 5 IGPM)	22 (34%)
23 to 45 LPM (5 to 10 IGPM)	5 (8%)
45 to 68 LPM (10 to 15 IGPM)	4 (6%)
68 to 91 LPM (15 to 20 IGPM)	1 (1.5%)
.> 91 LPM (> 20 IGPM)	10 (15.5%)
Unknown or Dry	23 (35%)

Table 2-1: Summary of Local Water Wells

The above summary indicates that most local wells registered in the area obtain their water supply from the overburden aquifer. The wells are generally small diameter drilled wells used for domestic purposes.

Well records indicate that almost all of the wells produce a fresh water supply. The depths of the wells ranged from about 15 to 45 m, and the static water levels in the wells ranged from approximately 1 to 50 m below ground levels.

One artesian well was recorded. The artesian well was located approximately 200 m northwest of the subject property. The well is denoted as 35 on Figure 3.

2.8 Results of Door to Door Survey

A door-to-door survey was conducted to assess the locations of water wells in the vicinity of the proposed development. In addition to conducting this survey, Terraprobe staff contacted the Region of Peel and the Town of Caledon to confirm extends of municipal services (water supply). At the time of preparation of this report, the response from the region and Town of Caledon had not yet been received. The surrounding properties within a radius of 500 m were contacted by Terraprobe staff on May 29, 2013. During the survey, a questionnaire was completed with the well owner, where possible. At residences where no one was available to respond to the questionnaire, a letter was left informing the resident about the survey and encouraging the resident to contact our office. An example of the well questionnaire and letter provided to residents are provided in Appendix D.

The results of the door to door survey confirm that the surrounding properties were supplied with full municipal services for water and sewage.

There are about two hundred (200) private residences situated in the immediate vicinity of the property. A representative of Terraprobe visited each residence to obtain information regarding their well(s) and water supply. Only one of the 200 residents responded to the survey and confirmed full municipal services for water and sewage. The other residents did not respond to the survey.

In summary, the surrounding properties utilized municipal water supplied. There is no information available from the surrounding properties regarding the use of their private water wells.

2.9 Site Inspection to Assess Hydrogeologic Features

A detailed site inspection was conducted to assess the presence of features which are significant from a hydrogeologic viewpoint. In particular, the site was inspected to assess the following:

- Areas of visible ground water discharge, springs or seepage at the site or in the vicinity of the on-site water courses.
- Areas of potential enhanced ground water recharge such as closed drainage features or depressions or large flat areas which may allow for significant ground water infiltration.
- Inspection of swales and drainage courses for evidence of ground water seepage or springs.

• Evidence of phreatophytic vegetation, which may indicate seasonally high ground water levels and/or ground water discharge and seepage.

The site is currently in its natural state. The majority of the site is occupied by woodlots and overgrown pasture land. There are several footpaths criss-crossing the property and barbed wire fence ran along the property boundary to the southwest. There is a permanent stream, Boyce's Creek, which is located in the eastern portion of the property and traverses the site in northeast to south east direction. There are no significant depressions or areas of enhanced infiltration visible. The site is generally drained by a series of broad drainage swales, which direct water to the south and toward the valley Boyce's Creek. Thick wooded areas are found along the western, north central, eastern, southeastern portions of the site and along the property limits. The valley lands associated with Boyce's Creek are densely wooded with variety of trees, grass and weeds etc. There was evidence of areas of phreatophytic vegetation this includes marsh and surface water pond area was noted in wetland located at the northeast portion of the site and east of Boyce's Creek.

2.10 Results of Previous Investigations

Terraprobe has previously completed hydrogeological in 2006 and geotechnical investigation in 2001 for the subject property. These reports included:

- Hydrogeologic Evaluation, Proposed Residential Subdivision, West Half of Lot 22, Concession 1 (Albion) Part 1, Plan 43R-3575, Town of Caledon, Ontario, dated June 2, 2006, prepared by Terraprobe Limited, File 1-05-0178.
- Geotechnical Investigation, Proposed Residential Subdivision, West Half of Lot 22, Concession 1 (Albion) Part 1, Plan 43R-3575, Town of Caledon, Ontario, dated March 23, 2001, prepared by Terraprobe Limited, File 01109.

The borehole logs are appended to this report. The borehole locations are presented on the accompanying Figure 5. Summary of previous investigations are presented below.

2.10.1 2001 Geotechnical Investigation (File No. 01109)

In 2001, Terraprobe completed a geotechnical investigation (File No. 01109, reported March 23, 2001) at the site. The investigation included ten boreholes advanced across the entire site and installation of six (6) nested monitoring well piezometers to assess the shallow subsurface conditions. The borehole findings and laboratory test results are provided in Append ix B.

The boreholes were completed to depths of approximately 5.0 to 8.1 m below grade. The piezometers were installed in selected boreholes to permit measurement of shallow ground water levels. Additional shallow boreholes (approximately 3.0m below existing grade) were advanced without soil sampling within metres of each of the boreholes 1 to 6 in order to facilitate piezometer installation. Borehole logs are appended to this report.

In summary, the subsurface soil conditions encountered in the boreholes across the site consisted of a surficial topsoil layer underlain by a stratum of disturb native soil, ranging from 0.8m to 1.5m in thickness. The disturbed native soil was in turn underlain by native soils which extended to the full depth of the investigation at every borehole location. The native soils consisted of alluvial deposits of silt to sandy silt or silty sand to sand with trace of clay. Glacial till, comprised of silty sand, was encountered underlain the alluvial soil deposits in Boreholes 7,9, and 10 at a depth of 2.3 m, 1.5 m and 4.6 m below existing grades respectively.

Water levels were measured in each of the boreholes immediately following the drilling operation and in each of the deep monitoring well piezometers approximately one week after drilling had been completed. No information about the water level measurement of the shallow peizometers. The water levels measured at the time of drilling and during visit are summarized below:.

Borehole No.	Depth of borehole (mbgl)	Depth to cave (mbgl)	Unstabilized water level upon completion (mbgl)	Water Level in Well on January 29, 2001(mbgl)
				Depth
BH/Piezometer 1	8.1	7.0	2.1	1.2
BH 2	8.1	open	3.9	0.4
BH/Piezometer 3	8.1	open	1.2	0.1
BH/Piezometer4	7.9	4.2	3.6	5.0
BH/Piezometer5	8.1	3.0	2.1	2.3
BH/Piezometer6	8.1	open	3.0	2.8
BH 7	4.8	1.4	0.5	n/a
BH/Piezometer8	5.0	open	dry	dry
BH 9	4.7	open	dry	n/a
BH 10	4.7	2.4	dry	n/a

Table 2-2: Summary of Piezometers and Ground Water Levels (Terraprobe 2001)

Note: mbgl = meter below ground level

n/a = piezometer not installed

2.10.2 2006 Hydrogeological Evaluation (File No. 1-05-0178)

Terraprobe completed a hydrogeological evaluation for the proposed subdivision (File No. 1-05-0178), reported June 2, 2006). The hydrogeological study was carried out based on the findings from the geotechnical investigation of 2001.

In summary, the hydrogeological evaluation concluded that:

• The site is situated within the Oak Ridges Moraine Conservation.

- Landform conservation techniques must be applied to the steeply sloping along the southwestern edge and in the north of the developments. These techniques will consist of maintaining existing site grades in these areas.
- The site is situated in an area of ground water recharge which contributes to the overall Hydrogeologic function of the Oak Ridges Moraine Area.
- Ground water recharge rates at the site can be maintained through simple mitigation meatures including:
 - Direction of roof to overland flow or soakaway pits
 - Grading and filling at the site conducted with sandy material similar to those naturally occurring at the site.

2.11 Ground Water

Water levels were measured on March 27 and May 29, 2013 in all the existing monitoring wells peizometers installed as part of the previous investigation. Some of the monitoring wells piezometers from the previous investigations were not found during the site visit. The water levels measured in the remaining wells are summarized in the following table 2-3.

Borehole No.	Depth of borehole	March 27, 2013	May 29, 2013	
	(mbgl)	Water Level (mbgl)		
BH/Piezometer1S	2.94	1.24	0.45	
BH/Piezometer1D	6.25	0.99	0.89	
BH/Piezometer2S				
BH/Piezometer2D				
BH/Piezometer3S	Not Found			
BH/Piezometer3D				
BH/Piezometer4S	3.01	Blocked @ 0.1	dry	
BH/Piezometer4D	6.82	4.62	4.35	
BH/Piezometer5S	1.89	1.65	1.60	
BH/Piezometer5D	5.94	1.76	1.57	
BH/Piezometer6S	4.1	1.93	1.44	
BH/Piezometer6D	5.97	Blocked @ 0.29	1.39	
BH/Piezometer8S	Not			
BH/Piezometer8D	Found			

Table 2-3: Summary of Piezometers and Ground Water Elevations (Terraprobe 2013)

It should be noted that field work consisting of borehole drilling and installation of monitoring wells peizometers was completed as part of 2001 geotechnical investigation. No additional boreholes or peizometers were completed as part of the current hydrogeological evaluation update. The boreholes from previous investigations were terminated at (5.0 to 8.1 m below grade). Historical data showing the ground water levels are provided in Table 2-2 above. The groundwater levels from the historical investigations are similar to the results from the recent investigation.

2.12 Review of Current Regulatory Requirements

A review of current regulatory requirements in connection with the proposed development was conducted, including those of the Town of Caledon, the Oak Ridges Moraine Conservation Plan, the Toronto and Region Conservation Authority, relevant information is provided below:

2.12.1 The Town of Caledon

The information contained in the Town of Caledon Official Plan indicates that the site is designated as "Policy Area 2", as depicted in Figure 8. The Town specifies that the maximum permitted density in Policy Area 2 will be 31 units per 40.5 hectares (100 acres), plus any density bonuses awarded under Sections 7.1.9.12 and 7.1.11.3. The Official Plan (Land use Plan Schedule A and D) indicates that the western portion of the site is located within the special study area and the eastern portion is located within the Town of Caledon Environmental Policy Area. According to the Land Use Plan Schedule P the site is located within the Natural Core Area.

2.13 Review of Oak Ridges Moraine Conservation Plan

The site falls within the Oak Ridges Moraine area. The Oak Ridges Moraine Conservation Plan was reviewed to assess considerations and requirements for site development, criteria such as

- Hydrologically- Sensitive Areas,
- Wellhead protection areas were reviewed
- Landform conservation,
- Aquifer vulnerability,
- Rapid Infiltration Basins and Columns
- Watershed Plans, Water budgets and conservation Plans.

A summary of the requirements of the Oak Ridges Moraine Conservation Plan is provided below.

2.13.1 Section 26 - Hydrologically Sensitive Features

The Oak Ridges Moraine Conservation Plan indicates the following as hydrologically sensitive features:

- Permanent and intermittent streams
- Wetlands
- Kettle Lakes
- Seepage areas and springs

There are potentially hydrologically sensitive features found on or within 120 m of the site. There is a permanent stream, Boyce's Creek, situated on the property. Ground water seepage or springs is directly associated with Boyce's Creek. There are no kettle lakes on the site. The ORMCP requires that there will be no development or site alteration within a hydrologically- sensitive features or the vegetation protection zone. The minimum vegetation protection zone for these features is all land within 30 m of a meander belt for a permanent stream. Wetlands were also identified on the site by the Ministry of Natural Resources (MNR). Boyce's Creek and the associated wetland areas are part of regulated area and development within these areas is not permitted. It should be noted that proposed development is outside of the regulated areas and does not include Boyce's Creek and the associated wetland area. A further study, including a subsurface investigation and detailed feature based monitoring program will be required to determine the potential impact, if any, that the development may have on these features. Extent of proposed development is presented on the attached proposed development area Figure 2.

2.13.2 Section 28 - Well Head Protection Areas

This section of the plan prohibits certain land uses and land management practices within well head protection areas. The prohibited uses are:

- Storage (except by an individual for personal or family use) of:
 - o Petroleum fuels
 - o Petroleum solvents and chlorinated solvents,
 - o Pesticides, herbicides, and fungicides,
 - o Construction equipment,
 - Inorganic fertilizers,
 - Road salt
 - o Contaminants listed in Schedule 3 of Regulation 347
- Generation and storage of hazardous waste or liquid industrial waste
- Waste disposal sites and facilities, organic soil conditioning sites, and snow storage and disposal facilities.

The proposed residential development will not involve any of the prohibited uses noted above.

Southern Portion of the site is located within the 25- year time of travel zone for Municipal Well 2 and 3 Caledon well fields as designated by the Town of Caledon (Figure 11). This is sufficient travel time to ensure that the proposed site (residential subdivision with full municipal services) will not affect these wells head protection areas.

2.13.3 Section 29 - Areas of High Aquifer Vulnerability

The site is located in an area of high aquifer vulnerability. In areas of high aquifer vulnerability certain property uses are prohibited under the Oak Ridges Moraine Conservation Plan, such as the generation and

storage of hazardous waste or liquid industrial waste, waste disposal sites and facilities, organic soil conditioning sites, snow storage and disposal facilities, underground and above-ground storage tanks that are not equipped with an approved secondary containment device, and storage of a severely toxic contaminant (O.Reg.347) as noted in Section 2.13. 2 There will be no prohibited land uses or practices associated with the proposed residential subdivision. The areas of aquifer vulnerability are shown on Figure 10.

2.13.4 Section 30 - Land Form Conservation

The assessment of the potential requirements for landform conservation requires a six step process. This process is outlined below.

Step 1- Applicability

The subject site is located in a Category 2 Landform Conservation Area of the Oak Ridges Moraine Conservation Plan, as noted on Figure 8. On this basis, the guidelines suggest that it is necessary to proceed to Step 2.

Step 2- Determine Land Use Designation

Step 2 requires the proponent to determine the land use designation on the subject property. As shown on the ORMCP Land Designation Map (Figure 9), the development lands are divided into two land use designations. The western portion of the site is designated as a settlement area and eastern portion of the site as designated as a natural linkage area. The proposed residential subdivision development will be on the western portion of the site, a private dwelling is proposed for the northeastern portion of the site.

Step 3- Determine Type of Application

Step 3 of the development involves assessment of the scale or type of development. Based on the guidelines, the site is defined as a major development since it involves the creation of more than four lots for the proposed residential subdivision on the western portion of the site. On this basis, it is necessary to proceed to Step 4.

Step 4- Background Information

Step 4 requires the collection of more detailed background information to provide further assessment of site and ANSI characteristics.

Elevation contours for the site were prepared at a scale of 1: 2000 at a contour interval of 1m, per the requirement of the guidelines. The contour plan is shown on Figure 14. The slopes were classified in the following categories;

- Less than 2 percent
- 2 to 5 percent
- 5 to 10 percent
- 10 to 15 percent

- 15 to 25 percent
- Greater than 25 percent

Detailed analysis indicated that areas of steeply sloping land are found in the south central portion of the property, and along the banks of Boyce's Creek; however, for the development portion of the site, steeply sloping land is found only along the southeastern edge and a portion in the northern section of this area, as shown in Figure 15.

Sloping ground is defined as slopes of greater than 15 percent gradient over a vertical height of 5 m and a continuous distance of 50 m.

Category 2 Landform Conservation Areas are areas with a slope of greater than 1 0 percent constituting between 20 and 50 percent of the land area. For the development portion, only a small portion (i.e. less than 20 percent) of the land has a slope of greater than 10 percent. Therefore, this area of the site does not fall in a Category 2 Landform Conservation Area.

It was determined that there were no significant landforms such as kames, kettles, or ridges found directly on the development site. One permanent stream, Boyce's Creek, is located on the subject property, but is not within the development lands. There are no other water bodies located on the property.

Based on the above analysis, the following conclusions are reached:

- The topographic characteristics of the site indicate that the development area does not fall in a Category 2 Landform Conservation Area.
- Only a small portion of the development area contains steeply sloping lands.
- There are no significant landform features such as kames, kettles, or ridges situated on the site.
- There is one permanent stream located on the subject property, but not within the development area.
- The development area is not situated within the boundary of an Earth Science ANSI.

The results of this analysis were then applied to assess appropriate site design characteristics subsequently in Step 5.

Step 5- Identify Planning, Design, and Construction Standards and Targets

Step 5 of the guideline requires the proponent to identify the basic limitations and opportunities with respect to design of the site. The specific design considerations required by the guideline are noted below:

(i) Identify policies of Section 30 of the ORMCP that apply to the application

The landform analysis indicates that the development area of the site does not exhibit the characteristics of a Category 1 or Category 2 Landform Conservation Area, nor does it possess significant landforms. Based on this, the only applicable policy is Section 30(9), which requires a development strategy that identifies appropriate planning, design and construction practices to minimize disruption to landform character.

(ii) Identify the areas of the subject lands that are subject to the design standards specified in Sections 30(5) and (6) of the ORMCP.

There are no portions of the development area that are subject to the design standard specified in Section 30(5) or (6) of the ORMCR, since the land is not classified as either Category 1 or Category 2 with respect to landform conservation.

- (iii) Identify the area of the subject lands that will not be developed or altered due to:
- presence of key natural heritage features and hydrogeologically-sensitive features including vegetative protective zones
- presence of significant landform features including kames, kettles, ravines, and sloping lands,
- limitations passed by the connectivity requirements of Section 20 of the plan

Development will only take place on the southwestern and north east portions of the property as shown on Figure 15. There will be no development east of the western banks of Boyce's Creek; hence there will be no alteration to the slopping banks of the creek or the creek itself. The sloping area in the south central portion of the property will not be developed or altered. No development or alteration will occur in the extreme western portion of the site, in the wooded area.

(iv) *identify the areas of the subject land that may be developed subject to landform conservation techniques.*

The area designated as the development area, as shown on Figure 15, may be developed subject to landform conservation techniques. Landform conservation techniques may be required along the southeastern edge of the development area, and a small portion in the north of this area due to the steeply sloping land present.

There are no open corridors on the site that are required to be set aside.

(vii) Identify areas of the subject within an Earth Science ANSI where an earth science

evaluation must be prepared.

None of the subject land falls within an Earth Science ANSI, therefore there is no requirement to prepare an earth science evaluation.

Step 6- Prepare Development Strategy/ Detailed Design

Step 6 of the guideline requires a more detailed description of the planning design and construction practices that will be required to minimize disruption to landform character.

The development plans for the property have not yet been finalized. Once the plan is finalized, the proponent should provide a site plan which identifies:

- Final contours of the site at a map scale of 1:2000 or larger and final contours of at least 2 metre intervals;
- The final location of all roads, building and structures;
- Identification of the areas on the site where grading changes are proposed;
- Representative cross sections across the site showing before and after contours;
- A detailed description of all landform conservation techniques that will be employed during the planning, design and construction techniques will be applied only along the development areas. These techniques will consist of maintaining exsiting site graes in this area;
- Lands where disturbance to landform character is proposed including a breakdown by
 - Total area of disturbance; and
 - % of total developable area.

2.13.5 Section 47 – Rapid Infiltration Basins and Columns

The plan prohibits the construction of rapid infiltration basins and columns in the Oak Ridges Moraine area.

Infiltration basins and columns are not proposed as part of the storm water management works. Therefore, this section of the plan is not applicable.

2.13.6 Watershed and Conservation Plans

The above plans will be discussed in section 2.13.7 under the Toronto and Region Conservation Authority.

2.13.7 Toronto and Region Conservation Authority

The site is located within the Main Humber River Sub watershed of the Humber River. The TRCA, Humber River State of the Watershed Report; Surface Water Quality (2008) indicated that the site is within the boundary of Centreville Creek secondary sub-watershed units. Centreville Creek is one of the main Humber River drainage areas. The headwater of this Creek originates from Niagara Excarpment from which it flows across the Oak Ridges Moraine down to the south slope into the Peel Plain. A permit from the TRCA will be required prior to site development.

A review of the *interim watershed Characterization Report of TRCA Watersheds of (2009)* indicates that the subject site is located within a Highly Vulnerable Aquifer (HVA) area as well as a Significant Groundwater Recharge Area (SGRA). The HVA and SGRA designation is based on the potential for high infiltration rates. The site is not located within any currently existing Wellhead Protection Areas or Intake Protection Zones, and is therefore not considered to be a vulnerable area for municipal drinking water supplies under the Clean Water Act.

2.13.8 Ontario Ministry of Natural Resources

The Ontario Ministry of Natural Resources mapping of Natural Areas is shown on Figure 12. The Ontario Ministry of Natural Resources National Heritage Information Centre database for listings of Areas of Natural or Scientific Interest (ANSIs) was reviewed. According to the database, no ANSIs were listed within 500 m of the Property. However, wetlands were also identified on the site by the Ministry of Natural Resources (MNR). Under the Oak Ridges Moraine Conservation Act the minimum area of influence for an Earth Science ANSI is 50 m; therefore, planning, design and construction practices must ensure protection of ecological or geomorphological attributes for which the ANSI was identified as well as the determination of whether a minimum vegetation protection zone is required for the site.

2.13.9 Other Regulatory Authorities

The property is not located within the Niagara Escarpment Plan Area or the Greenbelt Protection Area, but within Natural Heritage Area. This Natural Heritage Area includes a cold water stream (Boyce's Creek) that discharges into Centreville Creek.

2.14 Summary of Potential Hydrogeological Constraints to Site Development

Based on a review of current regulatory requirements the (Oak Ridges Moraine Conservation Plan and other regulatories) there are few significant hydrogeologic constraints to the proposed site development that have been identified.

The results of the study indicate that the most significant hydrogeologic and hydrologic function at the site is ground water recharge. Therefore the main goal during design of any residential subdivision planned for the property should be to maintain the ground water recharge rates at the site.

The results of the investigation indicate that the water table is situated at depths of approximately 1 to 4 m below grade. A feature based water balance and monitoring program would be required in order to assess the potential impacts to the local natural feature in the vicinity of the site.

2.15 Regional Climate

The site is located in the climatic region of Southern Ontario known as the South Slopes Region. The following general climate data were obtained from Environment Canada publications and from the Environment Canada on-line database. This information presents Average climate data was taken for the period of 1960 to 1999.

Annual total precipitation	863mm
Mean annual water surplus (based on 100 mm soil storage)	313mm
Mean annual evapotranspiration	550mm

The climate is typical for Southern Ontario with rainfall exceeding evapotranspiration. It is noted that the above are average values which are representative in a regional context. There will be seasonal and annual variations in these values. However, the average values will govern long term ground water recharge rates. Therefore, average values are appropriate for the assessment of hydrogeologic conditions at the site.

2.16 Site Inspection to Assess Hydrogeologic Features

A detailed site inspection was conducted to assess the presence of features which are significant from a hydrogeologic viewpoint. In particular, the site was inspected to assess the following:

- Areas of visible ground water discharge, springs or seepage at the site or in the vicinity of the on-site water courses.
- Areas of potential enhanced ground water recharge such as closed drainage features or depressions or large flat areas which may allow for significant ground water infiltration.
- Inspection of swales and drainage courses for evidence of ground water seepage or springs.

• Evidence of phreatophytic vegetation, which may indicate seasonally high ground water levels and/or ground water discharge and seepage.

The inspection indicates the site is generally characterized by gently rolling topography. No significant areas of ground water recharge (such as depression or kettles) were identified on the subject property. A cold water stream (Boyce's Creek) transverses the north middle and southeast corner of the property. The principal drainage feature on the site is Boyce's Creek, which flows in a southward direction, in a meandering, well defined channel. Runoff and base flow at the property generally drains across the property by diffuse overland flow from the northern property boundary toward the south; into the Boyle's Creek. There are no other permanent water courses or significant drainage features on the site. There was evidence of areas of phreatophytic vegetation this includes marsh and surface water pond area was noted in wetland located at the northeast portion of the site and east of Boyce's Creek.

3.0 DISCUSSION AND ANALYSIS

3.1 Proposed Development Plan

The proposed development plan is presented on Figure 2. The proposed development will consist of residential subdivision at the western portion of the site and the private dwelling at the north east corner of the site. The development will be serviced by internal roadways and full municipal services for water and sewage.

As noted Figure 2, the proposed development concept includes the following:

- The extreme western portion, the eastern portion of the site and the areas around Boyce's Creek will not be developed.
- The proposed development will incorporate low impact development (LID) measures with respect to storm water management.

3.2 Principal Hydrogeologic Features and Hydrogeologic Function

Based on the data review, the site exhibits the following principal hydrogeologic features:

- The shallow soil conditions at the site are characterized by alluvial deposits consisting of sand and silt materials, underlain by sandy silt glacial till. These materials are of moderate to low hydraulic conductivity.
- The site is situated within the Oak Ridge Moraine area, both from a geologic perspective, and as defined by Provincial Policy Plan.
- There is a permanent steam, Boyce's Creek, which is located in the eastern portion of the property and transverses, the site in a northwest to southeast direction. The creek receives ground water discharge.
- There are several confined aquifer systems found at depth, on or in the vicinity of the site. These systems provide water supply to both individual and municipal wells.

On the basis of the above features, it is considered that the most important Hydrogeologic function of the site is to provide ground water recharge. This recharge primarily provides local base flow to Boyce's Creek.

3.3 Water Balance for Pre- and Post- Development

As noted in the hydrogeological evaluation report prepared by Terraprobe, the near surface soils at the site generally consist of a silt and sand matrix. The surface soils at the site provide medium to low volume of ground water recharge into the shallow ground water system.

While the area of the site is considered a ground water recharge zone; the soils at the site are generally of Moderate to low permeability and will not provide significantly large recharge rates. Notwithstanding this, the primary hydrogeologic function of the site is as a ground water recharge area.

A water balance model was prepared for the site to assess the distribution of rainfall, run-off and infiltration for existing (pre- and post- development) conditions. The model is based on the climate data presented in Section 2.15 of this report. The Thornthwaite method was used to evaluate the relative balance between rainfall, evaporation and evapotranspiration in the shallow soil zone as shown in Appendix C. Based on this calculation, water balance was developed.

The site statistics were based upon the details as provided by VA3 Design for 2031818 Ontario Inc. A copy of the site plan is attached as Figure 2. The following summarizes the site statistics for the property:

Proposed Development (Southwest Portion - Town Homes)

- Residential roof area 4,792 m2
- Pavement areas (roads, driveways) 1,890 m2
- Proposed Pervious Driveway area (assuming 70% permeability) 1,432 m²

Proposed Development (Northeast Portion –Single Residential Models)

- Residential roof area (house coverage and deck) 477.64 m2
- Proposed Pervious Driveway area (assuming 70% permeability) -458.79 m^2

Other Areas within the Site

- Access roadways area outside the development area is 2,080 m²
- Total open space/ landscape areas $177,322 \text{ m}^2$

Total site coverage is approximately **188**, **453** m²

In summary, the total annual ground water recharge component for the area is about 188 mm/a. This recharge was determined using the MOE Table 2 and Table 3 approach in the *MOE Hydrogeological Technical Information Requirements for Land Development Applications (1995)*. The remaining water surplus, which is approximately 125 mm, will be directed to runoff. Using this water balance, the infiltration volumes over the site were calculated. These calculations are based on a total site area of 188,453 m², and total impervious lot coverage of approximately 5.2% (2.8% roof coverage and 2.4% hard/ impervious coverage) as per the information provided by VA3 Design. A copy of the site plan is attached as Figure 2.

The detailed water balance calculations are presented in the accompanying Appendix C. The water balance (pre- and post-development) is summarized below:

3.4 **Pre-Development Condition**

Table 3-1 Pre- Development Water Balance

Condition	Area	Precipitation	Evapotranspiration	Infiltration	Run-Off
	(m²)	(m ³)	(m ³)	(m ³)	(m ³)
Vacant Land	188,453	162,635	103,649	35,429	23,557

3.5 **Post-Development Condition**

A water balance was conducted for the post-development conditions, using the site development plan provided on Figure 2. The post-development water balance accounts for hard-surfaced areas created by buildings, sidewalks, and pavements.

The following assumptions were applied for the post-development water balance

- There will be no infiltration beneath hard- surface areas including, buildings, pavements, and sidewalks.
- It is assumed that the entire road allowance consists of hard-surface areas (e.g., infiltration within grassed boulevards is not included).
- Infiltration rates in open areas of the site (lawns, landscaped areas and parks) will occur at rates similar to those for pre-development conditions.
- There will be no evapotranspiration beneath hard- surfaced areas.
- Runoff from residential housing units will be available for infiltration over lawn areas.

The water balance (pre- and post-development) is summarized below:

The water balance calculations for the post-development case are provided in the appendix C. The results of the analysis are summarized in Table 3-2 below:

Condition	Area (m²)	Precipitation (m ³)	Evapotranspiration (m³)	Infiltration (m ³)
Open Area	177,322	153,029	97,527	33,337
Hard Surfaces	4,537	3,916	nil	nil
Pervious Surface	1,324	1,142	728	249

4,548

Table 3-2 Post- Development Water Balance

5,270

In the post-development case, there is a significant decrease in evapotranspiration and increase in available surface water run-off.

nil

Building Roofs

Run-Off

nil

22,165 3,916

165

4,548

 (m^3)

The volume of surface water run-off available from residential roof tops was calculated as noted in Appendix C. This volume of water will be available as a resource, to maintain ground water recharge and function at the site. The volume of roof run-off available is compared to the difference in infiltration between pre-development and post-development, as noted in Table 3-3 below:

Table 3-3 Roof runoff Infiltration	Deficit and Volume	of Available Roof Run-off

	Potential Post-Development Infiltration Deficit (m ³)	Volume of Roof Run-off Available (m ³)
Proposed Development Site	1,844	4,548

As noted, the volume of roof runoff exceeds the infiltration deficit. This confirms that, with proper storm water management and mitigation measures, the overall infiltration rates at the site can be maintained.

The proposed development of the site would have the following effect:

- A net increase in runoff at the site from 23,557 m3 to $30,794 \text{ m}^3$.
- A net decrease in evapotranspiration from 103,649 to 98,255 m³/a.
- A net decrease in the infiltration at the site from 35,429 m3 to $33,585 \text{ m}^3$ /a.
- The deficit of 1,844 m³/a. in post development infiltration volume can be matched by using 41% of roof runoff available in the post development conditions. In addition, post development infiltration volume could be enhanced by implementation of any of the mitigation measures which are discussed below.

Given the medium to low permeability soils found at the surface, and the resulting recharge rates at the site, the most practical method for maintaining a water balance at the site would be through the implementation of various passive, low-impact development (LID) techniques. It is recommended that these systems be implemented at the site on a best management practice approach, where feasible. Further information regarding potential LIDs at the site is provided below.

3.6 Low Impact Development Techniques

As noted above, the site is considered to be significant in terms of ground water recharge. This is due to the medium to low permeability soils encountered at the surface of the site. As such, low impact development techniques are recommended to be considered and implemented using a best management practice approach. The TRCA normally requires retaining storage on site for the first 5 mm of rainfall.

In order to enhance ground water recharge at the site, any of the following LID measures may be implemented:

• Use of extra topsoil in open space areas and backyards.

- Infiltration measures within the green space and buffer located at the rear of the property.
- Directing roof leaders to overland flow.
- The use of permeable surface cover such as permeable pavers.
- Reducing lot grades to maximize contact time of run-off and maximize infiltration.
- Rain water harvesting and cisterns.

Generally, lot level controls, such as those noted above, will be suitable for all areas of the site to maintain ground water infiltration. Lot level controls generally provide for infiltration over broad areas, which more closely duplicate the infiltration conditions at the site, prior to development.

The storm water management measures must specifically address the maintenance of ground water recharge of the proposed development in order to preserve the Boyce's Creek function at and beyond the proposed development.

Further details regarding these measures can be found within the Low Impact Development Storm Water Management Planning and Design Guide prepared by the Toronto and Region Conservation Authority.

3.7 Site Design Measures to Preserve Ground Water Conditions

Notwithstanding the moderate to low permeability soils encountered across the majority of the site, the primary hydrogeologic goal at the site is the maintenance of recharge rates. Therefore, the primary design considerations will be:

- Maintenance of ground water recharges rates. The recharge should occur over a broad or diffuse area, where practical, to match existing conditions
- Maintenance of the overall continuity of the surface drainage and ground water flow at the site.

Each of these issues is addressed separately below.

3.7.1 Maintenance of Ground Water Recharge Rates

On-site features, specifically Boyce's Creek and the associated wetlands relies on ground water input. The existing ground water recharge rates at the site are approximately 188 mm/a. These recharge rates are based on the site-specific conditions. This recharge occurs in a broad or diffuse manner over the entire site. Within the proposed development area, there are no significant local depressions or zones of enhanced recharge. Provided the overall recharge volume at the site is maintained, the hydrogeologic function on the site will be preserved. There are no specific on-site features (such as spring or wetlands) that are supported by ground water discharge.

Stormwater and Flood Plain Management Report indicating the implementation of Low Impact Development (LID) practices should be prepare to for the subject site.

As noted in the water balance calculation, the implementation of LID measures of the property will result in a surplus of infiltration in the post development case.

3.7.2 Maintenance of the Overall Continuity of the Ground Water and Base Flow at the Site

It will be necessary to ensure that shallow ground water flow is maintained to prevent reduction of base flow to water courses. Generally, shallow ground water is directed through the sand and silty sand deposits. Property servicing activity should be conducted in a fashion to ensure that the ground water flow is not disrupted over the long-term. This will include application of the following mitigating measures:

- Use of native backfill materials at the property. In particular, excavations should be backfilled with native sand and silt materials to ensure continuity of ground water flow across excavations.
- Use of trench plugs to prevent drainage of shallow ground water. Trench plugs should be installed to prevent drainage of shallow ground water along granular bedding for services and long-term lowering of ground water levels.
- Use of appropriate materials for property grading purposes. Property grading should be conducted using materials of like or higher hydraulic conductivity than the materials found at the property. Property material should not be capped with lower permeability materials which would serve to reduce ground water recharge rates.

3.8 Site Design Measures to Preserve Ground Water Conditions

It will be necessary to ensure that the ground water levels at the site are not lowered as a result of drainage which may occur along bedding for underground services. Similarly, it will be necessary to ensure that the lateral ground water flow through the sandy deposits is not truncated, in the event that excavations or site grading occurs in these deposits.

The site grading measures and installation of underground services should consider the following:

- The excavation of underground services across sand layers may interrupt ground water flow. Trench backfilling operations should be carried out with materials that are similar to the materials that have been excavated. In particular, sand zones must not be truncated by backfilling of the trench using lower permeability materials.
- All underground services should be provided with cutoff plugs at manhole locations. Care should be taken to seal all pipe joints and manhole structures. This is required to prevent ground water flow and drainage along granular bedding for the services, and infiltration into underground services.
- The overall volume and duration of surface water flow to sensitive features, such as the valley lands west of the proposed development should be considered. Site grading measures should ensure that surface water flows to these features are maintained.

4.0 REQUIREMENT FOR FURTHER STUDY

There is sufficient information available to assess the potential hydrogeologic impacts of the proposed development. Appropriate mitigating measures are available to ensure that the impacts are maintained at acceptable levels.

Additional study will be required prior to detailed design. The additional study will include the following:

- Drilling of boreholes to assess the shallow and deep soil conditions including the vertical and horizontal extent of potential ground water bearing zones throughout the site.
- Detailed feature based water balance to assess the impact of the development on the wetland and Boyce's Creek located within the subject property.
- Installation of monitoring wells to assess groundwater levels and groundwater flow directions and gradients.
- Design of engineered measures to maintain ground water infiltration

5.0 SUMMARY AND CONCLUSIONS

In summary, the results of the site investigations indicate that it is feasible to develop the subject residential community without creating ground water related impacts. The following specific summary and conclusions are made summary and conclusions are provided.

- 1. The results of a previous subsurface investigation conducted at the property indicate that the property is underlain by highly variable soils, comprising of sand silt soils matrix. The soils are typically of moderate to low permeability. The groundwater table was identified at approximately 0.1 to 4.35 m below grade
- 2. A review of the MOE water well records indicates that the majority of existing wells are completed within the bedrock. The majority of the wells are drilled for domestic purposes.
- 3. The property is situated in a hydrogeological- sensitive area, based on the review of various regulatory guidelines and published information. These designations are based on the potential for high infiltration rates (i.e. presence of permeable surface soils). However, the property is not located within any currently existing Wellhead Protection Areas or Intake Protection Zones, and is therefore not considered to be a vulnerable area for municipal drinking water supplies under the Clean Water Act.
- 4. The primary hydrogeologic functions which must be maintained at the site include:
 - Maintenance of ground water recharge across the site including the base flow input to Boyce's creek.
 - Maintaining surface drainage to on-site natural features including woodlots and wetland.
 - Preservation of the pathways or zones of ground water transmission
- 5. Infiltration rates at the site can be maintained through the use of a variety of low impact development techniques. These include:
 - Lot grading.
 - Increased topsoil thickness.
 - Direction of roof leaders to overland flow
 - Bio-retention swales.
 - Permeable pavers.

6.0 RECOMMENDATIONS

The results of the current study confirm that the hydrogeologic function of the site can be maintained, provided proper mitigation measures and Low Impact Development techniques are applied. There are well established techniques which have been demonstrated on similar projects in Ontario which can be applied to the site.

As part of final design of the development, it will be necessary to confirm the water balance based on the final design. The infiltration measures must be designed to maintain ground water levels and ground water flow volumes to the natural features located to the west of the development area.

This report is prepared for the express use of 2031818 Ontario Limited c/o Lexis Bayview Developments and their retained design consultants. It is not for use by others. This report is copyright of Terraprobe Inc., and no part of this report may be reproduced by any means, in any form, without the prior written permission of Terraprobe. The Lexis Bayview Developments and their retained design consultants are the authorized users.

It is recognized that municipal/regional governing bodies, in their capacity as the planning and building authority under Provincial statutes, will make use of and rely upon this report, cognizant of the limitations thereof, both as are expressed and implied.

We trust that the above-noted information is suitable for your review. If you have any questions regarding this information, please do not hesitate to contact the undersigned.

A 24

OUNCE OF ONTARIO

Yours truly,

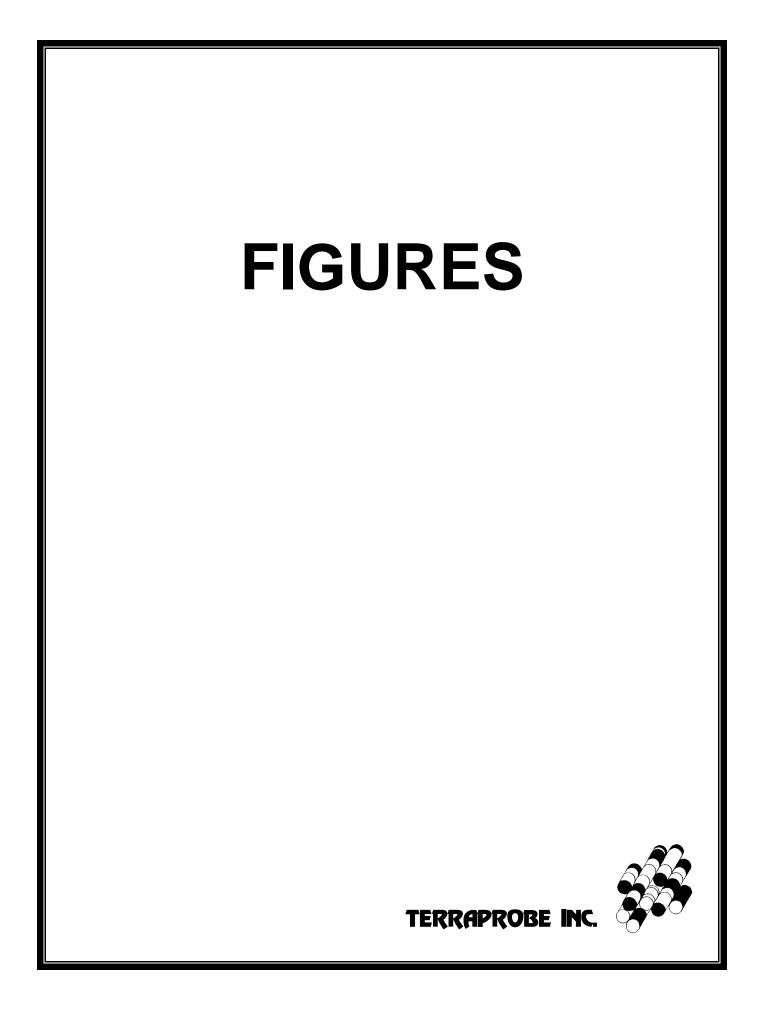
Terraprobe Inc.

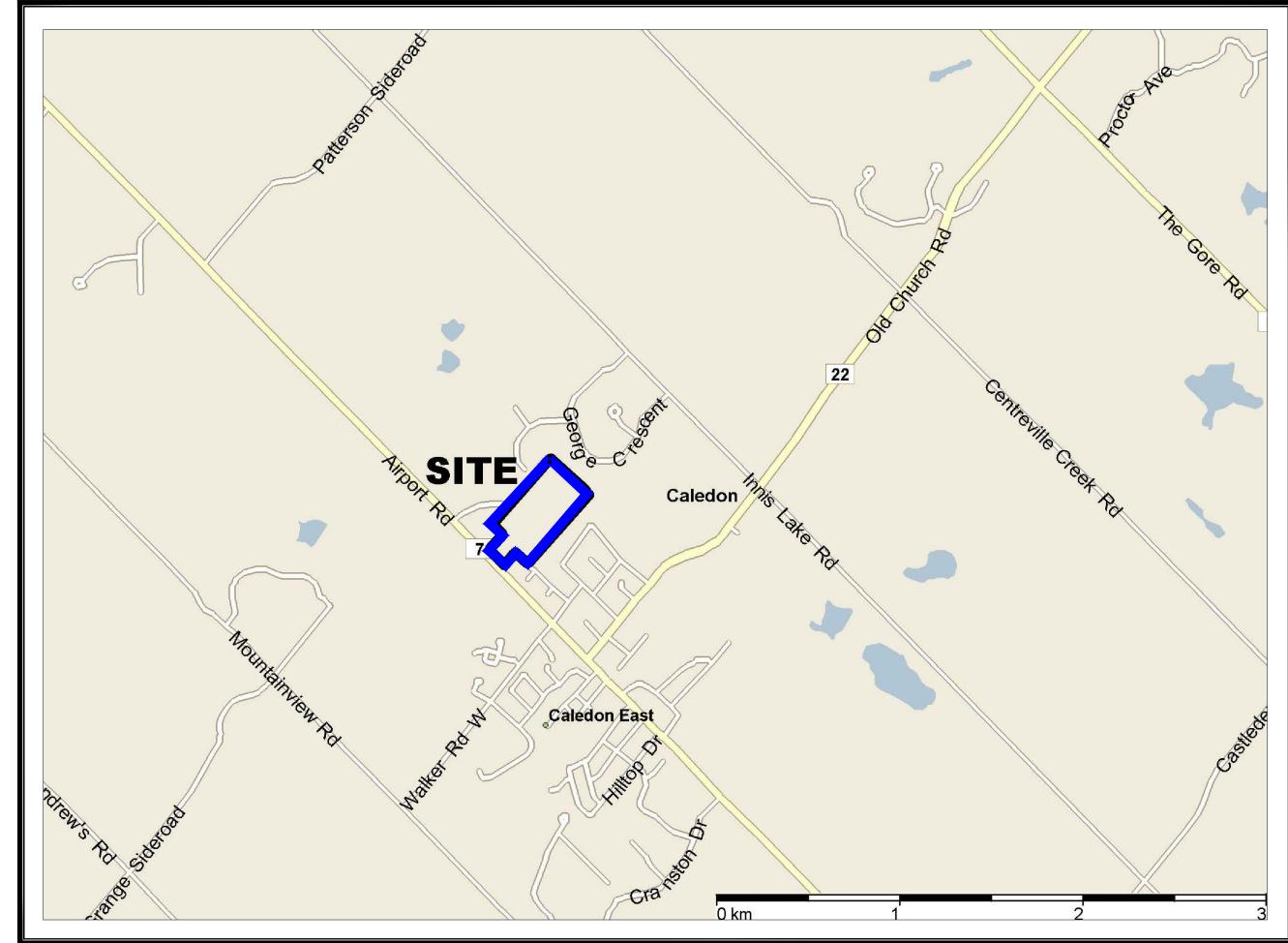
Project Manager

Samuel Oyedokun, B.Eng., PMP.

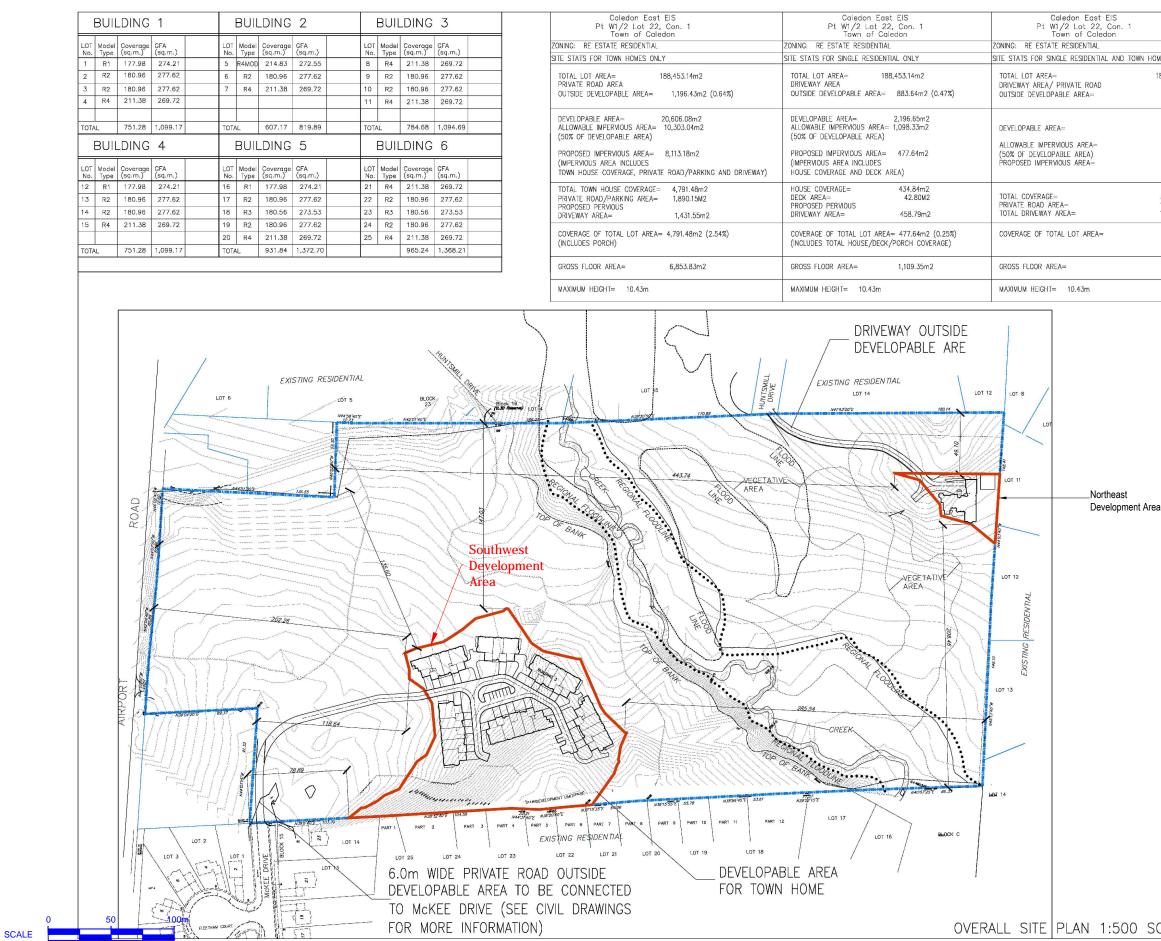
Raw

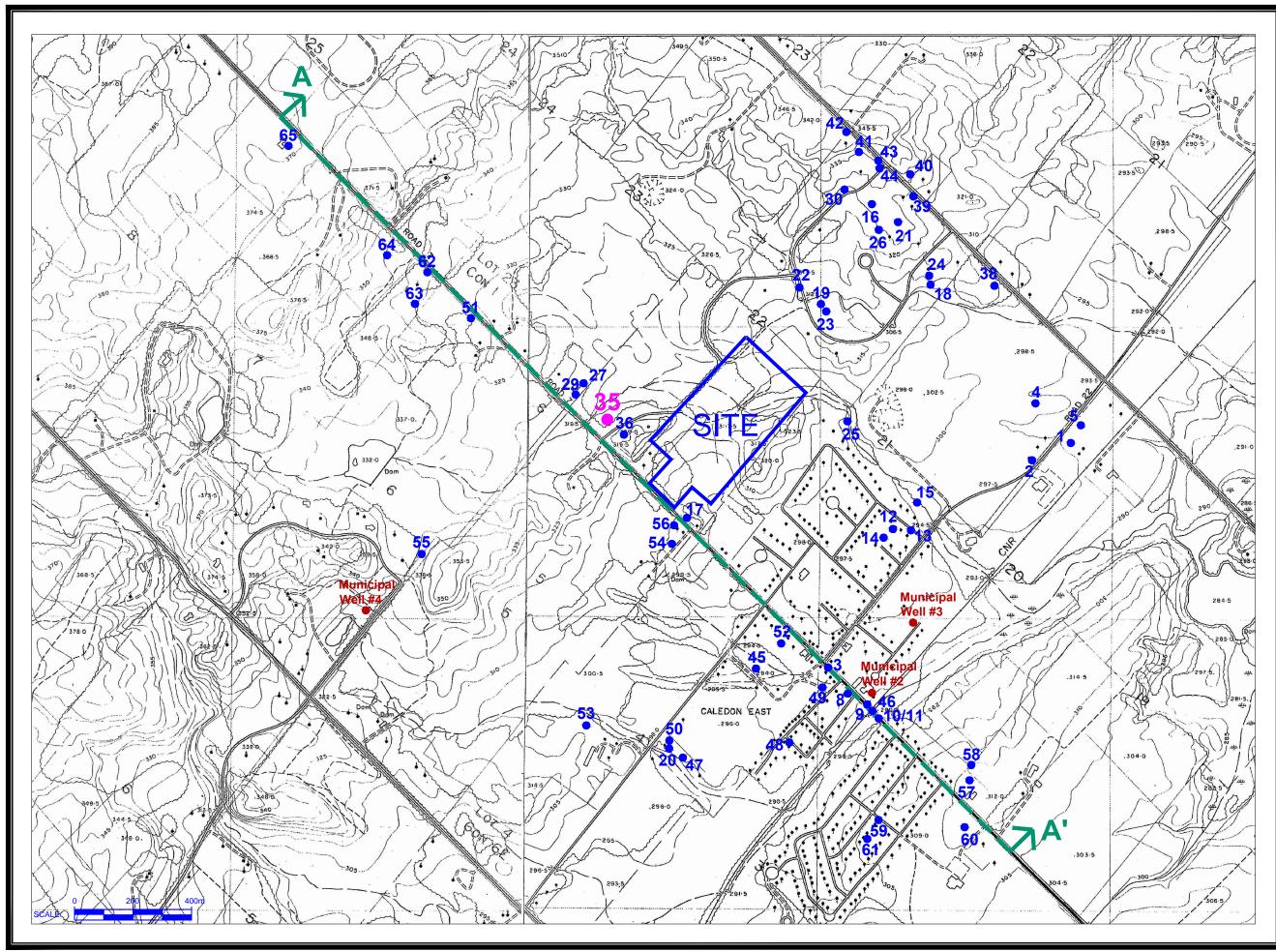
Shama Qureshi, P.Eng., P.Geo., QP_{ESA} Associate S.M. QURESHI

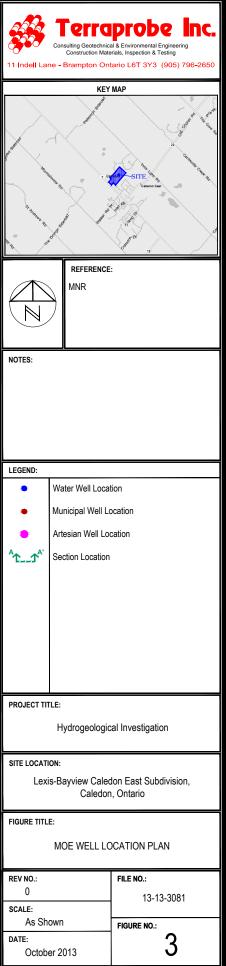


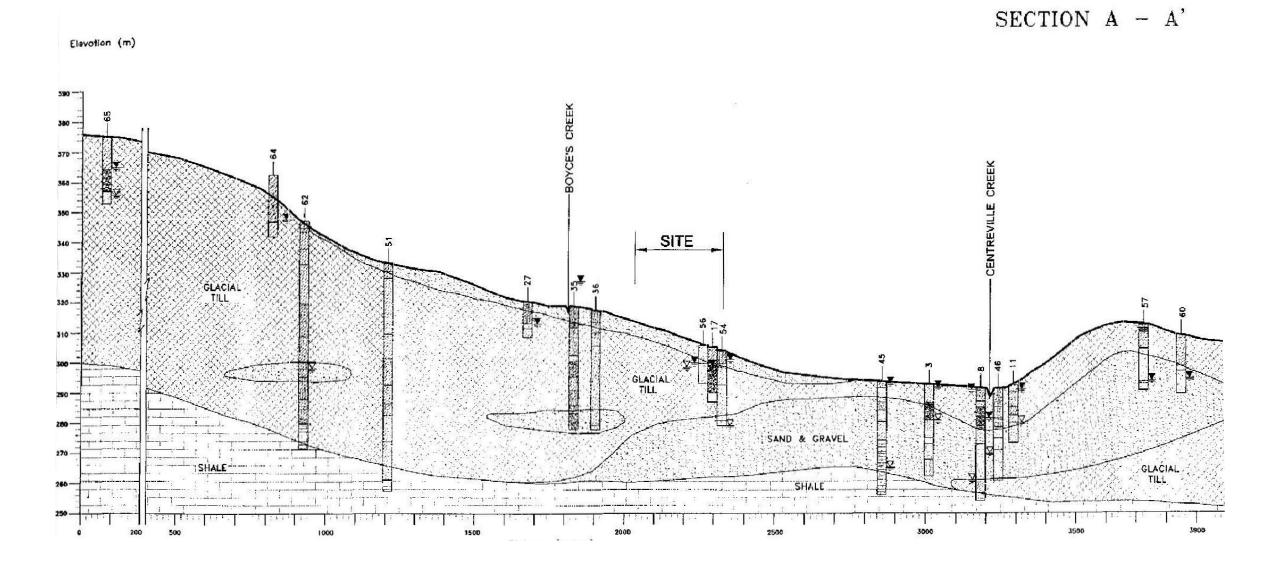

Page No. 29

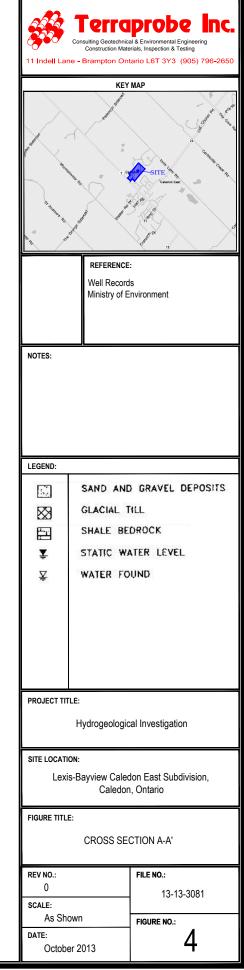
7.0 REFERENCES

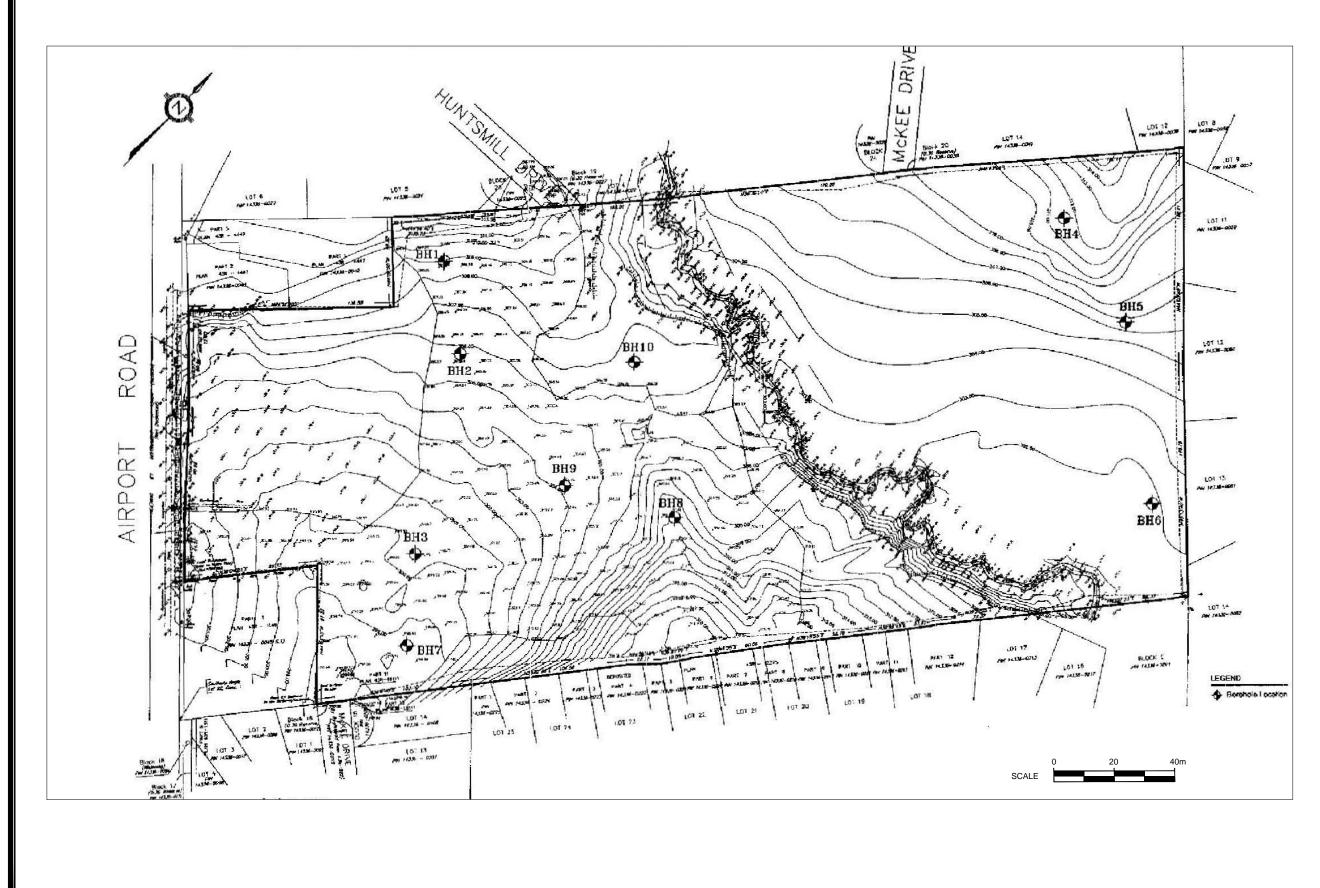

- 1. Russel, H.A.J., Moore, A., Logan, C., Kenny, F., Brennand, T.A., Sharpe, D.R., and Barnett, P.J. 1998: Sediment Thickness of the Greater Toronto and Oak Ridges Moraine Areas, Southern Ontario; Geological Survey of Canada, Open File 2892, Scale 1:200,000.
- 2. Surficial Geology of the Greater Toronto and Oak Ridges Moraine Area, Southern Ontario. Ministry of Northern Development and Mines, Ontario, 1997.
- 3. Barnett, P.J., Cowan, W.R. and Henry, A.P. 1991: Quaternary Geology of Ontario, Southern Sheet; Ontario Geological Survey Map 2544, scale 1:1,000,000.
- 4. Ontario Geological Survey 1991: Bedrock Geology of Southern Ontario, Southern Sheet; Ontario Geological Survey Map 2556, scale 1:1,000,000.
- 5. Terraprobe Inc. "Hydrogeologic Evaluation, Proposed Residential Subdivision, West Half of Lot 22, Concession 1 (Albion) Part 1, Plan 43R 3575, Town of Caledon, Ontario," (Terraprobe Project No. 1-05-0178; dated June 2, 2006).
- 6. Terraprobe Inc. "Geotechnical Investigation" Proposed Residential Subdivision, West Half of Lot 22, Concession 1 (Albion) Part 1, Plan 43R 3575, Town of Caledon, Ontario." (Terraprobe Project No. 1-05-0178; dated March 23, 2001)

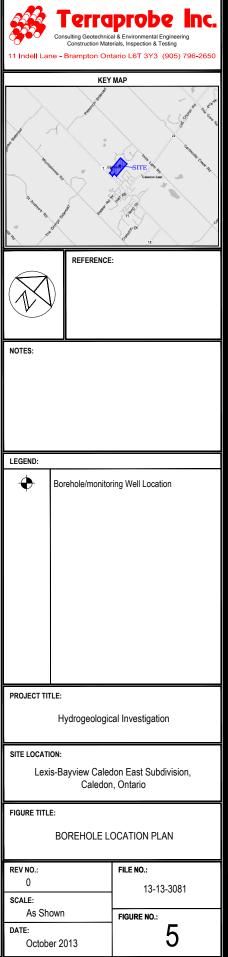


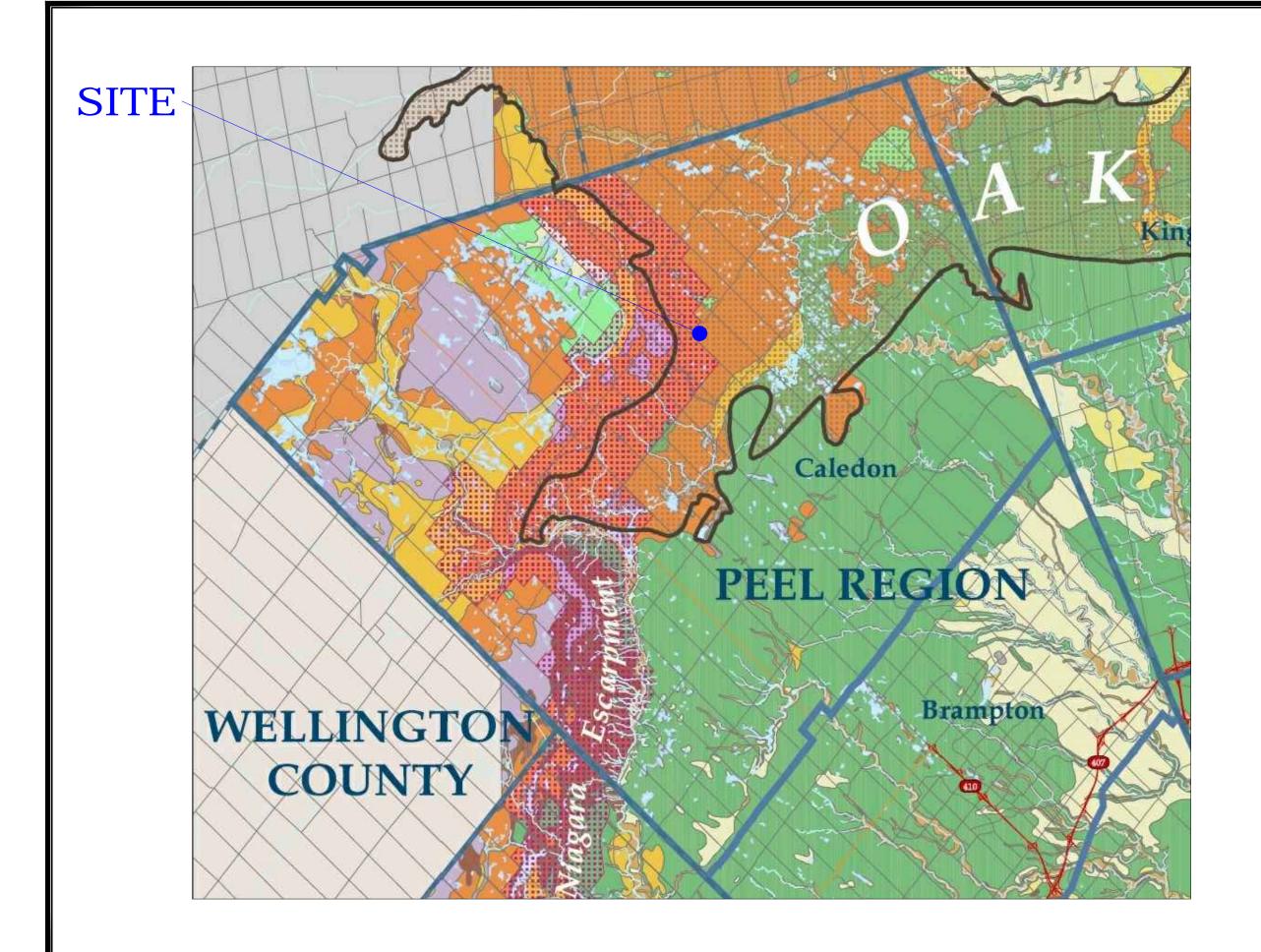

Construction Materials, Inspection & Testing 11 Indell Lane - Brampton Ontario L6T 3Y3 (905) 796-2650					
KEY	MAP				
- det	Con de				
A AN	2 2 2				
REFERENCE	:				
Microsoft Str	reets & Trips 2011				
NOTES:					
NOTED.					
LEGEND:					
Site Location					
PROJECT TITLE:					
Hydrogeologic	al Investigation				
SITE LOCATION:					
Lexis-Bayview Caledon East Subdivision,					
Caledon, Ontario					
FIGURE TITLE:					
SITE LOCATION PLAN					
REV NO.:	FILE NO.:				
0	13-13-3081				
SCALE: As Shown					
DATE:	FIGURE NO.:				
October 2013					

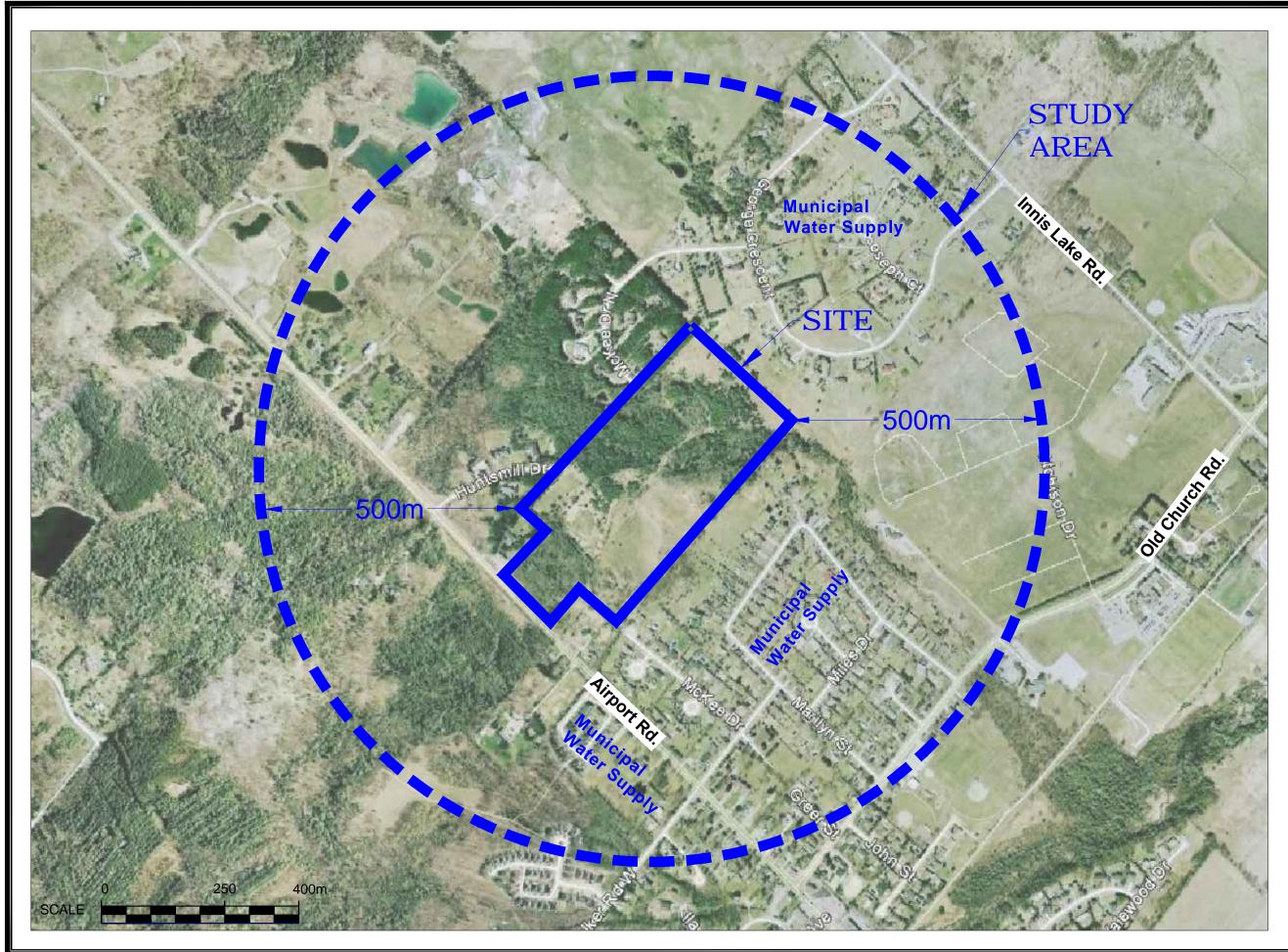


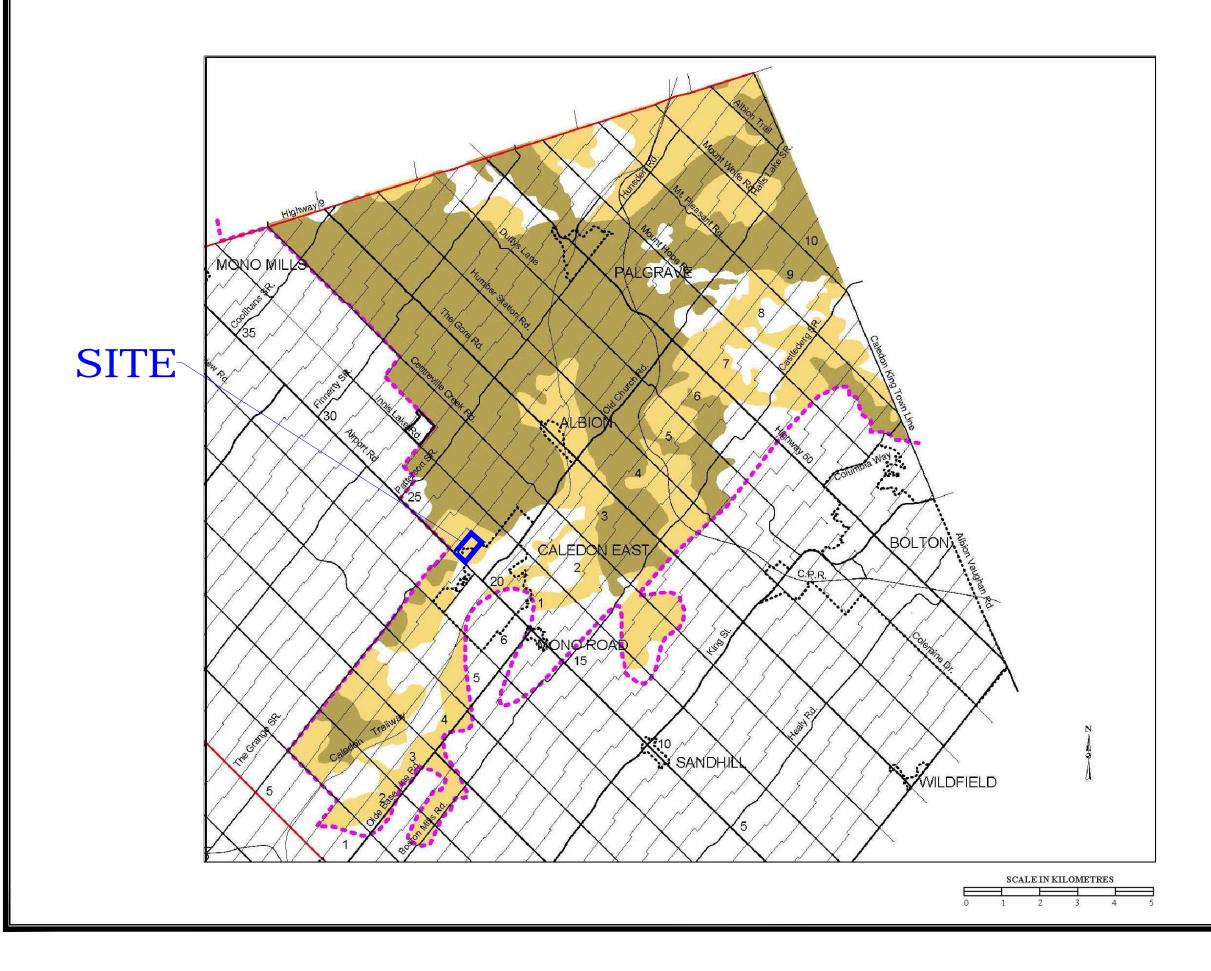

IN HOMES	
188,453.14m2	
2,080.07m2 (1.10%)	
22,802.73m2	
11,401.37m2	
8,590.82m2	
0,000.02112	
5,269.12m2 1,890.15m2 1,890.34m2	
5,269.12m2 (2.80%)	
7,963.18m2	
ent Area	
O SCALE	

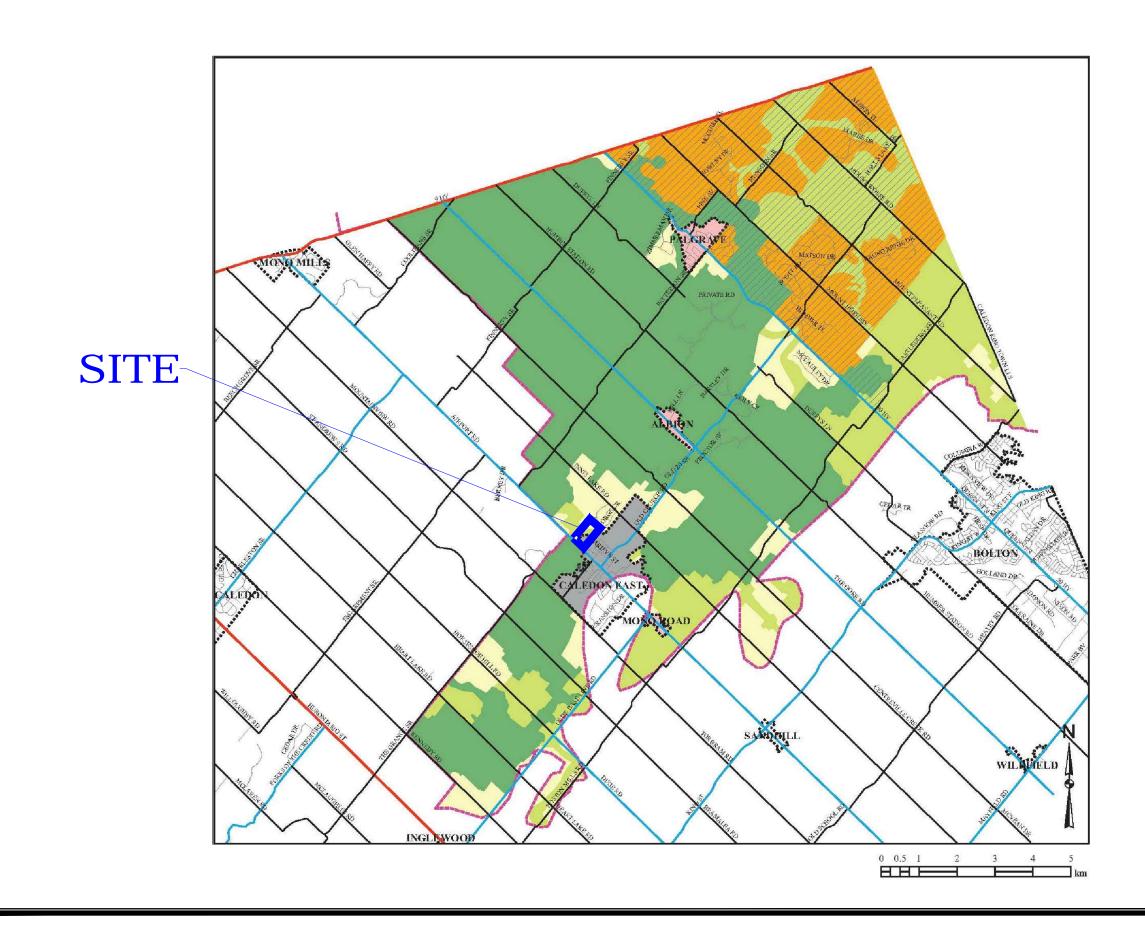

Consulting Geotechnical & Environmental Engineering Consulting Geotechnical & Environmental Engineering Construction Materials, Inspection & Testing 11 Indell Lane - Brampton Ontario LGT 3Y3 (905) 796-2650			
KEY MAP			
~ /		2 12	
$\overbrace{\aleph}$		3004. Wilson Avmue Toroho (N. VJII 158 14.16.530.2255 4.16.530.4782 va3design.com	
NOTES:			
LEGEND:			
\sim			
	Southwest D	evelopment Area	
Р	Northeast De	evelopment Area	
Open Space/Landscaping Area			
PROJECT TITLE: Hydrogeological Investigation			
SITE LOCATION:			
Lexis-Bayview Caledon East Subdivision, Caledon, Ontario			
FIGURE TITLE: PROPOSED SITE PLAN			
REV NO.: O			
SCALE: As Shown FIGURE NO.:			
DATE:	FIGURE NO		

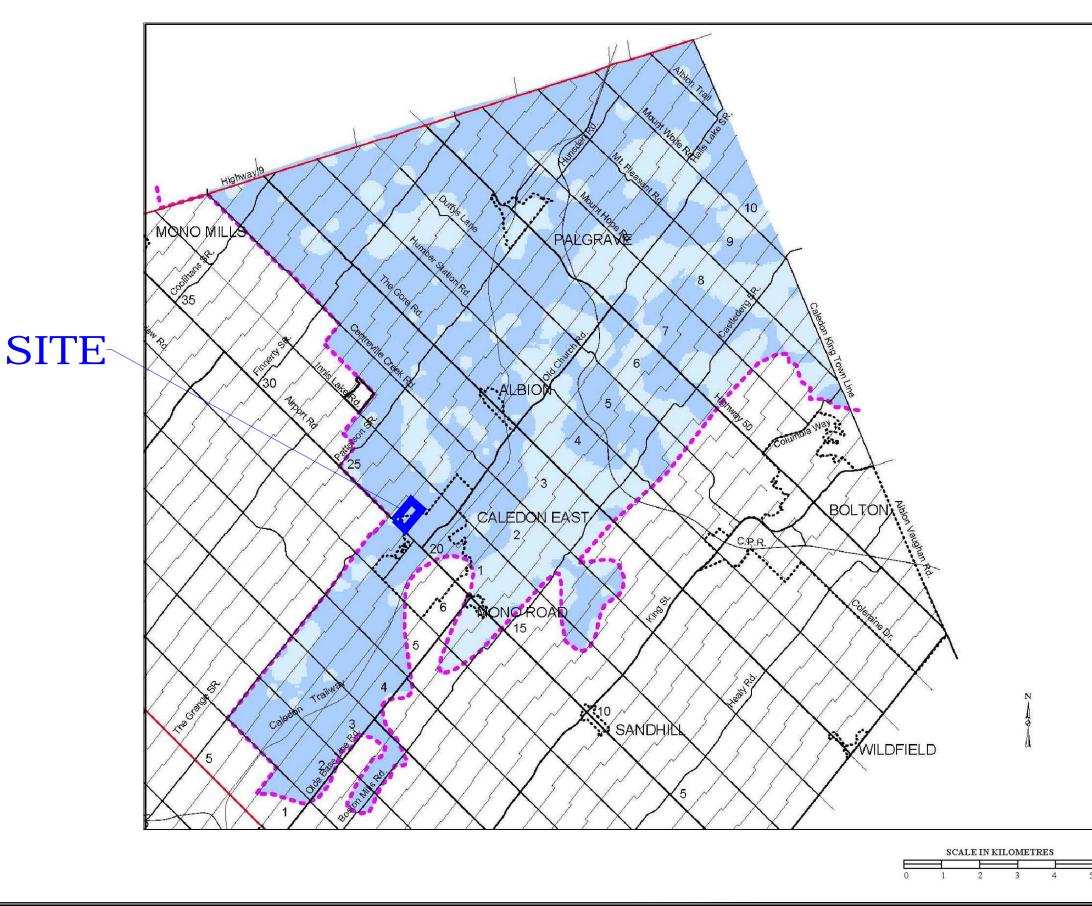




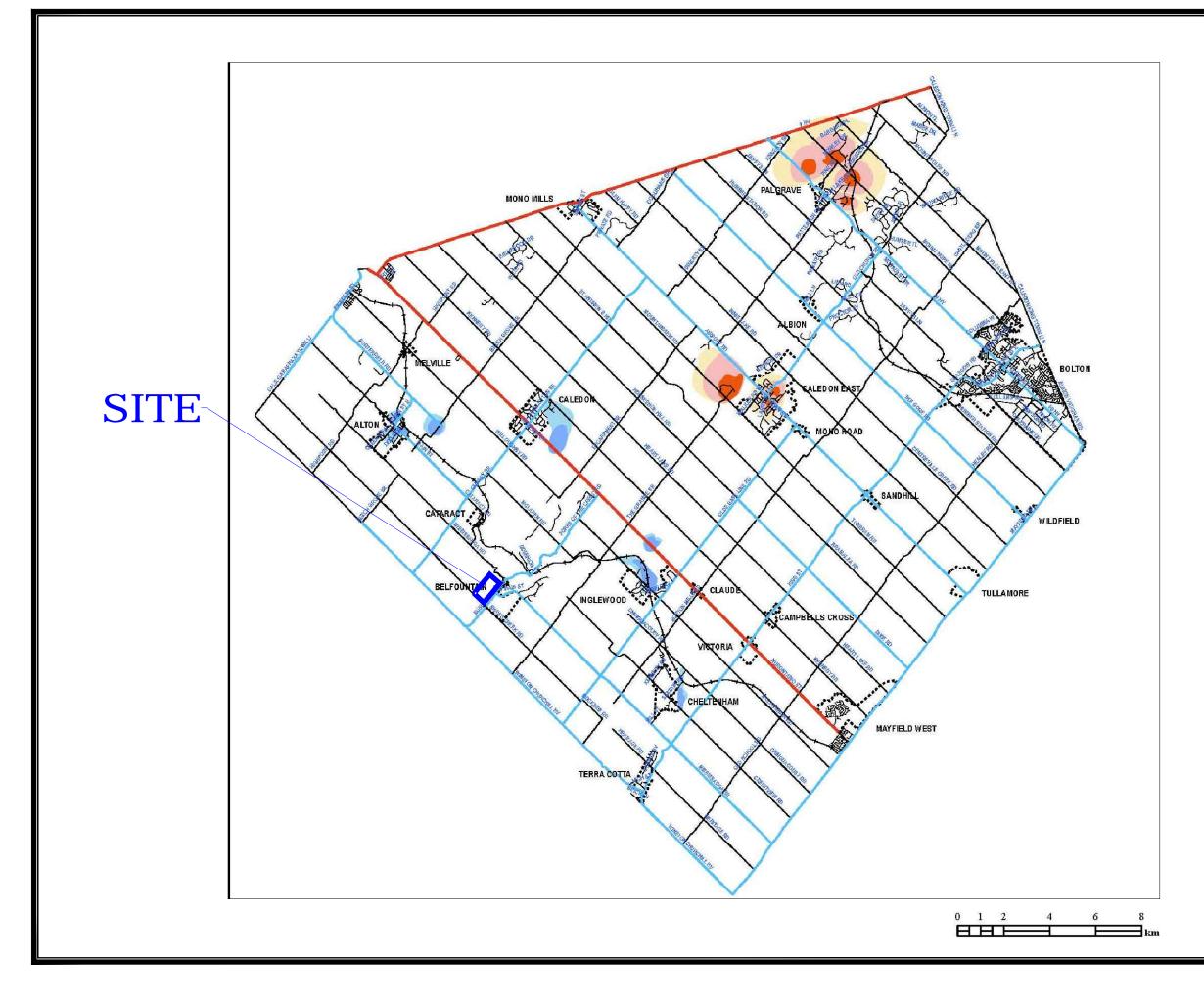




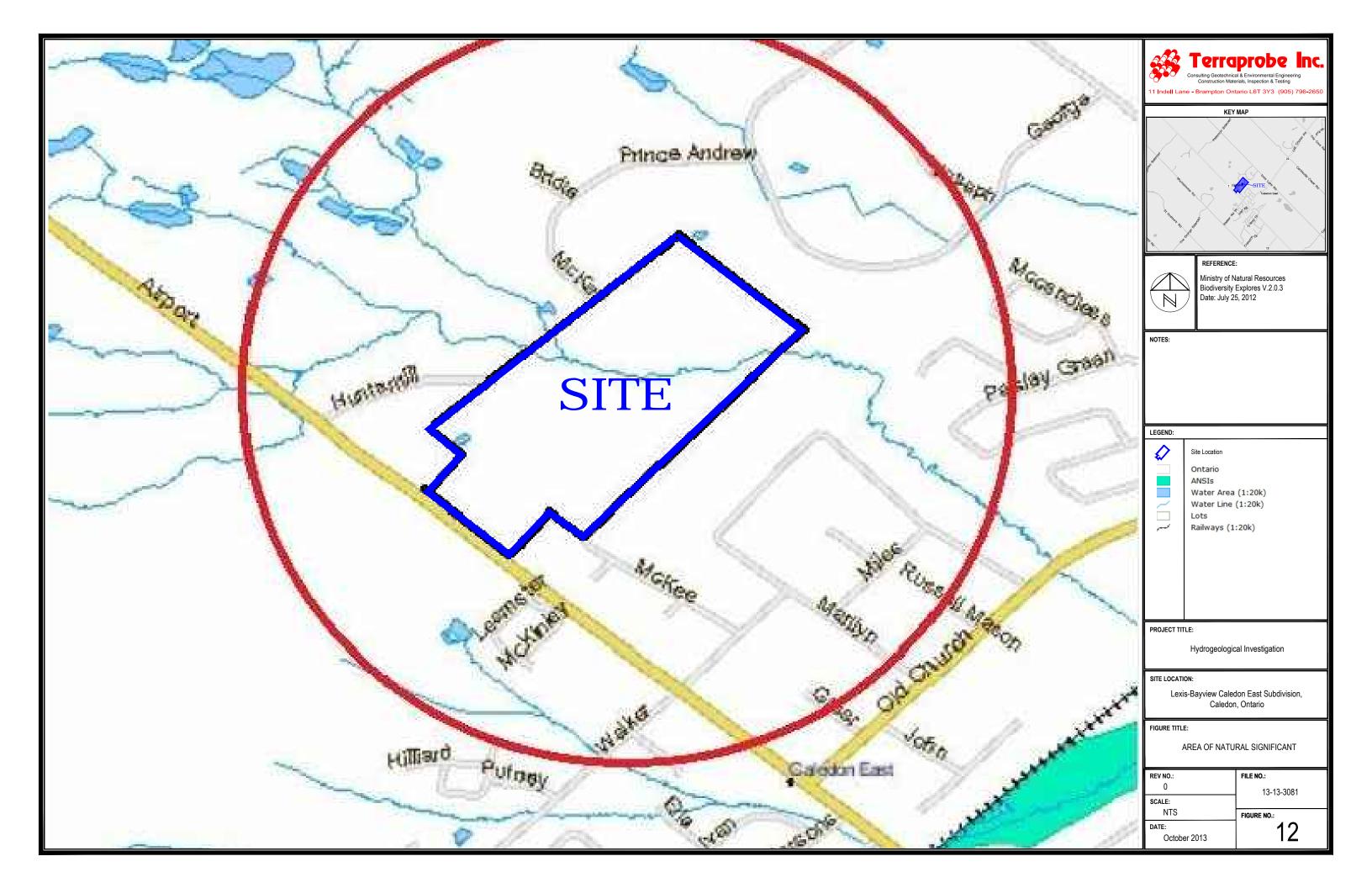

Consulting Geotechnical & Environmental Engineering Consulting Geotechnical & Environmental Engineering			
11 Indell Lar	11 Indell Lane - Brampton Ontario L6T 3Y3 (905) 796-2650		
S. M. Barr	KEY	MAP	
A IN		defen 12	
	REFERENCE York R Poduced by Coding and D Perspendie The Regional M	egion <u>Geomatics</u>	
NOTES:	4 ⁶		
LEGEND:	Glacial Till Deposits:		
5 6 7 6 9 9 10	Bang Decembra sand and romain Lufm Bink Degenit: Decembra sand and romain Degenit: Logenit: Life Bink Bang Decembra sand and romain Lufm Bink		
2	Undifferentiated Tills: 1-50 m thick	k.	
Betrick Betric			
PROJECT TIT	ïLE:		
	Hydrogeological Investigation		
SITE LOCATI			
Lexi	Lexis-Bayview Caledon East Subdivision, Caledon, Ontario		
FIGURE TITLI	FIGURE TITLE: SURFICIAL GEOLOGY OF THE OAK RIDGES MORAINE		
REV NO.:		FILE NO.:	
SCALE:	0 13-13-3081		
NTS DATE: Octobe	NTS FIGURE NO.:		


Consulting Geotechnical & Environmental Engineering Construction Materials, Inspection & Testing 11 Indell Lane - Brampton Ontario L6T 3Y3 (905) 796-2650			
KEY	МАР		
	SITE N. Contraction		
	Calidon East		
	Cart and		
the real of the second	Conferrar 22		
Google Eart			
NOTES:			
LEGEND:			
Site Location Study Area			
PROJECT TITLE: Hydrogeological Investigation			
SITE LOCATION:			
Lexis-Bayview Caledon East Subdivision, Caledon, Ontario			
FIGURE TITLE: PROPOSED SITE & SURROUNDING PROPERTY			
REV NO.: FILE NO.:			
0 13-13-3081 SCALE:			
As Shown FIGURE NO.: DATE: 7			
October 2013			

Consulting Geotechnical & Environmental Engineering Construction Materials, Inspection & Testing 11 Indell Lane - Brampton Ontario L6T 3Y3 (905) 796-2650			
	VEV	MAD	
KEY MAP			
REFERENCE: Town of Caledon Official Plan Schedule P-2 Date: December 31, 2008 Oak Moraine Conservation Plan Landform Conservation Areas			
NOTES:			
LEGEND:			
	Site Location		
	LANDROPH CONSERVATION - TO	A CATEGORY 1	
	LANDEORADONISTRY ATTOM AREA CATEGORY J		
	OAK RIDOES MORAINE CONSERV.	ATION PLAN AREA	
	LOT & CONCESSION LINES		
—	PROVINCIAL ROADS		
	REGIONAL ROADS		
	LOCAL ROADS		
-	RAILWAYLINES		
PROJECT TIT	ïLE:		
Hydrogeological Investigation			
SITE LOCATION:			
Lexis-Bayview Caledon East Subdivision, Caledon, Ontario			
FIGURE TITLE: Oak Ridges Moraine Conservation Plan Landform Conservation Areas			
REV NO.: 0	REV NO.: FILE NO.: 0 13-13-3081		
SCALE:			
As Shown FIGURE NO.: DATE: October 2013			

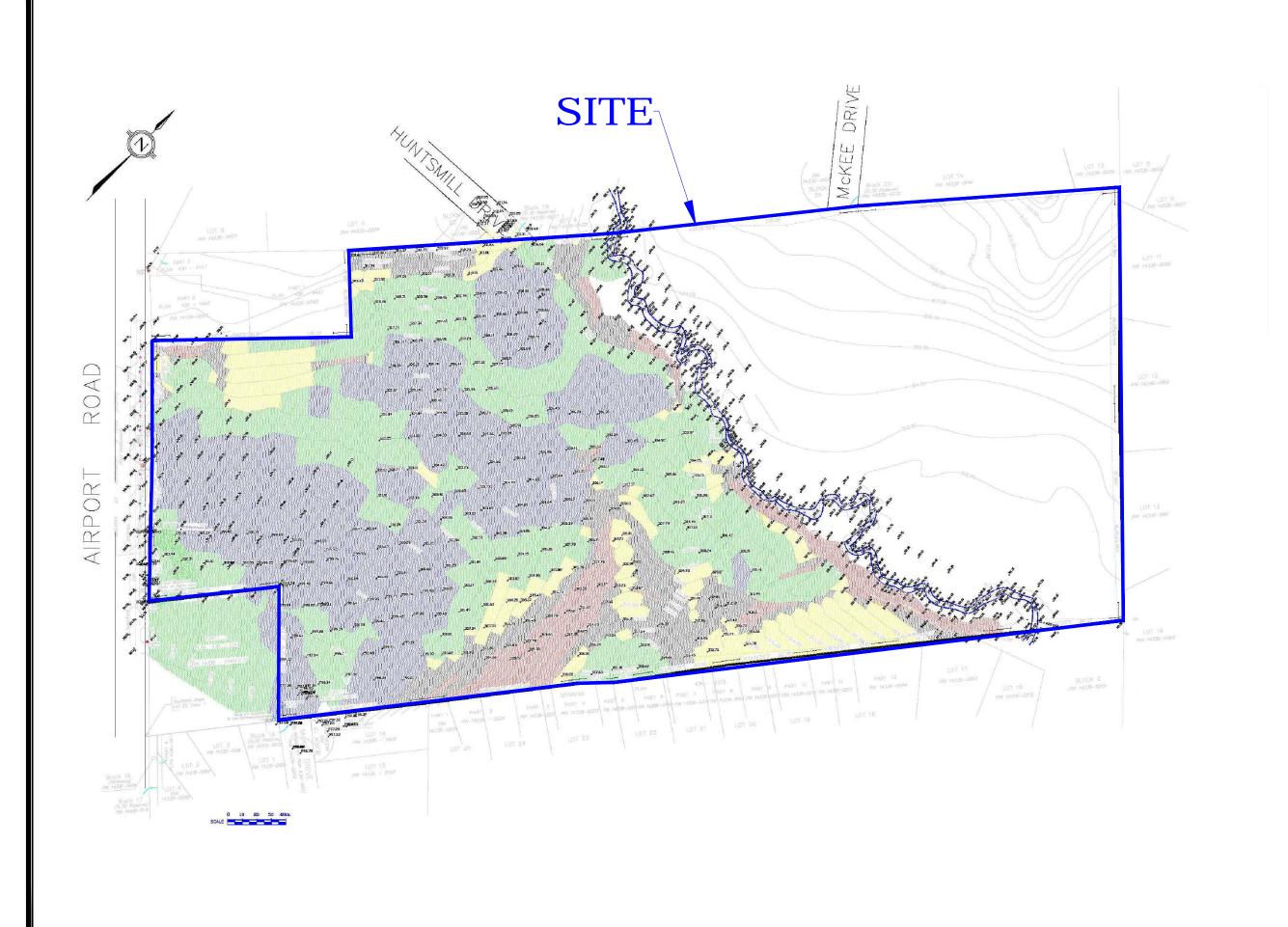


Consulting Geotechnical & Environmental Engineering Consulting Geotechnical & Environmental Engineering Construction Materials, Inspection & Testing 11 Indell Lane - Brampton Ontario L6T 3Y3 (905) 796-2650			
KEY MAP			
Town of Cale Official Plan Date: Decem Oak Moraine	REFERENCE: Town of Caledon Official Plan Schedule P Date: December 31, 2008 Oak Moraine Conservation Plan Landform Conservation Areas		
NOTES:			
LEGEND:			
Site Location NATURAL CORE AREA NATURAL LINKAGE AREA COUNTRYSIDE AREA RURAL SETTLEMENT (*) PALGRAVE ESTATE RESIDENTIAL COMMUNITY (*) SETTLEMENT AREA PALGRAVE ESTATE RESIDENTIAL COMMUNITY OAK RIDGES MORAINE CONSERVATION PLAN AREA LOCAL ROAD - MINOR LOCAL ROAD - MAJOR REGIONAL ROAD PROVINCIAL HIGHWAY			
PROJECT TITLE: Hydrogeological Investigation			
SITE LOCATION:	len Fest Out-Judici		
Lexis-Bayview Caledon East Subdivision, Caledon, Ontario			
FIGURE TITLE:			
REV NO.: 0	FILE NO.:		
13-13-3081			
DATE: October 2013			

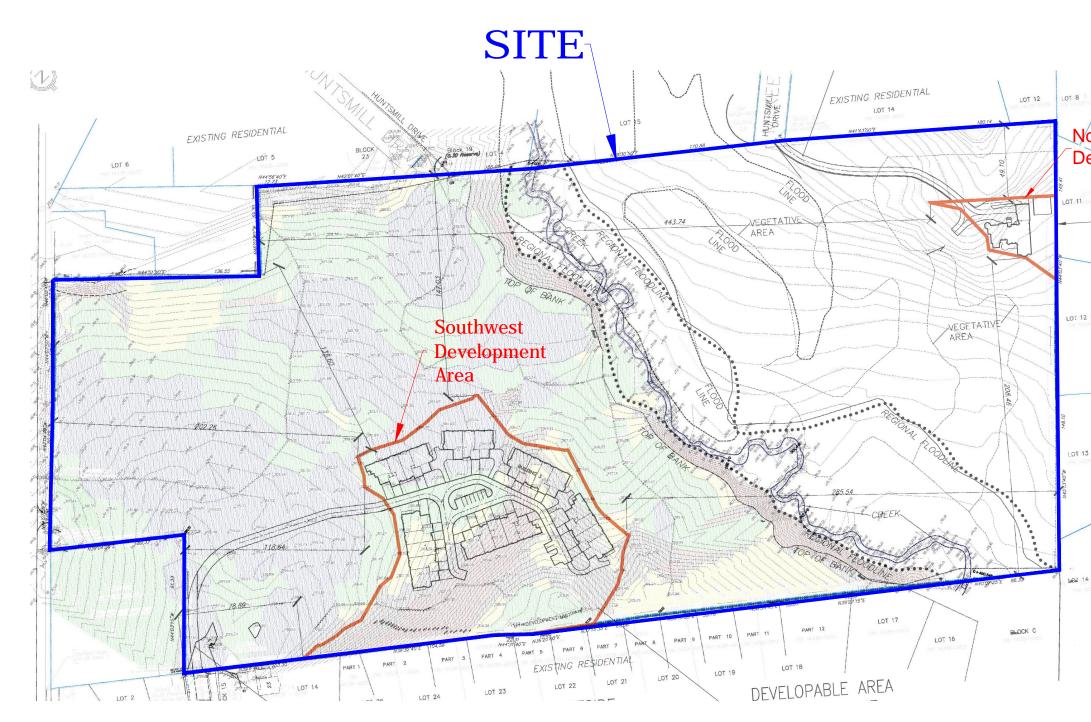


🚜 Terraprobe Inc.			
Construction Mate	al & Environmental Engineering erials, Inspection & Testing tario L6T 3Y3 (905) 796-2650		
KEY MAP			
REFERENCE: Town of Caledon Official Plan Schedule P-1 Date: December 31, 2008 Oak Moraine Conservation Plan Landform Conservation Areas			
NOTES:			
LEGEND:			
Site Location			
HIGH AQUIFER VULNER	ABILITY		
LOW AQUIFER VULNERS	NBILITY		
	CONSERVATION PLAN AREA		
LOT & CONCESSION LINE	ES		
PROVINCIAL ROADS			
REGIONAL ROADS			
LOCAL ROADS			
RAILWAY LINES			
PROJECT TITLE: Hydrogeological Investigation			
SITE LOCATION:			
Lexis-Bayview Caledon East Subdivision, Caledon, Ontario			
FIGURE TITLE: Oak Ridges Moraine Conservation Plan Aquifer Vulnerability Areas			
REV NO.: 0			
SCALE: 13-13-3081			
As Shown FIGURE NO.: DATE: October 2013 10			

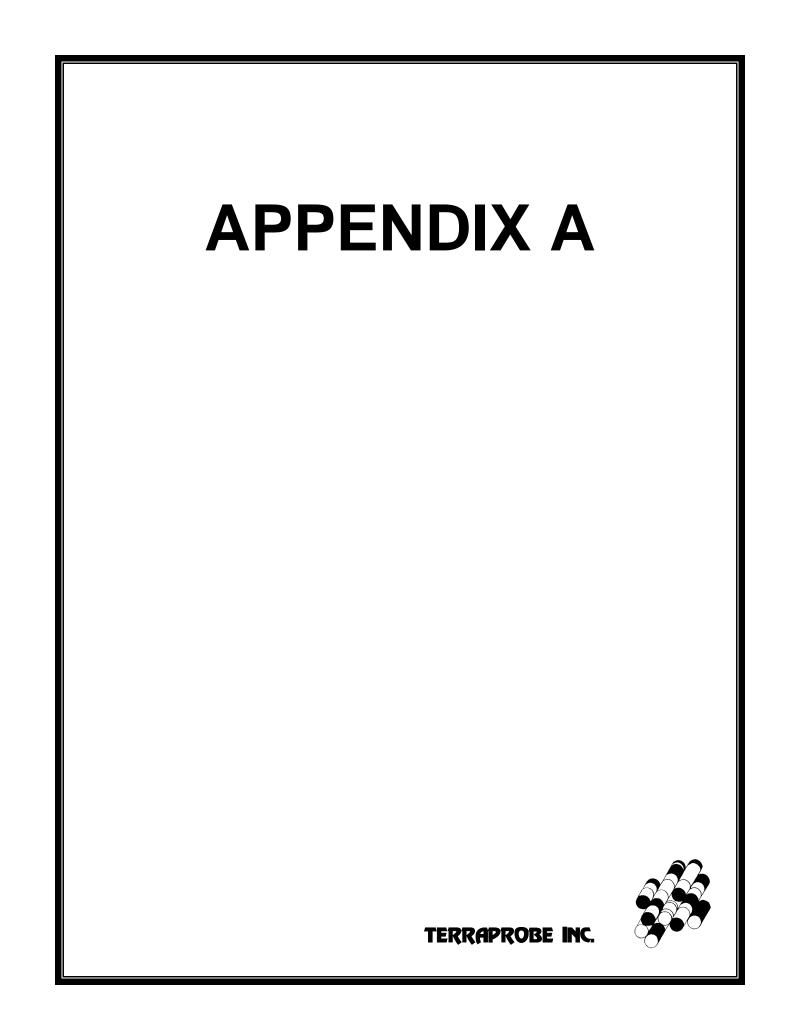
1	1		
	1		
	1	•	
٤	7		
)		



Consulting Geotechnical & Environmental Engineering Construction Materials, Inspection & Testing 11 Indell Lane - Brampton Ontario L6T 3Y3 (905) 796-2650			
KEY MAP			
Town of Cale Official Plan Date: Decem Oak Moraine	REFERENCE: Town of Caledon Official Plan Schedule P-2 Date: December 31, 2008 Oak Moraine Conservation Plan Landform Conservation Areas		
NOTES:			
LEGEND: Site Location 2 YEAR PROTECTION AREA 10 YEAR PROTECTION AREA 25 YEAR PROTECTION AREA 25 YEAR PROTECTION AREA 5 YEAR PROTECTION AREA 0 OAK REDGES MORAINE CONSERVATION FLAN AREA 9 ROVINCIAL HIGHWAY 9 REDIONAL ROAD 10 CAL ROAD - MAJOR 10 CAL ROAD - MAJOR + BAILWAY LINES			
PROJECT TITLE:			
Hydrogeological Investigation			
SITE LOCATION:			
Lexis-Bayview Caledon East Subdivision, Caledon, Ontario			
FIGURE TITLE: WATER HEAD PROTECTION AREA			
REV NO.: FILE NO.:			
0 13-13-3081 SCALE:			
As Shown FIGURE NO.:			
DATE: 11 October 2013			



🙀 Terraprobe Inc.			
Construction Mate	al & Environmental Engineering rials, Inspection & Testing		
11 Indell Lane - Brampton Ont			
KEY MAP			
REFERENCE TRCA	* · · · · · · · · · · · · · · · · · · ·		
NOTES:			
LEGEND:			
PROJECT TITLE: Hydrogeological Investigation			
SITE LOCATION:			
Lexis-Bayview Caledon East Subdivision, Caledon, Ontario			
FIGURE TITLE: HUMBER RIVER WATERSHED			
REV NO.: O	FILE NO.:		
SCALE: As Shown	13-13-3081		
DATE: October 2013	FIGURE NO.: 13		



Consulting Geotechnical & Environmental Engineering		
11 Indell Lan	Construction Mate	rials, Inspection & Testing ario L6T 3Y3 (905) 796-2650
	KEY	MAP
		STE 5 Constant
A B MAC	ren l	Competer 12
×		
NOTES:	<u></u>	
LEGEND:		
	<2%	
	2-5%	
	5-10%	
	10-15%	
	15-20%	
	>25%	
PROJECT TITLE: Hydrogeological Investigation		
SITE LOCATION:		
Lexis-Bayview Caledon East Subdivision, Caledon, Ontario		
FIGURE TITLE		SSIFICATION
rev no.: 0		FILE NO.:
13-13-3081		
DATE: October 2013		

Z:\1-Pro Jason

	Constructio	raprobe Inc. echnical & Environmental Engineering In Materials, Inspection & Testing In Ontario LGT 3Y3 (905) 796-2650
ortheast evelopment Area		KEY MAP
T (1) 39-0635	REFER	ENCE:
EXISTING RESIDENTIAL	NOTES:	
EXISTING R	LEGEND: 2-5% 5-10% 10-159 15-209	
12 2559-6092	PROJECT TITLE:	
		logical Investigation
		Caledon East Subdivision, edon, Ontario
		OPING LAND WITHIN ELOPMENT AREA
	REV NO.: 0 SCALE:	FILE NO.: 13-13-3081
	As Shown DATE: October 2013	FIGURE NO.: 15

GROUND WATER BULLETIN REPORT

÷

1

1

																		GROUND HATER BULLETIN REPORT
WELL Number	CONCE				U NELL EAS				RILLE	DI	A OF	FOU	ER STA' ND LVL T FEE'	LVL	RATE	TTME 1	WATER USE	OWNER/LOG/SCREEN Depths in feet to which Formations extend
1	CON																	
2	CON			05749	591950 9 4858700		1980/0				0022		30 4	1 :30	D DO			 BRWN LOAM 0002 BRWN SAND CLAY 0021 BRWN SAND 0026 BRWN SAND GRVL 0032
•	CON	01	020		591823 9 4858548	965	1965/1	.0 3612	36	FR	0023	23	3	:	DO			
3	CON	01	020		591076~ 8 4857798	955	1960/0	8 2801	10	FR	0039	32	9 155	24:0	MN	0065 10	0	LOAM 0001 MSND STNS 0027 QSND 0030 LOAM 0002 MSND SILT 0020 BLUE CLAY 0039 GRVL MSND CLAY 0046 MSND SILT 0049 FSND 0059 MSND
4	CON	01	020		591827~ 5 4858769		1960/0			FR	0090			:	NU			0067 FSND SILT 0117 LOAM 0001 FSND 0002 MSND GRVL BLDR 0012 FSND
																		GRVL 0021 MSND SILT GRVL 0026 MSND SILT 0032 GRVL 0033 MSND SILT 0038 FSND SILT 0045 MSND SILT 0067 CLAY 0090 MSND SILT 0112 GRVL 0114 FSND GRVL 0115 BLUE CLAY 0116 SHLE 0135
•	CON			04342	591995 4858675		1974/0				0021	21 3	53	1 :0	DO			BRWN LOAM 0002 BRWN SAND 0020 GREY SAND 0022 GREY GRVL 0035 GREY FSND 0037
Ť	CON			07902	591223 4857640		1994/08				0040			:	NU	0040 05		BLCK LOAM 0001 GREY SILT CLAY SAND 0014 GREY SILT CLAY 0040 BRWN SAND GRVL LYRD 0050
	CON			08579	591715~ 4858110 591157		2000/03		06 F. F		0208 2		75 12	2 :0	DO	0209 07		BRWN SAND CLAY 0044 BLUE CLAY 0072 GREY SILT 0208 BRWN SAND 0217 BLUE CLAY 0220
	CON			00032	4857698		1994/09				0101 4			;	NU			BRWN MSND 0002 BLCK MUCK MSND 0016 GREY CLAY 0018 QSND 0046 QSND GRVL 0048 CLAY FSND 0062 QSND 0101 QSND GRVL 0102 CLAY MSND 0119 HPAN SHLE 0123
					4857641	500	199470:	, 2400	08 0	n	0041 é	5 4(0 200	6:	NU	0049 21		GRVL FILL STNS 0001 BLCK SILT 0002 GREY CLAY SLTY SAND 0009 GREY SILT CLAY 0024 GREY CLAY 0029 GREY CLAY STNS 0031 GREY CLAY SOFT 0039 GREY CLAY STNS 0040 BRWN CLAY SAND 0041 BRWN
10	CON	01	020		591223 4857640	968	1994/08	6490	04 F	R	0042			:	NU	0042 05		FSND MSND 0064 BRWN MSND 0071 GREY GRVL FILL 0002 BLCK LOAM 0003 GREY SILT CLAY SAND 0016 GREY SILT CLAY 0042 BRWN SAND
11	CON	01	020		591223 4857640	968	1994/08	3406	08 U	ĸ	0041 7	40) 150	6 :30	NU	0041 20		GRVL LYRD 0062 GRVL FILL 0001 BLCK LOAM 0002 GREY CLAY SLTY SAND 0008 GREY SILT CLAY 0029 GREY CLAY SLTY
12	CON	01	021		591308 4858300	950	1959/11	2801	02 S.	A	0055 E	12	2 16	3 :0	NU	0051 10	1	SOFT-0038 GREY CLAY STNS HARD 0040 BRWN CLAY SAND 0041 BRWN SAND CLAY LYRD 0063
13	CON	01	021		591379 4858305	950	1959/12	2801	02 F	R	0051 8	14	4 30	4:0	NU	0050 11		GRVL BLDR 0031 CSND GRVL 0037 MSND GRVL BLDR 0042 CSND GRVL 0055 MSND CLAY GRVL 0061
																		LOAM 0001 FSND BLDR 0008 MSND GRVL BLDR 0030 MSND GRVL 0041 MSND CLAY 0051 FSND CLAY 0061

GROUND WATER BULLETIN REPORT

. . .

1

1

· ·																			SKOOND ARTER BULLETIN REPORT
WELL NUMBER	CONCE	Essio rc	N	LOT	NO	UTM EASTING NORTHIN	ELEV FEET	DATE	DRILLI	D	SG KI IA (NS WA	DF	WATER FOUND FEET	EVI .	I VI	DATE	TIME	WATER	OWNER/LOG/SCREEN R DEPTHS IN FEET TO WHICH Formations extend
14	CON	01	021	49-	5912	79 950	1950/	11 200											
					4858		1929/	11 2803	02	FR	006	18	15	30	6 :0	NU	0061	11	
15	CON	01	021	49- 00034	5914) 4858	00 960 400	1959/	03 2904	06	FR	004	49	38	80	72:0		0028 0038		LOAM 0001 MSND GRVL BLDR 0044 FSND 0061 FSND SILT CLAY 0083 LOAM 0002 SAND GRVL CLAY 0016 SAND GRVL 0018
16	CON	01	022	49- 05561		00 1075 500	1979/	09 4919	30	UK	0060	0 60	76		0 :30	DO			BLDR SAND 0019 SAND GRVL 0024 SAND GRVL 0018 0027 SAND GRVL 0035 CSND GRVL 0040 FSND 0041 GRVL SAND 0044 FSND 0055
17.	CON	01	022	49- 05698		50 1010 350	1978/	08 3561	07	FR	0060	D' 20	20	5	24:0	DO			BRWN LOAM HARD 0001 BRWN CLAY SAND PCKD 0058 BRWN SAND LOOS 0079
18	CON	01	022	49- 03425	59142 48592	20 990 200	1970/0	05 3637	30	FR	0055	ō 55	70		2 :0	DO			LOAM 0002 SAND CLAY 0020 CLAY GRVL SAND 0050 HPAN 0060
19	CON	01	022	49- 04263	59102 48591	20 977 136	1973/0	08 2801							:	PS			BRWN LOAM 0001 BRWN MSND CLAY 0065 BRWN CLAY 0070
20	001																		LOAM 0001 BRWN FSND 0017 GREY SAND CLAY 0040 GREY CLAY SAND 0047 FSND GRVL CLAY 0058 GREY CLAY 0072 GREY FSND CLAY 0078 GREY CLAY GRVL 0087 GREY FSND CLAY 0103 GREY CLAY GRVL 0110 GREY SHLE LMSN 0122
	CON	01	022	49- 05847	59050 48575		1981/0	08 3317	05 1	FR	0083	8 0	70	2	3 :0	DO	0083 (FSND CLAY 0020 SAND SLTY 0042 GREY CLAY SOFT
21	CON	01	022	49 05330	59130 48594		1977/(05 4320	1	FR	0054	54	54	1	1 :0	DO			0057 SAND CLAY LYRD 0082 MSND FGVL LYRD 0087
22	CON	01	022	49- 04261	59095	52 987	1973/0	08 2801							:	PS			BRWN FSND 0013 BRWN CSND 0053 BRWN FSND 0069
23	CON	01	022	49-	50103														LOAM 0001 GRVL CSND 0008 BRWN FSND 0017 BRWN FSND CLAY 0030 BRWN CLAY SAND 0043 GREY CLAY 0048 GREY SILT CLAY 0052 GREY CLAY 0062 GREY SHLE LMSN 0065 GREY CLAY 0066 RED SAND CLAY SHLE 0108 GREY CLAY 0114 GREY SHLE CLAY 0116 GREY SHLE LMSN 0117
		••		04265			1973/0	9 2801							:	PS			LOAM 0003 GREY SILT CLAY 0073 BRWN SAND CLAY GRVL 0105 GREY CLAY GRVL 0110 RED CLAY 0117
24	CON	01	022	49- 04260	59141 48592		1973/0	8 2801							:	PS			GREY CLAY SHLE 0125
25	CON	01	022	49- 04266			1973/0	98 2801							:	PS			0051.GREY SAND CLAY 0059 GREY SAND CLAY 0068 GREY CLAY 0075 GREY CLAY SAND 0093 GREY FSND CLAY 0097 SAND GRVL SHLE 0099 GREY CLAY GRVL SHLE 0108 RED SHLE 0112
																			BRWN SAND GRVL BLDR 0005 BRWN CLAY SAND 0051 BRWN CLAY SILT 0062 GREY CLAY 0076 GREY SHLE

BRWN CLAY SILT 0062 GREY CLAY 0076 GREY SHLE CLAY 0083 GREY LMSN 0086

GROUND WATER BULLETIN REPORT

;

1

									••											GROUND WATER BULLETIN REPORT
WELL Number	CONCE						TING	ELEV Feet		DRILL	מ	IA	OF	FOUND	LVL	LVL	RATE	TEST TIME HR/MN	WATER USE	OWNER/LOG/SCREEN Depths in feet to which Formations extend
24	CON	01	022	49- 04264			1063	1973/0	8 2801							:	PS			BRWN SAND GRVL CLAY 0038 BRWN CLAY 0044 BRWN SAND CLAY 0049 GREY CLAY GRVL 0063 GREY CLAY 0070 SAND GRVL 0071 GREY SAND CLAY GRVL 0083
27 .	CON	01	023	49- 0330:	590 3 485		1050	1969/0	9 3612	2 36	FR	002	25 25	38	1	1 :0	ĎŌ			GREY CLAY 0137 GREY FSND GRVL CLAY GRVL 0083 SHLE 0150 GREY SHLE LMSN 0151 BLCK LOAM 0001 BRWN CLAY BLDR 0025 GREY MSND
28	CON	01	023	49-		700	1105	1977/0	4 3612	2 36	UK	005	54 54	73	3	1 :30) DO			CLAY STNS 0030 GREY CLAY 0039 BRWN LOAM 0001 BRWN CLAY 0020 BRWN SAND 0025
-29.	CON	01	023	49- 03493			1040	1970/0	6 4919	36	FR	001	15 2	18		1 :0	DO			BRWN CLAY 0035 BRWN SAND CLAY 0054 BRWN CLAY 0057 BRWN SAND 0075 BRWN LOAM 0001 BRWN MSND 0015 GREY CLAY GRVL
30	CON				485	9550		1972/0				006	60 60	61	1	1 :0	DO			0020 Brwn Clay Sand Stns 0015 Brwn FSND 0060 Brwn MSND 0063 Brwn FSND 0075
31 32	CON			49-	1 485 590	9628 747		1967/1 1973/1					27 18 40 40		6 0	3 :0 1 :0	ST 1 DO	DO		LOAM 0002 BRWN CLAY BLDR 0027 CSND STNS 0030
33	CON	01	023	04228 49- 0422		698	1108	1973/1	2 4919	3 0	UK	004	46 46	60	0	1 :0	DO			BRWN LOAM 0001 BRWN SAND CLAY 0053 BRWN LOAM 0001 BRWN CLAY SAND 0046 BRWN SAND
34	CON	01	023		5 485		1132	1995/0	3 6782	2 30	FR	009	90 42	2 57	4	1 :30	DO DO	0088	07	CLAY 0060 BRWN SAND 0064 PRDG 0045 GREY SILT 0057 GREY CLAY SOFT 0069 GREY CLAY FGVL PCKD 0086 GREY CLAY 0090 BRWN CLAY FGVL 0094 BRWN MSND 0098
35	CON	01	023	49- 05970			1025 :		2801	12			FLV	∛ 60	400	8:0	PS	0110 1	0	FILL SAND GRVL 0004 BLCK LOAM 0005 CLAY SILT SAND 0022 SILT GRVL BLDR 0029 CLAY SILT SOFT 0054 SAND GRVL CLAY 0059 CLAY GRVL 0071 CLAY 0080 BLDR CLAY PCKD 0091 SILT CLAY 0105 SILT CLAY SAND 0110 GRVL SAND BLDR 0119 CLAY GRVL 0130 GRVL SAND CLAY 0131 LMSN 0133
36	CON	01	023	49- 05954			1025	1982/08	3561							:	NU			GRVL 0002 WDFR LOAM LOOS 0010 BRWN CLAY LOOS 0017 BRWN CLAY SAND 0020 BLUE CLAY QSND 0032 BLUE CLAY SAND SOFT 0103 BLUE CLAY HARD 0105 GRVL 0105
37	CON	01	023	49- 08018			1132	1995/07	6782	08	FR	008	8 52	73	5	2 :20	DO	0089 ()3	BRWN LOAM 0002 BRWN CLAY SAND 0024 BRWN CLAY SAND GRVL 0065 GREY SAND CLAY 0088 RED MSND 0092
30	СОИ	02	021	49- 03204			975 1	969/05	3637	30	FR	0028	3 26			:	DO			LOAM 0001 BRWN MSND CLAY 0044

 \hat{a}

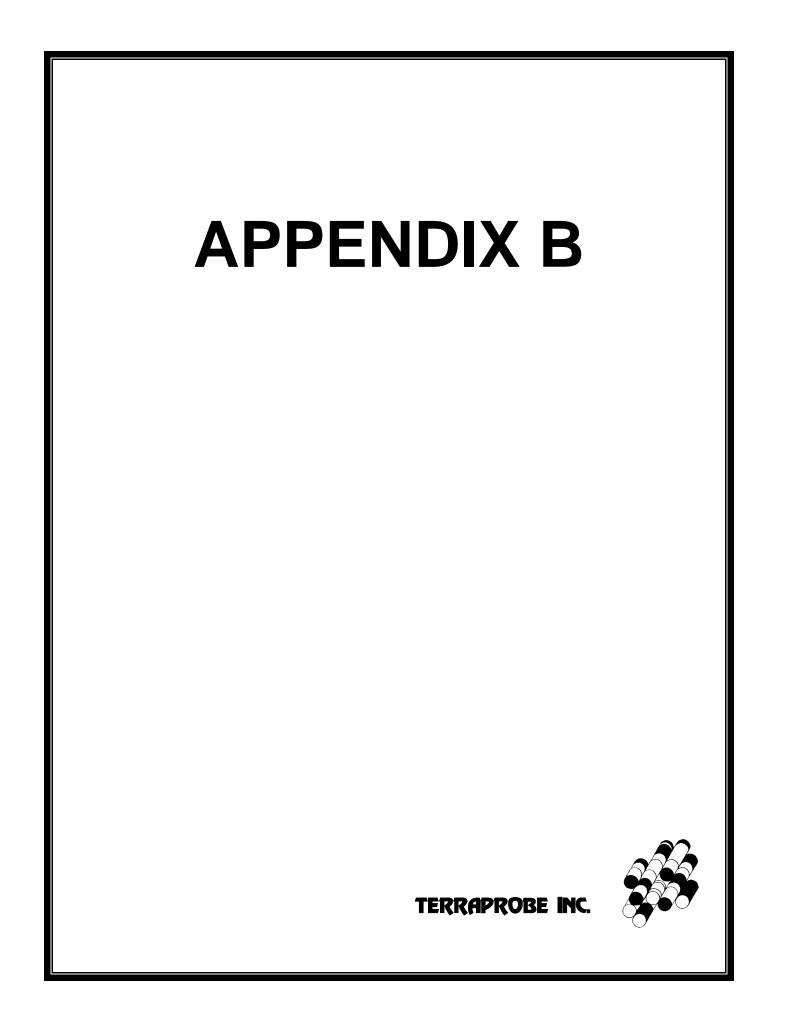
GROUND WATER BULLETIN REPORT

1

1

÷

1


:

																			GROUND WATER BULLETIN REPORT
WELL NUMBER	CONCE	ESSI0 IC			WELL EA No no			DATE	DRILI	1	AIC	OF	FOUND	LVL	1 11	RATE	TEST TIME HR/MN	WATER USE	OWNER/LOG/SCREEN R DEPTHS IN FEET TO WHICH Formations extend
39	CON	02	022		591350) 485952		1968/1	.0 3612	2 36	FR	00	62 68	1 77	2	1 :0	DO			LOAM 0002 BRWN CLAY MSND 0047 MSND STNS 0061
40	CON	02	022		591340 3 485960		1968/0	8 4813	8 06	FR	01	58 50) 155	3	6 :0	DO			CSND 0065 MSND CLAY 0076 MSND STNS 0079 BRWN CLAY MSND 0050 BLUE CLAY 0114 MSND SILT
41	CON	02	023	49- 0550	591150 8 485970		1979/0	08 361	2 30	UK	00	4,2 4(55	4	3 :0	DO			0124 SHLE 0160 BLCK LOAM 0002 BRWN CLAY 0018 BRWN CLAY SAND STNS 0029 BRWN SAND 0031 BRWN CLAY 0035 BRWN
42	CON	02	023		59110(2 48597)		1979/0	05 432	0 30	FR	00	64 6	4 64	3	:	DO			CLAY SAND STNS 0050 BRWN CLAY 0058 Brwn MSND 0010 Brwn Silt Clay 0054 Brwn MSND
43	CON	02	023	49- 0443	59121: 5 48596	1 1100 60) 1974/(08 432	1 07	FR	00	68 2	1 71	2	4 :0	DO	0069	03	0075 BRWN SAND 0009 BLDR 0014 BRWN SAND 0068 BRWN SAND 0075
44	CON	02	023		591218 485965 590805	3	1974/0 1958/1					58 40 95 2		4 13	8 :0 4 :0	DÖ NU	0068 (03	BRWN SAND 0068 BRWN SAND 0073
45					485780		1000/1							10	4 .0				BLCK LOAM 0001 BRWN CLAY FSND STNS 0018 GREY FSND 0035 GREY FSND CLAY 0041 QSND 0066 GREY CLAY 0078 HPAN SHLE 0081 SHLE MSND 0126
46					591225 485770		1972/0	8 3002	20	FR	007	71 33	44	225	20:0	MN	0079 2	20	BRWN CLAY SILT SAND 0021 GREY CLAY SILT 0035 CLAY SILT 0042 HPAN 0044 SAND CLAY 0068 HPAN 0071 FSND 0075 FSND 0103
47				00677	590557 485745 590952	4	1967/0			FR FR		12 12 50 39	17	3	:	DO CO			LOAM 0001 CSND 0012 GRVL MSND 0020
•					485751					•••									LOAM MSND 0003 CLAY 0006 CLAY MSND 0030 BLUE CLAY 0043 GRVL CLAY MSND 0046 FSND 0055 FSND CLAY 0062 CLAY FSND 0069 HPAN CLAY 0096 MSND CLAY 0103 CLAY HPAN 0107 SHLE 0109
49					5910 66~ 4857707		1954/09	3512	04	FR	0152	2 72	121	2	1 :0	DO .			 Yllw Clay 0006 Yllw MSND 0023 Blue Clay 0080 QSND 0121 Blue Clay 0152 FSND 0160
50				00678	590501 4857519		1967/05			FR	000	99	17	2	:	DO			LOAM 0001 CSND 0009 MSND 0018 QSND 0020
51		06	006		589719 4859062		1988/04	3903	06						:	MN			BRWN CLAY SAND LYRD 0016 BRWN CLAY STNS HARD 0024 GREY CLAY STNS HARD 0068 BRWN CLAY DNSE 0086 GREY CLAY DNSE 0145 BRWN CLAY SAND CMTD 0160 GREY CLAY SAND STNS 0170 RED CLAY SAND STNS 0175 RED CLAY LYRD 0195 RED CLAY ROCK LYRD 0240 GREY SHLE FCRD DNSE 0252
52	HS E	06		08767	590911 4857874	l	2001/04								:				
	HS E			00679	590190 4857572 590500						0028		60	25 6	: 3:0	ST DO) 00083 0:	3	BRWN LOAM 0015 GRVL 0035
54	HS E	06	005		4858250		1 9007 03		00					-					SAND CLAY SLTY 028 CLAY BLDR 0032 RED CLAY 0040 GREY CLAY STNS 0083 SAND STNS 0086

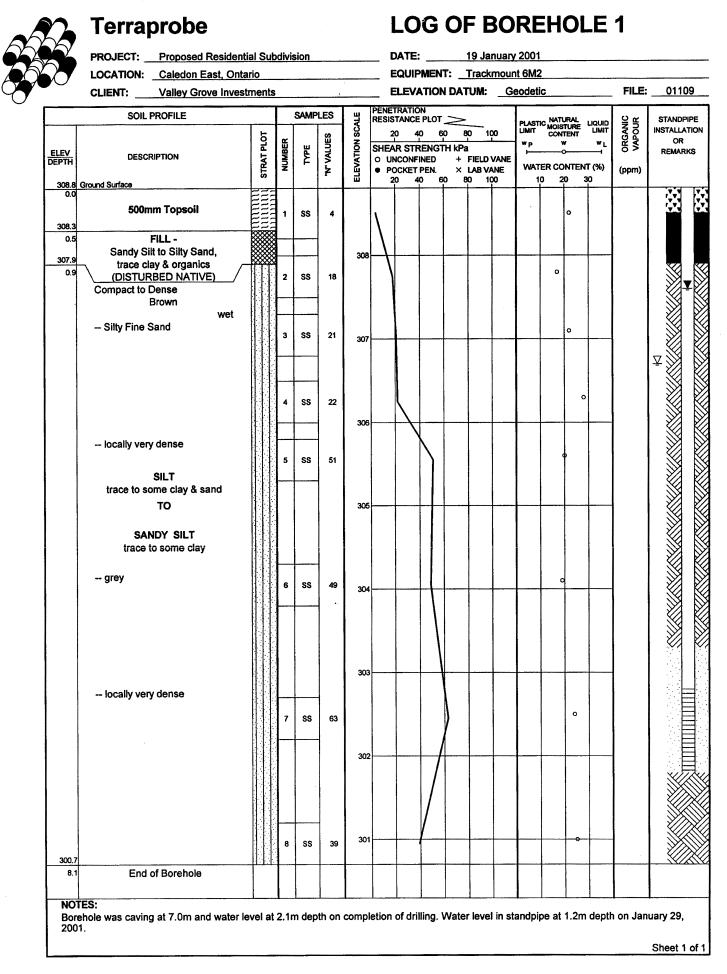
1

ITER BULLETIN REPORT

WELL NUMBER	· CONCE	ESSI IC	DN	LOT		UTM EASTING NORTHIN			DRIL		CSG KI DIA (INS W/	DF	WATER FOUND FEET	LVL	LVL	RATE	TIME	WATER USE	D	EPTHS	/SCRE O WHI TEND			
\$5	HS E	06	006	49- 06953	5895 4858		1988/0	7 3903	06	FR	0186	5 24	150	50	0:8	MN	0183 1	-	BRWN S	ND CP	1 BRWN	CLAY	DNSE	0065
56	nd e																	•	GREY CI GREY CI BRWN SJ	AY SD AY SP ND GR	0 GREY 2 GREY 6 RED	CLAY CLAY	DNSE DNSE	0105
	NO E	06	008	49- 07104	5905 4858		1989/0	13 49.9	30	UK	0022	2 18	34	10	1 :0	DO			0205 H			HARD	0000	
57	CON	01	019	49- 0003	5916 1 4857		5 1961/	05 1308	3 30	FR	006	2 62	2	7	:	ST			SAND LO	005 OC				
58	CON	01	019	49- 0333	5916 9 4857	520 100 7420	0 1969/	11 3310	6 05	FR	017	875	5 86	12	2 :0	ST	DO0179	15	BRWN M 0075	SND 0,	AY MSNI	0073	BRWN	MSND
5 9	HS E	06	002	49-		75~ 1005	5 1956/1	12 1307	36	FR	005	4 54		1	:	DO			CLAY 0 0196	010 M4	0 GREY	CLAY	0178	MSND
68	HS E	06	002	49- 05179	5916 9 4857		1977/0	06 3612	2 30	UK	004	949	63	2	1 :30	DO			BRWN L 0063					
61	HS E	06	002	49- 00673	5912 2 4857	35~ 1003	3 1957/1	.1 1307	36	FR	003	7 37		3	:	DO			BRWN L 0049 B	NAM 043 RWN SJ	Y SAND	0041	GREY	SAND
62	HS E	06	007	49-		59 1129	1988/0	4 3903	06	FR	0160	•			:	MN N	U		BRWN LO					
																			BRWN CL 0024 GR 0086 BR STNS 01	EY CLI WN CLI 60 GRI	0068 0145	BRWN BRWN	CLAY CLAY	DNSE SAND
63	HS E	06	007	49- 04754		17 1140 134	1975/0	9 3612	30	UK	0020	18	38	3	1 :0	DO			SAND SI SHLE CI	NS OLY AY LYN	(STNS (SHLE	SILT DNSE	0195 0252	GREY
64	HS E	06	007		58940 48593		1980/1	1 4919	30	UK	0048	48	64		0 :30	DO			BLCK LC GREY SA	ND 00				
65	HS E		6			588909 859849	1230 (08/64	4813	3	7 FI	ર	64	35	40	10	3/00	со	BRWN LC BRWN SA SANSON	ND PQ1 EC	I CLAY	HARD	0067	0048 0075

ABBREVIATIONS, TERMINOLOGY, GENERAL INFORMATION

BOREHOLE LOGS


SAMPLING METHOD	PENETRATION RESIST	ANCE		
SS split spoon ST Shelby tube AS auger sample WS wash sample RC rock core WH weight of hammer PH pressure, hydraulic	Standard Penetration Tenumber of blows by a har distance of 0.76 m (30 in. diameter split spoon sam Dynamic Cone Test (DC hammer weighing 63.6 kg required to advance a con sides on 'A' size drill rods	nmer weighing 6) required to adv pler for a distanc T) resistance is 6 g (140 lb.) falling nical steel point 6	33.6 kg (140 lb.) falling /ance a standard 50 m æ of 0.3 m (12 in.). defined as the number freely for a distance o of 50 mm (2 in.) diame	freely for a m (2 in.) of blows by a f 0.76 m (30 in.)
SOIL DESCRIPTION - COH	ESIONLESS SOILS	SOIL DESCRI	PTION - COHESIVE	SOILS
Relative Density	'N' value	Consistency	Undrained Shear Strength, kPa	'N' value
very loose loose compact dense very dense	< 4 4 - 10 10 - 30 30 - 50 > 50	very soft soft firm stiff very stiff hard	< 12 12 - 25 25 - 50 50 - 100 100 - 200 > 200	< 2 2 - 4 4 - 8 8 - 16 16 - 32 > 32
SOIL COMPOSITION		TESTS, SYME	OLS	
'trace' (e.g. trace silt) 'some' (e.g. some gravel) adjective (e.g. sandy) 'and' (e.g. sand and gravel)	% by weight < 10 10 - 20 20 - 35 35 - 50			neter analysis

GENERAL INFORMATION, LIMITATIONS

The conclusions and recommendations provided in this report are based on the factual information obtained from the boreholes and/or test pits. Subsurface conditions between the test holes may vary.

The engineering interpretation and report recommendations are given only for the specific project detailed within, and only for the original client. Any third party decision, reliance, or use of this report is the sole and exclusive responsibility of such third party. The number and siting of boreholes and/or test pits may not be sufficient to determine all factors required for different purposes.

It is recommended Terraprobe be retained to review the project final design and to provide construction inspection and testing.

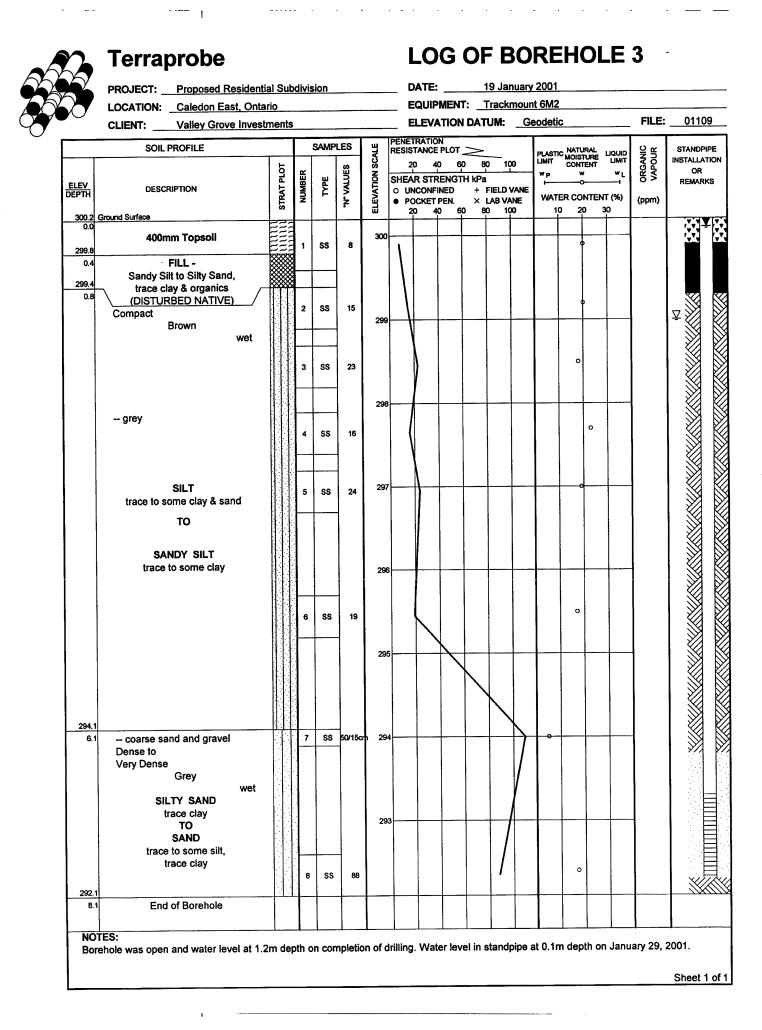
I

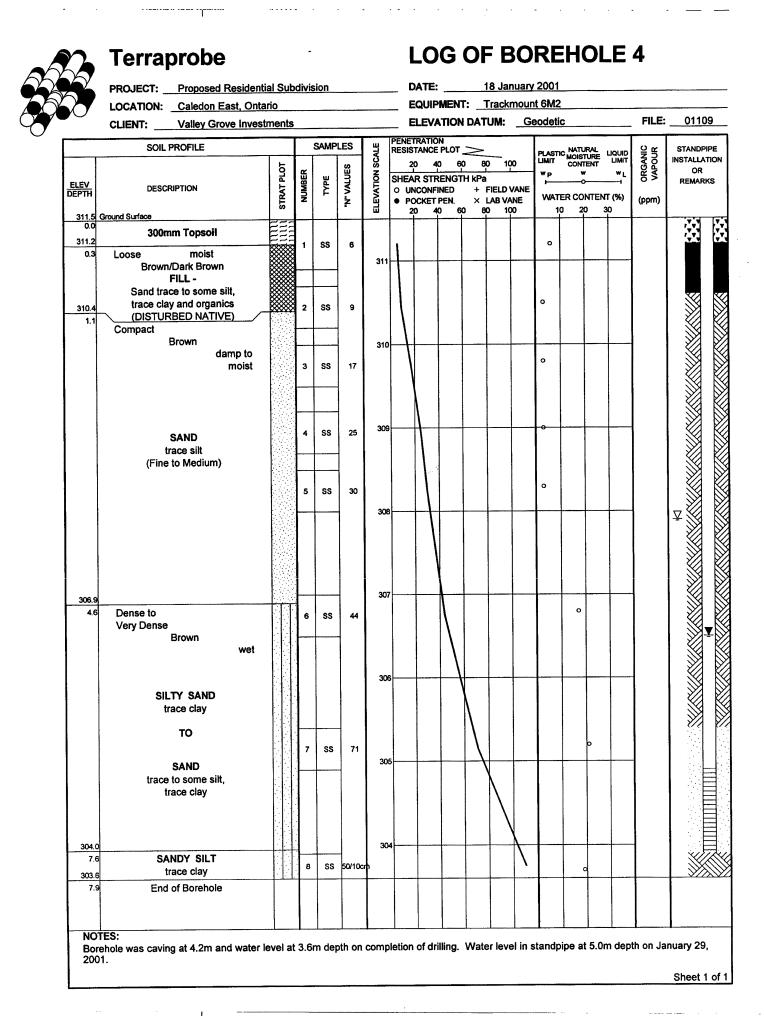
$\mathbf{\mathcal{T}}$	LOCATION:	Proposed Residenti Caledon East, Onta	rio						EQUI		IT: _	Track	mour	nt 6M2	2				
_	CLIENT:	Valley Grove Invest	ments	5							N DA'	TUM:	_ <u>G</u>	eodeti	ic			FILE:	01^
	SOIL	PROFILE	.		SAMP	LES	ÄLE	RESI		E PLOT		the second se		PLAST		URAL.	LIQUID LIMIT	UR NIC	STAN
<u>elev</u> Depth	DESC	RIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHE OL	AR ST	40 RENG FINED T PEN.	TH KP: + ×	FIELD LAB V	VANE	WAT	ER CO		₩L	d ORGANIC 3 VAPOUR	INSTALI O REMA
<u>305.8</u> 0.0	Ground Surface		EE						20	40 (1	80 1	00	'	0 2				77.7
305.4	400n	nm Topsoil		1	ss	2		k									0		ľ¥.
0.4	Sandy S	FILL - ilt to Silty Sand, ay & organics		_		•	30!	\prod											
<u>304.9</u> 0.9	(DISTUF Compact to Dense	RBED NATIVE)		2	SS	12										0			
		Brown wet		3	SS	21	304									0			
	grey			4	SS	14	30									0			
		SILT		5	SS	25										0			
	trace to s	ome clay & sand					30	,											
		NDY SILT to some clay																	¥
				6	ss	42	30	ı 								0			
299.7							30	.											
6.1	Compact	Grey wet		7	ss	30										0			
		TY SAND race clay					29	9											
		TO SAND to some silt,																	
297.7		race clay		8	ss	22	29	8								•			×
8.1	End	of Borehole																	

---- 1

r

---- .


-


.

-

-

\mathcal{O}	LOCATION: <u>Caledon East, (</u> CLIENT: <u>Valley Grove In</u>										UM:		nt 6M2 eodeti					
	SOIL PROFILE			SAMP	PLES	Ш	PENE	TRATIC	N PLOT	\geq			PLAST		URAL	LIQUID	일 K	5
<u>elev</u> Depth	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	2 SHEA ○ UI ● P	NR STF	0 6 ENGT NED PEN.	08 TH kPa + ×	FIELD V LAB VA	/ANE NE	WAT	CON TER CO	ITENT W O ONTEN	UMIT WL T (%)	G ORGANIC J VAPOUR	IN
<u>307.1</u> 0.0	Ground Surface 500mm Topsoil		1	SS	5	307		20 4	06					0 : 0	20 3	30		
306.6 0.5	Loose to Compact Brown to Dark Brown moist to very mois	- 111 - 111 - 111			-													
	FILL - Sand trace to some silt, trace clay and organics		2	ss	11	306	$\left \right $						0					
305.6 1.5	(DISTURBED NATIVE) Compact Brown moist t	XXXX 0	3	ss	21								•					
	SAND trace silt (Medium to Coarse)	- P. C. S.	4	SS	13	305									o			
304.1 3.0	Compact to Dense Brown	et e	5	SS	24	304									0			₽
						303												
	locally very dense		6	SS	53				$\left \right\rangle$						0			
	SILT trace to some clay & sand					302	2		/									
	TO SANDY SILT				-	30												
	trace to some clay		7	SS	21										0			
						30)											
299.0	silty fine sand, wet		8	SS	37										o			
8.1	End of Borehole					29	1											

- -

1

L

· -

\mathcal{O}	LOCATION: <u>Caledon East, On</u> CLIENT: <u>Valley Grove Inves</u>												nt 6M2 eodet				FILE:	
		sumenta	r	SAMP		111	PENE	TRATIC	N				1					
<u>ELEV</u> DEPTH	SOIL PROFILE	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHEA OU ● P	NR STR	RENGT	08 TH kPa + ×	0 10 FIELD	VANE	WP 	ER CO	ITENT W O ONTEN	LIQUID LIMIT T (%)	(add) ORGANIC VAPOUR	S INS
302.4	Ground Surface 300mm Topsoil	EE																
302.1 0.3	Loose moist Brown/Dark Brown FILL -		1	SS	4	302	$\left \right $							• 				
301.5 0.9	Sand trace to some silt, trace clay and organics (DISTURBED NATIVE) Compact to		2	SS	15								0					
	Very Dense Brown moist SAND trace silt		3	SS	42	301							0					
	(Fine to Medium)		4	SS	65	300				>				0				
<u>299.4</u> 3.0	Compact to Dense Brown wet		5	SS	34	299									0		-	Ţ
	SILTY SAND trace clay					298												
*	то		6	SS	32	- 20	,								0			
2	SAND trace to some silt, trace clay					29												
			7	SS	29	29	5								0		-	
						29	5											
294.3			8	ss	24										0			
8.1	End of Borehole																	

. . . _ . .

. . .

-

-- ----

-

SOIL PROFILE SAMPLES H PENETRATION RESISTANCE PLOT PLASTIC MATURAL LIMIT INCONTREL INCURPT SAMPLES NATURAL SUBJECT INCONTREL	J	LOCATION: <u>Caledon East, Ontario</u> CLIENT: <u>Valley Grove Investme</u>								PMEN" ATION								FILE:	(
282.2 (Gourd Surface 286.2 (Gourd Surface 286.3 (150mm Topsoli 286.3 (150mm Topsoli 286.4 (150mm Topsoli 1 SS 6 287 287 287 287 287 287 287 287					SAMF	PLES	щ				>			DI AOT	NATI	JRAL ,		ດ ເ	ST
282.2 (Ground Surface 286.2 (Ground Surface 0.2 286.2 (Caurd Surface 0.2 Loose wet Brown/Dark Brown FILL - Sand trace to some silt, 287.3 (CISTURBED NATIVE) Compact wet Brown SAND trace silt (Fine to Medium) 285.9 2.3 Dense to Very Dense Brown/Grey moist SILTY SAND some gravel and clay (TILL) 280.4 6 SS 50/0cm	<u>:Lev</u> Epth	DESCRIPTION	TRAT PLOT	NUMBER	TYPE	Y" VALUES	EVATION SCA	SHE/ OU	R STI	NENGT	0 80 1HkPa + 1	FIELD V	ANE	₩р 	••••••	v >	'L		INST RE
0.2 Loose wet 1 SS 6 Brown/Dark Brown FILL - Sand trace to some silt, trace clay and organics 0	298.2		S			f	E							1	0 2	0 3	0		
0.2 Loose wet 1 SS 6 Brown/Dark Brown FILL - Sand trace to some silt, trace clay and organics 0	0.0 298.0	150mm Topsoil	Ē				29												
287.3 trace clay and organics 2 SS 23 0.5 (DISTURBED NATIVE) 2 SS 23 20 SAND 3 SS 17 1 1 3 SS 17 205.9 Compact wet 2 SS 23 Dense to 4 SS 50/8cm Very Dense Brown/Grey moist 5 SILTY SAND 5 SS 43 284 (TILL) 6 SS	0.2	Brown/Dark Brown FILL -		1	SS	6		$\left \right\rangle$								0			¥
0.5 CISTURBED NATIVE) Compact wet Brown 2 SS 23 23.9 SAND trace silt (Fine to Medium) 3 SS 17 295.9 Dense to Very Dense Brown/Grey moist 4 SS 50/8cm 2.3 Dense to Very Dense Brown/Grey (TILL) 4 SS 50/8cm 6 SS 50/10cm 0	297.3					4		\											
SAND trace silt (Fine to Medium) 3 SS 17 295.9 2.3 Dense to Very Dense Brown/Grey moist 4 SS 5 SS 43 295 295 2.3 Dense to Very Dense Brown/Grey moist 5 SILTY SAND some gravel and clay 5 (TILL) 6 6 SS	0.9	(DISTURBED NATIVE) Compact wet		2	ss	23	29	,	}						0				
itrace silt i i i (Fine to Medium) i i 23 Dense to Very Dense Brown/Grey i i SiLTY SAND some gravel and clay i i (TILL) i i 6 SS 50/100m		BIOWI				-													
295.9 2.3 Dense to Very Dense Brown/Grey moist SILTY SAND some gravel and clay (TILL) 295 295 0 0 0 0 0 0 0 0 0 0 0 0 0		1.		3	SS	17									c				
23. Dense to Very Dense Brown/Grey moist SILTY SAND some gravel and clay (TILL) 293.4		(Fine to Medium)				1	29	6		\geq									
Very Dense Brown/Grey moist SILTY SAND some gravel and clay (TILL) 293.4			Π	4	SS	- 50/8cm							>		0				
moist SILTY SAND some gravel and clay (TILL) 293.4 295 6 SS 50/10cn control of the second sec						-													
SILTY SAND some gravel and clay (TILL) 293.4						1													
SILTY SAND some gravel and clay (TILL) 293.4							29	5		/	ſ			ļ					
(TILL) 293.4		SILTY SAND		5	SS	43				$\left \right\rangle$									
293.4 294 o o o o o o o o o o o o o o o o o o o				┝		-													
293.4 294 o o o o o o o o o o o o o o o o o o o											$\left \right\rangle$								
293.4 o		(TILL)																	
293.4							29	4				\square							
293.4				\vdash	00	-	1												
4.8 End of Borehole				Ľ	50		1							•					
	4.8	End of Borehole																	
														1				1	
																		1	

• • • • •

-

T

----- ·

.

-

-

\mathcal{O}	LOCATION: <u>Caledon East, On</u> CLIENT: <u>Valley Grove Inves</u>							EQUIP ELEVA									FILE:	
	SOIL PROFILE			SAMF	PLES	Å E	PENE	TANCE	N PLOT	\geq			PLAST		URAL		등 氏	ST
<u>elev</u> Depth	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHEA OUI ● PC	D 40 IR STR NCONFI DCKET	ENGT NED PEN.	H kPa + ×	FIELD \ LAB VA	/ANE	WAT		ITENT W O ONTEN		G ORGANIC 3 VAPOUR	INS' R
309.0 0.0 308.6	Ground Surface 350mm Topsoil		1	SS	4			0 40	0 6	08	0 10	0		0 2	20 3	80		
0.4	Loose moist Brown/Dark Brown FILL -				-													
307.5	Sand trace to some silt, trace clay and organics (DISTURBED NATIVE)		2	SS	4	308												
1.5	Compact to Dense Brown		3	SS	15	307							•					
	moist		4	ss	26									¢				
	SILT trace to some clay & sand					30	j	$\left \right\rangle$										
	то		5	SS	40									o				
	SANDY SILT trace to some clay					30	5											
	grey, locally very dense		6	SS	89									0				
<u>304.0</u> 5.0	End of Borehole	<u> </u>	<u>.</u>				•											

····T---

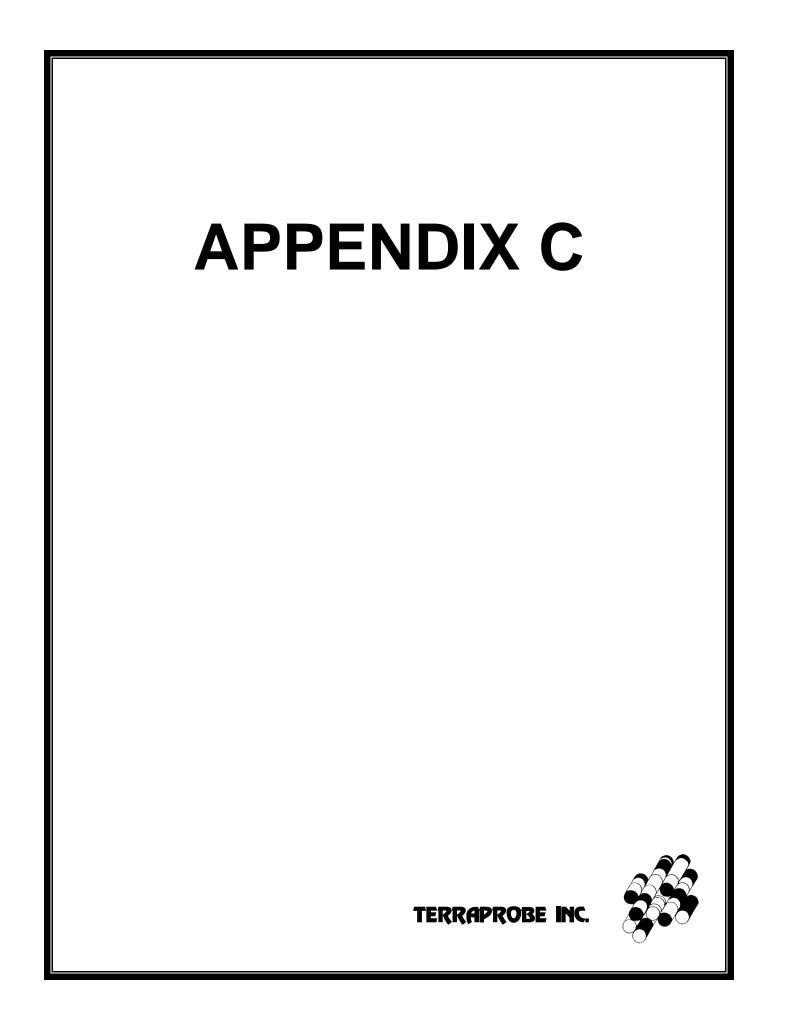
......

5	PROJECT: Proposed Resider LOCATION: Caledon East, On							DATE: Equip										
\mathcal{O}	CLIENT: Valley Grove Inve							ELEVA									FILE:	
	SOIL PROFILE			SAMF	1 ES	ш	PENE	TRATIO	N	_	*****					1		
<u>elev</u> Depth	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHE/ OU • P	AR STR NCONFI	ENGT	08 HkPa + ×	0 10	VANE	WAT	ER CC	URAL STURE TENT W O ONTENT 20 3	₩L i Г(%)	ORGANIC CAPOUR	S" INS F
304.8 0.0	Ground Surface	223						0 4				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	'					
304.4	350mm Topsoil		1	SS	5										¢ .			
0.4	FILL - Sandy Silt to Silty Sand,																	
304.0 0.8	trace clay & organics (DISTURBED NATIVE) Dense Brown very moist	-	2	SS	40	304		\mathbf{n}						0				
303.3	SAND trace silt																	
1.5	(Medium to Coarse) Dense to Very Dense	\square	3	SS	43	303							•					
	Brown/Grey moist																	
			4	SS	73	302							0					
	SILTY SAND		-															
	some gravel and clay		5	SS	78								0					
	(TILL)					301					$\left \right\rangle$							
			6	90	50/13c								0					
<u>300.1</u> 4.7	End of Borehole		ŀ			1						<u>}</u>	<u> </u>		+			┢
NOT																		

I

Ø		Caledon East, Or Valley Grove Inve												t 6M2 eodetic				FILE:	0
	SOIL	PROFILE			SAMF	LES	μĒ	PENE	TANCE	N PLOT	\geq			PL AST	C. NATL	JRAL ,	חוחסה	<u>ମ</u> ଜ	STA
ELEV DEPTH		RIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	SHEA O UI ● PC	0 4 IR STR NCONFI DCKET	ENGT NED PEN.	1HkPa + ×	FIELD \ LAB VA	/ANE NE	PLASTIC LIMIT P H WATE	ER CO	NTEN	₩∟ i 「(%)	G ORGANIC 3 VAPOUR	INSTA REM
306.3 0.0	Ground Surface			╞						Ĩ									
<u> </u>	Compact	nm Topsoil wet		1	SS	10	306				·				0				
	Brown	/Dark Brown FILL -									•								
<u> </u>	_ Sandy Si	ilt to Silty Sand, ay & organics	/ 🎆	-											0				
0.0		RBED NATIVE)	′[]]	2	SS	16													
	Compact	Brown		Ē]	30!	,											
		wet		3	ss	24										o			
						-													
		TY SAND ace clay					30-	·											
		то		4	ss	28										.•			
		SAND		-		4													
		to some silt, ace clay				1			l							0			
		·		5	SS	17	30:	s "	\mathbf{h}										
						1													
					2		30												
301.8						-													
4.6 301.6		SAND TILL of Borehole		6	SS	50/15c	[•						
4.7																			
NOT					1		<u> </u>					I				1]	<u> </u>	L

······


1

.....

. . .

· - ·

-

TABLE 1: DETAILED WATER BALANCE PROPOSED LEXIS-BAYVIEW CALEDON EAST SUBDIVISION, CALEDON, ONTARIO

1. Climate Information

Precipitation	863 mm/a	0.863 m/a
Evapotranspiration	550 mm/a	0.55 m/a
Water Surplus	313 mm/a	0.313 m/a

2. Infiltration Rates

<i>Table 2 Approach - Infiltration Factors</i> Hilly Land Open sandy loam Cover-Cultivated TOTAL	0.1 0.4 0.1 0.6			
Infiltration (0.6 x 313)	188 mi	m/a	0.188 m/a	
Run-off (313-188) <i>Table 3 Approach - Typical Recharge Rates</i> silty sand to sandy silt	125 mi 150 - 200 mi		0.125 m/a	
silt	125 - 150 mi			
clayey silt	100 - 125 mi			
Site development area is underlain by silty sand to sandy silt				
Based on the above, the recharge rate		188 mm/a 125 mm/a		0.188 m/a 0.125 m/a

3. Property Statistics

Pre- development lot coverage

Lot Area	18.85 ha	188,453 m ²
Existing Lot Area	18.85 ha	188,453 m ²
	elopment lot coverage	
A) Southwest Portion (Town Homes) Developable Area	2.061 ha	20.606 m ²
Allowable Impervious Area (50% of Developable area)	2.001 ha	13,030 m ²
a) Proposed Building Area (50% of Developable area)	1.303 na	,
Building Area/ Rooftops Coverage b) Hard surfaces	0.479 ha	4,792 m ²
Private Road/ Parkind Area Paved or Asphalt Surfaced c) Proposed Pervious Driveway area	0.189 ha	1,890 m ²
Total Pervious Driveway area	0.143 ha	1.432 m ²
Assume gravel covered with 70% permeability	0.100 ha	1,002 m ²
Impervious driveway area with 30% impermeability Impervious layers (outside the developable areas)	0.043 ha	430 m ²
d) Paved / Asphalt (Driveways)	0.120 ha	1.196 m ²
Proposed Total Development Area (a+b+c+d)	0.831 ha	8,308 m ²
B) Northeast Portion (Single Residential)		
Developable Area	0.220 ha	2.197 m ²
Allowable Impervious Area (50% of Developable area)	0.110 ha	1,098 m ²
a) Proposed Building Area/Rooftops	0.110 114	1,000 11
Building Area/ Rooftops Coverage/Deck	0.048 ha	478 m ²
b) Proposed Pervious Driveway area		
Total Pervious Driveway area	0.046 ha	459 m ²
Assume gravel covered with 70% permeability	0.032 ha	321 m ²
Impervious driveway area with 30% impermeability	0.014 ha	138 m ²
Impervious layers (outside the developmental areas)		2
c) Paved / Asphalt (Driveways)	0.088 ha	884 m ²
Proposed total Development Area (a+b+c)	0.150 ha	1,500 m ²
C) Total Impervious layers (outside the developmental are		
Southwest Portion- Paved / Asphalt (Driveways)	0.120 ha	1,196 m ²
Northeast- Paved / Asphalt (Driveways)	0.088 ha	884 m ²
Total Impervious layers outside the developmental areas for sit	te 0.208 ha	2,080 m ²
D) Proposed Building Area/Rooftops for the entire site	0.53 ha	5,270 m ²
E) Hard/ Impervious surfaces for the entire site	0.45 ha	4,537
F) Proposed Pervious Driveway area for the entire site	0.13	1,324 m ²

G) Open Space/ Landscape

TABLE 1: DETAILED WATER BALANCE -PROPOSED LEXIS-BAYVIEW CALEDON EAST SUBDIVISION, CALEDON, ONTARIO

 Total Open Space/ Landscape within the development areas

 and the remainder of the site
 17.73
 177,322
 m²

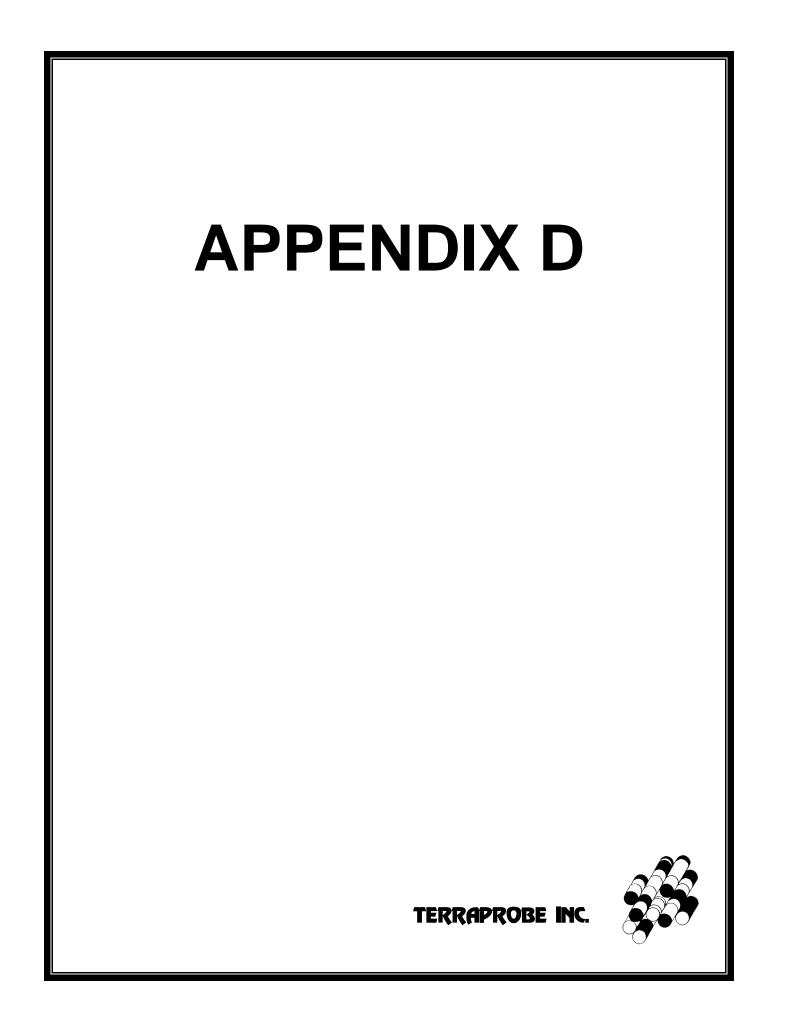
TABLE 1: DETAILED WATER BALANCE -PROPOSED LEXIS-BAYVIEW CALEDON EAST SUBDIVISION, CALEDON, ONTARIO

5. Annual Pre-Development Water Balance

Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Existing Buildings & Hard surfaces	nil	nil	nil	nil	nil
Open Space/Landscape	188,453	162,635	103,649	35,429	23,557
Total	188,453	162,635	103,649	35,429	23,557

6. Annual Post-Development Water Balance

Land Use	Area (m ²)	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Building/Roof tops Coverage (entire site)	5,270	4,548	nil	nil	4,548
Hard surfaces (entire site)	4,537	3,916	nil	nil	3,916
Landscape (entire site)	177,322	153,029	97,527	33,337	22,165
Proposed Pervious Driveway (70% Peameability)	1,324	1,142	728	249	165
TOTAL	188,453	162,635	98,255	33,585	30,794


7. Comparison of Pre-Development and Post-Development

	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m ³)
Pre-Development	162,635	103,649	35,429	23,557
Post-Development	162,635	98,255	33,585	30,794

8. Requirement for Infiltration of Roof Runoff

Volume of post-development infiltration	33,585	m³
Volume of pre-development Infiltration	35,429	m³
Deficit from pre to post-development infiltration	1,844	m ³
Percentage of total roof runoff required to match pre-development infiltration	41	%

Note: Totals may vary slightly due to rounding of values during calculation.

May 29, 2013

File No. 13-13-3081-6 Brampton Office

Dear Resident/ Property Owner:

RE: PRIVATE WELL INVENTORY PROPOSED LEXIS- BAYVIEW, CALEDON EAST SUBDIVISION, CALEDON, ONTARIO

Terraprobe Inc. was retained by 2031818 Ontario Limited c/o Lexis Bayview Developments, to undertake a private well inventory for properties within the vicinity of their property identified as Proposed Lexis-Bayview, Caledon East Subdivision. The proposed development is located on the east side of Airport Road approximately 600 m north of Old Church Road in the community of Caledon East, Ontario. The well inventory is being conducted to identify private wells within the vicinity of the proposed development.

The purpose of our visit is to conduct interviews with local residents and land owners in regards to water supply wells in operation surrounding the development project. The information we hope to obtain will include:

- 1. The Location of the well(s) and septic bed (if known)
- 2. The depth, diameter and construction details of the well(s);
- 3. The pump type and depth, and any water treatment systems in use;
- 4. Information regarding the past performance of the well(s);

A copy of the completed questionnaire will be provided upon request. We anticipate that these questions can be answered in a few minutes. If there is access to your well, and with your permission, our representatives will measure the depth and level of water in your well.

Although you were not at home today when we visited, our staff will be working in the area for the next several weeks. If you would like to participate in the survey, and there is a particular time that suits your schedules, please contact Samuel Oyedokun of Terraprobe at (905) 796-2650, any question you may have regarding the survey can also be answered at that time. When calling please reverse the long distance charges and indicate to the receptionist that you are calling in regards to the "Proposed Lexis-Bayview"

Terraprobe Inc.							
Greater Toronto	Hamilton – Niagara	Central Ontario	Northern Ontario				
11 Indell Lane	903 Barton Street, Unit 22	220 Bayview Drive, Unit 25	1012 Kelly Lake Rd., Unit 1				
Brampton, Ontario L6T 3Y3	Stoney Creek, Ontario L8E	Barrie, Ontario L4N 4Y8	Sudbury, Ontario P3E 5P4				
(905) 796-2650 Fax: 796-2250	(905) 643-7560 Fax: 643-7559	(705) 739-8355 Fax: 739-8369	(705) 670-0460 Fax: 670-0558				
www.terraprobe.ca							

Caledon East, Subdivision, Well Survey". Our receptionist is available during regular working hours of 8:30 am to 5 pm. The questionnaire may also be completed over the telephone, or the attached questions can be answered and forwarded via email to <u>soyedokun@terraprobe.ca</u>.

We understand that your participation in this survey is voluntary; however your co-operation is greatly appreciated. Thank you for your consideration of our private well inventory.

Yours truly, **Terraprobe Inc.**

Samuel Oyedokun, B.Eng., PMP®

Brampton Office

May 29, 2013

File No. 13-13-3081-6 Brampton Office

Dear Resident/Property Owner:

RE: PRIVATE WELL INVENTORY PROPOSED LEXIS-BAYVIEW CALEDON EAST SUBDIVISION, CALEDON, ONTARIO

If you have received the attached letter regarding the above mentioned water well inventory, it's because you were unavailable at the time of door-to-door canvassing and if you would like to participate in the well survey we ask that you please contact Samuel Oyedokun of Terraprobe at (905) 796-2650 or by email at <u>soyedokun@terraprobe.ca</u>.

If replying to the well survey by telephone or email, the following information pertaining to the well is requested, if known:

- Type of well (i.e. drilled, dug, bored)
- Casing material (i.e. Metal, concrete, stone, etc.)
- Pump type & depth (i.e. Submersible [Pump in well]/Jet Pump [Pump in house])
- Water treatment systems in use (i.e. Water Softener, Reverse Osmosis, UV light)
- Date well was constructed
- Depth of well
- Use of the well (i.e. Residential/Agriculture/Livestock/Commercial etc.)
- Number of residents/people well supplies water
- Past water quality problems with well (i.e. High bacteria levels, high iron, etc.)
- Past water quantity problems with well (i.e. Does/has well run dry in past, why?)
- Is well water consumed, or is water purchased for consumption (i.e. bottled water)
- Any past operating problems with well detailing the nature of the problem and when it occurred.

Your response and participation in our water well monitoring program is appreciated. Thank you for your consideration in this matter.

Terraprobe Inc.

Greater Toronto:

11 Indell Lane Brampton, ON L6T 3Y3 Tel: (905) 796-2650 Fax: (905) 796-2250 brampton@terraprobe.ca Hamilton-Niagara: 903 Barton Street, #22 Stoney Creek, ON L8E 5P5 Tel: (905) 643-7560 Fax: (905) 643-7559 stoneycreek@terraprobe.ca

Central Ontario: 220 Bayview Drive, #25 P5 Barrie, ON L4N 4Y8 Tel: (705) 739-8355 Fax: (705) 739-8369 barrie@terraprobe.ca www.terraprobe.ca Northern Ontario

1012 Kelly Lake Rd., #1 Sudbury, ON P3E 5P4 Tel: (705) 670-0460 Fax: (705) 670-0558 sudbury@terraprobe.ca