

June 26, 2025

Mr. Mark Cancian

Bolton Shore Holdings Ltd. P.O. Box 174 Station Main Bolton, ON L7E ST2

Re: **Proposed Residential Redevelopment**

> 15, 21 and 27 Shore Street, Town of Caledon (Bolton), Peel Region Transportation Addendum Letter and REVISED Transportation Study Town File No.: POPA 2024-0007 & RZ 2024-0024

On behalf of Bolton Shore Holdings Ltd., CGE Transportation Consulting acknowledges receipt of the Town's comments on the initial Transportation Study. We are pleased to submit this revised second edition, which reflects the feedback received and incorporates the updated site plan dated May 22, 2025.

The updated site plan continues to propose a four-storey residential apartment building consisting of 19 dwelling units, supported by 27 vehicular parking spaces and 14 bicycle parking spaces. The development also retains two full-movement access driveways in a looped configuration connecting to Shore Street.

The study demonstrates that the development will have minimal impact on the surrounding road network, and the access driveways are projected to operate with excellent Levels of Service (LOS). The proposed parking supply is sufficient to meet the parking demand.

Should you have any questions regarding this study, please do not he sitate to contact the undersigned.

Yours truly,

CGE TRANSPORTATION CONSULTING

Casey Ge, P.Eng.

President

TOWN OF CALEDON **PLANNING** RECEIVED

September 4th, 2025

TABLE OF CONTENTS

		Page
1.0	Introduction	5
2.0	Existing Area	8
	2.1 Existing Roadway Conditions	8
	2.2 Existing Intersection Geometry	8
	2.3 Multi-Modal Transport	10
	2.4 Traffic Volumes	11
3.0	METHODOLOGY	13
	3.1 Base Assumptions	13
	3.2 Background Developments	13
	3.3 Background Growth	13
	3.4 Site Trip Generation	13
	3.5 Trip Distribution	14
4.0	TURN LANE/ACCCESS MANAGEMENT	19
	4.1 Right-Turn Lanes	19
	4.2 Left-Turn Lanes	19
	4.3 Sight Distance Evaluation	19
5.0	CAPACITY ANALYSIS	21
	5.1 Queen Street South (Highway 50) & Ellwood Drive	22
	5.2 Queen Street South (Highway 50) & Shore Street	24
	5.3 Shore Street & East Access	25
	5.4 Shore Street & West Access	27
6.0	PARKING REQUIREMENTS	29
	6.1 Site Circulation Analysis	30
	6.2 On-site Transportation Demand Management (TDM)	30
7.0	Summary and Conclusions	31

LIST OF TABLES

	Pa	
Table 1	Estimated Traffic Generation	
Table 2	Right-Turn Lane Analysis	19
Table 3	Left-Turn Lane Analysis	
Table 4	Highway Capacity Manual Levels of Service and Control Delay	21
Table 5	Intersection LOS, Delay, and Queue by Movement - 2024 Existing	22
Table 6	Intersection LOS, Delay, and Queue by Movement - 2029 Future Background	22
Table 7	Intersection LOS, Delay, and Queue by Movement – 2029 Full Build	23
Table 8	Intersection LOS, Delay, and Queue by Movement – 2034 Future Year	
Table 9	Intersection LOS, Delay, and Queue by Movement - 2024 Existing	
Table 10	Intersection LOS, Delay, and Queue by Movement - 2029 Future Background	
Table 11	Intersection LOS, Delay, and Queue by Movement – 2029 Full Build	
Table 12	Intersection LOS, Delay, and Queue by Movement – 2034 Future Year	
Table 13	Intersection LOS, Delay, and Queue by Movement - 2024 Existing	
Table 14	Intersection LOS, Delay, and Queue by Movement – 2029 Future Background	
Table 15	Intersection LOS, Delay, and Queue by Movement – 2029 Full Build	
Table 16	Intersection LOS, Delay, and Queue by Movement – 2034 Future Year	
Table 17	Intersection LOS, Delay, and Queue by Movement - 2024 Existing	
Table 18	Intersection LOS, Delay, and Queue by Movement – 2029 Future Background	
Table 19	Intersection LOS, Delay, and Queue by Movement – 2029 Full Build	
Table 20	Intersection LOS, Delay, and Queue by Movement – 2034 Future Year	
Table 20	ITE Parking Generation 5th Edition	
Table ZZ	The Farking Generation Still Edition	23
	LIST OF FIGURES	
	LIST OF FIGURES	a o
Figure 4	Pa	_
Figure 1	Site Location	. 6
Figure 2	Site Location	. 6 . 7
Figure 2 Figure 3	Site Location Proposed Site Plan Existing Road Network	. 6 . 7 . 9
Figure 2 Figure 3 Figure 4	Site Location	. 6 . 7 . 9
Figure 2 Figure 3 Figure 4 Figure 5	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes	. 6 . 7 . 9 10
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips	. 6 . 7 . 9 10 12 15
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes Future Year 2034 Volumes	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes Future Year 2034 Volumes Table of Appendices	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes Future Year 2034 Volumes Table of Appendices Terms of Reference and Feedback	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Appendix A: Appendix A:	Site Location. Proposed Site Plan. Existing Road Network. Recommended Active Transportation Plan. Existing Traffic Volumes. Project Site Trips. Future Background 2029 Volumes Full Build 2029 Volumes. Future Year 2034 Volumes. TABLE OF APPENDICES Terms of Reference and Feedback Traffic Volumes and Signal Timing Plan	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Appendix A: Appendix A: Appendix C:	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes Future Year 2034 Volumes TABLE OF APPENDICES Terms of Reference and Feedback Traffic Volumes and Signal Timing Plan Background Development Study - Site Trips	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Appendix A: Appendix A: Appendix C: Appendix D:	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes Future Year 2034 Volumes TABLE OF APPENDICES Terms of Reference and Feedback Traffic Volumes and Signal Timing Plan Background Development Study - Site Trips Background Growth Rate Calculations	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Appendix A: Appendix A: Appendix C: Appendix D: Appendix E:	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes Future Year 2034 Volumes TABLE OF APPENDICES Terms of Reference and Feedback Traffic Volumes and Signal Timing Plan Background Development Study - Site Trips Background Growth Rate Calculations Trip Generation Graphs	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Appendix A: Appendix A: Appendix C: Appendix D: Appendix E: Appendix F:	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes Future Year 2034 Volumes TABLE OF APPENDICES Terms of Reference and Feedback Traffic Volumes and Signal Timing Plan Background Development Study - Site Trips Background Growth Rate Calculations Trip Generation Graphs Synchro Analysis Output	. 6 . 7 . 9 10 12 15 16
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Appendix A: Appendix A: Appendix C: Appendix D: Appendix E:	Site Location Proposed Site Plan Existing Road Network Recommended Active Transportation Plan Existing Traffic Volumes Project Site Trips Future Background 2029 Volumes Full Build 2029 Volumes Future Year 2034 Volumes TABLE OF APPENDICES Terms of Reference and Feedback Traffic Volumes and Signal Timing Plan Background Development Study - Site Trips Background Growth Rate Calculations Trip Generation Graphs Synchro Analysis Output Parking Generation Graphs	. 6 . 7 . 9 10 12 15 16

TRANSPORTATION STUDY REVIEW COMMENTS:

<u>Comment 1:</u> Section 3.4: it is noted that the Average Rate is used to determine the trips generated by the proposed site. Per Town comments in the ToR, the report should clearly state that average rates are used and also justify that average rate are most applicable for the proposed use. Town staff also requested information to confirm that the proposal fits the definition of ITE LUC 220 Midrise and that the proposed number of units falls within the parking data point range in the graph. The requested information is not currently included in the report.

Response:

- ITE Land Use Code 220 Multifamily Housing (Mid-Rise) applies to apartment buildings with 3 to 10 storeys featuring elevator access and shared entries. The proposed four-storey development is consistent with this classification.
- The trip generation methodology employed is as follows:
 - AM Peak Hour: The ITE Trip Generation Manual provides both a fitted curve equation (T = 0.44x 11.61) and an average rate of 0.37 trips per dwelling unit for LUC 220. For this study, the average rate was applied for the AM peak hour as it yields a higher trip estimate at the proposed scale, ensuring a more conservative analysis.
 - o **PM Peak Hour**: For the PM peak hour, the fitted curve equation (T = 0.39x + 0.34) and an average rate of 0.39 trips per dwelling unit. The fitted curve rate was used for a more conservative estimate.

<u>Comment 2:</u> Please include Autoturn Analysis for the two parallel parking spaces provided adjacent to the proposed apartment building. Additionally, please include the analysis for the highlighted spaces. Analysis to be done with a standard vehicle (PTAC for passenger vehicles).

Response:

Noted and Updated.

<u>Comment 3:</u> Section 5.1, 5.2: Comments on the traffic analyses for the intersection of Queen Street South at Ellwood Drive and Queen Street South at Shore Street will be deferred to the Region of Peel.

Response:

Acknowledged.

<u>Comment 4:</u> Section 6: It is unclear why Land Use Code 220 was utilized for parking usage estimation and Land Use Code 221 was used for trip generation. Updates are required to ensure consistency and appropriate justification should be provided justifying the use of the Land Use Code.

Response:

Land Use Code 220 – *Multifamily Housing (Low-Rise)* was selected for parking demand estimation in accordance with the ITE Parking Generation Manual, 5th Edition. This code was deemed more appropriate due to the limited availability of parking data under LUC 221, particularly for developments of this scale when stratified by unit count. LUC 220 provides a broader and more statistically robust dataset for estimating parking demand based on the number of units.

Moreover, the application of LUC 220 aligns with direction received from Town Staff, who noted that the proposed unit count should fall within the valid data range represented in the ITE graphs. This approach ensures a conservative and defensible estimate of parking requirements for both weekday and Saturday conditions.

<u>Comment 5:</u> The site currently proposes a 21% parking space reduction. As such, a parking justification study is requested. This study may be included within the revised Transportation Study. Overarching Parking Study ToR were circulated as part of the Transportation Study ToR comments; however, the consultant is encouraged to reach out to clarify any concerns.

Response:

It is acknowledged that the proposed parking supply of 27 vehicular spaces for 19 dwelling units reflects a reduction relative to the general parking requirements of the Town's current Comprehensive Zoning By-law. However, this parking provision aligns with the minimum parking standards outlined in the Draft Zoning By-law Amendment (dated July 10, 2024) for the subject site, which establishes the following specific requirements:

- 1.0 resident parking space per dwelling unit
- 0.29 visitor parking spaces per dwelling unit

Applying these standards to the proposed 19-unit development yields:

- Resident parking required: 19 × 1.0 = 19 spaces
- Visitor parking required: 19 × 0.29 = 5.51 (rounded up to 6)
- Total required: 25 parking spaces

The proposed supply of 27 spaces exceeds the minimum requirement defined in the draft site-specific zoning by-law, thereby complying with the emerging policy framework and addressing projected on-site demand.

Given that the proposed parking supply exceeds the draft site-specific zoning requirements and aligns with emerging Town policy, a separate stand-alone parking justification study is not warranted at this time.

1.0 Introduction

CGE Transportation Consulting was retained by Bolton Shore Holdings Ltd. to prepare a REVISED Transportation Study for a proposed residential redevelopment, located at 15, 21 and 27 Shore Street in the Town of Caledon (Bolton), Peel Region.

Existing Site Description:

The site, currently zoned Residential One (R1), is bounded by mixed-use and residential developments to the north and west, Shore Street to the south, and Queen Street South (Highway 50) to the east. The site currently includes single-detached family dwellings that will be demolished for the proposed development.

The location of the proposed development is illustrated in Figure 1.

Development Proposal Description:

The redevelopment will consist of a four-storey residential apartment building with 19 units, 27 vehicular parking spaces, and 14 bike parking spaces. The development will include two full-access connections to Shore Street in a looped configuration. Full Build for the project is targeted for 2029.

The most recent site plan is provided in Figure 2.

Scope of Work:

A Terms of Reference (ToR) was formally submitted to the Town and Region before initiating the study. For comprehensive details, the ToR and feedback from the Town and Region have been included in **Appendix A**.

The study area consists of the following intersections:

- Queen Street South (Highway 50) & Ellwood Drive West/ Ellwood Drive East
- Queen Street South (Highway 50) & Shore Street
- Shore Street & Proposed West Site Access
- Shore Street & Proposed East Site Access
- The study analyzed the following scenarios
 - Existing 2024 Conditions
 - Future Background 2029 Conditions
 - Full Build 2029 Conditions
 - Future Year 2034 Conditions
- The analysis has been conducted for both weekday AM and PM peak hours.

Figure 1 Site Location

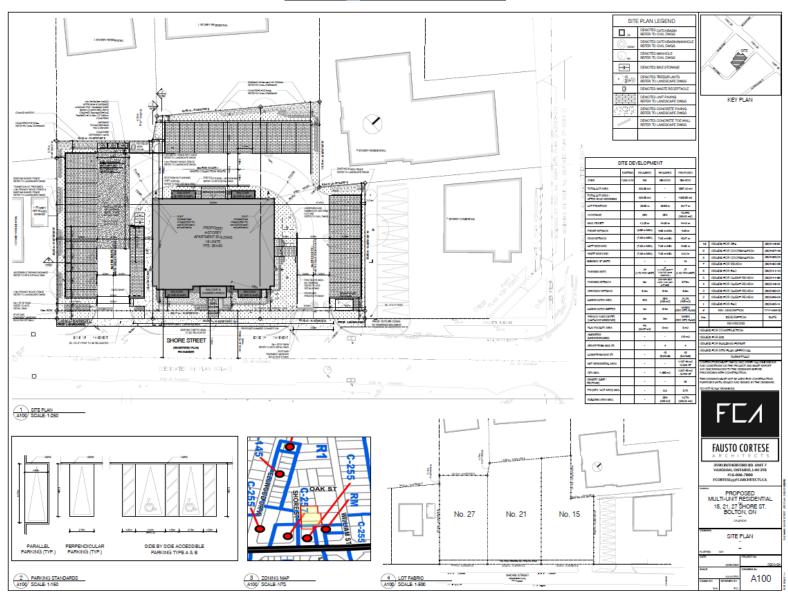


Figure 2 Proposed Site Plan

2.0 EXISTING AREA

2.1 Existing Roadway Conditions

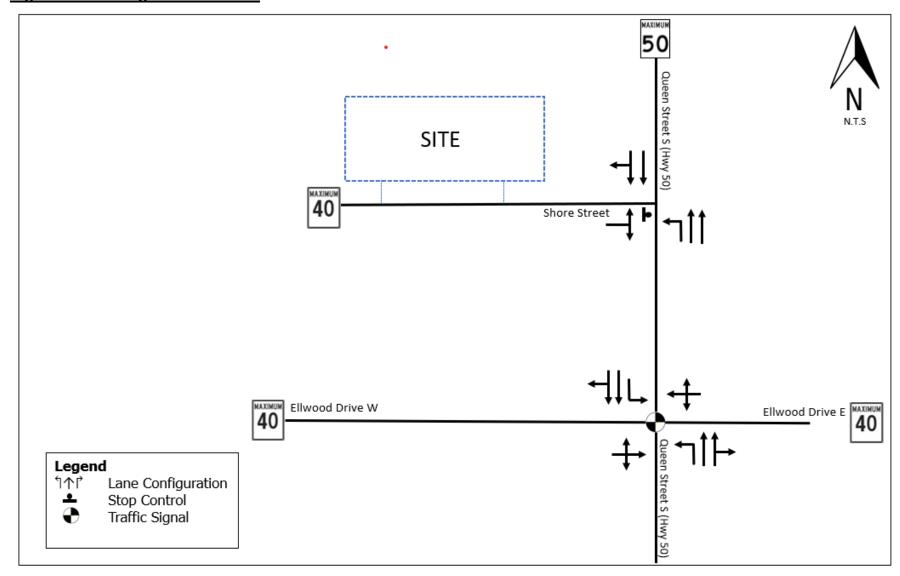
The existing road network, lane configuration and existing traffic control for the study area are described below and shown in **Figure 3**:

Queen Street S in the vicinity of the site, is a five-lane arterial road with two-way left-turn lane (TWTL) and a 50 km/h speed limit under the Region's control. It has sidewalks along both sides of the street. On-street parking is prohibited.

Ellwood Drive is a two-lane, east-west local road under the Town's control, with a speed limit of 40 km/h. It has sidewalks on both sides along Ellwood Drive West, but only along the north side along Ellwood Drive East.

Shore Street is a two-lane, east-west local road under the Town's control, with a 40 km/h speed limit. It currently has a discontinuous sidewalk, and onstreet parking is prohibited.

A review of the Town and Region's capital projects website indicates no planned roadway improvements within the study area at this time.


2.2 Existing Intersection Geometry

Queen Street South (Highway 50) & Ellwood Drive is a signalized intersection. The eastbound and westbound approaches consist of a single lane. The northbound and southbound approaches both have a left-turn lane, a through lane and a shared through -right lane.

Queen Street South (Highway 50) & Shore Street is an unsignalized T-intersection with stop control for the eastbound approach. The northbound approach consists of a left-turn lane and two through lanes. The southbound approach consists of a shared through -right lane and a through lane. The eastbound approach consists of single lane.

The proposed development features a looped configuration with two full-access connections to Shore Street. Both connections will intersect existing driveways currently serving commercial developments south of the site.

Figure 3 Existing Road Network

2.3 Multi-Modal Transport

The study area is currently served by GO Transit and Brampton Transit. GO Transit Route 38 operates on weekdays only between Malton GO Station and Bolton GO Station, primarily along Queen Street (Highway 50). It has a headway of 1-2 hours during peak periods. Brampton Transit Route 41 operates only on weekdays between Brampton Gateway Terminal and Bolton, also along Queen Street (Highway 50), with a headway of approximately 110 minutes. There are four transit stops within a 200-meter radius of the site.

The Town's *Active Transportation Master Plan* (ATMP) indicates no existing cycling facilities within the study area road network. However, the ATMP does recommend signed cycling routes along Ellwood Drive in the vicinity of the site (See **Figure 4**).

The subject site currently lacks sidewalks along its Shore Street frontage. However, the most recent site plan includes a 1.5-meter sidewalk along the entire frontage, connecting to the existing roadway (See **Figure 2**).

Map 7. Network implementation Network Implementation Town of Caledon Active Transportation Master Plan Implementation Opportunity --- Routine Accommodation --- Development-driven --- Standalone Existing/Planned Facilities - Multi-use Trail --- Walking Trail Designated Trail --- Multi-use Path - Painted Bike Lane Paved Shoulder Signed Cycling Routes Other Features GTA West Preferred Route - Regional Road Railway Park Provincial Park Municipal Boundaries alta

Figure 4 Recommended Active Transportation Plan

Source: Town of Caledon Active Transportation Plan

2.4 Traffic Volumes

Traffic data collection for the study area intersection was performed on June 05, 2024. The signal timing plan for the study area intersections was provided by the Region. **Figure 5** displays existing traffic volumes. The existing traffic volume counts and signal timing plans are shown in **Appendix B**.

Existing Dwellings Units on Subject Site

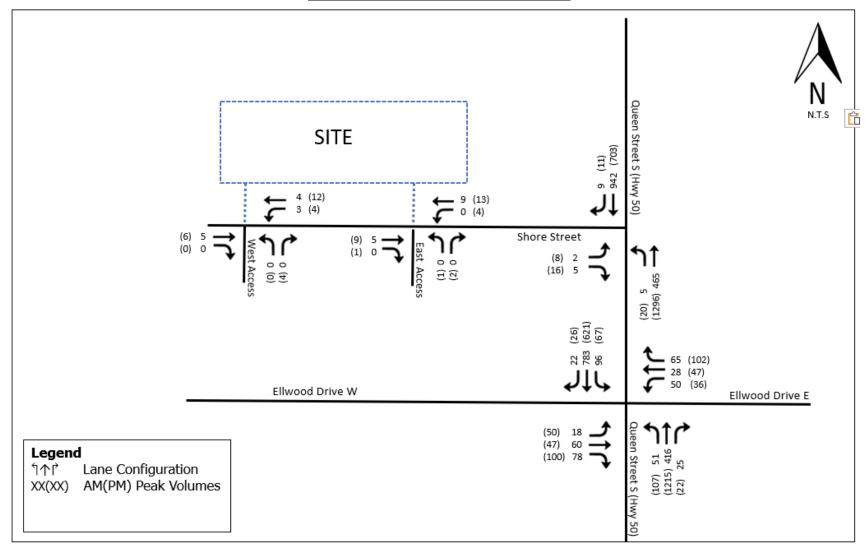


Figure 5 Existing Traffic Volumes

3.0 METHODOLOGY

3.1 Base Assumptions

Intersection capacity analysis was conducted using Synchro v11.0. Trip generation for the proposed development was calculated using the 11th edition of the Institute of Transportation Engineers (ITE) *Trip Generation Manual*.

Turn lane requirements were assessed using the *Geometric Design Guide for Canadian Roads* (Transportation Association of Canada) and the *Geometric Design Standards for Ontario Highways* (Ministry of Transportation, Ontario).

3.2 Background Developments

As identified in the TOR study, the Town's Planning website identifies one background development, 84 Nancy Street, located near the subject site. Trip generation data for this development was obtained from its June 2019 Transportation Impact, Parking, and TDM Study. Detailed site-specific trip information is available in **Appendix C** for further review.

3.3 Background Growth

The average annual background growth rate is calculated using historical AADT volumes obtained from the Region's website. Calculations show that the background growth on Queen Street South (Highway 50) in the vicinity of the site is 4.27% per year. These calculations can be found in **Appendix D**.

Existing volumes were increased by 4.27% per year to estimate background growth for Full Build and Future Year conditions

3.4 Site Trip Generation

The proposed redevelopment will consist of a four-storey residential apartment building with 19 units. The *ITE Trip Generation Manual*, 11th Edition, ITE Code 221 (Multifamily Housing (Mid-Rise) was used to estimate the projected trips by this development.

The ITE Land Use Code (LUC) 220 – Multifamily Housing (Mid-Rise) applies to apartment buildings with 3 to 10 stories and includes developments with elevator access and shared building entries. The proposed four-storey apartment building with elevators is consistent with this definition.

For this study, the AM peak hour trip generation was based on the ITE average rate (0.37 trips/unit) for a more conservative estimate than the fitted curve, while the PM peak hour used the fitted curve equation (T = 0.39x + 0.34) as it yielded higher volumes than the average rate.

Table 1 summarizes the land uses and sizes used for trip generation estimates. The trip generation graphs, and trip rates are provided in **Appendix E**.

Table 1 Estimated Traffic Generation

Land Use				Peak H	lour	PM Peak Hour		
Land Use	Size	Enter	Exit	Total	Enter	Exit	Total	
(Multifamily Housing (Mid- Rise) No Close to Rail Transit	221	19 Units	2	5	7	5	3	8

The trip generation analysis results indicate that the proposed development is anticipated to generate 7 and 8 new two-way trips to the adjacent network during the weekday AM and PM peak hours, respectively.

3.5 Trip Distribution

Trips for this proposed development were assigned to the surrounding roadway network using engineering judgment and existing traffic patterns.

The proposed trip distribution for this project is:

AM Peak Hour Inbound:

- 55% to/from north on Queen Street South (Highway 50)
- 25% to/from south on Queen Street South (Highway 50)
- 10% to/from east on Ellwood Drive East
- 10% to/from west on Ellwood Drive West

AM Peak Hour Outbound:

- 25% to/from north on Queen Street South (Highway 50)
- 55% to/from south on Queen Street South (Highway 50)
- 10% to/from east on Ellwood Drive East
- 10% to/from west on Ellwood Drive West

PM Peak Hour Inbound:

- 25% to/from north on Queen Street South (Highway 50)
- 55% to/from south on Queen Street South (Highway 50)
- 10% to/from east on Ellwood Drive East
- 10% to/from west on Ellwood Drive West

PM Peak Hour Outbound:

- 55% to/from north on Queen Street South (Highway 50)
- 25% to/from south on Queen Street South (Highway 50)
- 10% to/from east on Ellwood Drive East
- 10% to/from west on Ellwood Drive West

The project site trips are shown in **Figure 6**. Future Background volumes for 2029 are shown in **Figure 7**. Full Build 2029 volumes are shown in **Figure 8**. Future Year 2034 volumes are shown in **Figure 9**.

Figure 6 Project Site Trips

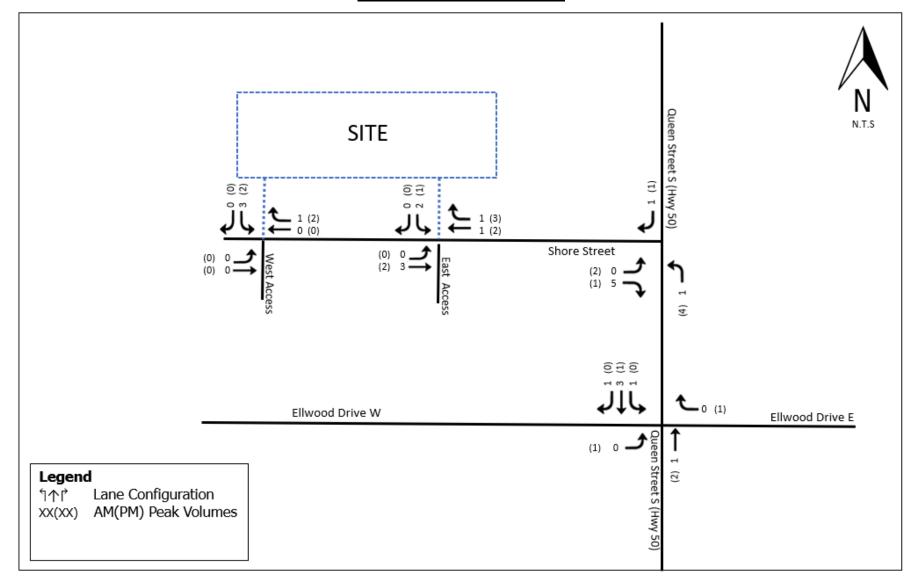


Figure 7 Future Background 2029 Volumes

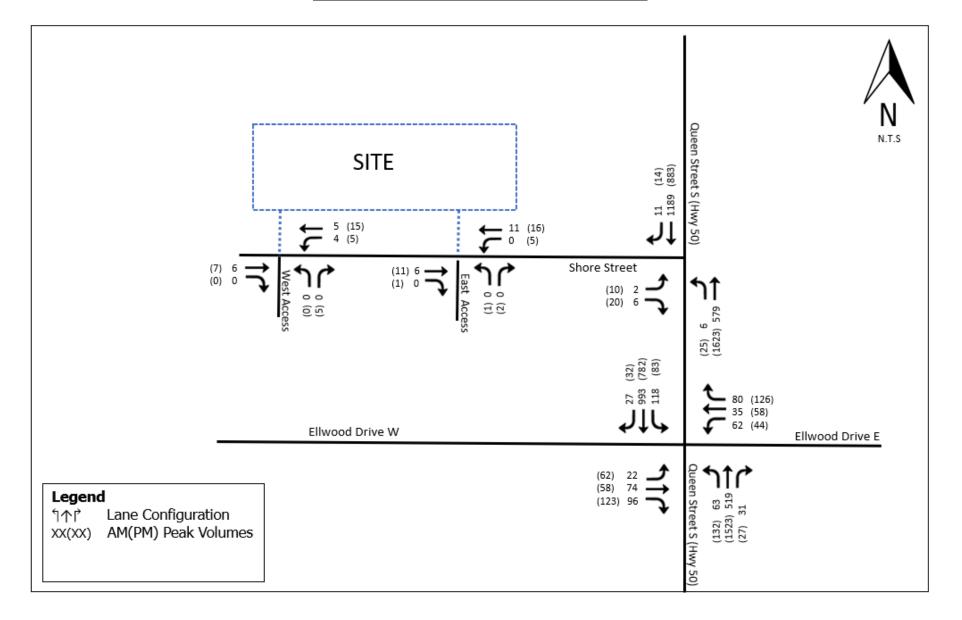


Figure 8 Full Build 2029 Volumes

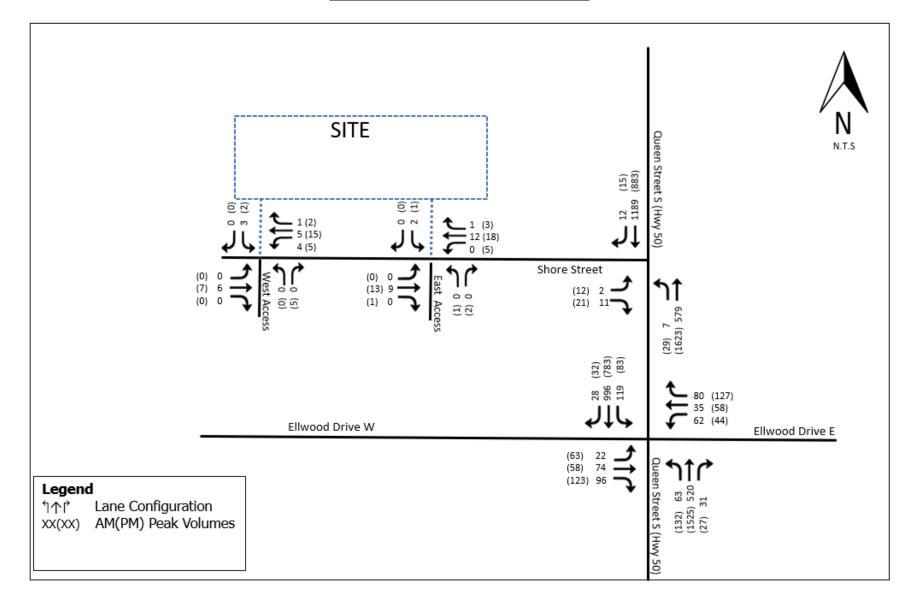
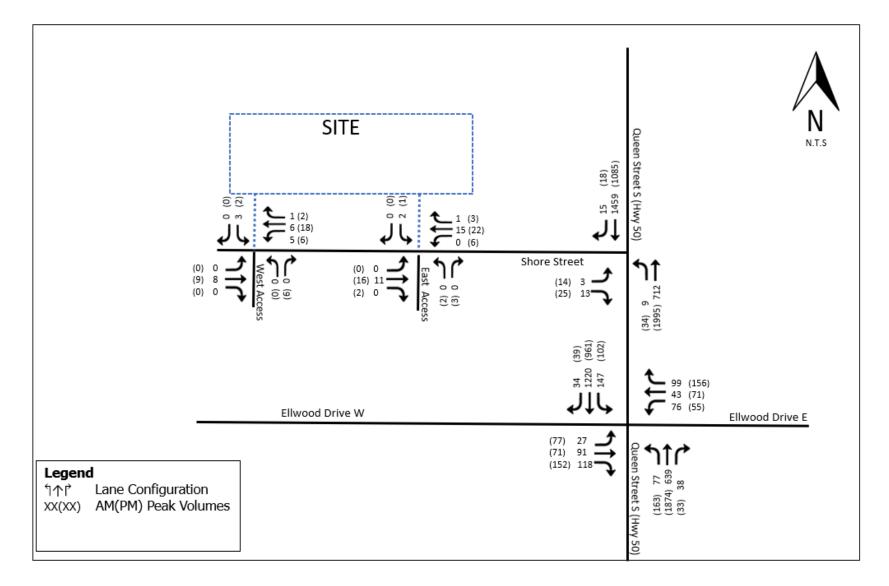



Figure 9 Future Year 2034 Volumes

4.0 TURN LANE/ACCCESS MANAGEMENT

4.1 Right-Turn Lanes

The Geometric Design Guide for Canadian Roads, TAC recommends the use of an exclusive right-turn lane when the volume of decelerating or accelerating vehicles compared with the through traffic volume causes undue hazard.

In general, an exclusive right-turn lane should be considered when the volume of right-turning vehicles is between 10 to 20 percent of the through volume, subject to a minimum of 60 vehicles per hour in the design hour. **Table 2** shows the Future Year 2034 volumes used in the analysis.

Table 2 Right-Turn Lane Analysis											
		AM Volume			PM Volume			Hourly Threshold	Turn Lane needed?		
Driveway	Approach	Through	Right	% RT	Through	Right	% RT				
Shore St & East Access	WB	15	1	7%	22	3	14%	60	No		
Shore St & West Access	WB	6	1	17%	18	2	11%	60	No		

Based on Future Year 2034 volumes, no right-turn lanes are required for the project accesses.

4.2 Left-Turn Lanes

The warrant for left turn lanes was based on *Chapter E, Section E.B.1 of the Geometric Design Standards for Ontario Highways by the Ministry of Transportation, Ontario* for 2-lane undivided roadways. **Table 3** shows the Future Year 2034 volumes used in the analysis.

Table 3 Left-Turn Lane Analysis

Driveway	Design Speed	Peak	Approach	Advancing Volume	Opposing Volume	Left- Turn Vol	Left- Turn %	Threshold met?
Shore St & East Access	50 km/h	AM	EB	11	16	0	0%	No
Shore St & East Access		PM	ED	18	31	0	0%	No
Shore St & West Access	50 km/h	AM	EB	8	12	0	0%	No
Shore St & West Access		PM	LD	9	26	0	0%	No

Based on Future Year 2034 volumes, no left-turn lanes are required for the project accesses.

4.3 Sight Distance Evaluation

Regarding stopping sight distance, which allows drivers to stop safely under normal conditions, the minimum requirement for a level grade on wet pavement at a 50 km/h design speed is 65 meters as summarized below. The stopping sight distance requirements are satisfied at the site accesses

Design Speed (km/h)	50	60	70	80	90	100
Minimum Stopping Sight Distance (m)*	65	85	110	140	170	210

Source: Table 2.5.2, Chapter 2, Geometric Design Guidelines for Canadian Roads

Regarding turning sight distance, which is the distance needed for a driver to detect an unexpected or otherwise difficult-to-perceive information source or condition in a roadway environment that may be visually cluttered, recognize the condition or its potential threat, select an appropriate speed and path, and initiate and complete complex maneuvers. The minimum requirement for a 50 km/h design speed is 75 meters as summarized below. The turning sight distance requirements are satisfied at the site accesses.

Field observations show that there are no sight distance obstructions that obscure the view of vehicles at the proposed accesses.

Shore Street at Site Access – Looking East

Shore Street at Site Access – Looking West

5.0 CAPACITY ANALYSIS

The Transportation Research Board's Highway Capacity Manual (HCM) utilizes a term "level of service" (LOS) to measure how traffic operates in intersections. There are currently six levels of service ranging from A to F. Level of Service "A" represents the best conditions and Level of Service "F" represents the worst. Synchro software was used to determine the level of service for intersections in the study area. All worksheet reports from the analyses can be found in **Appendix F**.

Table 4 shows the control delay per vehicle associated with LOS A through F for signalized and unsignalized intersections.

Table 4 High	Table 4 Highway Capacity Manual Levels of Service and Control Delay										
Signaliz	ed Intersection	Unsignalized Intersection									
Level of Service	Control Delay per Vehicle (sec)	Level of Service	Control Delay per Vehicle (sec)								
А	≤ 10	А	≤ 10								
В	> 10 and ≤ 20	В	> 10 and ≤ 15								
С	> 20 and ≤ 35	С	> 15 and ≤ 25								
D	> 35 and ≤ 55	D	> 25 and ≤ 35								
E	> 55 and ≤ 80	Ш	> 35 and ≤ 50								
F	> 80	F	> 50								

5.1 Queen Street South (Highway 50) & Ellwood Drive

Queen Street South (Highway 50) & Ellwood Drive is a signalized intersection. The eastbound and westbound approaches consist of a single lane. The northbound and southbound approaches both have a left-turn lane, a through lane and a shared through -right lane.

Table 5 shows the current LOS, control delay, and 95th percentile queue length for existing conditions.

Table 5 Intersection LOS, Delay, and Queue by Movement - 2024 Existing										
Intersection	Approach	Movement		AM		PM				
mersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue		
		LT								
	EB	TH	D	45.3	44.4 m	E	62.9	68.3 m		
		RT								
	WB	LT		45.6	42.8 m	D	53.8			
		TH	D					60.8 m		
Queen St S (Hwy 50) &		RT								
Ellwood Dr	NB	LT	Α	8.5	11.3 m	Α	8.9	22.9 m		
Eliwood Di		TH	Α	0.4	30.7 m	В	11.3	120.6m		
		RT	A	8.1	30.7 111	Ь	11.3	120.0111		
		LT	Α	3.8	10.8 m	Α	6.7	9.8 m		
	SB	TH	۸	10	43.2 m	А	5.2	40.5 m		
		RT	Α	4.8	43.2 111		5.2	40.5 111		
	OVE	RALL		B (12.9	s)	B (16.8s)				

Analysis shows that the intersection currently operates with acceptable LOS. However, the eastbound and westbound approaches are experiencing poor LOS and significant delays.

Table 6 shows the expected LOS, control delay, and 95th percentile queue length for Future Background 2029 conditions.

Table 6 Intersection LOS, Delay, and Queue by Movement – 2029 Future Background										
Intersection	Approach	Movement		AM			PM			
miersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue		
		LT								
	EB	TH	D	46.3	55.2 m	Е	72.2	95.4 m		
		RT								
		LT				E	55.7			
	WB	TH	D	53.7	54.9 m			77.6 m		
Overage Ct C (Llary FO) 9		RT								
Queen St S (Hwy 50) & Ellwood Dr		LT	В	11.4	16.8 m	В	13.1	31.0 m		
Liiwood Di	NB	TH	Α	0.0	44.6 m	D	17.2	173.8 m		
		RT	A	9.8	44.0 111	В	17.2	173.0 111		
		LT	Α	4.9	15.8 m	В	14.6	11.8 m		
	SB	TH		6.6	71.3 m	А	7.1	53.1 m		
		RT	Α	6.6	1 1.3 m			55.1 111		
	OVE	RALL		B (15.0	s)	C (21.5s)				

While the overall intersection is expected to function acceptably with future growth, the persistent poor LOS and significant delays on the eastbound and westbound approaches highlight the need for targeted improvements to address these specific areas.

Transportation Study - Residential Development - 15, 21 and 27 Shore Street

Table 7 shows the expected LOS, control delay, and 95th percentile queue length for Full Build 2029 conditions.

Table 7 Inters	Table 7 Intersection LOS, Delay, and Queue by Movement – 2029 Full Build											
Intersection	Approach	Movement	AM			PM						
mersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue				
		LT										
	EB	TH	D	46.3	55.2 m	E	72.6	96.9 m				
		RT										
	WB	LT			54.9 m	E	55.6					
		TH	D	53.7				78.2 m				
0 0 0 0 1 50 0		RT										
Queen St S (Hwy 50) & Ellwood Dr		LT	В	11.4	16.9 m	В	13.2	31.0 m				
Liiwood Di	NB	TH	^	0.0	44.7	D	47.0	171 1				
		RT	Α	9.8	44.7 m	В	17.3	174.1 m				
		LT	Α	4.9	16.0 m	В	14.7	11.8 m				
	SB	TH	^	6.6	74.0	Α	7.2					
		RT	Α	6.6	71.8 m			53.2 m				
	OVE	RALL		B (15.0	s)	C (21.7s)						

Table 8 shows the expected LOS, control delay, and 95th percentile queue length for Future Year 2034 conditions.

Table 8 Intersection LOS, Delay, and Queue by Movement – 2034 Future Year										
Intersection	Approach	Movement		AM		PM				
Intersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue		
		LT								
	EB	TH	D	45.8	69.8 m	F	96.5	133.5 m		
		RT								
	WB	LT			71.7 m	E	61.6			
		TH	E	62.2				107.8 m		
0 0 0 (11 50) 0		RT								
Queen St S (Hwy 50) & Ellwood Dr	NB	LT	С	29.4	39.5 m	С	20.4	45.3 m		
Eliwood Bi		TH	В	40.0	60.5	С	20.4	240 0 m		
		RT	В	12.6	62.5 m	C	26.1	248.8 m		
		LT	Α	7.1	22.0 m	Е	61.2	42.1 m		
	SB	TH	Б	10.0	126.6	۸	0.4	67.2 m		
		RT	В	10.8	m	Α	9.4	67.3 m		
	OVE	RALL		B (18.8	s)	C (30.7s)				

Traffic analysis indicates that the proposed development will not adversely impact the overall LOS at the subject intersection under full build-out and future year conditions. The intersection is projected to operate with acceptable LOS, consistent with forecasts under future background traffic conditions.

However, the analysis indicates that the eastbound and westbound approaches are currently experiencing poor LOS and significant delays under both existing and future background traffic conditions. This analysis has determined that the proposed development is not a contributing factor to these deficiencies, as the anticipated site-generated traffic volumes are minimal (less than 10 vph).

Based on these findings, it is recommended that the Region/Town prioritize potential mitigation measures to address the existing operational deficiencies on the eastbound and westbound approaches. These measures may include geometric improvements, signal timing optimization, or the implementation of turning restrictions. Continued monitoring of the intersection's performance is advised to evaluate the effectiveness of any implemented improvements and to identify any future needs.

5.2 Queen Street South (Highway 50) & Shore Street

Queen Street South (Highway 50) & Shore Street is an unsignalized T-intersection with stop control for the eastbound approach. The northbound approach consists of a left-turn lane and two through lanes. The southbound approach consists of a shared through -right lane and a through lane. The eastbound approach consists of single lane.

Table 9 shows the current LOS, control delay, and 95th percentile queue length for existing conditions.

Table 9 Intersection LOS, Delay, and Queue by Movement - 2024 Existing										
Intersection	Approach	Mayamant		AM			PM			
intersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue		
	EB	LT	В	14.2	0.4 m	В	12.5	1.2 m		
		RT	В	10.3	0.2 m	Α	9.3	0.6 m		
Queen St S (Hwy 50)	ND	LT		Free		Free				
& Shore St	NB	TH		Free		Free				
	0.0	TH	F			F				
	SB	RT		Free		Free				

Table 10 shows the expected LOS, control delay, and 95th percentile queue length for Future Background 2029 conditions.

Table 10 Intersection LOS, Delay, and Queue by Movement – 2029 Future Background									
Intersection	Intersection Approach Movement Approach Movement								
Intersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue	
	EB	LT	С	16.7	0.6 m	В	14.0	1.8 m	
	ED	RT	В	11.7	0.3 m	В	10.1	0.8 m	
Queen St S (Hwy 50)	NB	LT		Free			Free		
& Shore St	IND	TH		Free			Free		
	OD	TH		Eroo			Free		
	SB	RT	Free			riee			

Table 11 shows the expected LOS, control delay, and 95th percentile queue length for Full Build 2029 conditions.

Table 11 Intersection LOS, Delay, and Queue by Movement – 2029 Full Build									
Intersection	Approach	Movement		AM			PM		
mersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue	
	EB	LT	С	16.1	1.0 m	В	14.3	2.0 m	
		RT	В	11.7	0.3 m	В	10.1	1.0 m	
Queen St S (Hwy 50)	ND	LT		Free			Free		
& Shore St	NB	TH		Free			Free		
	C.D.	TH		Fran			Fran	•	
	SB	RT	Free		Free				

Table 12 shows the expected LOS, control delay, and 95th percentile queue length for Future Year 2034 conditions.

Table 12 Intersection LOS, Delay, and Queue by Movement – 2034 Future Year									
Intersection	Annroach	oach Movement		AM			PM		
Intersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue	
	ED	LT	С	20.2	1.6 m	С	17.2	3.1 m	
	ED	EB RT B 13.8 0.6 m	В	11.3	1.4 m				
Queen St S (Hwy 50)	NB	LT		Free			Free		
& Shore St		TH		Free			Free		
	0.0	TH		Frac			Fran		
	SB	RT	Free			Free			

Analysis shows that acceptable LOS will be maintained with the proposed development traffic/ Full Build conditions and Future Year conditions.

5.3 Shore Street & East Access

The proposed development features a looped configuration with two full-access connections to Shore Street, an east and west access. Both connections will intersect existing driveways currently serving commercial developments south of the site.

Table 13 shows the current LOS, control delay, and 95th percentile queue length for existing conditions.

Table 13 Intersection LOS, Delay, and Queue by Movement - 2024 Existing									
Intersection	Approach	Movement		AM			PM		
Intersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue	
	EB	TH	Free Free						
	ED	RT		Fiee Fiee			Free		
Shore St & East	WB	LT		Fran		^	1.6	0.1 m	
Access	VVD	TH	Free		Α	1.6	0.1 m		
	ND	LT	^			^	0.5	0.1 m	
	NB	RT	Α	-	-	Α	8.5	0.1 m	

Transportation Study - Residential Development - 15, 21 and 27 Shore Street

Table 14 shows the expected LOS, control delay, and 95th percentile queue length for Future Background 2029 conditions.

Table 14 Intersection LOS, Delay, and Queue by Movement – 2029 Future Background								
Intersection	Approach	Movement		AM			PM	
Intersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue
	EB	TH		Гиол		Free		
	ED	RT	Free Free					
Shore St & East	WD	LT		Fran		^	1.0	0.1 m
Access	WB	TH	Free		Α	1.8	0.1 111	
	ND	LT	۸			۸	8.6	0.1 m
	NB	RT	Α	-		Α	0.0	U. I III

Table 15 shows the expected LOS, control delay, and 95th percentile queue length for Full Build 2029 conditions.

Table 15 Interse	Table 15 Intersection LOS, Delay, and Queue by Movement – 2029 Full Build									
Intersection	Annroach	Movement	AM				PM			
mersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue		
		LT								
	EB	TH		Free			Free			
		RT								
		LT	Free							
	WB	TH				Α	1.4	0.1 m		
Shore St & East		RT								
Access/Private Driveway		LT								
	NB	TH	Α	-	-	Α	8.6	0.1 m		
		RT								
		LT								
	SB	TH	Α	8.7	0.1	A 9.0	0.1 m			
		RT								

Table 16 shows the expected LOS, control delay, and 95th percentile queue length for Future Year 2034 conditions.

Table 16 Intersec	, , ,									
Intersection	Annroach	Movement		AM			PM			
mersection	Approach		LOS	Delay	Queue	LOS	Delay	Queue		
		LT	LT							
	EB	TH		Free			Free			
		RT								
		LT								
	WB	TH	Free			Α	1.5	0.1 m		
Shore St & East		RT								
Access/Private Driveway		LT								
	NB	TH	Α	-	-	Α	8.7	0.2 m		
		RT								
		LT								
	SB	TH	Α	8.8	0.1	Α	9.1	0.1 m		
		RT								

Analysis shows that east site access will operate with acceptable LOS and minimal delays and queue lengths.

5.4 Shore Street & West Access

The proposed development features a looped configuration with two full-access connections to Shore Street, an east and west access. Both connections will intersect existing driveways currently serving commercial developments south of the site.

Table 17 shows the current LOS, control delay, and 95th percentile queue length for existing conditions.

Table 17 Intersection LOS, Delay, and Queue by Movement - 2024 Existing									
Intersection	Approach	Movement	AM				PM		
Intersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue	
	EB	TH		Eroo					
	ED	RT		riee	Free		Free		
Shore St & West	WB	LT	^	2.0	0.1 m	۸	1.0	0.1 m	
Access	VVD	TH	Α	3.0	0.1 111	Α	1.8	0.1 m	
	ND	LT	^			^	8.4	0.1 m	
	NB -	RT	Α	-	-	Α	0.4	0.1111	

Table 18 shows the expected LOS, control delay, and 95th percentile queue length for Full Build 2029 conditions.

Table 18 Intersection LOS, Delay, and Queue by Movement – 2029 Future Background																
Intersection	Approach	Movement		AM			PM									
intersection	Approach	Movement	LOS	Delay	Queue	LOS	Delay	Queue								
	ГР	TH		Fran			Fran									
	EB	RT		Free	Free Free											
Shore St & West	\A/D	LT	^	3.4	0.4	^	1.0	0.1 m								
Access	WB	TH	Α	3.4	0.1 m	Α	1.9	0.1 111								
	ND	LT	^			۸	8.4	0.2 m								
	NB	NB	NB	NB	NB	NB	NB -	NB -	NB -	NB RT		Α	-	-	Α	0.4

Table 19 shows the expected LOS, control delay, and 95th percentile queue length for Full Build 2029 conditions

Table 19 Int	Table 19 Intersection LOS, Delay, and Queue by Movement – 2029 Full Build									
Intersection	Annraach	Movement		AM			PM			
mersection	Approach Movemen	Movement	LOS	Delay	Queue	LOS	Delay	Queue		
		LT		-						
	EB	TH		Free			Free			
		RT								
		LT	A 3.0 0.1							
Chara Ct 9 Mast	WB	TH		Α	1.7	0.1 m				
Shore St & West Access/Private		RT								
Driveway		LT								
Dilveway	NB	TH	Α	-	-	Α	8.4	0.2 m		
		RT								
		LT								
	SB	TH	Α	8.7	0.1	Α	8.9	0.1 m		
		RT								

Transportation Study – Residential Development - 15, 21 and 27 Shore Street

Table 20 shows the expected LOS, control delay, and 95th percentile queue length for Future Year 2034 conditions

Table 20 Inte	Table 20 Intersection LOS, Delay, and Queue by Movement – 2034 Future Year									
Intersection	Approach	Movement		AM			PM			
Intersection	Approach	Wovement	LOS	Delay	Queue	LOS	Delay	Queue		
		LT								
	EB	TH		Free			Free			
		RT								
		LT								
Chara Ct & West	WB	TH	Α	2.9 0.1	Α	1.7	0.1 m			
Shore St & West Access/Private		RT								
Driveway		LT								
Driveway	NB	TH	Α	-	-	Α	8.4	0.2 m		
		RT								
		LT								
	SB	TH	Α	8.8	0.1	Α	9.0	0.1 m		
		RT								

Analysis shows that east site access will operate with acceptable LOS and minimal delays and queue lengths.

Queen Street South at Shore Street – Looking North

6.0 PARKING REQUIREMENTS

The proposed redevelopment will consist of a four-storey residential apartment building with 19 units, 27 vehicular parking spaces, and 14 bike parking spaces.

While the vehicular parking supply falls short of the minimum requirement of 34 spaces outlined in Comprehensive Zoning By-law 2006-50, it aligns with the minimum parking standards outlined in the Draft Zoning By-law Amendment (dated July 10, 2024) for the subject site, which establishes the following specific requirements:

- 1.0 resident parking space per dwelling unit
- 0.29 visitor parking spaces per dwelling unit

Applying these standards to the proposed 19-unit development yields:

- Resident parking required: 19 × 1.0 = 19 spaces
- Visitor parking required: 19 × 0.29 = 5.51 (rounded up to 6)
- Total required: 25 parking spaces

The proposed supply of 27 spaces exceeds the minimum requirement defined in the draft site-specific zoning by-law, thereby complying with the emerging policy framework and addressing projected on-site demand.

In light of this, a separate stand-alone parking justification study is not considered necessary. Should Town staff require additional clarification, the consulting team remains available for further coordination.

To support the parking demand of this development, the ITE *Parking Generation Manual 5th Edition* was consulted, as per discussions with Town Staff noted in the study's TOR. For a conservative analysis, ITE Code 220 (Multifamily Housing (Low-Rise)) was applied to the weekday and Saturday periods, as directed by Town Staff. This decision was made because the proposed number of units falls within the data range of the ITE graphs for this land use code, ensuring a more cautious estimate of parking needs.

The following table summarizes the ITE-based calculations, with details available in the appendices:

Table 21 ITE Parking Generation 5th Edition

Land Use	Size	ITE	Time	ITE Equation/Rate	Peak Period
		Code	Period		Parking Demand
Multifamily	19	220	Weekday	Fitted Curve Equation: P = 1.33(X) -20.15	5 Spaces
Housing (Low-	units			Average Rate: 1.22	23 spaces
Rise)			Saturday	Fitted Curve Equation: P = 1.29(X) -1.37	23 Spaces
(Occupied dwelling Units)				Average Rate: 1.28	24 spaces

Based on the ITE analysis, the proposed 27 parking spaces exceed the estimated peak demand for both weekdays and Saturdays. On weekdays, the estimated demand is 23 spaces, and on Saturdays, it is 24 spaces. Therefore, it can be concluded that the proposed parking supply is adequate to accommodate the anticipated demand from this development. This aligns with the current trend towards demand-based parking management, which prioritizes efficient land use and responsiveness to actual parking needs over rigid, potentially excessive minimums.

6.1 Site Circulation Analysis

To ensure the feasibility of the proposed driveway connection and internal driveway, an AutoTURN swept path analysis was conducted. This analysis generated vehicular turning templates to confirm the accessibility of these areas.

Swept path analysis was performed specifically for passenger vehicles at the on-street parallel parking spaces and other highlighted stalls. The results confirm that all highlighted spaces can accommodate a standard P-TAC design vehicle (5.6 metres in length).

However, it is noted that simultaneous maneuvering of two P-TAC vehicles into adjacent parallel parking spaces presents operational challenges, particularly if both spaces are occupied. In such instances, the usability of one space is dependent on the other being unoccupied. That said, most vehicles in regular use—including compact cars, sedans, and full-size SUVs—can be accommodated without issue. Drivers of oversized vehicles, such as full-size pickup trucks or work vans, are generally aware of spatial constraints and tend to self-select appropriate parking.

With the exception of the two parallel spaces, all remaining stalls have been confirmed to accommodate oversized vehicles. Given the limited number of constrained spaces and their expected infrequent use by larger vehicles, this configuration is considered acceptable for the subject site.

Detailed swept path diagrams supporting this analysis are included in the appendices

6.2 On-site Transportation Demand Management (TDM)

Transportation Demand Management (TDM) refers to variety of strategies to reduce congestion, minimize the number of single-occupant vehicle, encourage non-auto modes of travel, and reduce vehicle dependency to create a sustainable transportation system. In short, TDM works to change how, when, where, and why people travel.

TDM strategies that can be applied to the subject site including the followings:

- **Bicycle Parking** The redevelopment proposes to provide a total of 14 bicycle parking spaces. Provision of bicycle parking spaces will complement the Town's and Regions cycling plan. The applicant is responsible for this initiative.
- **Transit Incentives** It is recommended that pre-loaded Presto Cards (\$25) be provided to homeowners at the time of registration to encourage transit use. The applicant is responsible for this initiative.
- Information Packages (Transit maps, Transit Schedules, Cycling maps) It is recommended that homeowners be provided with transit and cycling information packages at the time of registration. The applicant is responsible for this initiative.
- TDM Communication Outreach Strategy It is recommended that an event be organized by the applicant to invite representatives from the Region and City to distribute the pre-loaded Presto Cards and Information Packages as described above to the new homeowners. The event will be initiated once the occupancy reached 75% and the location of the event will be determined closer to the event date.

7.0 SUMMARY AND CONCLUSIONS

CGE Transportation Consulting was retained by Bolton Shore Holdings Ltd. to prepare a Transportation Study for a proposed residential redevelopment, located at 15, 21 and 27 Shore Street in the Town of Caledon (Bolton), Peel Region

Proposed Development

The development will consist of a four-storey residential apartment building with 19 units, 27 vehicular parking spaces, and 14 bike parking spaces. The development will include two full-access connections to Shore Street in a looped configuration. Full Build for the project is targeted for 2029.

Trip Generation

The trip generation analysis results indicate that the proposed development is anticipated to generate 7 and 8 new two-way trips to the adjacent network during the weekday AM and PM peak hours, respectively.

Turn Lanes

Based on Future Year 2034 volumes, no left-turn and no right-turn lanes are required for the project accesses.

Traffic Impacts

Analysis shows that overall acceptable levels of service are maintained with the 2029 Full Build development traffic as well as 2034 Future Year conditions at the Queen Street South (Highway 50) & Ellwood Drive signalized intersection. Traffic analysis confirms the proposed development will not worsen the overall traffic flow at the intersection. While the eastbound and westbound approaches already experience delays, this is unrelated to the project's minimal traffic contribution. To address these existing issues, it's recommended that the Region/Town focus on improvements like adjusting road layout, signal timing, or turning restrictions, while continuing to monitor the intersection's performance.

Analysis shows that acceptable LOS will be maintained with the proposed development traffic or full build conditions at the Queen Street South (Highway 50) & Shore Street intersection.

Analysis shows that proposed site accesses will operate with acceptable LOS and minimal delays and queue lengths.

<u>Parking</u>

The proposed 27 parking spaces are deemed adequate to serve the development despite falling short of zoning by-law minimums, aligning with the trend towards demand-based parking strategies.

From: Alex Mior <Alex.Mior@caledon.ca>
Sent: Monday, May 6, 2024 11:51 AM

To: Maurizio Rogato <mrogato@blackthorncorp.ca>

Subject: FW: Shore Street: Traffic Study Terms of Reference...

Hi Maurizio,

I hope you had a great weekend & are doing well.

It was nice to meet you (in-person) at the Delta event a couple weeks ago.

Please see the comments on your Terms of Reference for the Traffic Study below.

If you have any questions, please don't hesitate to contact me.

Kind Regards,

Alex Mior

Community Planner, Development Planning Department

Office: 905.584.2272 x. 4528 Email: alex.mior@caledon.ca

Town of Caledon | www.caledon.ca | www.visitcaledon.ca | Follow us @YourCaledon

From: Emma Howlett < Emma. Howlett@caledon.ca>

Sent: Monday, May 6, 2024 11:46 AM **To:** Alex Mior <Alex.Mior@caledon.ca>

Cc: Kavleen Younan < <u>Kavleen.Younan@caledon.ca</u>>

Subject: RE: Shore Street: Traffic Study Terms of Reference...

Hello Alex,

Town Transportation staff have reviewed the Terms of Reference (TOR) submitted for PRE 2023-0116: 15, 21 & 27 Shore Street, Town of Caledon – Transportation Impact Study and offer the following comments:

- 1. Average rates were used to establish the anticipated trip generation stated in the TOR, staff are in agreement with this approach in the case specified. In the body of the report please state that average rates were used and justify that average rate are most applicable in this specific case.
- 2. Regarding the proposed Institute of Transportation Engineers (ITE) parking rates please review to ensure:
 - that the proposal fits the definition of ITE LUC 220 Midrise;
 - that the proposed number of units falls within the parking data point range in the graph;
 - that the density surveyed is comparable to the proposed development; and

- Revise if required. Please note in this specific case, ITE definitions and data should be included in the Appendix of the report.
- 3. Proxy sites may or may not be required depending on the findings of the comment above. If proxy site data is required proposing comparable proxy sites is the responsibility of the consultant. Please see below for standard requirements:
 - For residential apartments the ideal data will be the result of vehicle ownership rates from proxy sites in a similar context. If this is not possible, the resident parking demand may be determined through appropriate survey periods.
 - Proposed proxy sites should be comparable to the proposed development's context within Caledon. Staff recommend reviewing the <u>Zoning Town of Caledon</u> maps or areal imagery to determine locations of apartment buildings within Caledon. However, Staff are open to reviewing locations outside Caledon provided adequate justification is made to the comparability of the context.
 - Proxy site data should be collected at peak periods reflective of typical conditions (i.e., major holiday or construction is not occurring preventing usage of units or parking).
 - Data should be included in the appendix of the report including:
 - Days of the survey;
 - Total onsite parking spaces;
 - Number of units on site;
 - # of vacancies;
 - Observed parking separating out legal, illegal, off-site, and total parking;
 - percentage of the total parking capacity; and
 - observed parking demand ratio per unit.
- 4. Please ensure that as part of the proposal the proposed development will be connected the existing sidewalk network, this could be done in a simple pedestrian circulation plan if desired.
- 5. Please use standard vehicles where specific vehicles are not applicable, PTAC vehicles should be used for passenger vehicle parking spaces.
- 6. Given the proposed development's location, a TOR should be circulated with the Region to provide additional insight as required.

Regards,

Emma Howlett, EIT

Transportation Coordinator, Engineering, Public Works, & Transportation Department

Office: 905.584.2272 x 4309 | Email: Emma.Howlett@caledon.ca

Town of Caledon | www.caledon.ca | www.visitcaledon.ca | Follow us @TownofCaledon

From: Alex Mior <<u>Alex.Mior@caledon.ca</u>>

Sent: April 23, 2024 1:07 PM

To: Kavleen Younan <Kavleen.Younan@caledon.ca>; Emma Howlett <Emma.Howlett@caledon.ca>

Subject: FW: Shore Street: Traffic Study Terms of Reference...

Hi Kavleen & Emma,

Hope you're both doing well.

Please see the Terms of Reference for the Traffic Study for Shore Street (PRE 2023-0116 & PRE 2023-0274).

Please let me know if you have any questions.

Kind Regards,

Alex Mior

Community Planner, Development Planning Department

Office: 905.584.2272 x. 4528 Email: alex.mior@caledon.ca

Town of Caledon | www.caledon.ca | www.visitcaledon.ca | Follow us @YourCaledon

From: Maurizio Rogato <mrogato@blackthorncorp.ca>

Sent: Tuesday, April 23, 2024 9:42 AM **To:** Alex Mior <<u>Alex.Mior@caledon.ca</u>>

Cc: Kody Giallonardo < kody@blackthorncorp.ca >; Casey Ge < casey@cgeconsulting.ca >

Subject: Shore Street: Traffic Study Terms of Reference...

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the contents to be safe.

Alex,

Good morning and hope you are doing great.

Attached are the proposed Terms of Reference for the Traffic Study at Shore Street.

Please circulate internally and let us know if the Terms are acceptable.

Looking forward.

Thanks.

Maurizio

Maurizio Rogato B.U.R.Pl., M.C.I.P., R.P.P. Principal

Land Development | Land Use Planning | Project Management | Government Relations

<u>Tel</u>: 416-888-7159

www.blackthorncorp.ca

From: Shen, Yifan
To: Casey Ge

Cc: Zare, Mina; Maurizio Rogato; Hamdani, Hashim

Subject: RE: Shore Street: Traffic Study Terms of Reference...

Date: May 28, 2024 2:53:07 PM

Hi Casey,

Thank you for passing along the Terms of Reference. Please find my comments below:

Please see the traffic comments below and the <u>link</u> here for the detailed Region of Peel TIS formatting and contact information for background traffic (growth rate, AADT, signal timing, etc.).

• Regional Road 50 (Highway 50) – Urban Main Street (for information)

Access Type	Minimum Spacing Requirement
Full to Full	150 m
Full to RI/RO	75 m
RI/RO to RI/RO	Individual Site Review

- Please review the Controlled Access By-law 62-2013, which speaks to the <u>Road</u>
 <u>Characterization Study (RCS)</u>. The RCS defines our various road classifications as well as the minimum access spacing distances that are associated with them.
- Analysis Period Acceptable.
- <u>Intersections</u> Please include the intersection of <u>Highway 50 and Ellwood Drive West</u> due to proximity and to understand the stress put onto the surrounding intersections.
- Horizon Years Please include a 10-year horizon period.
- Please see the following contacts to obtain data for your analysis:
 - Please contact <u>transportationplanningdata@peelregion.ca</u> to confirm growth rates along the subject Regional road(s).
 - Please contact Damian Jamroz (<u>damian.jamroz@peelregion.ca</u>) Supervisor of Traffic Operations to obtain the most recent TMCs and/or average annual daily traffic (AADT).
 - Please contact Rebecca Caughey (Rebecca.caughey@peelregion.ca) Supervisor of Traffic Signals and Streetlighting, to obtain traffic signal timing parameters and ensure that the information includes the appropriate walk/don't walk splits, recall modes and offsets.
 - Please contact your Local Municipality Planning Department to obtain details on surrounding developments in the area that would affect traffic capacity in the planning horizon year(s).

Should you have any questions or concerns, please do not hesitate to let me know.

Thank you,

Yifan Shen

Specialist, Transportation Development Transportation Development Region of Peel 10 Peel Centre Drive, Suite B, 4th Floor Brampton, ON L6T 4B9

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Casey Ge <casey@cgeconsulting.ca>
Sent: Tuesday, May 28, 2024 2:21 PM

To: Shen, Yifan <yifan.shen@peelregion.ca>; Zare, Mina <mina.zare@peelregion.ca>

Cc: Maurizio Rogato <mrogato@blackthorncorp.ca>

Subject: RE: Shore Street: Traffic Study Terms of Reference...

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Hi Yifan, TOR attached for your review.

Thanks

Casey Ge, P.Eng.
President

CGE Consulting

e: casey@cgeconsulting.ca

p: 416-602-1885

This message contains confidential information and is intended only for the individual named. If you are not the named addressee, you should not disseminate, distribute or copy this email. Please notify the sender immediately by email if you have received this email by mistake and delete this email from your system.

From: Shen, Yifan <<u>vifan.shen@peelregion.ca</u>>

Sent: Tuesday, May 28, 2024 2:15 PM

To: Casey Ge <<u>casey@cgeconsulting.ca</u>>; Zare, Mina <<u>mina.zare@peelregion.ca</u>>

Cc: Maurizio Rogato < mrogato@blackthorncorp.ca >

Subject: RE: Shore Street: Traffic Study Terms of Reference...

Hi Casey,

Good afternoon, apologies for the delay. Would you happen to have the TOR that I assume was initially attached to the email? I believe it got lost in the email chain.

Warm regards,

Yifan Shen

Specialist, Transportation Development Transportation Development Region of Peel 10 Peel Centre Drive, Suite B, 4th Floor Brampton, ON L6T 4B9

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Casey Ge < casey@cgeconsulting.ca>

Sent: Tuesday, May 28, 2024 2:00 PM

To: Zare, Mina < mina.zare@peelregion.ca >; Shen, Yifan < vifan.shen@peelregion.ca >

Cc: Maurizio Rogato < mrogato@blackthorncorp.ca >

Subject: RE: Shore Street: Traffic Study Terms of Reference...

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Good afternoon Yifan,

Please advise if you are able to provide a response to us by end of this week. We would like to get started with the traffic study as soon as possible.

Thank you

Casey Ge, P.Eng.

President

CGE Consulting

e: casey@cgeconsulting.ca

p: 416-602-1885

This message contains confidential information and is intended only for the individual named. If you are not the named addressee, you should not disseminate, distribute or copy this email. Please notify the sender immediately by email if you have received this email by mistake and delete this email from your system.

From: Zare, Mina < mina.zare@peelregion.ca>

Sent: Monday, May 6, 2024 1:34 PM

To: Casey Ge <<u>casey@cgeconsulting.ca</u>>; Shen, Yifan <<u>yifan.shen@peelregion.ca</u>>

Cc: Maurizio Rogato < <u>mrogato@blackthorncorp.ca</u>>

Subject: RE: Shore Street: Traffic Study Terms of Reference...

Hi Casey,

I am forwarding the TOR to my colleague (Yifan Shen) who is working in this area of Highway 50.

Warm regards,

Mina Zare, MA, PMP (She, Her)

Specialist, Transportation Development Transportation Division, Public Works Region of Peel 10 Peel Centre Drive Suite B, 4th Floor Brampton, ON L6T 4B9

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Casey Ge < casey@cgeconsulting.ca > Sent: Monday, May 6, 2024 1:09 PM

To: Zare, Mina < mina.zare@peelregion.ca >

Cc: Maurizio Rogato < mrogato@blackthorncorp.ca >

Subject: FW: Shore Street: Traffic Study Terms of Reference...

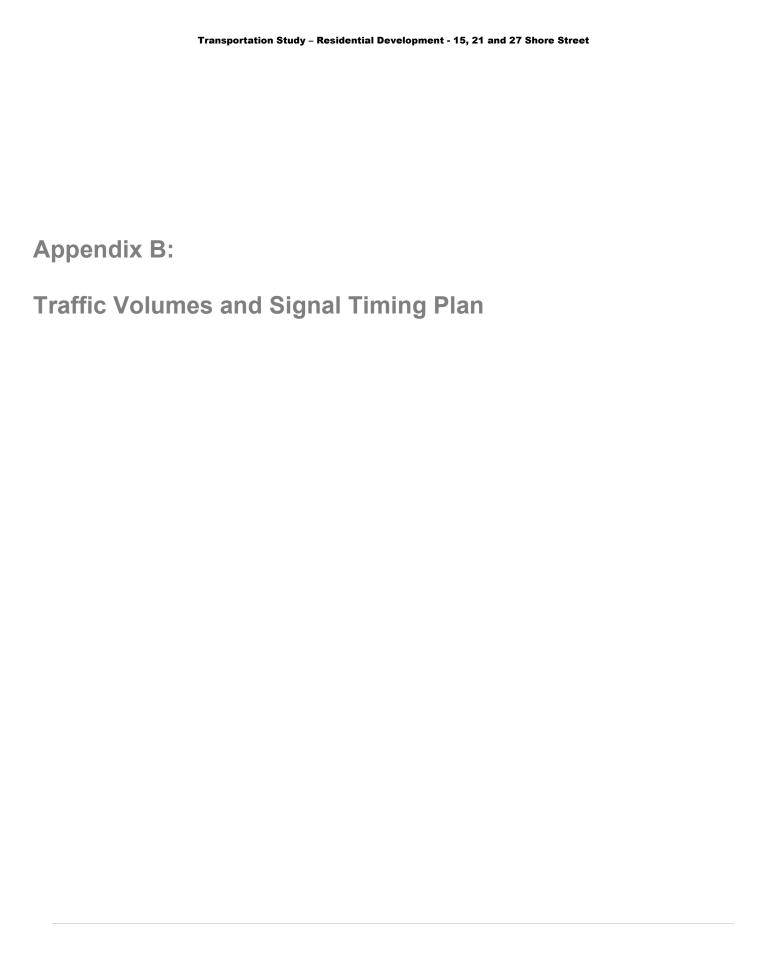
Hello Mina, we have been retained to undertake the transportation study for the proposed 4-storey 19-unit apartment building.

It is a small development and nominal amount of traffic is anticipated, however due to its proximity to Highway 50 I am circulating a terms of reference for your review. City also requested that Region be consulted for TOR approval.

If you have any questions please feel free to contact me.

Thank you and look forward to receive your response.

Casey Ge, P.Eng.


President

CGE Consulting

e: casey@cgeconsulting.ca

p: 416-602-1885

This message contains confidential information and is intended only for the individual named. If you are not the named addressee, you should not disseminate, distribute or copy this email. Please notify the sender immediately by email if you have received this email by mistake and delete this email from your system.

Project #24-248 - CGE Transportation Consulting

Intersection Count Report

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Municipality: Bolton

Count Date: Wednesday, Jun 05, 2024

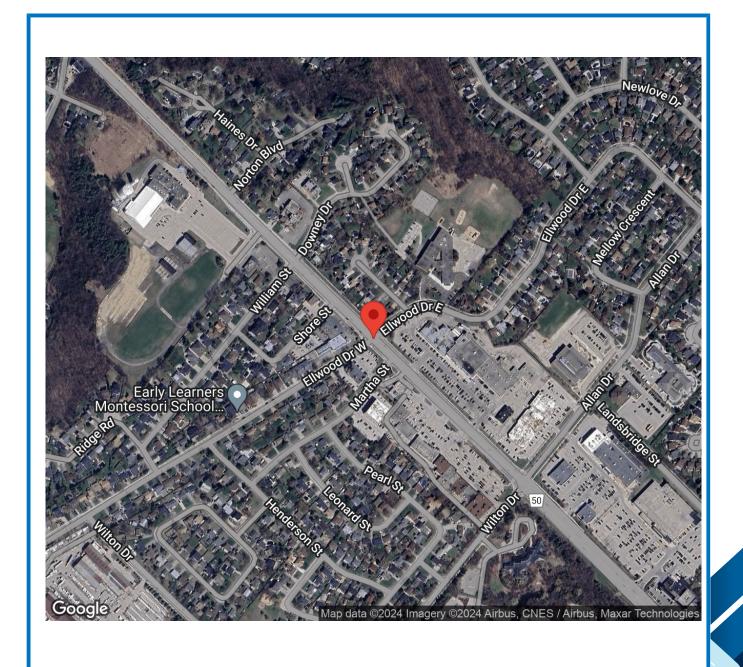
Site Code: 2424800004

Count Categories: Cars, Trucks, Bicycles, Pedestrians

Count Period: 07:00-09:00, 16:00-18:00

Weather: Clear

Comments:


Traffic Count Map

Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W Intersection:

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

Traffic Count Summary

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E -

Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

Hwy 50 (Queen St S) - Traffic Summary

		North	Appr	oach T	otals			South	Appr	oach T	otals		
		Include	s Cars, 1	rucks, B	icycles			Include	s Cars, 1	Trucks, B	icycles		
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	30	862	12	0	904	2	36	335	13	0	384	0	1288
08:00 - 09:00	96	783	22	0	901	33	51	416	25	0	492	1	1393
					В	REAK							
16:00 - 17:00	67	621	26	0	714	8	107	1215	22	0	1344	2	2058
17:00 - 18:00	85	568	26	0	679	7	123	1171	24	0	1318	8	1997
GRAND TOTAL	278	2834	86	0	3198	50	317	3137	84	0	3538	11	6736

Traffic Count Summary

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E -

Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

Ellwood Dr E - Traffic Summary

		East	Appro	ach To	tals			West	Appro	oach To	otals		
		Include	s Cars, 1	Γrucks, Bi	cycles			Include	s Cars, 1	Γrucks, Bi	cycles		
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	29	9	46	0	84	1	13	13	61	0	87	0	171
08:00 - 09:00	50	28	65	0	143	7	18	60	78	0	156	12	299
					В	REAK							
16:00 - 17:00	36	47	102	0	185	8	50	47	100	0	197	1	382
17:00 - 18:00	33	39	69	0	141	7	52	39	91	0	182	10	323
GRAND TOTAL	148	123	282	0	553	23	133	159	330	0	622	23	1175

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

North Approach - Hwy 50 (Queen St S)

			C				-					ъ.				
			Cars	_			- 11	rucks				BIG	cycles	_		
Start Time	4	1	•	1	Total	•	1	•	J	Total	4	1	•	J	Total	Total Peds
07:00	3	202	1	0	206	1	0	0	0	1	0	0	0	0	0	0
07:15	4	194	1	0	199	1	7	0	0	8	0	0	0	0	0	0
07:30	8	216	3	0	227	0	1	0	0	1	0	0	0	0	0	2
07:45	13	231	7	0	251	0	11	0	0	11	0	0	0	0	0	0
08:00	13	193	5	0	211	0	6	0	0	6	0	0	0	0	0	0
08:15	20	214	3	0	237	0	7	0	0	7	0	0	0	0	0	6
08:30	38	178	6	0	222	4	6	0	0	10	0	0	0	0	0	17
08:45	21	175	8	0	204	0	4	0	0	4	0	0	0	0	0	10
SUBTOTAL	120	1603	34	0	1757	6	42	0	0	48	0	0	0	0	0	35

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

North Approach - Hwy 50 (Queen St S)

			Cars				Ti	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	Q.	Total	4	1	•	1	Total	Total Peds
16:00	20	157	8	0	185	0	6	0	0	6	0	0	0	0	0	3
16:15	12	159	9	0	180	0	4	0	0	4	0	0	0	0	0	2
16:30	14	146	4	0	164	0	1	0	0	1	0	0	0	0	0	0
16:45	20	144	5	0	169	1	4	0	0	5	0	0	0	0	0	3
17:00	26	147	6	0	179	0	0	0	0	0	0	0	0	0	0	0
17:15	16	133	8	0	157	0	1	0	0	1	0	0	0	0	0	4
17:30	23	159	7	0	189	0	1	0	0	1	0	0	0	0	0	3
17:45	20	126	5	0	151	0	1	0	0	1	0	0	0	0	0	0
SUBTOTAL	151	1171	52	0	1374	1	18	0	0	19	0	0	0	0	0	15
GRAND TOTAL	271	2774	86	0	3131	7	60	0	0	67	0	0	0	0	0	50

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

South Approach - Hwy 50 (Queen St S)

			Cars				Ti	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	J.	Total	4	1	•	1	Total	Total Peds
07:00	8	82	5	0	95	0	2	1	0	3	0	0	0	0	0	0
07:15	7	67	0	0	74	1	6	2	0	9	0	0	0	0	0	0
07:30	10	79	3	0	92	2	3	0	0	5	0	0	0	0	0	0
07:45	8	88	2	0	98	0	8	0	0	8	0	0	0	0	0	0
08:00	12	96	4	0	112	1	3	1	0	5	0	0	0	0	0	0
08:15	5	105	5	0	115	1	1	1	0	3	0	0	0	0	0	0
08:30	16	86	7	0	109	3	3	1	0	7	0	0	0	0	0	0
08:45	12	117	5	0	134	1	5	1	0	7	0	0	0	0	0	1
SUBTOTAL	78	720	31	0	829	9	31	7	0	47	0	0	0	0	0	1

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

South Approach - Hwy 50 (Queen St S)

			Cars				Ti	rucks				Bi	cycles			
Start Time	•	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	29	286	4	0	319	0	1	0	0	1	0	0	0	0	0	0
16:15	25	293	4	0	322	1	4	1	0	6	0	0	0	0	0	2
16:30	25	332	7	0	364	0	2	1	0	3	0	0	0	0	0	0
16:45	27	296	5	0	328	0	1	0	0	1	0	0	0	0	0	0
17:00	15	267	5	0	287	0	2	0	0	2	0	0	0	0	0	2
17:15	30	276	7	0	313	0	0	0	0	0	0	0	0	0	0	0
17:30	36	301	5	0	342	0	0	0	0	0	0	0	0	0	0	5
17:45	42	324	7	0	373	0	1	0	0	1	0	0	0	0	0	1
SUBTOTAL	229	2375	44	0	2648	1	11	2	0	14	0	0	0	0	0	10
GRAND TOTAL	307	3095	75	0	3477	10	42	9	0	61	0	0	0	0	0	11

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

East Approach - Ellwood Dr E

			Cars				Ti	rucks				Bio	cycles			
Start Time	4	1	•	Q	Total	4	1	•	Q.	Total	4	1	•	1	Total	Total Peds
07:00	5	3	5	0	13	0	0	0	0	0	0	0	0	0	0	0
07:15	5	0	8	0	13	0	1	0	0	1	0	0	0	0	0	0
07:30	6	3	13	0	22	2	0	3	0	5	0	0	0	0	0	1
07:45	9	2	15	0	26	2	0	2	0	4	0	0	0	0	0	0
08:00	6	3	12	0	21	0	0	1	0	1	0	0	0	0	0	0
08:15	5	3	11	0	19	0	0	1	0	1	0	0	0	0	0	0
08:30	12	7	17	0	36	2	0	1	0	3	0	0	0	0	0	3
08:45	23	14	20	0	57	2	1	2	0	5	0	0	0	0	0	4
SUBTOTAL	71	35	101	0	207	8	2	10	0	20	0	0	0	0	0	8

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

East Approach - Ellwood Dr E

			Cars				Ti	rucks				Bi	cycles			
Start Time	4	1	-	1	Total	4	1	•	Q	Total	4	1	•	1	Total	Total Peds
16:00	5	8	26	0	39	1	0	0	0	1	0	0	0	0	0	3
16:15	6	17	33	0	56	0	0	0	0	0	0	0	0	0	0	1
16:30	10	11	14	0	35	0	0	1	0	1	0	0	0	0	0	2
16:45	14	11	28	0	53	0	0	0	0	0	0	0	0	0	0	2
17:00	8	17	16	0	41	0	0	1	0	1	0	0	0	0	0	3
17:15	8	7	20	0	35	0	0	0	0	0	0	0	0	0	0	1
17:30	11	9	13	0	33	0	0	0	0	0	0	0	0	0	0	3
17:45	6	5	19	0	30	0	1	0	0	1	0	0	0	0	0	0
SUBTOTAL	68	85	169	0	322	1	1	2	0	4	0	0	0	0	0	15
GRAND TOTAL	139	120	270	0	529	9	3	12	0	24	0	0	0	0	0	23

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

West Approach - Ellwood Dr W

			Cars				Ti	rucks				Bio	cycles			
Start Time	4	1	•	Q	Total	4	1	•	Q	Total	4	1	•	1	Total	Total Peds
07:00	1	1	13	0	15	0	1	0	0	1	0	0	0	0	0	0
07:15	2	3	20	0	25	0	0	0	0	0	0	0	0	0	0	0
07:30	5	4	14	0	23	1	0	0	0	1	0	0	0	0	0	0
07:45	3	4	14	0	21	1	0	0	0	1	0	0	0	0	0	0
08:00	4	3	16	0	23	1	0	0	0	1	0	0	0	0	0	2
08:15	7	9	22	0	38	0	1	0	0	1	0	0	0	0	0	1
08:30	3	29	16	0	48	0	2	1	0	3	0	1	0	0	1	7
08:45	3	15	22	0	40	0	0	1	0	1	0	0	0	0	0	2
SUBTOTAL	28	68	137	0	233	3	4	2	0	9	0	1	0	0	1	12

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: 2424800004

Municipality: Bolton

Count Date: Jun 05, 2024

West Approach - Ellwood Dr W

			Cars				Tı	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	10	10	30	0	50	0	0	1	0	1	0	0	0	0	0	0
16:15	18	5	26	0	49	0	0	0	0	0	0	0	0	0	0	0
16:30	10	18	26	0	54	0	0	0	0	0	0	0	0	0	0	0
16:45	12	14	16	0	42	0	0	1	0	1	0	0	0	0	0	1
17:00	21	10	19	0	50	0	1	1	0	2	0	0	0	0	0	1
17:15	9	13	25	0	47	0	0	0	0	0	0	0	0	0	0	4
17:30	16	9	27	0	52	0	0	0	0	0	0	0	0	0	0	3
17:45	5	6	18	0	29	1	0	1	0	2	0	0	0	0	0	2
SUBTOTAL	101	85	187	0	373	1	1	4	0	6	0	0	0	0	0	11
GRAND TOTAL	129	153	324	0	606	4	5	6	0	15	0	1	0	0	1	23

Peak Hour Diagram

Specified Period

One Hour Peak

From: To: 07:00:00 09:00:00

From: 08:00:00 To: 09:00:00

Intersection:

Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: Count Date: 2424800004 Jun 05, 2024 weatn conditi

Weather conditions:

Clear

** Signalized Intersection **

Major Road: Hwy 50 (Queen St S) runs N/S

North Approach

	Out	In	Total
	874	481	1355
	27	18	45
<i>₫</i>	0	0	0
	901	499	1400

Hwy 50 (Queen St S)

	48	1	L	Ú
Totals	22	783	96	0
	22	760	92	0
₽	0	23	4	0
<i>₫</i> %	0	0	0	0

East Approach

	Out	In	Total
	133	169	302
	10	11	21
ॐ	0	1	1
	143	181	324

Ellwood Dr W

	Totals			₫%	
7	0	0	0	0	
4	18	17	1	0	
→	60	56	3	1	
4	78	76	2	0	

Peds: 33

Peds: 12

Ellwood Dr E

	Totals			₫
C	0	0	0	0
£	65	60	5	0
-	28	27	1	0
F	50	46	4	0

West Approach

	Out	In	Total
	149	94	243
	6	7	13
<i>₹</i>	1	0	1
	156	101	257

	4	1		.1
Totals	51	416	25	0
⊟	45	404	21	0
	6	12	4	0
<i>₫</i> %	0	0	0	0

Peds: 1

Hwy 50 (Queen St S)

South Approach

	Out	In	Total
	470	882	1352
	22	29	51
ॐ	0	0	0
	492	911	1403

🚨 - Trucks

- Bicycles

Comments

Peak Hour Summary

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

 Site Code:
 2424800004

 Count Date:
 Jun 05, 2024

 Period:
 07:00 - 09:00

Peak Hour Data (08:00 - 09:00)

		N Hw	North A y 50 (C	Approac Queen S	h St S)					pproac Queen S					East Ap Ellwo	pproach od Dr E	1				West Ap Ellwoo	proacl d Dr W	1		Total Vehicl	
Start Time	4	1	P	J	Peds	Total	4	1	P	J	Peds	Total	4	1	P	J	Peds	Total	4	1	•	J	Peds	Total	es	
08:00	13	199	5	0	0	217	13	99	5	0	0	117	6	3	13	0	0	22	5	3	16	0	2	24	380	
08:15	20	221	3	0	6	244	6	106	6	0	0	118	5	3	12	0	0	20	7	10	22	0	1	39	421	
08:30	42	184	6	0	17	232	19	89	8	0	0	116	14	7	18	0	3	39	3	32	17	0	7	52	439	
08:45	21	179	8	0	10	208	13	122	6	0	1	141	25	15	22	0	4	62	3	15	23	0	2	41	452	
Grand Total	96	783	22	0	33	901	51	416	25	0	1	492	50	28	65	0	7	143	18	60	78	0	12	156	1692	
Approach %	10.7	86.9	2.4	0		-	10.4	84.6	5.1	0		-	35	19.6	45.5	0		-	11.5	38.5	50	0		-		
Totals %	5.7	46.3	1.3	0		53.3	3	24.6	1.5	0	,	29.1	3	1.7	3.8	0	,	8.5	1.1	3.5	4.6	0	,	9.2		
PHF	0.57	0.89	0.69	0		0.92	0.67	0.85	0.78	0		0.87	0.5	0.47	0.74	0		0.58	0.64	0.47	0.85	0		0.75	0.94	
Cars	92	760	22	0		874	45	404	21	0		470	46	27	60	0		133	17	56	76	0		149	1626	
% Cars	95.8	97.1	100	0		97	88.2	97.1	84	0		95.5	92	96.4	92.3	0		93	94.4	93.3	97.4	0		95.5	96.1	
Trucks	4	23	0	0		27	6	12	4	0		22	4	1	5	0		10	1	3	2	0		6	65	
% Trucks	4.2	2.9	0	0		3	11.8	2.9	16	0		4.5	8	3.6	7.7	0		7	5.6	5	2.6	0		3.8	3.8	
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	1	
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	1.7	0	0		0.6	0.1	
Peds					33	-					1	-					7	-					12	-	53	
% Peds					62.3	-					1.9	-					13.2	-					22.6	-		

Peak Hour Diagram

Specified Period

One Hour Peak

From: To:

16:00:00 18:00:00

From: 16:00:00 To: 17:00:00

Intersection:

Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

Site Code: **Count Date:** Jun 05, 2024

2424800004

Weather conditions:

Clear

** Signalized Intersection **

Major Road: Hwy 50 (Queen St S) runs N/S

North Approach

	Out	In	Total
	698	1358	2056
	16	9	25
ॐ	0	0	0
	714	1367	2081

Hwy 50 (Queen St S)

	48	1	L	Ú
Totals	26	621	67	0
	26	606	66	0
	0	15	1	0
<i>₫</i>	0	0	0	0

East Approach

	Out	In	Total
	183	133	316
	2	3	5
₩	0	0	0
	185	136	321

Ellwood Dr W

	Totals			₫ %	
7	0	0	0	0	
4	50	50	0	0	
→	47	47	0	0	
4	100	98	2	0	

Peds: 8

Ellwood Dr E

	Totals			ණි
C	0	0	0	0
Ł	102	101	1	0
-	47	47	0	0
F	36	35	1	0

West Approach

	Out	In	Total
	195	179	374
	2	1	3
<i>₹</i>	0	0	0
	197	180	377

	4	1		.1
Totals	107	1215	22	0
	106	1207	20	0
	1	8	2	0
<i>₫</i>	0	0	0	0

Peds: 2

Hwy 50 (Queen St S)

South Approach

	Out	ln	Total
	1333	739	2072
	11	18	29
<i>₫</i>	0	0	0
	1344	757	2101

🚨 - Trucks

- Bicycles

Comments

Peak Hour Summary

Intersection: Hwy 50 (Queen St S) & Ellwood Dr E - Ellwood Dr W

 Site Code:
 2424800004

 Count Date:
 Jun 05, 2024

 Period:
 16:00 - 18:00

Peak Hour Data (16:00 - 17:00)

		N Hw	North A y 50 (C	pproac Queen S	h St S)					pproac Queen S					East Ap Ellwoo	proach od Dr E	1			1	West Ap Ellwoo	oproach d Dr W	1		Total Vehicl
Start Time	4	1	P	J	Peds	Total	4	1	•	J	Peds	Total	4	1	•	J	Peds	Total	4	1	•	J	Peds	Total	es
16:00	20	163	8	0	3	191	29	287	4	0	0	320	6	8	26	0	3	40	10	10	31	0	0	51	602
16:15	12	163	9	0	2	184	26	297	5	0	2	328	6	17	33	0	1	56	18	5	26	0	0	49	617
16:30	14	147	4	0	0	165	25	334	8	0	0	367	10	11	15	0	2	36	10	18	26	0	0	54	622
16:45	21	148	5	0	3	174	27	297	5	0	0	329	14	11	28	0	2	53	12	14	17	0	1	43	599
Grand Total	67	621	26	0	8	714	107	1215	22	0	2	1344	36	47	102	0	8	185	50	47	100	0	1	197	2440
Approach %	9.4	87	3.6	0		-	8	90.4	1.6	0		-	19.5	25.4	55.1	0		-	25.4	23.9	50.8	0		-	
Totals %	2.7	25.5	1.1	0		29.3	4.4	49.8	0.9	0		55.1	1.5	1.9	4.2	0		7.6	2	1.9	4.1	0		8.1	
PHF	0.8	0.95	0.72	0		0.93	0.92	0.91	0.69	0		0.92	0.64	0.69	0.77	0		0.83	0.69	0.65	0.81	0		0.91	0.98
Cars	66	606	26	0		698	106	1207	20	0		1333	35	47	101	0		183	50	47	98	0		195	2409
% Cars	98.5	97.6	100	0		97.8	99.1	99.3	90.9	0		99.2	97.2	100	99	0		98.9	100	100	98	0		99	98.7
Trucks	1	15	0	0		16	1	8	2	0		11	1	0	1	0		2	0	0	2	0		2	31
% Trucks	1.5	2.4	0	0		2.2	0.9	0.7	9.1	0		0.8	2.8	0	1	0		1.1	0	0	2	0		1	1.3
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					8	-					2	-					8	-					1	-	19
% Peds					42.1	-					10.5	-					42.1	-					5.3	-	

		REGIONAL MUN Traffic Signa	_	_	PEEL					
Database	Date	May 31, 2024			Pre	pared Date		June 4, 202	4	
Database	Rev	iNET	1		Cor	npleted By		N.R.L		
Timing Ca	rd / Field rev	9	1		С	hecked By	J.V			
Location		Highwa	y 50 and	Ellwood D	rive					
Phase #	Street Name - Direction	Vehicle Minimum (s)		estrian num (s)	Amber (s)	All Red (s)		IME PERIOD en+Amber+ <i>F</i> OFF		
		(0)	WALK	FDWALK	(-)	(-)	SPLITS	SPLITS	SPLITS	
1	Not In Use	-	-	-	-	-	-	-	-	
2	Highway 50 - Southbound	10	10	16	4	2.3	80	65	102	
3	Not In Use	-	-	-	-	-	-	-	-	
4	Ellwood Drive - Westbound	10	10	25	4	3.6	40	45	38	
5	Highway 50 - SBLT Prot. Perm.	5	0	0	3	0	9	9	9	
6	Highway 50 - Northbound	10	10	16	4	2.3	71	56	93	
7	Not In Use	-	-	-	-	-	-	-	-	
8	Ellwood Drive - Eastbound	10	10	25	4	3.6	40	45	38	
	System Control			TIME	(M-F)	PEAK	CYCLE L	ENGTH (s)	OFFSET (s)	
	Yes			06:00	- 09:00	AM	1	20	55	
	Semi-Actuated Mode			09:00	- 14:00	OFF	1	10	81	
	Yes			14:00	- 20:00	PM	1	40	107	

Project #24-248 - CGE Transportation Consulting

Intersection Count Report

Intersection: Hwy 50 (Queen St S) & Shore St

Municipality: Bolton

Count Date: Wednesday, Jun 05, 2024

Site Code: 2424800001

Count Categories: Cars, Trucks, Bicycles, Pedestrians

Count Period: 07:00-09:00, 16:00-18:00

Weather: Clear

Comments:

Traffic Count Map

Intersection: Hwy 50 (Queen St S) & Shore St

data ©2024 Imagery ©2024 Airbus, CNES / Airbus, Maxar Technologies

Site Code: 2424800001 Municipality: Bolton

Municipality: Bolton
Count Date: Jun 05, 2024

Early Learners Montessori School...

Traffic Count Summary

Intersection: Hwy 50 (Queen St S) & Shore St

Site Code: 2424800001 Municipality: Bolton

Count Date: Jun 05, 2024

Hwy 50 (Queen St S) - Traffic Summary

		North	Appr	oach T	otals			South	Appr	oach T	otals		
		Include	s Cars, 1	rucks, B	icycles			Include	s Cars, 1	Trucks, Bi	icycles		
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	0	897	3	0	900	0	1	394	0	0	395	0	1295
08:00 - 09:00	0	900	8	0	908	0	6	485	0	0	491	0	1399
					В	REAK							
16:00 - 17:00	0	703	11	0	714	0	20	1296	0	0	1316	0	2030
17:00 - 18:00	0	667	16	0	683	0	10	1218	0	1	1229	0	1912
GRAND TOTAL	0	3167	38	0	3205	0	37	3393	0	1	3431	0	6636

Traffic Count Summary

Intersection: Hwy 50 (Queen St S) & Shore St

Site Code: 2424800001 Municipality: Bolton

Count Date: Jun 05, 2024

Shore St - Traffic Summary

		East	Appro	ach To	tals			West	Appro	oach To	otals		
		Include	s Cars, 1	Trucks, B	icycles			Include	s Cars, 1	Trucks, B	icycles		
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	0	0	0	0	0	0	0	0	4	0	4	2	4
08:00 - 09:00	0	0	0	0	0	0	3	0	3	0	6	5	6
					Е	BREAK							
16:00 - 17:00	0	0	0	0	0	0	8	0	16	0	24	4	24
17:00 - 18:00	0	0	0	0	0	0	17	0	12	0	29	8	29
GRAND TOTAL	0	0	0	0	0	0	28	0	35	0	63	19	63

Intersection: Hwy 50 (Queen St S) & Shore St

Site Code: 2424800001 Municipality: Bolton

Count Date: Jun 05, 2024

North Approach - Hwy 50 (Queen St S)

			Cars				Ti	rucks				Bi	cycles			
Start Time	•	1	•	1	Total	4	1	•	1	Total	-	1	-	1	Total	Total Peds
07:00	0	203	0	0	203	0	0	0	0	0	0	0	0	0	0	0
07:15	0	195	0	0	195	0	8	0	0	8	0	0	0	0	0	0
07:30	0	234	0	0	234	0	3	0	0	3	0	0	0	0	0	0
07:45	0	244	3	0	247	0	10	0	0	10	0	0	0	0	0	0
08:00	0	212	2	0	214	0	5	0	0	5	0	0	0	0	0	0
08:15	0	231	1	0	232	0	7	0	0	7	0	0	0	0	0	0
08:30	0	225	2	0	227	0	8	1	0	9	0	0	0	0	0	0
08:45	0	208	2	0	210	0	4	0	0	4	0	0	0	0	0	0
SUBTOTAL	0	1752	10	0	1762	0	45	1	0	46	0	0	0	0	0	0

Intersection: Hwy 50 (Queen St S) & Shore St

Site Code: 2424800001 Municipality: Bolton

Count Date: Jun 05, 2024

North Approach - Hwy 50 (Queen St S)

			Cars				Ti	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	Q	Total	4	1	•	1	Total	Total Peds
16:00	0	183	1	0	184	0	6	1	0	7	0	0	0	0	0	0
16:15	0	178	1	0	179	0	4	0	0	4	0	0	0	0	0	0
16:30	0	160	2	0	162	0	2	0	0	2	0	0	0	0	0	0
16:45	0	166	6	0	172	0	4	0	0	4	0	0	0	0	0	0
17:00	0	172	6	0	178	0	0	0	0	0	0	0	0	0	0	0
17:15	0	156	2	0	158	0	0	0	0	0	0	0	0	0	0	0
17:30	0	180	3	0	183	0	1	0	0	1	0	0	0	0	0	0
17:45	0	156	5	0	161	0	2	0	0	2	0	0	0	0	0	0
SUBTOTAL	0	1351	26	0	1377	0	19	1	0	20	0	0	0	0	0	0
GRAND TOTAL	0	3103	36	0	3139	0	64	2	0	66	0	0	0	0	0	0

Intersection: Hwy 50 (Queen St S) & Shore St

Site Code: 2424800001 Municipality: Bolton

Count Date: Jun 05, 2024

South Approach - Hwy 50 (Queen St S)

			Cars				1	Trucks				В	icycles			
Start Time	4	1	•	1	Total	4	1	•	Q.	Total	4	1	•	1	Total	Total Peds
07:00	0	87	0	0	87	0	2	0	0	2	0	0	0	0	0	0
07:15	0	80	0	0	80	0	6	0	0	6	0	0	0	0	0	0
07:30	0	92	0	0	92	0	7	0	0	7	0	0	0	0	0	0
07:45	1	109	0	0	110	0	11	0	0	11	0	0	0	0	0	0
08:00	2	111	0	0	113	0	6	0	0	6	0	0	0	0	0	0
08:15	1	117	0	0	118	0	2	0	0	2	0	0	0	0	0	0
08:30	1	105	0	0	106	0	4	0	0	4	0	0	0	0	0	0
08:45	2	133	0	0	135	0	7	0	0	7	0	0	0	0	0	0
SUBTOTAL	7	834	0	0	841	0	45	0	0	45	0	0	0	0	0	0

Intersection: Hwy 50 (Queen St S) & Shore St

Site Code: 2424800001 Municipality: Bolton

Count Date: Jun 05, 2024

South Approach - Hwy 50 (Queen St S)

		Cars					Т	rucks				Ri	cycles			
Start Time	4	1	r curs	A	Total	4	1	P	Q	Total	4	1	P	4	Total	Total Peds
16:00	7	305	0	0	312	0	1	0	0	1	0	0	0	0	0	0
16:15	7	334	0	0	341	0	5	0	0	5	0	0	0	0	0	0
16:30	1	335	0	0	336	0	2	0	0	2	0	0	0	0	0	0
16:45	5	313	0	0	318	0	1	0	0	1	0	0	0	0	0	0
17:00	1	289	0	0	290	1	2	0	0	3	0	0	0	0	0	0
17:15	5	277	0	0	282	0	0	0	0	0	0	0	0	0	0	0
17:30	2	323	0	0	325	0	0	0	0	0	0	0	0	0	0	0
17:45	1	325	0	1	327	0	2	0	0	2	0	0	0	0	0	0
SUBTOTAL	29	2501	0	1	2531	1	13	0	0	14	0	0	0	0	0	0
GRAND TOTAL	36	3335	0	1	3372	1	58	0	0	59	0	0	0	0	0	0

Intersection: Hwy 50 (Queen St S) & Shore St

Site Code: 2424800001

Municipality: Bolton

Count Date: Jun 05, 2024

West Approach - Shore St

			Cars				T	rucks				Bi	icycles			
Start Time	•	1	•	1	Total	4	1	•	1	Total	4	1	-	1	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	3	0	3	0	0	0	0	0	0	0	0	0	0	2
08:00	1	0	0	0	1	0	0	1	0	1	0	0	0	0	0	2
08:15	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
08:45	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	3	0	6	0	9	0	0	1	0	1	0	0	0	0	0	7

Intersection: Hwy 50 (Queen St S) & Shore St

Site Code: 2424800001 Municipality: Bolton

Count Date: Jun 05, 2024

West Approach - Shore St

			Cars			Trucks						Bi	icycles			
Start Time	4	1		J	Total	4	1	•	J.	Total	4	1	•	1	Total	Total Peds
16:00	3	0	3	0	6	0	0	1	0	1	0	0	0	0	0	0
16:15	4	0	3	0	7	0	0	0	0	0	0	0	0	0	0	3
16:30	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0	1
16:45	1	0	5	0	6	0	0	0	0	0	0	0	0	0	0	0
17:00	4	0	6	0	10	0	0	0	0	0	0	0	0	0	0	0
17:15	3	0	3	0	6	0	0	1	0	1	0	0	0	0	0	2
17:30	3	0	0	0	3	0	0	0	0	0	0	0	0	0	0	5
17:45	7	0	2	0	9	0	0	0	0	0	0	0	0	0	0	1
SUBTOTAL	25	0	26	0	51	0	0	2	0	2	0	0	0	0	0	12
GRAND TOTAL	28	0	32	0	60	0	0	3	0	3	0	0	0	0	0	19

Peak Hour Diagram

Specified Period

One Hour Peak

From:

07:00:00 09:00:00 From: 07:45:00

To:

To: 08:45:00

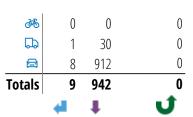
Intersection: Hwy 50 (Queen St S) & Shore St

 Site Code:
 2424800001

 Count Date:
 Jun 05, 2024

Weather conditions:

Clear


** Unsignalized Intersection **

Major Road: Hwy 50 (Queen St S) runs N/S

North Approach

	Out	In	Total
	920	444	1364
	31	23	54
<i>₫</i>	0	0	0
	951	467	1418

Hwy 50 (Queen St S)

Peds: 0

Shore St

	Totals			<i>₫</i>
7	0	0	0	0
4	2	2	0	0
4	5	4	1	0

Out

₫**%**

6

1

7

West Approach

13

1

14

In Total

19

2

0

21

Peds: 0

	4	1	J
Totals	5	465	0
	5	442	0
	0	23	0
<i>₫</i>	0	0	0

Hwy 50 (Queen St S)

South Approach

	Out	In	Total
	447	916	1363
<u>ا</u>	23	31	54
秀	0	0	0
	470	947	1417

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Hwy 50 (Queen St S) & Shore St

 Site Code:
 2424800001

 Count Date:
 Jun 05, 2024

 Period:
 07:00 - 09:00

Peak Hour Data (07:45 - 08:45)

		N Hw	North A y 50 (C	pproac Queen S	:h St S)			S Hw	outh A y 50 (0	Approac Queen S	h St S)				East A	pproacl	h			1	West A Sho	pproacl re St	h		Total Vehicl
Start Time	4	1	P	J	Peds	Total	4	1	P	J	Peds	Total	4	1	P	J	Peds	Total	4	1	P	J	Peds	Total	es
07:45		254	3	0	0	257	1	120		0	0	121					0		0		3	0	2	3	381
08:00		217	2	0	0	219	2	117		0	0	119					0		1		1	0	2	2	340
08:15		238	1	0	0	239	1	119		0	0	120					0		1		1	0	0	2	361
08:30		233	3	0	0	236	1	109		0	0	110					0		0		0	0	3	0	346
Grand Total		942	9	0	0	951	5	465		0	0	470					0	0	2		5	0	7	7	1428
Approach %		99.1	0.9	0		-	1.1	98.9		0		-						-	28.6		71.4	0		-	
Totals %		66	0.6	0		66.6	0.4	32.6		0		32.9						0	0.1		0.4	0		0.5	
PHF		0.93	0.75	0		0.93	0.63	0.97		0		0.97						0	0.5		0.42	0		0.58	0.94
Cars		912	8	0		920	5	442		0		447						0	2		4	0		6	1373
% Cars		96.8	88.9	0		96.7	100	95.1		0		95.1						0	100		80	0		85.7	96.1
Trucks		30	1	0		31	0	23		0		23						0	0		1	0		1	55
% Trucks		3.2	11.1	0		3.3	0	4.9		0		4.9						0	0		20	0		14.3	3.9
Bicycles		0	0	0		0	0	0		0		0						0	0		0	0		0	0
% Bicycles		0	0	0		0	0	0		0		0						0	0		0	0		0	0
Peds					0	-					0	-					0	-					7	-	7
% Peds					0	-					0	-					0	-					100	-	

Peak Hour Diagram

Specified Period

One Hour Peak

From: To: 16:00:00 18:00:00 From: To: 16:00:00 17:00:00

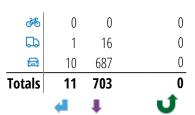
Intersection: Hwy 50 (Queen St S) & Shore St

 Site Code:
 2424800001

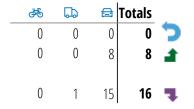
 Count Date:
 Jun 05, 2024

Weather conditions:

Clear


** Unsignalized Intersection **

Major Road: Hwy 50 (Queen St S) runs N/S


North Approach

	Out	In	Total
	697	1295	1992
	17	9	26
ॐ	0	0	0
	714	1304	2018

Hwy 50 (Queen St S)

Shore St

Out 23

1

24

₫**%**

West Approach

30

1

31

In Total

53

2

0

55

Peds: 0

Peds: 0

	4	1	Q
Totals	20	1296	0
	20	1287	0
다	0	9	0
<i>₫</i> %	0	0	0

Hwy 50 (Queen St S)

South Approach

	Out	In	Total
	1307	702	2009
	9	17	26
<i>₫</i>	0	0	0
	1316	719	2035

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Hwy 50 (Queen St S) & Shore St

 Site Code:
 2424800001

 Count Date:
 Jun 05, 2024

 Period:
 16:00 - 18:00

Peak Hour Data (16:00 - 17:00)

		N Hw	North A y 50 (C	Approac Queen S	ch St S)			S Hw	outh A y 50 (C	pproac Queen S	h it S)				East A	pproacl	1			Ī	West Ap Sho	pproacl re St	h		Total Vehicl
Start Time	4	1	•	J	Peds	Total	4	1	•	J	Peds	Total	•	1	•	J	Peds	Total	4	1	•	4	Peds	Total	es
16:00		189	2	0	0	191	7	306		0	0	313					0		3		4	0	0	7	511
16:15		182	1	0	0	183	7	339		0	0	346					0		4		3	0	3	7	536
16:30		162	2	0	0	164	1	337		0	0	338					0		0		4	0	1	4	506
16:45		170	6	0	0	176	5	314		0	0	319					0		1		5	0	0	6	501
Grand Total		703	11	0	0	714	20	1296		0	0	1316					0	0	8		16	0	4	24	2054
Approach %		98.5	1.5	0		-	1.5	98.5		0		-						-	33.3		66.7	0		-	
Totals %		34.2	0.5	0		34.8	1	63.1		0		64.1						0	0.4		0.8	0		1.2	
PHF		0.93	0.46	0		0.93	0.71	0.96		0		0.95						0	0.5		0.8	0		0.86	0.96
Cars		687	10	0		697	20	1287		0		1307						0	8		15	0		23	2027
% Cars		97.7	90.9	0		97.6	100	99.3		0		99.3						0	100		93.8	0		95.8	98.7
Trucks		16	1	0		17	0	9		0		9						0	0		1	0		1	27
% Trucks		2.3	9.1	0		2.4	0	0.7		0		0.7						0	0		6.3	0		4.2	1.3
Bicycles		0	0	0		0	0	0		0		0						0	0		0	0		0	0
% Bicycles		0	0	0		0	0	0		0		0						0	0		0	0		0	0
Peds					0	-					0	-					0	-					4	-	4
% Peds					0	-					0	-					0	-					100	-	

Project #24-248 - CGE Transportation Consulting

Intersection Count Report

Intersection: Shore St & East Site Access

Municipality: Bolton

Count Date: Wednesday, Jun 05, 2024

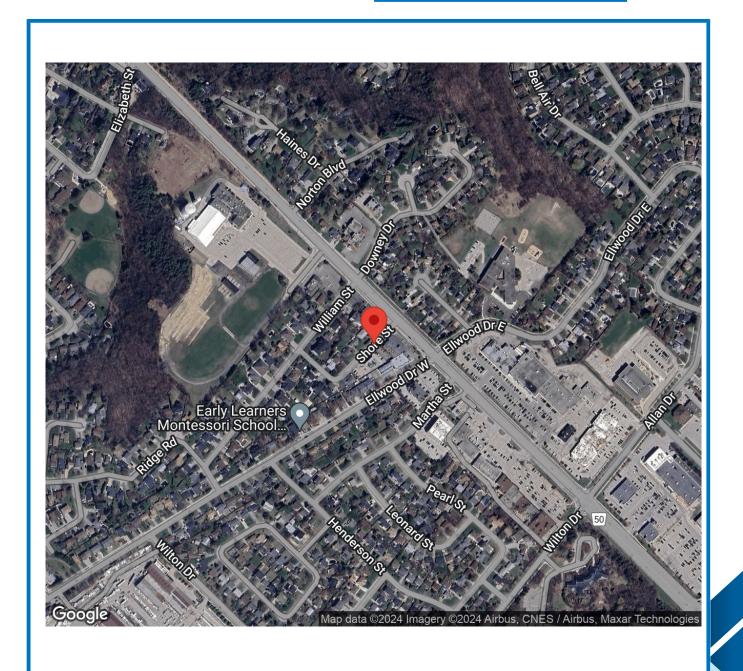
Site Code: 2424800003

Count Categories: Cars, Trucks, Bicycles, Pedestrians

Count Period: 07:00-09:00, 16:00-18:00

Weather: Clear

Comments:


Traffic Count Map

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

Traffic Count Summary

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

East Site Access - Traffic Summary

		North	Appr	oach T	otals			South	Appr	oach T	otals		
		Include	s Cars, 1	Trucks, Bi	icycles			Include	s Cars, 1	Trucks, Bi	icycles		
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	0	0	0	0	0	0	0	0	0	0	0	1	C
08:00 - 09:00	0	0	0	0	0	0	0	0	0	0	0	0	C
					Е	BREAK							
16:00 - 17:00	0	0	0	0	0	0	1	0	2	0	3	2	3
17:00 - 18:00	0	0	0	0	0	0	0	0	0	0	0	1	C
GRAND TOTAL	0	0	0	0	0	0	1	0	2	0	3	4	3

Traffic Count Summary

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

Shore St - Traffic Summary

		East	Appro	ach To	tals			West	Appro	oach To	otals		
		Include	s Cars, 1	Trucks, Bi	cycles			Include	s Cars, 1	Trucks, Bi	cycles		
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	0	3	0	0	3	0	0	4	0	0	4	0	7
08:00 - 09:00	0	6	0	0	6	0	0	6	0	0	6	0	12
					В	REAK							
16:00 - 17:00	4	13	0	0	17	0	0	9	1	0	10	0	27
17:00 - 18:00	1	8	0	0	9	0	0	6	0	0	6	0	15
GRAND TOTAL	5	30	0	0	35	0	0	25	1	0	26	0	61

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

South Approach - East Site Access

			Cars				Ti	rucks				В	icycles			
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

South Approach - East Site Access

			Cars				Tı	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0	1
16:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
SUBTOTAL	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0	3
GRAND TOTAL	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0	4

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

East Approach - Shore St

			Cars				1	Trucks				В	icycles			
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0
08:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
08:15	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0
08:30	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	9	0	0	9	0	0	0	0	0	0	0	0	0	0	0

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

East Approach - Shore St

			Cars				T	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	3	2	0	0	5	0	1	0	0	1	0	0	0	0	0	0
16:15	0	6	0	0	6	0	0	0	0	0	0	0	0	0	0	0
16:30	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0
16:45	1	2	0	0	3	0	0	0	0	0	0	0	0	0	0	0
17:00	0	3	0	0	3	1	0	0	0	1	0	0	0	0	0	0
17:15	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0
17:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	4	20	0	0	24	1	1	0	0	2	0	0	0	0	0	0
GRAND TOTAL	4	29	0	0	33	1	1	0	0	2	0	0	0	0	0	0

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

West Approach - Shore St

			Cars				т	rucks				Di.	cycles			
			Cais					iucks				DI	cycles			
Start Time	- 🐄	1		J	Total	-	1		J.	Total	-	1		J	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
07:45	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0
08:00	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	9	0	0	9	0	1	0	0	1	0	0	0	0	0	0

Intersection: Shore St & East Site Access

Site Code: 2424800003

Municipality: Bolton

Count Date: Jun 05, 2024

West Approach - Shore St

			Cars				Tı	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	0	3	0	0	3	0	1	0	0	1	0	0	0	0	0	0
16:15	0	1	1	0	2	0	0	0	0	0	0	0	0	0	0	0
16:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
16:45	0	2	0	0	2	0	1	0	0	1	0	0	0	0	0	0
17:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
17:15	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0
17:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
17:45	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	13	1	0	14	0	2	0	0	2	0	0	0	0	0	0
GRAND TOTAL	0	22	1	0	23	0	3	0	0	3	0	0	0	0	0	0

Peak Hour Diagram

Specified Period

One Hour Peak

From: To: 07:00:00 09:00:00 From: 07:45:00 To: 08:45:00

Shore St & East Site Access

 Site Code:
 2424800003

 Count Date:
 Jun 05, 2024

Intersection:

Weather conditions:

Clear

** Unsignalized Intersection **

Major Road: Shore St runs E/W

East Approach

	Out	ln	Total
	9	4	13
	0	1	1
ॐ	0	0	0
	9	5	14

Shore St

	Totals		ها	₹	
7	0	0	0	0	
→	5	4	1	0	
4	0	0	0	0	

Peds: 0

Shore St

	Totals			₫
C	0	0	0	0
+	9	9	0	0
F	0	0	0	0

West Approach

	Out	In	Total
	4	9	13
	1	0	1
<i>₹</i>	0	0	0
	5	9	14

Peds: 0

	4		.1
Totals	0	0	0
	0	0	0
	0	0	0
₫	0	0	0

East Site Access

South Approach

	Out	In	Total
	0	0	0
	0	0	0
₫ %	0	0	0
,	0	0	0

🚨 - Trucks

♣ - Bicycles

Comments

Peak Hour Summary

Intersection: Shore St & East Site Access

 Site Code:
 2424800003

 Count Date:
 Jun 05, 2024

 Period:
 07:00 - 09:00

Peak Hour Data (07:45 - 08:45)

			North /	Approac	:h		South Approach East Site Access								East A _l Sho	oproach re St	1		West Approach Shore St						Total Vehicl
Start Time	4	1	•	4	Peds	Total	4	1	•	1	Peds	Total	4	1	•	4	Peds	Total	4	1	•	4	Peds	Total	es
07:45					0		0		0	0	0	0	0	3		0	0	3		3	0	0	0	3	6
08:00					0		0		0	0	0	0	0	1		0	0	1		2	0	0	0	2	3
08:15					0		0		0	0	0	0	0	3		0	0	3		0	0	0	0	0	3
08:30					0		0		0	0	0	0	0	2		0	0	2		0	0	0	0	0	2
Grand Total					0	0	0		0	0	0	0	0	9		0	0	9		5	0	0	0	5	14
Approach %						-	0		0	0		-	0	100		0		-		100	0	0		-	
Totals %						0	0		0	0		0	0	64.3		0		64.3		35.7	0	0		35.7	
PHF						0	0		0	0		0	0	0.75		0		0.75		0.42	0	0		0.42	0.58
Cars						0	0		0	0		0	0	9		0		9		4	0	0		4	13
% Cars						0	0		0	0		0	0	100		0		100		80	0	0		80	92.9
Trucks						0	0		0	0		0	0	0		0		0		1	0	0		1	1
% Trucks						0	0		0	0		0	0	0		0		0		20	0	0		20	7.1
Bicycles						0	0		0	0		0	0	0		0		0		0	0	0		0	0
% Bicycles						0	0		0	0		0	0	0		0		0		0	0	0		0	0
Peds					0	-					0	-					0	-					0	-	0
% Peds					0	-					0	-					0	-					0	-	

Peak Hour Diagram

18:00:00

Specified Period

One Hour Peak

To:

From: To: 16:00:00

From: 16:00:00

17:00:00

Intersection:

Shore St & East Site Access

Site Code: Count Date: 2424800003 Jun 05, 2024 Weather conditions:

Clear

** Unsignalized Intersection **

Major Road: Shore St runs E/W

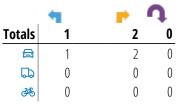
East Approach

	Out	ln	Total
	16	9	25
	1	2	3
ॐ	0	0	0
	17	11	28

Shore St

	Totals		ها	₹	
7	0	0	0	0	
→	9	7	2	0	
4	1	1	0	0	

Peds: 0



Shore St

	Totals			₫
C	0	0	0	0
-	13	12	1	0
F	4	4	0	0

West Approach

	Out	In	Total
	8	13	21
	2	1	3
<i>₹</i>	0	0	0
'	10	14	24

Peds: 2

East Site Access

South Approach

	Out	In	Total
	3	5	8
	0	0	0
₫ %	0	0	0
	3	5	8

Comments

Peak Hour Summary

Intersection: Shore St & East Site Access

 Site Code:
 2424800003

 Count Date:
 Jun 05, 2024

 Period:
 16:00 - 18:00

Peak Hour Data (16:00 - 17:00)

North Approach							South Approach East Site Access								East Ap Sho	pproach re St	1		West Approach Shore St						Total Vehicl
Start Time	4	t	•	1	Peds	Total	4	1	•	J	Peds	Total	4	1	•	•	Peds	Total	4	1	•	•	Peds	Total	es
16:00					0		1		1	0	1	2	3	3		0	0	6		4	0	0	0	4	12
16:15					0		0		1	0	0	1	0	6		0	0	6		1	1	0	0	2	9
16:30					0		0		0	0	1	0	0	2		0	0	2		1	0	0	0	1	3
16:45					0		0		0	0	0	0	1	2		0	0	3		3	0	0	0	3	6
Grand Total					0	0	1		2	0	2	3	4	13		0	0	17		9	1	0	0	10	30
Approach %						-	33.3		66.7	0		-	23.5	76.5		0		-		90	10	0		-	
Totals %						0	3.3		6.7	0		10	13.3	43.3		0		56.7		30	3.3	0		33.3	
PHF						0	0.25		0.5	0		0.38	0.33	0.54		0		0.71		0.56	0.25	0		0.63	0.63
Cars						0	1		2	0		3	4	12		0		16		7	1	0		8	27
% Cars						0	100		100	0		100	100	92.3		0		94.1		77.8	100	0		80	90
Trucks						0	0		0	0		0	0	1		0		1		2	0	0		2	3
% Trucks						0	0		0	0		0	0	7.7		0		5.9		22.2	0	0		20	10
Bicycles						0	0		0	0		0	0	0		0		0		0	0	0		0	0
% Bicycles						0	0		0	0		0	0	0		0		0		0	0	0		0	0
Peds					0	-					2	-					0	-					0	-	2
% Peds					0	-					100	-					0	-					0	-	

Project #24-248 - CGE Transportation Consulting

Intersection Count Report

Intersection: Shore St & West Site Access

Municipality: Bolton

Count Date: Wednesday, Jun 05, 2024

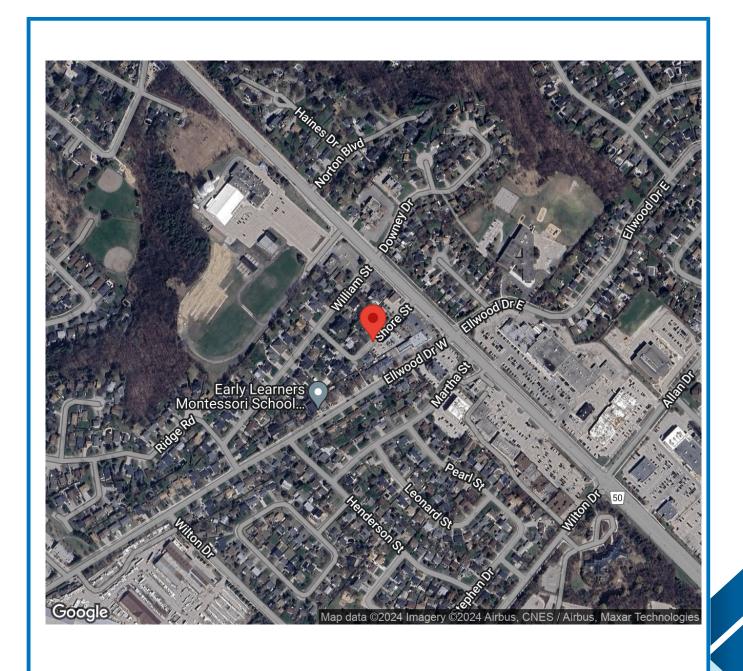
Site Code: 2424800002

Count Categories: Cars, Trucks, Bicycles, Pedestrians

Count Period: 07:00-09:00, 16:00-18:00

Weather: Clear

Comments:


Traffic Count Map

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton

Count Date: Jun 05, 2024

Traffic Count Summary

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton

Count Date: Jun 05, 2024

Commerical Entrance - Traffic Summary

		North	Appr	oach T	otals								
		Include	s Cars, 1	Γrucks, Bi	icycles		Includes Cars, Trucks, Bicycles						
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	0	0	0	0	0	0	0	0	0	0	0	8	0
08:00 - 09:00	0	0	0	0	0	0	0	0	0	0	0	9	0
					В	REAK							
16:00 - 17:00	0	0	0	0	0	0	0	0	4	0	4	2	4
17:00 - 18:00	0	0	0	0	0	0	1	0	6	0	7	7	7
GRAND TOTAL	0	0	0	0	0	0	1	0	10	0	11	26	11

Traffic Count Summary

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton
Count Date: Jun 05, 2024

Shore St - Traffic Summary

		East /	Appro	ach To	tals								
		Include	s Cars, 1	Trucks, Bi	icycles		Includes Cars, Trucks, Bicycles						
Hour	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00 - 08:00	0	3	0	0	3	0	0	3	0	0	3	0	6
08:00 - 09:00	3	1	0	0	4	0	0	7	0	0	7	0	11
					В	REAK							
16:00 - 17:00	4	11	0	1	16	0	0	6	0	0	6	0	22
17:00 - 18:00	0	8	0	0	8	0	0	2	1	0	3	0	11
GRAND TOTAL	7	23	0	1	31	0	0	18	1	0	19	0	50

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton

Count Date: Jun 05, 2024

North Approach - Commerical Entrance

			Cars				Ti	rucks				Bio	cycles			
Start Time	4	1	•	Q	Total	4	1	•	Q	Total	4	1	•	1	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton

Count Date: Jun 05, 2024

North Approach - Commerical Entrance

			Cars				Ti	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GRAND TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton

Count Date: Jun 05, 2024

South Approach - West Site Access

			Cars				Ti	rucks				Bio	cycles			
Start Time	4	1	•	Q	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
SUBTOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton

Count Date: Jun 05, 2024

South Approach - West Site Access

			Cars				Ti	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	0	0	3	0	3	0	0	0	0	0	0	0	0	0	0	1
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16:45	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	4
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:45	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0	1
SUBTOTAL	1	0	10	0	11	0	0	0	0	0	0	0	0	0	0	9
GRAND TOTAL	1	0	10	0	11	0	0	0	0	0	0	0	0	0	0	26

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton

Count Date: Jun 05, 2024

East Approach - Shore St

			Cars				Ti	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	A.	Total	4	1	•	1	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	3	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0
08:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	3	4	0	0	7	0	0	0	0	0	0	0	0	0	0	0

Intersection: Shore St & West Site Access

Site Code: 2424800002

Municipality: Bolton

Count Date: Jun 05, 2024

East Approach - Shore St

			Cars				Tı	rucks				Bi	cycles			
Start Time	4	1	•	Q.	Total	4	1	•	1	Total	4	1	•	1	Total	Total Peds
16:00	1	2	0	0	3	0	0	0	1	1	0	0	0	0	0	0
16:15	1	5	0	0	6	0	0	0	0	0	0	0	0	0	0	0
16:30	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
16:45	1	2	0	0	3	0	0	0	0	0	0	2	0	0	2	0
17:00	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0
17:15	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0
17:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	4	17	0	0	21	0	0	0	1	1	0	2	0	0	2	0
GRAND TOTAL	7	21	0	0	28	0	0	0	1	1	0	2	0	0	2	0

Intersection: Shore St & West Site Access

Site Code: 2424800002 Municipality: Bolton

Count Date: Jun 05, 2024

, , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ... , ...

West Approach - Shore St

			C				т.					D:				
			Cars				- 11	rucks	_			RI	cycles	_		
Start Time	4	1	•	J	Total	4	1		J	Total	4	1	•	J	Total	Total Peds
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
07:45	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0
08:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
08:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
08:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
08:45	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	9	0	0	9	0	1	0	0	1	0	0	0	0	0	0

Intersection: Shore St & West Site Access

Site Code: 2424800002 Municipality: Bolton

Count Date: Jun 05, 2024

West Approach - Shore St

			Cars				Ti	rucks				Bi	cycles			
Start Time	4	1	•	1	Total	4	1	•	J	Total	4	1	•	J	Total	Total Peds
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	1	0	0	1	0	1	0	0	1	0	2	0	0	2	0
17:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
SUBTOTAL	0	4	1	0	5	0	2	0	0	2	0	2	0	0	2	0
GRAND TOTAL	0	13	1	0	14	0	3	0	0	3	0	2	0	0	2	0

Peak Hour Diagram

Specified Period

One Hour Peak

From: 07:00:00 To: 09:00:00

From: 07:45:00 To: 08:45:00

Intersection: Shore St & West Site Access

 Site Code:
 2424800002

 Count Date:
 Jun 05, 2024

Weather conditions:

Clear

** Unsignalized Intersection **

Major Road: Shore St runs E/W

North Approach

	Out	In	Total
	0	0	0
	0	0	0
<i>₫</i>	0	0	0
,	0	0	0

Commerical Entrance

East Approach

	Out	In	Total
	7	5	12
	0	0	0
ॐ	0	0	0
,	7	5	12

Shore St

	Totals			₫ ®	
7	0	0	0	0	
4	0	0	0	0	
-	5	5	0	0	
4	0	0	0	0	

Peds: 0

Peds: 0

Shore St

	Totals			<i>₫</i>
C	0	0	0	0
£	0	0	0	0
-	4	4	0	0
F	3	3	0	0

West Approach

	Out	In	Total
	5	4	9
	0	0	0
<i>₫</i>	0	0	0
	5	4	9

	4	1		T.
Totals	0	0	0	0
⊟	0	0	0	0
다	0	0	0	0
<i>₫</i> ₺	0	0	0	0

Peds: 12

West Site Access

South Approach

	Out	In	Total
	0	3	3
	0	0	0
<i>₫</i>	0	0	0
	0	3	3

Comments

Peak Hour Summary

Intersection: Shore St & West Site Access

 Site Code:
 2424800002

 Count Date:
 Jun 05, 2024

 Period:
 07:00 - 09:00

Peak Hour Data (07:45 - 08:45)

		l Cor	North <i>F</i> nmeric	Approac al Entra	h ance		South Approach West Site Access							East Approach Shore St						West Approach Shore St					
Start Time	4	1	•	1	Peds	Total	4	1	•	1	Peds	Total	4	1	•	4	Peds	Total	4	1	•	J	Peds	Total	Vehicl es
07:45	0	0	0	0	0	0	0	0	0	0	7	0	0	3	0	0	0	3	0	2	0	0	0	2	5
08:00	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	1	1
08:15	0	0	0	0	0	0	0	0	0	0	3	0	3	0	0	0	0	3	0	1	0	0	0	1	4
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1	2
Grand Total	0	0	0	0	0	0	0	0	0	0	12	0	3	4	0	0	0	7	0	5	0	0	0	5	12
Approach %	0	0	0	0		-	0	0	0	0		-	42.9	57.1	0	0		-	0	100	0	0		-	
Totals %	0	0	0	0		0	0	0	0	0	,	0	25	33.3	0	0		58.3	0	41.7	0	0		41.7	
PHF	0	0	0	0		0	0	0	0	0		0	0.25	0.33	0	0		0.58	0	0.63	0	0		0.63	0.6
Cars	0	0	0	0		0	0	0	0	0		0	3	4	0	0		7	0	5	0	0		5	12
% Cars	0	0	0	0		0	0	0	0	0		0	100	100	0	0		100	0	100	0	0		100	100
Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0
Peds					0	-					12	-					0	-					0	-	12
% Peds					0	-					100	-					0	-					0	-	

Peak Hour Diagram

Specified Period

One Hour Peak

From: 16:00:00 To: 18:00:00 From: 16:00:00 To: 17:00:00

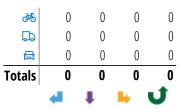
Intersection: Shore St & West Site Access

 Site Code:
 2424800002

 Count Date:
 Jun 05, 2024

Weather conditions:

Clear


** Unsignalized Intersection **

Major Road: Shore St runs E/W

North Approach

	Out	In	Total
	0	0	0
	0	0	0
<i>₫</i>	0	0	0
	0	0	0

Commerical Entrance

East Approach

	Out	In	Total
	13	7	20
	1	2	3
ॐ	2	2	4
	16	11	27

Shore St

	Totals			<i>₫</i>	
7	0	0	0	0	
4	0	0	0	0	
\Rightarrow	6	3	1	2	
4	0	0	0	0	

Peds: 0

Shore St

	Totals			<i>₫</i>
C	1	0	1	0
£	0	0	0	0
-	11	9	0	2
F	4	4	0	0

West Approach

	Out	In	Total
	3	9	12
	1	0	1
<i>₫</i>	2	2	4
	6	11	17

	4	1		J.
Totals	0	0	4	0
	0	0	4	0
	0	0	0	0
<i>₫</i>	0	0	0	0

Peds: 2

West Site Access

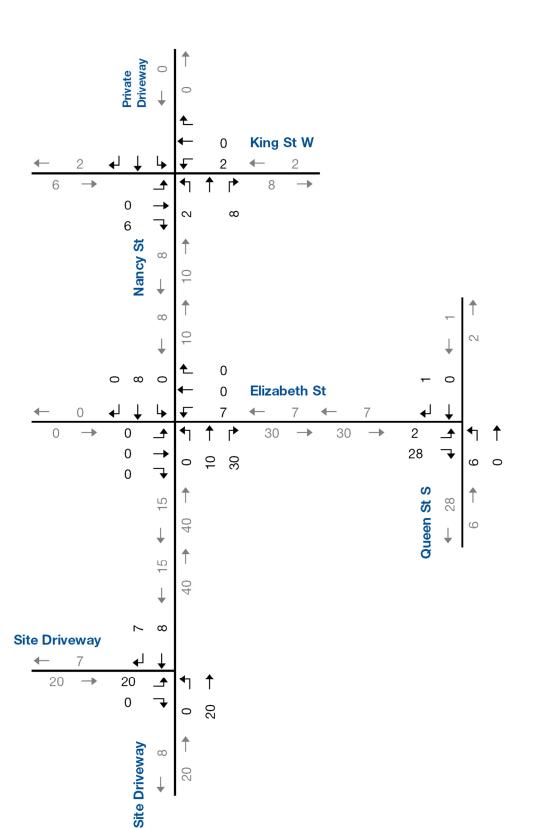
South Approach

	Out	In	Total
	4	4	8
	0	0	0
<i>₫</i>	0	0	0
	4	4	8

Comments

Peak Hour Summary

Intersection: Shore St & West Site Access

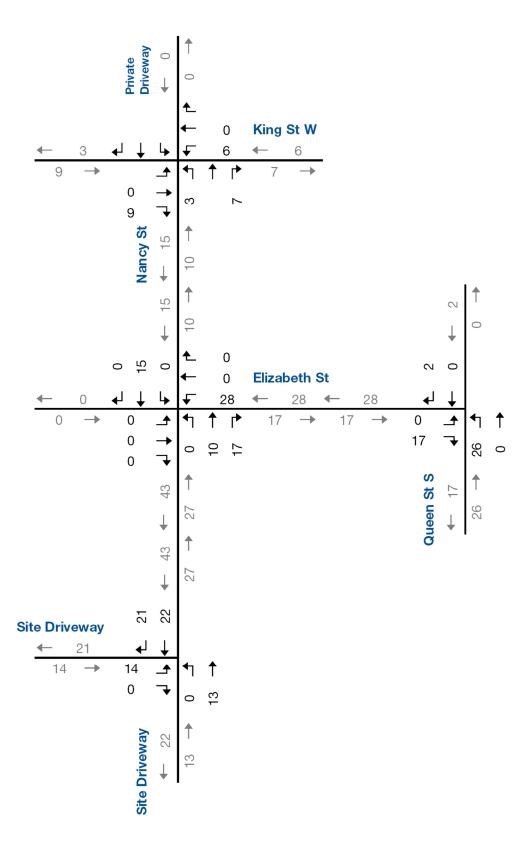

Site Code: 2424800002 Count Date: Jun 05, 2024

Period: 16:00 - 18:00

Peak Hour Data (16:00 - 17:00)

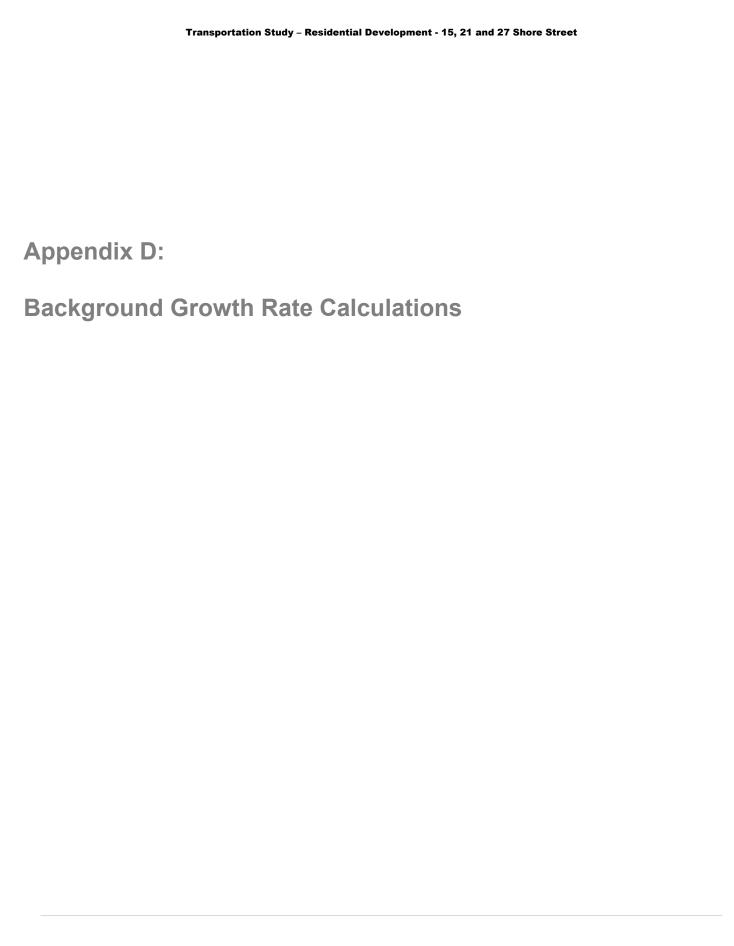
				Approac al Entra			South Approach West Site Access							East Approach Shore St							West Approach Shore St					
Start Time	4	1	•	4	Peds	Total	4	1	•	1	Peds	Total	4	1	•	1	Peds	Total	4	1	•	4	Peds	Total	Vehicl es	
16:00	0	0	0	0	0	0	0	0	3	0	1	3	1	2	0	1	0	4	0	0	0	0	0	0	7	
16:15	0	0	0	0	0	0	0	0	0	0	0	0	1	5	0	0	0	6	0	2	0	0	0	2	8	
16:30	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	1	
16:45	0	0	0	0	0	0	0	0	1	0	0	1	1	4	0	0	0	5	0	4	0	0	0	4	10	
Grand Total	0	0	0	0	0	0	0	0	4	0	2	4	4	11	0	1	0	16	0	6	0	0	0	6	26	
Approach %	0	0	0	0		-	0	0	100	0		-	25	68.8	0	6.3		-	0	100	0	0		-		
Totals %	0	0	0	0		0	0	0	15.4	0		15.4	15.4	42.3	0	3.8		61.5	0	23.1	0	0		23.1		
PHF	0	0	0	0		0	0	0	0.33	0		0.33	1	0.55	0	0.25		0.67	0	0.38	0	0		0.38	0.65	
Cars	0	0	0	0		0	0	0	4	0		4	4	9	0	0		13	0	3	0	0		3	20	
% Cars	0	0	0	0		0	0	0	100	0		100	100	81.8	0	0		81.3	0	50	0	0		50	76.9	
Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	1		1	0	1	0	0		1	2	
% Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	100		6.3	0	16.7	0	0		16.7	7.7	
Bicycles	0	0	0	0		0	0	0	0	0		0	0	2	0	0		2	0	2	0	0		2	4	
% Bicycles	0	0	0	0		0	0	0	0	0		0	0	18.2	0	0		12.5	0	33.3	0	0		33.3	15.4	
Peds					0	-					2	-					0	-					0	-	2	
% Peds					0	-					100	-					0	-					0	-		

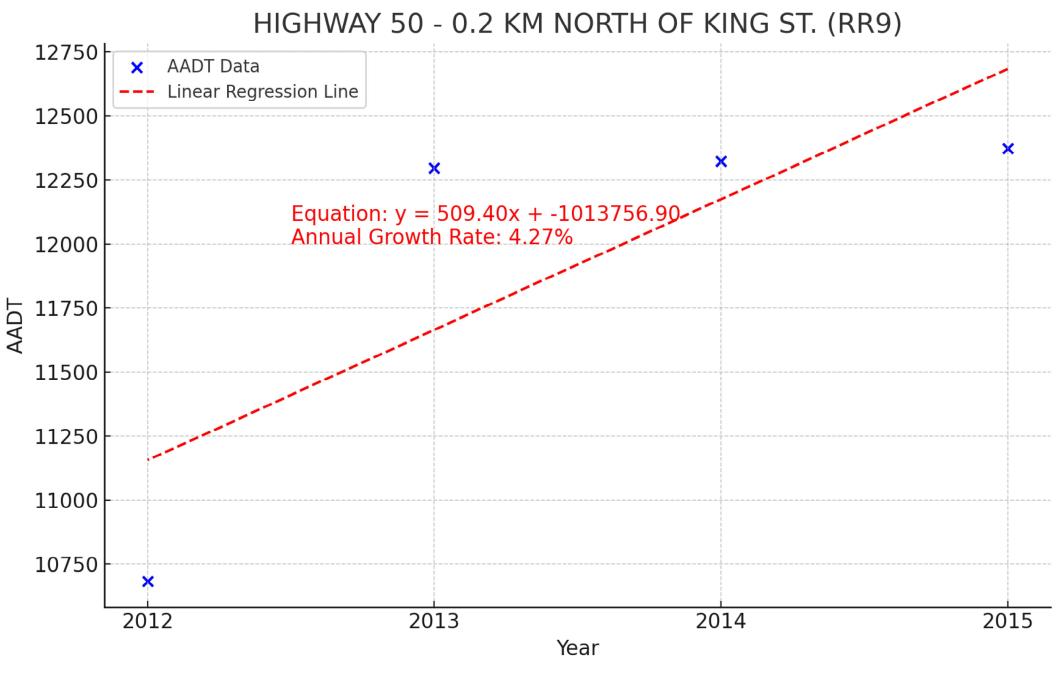
Transportation Study – Residential Development - 15, 21 and 27 Shore Street
Appendix C:
Background Development Study - Site Trips



NTS

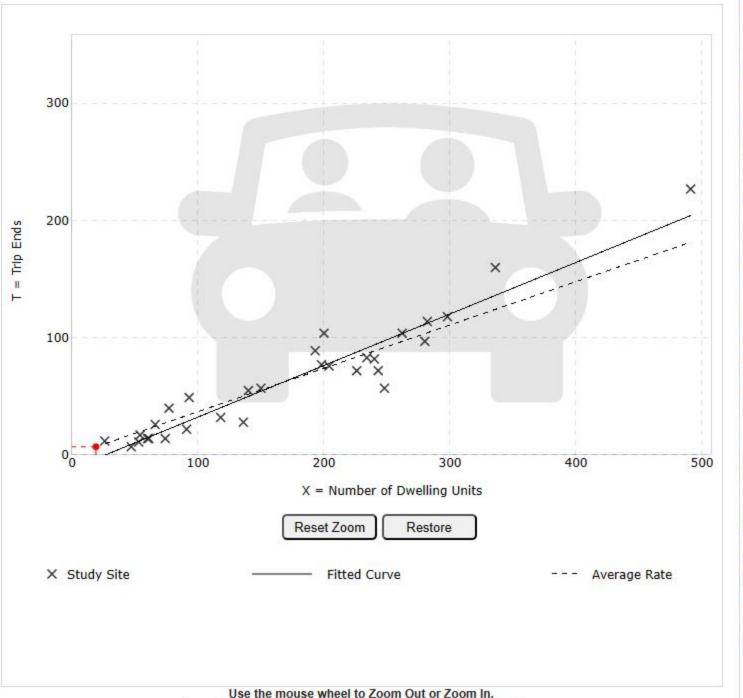
Estimated Site Generated
Traffic – AM Peak Hour





NTS

Estimated Site Generated Traffic – PM Peak Hour



Year	AADT
2015	12374
2014	12324
2013	12297
2012	10685

Transportation Study – Residential Development - 15, 21 and 27 Shore Street
Appendix E:
Trip Generation Graphs

Query Filter	
DATA SOURCE:	
Trip Generation Manual, 11th Ed	_ •
SEARCH BY LAND USE CODE:	
221	
LAND USE GROUP:	
(200-299) Residential	~
LAND USE:	
221 - Multifamily Housing (Mid-Rise)	~
LAND USE SUBCATEGORY:	
Not Close to Rail Transit	~
SETTING/LOCATION:	
General Urban/Suburban	~
INDEPENDENT VARIABLE (IV):	
Dwelling Units	~
TIME PERIOD:	
Weekday, Peak Hour of Adjacent Street Tra	ffic 🕶
TRIP TYPE:	
Vehicle	~
ENTER IV VALUE TO CALCULATE TRIPS:	
19 Calculate	
Trin and an advantage of the same and the sa	B
Trip ends are not estimated for some methods as negative values	it yields

Data Plot and Equation

Use the mouse wheel to Zoom Out or Zoom In. Hover the mouse pointer on data points to view X and T values.

DATA STATISTICS

Land Use:

Multifamily Housing (Mid-Rise) - Not Close to Rail Transit (221) Click for Description and Data Plots

Independent Variable:

Dwelling Units

Time Period:

Weekday

Peak Hour of Adjacent Street Traffic

One Hour Between 7 and 9 a.m.

Setting/Location:

General Urban/Suburban

Trip Type:

Vehicle

Number of Studies:

Avg. Num. of Dwelling Units:

Average Rate:

0.37

Range of Rates:

0.15 - 0.53

Standard Deviation:

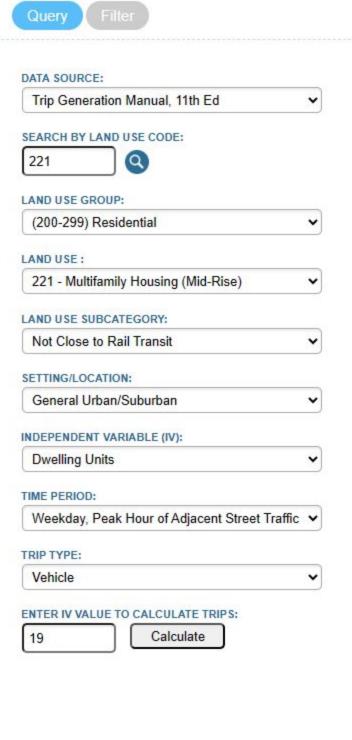
0.09

Fitted Curve Equation:

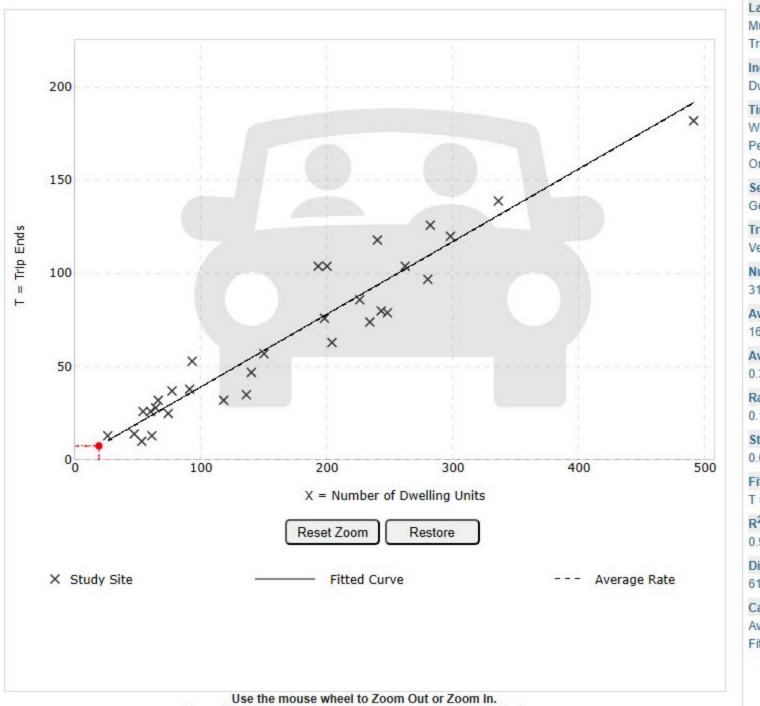
T = 0.44(X) - 11.61

R2:

0.91


Directional Distribution:

23% entering, 77% exiting


Calculated Trip Ends:

Average Rate: 7 (Total), 2 (Entry), 5 (Exit)

Fitted Curve: Not Available

Data Plot and Equation

Hover the mouse pointer on data points to view X and T values.

DATA STATISTICS

Land Use:

Multifamily Housing (Mid-Rise) - Not Close to Rail Transit (221) Click for Description and Data Plots

Independent Variable:

Dwelling Units

Time Period:

Weekday

Peak Hour of Adjacent Street Traffic

One Hour Between 4 and 6 p.m.

Setting/Location:

General Urban/Suburban

Trip Type:

Vehicle

Number of Studies:

31

Avg. Num. of Dwelling Units:

Average Rate:

0.39

Range of Rates:

0.19 - 0.57

Standard Deviation:

0.08

Fitted Curve Equation:

T = 0.39(X) + 0.34

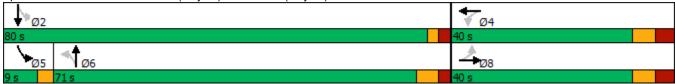
0.91

Directional Distribution:

61% entering, 39% exiting

Calculated Trip Ends:

Average Rate: 7 (Total), 5 (Entry), 2 (Exit)


Fitted Curve: 8 (Total), 5 (Entry), 3 (Exit)

Transportation Study – Residential Development - 15, 21 and 27 Shore Street
Appendix F:
Synchro Analysis Output

AM Peak Hour

	۶	→	•	•	←	•	1	†	<i>></i>	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	↑ ↑		ሻ	∱ }	
Traffic Volume (vph)	18	60	78	50	28	65	51	416	25	96	783	22
Future Volume (vph)	18	60	78	50	28	65	51	416	25	96	783	22
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	45.0		0.0	45.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.98		0.99	1.00		0.99	1.00	
Frt		0.932			0.939			0.991			0.996	
Flt Protected		0.994			0.983		0.950			0.950		
Satd. Flow (prot)	0	1697	0	0	1617	0	1630	3479	0	1738	3528	0
Flt Permitted		0.914			0.747		0.331			0.462		
Satd. Flow (perm)	0	1556	0	0	1229	0	563	3479	0	839	3528	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		41			35			8			4	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		247.4			102.8			658.2			86.1	
Travel Time (s)		22.3			9.3			47.4			6.2	
Confl. Peds. (#/hr)	33		1	1		33	12		7	7		12
Confl. Bikes (#/hr)			1			1						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	6%	5%	3%	8%	4%	8%	12%	3%	16%	5%	3%	0%
Adj. Flow (vph)	19	64	83	53	30	69	54	443	27	102	833	23
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	166	0	0	152	0	54	470	0	102	856	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8		_	4		_	6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		5	2	
Switch Phase	40.0	40.0		40.0	40.0		40.0	10.0		5 0	40.0	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	39.6	39.6		39.6	39.6		32.3	32.3		8.0	32.3	
Total Split (s)	40.0	40.0			40.0		71.0	71.0		9.0	80.0	
Total Split (%)	33.3%	33.3%		33.3%	33.3%		59.2%	59.2%		7.5%	66.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	2.0	
All-Red Time (s)	3.6	3.6		3.6	3.6		2.3	2.3		0.0	2.3	
Lost Time Adjust (s)		0.0			-2.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.6			5.6		6.3	6.3		3.0	4.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?	Maria	Minin		Nicon	NI		Yes	Yes		Yes	N.4 -	
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)		14.5			16.5		64.8	64.8		77.1	75.8	
Actuated g/C Ratio		0.14			0.16		0.63	0.63		0.75	0.74	
v/c Ratio		0.65			0.67		0.15	0.21		0.15	0.33	
Control Delay		43.1			45.4		10.0	8.5		4.4	5.2	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		43.1			45.4		10.0	8.5		4.4	5.2	
LOS		D			D		В	А		A	A	

	•	→	\rightarrow	•	←	•	~	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		43.1			45.4			8.7			5.2	
Approach LOS		D			D			Α			Α	
Queue Length 50th (m)		23.5			21.9		3.9	18.2		4.2	24.7	
Queue Length 95th (m)		44.4			42.8		11.3	30.7		10.8	43.2	
Internal Link Dist (m)		223.4			78.8			634.2			62.1	
Turn Bay Length (m)							45.0			45.0		
Base Capacity (vph)		521			437		356	2209		685	2617	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.32			0.35		0.15	0.21		0.15	0.33	
Intersection Summary												
Area Type:	Other											
Cycle Length: 120												
Actuated Cycle Length: 10)2.2											
Natural Cycle: 80												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 0.67												
Intersection Signal Delay:					tersection							
Intersection Capacity Utiliz	zation 68.7%			IC	U Level o	of Service	С					
Analysis Period (min) 15												

	•	→	•	•	•	4	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	↑ ₽		ሻ	∱ }	
Traffic Volume (vph)	18	60	78	50	28	65	51	416	25	96	783	22
Future Volume (vph)	18	60	78	50	28	65	51	416	25	96	783	22
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.6			5.6		6.3	6.3		3.0	4.3	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.98		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.99	1.00		1.00	1.00	
Frt		0.93			0.94		1.00	0.99		1.00	1.00	
Flt Protected		0.99			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1694			1620		1618	3481		1733	3528	
FIt Permitted		0.91			0.75		0.33	1.00		0.46	1.00	
Satd. Flow (perm)		1558			1232		563	3481		842	3528	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	19	64	83	53	30	69	54	443	27	102	833	23
RTOR Reduction (vph)	0	35	0	0	29	0	0	3	0	0	1	0
Lane Group Flow (vph)	0	131	0	0	123	0	54	467	0	102	855	0
Confl. Peds. (#/hr)	33		1	1		33	12		7	7		12
Confl. Bikes (#/hr)			1			1						
Heavy Vehicles (%)	6%	5%	3%	8%	4%	8%	12%	3%	16%	5%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8	-		4			6			2		
Actuated Green, G (s)		14.5			14.5		64.8	64.8		75.8	75.8	
Effective Green, g (s)		14.5			16.5		64.8	64.8		75.8	75.8	
Actuated g/C Ratio		0.14			0.16		0.63	0.63		0.74	0.74	
Clearance Time (s)		7.6			7.6		6.3	6.3		3.0	4.3	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		221			198		356	2207		676	2616	
v/s Ratio Prot					100		000	0.13		0.01	c0.24	
v/s Ratio Perm		0.08			c0.10		0.10	0.10		0.10	00.24	
v/c Ratio		0.59			0.62		0.15	0.21		0.15	0.33	
Uniform Delay, d1		41.1			39.9		7.6	7.9		3.7	4.5	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		4.2			5.7		0.9	0.2		0.1	0.3	
Delay (s)		45.3			45.6		8.5	8.1		3.8	4.8	
Level of Service		D			D		Α	A		A	Α.	
Approach Delay (s)		45.3			45.6		,,	8.2		,,	4.7	
Approach LOS		43.5 D			75.0 D			Α			A	
Intersection Summary												
HCM 2000 Control Delay			12.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.41									
Actuated Cycle Length (s)			102.2	S	um of los	t time (s)			16.9			
Intersection Capacity Utilization	n		68.7%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	*	4	†	ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		*	^	↑ Ъ	
Traffic Volume (veh/h)	2	5	5	465	942	9
Future Volume (Veh/h)	2	5	5	465	942	9
Sign Control	Stop	-		Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	5	5	495	1002	10
Pedestrians	7				7	
Lane Width (m)	3.7				3.7	
Walking Speed (m/s)	1.1				1.1	
Percent Blockage	1				1	
Right turn flare (veh)					<u> </u>	
Median type				TWLTL	TWI TI	
Median storage veh)				2	2	
Upstream signal (m)				86		
pX, platoon unblocked	0.96			00		
vC, conflicting volume	1278	513	1019			
vC1, stage 1 conf vol	1014	313	1013			
vC2, stage 2 conf vol	264					
vCu, unblocked vol	1198	513	1019			
tC, single (s)	6.8	7.3	4.1			
tC, 2 stage (s)	5.8	1.5	4.1			
	3.5	3.5	2.2			
tF (s)	99	99	99			
p0 queue free %						
cM capacity (veh/h)	301	458	684			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2
Volume Total	7	5	248	248	668	344
Volume Left	2	5	0	0	0	0
Volume Right	5	0	0	0	0	10
cSH	399	684	1700	1700	1700	1700
Volume to Capacity	0.02	0.01	0.15	0.15	0.39	0.20
Queue Length 95th (m)	0.4	0.2	0.0	0.0	0.0	0.0
Control Delay (s)	14.2	10.3	0.0	0.0	0.0	0.0
Lane LOS	В	В				
Approach Delay (s)	14.2	0.1			0.0	
Approach LOS	В					
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliz	ation		36.3%	l	CU Level	of Service
Analysis Period (min)	•		15			

	-	•	•	•	•	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f ₂			4	¥		
Traffic Volume (veh/h)	5	0	0	9	0	0	
Future Volume (Veh/h)	5	0	0	9	0	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.58	0.58	0.58	0.58	0.58	0.58	
Hourly flow rate (vph)	9	0	0	16	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			9		25	9	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			9		25	9	
tC, single (s)			4.1		6.4	6.4	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.5	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1624		996	1022	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	9	16	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
cSH	1700	1624	1700				
Volume to Capacity	0.01	0.00	0.00				
Queue Length 95th (m)	0.0	0.0	0.0				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS			Α				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			Α				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		6.7%	IC	U Level o	of Service	
Analysis Period (min)			15				

	-	•	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			4	¥	
Traffic Volume (veh/h)	5	0	3	4	0	0
Future Volume (Veh/h)	5	0	3	4	0	0
Sign Control	Free			Free	Stop	•
Grade	0%			0%	0%	
Peak Hour Factor	0.60	0.60	0.60	0.60	0.60	0.60
Hourly flow rate (vph)	8	0.00	5	7	0.00	0.00
Pedestrians		U	U	,		<u> </u>
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)	NOHE			NOHE		
Upstream signal (m)						
pX, platoon unblocked vC, conflicting volume			8		25	8
vC1, stage 1 conf vol			0		20	0
vC2, stage 2 conf vol						
vCu, unblocked vol			8		25	8
The state of the s			4.1		6.4	6.2
tC, single (s)			4.1		0.4	0.2
tC, 2 stage (s)			0.0		2.5	2.2
tF (s)			2.2		3.5	3.3
p0 queue free %			100		100	100
cM capacity (veh/h)			1625		993	1080
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	8	12	0			
Volume Left	0	5	0			
Volume Right	0	0	0			
cSH	1700	1625	1700			
Volume to Capacity	0.00	0.00	0.01			
Queue Length 95th (m)	0.0	0.1	0.0			
Control Delay (s)	0.0	3.0	0.0			
Lane LOS		Α	Α			
Approach Delay (s)	0.0	3.0	0.0			
Approach LOS			Α			
Intersection Summary						
Average Delay			1.8			
Intersection Capacity Utiliza	ation		6.7%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	-	•	•	←	•	4	†	/	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Ť	∱ }		ň	∱ }	
Traffic Volume (vph)	50	47	100	36	47	102	107	1215	22	67	621	26
Future Volume (vph)	50	47	100	36	47	102	107	1215	22	67	621	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	45.0		0.0	45.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.99		1.00	1.00			1.00	
Frt		0.931			0.926			0.997			0.994	
Flt Protected		0.987			0.990		0.950			0.950		
Satd. Flow (prot)	0	1734	0	0	1719	0	1807	3595	0	1789	3523	0
Flt Permitted		0.734			0.812		0.400			0.170		
Satd. Flow (perm)	0	1288	0	0	1410	0	760	3595	0	320	3523	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		35			41			2			7	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		247.4			102.8			658.2			86.1	
Travel Time (s)		22.3			9.3			47.4			6.2	
Confl. Peds. (#/hr)	8		2	2		8	1		8	8		1
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	2%	3%	0%	1%	1%	1%	10%	2%	3%	0%
Adj. Flow (vph)	51	48	102	37	48	104	109	1240	22	68	634	27
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	201	0	0	189	0	109	1262	0	68	661	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		5	2	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	37.6	37.6		37.6	37.6		32.3	32.3		8.0	30.3	
Total Split (s)	38.0	38.0		38.0	38.0		93.0	93.0		9.0	102.0	
Total Split (%)	27.1%	27.1%		27.1%	27.1%		66.4%	66.4%		6.4%	72.9%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	2.0	
All-Red Time (s)	3.6	3.6		3.6	3.6		2.3	2.3		0.0	2.3	
Lost Time Adjust (s)		-3.0			-3.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.6			4.6		6.3	6.3		3.0	4.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)		23.6			23.6		88.8	88.8		99.2	97.9	
Actuated g/C Ratio		0.18			0.18		0.68	0.68		0.76	0.75	
v/c Ratio		0.77			0.66		0.21	0.52		0.22	0.25	
Control Delay		61.1			49.3		10.8	12.4		6.5	5.7	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		61.1			49.3		10.8	12.4		6.5	5.7	
LOS		E			73.0 D		В	В		A	A	
Approach Delay		61.1			49.3			12.2			5.8	
- ipprodon boldy		V 1. 1			¬J.∪			14.4			0.0	

PM Peak Hour

I

		-	*	•		`	7	ı	- 7	_	*	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Е			D			В			Α	
Queue Length 50th (m)		41.3			35.7		10.1	80.8		3.8	23.6	
Queue Length 95th (m)		68.3			60.8		22.9	120.6		9.8	40.5	
Internal Link Dist (m)		223.4			78.8			634.2			62.1	
Turn Bay Length (m)							45.0			45.0		
Base Capacity (vph)		356			392		517	2449		311	2646	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.56			0.48		0.21	0.52		0.22	0.25	

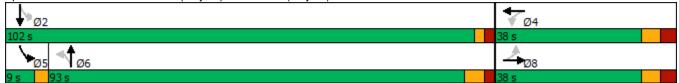
Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 130.4

Natural Cycle: 80


Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.77 Intersection Signal Delay: 17.1

Intersection Capacity Utilization 68.3%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

	۶	→	•	•	←	4	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ħβ		7	∱ ∱	
Traffic Volume (vph)	50	47	100	36	47	102	107	1215	22	67	621	26
Future Volume (vph)	50	47	100	36	47	102	107	1215	22	67	621	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.6			4.6		6.3	6.3		3.0	4.3	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.93			0.93		1.00	1.00		1.00	0.99	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1734			1719		1805	3596		1789	3523	
Flt Permitted		0.73			0.81		0.40	1.00		0.17	1.00	
Satd. Flow (perm)		1289			1410		761	3596		321	3523	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	51	48	102	37	48	104	109	1240	22	68	634	27
RTOR Reduction (vph)	0	29	0	0	34	0	0	1	0	0	2	0
Lane Group Flow (vph)	0	172	0	0	155	0	109	1261	0	68	659	0
Confl. Peds. (#/hr)	8		2	2		8	1		8	8		1
Heavy Vehicles (%)	0%	0%	2%	3%	0%	1%	1%	1%	10%	2%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		20.6			20.6		88.8	88.8		98.5	98.5	
Effective Green, g (s)		23.6			23.6		88.8	88.8		98.5	98.5	
Actuated g/C Ratio		0.18			0.18		0.68	0.68		0.75	0.75	
Clearance Time (s)		7.6			7.6		6.3	6.3		3.0	4.3	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		232			254		515	2437		294	2648	
v/s Ratio Prot								c0.35		0.01	c0.19	
v/s Ratio Perm		c0.13			0.11		0.14			0.17		
v/c Ratio		0.74			0.61		0.21	0.52		0.23	0.25	
Uniform Delay, d1		50.8			49.5		7.9	10.5		6.3	5.0	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		12.1			4.3		0.9	0.8		0.4	0.2	
Delay (s)		62.9			53.8		8.9	11.3		6.7	5.2	
Level of Service		Е			D		Α	В		Α	Α	
Approach Delay (s)		62.9			53.8			11.1			5.3	
Approach LOS		Е			D			В			Α	
Intersection Summary												
HCM 2000 Control Delay			16.8	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	ty ratio		0.55									
Actuated Cycle Length (s)			131.0	Sı	um of lost	time (s)			13.9			
Intersection Capacity Utilization	on		68.3%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	•	•	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ች	^	↑ ↑	
Traffic Volume (veh/h)	8	16	20	1296	703	11
Future Volume (Veh/h)	8	16	20	1296	703	11
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	8	17	21	1350	732	11
Pedestrians	4					
Lane Width (m)	3.7					
Walking Speed (m/s)	1.1					
Percent Blockage	0					
Right turn flare (veh)						
Median type				TWI TI	TWLTL	
Median storage veh)				2	2	
Upstream signal (m)				86	L	
pX, platoon unblocked	0.82			00		
vC, conflicting volume	1458	376	747			
vC1, stage 1 conf vol	742	070	777			
vC2, stage 2 conf vol	717					
vCu, unblocked vol	1128	376	747			
tC, single (s)	6.8	7.0	4.1			
tC, 2 stage (s)	5.8	7.0	7.1			
tF (s)	3.5	3.4	2.2			
p0 queue free %	98	97	98			
cM capacity (veh/h)	379	606	867			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2
Volume Total	25	21	675	675	488	255
Volume Left	8	21	0	0	0	0
Volume Right	17	0	0	0	0	11
cSH	508	867	1700	1700	1700	1700
Volume to Capacity	0.05	0.02	0.40	0.40	0.29	0.15
Queue Length 95th (m)	1.2	0.6	0.0	0.0	0.0	0.0
Control Delay (s)	12.5	9.3	0.0	0.0	0.0	0.0
Lane LOS	В	Α				
Approach Delay (s)	12.5	0.1			0.0	
Approach LOS	В					
Intersection Summary						
Average Delay			0.2			
Intersection Capacity Utiliza	ition		45.8%		CU Level o	of Service
Analysis Period (min)			15			

	-	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f _a			4	W		
Traffic Volume (veh/h)	9	1	4	13	1	2	
Future Volume (Veh/h)	9	1	4	13	1	2	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.63	0.63	0.63	0.63	0.63	0.63	
Hourly flow rate (vph)	14	2	6	21	2	3	
Pedestrians					2		
Lane Width (m)					3.7		
Walking Speed (m/s)					1.1		
Percent Blockage					0		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			18		50	17	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			18		50	17	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF(s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1609		959	1066	
	ED 4	WD 4					
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	16	27	5				
Volume Left	0	6	2				
Volume Right	2	0	3				
cSH	1700	1609	1020				
Volume to Capacity	0.01	0.00	0.00				
Queue Length 95th (m)	0.0	0.1	0.1				
Control Delay (s)	0.0	1.6	8.5				
Lane LOS		A	A				
Approach Delay (s)	0.0	1.6	8.5				
Approach LOS			Α				
Intersection Summary							
Average Delay			1.8				
Intersection Capacity Utiliza	ation		14.2%	IC	U Level c	of Service	
Analysis Period (min)			15				

Movement EBT EBR WBL WBT NBL NBR
Lane Configurations 😘 🐗 🏋
Traffic Volume (veh/h) 6 0 4 12 0 4
Future Volume (Veh/h) 6 0 4 12 0 4
Sign Control Free Stop
Grade 0% 0% 0%
Peak Hour Factor 0.65 0.65 0.65 0.65 0.65
Hourly flow rate (vph) 9 0 6 18 0 6
Pedestrians 2
Lane Width (m) 3.7
Walking Speed (m/s) 1.1
Percent Blockage 0
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (m)
pX, platoon unblocked
vC, conflicting volume 11 41 11
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 11 41 11
tC, single (s) 4.1 6.4 6.2
tC, 2 stage (s)
tF (s) 2.2 3.5 3.3
p0 queue free % 100 100 99
cM capacity (veh/h) 1618 970 1074
Direction, Lane # EB 1 WB 1 NB 1
Volume Total 9 24 6
Volume Left 0 6 0
Volume Right 0 0 6
cSH 1700 1618 1074
Volume to Capacity 0.01 0.00 0.01
Queue Length 95th (m) 0.0 0.1 0.1
Control Delay (s) 0.0 1.8 8.4
Lane LOS A A
Approach Delay (s) 0.0 1.8 8.4
Approach LOS A
Intersection Summary
Average Delay 2.4
Intersection Capacity Utilization 14.1% ICU Level of Service
Analysis Period (min) 15

	ᄼ	-	•	•	←	•	4	†	/	>	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		*	∱ }		7	∱ }	
Traffic Volume (vph)	22	74	96	62	35	80	63	519	31	118	993	27
Future Volume (vph)	22	74	96	62	35	80	63	519	31	118	993	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	45.0		0.0	45.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.98		0.99	1.00		0.99	1.00	
Frt		0.932			0.939			0.992			0.996	
Flt Protected		0.994			0.983		0.950			0.950		
Satd. Flow (prot)	0	1698	0	0	1617	0	1630	3484	0	1738	3528	0
Flt Permitted		0.912			0.691		0.261			0.400		
Satd. Flow (perm)	0	1553	0	0	1137	0	445	3484	0	727	3528	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		41			35			8			4	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		247.4			102.8			658.2			86.1	
Travel Time (s)		22.3			9.3			47.4			6.2	
Confl. Peds. (#/hr)	33		1	1		33	12		7	7		12
Confl. Bikes (#/hr)			1			1						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	6%	5%	3%	8%	4%	8%	12%	3%	16%	5%	3%	0%
Adj. Flow (vph)	23	79	102	66	37	85	67	552	33	126	1056	29
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	204	0	0	188	0	67	585	0	126	1085	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		5	2	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	39.6	39.6		39.6	39.6		32.3	32.3		8.0	32.3	
Total Split (s)	40.0	40.0		40.0	40.0		71.0	71.0		9.0	80.0	
Total Split (%)	33.3%	33.3%		33.3%	33.3%		59.2%	59.2%		7.5%	66.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	2.0	
All-Red Time (s)	3.6	3.6		3.6	3.6		2.3	2.3		0.0	2.3	
Lost Time Adjust (s)		0.0			-2.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.6			5.6		6.3	6.3		3.0	4.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)		17.9			19.9		64.9	64.9		77.2	75.9	
Actuated g/C Ratio		0.17			0.19		0.61	0.61		0.73	0.72	
v/c Ratio		0.69			0.78		0.25	0.27		0.21	0.43	
Control Delay		44.7			54.2		14.1	10.5		6.0	7.4	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		44.7			54.2		14.1	10.5		6.0	7.4	
LOS		D			D		В	В		Α	A	

AM Peak Hour

	•	-	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		44.7			54.2			10.9			7.2	
Approach LOS		D			D			В			Α	
Queue Length 50th (m)		31.7			30.3		5.8	26.7		6.4	41.1	
Queue Length 95th (m)		55.2			54.9		16.8	44.6		15.8	71.3	
Internal Link Dist (m)		223.4			78.8			634.2			62.1	
Turn Bay Length (m)							45.0			45.0		
Base Capacity (vph)		505			394		272	2140		588	2533	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.40			0.48		0.25	0.27		0.21	0.43	
Intersection Summary												
Area Type:	Other											

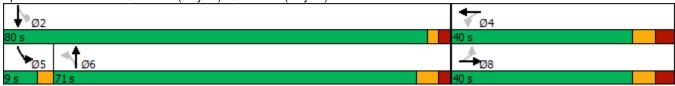
Cycle Length: 120

Actuated Cycle Length: 105.8

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.78


Intersection Signal Delay: 15.6

Intersection Capacity Utilization 76.1%

Intersection LOS: B

ICU Level of Service D

Analysis Period (min) 15

	۶	→	•	•	+	•	•	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተ ኈ		7	∱ ∱	
Traffic Volume (vph)	22	74	96	62	35	80	63	519	31	118	993	27
Future Volume (vph)	22	74	96	62	35	80	63	519	31	118	993	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.6			5.6		6.3	6.3		3.0	4.3	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.98		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.99	1.00		1.00	1.00	
Frt		0.93			0.94		1.00	0.99		1.00	1.00	
Flt Protected		0.99			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1695			1619		1621	3482		1735	3528	
Flt Permitted		0.91			0.69		0.26	1.00		0.40	1.00	
Satd. Flow (perm)		1555			1139		445	3482		730	3528	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	23	79	102	66	37	85	67	552	33	126	1056	29
RTOR Reduction (vph)	0	34	0	0	28	0	0	3	0	0	1	0
Lane Group Flow (vph)	0	170	0	0	160	0	67	582	0	126	1084	0
Confl. Peds. (#/hr)	33		1	1		33	12		7	7		12
Confl. Bikes (#/hr)			1			1						
Heavy Vehicles (%)	6%	5%	3%	8%	4%	8%	12%	3%	16%	5%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		17.9			17.9		64.9	64.9		75.9	75.9	
Effective Green, g (s)		17.9			19.9		64.9	64.9		75.9	75.9	
Actuated g/C Ratio		0.17			0.19		0.61	0.61		0.72	0.72	
Clearance Time (s)		7.6			7.6		6.3	6.3		3.0	4.3	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		263			214		273	2137		581	2533	
v/s Ratio Prot								0.17		0.01	c0.31	
v/s Ratio Perm		0.11			c0.14		0.15			0.14		
v/c Ratio		0.65			0.75		0.25	0.27		0.22	0.43	
Uniform Delay, d1		40.9			40.5		9.3	9.5		4.7	6.1	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		5.4			13.2		2.1	0.3		0.2	0.5	
Delay (s)		46.3			53.7		11.4	9.8		4.9	6.6	
Level of Service		D			D		В	Α		Α	Α	
Approach Delay (s)		46.3			53.7			9.9			6.4	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			15.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.53									
Actuated Cycle Length (s)			105.7	Sı	um of los	t time (s)			16.9			
Intersection Capacity Utilization	on		76.1%			of Service	!		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	•	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		¥	† †	↑ ↑	
Traffic Volume (vph)	2	6	6	579	1189	11
Future Volume (vph)	2	6	6	579	1189	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	0.95
Ped Bike Factor						
Frt	0.899				0.999	
Flt Protected	0.988		0.950			
Satd. Flow (prot)	1484	0	1825	3476	3504	0
Flt Permitted	0.988		0.950			
Satd. Flow (perm)	1484	0	1825	3476	3504	0
Link Speed (k/h)	40			50	50	
Link Distance (m)	61.6			86.1	503.6	
Travel Time (s)	5.5			6.2	36.3	
Confl. Peds. (#/hr)			7			7
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	0%	20%	0%	5%	4%	12%
Adj. Flow (vph)	2	6	6	616	1265	12
Shared Lane Traffic (%)						
Lane Group Flow (vph)	8	0	6	616	1277	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization 43.2%					CU Level of	of Service A
Analysis Period (min) 15						

	٠	•	4	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	↑ Ъ	
Traffic Volume (veh/h)	2	6	6	579	1189	11
Future Volume (Veh/h)	2	6	6	579	1189	11
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	6	6	616	1265	12
Pedestrians	7					
Lane Width (m)	3.7					
Walking Speed (m/s)	1.1					
Percent Blockage	1					
Right turn flare (veh)						
Median type				TWLTL	TWLTL	
Median storage veh)				2	2	
Upstream signal (m)				86		
pX, platoon unblocked	0.93					
vC, conflicting volume	1598	646	1284			
vC1, stage 1 conf vol	1278					
vC2, stage 2 conf vol	320					
vCu, unblocked vol	1497	646	1284			
tC, single (s)	6.8	7.3	4.1			
tC, 2 stage (s)	5.8					
tF (s)	3.5	3.5	2.2			
p0 queue free %	99	98	99			
cM capacity (veh/h)	219	371	543			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2
Volume Total	8	6	308	308	843	434
Volume Left	2	6	0	0	0	0
Volume Right	6	0	0	0	0	12
cSH	317	543	1700	1700	1700	1700
Volume to Capacity	0.03	0.01	0.18	0.18	0.50	0.26
Queue Length 95th (m)	0.03	0.01	0.0	0.0	0.0	0.20
Control Delay (s)	16.7	11.7	0.0	0.0	0.0	0.0
Lane LOS	10.7 C	В	0.0	0.0	0.0	0.0
Approach Delay (s)	16.7	0.1			0.0	
Approach LOS	10.7 C	0.1			0.0	
• •	U					
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliz	ation		43.2%	I	CU Level of	of Service
Analysis Period (min)			15			

	-	\rightarrow	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	¥#	
Traffic Volume (veh/h)	6	0	0	11	0	0
Future Volume (Veh/h)	6	0	0	11	0	0
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.58	0.58	0.58	0.58	0.58	0.58
Hourly flow rate (vph)	10	0	0	19	0	0
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			10		29	10
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			10		29	10
tC, single (s)			4.1		6.4	6.4
tC, 2 stage (s)					3. .	
tF (s)			2.2		3.5	3.5
p0 queue free %			100		100	100
cM capacity (veh/h)			1623		991	1021
	ED 4	WD 4				
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	10	19	0			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1623	1700			
Volume to Capacity	0.01	0.00	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS			Α			
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS			Α			
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliza	ation		6.7%	IC	U Level c	f Service
Analysis Period (min)			15			

	-	•	•	•	1	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	W		
Traffic Volume (veh/h)	6	0	4	5	0	0	
Future Volume (Veh/h)	6	0	4	5	0	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.60	0.60	0.60	0.60	0.60	0.60	
Hourly flow rate (vph)	10	0	7	8	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			10		32	10	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			10		32	10	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1623		983	1077	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	10	15	0				
Volume Left	0	7	0				
Volume Right	0	0	0				
cSH	1700	1623	1700				
Volume to Capacity	0.01	0.00	0.01				
Queue Length 95th (m)	0.0	0.1	0.0				
Control Delay (s)	0.0	3.4	0.0				
Lane LOS		Α	Α				
Approach Delay (s)	0.0	3.4	0.0				
Approach LOS			Α				
Intersection Summary							
Average Delay			2.0				
Intersection Capacity Utiliza	ation		7.2%	IC	U Level c	f Service	
Analysis Period (min)			15				

	۶	→	•	•	←	•	4	†	/	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ }		ሻ	∱ }	
Traffic Volume (vph)	62	58	123	44	58	126	132	1523	27	83	782	32
Future Volume (vph)	62	58	123	44	58	126	132	1523	27	83	782	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	45.0		0.0	45.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.99		1.00	1.00			1.00	
Frt		0.931			0.925			0.997			0.994	
Flt Protected		0.987			0.990		0.950			0.950		
Satd. Flow (prot)	0	1734	0	0	1717	0	1807	3595	0	1789	3523	0
Flt Permitted		0.708			0.797		0.339			0.093		
Satd. Flow (perm)	0	1242	0	0	1382	0	644	3595	0	175	3523	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		35			42			2			7	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		247.4			102.8			658.2			86.1	
Travel Time (s)		22.3			9.3			47.4			6.2	
Confl. Peds. (#/hr)	8		2	2		8	1		8	8		1
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	2%	3%	0%	1%	1%	1%	10%	2%	3%	0%
Adj. Flow (vph)	63	59	126	45	59	129	135	1554	28	85	798	33
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	248	0	0	233	0	135	1582	0	85	831	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		5	2	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	37.6	37.6		37.6	37.6		32.3	32.3		8.0	30.3	
Total Split (s)	38.0	38.0		38.0	38.0		93.0	93.0		9.0	102.0	
Total Split (%)	27.1%	27.1%		27.1%	27.1%		66.4%	66.4%		6.4%	72.9%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	2.0	
All-Red Time (s)	3.6	3.6		3.6	3.6		2.3	2.3		0.0	2.3	
Lost Time Adjust (s)		-3.0			-3.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.6			4.6		6.3	6.3		3.0	4.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)		28.6			28.6		86.9	86.9		99.2	97.9	
Actuated g/C Ratio		0.21			0.21		0.64	0.64		0.73	0.72	
v/c Ratio		0.86			0.72		0.33	0.69		0.43	0.33	
Control Delay		70.5			53.3		14.7	18.1		12.5	7.6	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		70.5			53.3		14.7	18.1		12.5	7.6	
LOS		E			D		В	В		В	Α	
Approach Delay		70.5			53.3			17.8			8.0	
		•						•			•	

PM Peak Hour

1

	-	_	•	•		-	١,	- 1	/	•	•	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Е			D			В			Α	
Queue Length 50th (m)		56.0			48.2		16.4	142.0		6.2	41.1	
Queue Length 95th (m)		#95.4			77.6		31.0	173.8		11.8	53.1	
Internal Link Dist (m)		223.4			78.8			634.2			62.1	
Turn Bay Length (m)							45.0			45.0		
Base Capacity (vph)		333			373		413	2308		199	2548	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.74			0.62		0.33	0.69		0.43	0.33	

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 135.4

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 21.8

Intersection LOS: C
ICU Level of Service D

Intersection Capacity Utilization 81.2%

Analysis Period (min) 15

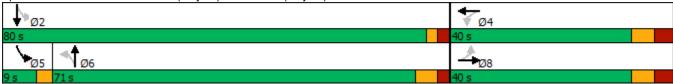
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

PM Peak Hour

	٠	-	•	•	•	•	4	†	<i>></i>	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		, j	∱ }		ň	↑ ↑	
Traffic Volume (vph)	62	58	123	44	58	126	132	1523	27	83	782	32
Future Volume (vph)	62	58	123	44	58	126	132	1523	27	83	782	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.6			4.6		6.3	6.3		3.0	4.3	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.93			0.93		1.00	1.00		1.00	0.99	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1734			1719		1806	3596		1789	3524	
Flt Permitted /		0.71			0.80		0.34	1.00		0.09	1.00	
Satd. Flow (perm)		1243			1384		644	3596		175	3524	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	63	59	126	45	59	129	135	1554	28	85	798	33
RTOR Reduction (vph)	0	28	0	0	33	0	0	1	0	0	2	0
Lane Group Flow (vph)	0	220	0	0	200	0	135	1581	0	85	829	0
Confl. Peds. (#/hr)	8	220	2	2	200	8	1	1001	8	8	020	1
Heavy Vehicles (%)	0%	0%	2%	3%	0%	1%	1%	1%	10%	2%	3%	0%
Turn Type	Perm	NA	270	Perm	NA	1 70	Perm	NA	1070	pm+pt	NA	070
Protected Phases	1 Cilli	8		1 Cilli	4		1 Cilli	6		5	2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)	0	25.6		-	25.6		86.9	86.9		97.9	97.9	
Effective Green, g (s)		28.6			28.6		86.9	86.9		97.9	97.9	
Actuated g/C Ratio		0.21			0.21		0.64	0.64		0.72	0.72	
Clearance Time (s)		7.6			7.6		6.3	6.3		3.0	4.3	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		262			292		413	2307		198	2548	
v/s Ratio Prot		202			232		413	c0.44		c0.02	0.24	
v/s Ratio Perm		c0.18			0.14		0.21	60.44		0.29	0.24	
v/c Ratio		0.84			0.14		0.21	0.69		0.29	0.33	
		51.2			49.2		11.0	15.5		13.1	6.8	
Uniform Delay, d1		1.00			1.00		1.00	1.00		1.00	1.00	
Progression Factor												
Incremental Delay, d2		20.9			6.5		2.1	1.7		1.5	0.3	
Delay (s)		72.2			55.7		13.1	17.2		14.6	7.1	
Level of Service		E			E 7		В	B		В	A	
Approach Delay (s)		72.2			55.7			16.9			7.8	
Approach LOS		Е			Е			В			Α	
Intersection Summary												
HCM 2000 Control Delay			21.5	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.71									
Actuated Cycle Length (s)			135.4	S	um of los	t time (s)			13.9			
Intersection Capacity Utiliza	ition		81.2%			of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	•	4	†	ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		ሻ	^	↑ ↑	
Traffic Volume (veh/h)	10	20	25	1623	883	14
Future Volume (Veh/h)	10	20	25	1623	883	14
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	10	21	26	1691	920	15
Pedestrians	4					
Lane Width (m)	3.7					
Walking Speed (m/s)	1.1					
Percent Blockage	0					
Right turn flare (veh)						
Median type				TWLTL	TWLTL	
Median storage veh)				2	2	
Upstream signal (m)				86	_	
pX, platoon unblocked	0.71					
vC, conflicting volume	1829	472	939			
vC1, stage 1 conf vol	932	.,_	000			
vC2, stage 2 conf vol	898					
vCu, unblocked vol	1354	472	939			
tC, single (s)	6.8	7.0	4.1			
tC, 2 stage (s)	5.8	7.0				
tF (s)	3.5	3.4	2.2			
p0 queue free %	97	96	96			
cM capacity (veh/h)	311	523	735			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2
Volume Total	31	26	846	846	613	322
Volume Left	10	26	0	0	0	0
Volume Right	21	0	0	0	0	15
cSH	429	735	1700	1700	1700	1700
Volume to Capacity	0.07	0.04	0.50	0.50	0.36	0.19
Queue Length 95th (m)	1.8	0.8	0.0	0.0	0.0	0.0
Control Delay (s)	14.0	10.1	0.0	0.0	0.0	0.0
Lane LOS	В	В				
Approach Delay (s)	14.0	0.2			0.0	
Approach LOS	В					
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliz	ation		54.9%	I	CU Level	of Service
Analysis Period (min)			15	'	20 20101	J. CO. 1100
raidiyələ i Gilou (illili)			13			


	-	\rightarrow	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	¥#		
Traffic Volume (veh/h)	11	1	5	16	1	2	
Future Volume (Veh/h)	11	1	5	16	1	2	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.63	0.63	0.63	0.63	0.63	0.63	
Hourly flow rate (vph)	17	2	8	25	2	3	
Pedestrians					2		
Lane Width (m)					3.7		
Walking Speed (m/s)					1.1		
Percent Blockage					0		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			21		61	20	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			21		61	20	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1605		944	1062	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	19	33	5				
Volume Left	0	8	2				
Volume Right	2	0	3				
cSH	1700	1605	1011				
Volume to Capacity	0.01	0.00	0.00				
Queue Length 95th (m)	0.0	0.1	0.1				
Control Delay (s)	0.0	1.8	8.6				
Lane LOS		Α	Α				
Approach Delay (s)	0.0	1.8	8.6				
Approach LOS			Α				
Intersection Summary							
Average Delay			1.8				
Intersection Capacity Utilizat	tion		15.2%	IC	U Level o	f Service	
Analysis Period (min)			15				

	-	•	•	←	1	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1>			4	*/*		
Traffic Volume (veh/h)	7	0	5	15	0	5	
Future Volume (Veh/h)	7	0	5	15	0	5	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.65	0.65	0.65	0.65	0.65	0.65	
Hourly flow rate (vph)	11	0	8	23	0	8	
Pedestrians					2		
Lane Width (m)					3.7		
Walking Speed (m/s)					1.1		
Percent Blockage					0		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			13		52	13	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			13		52	13	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	99	
cM capacity (veh/h)			1616		955	1071	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	11	31	8				
Volume Left	0	8	0				
Volume Right	0	0	8				
cSH	1700	1616	1071				
Volume to Capacity	0.01	0.00	0.01				
Queue Length 95th (m)	0.0	0.1	0.2				
Control Delay (s)	0.0	1.9	8.4				
Lane LOS		Α	Α				
Approach Delay (s)	0.0	1.9	8.4				
Approach LOS			Α				
Intersection Summary							
Average Delay			2.5				
Intersection Capacity Utiliza	tion		15.2%	IC	U Level c	f Service	
Analysis Period (min)			15				

	۶	-	•	•	←	•	4	†	/	>	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		*	∱ }		7	∱ }	
Traffic Volume (vph)	22	74	96	62	35	80	63	520	31	119	996	28
Future Volume (vph)	22	74	96	62	35	80	63	520	31	119	996	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	45.0		0.0	45.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.98		0.99	1.00		0.99	1.00	
Frt		0.932			0.939			0.992			0.996	
Flt Protected		0.994			0.983		0.950			0.950		
Satd. Flow (prot)	0	1698	0	0	1617	0	1630	3484	0	1738	3528	0
Flt Permitted		0.912			0.691		0.259			0.399		
Satd. Flow (perm)	0	1553	0	0	1137	0	442	3484	0	726	3528	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		41			35			8			4	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		247.4			102.8			658.2			86.1	
Travel Time (s)		22.3			9.3			47.4			6.2	
Confl. Peds. (#/hr)	33		1	1		33	12		7	7		12
Confl. Bikes (#/hr)			1			1						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	6%	5%	3%	8%	4%	8%	12%	3%	16%	5%	3%	0%
Adj. Flow (vph)	23	79	102	66	37	85	67	553	33	127	1060	30
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	204	0	0	188	0	67	586	0	127	1090	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		5	2	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	39.6	39.6		39.6	39.6		32.3	32.3		8.0	32.3	
Total Split (s)	40.0	40.0		40.0	40.0		71.0	71.0		9.0	80.0	
Total Split (%)	33.3%	33.3%		33.3%	33.3%		59.2%	59.2%		7.5%	66.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	2.0	
All-Red Time (s)	3.6	3.6		3.6	3.6		2.3	2.3		0.0	2.3	
Lost Time Adjust (s)		0.0			-2.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.6			5.6		6.3	6.3		3.0	4.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)		17.9			19.9		64.9	64.9		77.2	75.9	
Actuated g/C Ratio		0.17			0.19		0.61	0.61		0.73	0.72	
v/c Ratio		0.69			0.78		0.25	0.27		0.22	0.43	
Control Delay		44.7			54.2		14.1	10.5		6.0	7.4	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		44.7			54.2		14.1	10.5		6.0	7.4	
LOS		D			D		В	В		Α	Α	

AM Peak Hour

	•	→	•	•	←	•	•	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		44.7			54.2			10.9			7.2	
Approach LOS		D			D			В			Α	
Queue Length 50th (m)		31.7			30.3		5.8	26.7		6.5	41.3	
Queue Length 95th (m)		55.2			54.9		16.9	44.7		16.0	71.8	
Internal Link Dist (m)		223.4			78.8			634.2			62.1	
Turn Bay Length (m)							45.0			45.0		
Base Capacity (vph)		505			394		271	2140		587	2533	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.40			0.48		0.25	0.27		0.22	0.43	
Intersection Summary												
Area Type:	Other											
Cycle Length: 120												
Actuated Cycle Length: 105	5.8											
Natural Cycle: 80												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 1				In	tersection	LOS: B						
Intersection Capacity Utiliza	ation 76.2%			IC	U Level c	of Service	D					
Analysis Period (min) 15												

AM Peak Hour

	۶	→	•	•	+	•	•	†	~	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተ ኈ		7	∱ ∱	
Traffic Volume (vph)	22	74	96	62	35	80	63	520	31	119	996	28
Future Volume (vph)	22	74	96	62	35	80	63	520	31	119	996	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.6			5.6		6.3	6.3		3.0	4.3	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.98		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		0.99	1.00		1.00	1.00	
Frt		0.93			0.94		1.00	0.99		1.00	1.00	
Flt Protected		0.99			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1695			1619		1621	3482		1735	3528	
Flt Permitted		0.91			0.69		0.26	1.00		0.40	1.00	
Satd. Flow (perm)		1555			1139		443	3482		729	3528	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	23	79	102	66	37	85	67	553	33	127	1060	30
RTOR Reduction (vph)	0	34	0	0	28	0	0	3	0	0	1	0
Lane Group Flow (vph)	0	170	0	0	160	0	67	583	0	127	1089	0
Confl. Peds. (#/hr)	33		1	1		33	12		7	7		12
Confl. Bikes (#/hr)			1			1						
Heavy Vehicles (%)	6%	5%	3%	8%	4%	8%	12%	3%	16%	5%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		17.9			17.9		64.9	64.9		75.9	75.9	
Effective Green, g (s)		17.9			19.9		64.9	64.9		75.9	75.9	
Actuated g/C Ratio		0.17			0.19		0.61	0.61		0.72	0.72	
Clearance Time (s)		7.6			7.6		6.3	6.3		3.0	4.3	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		263			214		272	2137		580	2533	
v/s Ratio Prot								0.17		0.01	c0.31	
v/s Ratio Perm		0.11			c0.14		0.15			0.14		
v/c Ratio		0.65			0.75		0.25	0.27		0.22	0.43	
Uniform Delay, d1		40.9			40.5		9.3	9.5		4.7	6.1	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		5.4			13.2		2.1	0.3		0.2	0.5	
Delay (s)		46.3			53.7		11.4	9.8		4.9	6.6	
Level of Service		D			D		В	Α		Α	Α	
Approach Delay (s)		46.3			53.7			9.9			6.4	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			15.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ity ratio		0.53									
Actuated Cycle Length (s)	•		105.7	Sı	um of los	t time (s)			16.9			
Intersection Capacity Utilization	on		76.2%			of Service	!		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		*	^	† \$	
Traffic Volume (veh/h)	2	11	7	579	1189	12
Future Volume (Veh/h)	2	11	7	579	1189	12
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	12	7	616	1265	13
Pedestrians	7				.=.•	
Lane Width (m)	3.7					
Walking Speed (m/s)	1.1					
Percent Blockage	1					
Right turn flare (veh)	•					
Median type				TWLTL	TWLTL	
Median storage veh)				2	2	
Upstream signal (m)				86	_	
pX, platoon unblocked	0.93					
vC, conflicting volume	1600	646	1285			
vC1, stage 1 conf vol	1278	0.0	1200			
vC2, stage 2 conf vol	322					
vCu, unblocked vol	1499	646	1285			
tC, single (s)	6.8	7.3	4.1			
tC, 2 stage (s)	5.8	7.0	7.1			
tF (s)	3.5	3.5	2.2			
p0 queue free %	99	97	99			
cM capacity (veh/h)	219	371	543			
				NDO	25.4	00.0
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2
Volume Total	14	7	308	308	843	435
Volume Left	2	7	0	0	0	0
Volume Right	12	0	0	0	0	13
cSH	338	543	1700	1700	1700	1700
Volume to Capacity	0.04	0.01	0.18	0.18	0.50	0.26
Queue Length 95th (m)	1.0	0.3	0.0	0.0	0.0	0.0
Control Delay (s)	16.1	11.7	0.0	0.0	0.0	0.0
Lane LOS	С	В				
Approach Delay (s)	16.1	0.1			0.0	
Approach LOS	С					
Intersection Summary						
Average Delay			0.2			
Intersection Capacity Utiliza	ation		43.3%		CU Level o	of Service
Analysis Period (min)			15			

	٠	→	•	•	←	•	4	†	<i>></i>	\	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	9	0	0	12	1	0	0	0	2	0	0
Future Volume (Veh/h)	0	9	0	0	12	1	0	0	0	2	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
Hourly flow rate (vph)	0	16	0	0	21	2	0	0	0	3	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	23			16			38	39	16	38	38	22
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	23			16			38	39	16	38	38	22
tC, single (s)	4.1			4.1			7.1	6.5	6.4	7.1	6.5	6.2
tC, 2 stage (s)	7.1			7.1			7.1	0.0	0.4	7.1	0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.5	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	100	100	100
cM capacity (veh/h)	1592			1615			972	853	1013	967	854	1055
							312	000	1013	301	034	1000
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	23	0	3								
Volume Left	0	0	0	3								
Volume Right	0	2	0	0								
cSH	1592	1615	1700	967								
Volume to Capacity	0.00	0.00	0.00	0.00								
Queue Length 95th (m)	0.0	0.0	0.0	0.1								
Control Delay (s)	0.0	0.0	0.0	8.7								
Lane LOS			Α	Α								
Approach Delay (s)	0.0	0.0	0.0	8.7								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utiliza	ation		13.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	—	•	1	†	<i>></i>	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	6	0	4	5	1	0	0	0	3	0	0
Future Volume (Veh/h)	0	6	0	4	5	1	0	0	0	3	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Hourly flow rate (vph)	0	10	0	7	8	2	0	0	0	5	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	10			10			33	34	10	33	33	9
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	10			10			33	34	10	33	33	9
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	99	100	100
cM capacity (veh/h)	1610			1623			976	855	1077	971	856	1073
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	10	17	0	5								
Volume Left	0	7	0	5								
Volume Right	0	2	0	0								
cSH	1610	1623	1700	971								
Volume to Capacity	0.00	0.00	0.01	0.01								
Queue Length 95th (m)	0.0	0.1	0.0	0.1								
Control Delay (s)	0.0	3.0	0.0	8.7								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	3.0	0.0	8.7								
Approach LOS			А	Α								
Intersection Summary												
Average Delay			3.0									
Intersection Capacity Utiliza	ition		13.9%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ }		ሻ	∱ %	
Traffic Volume (vph)	63	58	123	44	58	127	132	1525	27	83	783	32
Future Volume (vph)	63	58	123	44	58	127	132	1525	27	83	783	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	45.0		0.0	45.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.99		1.00	1.00			1.00	
Frt		0.932			0.925			0.997			0.994	
Flt Protected		0.987			0.990		0.950			0.950		
Satd. Flow (prot)	0	1736	0	0	1717	0	1807	3595	0	1789	3523	0
Flt Permitted		0.705			0.800		0.339			0.092		
Satd. Flow (perm)	0	1238	0	0	1387	0	644	3595	0	173	3523	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		35			42			2			7	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		247.4			102.8			658.2			86.1	
Travel Time (s)		22.3			9.3			47.4			6.2	
Confl. Peds. (#/hr)	8		2	2		8	1		8	8		1
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	2%	3%	0%	1%	1%	1%	10%	2%	3%	0%
Adj. Flow (vph)	64	59	126	45	59	130	135	1556	28	85	799	33
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	249	0	0	234	0	135	1584	0	85	832	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		5	2	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	37.6	37.6		37.6	37.6		32.3	32.3		8.0	30.3	
Total Split (s)	38.0	38.0		38.0	38.0		93.0	93.0		9.0	102.0	
Total Split (%)	27.1%	27.1%		27.1%	27.1%		66.4%	66.4%		6.4%	72.9%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	2.0	
All-Red Time (s)	3.6	3.6		3.6	3.6		2.3	2.3		0.0	2.3	
Lost Time Adjust (s)		-3.0			-3.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.6			4.6		6.3	6.3		3.0	4.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)		28.8			28.8		86.9	86.9		99.2	97.9	
Actuated g/C Ratio		0.21			0.21		0.64	0.64		0.73	0.72	
v/c Ratio		0.86			0.72		0.33	0.69		0.43	0.33	
Control Delay		70.5			53.1		14.7	18.2		12.7	7.6	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		70.5			53.1		14.7	18.2		12.7	7.6	
LOS		E			D		В	В		В	Α	
Approach Delay		70.5			53.1			18.0			8.1	
		•										

ı

		→	*	₩	•	`	7	ı		*	*	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Е			D			В			Α	
Queue Length 50th (m)		56.3			48.4		16.5	143.5		6.3	41.6	
Queue Length 95th (m)		#96.9			78.2		31.0	174.1		11.8	53.2	
Internal Link Dist (m)		223.4			78.8			634.2			62.1	
Turn Bay Length (m)							45.0			45.0		
Base Capacity (vph)		332			373		412	2304		198	2544	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.75			0.63		0.33	0.69		0.43	0.33	

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 135.6

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 21.9

Intersection LOS: C
ICU Level of Service D

Intersection Capacity Utilization 81.5%

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Queen St S(Hwy 50)/Queen St S (Hwy 50) & Ellwood Dr W/Ellwood Dr E

1: Queen St S(Hwy 50)/Queen St S (Hwy 50) & Ellwood Dr W/Ellwood Dr E

PM Peak Hour

	۶	→	•	•	←	•	4	†	~	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44		¥	♦ ₽		ň	∱ ∱	
Traffic Volume (vph)	63	58	123	44	58	127	132	1525	27	83	783	32
Future Volume (vph)	63	58	123	44	58	127	132	1525	27	83	783	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.6			4.6		6.3	6.3		3.0	4.3	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.93			0.93		1.00	1.00		1.00	0.99	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1734			1718		1806	3596		1789	3524	
Flt Permitted		0.70			0.80		0.34	1.00		0.09	1.00	
Satd. Flow (perm)		1237			1387		643	3596		174	3524	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	64	59	126	45	59	130	135	1556	28	85	799	33
RTOR Reduction (vph)	0	28	0	0	33	0	0	1	0	0	2	0
Lane Group Flow (vph)	0	221	0	0	201	0	135	1583	0	85	830	0
Confl. Peds. (#/hr)	8	221	2	2	201	8	1	1000	8	8	000	1
Heavy Vehicles (%)	0%	0%	2%	3%	0%	1%	1%	1%	10%	2%	3%	0%
Turn Type	Perm	NA	270	Perm	NA	1 70	Perm	NA	1070	pm+pt	NA	070
Protected Phases	1 Cilli	8		1 Cilli	4		1 Cilli	6		5	2	
Permitted Phases	8	0		4			6			2		
Actuated Green, G (s)	U	25.8		7	25.8		86.9	86.9		97.9	97.9	
Effective Green, g (s)		28.8			28.8		86.9	86.9		97.9	97.9	
Actuated g/C Ratio		0.21			0.21		0.64	0.64		0.72	0.72	
Clearance Time (s)		7.6			7.6		6.3	6.3		3.0	4.3	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
		262			294		412	2304		197	2544	
Lane Grp Cap (vph) v/s Ratio Prot		202			294		412	c0.44		c0.02	0.24	
		-0.10			0.14		0.01	CU.44			0.24	
v/s Ratio Perm		c0.18			0.14		0.21	0.00		0.29	0.00	
v/c Ratio		0.85			0.68		0.33	0.69		0.43	0.33	
Uniform Delay, d1		51.3			49.2		11.1	15.6		13.2	6.9	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		21.4			6.4		2.1	1.7		1.5	0.3	
Delay (s)		72.6			55.6		13.2	17.3		14.7	7.2	
Level of Service		E			E		В	В		В	A	
Approach Delay (s)		72.6			55.6			17.0			7.9	
Approach LOS		Е			Е			В			Α	
Intersection Summary												
HCM 2000 Control Delay			21.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.71									
Actuated Cycle Length (s)			135.6	S	um of los	t time (s)			13.9			
Intersection Capacity Utilizat	tion		81.5%			of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	•	•	•	†	+	✓
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	† Ъ	
Traffic Volume (veh/h)	12	21	29	1623	883	15
Future Volume (Veh/h)	12	21	29	1623	883	15
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	12	22	30	1691	920	16
Pedestrians	4					
Lane Width (m)	3.7					
Walking Speed (m/s)	1.1					
Percent Blockage	0					
Right turn flare (veh)						
Median type				TWLTL	TWLTL	
Median storage veh)				2	2	
Upstream signal (m)				86		
pX, platoon unblocked	0.71					
vC, conflicting volume	1838	472	940			
vC1, stage 1 conf vol	932		0.0			
vC2, stage 2 conf vol	906					
vCu, unblocked vol	1363	472	940			
tC, single (s)	6.8	7.0	4.1			
tC, 2 stage (s)	5.8					
tF (s)	3.5	3.4	2.2			
p0 queue free %	96	96	96			
cM capacity (veh/h)	309	523	735			
				ND 2	CD 4	CD 0
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2
Volume Total	34	30	846	846	613	323
Volume Left	12	30	0	0	0	0
Volume Right	22	0	0	0	0	16
cSH	421	735	1700	1700	1700	1700
Volume to Capacity	0.08	0.04	0.50	0.50	0.36	0.19
Queue Length 95th (m)	2.0	1.0	0.0	0.0	0.0	0.0
Control Delay (s)	14.3	10.1	0.0	0.0	0.0	0.0
Lane LOS	В	В				
Approach Delay (s)	14.3	0.2			0.0	
Approach LOS	В					
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliza	ition		54.9%	I	CU Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	+	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			4	
Traffic Volume (veh/h)	0	13	1	5	18	3	1	0	2	1	0	0
Future Volume (Veh/h)	0	13	1	5	18	3	1	0	2	1	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63
Hourly flow rate (vph)	0	21	2	8	29	5	2	0	3	2	0	0
Pedestrians								2				
Lane Width (m)								3.7				
Walking Speed (m/s)								1.1				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	34			25			72	74	24	72	72	32
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	34			25			72	74	24	72	72	32
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	100	100	100	100	100
cM capacity (veh/h)	1578			1599			918	811	1056	911	812	1043
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	23	42	5	2								
Volume Left	0	8	2	2								
Volume Right	2	5	3	0								
cSH	1578	1599	996	911								
Volume to Capacity	0.00	0.01	0.01	0.00								
Queue Length 95th (m)	0.0	0.1	0.1	0.1								
Control Delay (s)	0.0	1.4	8.6	9.0								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	1.4	8.6	9.0								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utiliza	tion		15.5%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	→	•	•	←	•	4	†	/	\	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	7	0	5	15	2	0	0	5	2	0	0
Future Volume (Veh/h)	0	7	0	5	15	2	0	0	5	2	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Hourly flow rate (vph)	0	11	0	8	23	3	0	0	8	3	0	0
Pedestrians								2				
Lane Width (m)								3.7				
Walking Speed (m/s)								1.1				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	26			13			54	55	13	60	54	24
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	26			13			54	55	13	60	54	24
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	99	100	100	100
cM capacity (veh/h)	1588			1616			943	830	1071	925	832	1052
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	11	34	8	3								
Volume Left	0	8	0	3								
Volume Right	0	3	8	0								
cSH	1588	1616	1071	925								
Volume to Capacity	0.00	0.00	0.01	0.00								
Queue Length 95th (m)	0.0	0.1	0.2	0.1								
Control Delay (s)	0.0	1.7	8.4	8.9								
Lane LOS	0.0	Α	A	A								
Approach Delay (s)	0.0	1.7	8.4	8.9								
Approach LOS	0.0	1.1	A	A								
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utiliza	ition		15.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

AM Peak Hour

	۶	→	•	•	←	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ }		ሻ	∱ }	
Traffic Volume (vph)	27	91	118	76	43	99	77	639	38	147	1220	147
Future Volume (vph)	27	91	118	76	43	99	77	639	38	147	1220	147
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	45.0		0.0	45.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.98		1.00	1.00		1.00	0.99	
Frt		0.932			0.939			0.992			0.984	
Flt Protected		0.994			0.983		0.950			0.950		
Satd. Flow (prot)	0	1697	0	0	1617	0	1630	3484	0	1738	3480	0
Flt Permitted		0.910			0.652		0.146			0.329		
Satd. Flow (perm)	0	1550	0	0	1072	0	250	3484	0	599	3480	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		41			35			8			21	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		247.4			102.8			658.2			86.1	
Travel Time (s)		22.3			9.3			47.4			6.2	
Confl. Peds. (#/hr)	33		1	1		33	12		7	7		12
Confl. Bikes (#/hr)			1			1						
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	6%	5%	3%	8%	4%	8%	12%	3%	16%	5%	3%	0%
Adj. Flow (vph)	29	97	126	81	46	105	82	680	40	156	1298	156
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	252	0	0	232	0	82	720	0	156	1454	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		5	2	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	39.6	39.6		39.6	39.6		32.3	32.3		8.0	32.3	
Total Split (s)	40.0	40.0		40.0	40.0		71.0	71.0		9.0	80.0	
Total Split (%)	33.3%	33.3%		33.3%	33.3%		59.2%	59.2%		7.5%	66.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	2.0	
All-Red Time (s)	3.6	3.6		3.6	3.6		2.3	2.3		0.0	2.3	
Lost Time Adjust (s)		0.0			-2.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.6			5.6		6.3	6.3		3.0	4.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)		23.5			25.5		65.0	65.0		77.3	76.0	
Actuated g/C Ratio		0.21			0.23		0.58	0.58		0.69	0.68	
v/c Ratio		0.70			0.85		0.57	0.35		0.33	0.61	
Control Delay		44.5			62.3		36.1	13.5		8.8	11.9	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		44.5			62.3		36.1	13.5		8.8	11.9	
LOS		D			E		D	В		Α	В	

ı

		→	*	•	•	_	7	ı		*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		44.5			62.3			15.8			11.6	
Approach LOS		D			Е			В			В	
Queue Length 50th (m)		42.8			41.7		10.6	41.0		10.5	82.4	
Queue Length 95th (m)		69.8			71.7		#39.5	62.5		22.0	126.6	
Internal Link Dist (m)		223.4			78.8			634.2			62.1	
Turn Bay Length (m)							45.0			45.0		
Base Capacity (vph)		481			356		145	2034		477	2381	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.52			0.65		0.57	0.35		0.33	0.61	

Intersection Summary

Area Type: Other

Cycle Length: 120

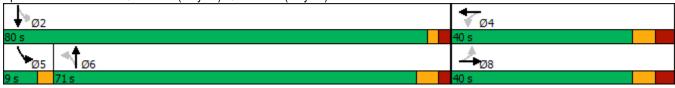
Actuated Cycle Length: 111.4

Natural Cycle: 100

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 19.7
Intersection Capacity Utilization 90.2%


Intersection LOS: B
ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Queen St S(Hwy 50)/Queen St S (Hwy 50) & Ellwood Dr W/Ellwood Dr E

AM Peak Hour

	۶	→	•	•	—	•	•	†	~	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተ ኈ		7	∱ ∱	
Traffic Volume (vph)	27	91	118	76	43	99	77	639	38	147	1220	147
Future Volume (vph)	27	91	118	76	43	99	77	639	38	147	1220	147
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.6			5.6		6.3	6.3		3.0	4.3	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.98		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.93			0.94		1.00	0.99		1.00	0.98	
Flt Protected		0.99			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1695			1618		1625	3483		1736	3481	
Flt Permitted		0.91			0.65		0.15	1.00		0.33	1.00	
Satd. Flow (perm)		1550			1074		249	3483		601	3481	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	29	97	126	81	46	105	82	680	40	156	1298	156
RTOR Reduction (vph)	0	32	0	0	27	0	0	3	0	0	7	0
Lane Group Flow (vph)	0	220	0	0	205	0	82	717	0	156	1447	0
Confl. Peds. (#/hr)	33		1	1		33	12		7	7		12
Confl. Bikes (#/hr)			1			1						
Heavy Vehicles (%)	6%	5%	3%	8%	4%	8%	12%	3%	16%	5%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Actuated Green, G (s)		23.5			23.5		65.0	65.0		76.0	76.0	
Effective Green, g (s)		23.5			25.5		65.0	65.0		76.0	76.0	
Actuated g/C Ratio		0.21			0.23		0.58	0.58		0.68	0.68	
Clearance Time (s)		7.6			7.6		6.3	6.3		3.0	4.3	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		326			245		145	2032		471	2374	
v/s Ratio Prot								0.21		0.02	c0.42	
v/s Ratio Perm		0.14			c0.19		0.33			0.21		
v/c Ratio		0.67			0.84		0.57	0.35		0.33	0.61	
Uniform Delay, d1		40.4			41.0		14.4	12.2		6.7	9.6	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		5.4			21.3		15.0	0.5		0.4	1.2	
Delay (s)		45.8			62.2		29.4	12.6		7.1	10.8	
Level of Service		D			Е		С	В		Α	В	
Approach Delay (s)		45.8			62.2			14.4			10.4	
Approach LOS		D			Е			В			В	
Intersection Summary												
HCM 2000 Control Delay			18.8	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capaci	tv ratio		0.72									
Actuated Cycle Length (s)	,		111.4	Sı	um of los	t time (s)			16.9			
Intersection Capacity Utilization	on		90.2%			of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	•	1	†	 	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	† †	ħβ	
Traffic Volume (veh/h)	3	13	9	712	1459	15
Future Volume (Veh/h)	3	13	9	712	1459	15
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	3	14	10	757	1552	16
Pedestrians	7					
Lane Width (m)	3.7					
Walking Speed (m/s)	1.1					
Percent Blockage	1					
Right turn flare (veh)						
Median type				TWLTL	TWLTL	
Median storage veh)				2	2	
Upstream signal (m)				86		
pX, platoon unblocked	0.90					
vC, conflicting volume	1966	791	1575			
vC1, stage 1 conf vol	1567					
vC2, stage 2 conf vol	398					
vCu, unblocked vol	1851	791	1575			
tC, single (s)	6.8	7.3	4.1			
tC, 2 stage (s)	5.8					
tF (s)	3.5	3.5	2.2			
p0 queue free %	98	95	98			
cM capacity (veh/h)	154	294	421			
				ND 2	CD 4	CD 0
Direction, Lane # Volume Total	EB 1 17	NB 1 10	NB 2 378	NB 3 378	SB 1 1035	SB 2 533
Volume Left	3					0
	14	10	0	0	0	16
Volume Right		0			1700	
CSH Valume to Canacity	254	421	1700	1700	1700	1700
Volume to Capacity	0.07	0.02	0.22	0.22	0.61	0.31
Queue Length 95th (m)	1.6	0.6	0.0	0.0	0.0	0.0
Control Delay (s)	20.2	13.8	0.0	0.0	0.0	0.0
Lane LOS	С	В			0.0	
Approach Delay (s)	20.2	0.2			0.0	
Approach LOS	С					
Intersection Summary						
Average Delay			0.2			
Intersection Capacity Utiliza	ation		50.8%	IC	U Level	of Service
Analysis Period (min)			15		3 = 3.51	
raidiyolo i oriod (iriiri)			10			

	•	→	•	•	←	•	4	†	<i>></i>	\	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	11	0	0	15	1	0	0	0	2	0	0
Future Volume (Veh/h)	0	11	0	0	15	1	0	0	0	2	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
Hourly flow rate (vph)	0	19	0	0	26	2	0	0	0	3	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	28			19			46	47	19	46	46	27
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	28			19			46	47	19	46	46	27
tC, single (s)	4.1			4.1			7.1	6.5	6.4	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.5	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	100	100	100
cM capacity (veh/h)	1585			1611			961	845	1009	955	846	1048
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	19	28	0	3								
Volume Left	0	0	0	3								
Volume Right	0	2	0	0								
cSH	1585	1611	1700	955								
Volume to Capacity	0.00	0.00	0.00	0.00								
Queue Length 95th (m)	0.0	0.0	0.0	0.1								
Control Delay (s)	0.0	0.0	0.0	8.8								
Lane LOS			Α	Α								
Approach Delay (s)	0.0	0.0	0.0	8.8								
Approach LOS			А	Α								
Intersection Summary												
Average Delay			0.5									
Intersection Capacity Utiliza	ation		13.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	+	•	1	†	<i>></i>	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			4	
Traffic Volume (veh/h)	0	8	0	5	6	1	0	0	0	3	0	0
Future Volume (Veh/h)	0	8	0	5	6	1	0	0	0	3	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
Hourly flow rate (vph)	0	13	0	8	10	2	0	0	0	5	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	12			13			40	41	13	40	40	11
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	12			13			40	41	13	40	40	11
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	99	100	100
cM capacity (veh/h)	1607			1619			965	847	1073	960	848	1070
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	13	20	0	5								
Volume Left	0	8	0	5								
Volume Right	0	2	0	0								
cSH	1607	1619	1700	960								
Volume to Capacity	0.00	0.00	0.00	0.01								
Queue Length 95th (m)	0.0	0.1	0.0	0.1								
Control Delay (s)	0.0	2.9	0.0	8.8								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	2.9	0.0	8.8								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utiliza	ition		14.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

PM Peak Hour

	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ 1≽		ሻ	† }	•
Traffic Volume (vph)	77	71	152	55	71	156	163	1874	33	102	961	39
Future Volume (vph)	77	71	152	55	71	156	163	1874	33	102	961	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	45.0		0.0	45.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	2.5			2.5			2.5			2.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.99		1.00	1.00			1.00	
Frt		0.932			0.925			0.997			0.994	
Flt Protected		0.987			0.990		0.950			0.950		
Satd. Flow (prot)	0	1736	0	0	1717	0	1807	3595	0	1789	3523	0
Flt Permitted		0.677			0.775		0.273			0.044		
Satd. Flow (perm)	0	1189	0	0	1344	0	519	3595	0	83	3523	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		35			42			2			7	
Link Speed (k/h)		40			40			50			50	
Link Distance (m)		247.4			102.8			658.2			86.1	
Travel Time (s)		22.3			9.3			47.4			6.2	
Confl. Peds. (#/hr)	8		2	2		8	1		8	8		1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	2%	3%	0%	1%	1%	1%	10%	2%	3%	0%
Adj. Flow (vph)	77	71	152	55	71	156	163	1874	33	102	961	39
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	300	0	0	282	0	163	1907	0	102	1000	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		8			4			6		5	2	
Permitted Phases	8			4			6			2		
Detector Phase	8	8		4	4		6	6		5	2	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		5.0	10.0	
Minimum Split (s)	37.6	37.6		37.6	37.6		32.3	32.3		8.0	30.3	
Total Split (s)	38.0	38.0		38.0	38.0		93.0	93.0		9.0	102.0	
Total Split (%)	27.1%	27.1%		27.1%	27.1%		66.4%	66.4%		6.4%	72.9%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	2.0	
All-Red Time (s)	3.6	3.6		3.6	3.6		2.3	2.3		0.0	2.3	
Lost Time Adjust (s)		-3.0			-3.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.6			4.6		6.3	6.3		3.0	4.3	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		Max	Max		None	Max	
Act Effct Green (s)		33.4			33.4		86.7	86.7		99.0	97.7	
Actuated g/C Ratio		0.24			0.24		0.62	0.62		0.71	0.70	
v/c Ratio		0.97			0.80		0.51	0.86		0.78	0.41	
Control Delay		90.0			60.4		21.7	26.6		59.4	9.4	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		90.0			60.4		21.7	26.6		59.4	9.4	
LOS		F			E		C	C		E	A	
Approach Delay		90.0			60.4			26.2			14.1	

I

PM Peak Hour

		→	*	₩		_	7	- 1		-	*	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		F			Е			С			В	
Queue Length 50th (m)		74.7			63.8		23.8	213.3		12.0	55.8	
Queue Length 95th (m)		#133.5			#107.8		45.3	248.8		#42.1	67.3	
Internal Link Dist (m)		223.4			78.8			634.2			62.1	
Turn Bay Length (m)							45.0			45.0		
Base Capacity (vph)		310			352		321	2227		131	2460	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.97			0.80		0.51	0.86		0.78	0.41	

Intersection Summary

Area Type: Other

Cycle Length: 140

Actuated Cycle Length: 140

Natural Cycle: 110

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.97 Intersection Signal Delay: 30.3 Intersection Capacity Utilization 96.8%

Intersection LOS: C
ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

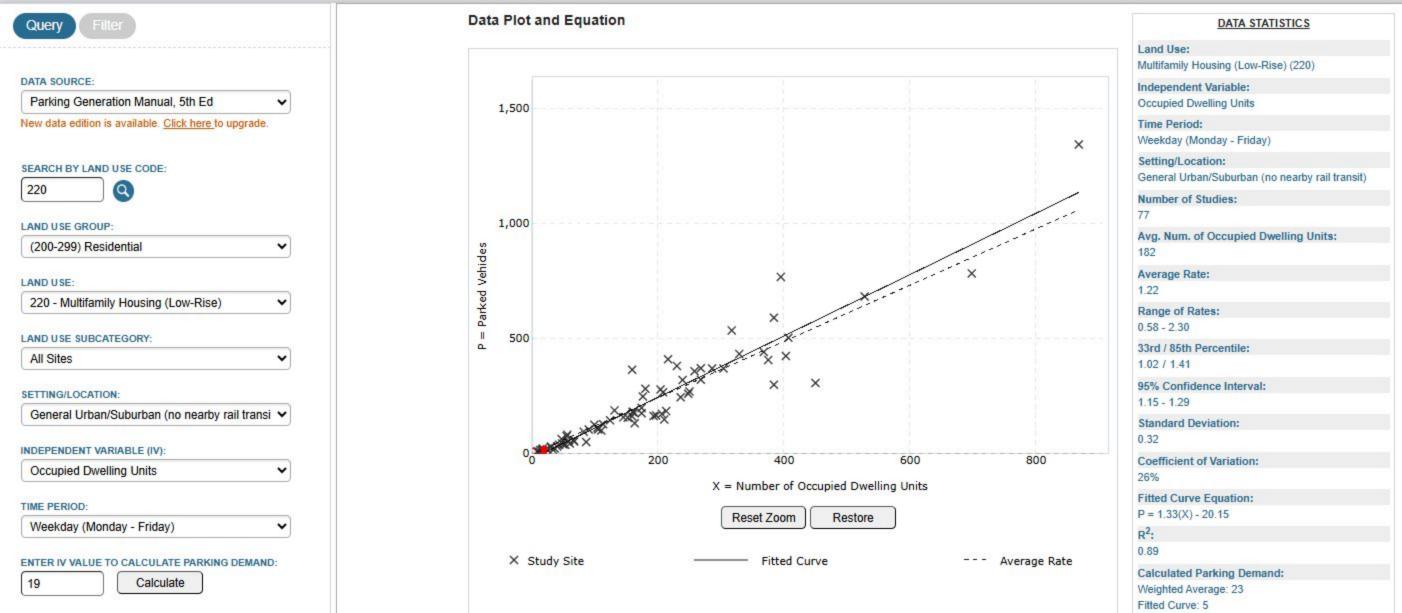
Queue shown is maximum after two cycles.

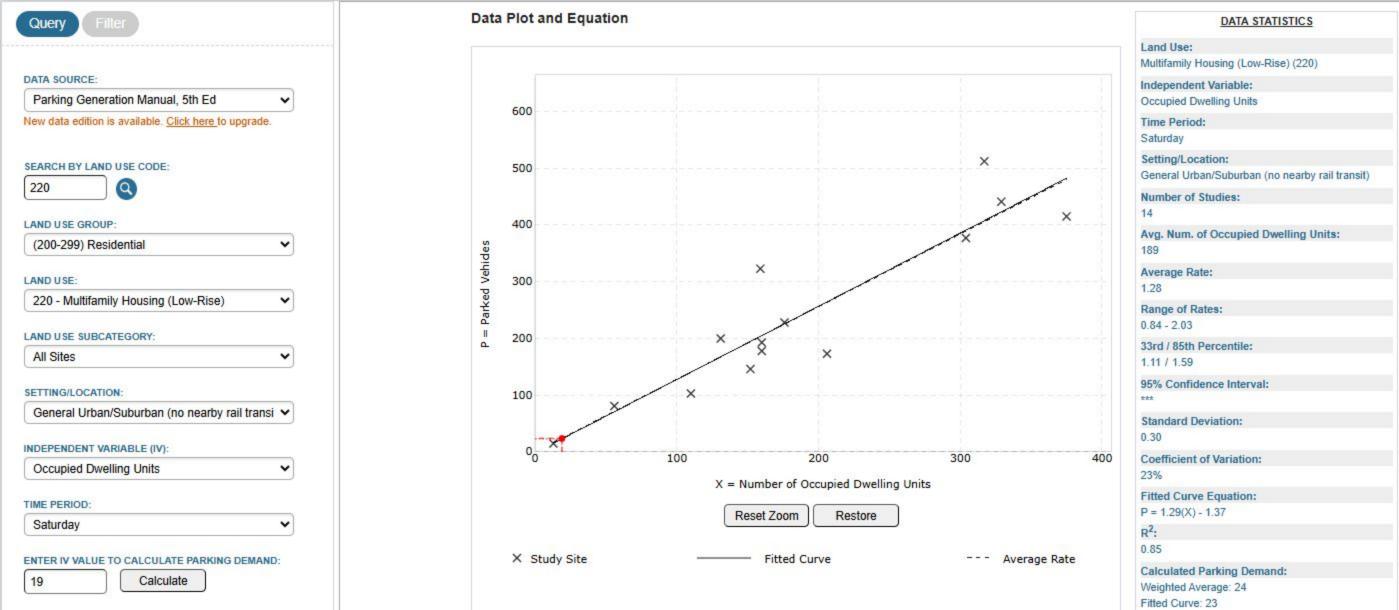
Splits and Phases: 1: Queen St S(Hwy 50)/Queen St S (Hwy 50) & Ellwood Dr W/Ellwood Dr E

1: Queen St S(Hwy 50)/Queen St S (Hwy 50) & Ellwood Dr W/Ellwood Dr E

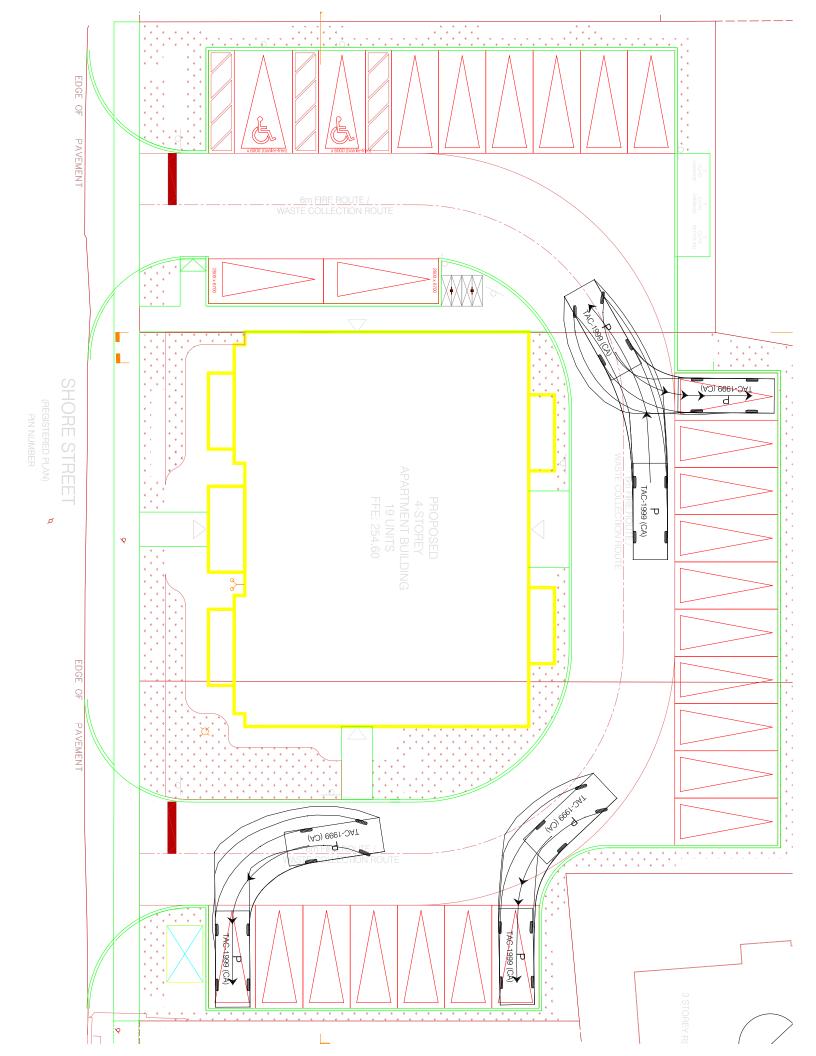
PM Peak Hour

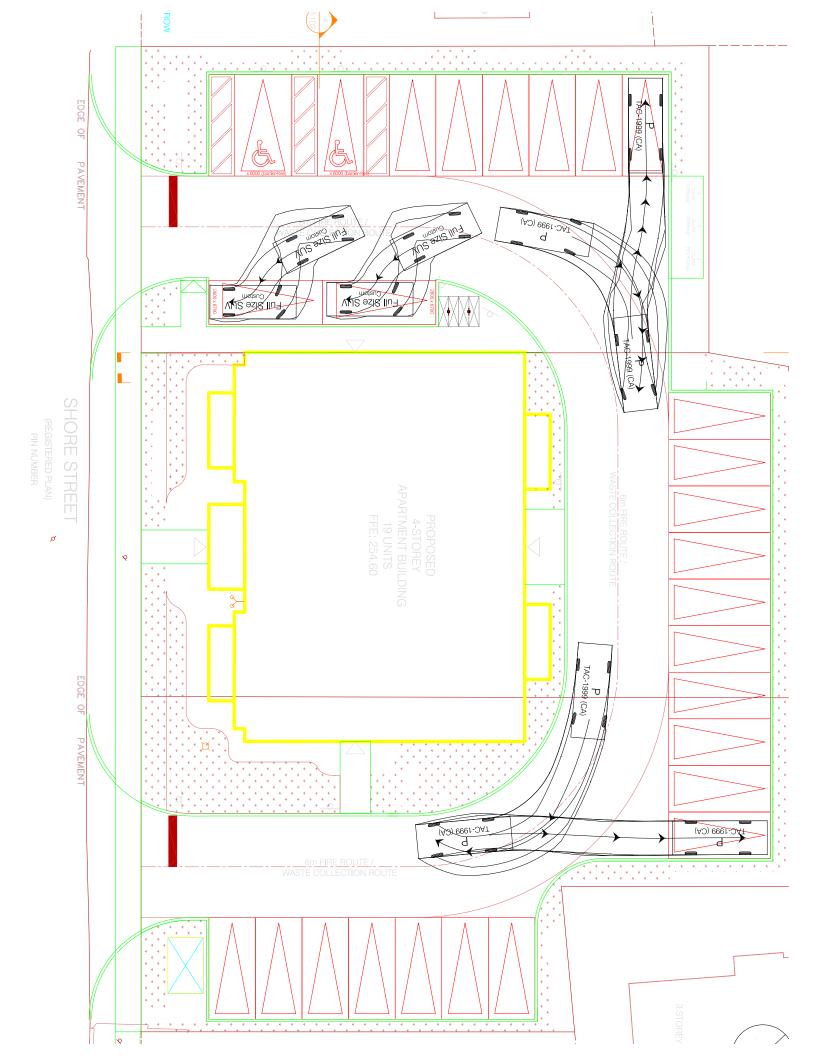
	۶	→	•	•	—	4	1	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		Ť	∱ ∱		Ť	∱ î≽	
Traffic Volume (vph)	77	71	152	55	71	156	163	1874	33	102	961	39
Future Volume (vph)	77	71	152	55	71	156	163	1874	33	102	961	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.6			4.6		6.3	6.3		3.0	4.3	
Lane Util. Factor		1.00			1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes		0.99			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.93			0.93		1.00	1.00		1.00	0.99	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1734			1718		1806	3596		1789	3524	
Flt Permitted		0.68			0.77		0.27	1.00		0.04	1.00	
Satd. Flow (perm)		1189			1344		519	3596		82	3524	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	77	71	152	55	71	156	163	1874	33	102	961	39
RTOR Reduction (vph)	0	27	0	0	32	0	0	1	0	0	2	0
Lane Group Flow (vph)	0	273	0	0	250	0	163	1906	0	102	998	0
Confl. Peds. (#/hr)	8		2	2		8	1		8	8		1
Heavy Vehicles (%)	0%	0%	2%	3%	0%	1%	1%	1%	10%	2%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases	. 0	8		1 01111	4		1 01111	6		5	2	
Permitted Phases	8			4	•		6			2	_	
Actuated Green, G (s)	Ū	30.4		•	30.4		86.7	86.7		97.7	97.7	
Effective Green, g (s)		33.4			33.4		86.7	86.7		97.7	97.7	
Actuated g/C Ratio		0.24			0.24		0.62	0.62		0.70	0.70	
Clearance Time (s)		7.6			7.6		6.3	6.3		3.0	4.3	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		283			320		321	2226		130	2459	
v/s Ratio Prot		200			020		021	c0.53		c0.03	0.28	
v/s Ratio Perm		c0.23			0.19		0.31	00.00		0.51	0.20	
v/c Ratio		0.97			0.13		0.51	0.86		0.78	0.41	
Uniform Delay, d1		52.7			49.9		14.8	21.6		35.3	8.9	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		43.8			11.7		5.6	4.5		25.9	0.5	
Delay (s)		96.5			61.6		20.4	26.1		61.2	9.4	
Level of Service		90.5 F			01.0 E		20.4 C	20.1 C		61.2 E	9.4 A	
Approach Delay (s)		96.5			61.6		C	25.7		L	14.2	
Approach LOS		90.5 F			01.0 E			23.7 C			14.2 B	
Intersection Summary			20.7	11	CM 2000	Lovel of (Comiles		0			
HCM 2000 Control Delay	L		30.7	Н	CIVI 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ly ratio		0.88		uma aflasi	h blue a (=)			12.0			
Actuated Cycle Length (s)			140.0		um of los				13.9			
Intersection Capacity Utilizati	on		96.8%	IC	U Level	of Service			F			
Analysis Period (min)			15									
C CONCALLANG GOOD												

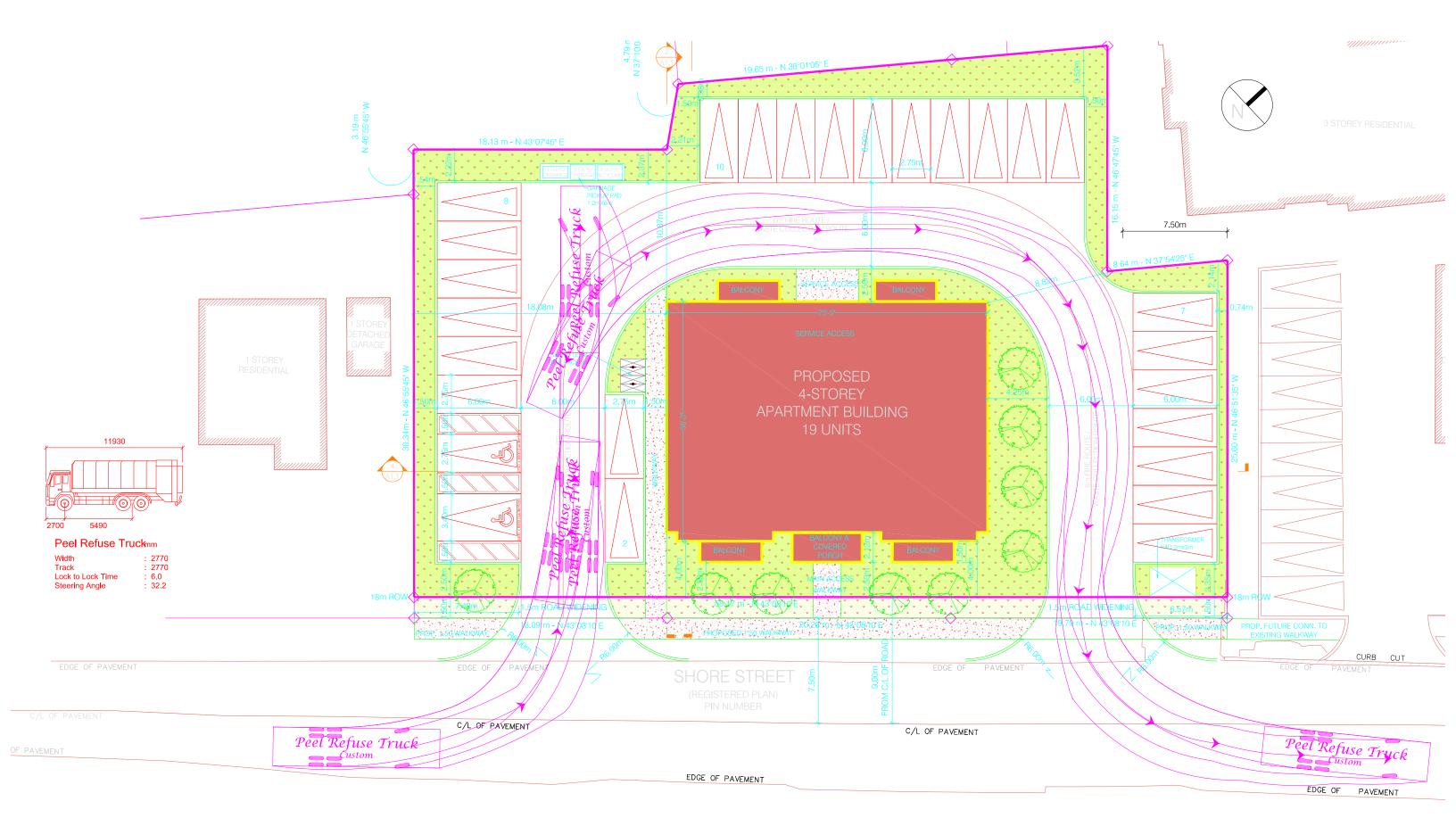

c Critical Lane Group


	۶	•	4	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		ሻ	^	↑ ↑	
Traffic Volume (veh/h)	14	25	34	1995	1085	18
Future Volume (Veh/h)	14	25	34	1995	1085	18
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	15	26	35	2078	1130	19
Pedestrians	4					
Lane Width (m)	3.7					
Walking Speed (m/s)	1.1					
Percent Blockage	0					
Right turn flare (veh)						
Median type				TWLTL	TWLTL	
Median storage veh)				2	2	
Upstream signal (m)				86		
pX, platoon unblocked	0.55					
vC, conflicting volume	2252	578	1153			
vC1, stage 1 conf vol	1144	0.0	1100			
vC2, stage 2 conf vol	1109					
vCu, unblocked vol	1636	578	1153			
tC, single (s)	6.8	7.0	4.1			
tC, 2 stage (s)	5.8	7.0				
tF (s)	3.5	3.4	2.2			
p0 queue free %	94	94	94			
cM capacity (veh/h)	236	445	611			
				NDO	0D 4	00.0
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2
Volume Total	41	35	1039	1039	753	396
Volume Left	15	35	0	0	0	0
Volume Right	26	0	0	0	0	19
cSH	336	611	1700	1700	1700	1700
Volume to Capacity	0.12	0.06	0.61	0.61	0.44	0.23
Queue Length 95th (m)	3.1	1.4	0.0	0.0	0.0	0.0
Control Delay (s)	17.2	11.3	0.0	0.0	0.0	0.0
Lane LOS	С	В				
Approach Delay (s)	17.2	0.2			0.0	
Approach LOS	С					
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliz	ation		65.1%	IC	CU Level	of Service
Analysis Period (min)			15			
rangolo i onou (iliii)			10			

	•	→	•	•	←	4	1	†	<i>></i>	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	16	2	6	22	3	2	0	3	1	0	0
Future Volume (Veh/h)	0	16	2	6	22	3	2	0	3	1	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63
Hourly flow rate (vph)	0	25	3	10	35	5	3	0	5	2	0	0
Pedestrians								2				
Lane Width (m)								3.7				
Walking Speed (m/s)								1.1				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	40			30			86	88	28	89	88	38
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	40			30			86	88	28	89	88	38
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	100	100	100	100	100
cM capacity (veh/h)	1570			1593			897	795	1050	886	796	1035
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	28	50	8	2								
Volume Left	0	10	3	2								
Volume Right	3	5	5	0								
cSH	1570	1593	987	886								
Volume to Capacity	0.00	0.01	0.01	0.00								
Queue Length 95th (m)	0.0	0.1	0.2	0.1								
Control Delay (s)	0.0	1.5	8.7	9.1								
Lane LOS		Α	Α	Α								
Approach Delay (s)	0.0	1.5	8.7	9.1								
Approach LOS			А	Α								
Intersection Summary												
Average Delay			1.8									
Intersection Capacity Utiliza	ation		16.6%	IC	CU Level o	of Service			Α			
Analysis Period (min)			15									


	۶	→	•	•	←	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	9	0	6	18	2	0	0	6	2	0	0
Future Volume (Veh/h)	0	9	0	6	18	2	0	0	6	2	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Hourly flow rate (vph)	0	14	0	9	28	3	0	0	9	3	0	0
Pedestrians								2				
Lane Width (m)								3.7				
Walking Speed (m/s)								1.1				
Percent Blockage								0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	31			16			64	65	16	70	64	30
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	31			16			64	65	16	70	64	30
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												0.1
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			100	100	99	100	100	100
cM capacity (veh/h)	1582			1612			929	819	1067	908	821	1045
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	14	40	9	3								
Volume Left	0	9	0	3								
Volume Right	0	3	9	0								
cSH	1582	1612	1067	908								
Volume to Capacity	0.00	0.01	0.01	0.00								
Queue Length 95th (m)	0.0	0.1	0.2	0.1								
Control Delay (s)	0.0	1.7	8.4	9.0								
Lane LOS	0.0	Α	A	A								
Approach Delay (s)	0.0	1.7	8.4	9.0								
Approach LOS	0.0		A	A								
Intersection Summary												
Average Delay			2.6									
Intersection Capacity Utiliza	ition		16.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									


Transportation Study – Residential Development - 15, 21 and 27 Shore Street
Appendix G:
Parking Generation Graphs



Transportation Study – Residential Development - 15, 21 and 27 Shore Street
Appendix H:
Auto-Turn Analysis

