FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

RESIDENTIAL DEVELOPMENT

4 STOREY RESIDENTIAL BUILDING

15, 21, 27 SHORE STREET
TOWN OF CALEDON

APPLICATION FILE NUMBERS: TOWN: PRE-2023-0109 REGION: PRE-23-109B

Project No.: 24-0002CA S

September 2025

Revision	Date	Description		
0	May 2024	First Submission		
1	September 2025	Second Submission		
2	41///			

TOWN OF CALEDON PLANNING RECEIVED

September 4th, 2025

Table of Contents

	<u>r</u>	AGE
1.0	INTRODUCTION	1
	1.1 Study Objectives and Location	1
	1.2 Existing Conditions	1
	1.3 Proposed Development	2
	1.3.1 Internal Works	2
	1.3.2 External Works	3
	1.4 Proposed Design Populations	3
	1.5 Background References	6
2.0	Stormwater Management	7
	2.1 Existing Conditions	7
	2.1.1 Internal Works Topography and Drainage	7
	2.1.2 Existing Storm Drainage Infrastructure	7
	2.1.3 External Works Topography and Drainage	7
	2.1.4 Soil Conditions	7
	2.2 Stormwater Management Design Criteria	8
	2.3 Proposed Site Grading and Drainage	11
	2.3.1 Internal Works	
	2.3.2 External Works	11
	2.4 Proposed Stormwater Management Plan	11
	2.5 Internal Works Water Quantity Control	12
	2.5.1 Pre-development Flows	12
	2.5.2 Post Development Flows	14
	2.5.3 Water Quantity Control	16
	2.5.4 Extended Detention and Erosion	17
	2.6 External Works Water Quantity Plan	18
	2.7 Internal Works Water Quality Control	18
	2.8 External Works Water Quality Control	18
3.0	Sanitary Servicing	21
	3.1 Existing Sanitary Sewers	21
	3.2 Proposed Sanitary Servicing	21
	3.3 Design Criteria	22
	3.4 Sanitary Development Demands	22
4.0	Water Supply Servicing	24

٦	Γοw	n	$\cap f$	Cal	led	on

Residential Development Functional Servicing and SWM Report

4.1 Fxis	ting Water Supply Infrastructure	24
-		
4.1 Existing Water Supply Infrastructure 4.2 Proposed Water Supply Servicing. 4.3 Design Criteria	30	
	l ist of Tahles	
	<u>List of Tables</u>	
	•	
Table 4-4: To	otal Water Supply Demands	27
	<u>List of Figures</u>	
Figure 4.4: 0	ita Lagatian Dlan	_
•		
9	3	
	<u>Appendices</u>	
Appendix A:	Site Plan and Topographic survey	
Appendix B:	Region and City As-built	
	Water Demand Calculations	
Appendix D:	Sanitary Demand Calculations and Single Use Demand Table	
F F	, =	

Residential Development Functional Servicing and SWM Report

Appendix E: **Stormwater Management Calculations**

Appendix F: **Engineering Drawings**

1.0 INTRODUCTION

1.1 Study Objectives and Location

This Functional Servicing and Stormwater Management Report has been prepared in support of a 4-storey apartment building with a basement on 15, 21, 27 Shore Street, located west of Queen Street South (Highway #50) and north of Elwood Drive West. The site can be legally described as being located within Registered Plan BOL-7, with the following parts:

- Municipal No. 27 PIN 14322-0319(LT)
- Municipal No. 21 PIN 14322-0320(LT)
- Municipal No. 15 PIN 14322-0321 (LT)

The subject property is bounded by Shore Street to the South, Oak Street to the West, Queen Street South to the East, and William Street to the North. A site location plan is provided in Figure 1-1.

The following report provided information regarding site servicing and stormwater management for the subject development while ensuring compatibility with surrounding lands. The report will also address concerns and comments raised by Regulatory Agencies (i.e Town of Caledon (Town), Region of Peel (Region), Toronto & Region Conservation Authority (TRCA), Ministry of Environment (MOE)

1.2 Existing Conditions

The site is roughly a rectangular shape covering a total area of 0.21 ha. Currently the site is occupied by 3 single-family residential homes, one for each municipal address mentioned above. The current properties consist of asphalt driveways, landscaping features, sheds, grassed area, and minor retaining walls internal to the property.

In general, vehicle access to the site is provided by existing driveway entrances fronting Shore Street. The subject property only has fronting on Shore Street and Shore Street is bounded by Oak Street to the West and Highway 50 to the east.

The subject property is bounded by residential lands to the north adjacent to the property, residential lands to the west across Oak Street, commercial lands to the east adjacent to the property, and commercial lands to the south across Shore Street.

Shore Street is currently an un-urbanized 6.7 m wide road within an approximately 15.0 m right-of-way. Shore Street has a roadside ditch and driveway culverts on the north side and no roadside ditch on the south side. No sidewalk exists on Shore Street on either side. The nearest sidewalk is where Shore Street intersects Highway 50.

The existing property is currently split drainage with the front half of the lots draining to the roadside ditches uncontrolled and the back yards drainage towards the north property line and being conveyed from there by existing means.

1.3 Proposed Development

The proposed development will consist of development of the subject property (Internal Works) and urbanization of Shore Street (External Works).

1.3.1 Internal Works

The internal works will involve removing all internal aboveground structures, underground structures, pavement structures, retaining walls internal to the property, fencing, underground servicing, landscaping, accessory structures, and any other underground utilities as required.

Once all removed, the proposed development will consist of construction a 4-storey residential apartment building (19 residential units) with a basement, a new surface parking lot, retaining walls, storm sewer infrastructure, sanitary servicing, and watermain servicing, and landscaping features.

The main vehicle access to the proposed development will be provided by two new 6.0 m wide driveways fronting Shore Street. Pedestrian access will be provided by new sidewalk construction as part of external works. Please refer to Site Plan prepared by FC Architects in **Appendix A** for more details.

Pedestrian access to the proposed development will be provided by the new 1.5 m concrete sidewalk in the Shore Street right-of-way that is part of the External works described in Section 1.3.2 below

1.3.2 External Works

The external works will consist of urbanizing Shore Street in its entirety to be a curb and guttered road with its own minor storm sewer system of catch basins and storm sewer mains. The new road will be as per Town Standard Drawing 202. The new road will have an edge of pavement width of 7.9 m and come with a new 1.5 m wide concrete sidewalk on the north side along the subject property line connecting to the existing sidewalk on Highway 50.

A new storm sewer main will be installed to convey the storm run-off from the new right-of-way and to convey the controlled storm run-off from the subject property.

It is to be noted that the external works will involve a 1.5 m widening of the right-of-way along the north property line. As such the ultimate property line is to be 1.5 m away from the existing property line.

The limit of the urbanization work will be from Oak Street to the existing curb and gutter on Highway 50. As shown in the Site Grading Plan in **Appendix F**

1.4 Proposed Design Populations

Based on the site plan, the site is to remain entirely residential. The proposed development design population as per Region of Peel criteria is provided below in Table 1-1. The total proposed design population considered for 15, 21, 27 Shore Street is 52 persons.

Population Population Site Small Large Design **Land Use** Density Density Area** Unit Population* Unit (Small) (Large) 1.7 / small 3.1 / large Residential 0.21 14 5 52 unit unit Total 1.7 / small 3.1 / large 0.21 Design 14 5 52 unit unit **Population**

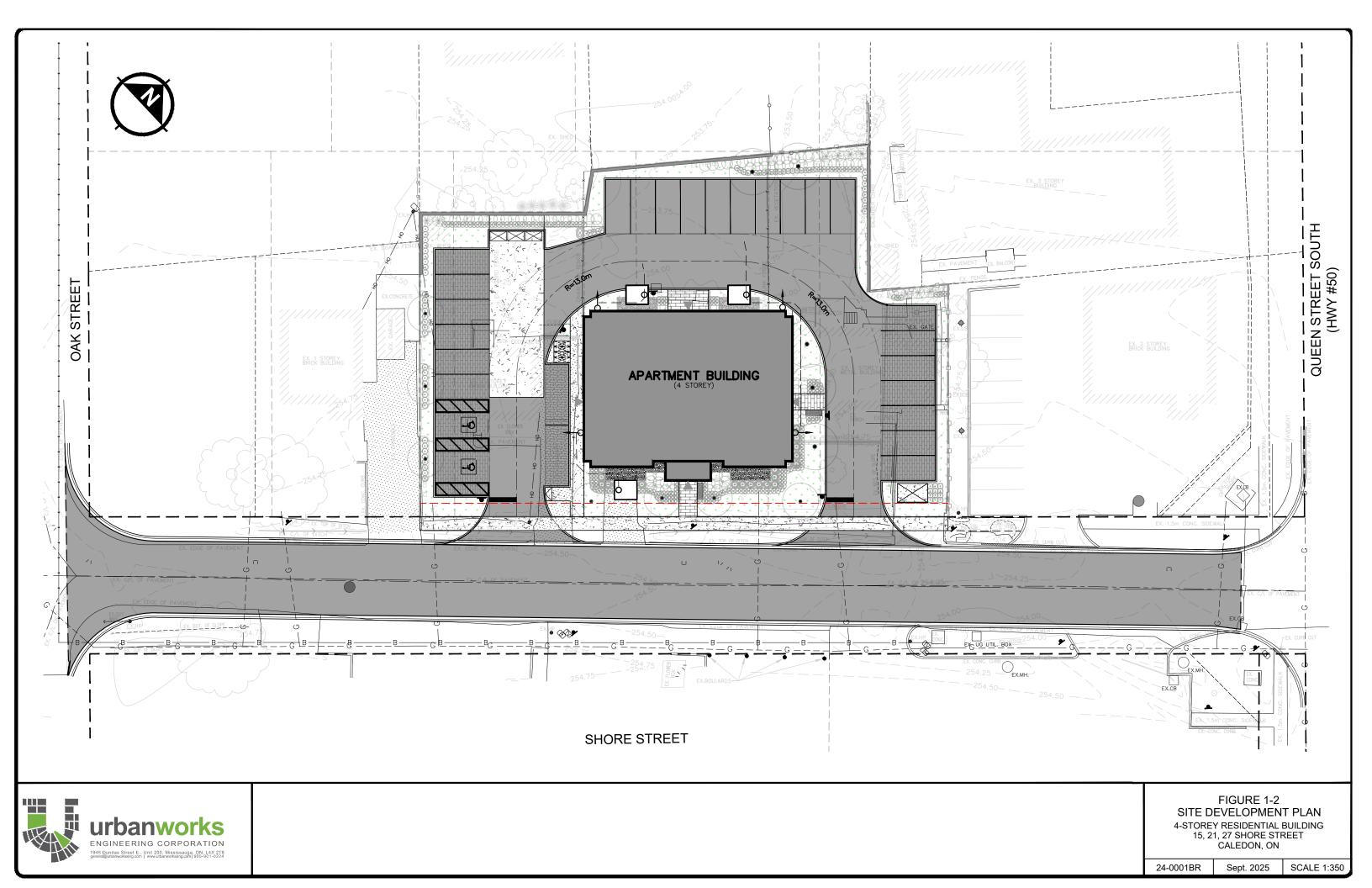
Table 1-1: Population Estimate

^{*}Population and unit estimates are based on the population densities set out by the Region of Peel - Linear Waste Water Standards (2023) - Section 2.1.2. The resulting populations have been used for engineering design capacity purposes only and therefore may not be consistent with proposed planning populations for the development.

^{**}Unit Counts based on the latest Site Plan.

LEGEND

SITE BOUNDARY


FIGURE 1-1 SITE LOCATION PLAN

4-STOREY RESIDENTIAL BUILDING 15, 21, 27 SHORE STREET CALEDON, ON

24-0002CA

Sept. 2025

N.T.S.

1.5 **Background References**

The following material has been reviewed during the preparation of this report:

- Guido Papa Surveying, Topographic Survey, dated August 11, 2023
- Fausto Cortese Architects., Site Plan dated August 2024
- Toronto and Region Conservation Authority, Stormwater Management Criteria, August 2012.
- Toronto and Region Conservation Authority/Credit Valley Conservation, Low Impact Development Stormwater Management Planning and Design Guide, 2010.
- Ministry of the Environment, Stormwater Management Planning and Design Manual, dated March 2003.
- Region of Peel, Linear Waste Water Standards, dated March 2024
- Region of Peel, Linear Infrastructure Watermain Design Criteria, dated June 2010
- **Town of Caledon Development Standards Manual, Version 5.0, dated 2019.**

2.0 Stormwater Management

2.1 Existing Conditions

2.1.1 Internal Works Topography and Drainage

In general, the existing site grading can be described as having split drainage. The front half of the existing lots drain via overland sheet flow into the roadside ditch along the north side of Shore Street. Meanwhile the backyards drain via overland sheet flow towards the north property line and continue to be conveyed northward away from the subject property limits. All overland flow is ultimately captured by storm inlets at the intersection of Shore Street and Highway 50, as shown in Engineering Drawings provided in Appendix F. The Shore Street major overland flow route drains east towards Highway 50 and subsequently southwards along the highway.

The site is relatively flat with an average slope of 2.4% for the rear of existing lots, and the northeast corner of the property. An average slope of 1.6% exists from the front of the existing houses towards Shore Street.

Based on available topographic information, the existing site drainage area has been delineated and presented in Figure 2-1.

2.1.2 Existing Storm Drainage Infrastructure

As-builts drawings were obtained through Region of Peel and were used to identify the following stormwater infrastructure in proximity of the site.

- There is no existing storm sewer infrastructure within the Shore Street right-of-way
- A 375 mm diameter concrete storm sewer that extends from Highway 50 towards Shore Street and terminates at CBMH RR050-347

2.1.3 External Works Topography and Drainage

Shore Street is a relatively flat road that is graded at approximately 0.75% to the east towards Highway 50. There is no existing storm sewer infrastructure within Shore Street, and all storm run-off drains via overland sheet flow into the CBMH RR050-347 and CB RR050-247 at the northwest corner of Shore Street and Highway 50 intersection.

2.1.4 Soil Conditions

A Geotechnical Report was prepared by Soil Engineers Ltd, dated July 2024. As part of the report

/ investigation a series of boreholes and groundwater monitoring wells were installed on-site. Based on the results of the monitoring period, groundwater elevations were found to range between 1.1 metres below ground surface (mbgs) to 5.5 mbgs consistent with elevations 253.0 m to 248.6 m depending on the monitoring well location. Furthermore, hydraulic in-situ values and percolation times were calculated for the soils screened. The coefficient of permeability was calculated to be $1x10^{-7}$ cm / s. The percolation time for the soils within the subject property limit was 100 min / cm which translate to a drawdown rate of 6 mm / hour.

Based on field investigations, soil types on site ranged from earth fill near the surface to primarily silty clay / silty clay till across the entire site. Please refer to the geotechnical report in **Appendix B** for more details.

2.2 Stormwater Management Design Criteria

The stormwater management design criteria applicable to the proposed development was established through a review of regulatory agency design standards. The relevant stormwater management design criteria and regulatory bodies are summarized in this section.

Town of Caledon Criteria

Rainfall intensities shall be derived from the IDF curves as outlined in Town Standard No.
 103 with information as presented in the following table:

Table 2-1: Town of Caledon IDF Curve Parameters

RETURN PERIOD	A	В	С	
2-Year	1070	0.8759	7.85	
5-Year	1593	0.8789	11 12	
10-Year	2221	0.9080		
25-Year	3158	0.9335	15	
50-Year	3886	0.9495	16	
100-Year	4688	0.9624	17	

*Values as per Town Std No 103.

The average rainfall intensity shall be calculated using the equation:

$$(i = A * B / (t + c))$$

Where:

i = rainfall intensity (mm/hr)t = Time of concentration (hours)

Functional Servicing and SWM Report

- Quantity Control Post-development peak flow rates at the proposed discharge location shall be limited to the 5-year pre-development peak flow, up to and including the 100-year return event.
- Quality Control 80% (enhanced) TSS removal required for water quality protection to be provided in accordance with MECP, and Town requirements.

2.3 Proposed Site Grading and Drainage

2.3.1 Internal Works

The predevelopment drainage conditions are to be altered to have the site be self contained and reduce the run-off being directed to the north property line.

To achieve a self-contained site the north property line grades will be raised via the use of retaining walls. All storm runoffs will be directed to the minor storm conveyance system within the site. Major overland flow will drain towards Shore Street via the easternmost driveway entrance in the case of an emergency event, or storm larger than the 100-year event. The site promotes a major flow route with a maximum ponding depth of 0.30 m.

The controlled drainage areas on site will have runoff collected via catch basins or catch basin manholes to a manhole with an orifice plate for quantity control. Quality treatment will then be provided by an on-site jellyfish filtration unit draining to the site control manhole before ultimately releasing site flows to the proposed storm sewer system within Shore Street, provided as part of proposed external works.

The roof runoff from proposed building will drain underground into rainwater harvesting cisterns (Graf Platin 3000 L x 3) and in the event the cisterns are full, the roof run-off will drain into the control manhole via an overflow pipe. All downspouts will come equipped with a leaf filter, an overflow pipe, and aboveground splash pad as a safeguard.

2.3.2 External Works

As part of the urbanization of Shore Street a minor storm sewer system is being proposed with-in the Shore Street right-of-way to convey minor flows. The storm sewers are proposed to be sized to convey the maximum of the 5-year storm event as per Town Standards, as well as the controlled flows from subject property. The proposed storm sewers will connect to the existing CBMH RR050-347 and shall not exceed the size of the existing downstream sewer system.

The Shore Street major overland flow route for is to maintain its existing drainage route towards Highway 50. The proposed grading for the urbanization work will provide a max ponding depth of 0.30 m within proposed ponding areas.

Please refer to Figure 2-3 for the proposed drainage area plan for the proposed storm sewer within the Shore Street right-of-way

2.4 Proposed Stormwater Management Plan

The proposed stormwater management system will be designed in accordance with Town of

Caledon and TRCA guidelines. The intent of the design is to maintain existing drainage conditions to the extent possible, while adhering to the quantity control criteria set out by both the aforementioned criteria.

During the design process, low impact development (LID) measures were evaluated as part of the storm water management strategy; the TRCA LID SWM planning and Design Guide was used as a reference. The following LID measure is being utilized:

- Surface Storage: All required quantity storage to attenuate the 100-year post-development
 to the 5-year pre-development flow rate will be provided via surface storage. The surface
 storage will have a maximum ponding depth of 0.30 m, and the limits of the surface storage
 are shown on the Site Grading Plan provided in Appendix F.
- Rainwater Harvesting: To provide the site erosion control volume (i.e. 5 mm retention on site) rainwater harvesting is proposed. All roof-runoff will drain into the rainwater harvesting cisterns before being re-used on site.

Other LID options such as, green roofs, permeable pavement, and swales were not utilized given the development design and spatial constraints.

2.5 Internal Works Water Quantity Control

In accordance with the Town design criteria, it is proposed to control site post development peak flows to match pre-development levels for all storm events up to and including the 100-year event.

The existing site peak flows were estimated for each return period from the 2-year to 100-year. These calculations were performed using the Modified Rational Method in conjunction with the Town IDF curves as per Town Std No. 103. This was done in order to establish the site's maximum permissible post-development rate into the proposed storm sewer system.

2.5.1 Pre-development Flows

The existing drainage pattern within the proposed development limits is characterized by three (3) drainage area: Area 101, 102, and 103

Area 101 consists of 3 detached single-family homes, accessory structures, surface asphalt parking, and landscaped area. Area 101 represents the area that will continue to be self-contained in the proposed condition.

Area 102 consists of asphalt parking, driveway and grassed/planted landscaped area. This area

will continue to drain towards the Shore Street right-of-way in post-development conditions.

Area 103 consists of approximately 0.091 ha of entirely landscaped backyard area which drains via sheet flow towards the northern property line. In the post-development condition, the area draining towards the north property line will be reduced in order to promote self-contained drainage to the extent possible.

Please see Figure 2-1 which depicts the pre-development drainage areas. A summary of the pre-development land cover is provided below in Table 2-2.

Area 101 Area 102 Area 103 **Total Coverage** Surface (m²)(m²)(m²)Asphalt 167.82 19.30 9.1% Roof 369.74 0 0 17.9% Hardscape 108.18 0 0 5.2% 1306.01 37.0 67.8% 58.83 Landscape % Impervious 33% 34% 0% 32% **Runoff Coefficient** 0.47 0.46 0.47 0.25

Table 2-2: Pre-development land use Summary

The total imperviousness of the existing site was calculated to be 32% and the corresponding runoff coefficient was calculated to be 0.46 based on Town of Caledon Engineering Standards. For more detailed calculations please see **Appendix E**.

IDF parameters from the Town Standard No. 103 were used to calculate the existing site's peak runoff. These IDF curves are a function of the time of concentration using the Town minimum time of concentration of 10 minutes for the development area.

The pre-development peak runoff flows determined for Catchment 101 based on the above model parameters are summarized in Table 2-3.

Return Period	Intensity	Area 101 – Runoff Aea = 0.195ha (C=0.46)	Area 102 – Runoff Aea = 0.006 ha (C=0.47)	Area 103 – Runoff Aea = 0.006 ha (C=0.25)	
	(mm/hr)	(L/s)	(L/s)	(L/s)	
2-yr	52.5	13.1	0.4	0.2	

Table 2-3: Pre-development Peak Runoff Rate

5-yr	66.7	16.6	0.5	0.3	
10-yr	91.7	22.8	0.7	0.4	
25-yr	117.9	29.3	0.9	0.5	
50-yr	141.9	35.3	1.1	0.6	
100-yr	167.1	41.6	1.2	0.7	

2.5.2 Post Development Flows

The proposed post-development drainage pattern within the proposed development is characterized by three (3) drainage areas. Area 201, 202, and 203.

Area 201 consists of the controlled 4-storey residential building, surface parking, landscaped areas, concrete walkways, and retaining walls.

Area 202 consists of a small amount of gravel area and a majority of landscaped planting area. Due to grading constraints along the frontage of the site, it is proposed to drain uncontrolled to the Shore Street right-of-way.

Area 203 consists of landscaped planting area. This area currently drains uncontrolled to the north property line. It is proposed to continue to drain uncontrolled to the north property line due to grading constraints, particularly as a way to mitigate impact on adjacent trees along the site boundary.

The proposed development will be serviced by a minor storm system that has been sized to the capture and control site runoff to the 5-year pre-development level before draining into the proposed storm sewer within Shore Street.

A summary of the site's post-development land cover is provided below in Table 2-4.

Table 2-4: Post-development land use summary

Surface	Area 201 Area 202		Area 203	Total Coverage
	(m²)	(m²)	(m²)	
Asphalt	1055.04	0	0	51.0%
Roof	423.43	0	0	20.5%
Hardscape	114.8	8.0	0	5.9%
Landscape	358.74	48.60	58.83	22.6%
% Impervious	82%	14%	0%	77%
Runoff Coefficient	0.78	0.34	0.25	0.75

The total imperviousness of the proposed development was estimated to be 77% with a corresponding runoff coefficient of 0.75 based on Town of Caledon Engineering Standards. For more detailed calculations please see **Appendix E**. Final site land cover estimates, alongside their impact on the proposed SWM design, will be confirmed at the detailed design stage.

IDF parameters from the Town Standard No. 103 were used to calculate the existing site's peak runoff. These IDF curves are a function of the time of concentration; the minimum time of concentration of 10 minutes was used for the development area.

The post-development peak runoff flows determined for all drainage areas based on the above parameters are summarized in **Table 2-5**.

Return Period	Intensity	(C=0.78)		Area 201 – Runoff Aea = 0.006 ha (C=0.25)	
	(mm/hr)	(L/s)	(L/s)	(L/s)	
2-yr	52.5	13.1	0.3	0.2	
5-yr	66.7	16.6	0.4	0.3	
10-yr	91.7	22.8	0.5	0.4	
25-yr	117.9	29.3	0.6	0.5	
50-yr	141.9	35.3	0.8	0.6	
100-yr	167.1	41.6	0.9	0.7	

Table 2-5: Post-development Peak Runoff Rate

As shown in **Error! Reference source not found.**5, the post-development peak flows are a nticipated to exceed the target 5-year pre-development peak flow, as presented in Table 2-3. As a result, surface storage paired with a control orifice is proposed to attenuate all storm events up to and including the 100-year post development level to the target 5-year pre-development peak flow.

2.5.3 Water Quantity Control

Based on the pre-development flows outlined in Table 2-3, all storm events up to and including the 100-year post development flow rate will be controlled to the 5-year predevelopment flow rate, as summarised in Table 2-6 below.

Target PreDevelopment Peak
Flow (5-year) (L/s)

100-year PostDevelopment
Uncontrolled Flows
(L/s)

Allowable Post
Development Release
Rate (L/s)

15.0

Table 2-6: Allowable Release Rate

In order to achieve the aforementioned quantity control objectives, Catchment 201 will need to have runoff flows from the 100-year event controlled to a release rate of 15.0 L/s. This will ensure that the total of the site controlled and uncontrolled flows will remain within the 5-year predevelopment peak flow rate to the proposed sewer along Shore Street.

In order to attenuate the 100-year post development flow to the required control rate, an orifice plate will be utilized and placed upstream of the site control manhole. An orifice diameter of 78 mm is estimated to be required and will require an associated stormwater storage volume of approximately 48.2 cubic metres. This volume is proposed to be provided via aboveground surface storage within the proposed parking areas.

Table 2-7 summarizes the site's key proposed quantity control design features. Please see **Appendix E** for detailed calculations. The final required orifice sizing, storage requirements and design will be confirmed at the detailed design stage.

Post Development Flow (100-year) (L/s)	Allowable Post Development Release Rate (L/s)	Orifice Diameter (mm)	Actual Provided Post-development flow (L/s)	Required Water Quantity Storage (m3)
71.6	15.0	78	14.9	46.4

Table 2-7: Orifice Control and Required Storage

Please see Table 2-8 below for the provided preliminary water quantity storage volumes summary. The final provided storage volumes will be confirmed at the detailed design stage. Supporting calculations for the site's quantity control design are provided in **Appendix E**. Please refer to the Functional Site Servicing Plan in **Appendix F** for more details.

Town of Caledon

Required **Provided Water Total Surface Water Quantity Max Ponding** Top of **Quantity Storage Ponding Location** Storage **Storage** Grate Elev. Elev. Area(m²) (m^3) (m^3) CB1 254.15 254.23 194.50 5.2 CBMH 1 254.00 254.23 295.04 22.6 CBMH 2 (w/ 253.95 254.23 243.83 22.8 Orifice) Total 254.23 733.37 50.56 46.4

Table 2-8: Preliminary Water Quantity Storage Summary

2.5.4 Extended Detention and Erosion

As per TRCA criteria, urban developments are to provide a minimum extended detention of the 5mm rainfall event over the entire site.

Given the total post development impervious site area of 0.16 ha an extended detention volume of 8.0 cubic metres will be required for the 5 mm rainfall event.

Extended detention will be provided by the underground rainwater harvesting cisterns that will only collect roof-runoff. Table 2-9 summarises the extended detention volume within the cisterns. Please refer to **Appendix E** for detailed calculations.

Drainage AreaRequired Detention
Storage (m³)Provided Extended
Detention Storage (m³)0.16 ha8.09.0

Table 2-9: Summary of Extended Detention

The water stored within the rainwater cistern will be re-used on site in one of the two ways.

- 1. Landscaping / irrigation
- 2. Grey-water re-use

The details of the water re-use application will be determined during detailed design.

As the Geotechnical report identified silty clay soils with a high ground water table and a draw down rate of 6 mm / hour. As a result of the low infiltration rates exhibited on-site, infiltration measures were not considered possible as part of the subject development.

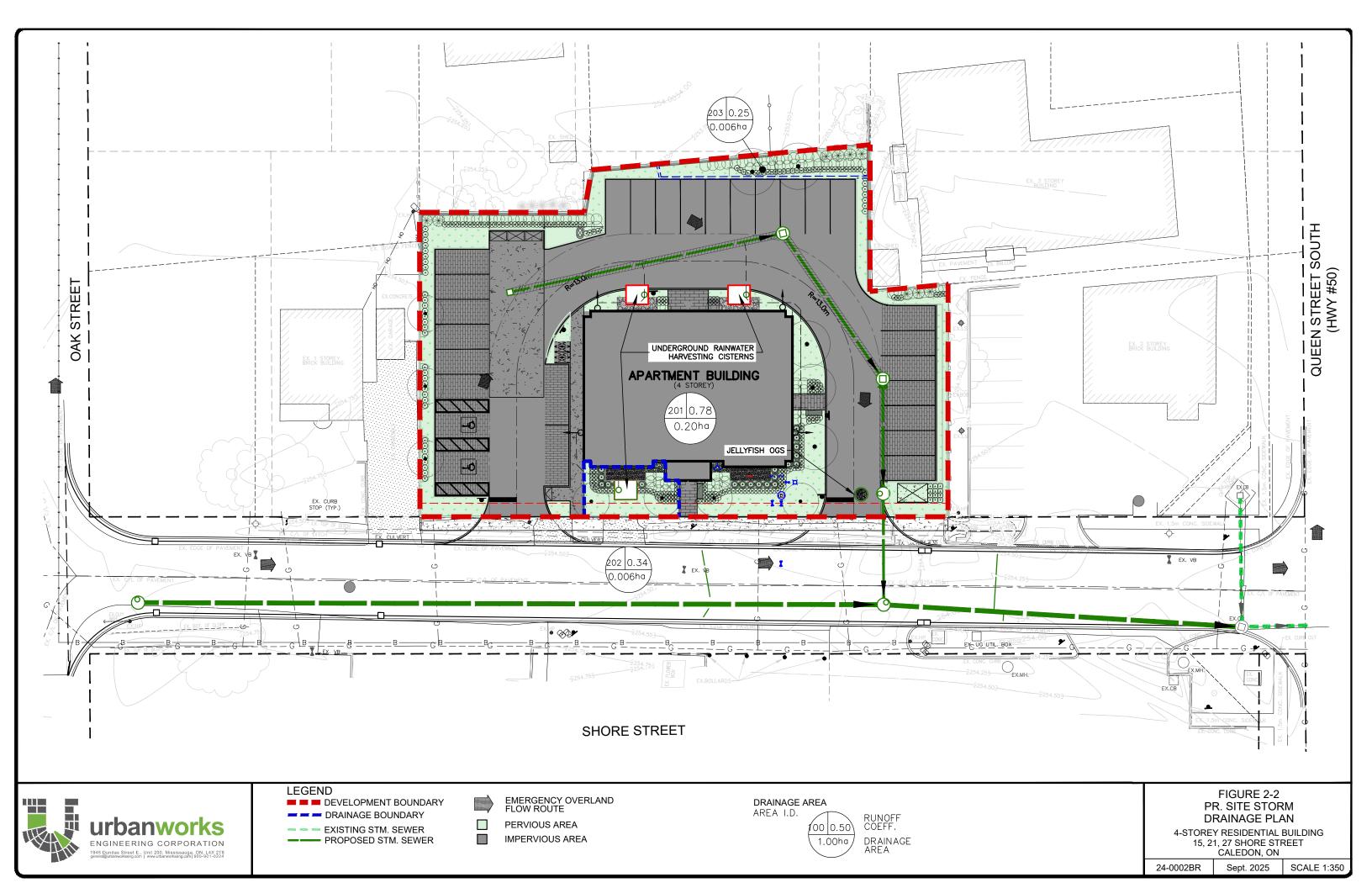
2.6 External Works Water Quantity Plan

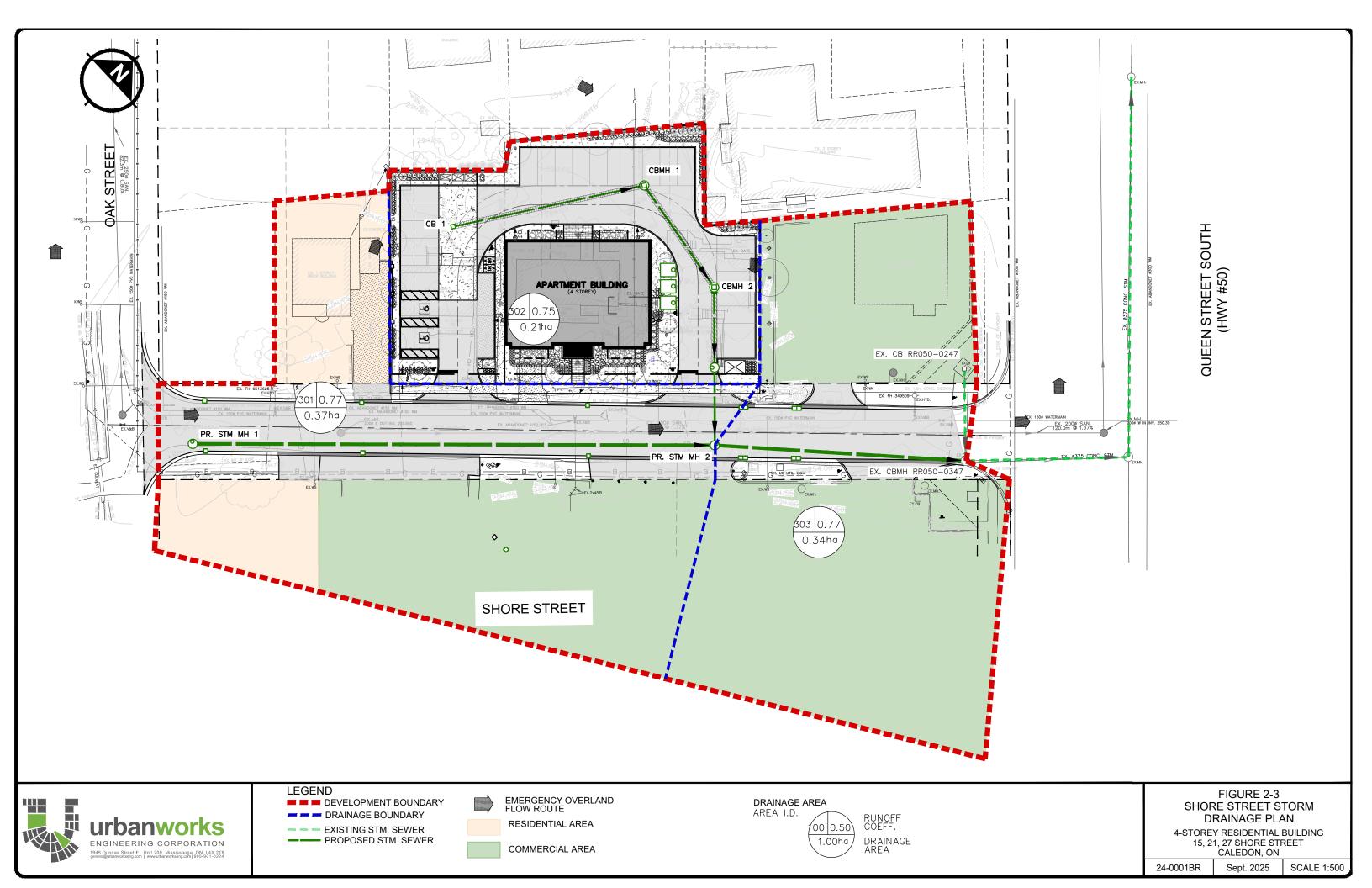
As the existing storm run-off is conveyed uncontrolled to the inlets at CBMH RR050-347 and CB RR050-247 and the major overland flow drains towards the east to the Highway 50 right-of-way. No quantity controls are proposed within the right-of-way storm sewer and the major overland flow route will continue to drain towards Highway 50. Please refer to Figure 2-3 for the proposed Shore Street drainage area plan.

The proposed Shore Street storm sewer has been sized to convey the 5-year storm event.

A storm sewer design sheet for the proposed Shore Street sewer has been provided in **Appendix E** for reference.

2.7 Internal Works Water Quality Control


As per the Town of Caledon design criteria, site runoff must be treated to meet an enhanced level of quality control (removal of 80% TSS). The proposed site will consist of a combination of roof, driveable paved surfaces, pervious landscaped areas, and concrete walkways.


The proposed treatment to obtain the required water quality control consists of a Jellyfish (JF4-1-1) filtration unit sized to provide the 80% TSS removal for the entire site before being discharged into the proposed storm sewer with Shore Street right-of-way.

2.8 External Works Water Quality Control

As the existing storm run-off is conveyed untreated to the inlets at CBMH RR050-347 and CB RR050-247 and the major overland flow drains towards the east to the Highway 50 right-of-way. No quality controlled are proposed the right-of-way storm sewer and the major overland flow route will continue to drain towards highway 50. Please refer to Figure 2-3 for the Shore Street drainage area plan.

3.0 Sanitary Servicing

3.1 Existing Sanitary Sewers

Region records were used to identify any existing Region wastewater infrastructure adjacent to the proposed development.

- A 200 mm diameter Sanitary Sewer within the Shore Street right-of-way. As shown in Region As-built Drawing #22534-D
- The 200 mm diameter Sanitary Sewer in Shore Street connects to a 300 mm diameter Sanitary Sewer within the Highway 50 right-of-way.

Region As-built Drawing #22534-D has been provided in **Appendix A** for reference.

3.2 Proposed Sanitary Servicing

Sanitary servicing for the proposed development will be provided by connection a new 150 mm diameter sanitary service lateral to the existing 200 mm diameter sanitary sewer within the Shore Street right-of-way. The new sanitary service will come with sanitary sampling manhole at the ultimate property line as per Region Standard Drawing 2-5-3. The proposed 150 mm diameter sanitary service will utilize a minimum slope of 2%

Refer to **Drawing SS-01** for the Site Servicing Plan in **Appendix F** for the proposed sanitary servicing design.

3.3 Design Criteria

The sanitary design parameters, as outlined in Table 3-1, for the proposed development are based on the municipal design criteria as outlined in *Region of Peel, Linear Wastewater Standards*, dated March 2023:

Table 3-1: Proposed Sanitary Design Parameters

Parameter	Value		
Population Density (Large Apartment)	3.1 person / large unit		
Population Density (Small Apartment)	1.7 person / small unit		
Large Unit Count	14		
Small Unit Count	5		
Site Area	0.21 ha		
Total Population	52		
Unit Institutional Flow Rates	270 L/cap/day		
Infiltration Rate	0.26 L/s/ha		
Extraneous Flow	0.28 L/s/mh		
Minimum Actual Flow Velocity	0.75 m/s		
Maximum Full Flow Velocity	3.0 m/s		
Minimum Sewer Lateral Grade	2.00%		
	2.3m		

3.4 Sanitary Development Demands

The Sanitary demands for existing and proposed conditions have been calculated using *Region of Peel, Linear Wastewater Standards*, dated March 2023, and the results are summarized below in Table 3-2 and Table 3-3 A capacity analysis on the existing 200 mm diameter sanitary sewer within the Shore Street right-of-way was completed under pre-development conditions to assess available flow capacity.

In existing conditions, the existing 200 mm diameter sanitary sewer experience a total design flow

of 1.67 L/s. Detailed Sanitary calculations can be found in the Sanitary Sewer Design Sheet – Existing Conditions provided in **Appendix D**

Table 3-2: Shore Street Sanitary Sewer – Existing Conditions

Land Use	Area (ha)	Ex. Pop.	Average Flow (L/s)	Peak Factor	Peak Flow (L/s)	Infiltration+ Extran. Flows (L/s)	Total Sanitary Peak Flow (L/s)	% Full
Mixed	0.93	42	0.14	4.00	0.54	0.52	1.07	2.7

^{*}Estimate considers 5 existing detached units (4.1 persons/detached unit) with 0.42 ha of existing commercial area (50 persons/ha commercial area), as per Town of Caledon design criteria.

Table 3-3: Proposed Site Sanitary Flow Estimate

Land Use	Area (ha)	Proposed Population	Average Flow (L/s) Peak Factor		Peak Flow (L/s)	Infiltration +Extran. Flows (L/s)	Total Sanitary Peak Flow (L/s)
Residential	0.21	52	0.18	4.00	0.70	0.05	1.03

^{*}Residential flow rate of 290 L/cap/day, as per Town of Caledon Design Criteria.

Therefore, it is anticipated that the proposed development will produce a total sanitary flow demand of 1.03 L/s in the proposed condition. Detailed Sanitary calculations can be found in the Sanitary Sewer Design Sheet titled "Proposed Conditions" provided in **Appendix D**.

In order to the assess the impact of the proposed development on the existing Shore Street sewers, a post-development design sheet analysis of Shore Street was conducted. With the construction of the proposed development and the removal of 3 single-family homes, the existing 200 mm diameter sanitary sewer on Shore Street will experience a total peak flow of 1.59 L/s versus the 1.07 L/s in pre-development conditions. This will increase its percent full value from 2.7% in existing conditions to 4.1% in proposed conditions. Based on these calculations, no upgrades to the existing sanitary sewer along Shore Street is anticipated to be required.

Table 3-4: Shore Street Sanitary Sewer - Proposed Conditions

Land Use	Total Area (ha)	Total Pop.	Average Flow (L/s)	Peak Factor	Peak Flow (L/s)	Infiltration + Extran. Flows (L/s)	Total Sanitary Peak Flow (L/s)	% Full
Mixed	0.93	81	0.27	4.00	1.07	0.52	1.59	4.1

^{*}Considers a total of 14 Large apartment, and 5 small apartment units, with 2 existing single detached units. A total 0.42 ha of ex. commercial area also remains.

^{**}Existing Pipe Capacity is based on existing 200 mm PVC sewer at 1.40% on Shore Street.

4.0 Water Supply Servicing

4.1 Existing Water Supply Infrastructure

Region records were used to identify any existing Region Water infrastructure adjacent to the proposed development. Based on the as-built information, the existing municipal watermain infrastructure adjacent to the proposed development is as follows:

- A 150mm diameter watermain within the Shore Street right-of-way
- Existing 20 mm diameter water service laterals for each of the 3 lots within the Subject property limits.

Existing fire hydrant location near the subject property is as follows:

- Fire hydrant (#6513625) located in the north boulevard of Shore Street and located approximately 18 m west of the southwest property corner. This existing fire hydrant is connected to the existing 150 mm diameter watermain within Shore Street.
- Fire hydrant (#309549) located in the north boulevard of Shore Street and located approximately 25 m west of the southeast property corner. This existing fire hydrant is connected to the existing 150 mm diameter watermain within Shore Street.

4.2 Proposed Water Supply Servicing

Proposed domestic and fire water servicing for the subject property will be provided by connecting a new fire water service and domestic water service for to the existing 150 mm diameter watermain within Shore Street. The existing water service laterals are to be abandoned as per region requirements.

The fire water service will be 150 mm diameter and be installed as per Region Standard Drawing 1-8-3 and connect to the existing 150 mm diameter watermain within Shore Street with a cut-in-place tee. The proposed fire water service design will also consist of a detector check valve in chamber, a private fire hydrant, and valves at the ultimate property line. The fire water service will be capped 1.0 m away from the building foundation for continuation by others.

Domestic water supply will be provided by a 100 mm diameter domestic water service that tees off the 150 mm fire water service lateral as per Region Standard Drawing 1-8-3. The domestic

water service will be capped 1.0 m away from the building foundation for continuation by others.

A fire hydrant is proposed within the subject property to provide the required 90m fire hydrant coverage for all building perimeters. The proposed hydrant will connect to the internal 150mm fire water service with a 150mm fire hydrant lead, be privately owned, and be privately maintained. The proposed fire hydrant will be a maximum of 8.8 m away from the furthest Siamese connection.

Please refer to **Drawing SS-01** in **Appendix F** for the proposed water servicing layout.

4.3 Design Criteria

The water main design parameters, as outlined in Table 4-1, for the proposed development are based on the municipal design criteria as outlined in **Region of Peel**, *Linear Infrastructure – Watermain Design Criteria*, dated June 2010

Table 4-1: Proposed Watermain Design Parameters

Parameter	Value		
Population Density (Large Apartment)	3.1 persons / unit		
Population Density (Small Apartment)	1.7 persons / unit		
Large Apartments	14		
Small Apartment	5		
Site Area	0.21 ha		
Total Residential Population	52		
Unit Institutional Demand Rates	280 L/cap/day		
Maximum Day Factor	2.0		
Peak Hour Factor	3.0		

4.4 Domestic Water Demands

The design criteria outlined above was used to determine to total domestic water demand for the subject property in proposed conditions.

Average day demand (ADD), Maximum day demand (MDD), and Peak Hour Demand (PHD) factors were calculated using demand peaking factors and population values as outlined above.

The estimated domestic water demand for the proposed development of the subject property is summarised below in **Table 4-2**.

Table 4-2: Proposed Domestic Water Demand

Parameter	Value		
Population Density (Large Aparment)	3.1 persons / unit		
Population Density (Small Apartment)	1.7 persons / unit		
Large Apartments	14		
Small Apartments	5		
Site Area	0.21 ha		
Total Institutional Population	52		
Unit Institutional Demand Rates	280 L/cap/day		
Average Daily Demand	10.09 L/min (0.17 L/s)		
Maximum Day Demand	20.18 L/min (0.34 L/s)		
Peak Hour Demand	30.28 L/min (0.50 L/s)		

A detailed breakdown of the calculated demand can be found in Appendix C

4.5 Fire Flow Demands

Fire flow demands have been calculated using Water Supply for Public Fire Protection (2020) prepared by the Fire Underwriters Survey (FUS).

Fire flow demands were calculated for the proposed 4-storey apartment building. As part of the FUS calculations, the following construction factors were assumed for the proposed 4-storey apartment building.

• Type III Ordinary Construction – C value of 1.0

- Limited Combustible Occupancy 15% reduction to the base fire flow
- Sprinkler system with standard water supply 40% reduction to the base fire flow
- Calculated exposure factor of 14%

Detailed fire flow calculations are provided in **Appendix C** and summarized below in **Table 4-3**.

Building

Fire Flow Demand (5)
(L/min)

Proposed 4 storey apartment building

Fire Flow Demand (5)
(L/s)

83.33

Table 4-3: Proposed Fire Flow Demand

From the fire flow calculations, it was determined that the recommended fire flow of 5000 L/min 83.33 L/s) is required for the proposed development.

A hydrant flow test was conducted by BA Fire Safety on June 21, 2024, at 1:30 PM on existing fire hydrant #6513625. The results indicate an available maximum flow of 4163 GPM (262.6 L/s) at a residual pressure of 20 psi. This is higher than the calculated required fire flow demand of 83.33 L/s.

Therefore, sufficient fire flow is available for the proposed development. The results of the hydrant flow test can be found in **Appendix C**.

4.6 Total Water Demand

Based on the total water demand and the fire flow requirements, the proposed demand will be the Maximum Day Demand plus the Fire Flow demand. **Table 4-3** below outlines the total water demand for the proposed development, detailed calculations can be found in **Appendix C**.

Land Use	Expected Population	Average Day Demand ⁽²⁾ (L/s)	Peak Hour Demand (3) (L/s)	Max. Day Demand ⁽⁴⁾ (L/s)	Fire Flow Demand (L/s)	Max Day + Fire (L/s)
Residential	52	0.17	0.50	0.37	83.33	83.67

Table 4-4: Total Water Supply Demands

Note:

- (1) Expected population based on population estimate in Section 1.4
- (2) Based on average day consumption rate as 280 l/cap/day
- (3) Based on peak hour factor as 3.0
- (4) Based on maximum day factor as 2.0

Based on the assessment of the calculated total water demand (83.67 L/s) and the hydrant flow test, it is confirmed that the existing 150mm diameter watermain on Shore Street has sufficient pressure and flow to service the proposed development.

5.0 Erosion & Sediment Control Measures

A preliminary Erosion and Sediment Control (ESC) Plan for the proposed development will be prepared in accordance with TRCA and City requirements as part of the detailed design phase.

The proposed erosion and sediment control works during construction will consider of the following:

- temporary silt fences;
- individual catch basin silt sacks, within the subject property and on Guru Nanak Street:
- mud mats at the construction access point;
- one (1) topsoil stockpile, equipped with silt fencing;
- one (1) equipment staging and refuelling area, equipped with silt fencing
- Siltsoxx check dams

6.0 SUMMARY

This report outlines the desired stormwater management and servicing scheme for the proposed development at 15, 21, 27 Shore Street, Caledon, ON. The following summarizes the conclusions and recommendations of this report:

Stormwater Management

- Post to pre-development peak flow controls such that all storm events up to and including
 the 100-year storm event are controlled to the 5-year pre-development level. This is
 proposed in accordance with Town SWM criteria.
- Detention storage is required to achieve this requirement and will be provided using surface storage.
- Retention of 5 mm of rainfall for erosion control through rainwater harvesting and re-use.
- Quality control will be provided by a centralized Jellyfish Filter Unit.

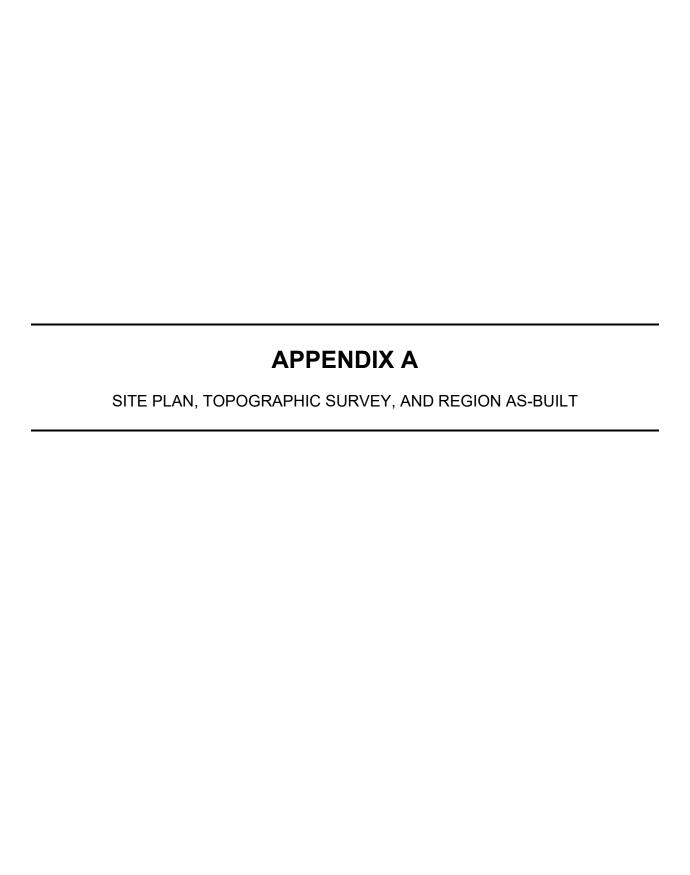
Sanitary Servicing

Sanitary servicing to be provided by a 150mm sanitary service lateral connecting to the
existing 200 mm sanitary sewer within Shore Street. A new sanitary sampling manhole
is provided for the proposed building at the ultimate property line.

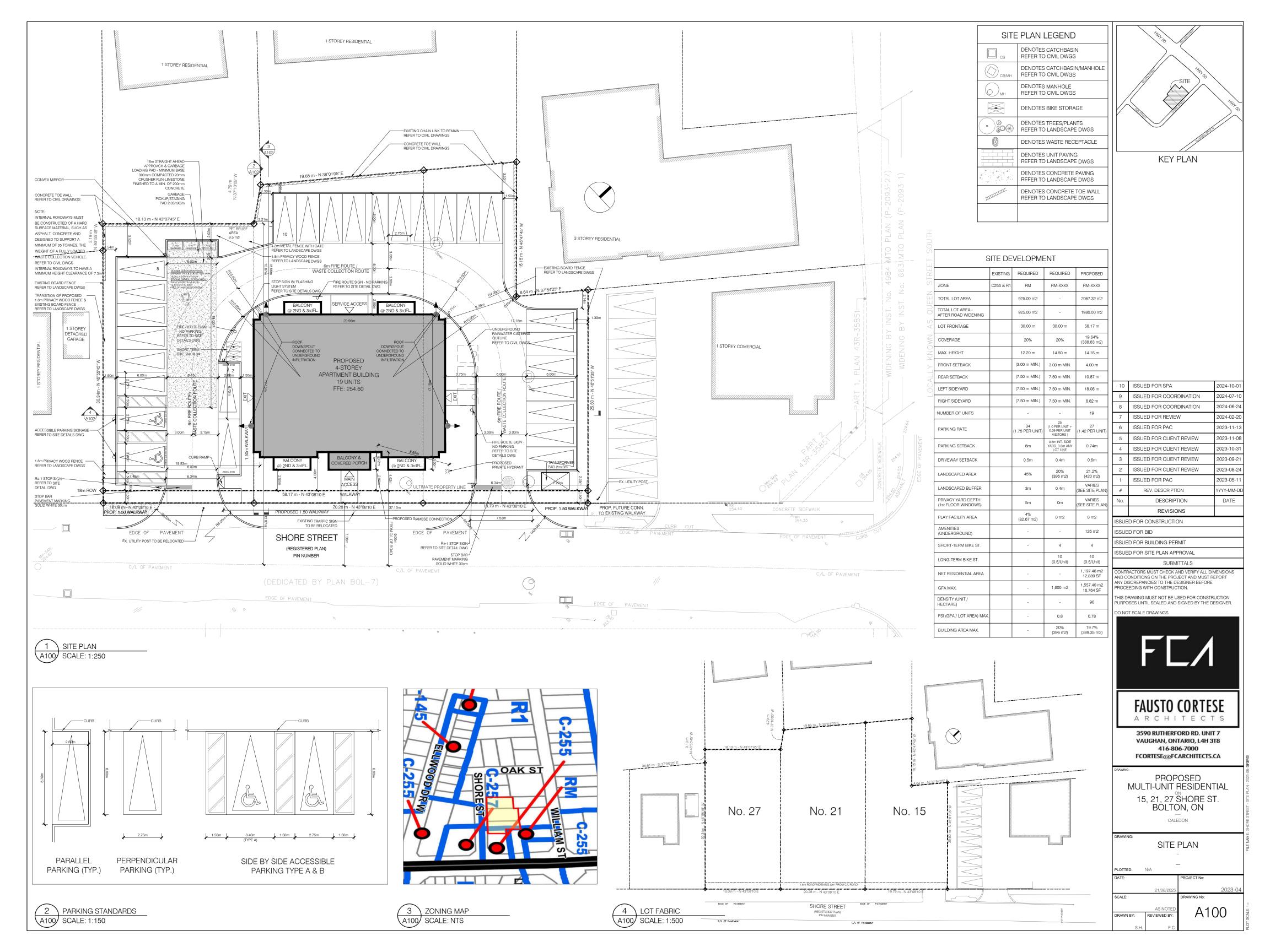
Water Supply Servicing

- Domestic water service will be provided by a new 100m m domestic water service for the proposed 4 storey apartment building. The domestic water service will tee off the 150 mm diameter fire water service as per Region Standard drawing 1-8-3.
- Fire water service will be provided by a 150mm fire water service that will connect to the existing 150 mm diameter watermain within Shore Street with a cut-in-place tee and valve.
- A private hydrant is to be installed within the subject property limits and is approximately 8.80 m away from the Siamese Connection and provides 90 m hydrant coverage to all building perimeters within the subject property.

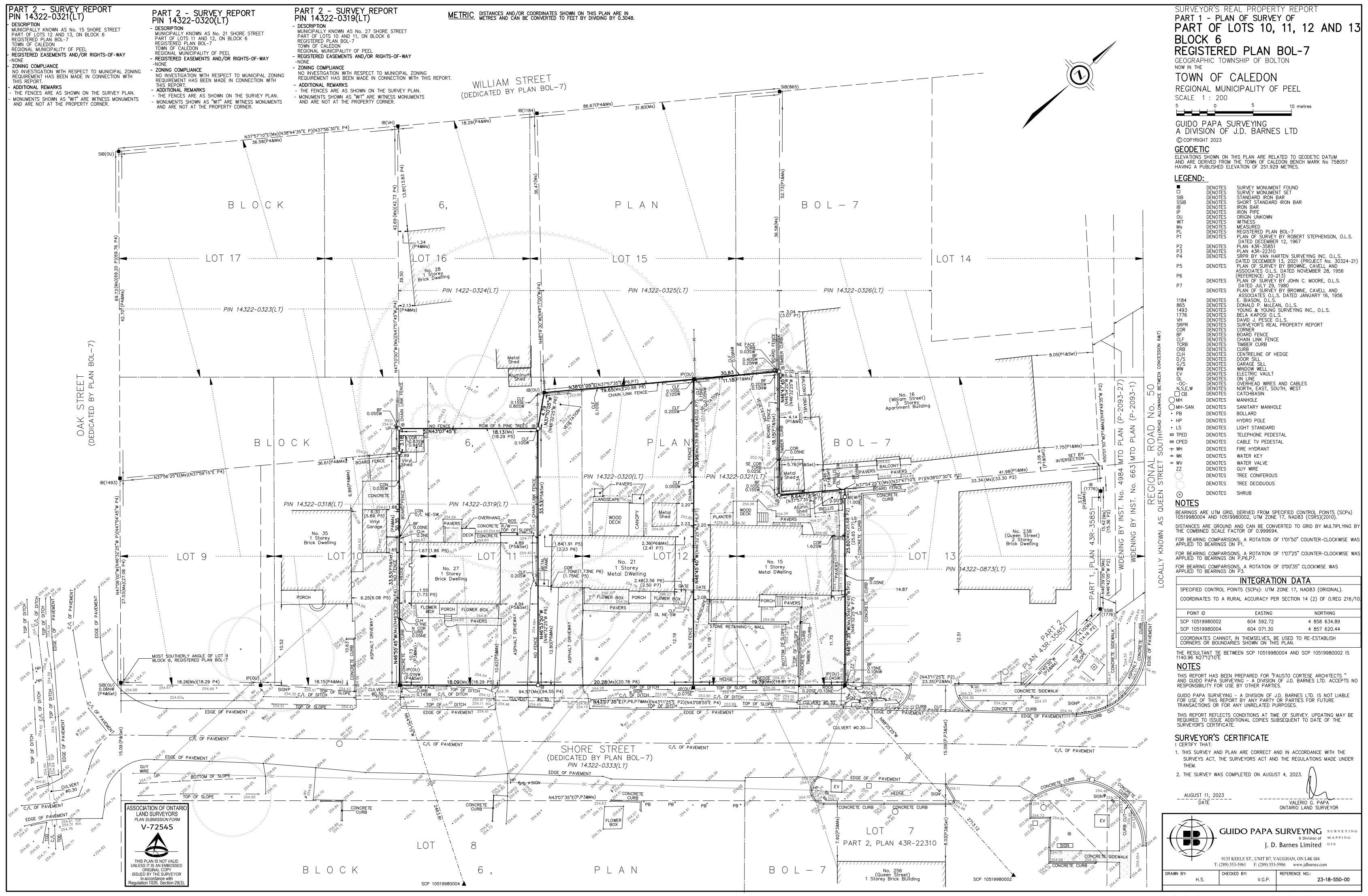
We believe that the above study and materials are satisfactory to address the concerns of reviewing agencies for the proposed development. Should there be any comments regarding the materials of this report, please contact the undersigned.

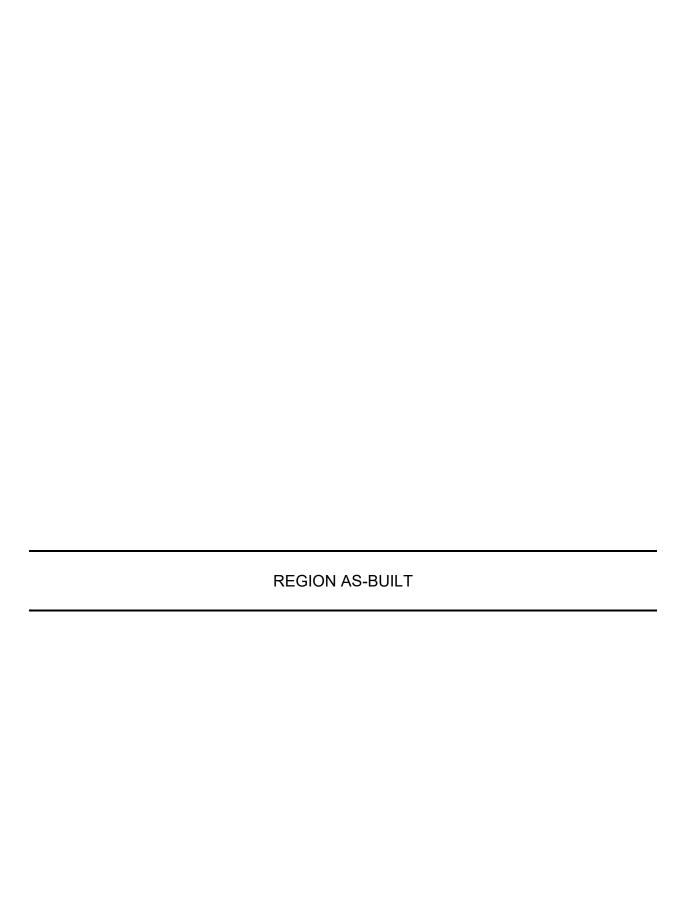

Respectfully Submitted,

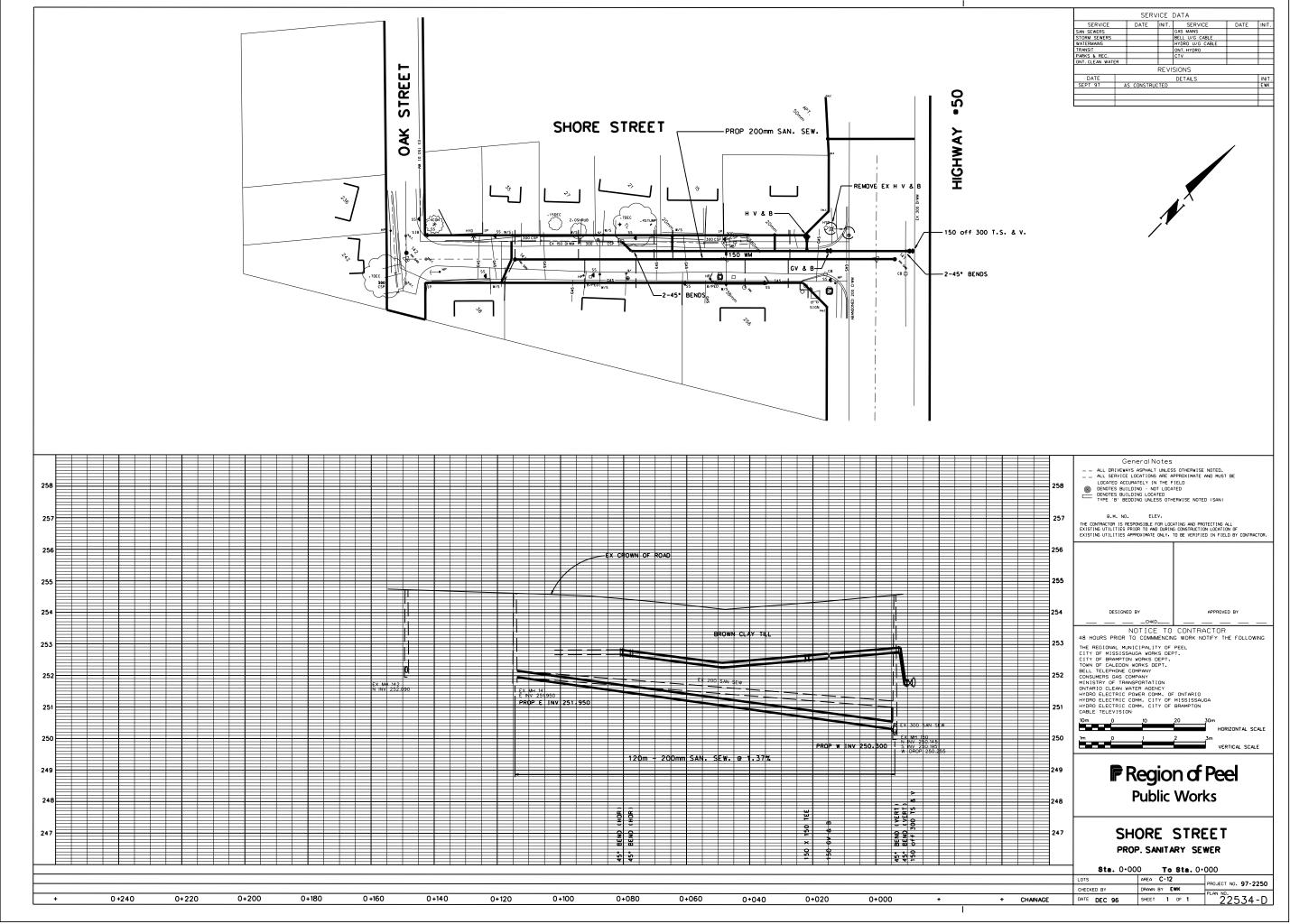

Urbanworks Engineering Corporation

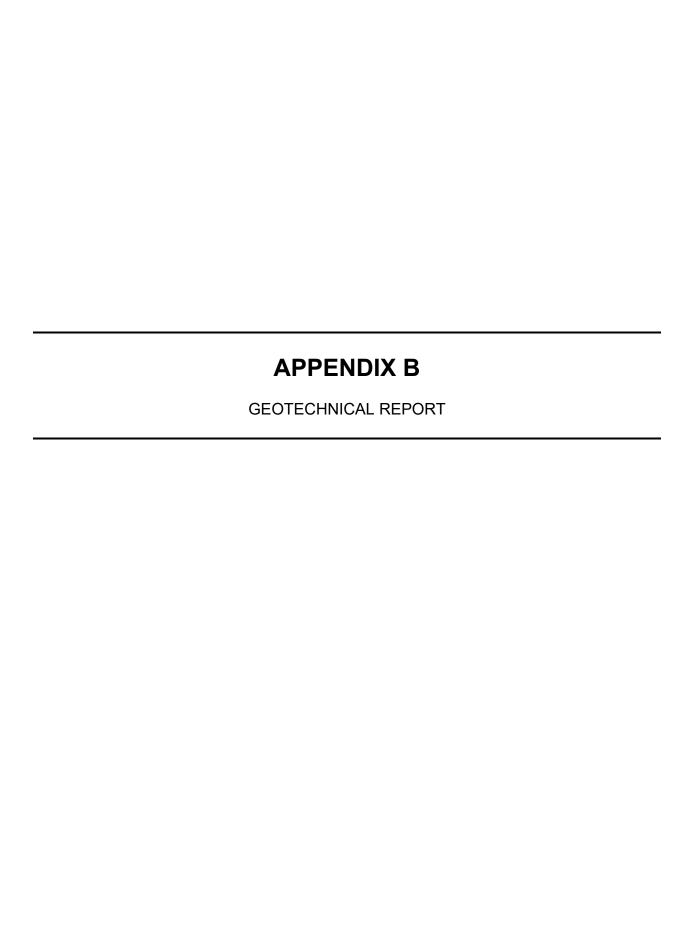


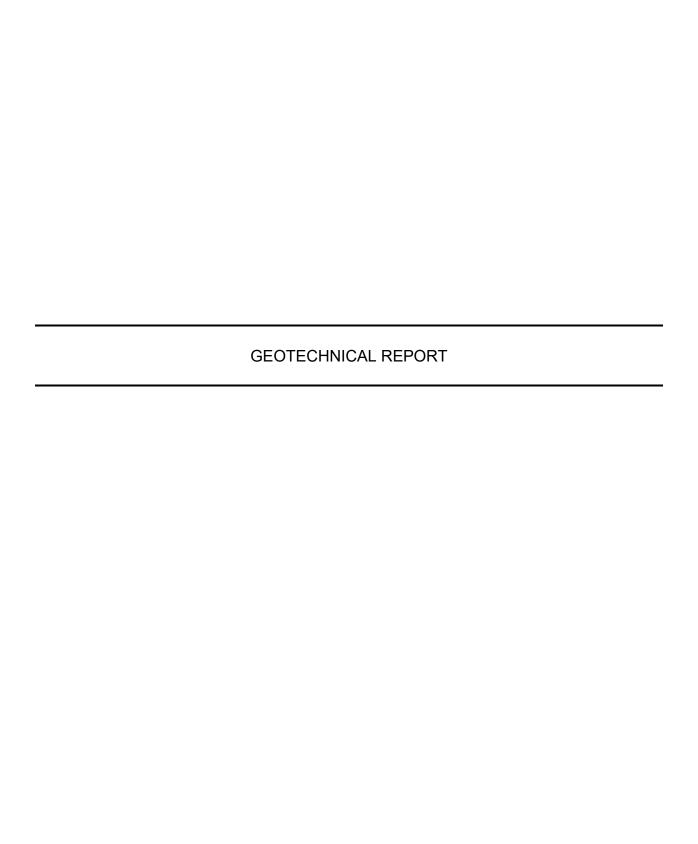
Giancarlo Volpe, P.Eng., M.Eng. **Project Engineer**




TOPOGRAPHIC SURVEY




П


П

90 WEST BEAVER CREEK ROAD, SUITE 100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL: (416) 754-8515 · FAX: (905) 881-8335

BARRIE TEL: (705) 721-7863

MISSISSAUGA TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647

OSHAWA

NEWMARKET FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (905) 881-8335

MUSKOKA TEL: (705) 721-7863 FAX: (705) 721-7864

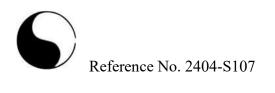
HAMILTON TEL: (905) 777-7956 FAX: (905) 542-2769

A REPORT TO **BOLTON SHORE HOLDINGS LTD.**

A GEOTECHNICAL INVESTIGATION FOR PROPOSED 4-STOREY BUILDING WITH BASEMENT

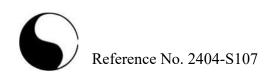
15, 21 AND 27 SHORE STREET

TOWN OF CALEDON


REFERENCE NO. 2404-S107

JULY 2024

DISTRIBUTION


Digital copy - Bolton Shore Holdings Ltd.

Digital copy - Blackthorn Development Corp.

TABLE OF CONTENTS

1.0 INTRODUCTION 1 2.0 SITE AND PROJECT DESCRIPTION 1 3.0 FIELD WORK 1 4.0 SUBSURFACE CONDITIONS 2 4.1 Topsoil 2 4.2 Earth Fill 2 4.3 Silty Clay/Silty Clay Till 3 5.0 GROUNDWATER CONDITIONS 3 6.0 DISCUSSION AND RECOMMENDATIONS 4 6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Borehole Logs Figures 1 to 4 Grain Size Distribution Graphs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1 <th></th> <th></th>		
2.0 SITE AND PROJECT DESCRIPTION 1 3.0 FIELD WORK 1 4.0 SUBSURFACE CONDITIONS 2 4.1 Topsoil 2 4.2 Earth Fill 2 4.3 Silty Clay/Silty Clay Till 3 5.0 GROUNDWATER CONDITIONS 3 6.0 DISCUSSION AND RECOMMENDATIONS 4 6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Borehole Logs Figures 1 to 4 Grain Size Distribution Graphs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	1.0 INTRODUCTION	1
4.0 SUBSURFACE CONDITIONS 2 4.1 Topsoil 2 4.2 Earth Fill 2 4.3 Silty Clay/Silty Clay Till 3 5.0 GROUNDWATER CONDITIONS 3 6.0 DISCUSSION AND RECOMMENDATIONS 4 6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1		
4.1 Topsoil 2 4.2 Earth Fill 2 4.3 Silty Clay/Silty Clay Till 3 5.0 GROUNDWATER CONDITIONS 3 6.0 DISCUSSION AND RECOMMENDATIONS 4 6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services .6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	3.0 FIELD WORK	1
4.2 Earth Fill 2 4.3 Silty Clay/Silty Clay Till 3 5.0 GROUNDWATER CONDITIONS 3 6.0 DISCUSSION AND RECOMMENDATIONS 4 6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	4.0 SUBSURFACE CONDITIONS	2
4.3 Silty Clay/Silty Clay Till 3 5.0 GROUNDWATER CONDITIONS 3 6.0 DISCUSSION AND RECOMMENDATIONS 4 6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	4.1 Topsoil	2
5.0 GROUNDWATER CONDITIONS 3 6.0 DISCUSSION AND RECOMMENDATIONS 4 6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1		
6.0 DISCUSSION AND RECOMMENDATIONS 4 6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	4.3 Silty Clay/Silty Clay Till	3
6.1 Site Preparation 5 6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1		
6.2 Foundation 5 6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1		
6.3 Basement Structure 6 6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	6.1 Site Preparation	5
6.4 Underground Services 6 6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	6.2 Foundation	5
6.5 Backfilling in Trenches and Excavated Areas 7 6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1		
6.6 Pavement Design 8 6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Figures 1 to 4 Borehole Logs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1		
6.7 Soil Parameters 8 6.8 Excavation 9 7.0 LIMITATIONS OF REPORT 10 TABLES Table 1 - Groundwater Levels in Monitoring Wells 4 Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Borehole Logs Figures 1 to 4 Grain Size Distribution Graphs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	<u>e</u>	
6.8 Excavation	C	
TABLES Table 1 - Groundwater Levels in Monitoring Wells		
TABLESTable 1 - Groundwater Levels in Monitoring Wells4Table 2 - Pavement Design8Table 3 - Soil Parameters9Table 4 - Classification of Soils for Excavation9ENCLOSURESFigures 1 to 4Borehole LogsFigures 5 and 6Borehole and Monitoring Well Location PlanDrawing No. 1		
Table 1 - Groundwater Levels in Monitoring Wells	7.0 LIMITATIONS OF REPORT	10
Table 1 - Groundwater Levels in Monitoring Wells		
Table 1 - Groundwater Levels in Monitoring Wells	T. D. D.	
Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Borehole Logs Figures 1 to 4 Grain Size Distribution Graphs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	TABLES	
Table 2 - Pavement Design 8 Table 3 - Soil Parameters 9 Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Borehole Logs Figures 1 to 4 Grain Size Distribution Graphs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1		
Table 3 - Soil Parameters	Table 1 - Groundwater Levels in Monitoring Wells	4
Table 4 - Classification of Soils for Excavation 9 ENCLOSURES Borehole Logs Figures 1 to 4 Grain Size Distribution Graphs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	$\boldsymbol{\varepsilon}$	
ENCLOSURES Borehole Logs		
Borehole Logs	Table 4 - Classification of Soils for Excavation	9
Borehole Logs		
Borehole Logs	ENGLOCUPES	
Grain Size Distribution Graphs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	ENCLOSURES	
Grain Size Distribution Graphs Figures 5 and 6 Borehole and Monitoring Well Location Plan Drawing No. 1	Parahala Laga	Figures 1 to 1
Borehole and Monitoring Well Location Plan		•
DIAMIN INC.		_
Details of Perimeter Drainage System. Drawing No. 3		E

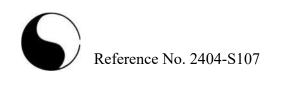
1.0 **INTRODUCTION**

In accordance with a written authorization dated April 19, 2024, from Mr. Mark Cancian of Bolton Shore Holdings Ltd., a geotechnical investigation was carried out at 15, 21 and 27 Shore Street in the Town of Caledon.

The purpose of the investigation was to reveal the subsurface conditions and determine the engineering properties of the disclosed soils for the construction of a 4-storey apartment building with a basement. The geotechnical findings and recommendations for the proposed development are presented in this report.

2.0 SITE AND PROJECT DESCRIPTION

The site is situated on Halton till plain, where the drift dominates the soil stratigraphy. In places, lacustrine sand, silt, clay and drift which has been reworked by the water action of Peel Ponding (glacial lake) have modified the drift stratigraphy.


The investigation was carried out within the properties of 15, 21 and 27 Shore Street in the Town of Caledon. The combined property consists of 3 residential dwellings with associated driveway and landscape areas. The grading within the study area is relatively flat.

A review of the Site Plan prepared by Fausto Cortese Architects dated March 8, 2024, indicates that the existing dwellings will be demolished to make way for a new 4-storey building with basement. It will be provided with on-grade parking, access driveway and landscape areas.

3.0 **FIELD WORK**

The field work, consisted of 4 boreholes extending to depths of 8.1 and 8.5 m below grade, was completed on May 29 and 30, 2024, at the locations shown on the Borehole and Monitoring Well Location Plan, Drawing No. 1.

The boreholes were advanced at intervals to the sampling depths by a compact track-mounted drill rig equipped with solid stem augers and split spoons for soil sampling. Standard Penetration Tests, using the procedures described on the enclosed "List of Abbreviations and Terms", were performed at the sampling depths. The results are recorded as the Standard Penetration Resistance (or 'N' values) of the subsoil. The relative density of

the non-cohesive strata and the consistency of the cohesive strata are inferred from the 'N' values. Split-spoon samples were recovered for soil classification and laboratory testing.

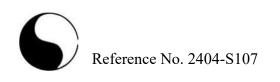
Upon completion of borehole drilling, monitoring wells were installed in 3 of the 4 boreholes to facilitate a hydrogeological assessment. Details of the monitoring wells are presented in the borehole logs.

The field work was supervised and the findings were recorded by a Geotechnical Technician. The ground elevation at each of the borehole location was obtained using the Global Navigation Satellite System (GNSS).

4.0 **SUBSURFACE CONDITIONS**

Detailed descriptions of the subsurface conditions are presented on the Borehole Logs, comprising Figures 1 to 4 inclusive. The revealed stratigraphy is plotted in the Subsurface Profiles, Drawing No. 2. The engineering properties of the disclosed soils are discussed herein.

The investigation has disclosed that beneath the topsoil and a layer of earth fill, the site is generally underlain by a stratum of silty clay, with a localized deposit of silty clay till.


4.1 **Topsoil**

The revealed topsoil is approximately 8 to 10 cm in thickness. Thicker topsoil layers may be contacted beyond the borehole locations. The topsoil is void of engineering value and must be stripped for site development.

4.2 Earth Fill

A layer of earth fill, extending to a depth of 0.8 m below the prevailing ground surface, was encountered in all boreholes. It is dark brown in colour and consists of silty clay, with a variable amount of topsoil and rootlets.

The natural water content of the samples was determined and the results are plotted on the Borehole Logs; the values range from 23% to 33%, with a median of 28%. The high water content value indicates the presence of topsoil.

The obtained 'N' values range from 5 to 10, with a median of 8 blows per 30 cm of penetration, indicating that the fill was likely placed with non-uniform compaction. Due to its unknown history and non-uniform density, the earth fill is not suitable to support any structures sensitive to settlement. It must be subexcavated, sorted free of deleterious material and organics and properly recompacted in layers.

4.3 Silty Clay/Silty Clay Till

The silty clay is the predominant soil in the revealed stratigraphy. It contains traces of sand and gravel, with occasional silt seams. The silty clay till was encountered beneath the topsoil and earth fill, overlying the silty clay in Borehole 3. It consists of a random mixture of particle sizes ranging from clay to gravel, with the silt and clay being the dominant fraction. A grain size analysis was performed on a representative sample each of the silty clay and silty clay till. The results are plotted on Figures 5 and 6, respectively.

The obtained 'N' values range from 8 to 45 blows per 30 cm of penetration, with a median of 23 blows per 30 cm of penetration, indicating the clay/clay till is stiff to hard, being generally very stiff in consistency. The 'N' values of 8 and 9 were encountered near the ground surface where the soil has been weathered.

Atterberg Limits were determined on a sample each of the clay till and clay sample. The till sample has liquid limit of 34% and plastic limit of 18%, while the clay has a liquid limit of 41% and plastic limit of 21%, indicating the clay till is low in plasticity while the clay is medium in plasticity.

The natural water content of the soil samples ranges between 16% and 29%, at a median of 22%, showing a moist to very moist, generally moist condition.

The engineering properties of the clay till deposit are given below:

- High frost susceptibility and low water erodibility.
- The clay till will be stable in relatively steep slopes; however, prolonged exposure will allow the sand seams to slough, which may lead to local sliding.

5.0 **GROUNDWATER CONDITION**

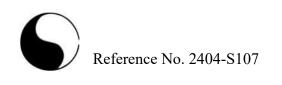
All boreholes remained dry upon completion of the field work.

Monitoring wells were installed at Boreholes 1, 2 and 3. Two rounds of stabilized groundwater levels were recorded in the monitoring wells and are summarized in Table 1.

	Groundwar	ECT ECTOR	5 III IVIOIII	<u> </u>			Measured Groundwater Level									
				ivieasureu Groundwater Level												
	Ground	Well	Jun 11	1, 2024	Jun 24	1, 2024	July 9	, 2024								
Borehole No.	Elevation		Depth El.		Depth	El.	Depth	El.								
110.	(m)	(m)	<u>(m)</u>	(m)	(m)	(m)	(m)	(m)								
1	254.1	7.6	5.5	248.6	4.6	249.5	2.6	251.5								
2	254.1	7.6	1.3	252.8	1.1	253.0	1.4	252.7								
3	254.5	7.6	1.8	252.7	1.8	252.7	1.9	252.6								

Table 1 - Groundwater Levels in Monitoring Wells

The groundwater level recorded in the monitoring wells ranges from 1.1 to 5.5 m below the ground surface, or El. 248.6 to 253.0 m.


Additional groundwater assessment will be presented in the hydrogeological assessment report, to be presented under separate cover.

6.0 <u>DISCUSSION AND RECOMMENDATIONS</u>

The investigation has disclosed that beneath the topsoil and a layer of earth fill extending to a depth of 0.8 m below the prevailing ground surface, the site is underlain by a stratum of silty clay, stiff to hard consistency. A localized deposit of very stiff silty clay till was also encountered overlying the silty clay at one borehole.

All boreholes remained dry on completion of the field work. Three rounds of groundwater levels in the monitoring wells were recorded and the results range from El. 248.6 to 253.0 m. Further groundwater assessment will be presented in the hydrogeological assessment report, to be provided under separate cover.

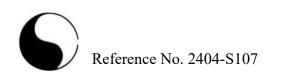
The proposed development will consist of a 4-storey apartment building with a conventional basement. The geotechnical recommendations appropriate for the design and construction of the development are presented herein. One must be aware that the subsurface conditions may vary between boreholes. Should subsurface variances become apparent during construction, a geotechnical engineer must be consulted.

A soil cover having a thickness at least equal to the diameter of the pipe should be in place at all times after pipe installation, to prevent pipe floatation when the trench is deluged with water derived from precipitation.

6.5 **Backfilling in Trenches and Excavated Areas**

The backfill in service trenches should be compacted to at least 98% SPDD, particularly below concrete floor subgrade and in the zone within 1.0 m below the pavement. The material should be compacted with the water content at 2% to 3% drier than the optimum. The lifts must be limited to 20 cm or less (before compaction).

As a general guide, the typical water content values of the revealed soils for Standard Proctor compaction are presented in Table 2.


Table 2 - Estimated Water Content for Compaction of On-Site Material

	Determined Natural		ontent (%) for octor Compaction
Soil Type	Water Content (%)	100% (optimum)	Range for 95% or +
Earth Fill	23 to 33 (median 28)	15	13 to 20
Silty Clay Till/Silty Clay	16 to 29 (median 22)	15 to 21	13 to 25

The in-situ clay and clay till are generally suitable for use as trench backfill. Where they are too wet, they will require aeration by spreading them thinly in dry, warm weather. The till should be sorted free of oversized boulders (over 15 cm in size) before use as backfill. The existing fill must be sorted free of topsoil inclusions and deleterious materials, if any, prior to its use as structural backfill.

In normal construction practice, the problem areas of pavement settlement largely occur adjacent to manholes, catch basins, services crossings, foundation walls and columns, it is recommended that a sand backfill should be used.

The narrow trenches for services crossings should be cut at 1 vertical:2 horizontal so that the backfill in the trenches can be effectively compacted. Otherwise, soil arching in the trenches will prevent achievement of the proper compaction. In confined areas where the desired slope cannot be achieved or the operation of a proper kneading-type roller cannot be facilitated, imported sand fill, which can be appropriately compacted by using a smaller vibratory compactor, must be used.

6.6 **Pavement Design**

The pavement design for the parking area and fire route is presented in Table 3.

Table 3 - Pavement Design

Course	Thickness (mm)	OPS Specifications
Asphalt Surface	40	HL3
Asphalt Binder	65	HL8
Granular Base	150	Granular 'A'
Granular Sub-base Light-Duty/Parking Heavy-Duty/Fire Route	300 450	Granular 'B'

In preparation of pavement subgrade, all compressible material should be removed. The final subgrade must be proof-rolled. Any soft spot identified must be rectified by subexcavation and replacing with selected dry inorganic material. The subgrade within 1.0 m below the underside of the granular sub-base must be compacted to at least 98% SPDD, with the water content at 2% to 3% drier than its optimum.

All the granular bases should be compacted in 150 to 200 mm lifts to 100% SPDD.

An intercept subdrain system should be installed along the perimeter of the parking area where surface runoff may drain onto the pavement. In paved areas, catch basins with stub drains in all four directions should be provided. The stub drains and subdrains should drain into the catch basin through filter-sleeved weepers. The invert of the subdrains should be at least 0.4 m beneath the underside of the granular sub-base and should be backfilled with free-draining granular material.

6.7 **Soil Parameters**

The recommended soil parameters for the project design are given in Table 4.

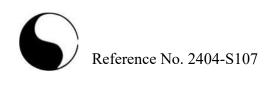
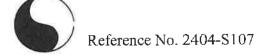


 Table 4 - Soil Parameters


Unit Weight and Bulk Factor	Bulk Unit Weight	-	imated x Factor
	$\gamma (kN/m^3)$	Loose	Compacted
Silty Clay Till	22.0	1.30	1.05
Earth Fill/Silty Clay	20.5	1.25	1.00
Lateral Earth Pressure Coefficients	Active Ka	At Rest Ko	Passive K _p
Silty Clay	0.39	0.56	2.56
Silty Clay Till	0.33	0.50	3.00
Effective Shear Strength Parameters	Cohesion c' (kPa)	Angle of Internal Friction, ¢	
Silty Clay	5		26°
Silty Clay Till	5		30°
Coefficient of Permeability (K) and Per	colation Time (T)		
	K (cm/sec)		T (min/cm)
Silty Clay/Silty Clay Till	10 ⁻⁷		100
Coefficients of Friction			
Between Concrete and Granular Base			0.50
Between Concrete and Sound Native So	oils		0.35

6.8 Excavation

Excavation should be carried out in accordance with Ontario Regulation 213/91. The types of soils are classified in Table 4.

 Table 5 - Classification of Soils for Excavation

Material	Туре
Sound Silty Clay/Silty Clay Till	2
Earth Fill and Weathered Soils	3

In the silty clay and clay till, any perched groundwater yield can be collected and removed by conventional pumping from sumps. The yield is expected to be small and limited.

Excavation into the till with boulders will require extra effort and the use of properly equipped heavy-duty excavator.

Prospective contractors may be asked to asses the subsurface conditions by digging test pits to the intended depth of excavation. These test pits should be allowed to remain open for a few hours to asses the trenching conditions and the dewatering requirement for excavation.

7.0 LIMITATIONS OF REPORT

This report was prepared by Soil Engineers Ltd. for the account of Bolton Shore Holdings Ltd. and for review by the designated consultants, financial institutions, government agencies and contractors. The material in the report reflects the judgment of Kelvin Hung, P.Eng., and Bernard Lee, P.Eng., in light of the information available to it at the time of preparation.

Use of the report is subject to the conditions and limitations of the contractual agreement. Any use which a Third Party makes of this report, and/or any reliance on decisions to be made based on it is the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

HOVINCE OF ONTAR

SOIL ENGINEERS LTD.

Kelvin Hung, P.Eng.

Bernard Lee, P.Eng. KH/BL

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

AS	Auger sample
CS	Chunk sample
DO	Drive open (split spoon)
DS	Denison type sample
FS	Foil sample
RC	Rock core (with size and percentage
	recovery)
ST	Slotted tube
TO	Thin-walled, open
TP	Thin-walled, piston
WS	Wash sample

PENETRATION RESISTANCE

Standard Penetration Resistance or 'N' Value:

The number of blows of a 63.5 kg hammer falling from a height of 76 cm required to advance a 51 mm outer diameter drive open sampler 30 cm into undisturbed soil, after an initial penetration of 15 cm.

Plotted as 'O'

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows per each 30 cm of penetration of a 51 mm diameter, 90° point cone driven by a 63.5 kg hammer falling from a height of 76 cm.

Plotted as '——'

WH	Sampler advanced by static weight
PH	Sampler advanced by hydraulic pressure
PM	Sampler advanced by manual pressure
NP	No penetration

SOIL DESCRIPTION

Cohesionless Soils:

'N' (b	lows	/30 cm)	Relative Density
0	to	4	very loose
4	to	10	loose
10	to	30	compact
30	to	50	dense
		>50	very dense

Cohesive Soils:

Undrained Shear	'N	٧,	
Strength (kPa)	(blows/	(30 cm)	Consistency
<12		<2	very soft
12 to < 25	2 to	<4	soft
25 to <50	4 to	<8	firm
50 to <100	8 to	<15	stiff
100 to 200	15 to	30	very stiff
>200		>30	hard

Method of Determination of Undrained Shear Strength of Cohesive Soils:

x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding

 \triangle Laboratory vane test

METRIC CONVERSION FACTORS

1 ft = 0.3048 m 1 inch = 25.4 mm 1 lb = 0.454 kg 1 ksf = 47.88 kPa

JOB NO.: 2404-S107 LOG OF BOREHOLE:

1

FIGURE NO.:

PROJECT DESCRIPTION: Proposed 4-Storey Apartment with Basement

METHOD OF BORING: Solid-Stem Augers

PROJECT LOCATION: 15, 21 and 27 Shore Street, Town of Caledon

DRILLING DATE: May 30, 2024

			SAMP	LES		● Dynamic Cone (blows/30 cm) 0 30 50 70 90 Atterberg Limits	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 Penetration Resistance (blows/30 cm) 0 30 50 70 90 10 20 30 40	WATER LEVEL
254.1	Ground Surface						
0.0	Dark brown 7.6 cm TOPSOIL EARTH FILL silty clay occ. rootlets and topsoil inclusions	1	DO	7	0 -	24	
253.3 0.8	Stiff to hard	2	DO	8	1 -	23	
		3	DO	31	2 -	0 20	
		4	DO	39	_	O 21	
	SILTY CLAY	5	DO	45	3 -	O 21	
	·				4 -		T Dry on completion
	traces of sand and gravel occ. silt seams	6	DO	20	5 -	◆21◆	
					6 -		
		7	DO	20		Ф 25	
					7 -		
		8	DO	28	8 -	19	
245.6 8.5	END OF BOREHOLE	9	DO	25	-	0	
	Installed 50 mm Ø monitoring well to 7.6 m completed with 3.1 m screen Sand backfill from 4.0 m to 7.6 m Bentonite seal from 0.0 m to 4.0 m Provided with a steel monument casing				9 -		

LOG OF BOREHOLE: JOB NO.: 2404-S107

FIGURE NO.:

PROJECT DESCRIPTION: Proposed 4-Storey Apartment with Basement

METHOD OF BORING: Solid-Stem Augers

PROJECT LOCATION: 15, 21 and 27 Shore Street, Town of Caledon

DRILLING DATE: May 29, 2024

			SAMP	LES		 Dynamic Cone (blows/30 cm) 30 50 70 90 Atterberg Limits 	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 Penetration Resistance (blows/30 cm) ■ Moisture Content (%) 10 30 50 70 90 10 20 30 40	WATER LEVEL
254.1	Ground Surface						
0.0	Dark brown 7.6 cm TOPSOIL — EARTH FILL silty clay	1	DO	10	0	Q	
253.3 0.8	occ. rootlets and topsoil inclusions Stiff to hard	2	DO	9	1 -	Q	
		3	DO	24	2 -	O 20 0	
		4	DO	26	-	O 23 •	
	SILTY CLAY	5	DO	37	3 -	21 O •	tion
					4 -		Dry on completion
	traces of sand and gravel occ. silt seams	6	DO	22	5 -	25	
	<u> </u>				6 -	29	
	, ,	7	DO	14	<u>:</u> -		
					7 -		
246.0 8.1	END OF BOREHOLE	8	DO	21	8 -	Q	11
5. 1	Installed 50 mm Ø monitoring well to 7.6 m completed with 3.1 m screen Sand backfill from 4.0 m to 7.6 m Bentonite seal from 0.0 m to 4.0 m Provided with a steel monument casing				9 -		

LOG OF BOREHOLE: JOB NO.: 2404-S107

FIGURE NO.:

PROJECT DESCRIPTION: Proposed 4-Storey Apartment with Basement

METHOD OF BORING: Solid-Stem Augers

PROJECT LOCATION: 15, 21 and 27 Shore Street, Town of Caledon

DRILLING DATE: May 29, 2024

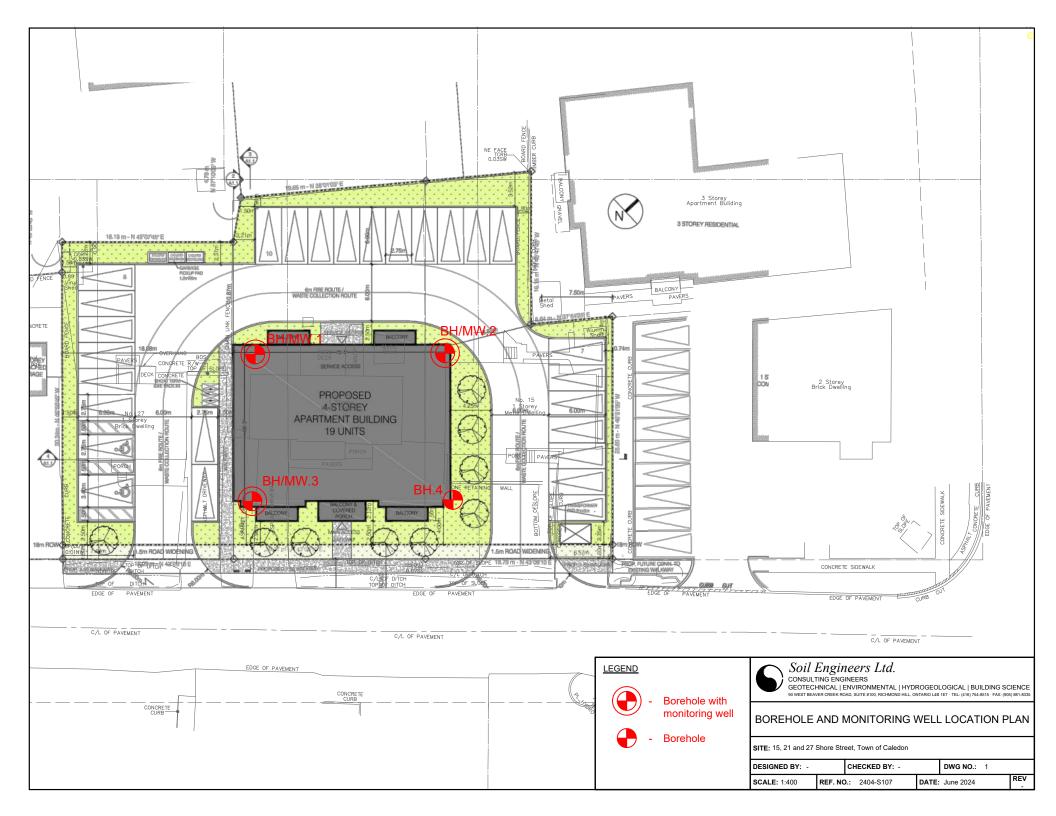
		5	SAMPI	LES		Dynamic Cone (blows/30 cm) 10 30 50 70 90 Atterberg Limits	
EI. (m)	SOIL DESCRIPTION)er		ne	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 Penetration Resistance	WATER LEVEL
(m)		Number	Туре	N-Value	Depth	O Penetration Resistance (blows/30 cm)	WATI
254.5	Ground Surface						
0.0	— 10 cm TOPSOIL — Dark brown EARTH FILL silty clay	1A 1B	DO	5	0	0 23	
253.7 0.8	occ. rootlets and topsoil inclusions Brown, very stiff SILTY CLAY TILL some sand, a trace of gravel	2	DO	21	1 -	16 • • • • • • • • • • • • • • • • • • •	
253.0 0.8	Very stiff to hard	3	DO	28		22 •	
		4	DO	42	2 -	21	
		_	D0	0.5	3 -	22	
	SILTY CLAY	5	DO	35	-	0	pletion
					4 -		Dry on completion
	<u>brown</u> grey	6	DO	23	5 -	24	
					-		
	traces of sand and gravel occ. silt seams		50		6 -	22 •	- - -
		7	DO	23			
					7 -		- - -
246.4	END OF BODELIOLE	8	DO	22	8 -	0 0	Ш
8.1	END OF BOREHOLE Installed 50 mm Ø monitoring well to 7.6 m completed with 3.1 m screen Sand backfill from 4.0 m to 7.6 m Bentonite seal from 0.0 m to 4.0 m Provided with a flush mounted cover				9 -		
					10		

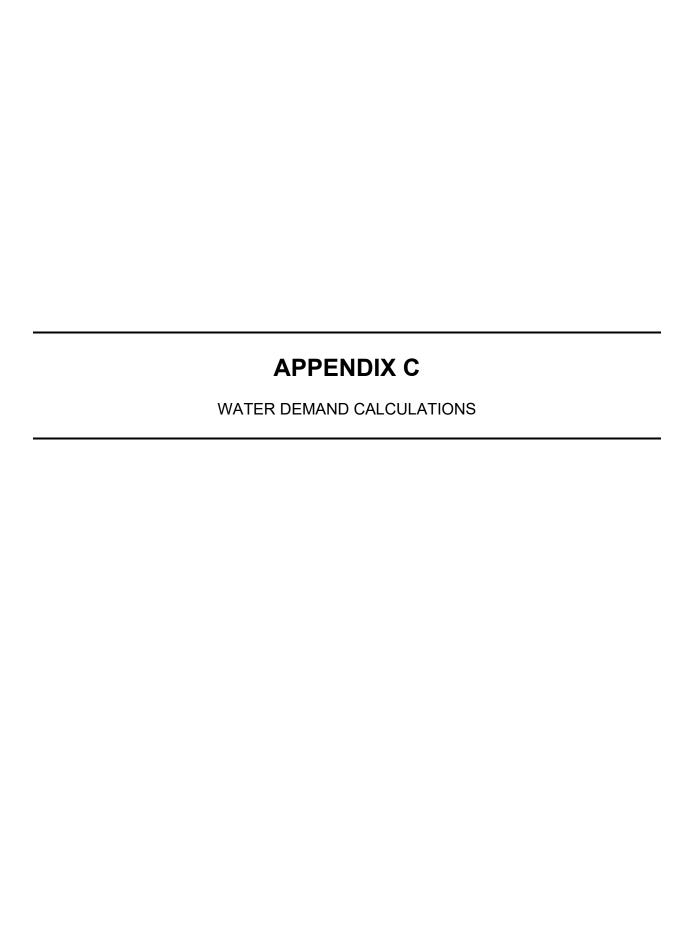
JOB NO.: 2404-S107 LOG OF BOREHOLE:

4

FIGURE NO.:

PROJECT DESCRIPTION: Proposed 4-Storey Apartment with Basement


METHOD OF BORING: Solid-Stem Augers


PROJECT LOCATION: 15, 21 and 27 Shore Street, Town of Caledon

DRILLING DATE: May 29, 2024

			SAMP	LES		 Dynamic Cone (blows/30 cm) 30 50 70 90 Atterberg Limits 	
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 Penetration Resistance (blows/30 cm) ■ Moisture Content (%) 10 30 50 70 90 10 20 30 40	WATER LEVEL
254.3	Ground Surface						
0.0	Dark brown 7.6 cm TOPSOIL EARTH FILL silty clay occ. rootlets and topsoil inclusions	1	DO	8	0	0 33	
253.5 0.8	Very stiff to hard	2	DO	29	1 -	Q 20 ♦	
		3	DO	31	2 -	O	
		4	DO	26		0 23	
	SILTY CLAY	5	DO	22	3 -	Q	ion
					4 -		Dry on completion
		6	DO	23	5 -	25	Dry
	traces of sand and gravel occ. silt seams				-		
	<u>brown</u> grey	7	DO	20	6 -	Φ 26	
					7 -		
246.2		8	DO	23	8 -	D 21 ●	
8.1	END OF BOREHOLE				-		
					9 -		
					10		

WATER SUPPLY CALCULATION

PROJECT: 15,21,27 Shore Street, Caledon

FILE No.: 24-0002CA **DATE:** 2024-06-11

PREPARED BY: DV

Fire Flow (residential)	83.33 L/s
Demand (residential)	280 L/cap/day *
Max Day Factor	2 *
Peak Hour Factor	3 *
Units (Large)	14
Units (Small)	5
Density (Large)	3.1 cap / unit *
Density (Small	1.7 cap / unit *
Population	52

Calculated as per FUS 2020

AVERAGE-DAY DEMAND

Land Use	Units	Units	Density	Density	Population	Avg. Day Demand
	(Large)	(small)	(large p/unit)	(small p/unit)		(L/s)
Residential	14	5	3.1 p/unit	1.7 p/unit	52	0.17

MAXIMUM-DAY DEMAND + FIRE FLOW

Land Use	Avg. Day	Peak Hour	Peak Hour	Max. Day	Max. Day Demand	Max. Day Demand
	Demand (L/s)	Demand Factor*	Demand (L/s)	Demand Factor*	(L/s)	+ Fire Flow (L/s)
Residential	0.17	3.0	0.50	2.0	0.34	83.67

^{*} Per Region of Peel Water Main Design Criteria (June 2010) - Table 1

^{*} Per Region of Peel Water Main Design Criteria (June 2010) - Table 1

FIRE FLOW CALCULATION

PROJECT: 15,21,27 Shore Street, Caledon

 FILE No.:
 24-0002CA

 DATE:
 2024-06-11

 PREPARED BY:
 DV

Calculation of required fire flow is based on the Fire Underwriters Survey (FUS), Water Supply for Fire Protection publication, 2020

 $F = 220C\sqrt{A}$

Where: F = Requied fire flow (L/min.)

C = Coefficient related to the type of construction

1.5	Type V	Wood Frame Construction
8.0	Type IV-A	Mass Timber Construction
0.9	Type IV-B	Mass Timber Construction
1.0	Type IV-C	Mass Timber Construction
1.5	Type IV-D	Mass Timber Construction
1.0	Type III	Ordinary Construction
8.0	Type II	Noncombustible Construction
0.6	Type I	Fire Resistive Construction

A = Total floor area (m²)

Includes all storeys, but excluding basements at least 50% below grade.

* For fire-resistive buildings, consider the 2 largest adjoining floors plus 50% of each of any floors immediately above up to 8, when vertical openings are inadequately protected.

If the vertical openings and exterior vertical communications are properly protected (one hour rating), consider only the area of the largest floor plus 25% of each of the 2 immediately adjoining floors.

(4) Exposure - Type III - Unprotected

Adjustments to the calculated fire flow can be made based on occupancy, sprinkler protection and exposure to other structures. The table below summarizes the adjustments made to the basic fire flow demand.

			:	1		2		3		4		Final Adjusted		ed
Building	Area "A"	С	Base Fi	re Flow	Occu	Occupancy		Sprin	kler	Expo	osure		Fire Flow	
	(m2)		(L/min)	(L/s)	%	Fire Flow Adjustme nt (L/min)	Adjusted Flow (L/min)	%	Fire Flow Adjustment (L/min)	%	Fire Flow Adjustment (L/min)	Final Fire Flow (L/min)	Rounded Fire Flow (L/min)	(L/s)
Site	1557.4	1	8682	144.7	-15	-1302	7380	-40	-2952	14%	1033	5461	5000	83.33

Note - Total GFA = 1557.4 square metres

GFA estimated based on site plan prepared by FC Architects Inc., dated February 20, 2024

(2) Occupancy	
Non-Combustible	-25%
Limited Combustible	-15%
Combustible	no change
Free Burning	15%
Rapid Burning	25%

(3) Spinkler
It is assumed that the building will have a
Sprinkler system (-30%) Additional credit for standard water supply (-10%)

Face	Distance	Length Height Factor	Exposure Factor	Distance	Max
North	30+m	92	. 0%	0 to 3 m	25%
East	10.1 to 20 m	69	6%	3.1 to 10 m	20%
South	20.1 to 30 m	92	5%	10.1 to 20 m	15%

 East
 10.1 to 20 m
 69
 6%
 3.1 to 10 m
 20%

 South
 20.1 to 30 m
 92
 5%
 10.1 to 20 m
 15%

 West
 20.1 to 30 m
 69
 3%
 20.1 to 30 m
 10%

 Total Exposure (max 75%)
 14%
 30.1+m
 0%

 Calculate for all sides and all buildings.

GENERAL INFORMATION:

PROJECT ID
CLIENT NAME
BUILDING ADDRESS

1527SS

Deven Verma

15-27 Shore Street

Caledon, Ontario

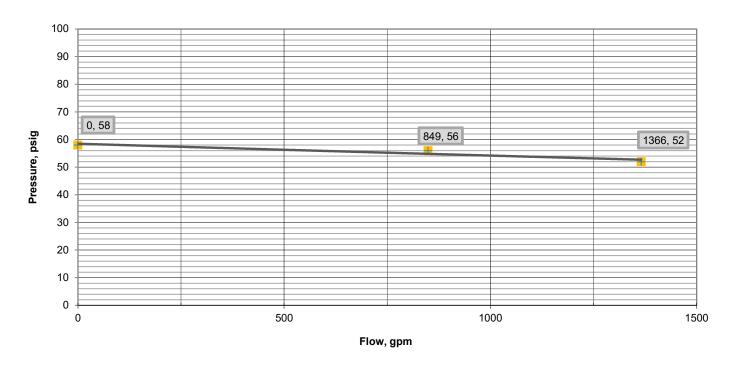
TESTED BY: AA
DATE June 21-24

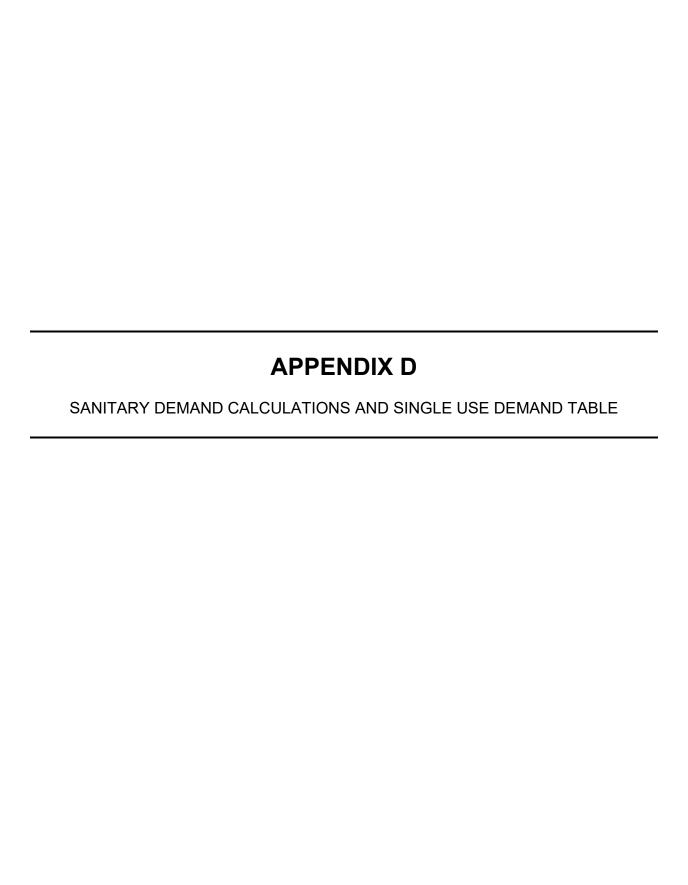
TIME 1:30:00 PM

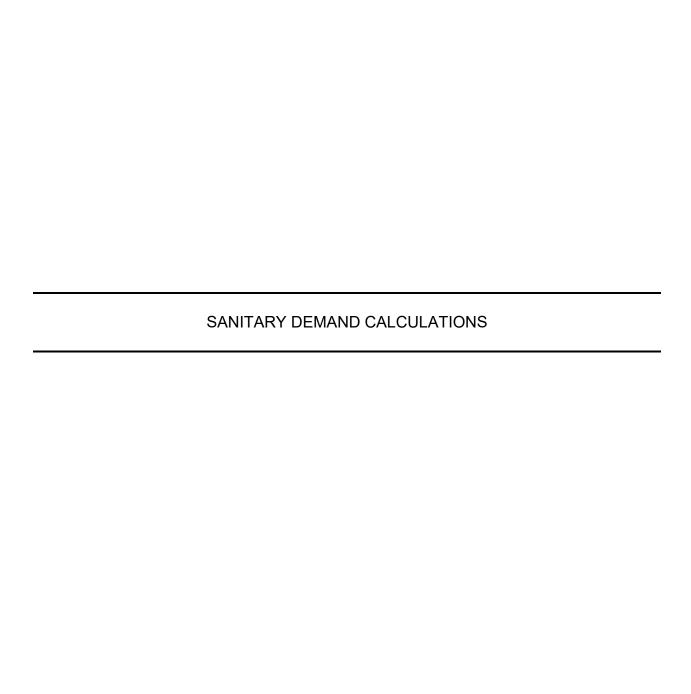
WATER MAIN INFORMATION:

MAIN SIZE / MATERIAL NA CONFIGURATION Looped

HYDRANT LOCATION:






FINAL RESULTS:

Test #	Number	Orifice	Pitot	Equivlnt	Total	Projected	Gauge	Discharg
	of	Size (in)	Reading	Flow	Flow	flow at	Pressure	e Coef'nt
	Outlets		(psig)	(usgpm)	(usgpm)	20psi	(psig)	
						(usgpm)		
Static	N/A	N/A	N/A	N/A	0	N/A	58	N/A
1	1	2.47	34	849	849	4163	56	8.0
2	2	2.47	22	683	1366	3700	52	0.8

Note: Report is in accordance with applicable bylaw standards and NFPA 291 Recommended Practice for Water Flow Testing and Marking of Hydrants

Region of Peel SANITARY SEWER DESIGN SHEET - EXISTING CONDITIONS

 Project / Subdivision : 15,21,27 Shore Street, Caledon
 Prepared by: Giancarlo Volpe
 Last Revised: August 8, 2025

Consulting Engineer: Urbanworks Engineering Corporation

Checked by: Taras Dumyn, P. Eng

Project No.: 24-0002CA

Design Parameters Design Equations

Manning 'n' =	0.013	Residential Flow Rate	290 L/cap/day (Region)	Q(P) = peak population flow (L/s)			
Infiltration flow =	0.28 L/s/mh Region of Peel - Linear Waste Water Standards (2023) - Section 2.5.2	Non-Residential Flow Rate	. , , ,	Q (P)= (P x q x M) / 86.4	peak population flow		
Extran. Flow (i)=	0.26 L/s/ha Region of Peel - Linear Waste Water Standards (2023) - Section 2.5.2			Q(i)= number of mh * 0.28 l/s/mh	peak infiltration flow		
Density (Detached)	4.2 person / unit Region of Peel - Linear Waste Water Standards (2023) - Table 2-2			Q(e)= area (ha) * 0.26 l/s/ha	peak extraneous flow		
Density (large apartment)	3.1 person / unit Region of Peel - Linear Waste Water Standards (2023) - Table 2-2						
Density (small apartment)	1.7 person / unit Region of Peel - Linear Waste Water Standards (2023) - Table 2-2			Q(d) = Q(p) + Q(e) + Q(i)	peak design flow		
Density (Commercial)	50 person / ha Region of Peel - Linear Waste Water Standards (2023) - Section 2.1.2					M = 1 + 14	min = 2
				Qcap = $1/n \times A \times R^{0.67}S^{0.5}$	Manning's Equation	4 + (P/1000) ^{0.5}	max = 4

Notes/Comments:

References: Town of Newmarket, Engineering Design Standards and Criteria, August 2019

	Location					Individual Valı	ues				Cu	mulative Va	lues				Flow Da	ta					Se	wer Data			
Street	From	То	Gross Area	Commercial area	Detached Units	Large Apartments	Small Aparments	Commercial Population	Residential Population	Commercial Population	Residential Population	Total Population	Area	Peaking Factor	Peak Commercial Flow (L/s)	Peak Residential Flow (L/s)	Peak Infiltration Flow (L/s)	Peak Extraneous Flow (L/s)	Total Design Flow (L/s)	Length	Pipe Size	Type of Pipe	Grade	Full Flow Capacity (Qcap)	Full Flow Velocity	Actual Velocity	%Full
	MH#	MH#	(Ha)	(Ha)	(ea.)	(ea.)	(ea.)	(cap)	(cap)	(ea.)	(cap)	сар	На	М	Q(c)	Q(r)	Q (i)	Q(e)	Q(d)	(m)	(mm)		(%)	(L/s)	(m/s)	(m/s)	%
																											ĺ
Shore Street	1651195	309324	0.93	0.42	5	-	-	21	21	21	21	42	0.93	4.00	0.26	0.28	0.28	0.24	1.07	120.00	200	PVC	1.40	38.81	1.24	0.53	2.7
																											i

Region of Peel SANITARY SEWER DESIGN SHEET - PROPOSED CONDITIONS

Project / Subdivision: 15,21,27 Shore Street, Caledon Prepared by: Giancarlo Volpe Last Revised: August 8, 2025

Consulting Engineer: Urbanworks Engineering Corporation

Checked by: Taras Dumyn, P. Eng

Project No.: <u>24-0002CA</u>

Design Parameters **Design Equations**

	Design i didineters				Design Equ	alions			
Manning 'n' =	0.013	Residential Flow Rate	290 L/cap/day (Region)	Q(P) = peak population flow (L/s)					
Infiltration flow =	0.28 L/s/mh Region of Peel - Linear Waste Water Standards (2023) - Section 2.5.2	Non-Residential Flow Rate	270 L/cap/day (Region)	Q (P)= (P x q x M) / 86.4	peak population flow				
Extran. Flow (i)=	0.26 L/s/ha Region of Peel - Linear Waste Water Standards (2023) - Section 2.5.2			Q(i)= number of mh * 0.28 l/s/mh	peak infiltration flow				
Density (Detached)	4.2 person / unit Region of Peel - Linear Waste Water Standards (2023) - Table 2-2			Q(e)= area (ha) * 0.26 l/s/ha	peak extraneous flow				
Density (large apartment)	3.1 person / unit Region of Peel - Linear Waste Water Standards (2023) - Table 2-2								
Density (small apartment)	1.7 person / unit Region of Peel - Linear Waste Water Standards (2023) - Table 2-2			Q(d) = Q(p) + Q(e) + Q(i)	peak design flow				
Density (Commercial)	50 person / ha Region of Peel - Linear Waste Water Standards (2023) - Section 2.1.2					M = 1 +	14	min =	2
				Qcap = $1/n \times A \times R^{0.67}S^{0.5}$	Manning's Equation	4	+ (P/1000) ^{0.5}	max =	4
Notes/Comments:				References: Town of Newmarket, Engin	eering Design Standards and Criteria, August 20	019			

	Location					Individual Val	ues				Cur	nulative Va	lues				Flow Da	ata					Se	wer Data			
Street	From	То	Gross Area	Commercial area	Detached Units	Large Apartments	Small Aparments	Commercial Population	Residential Population	Commercial Population	Residential Population	Total Population	Area	Peaking Factor	Peak Commercial Flow (L/s)	Peak Residential Flow (L/s)	Peak Infiltration Flow (L/s)	Peak Extraneous Flow (L/s)	Total Design Flow (L/s)	Length	Pipe Size	Type of Pipe	Grade	Full Flow Capacity (Qcap)	Full Flow Velocity	Actual Velocity	%Full
	MH#	MH#	(Ha)	(Ha)	(ea.)	(ea.)	(ea.)	(cap)	(cap)	(ea.)	(cap)	сар	На	М	Q(c)	Q(r)	Q (i)	Q(e)	Q(d)	(m)	(mm)		(%)	(L/s)	(m/s)	(m/s)	%
Proposed Development	BLDG	Inspection MH	0.21	-	-	14	5	-	52	-	52	52	0.21	4.00	-	0.70	0.28	0.05	1.03	4.00	150	PVC	2.00	21.54	1.22	0.62	4.8
Proposed Development	Inspection MH	Main	-	-	-	-	-	-	-	-	52	52	0.21	4.00	-	0.70	0.28	0.05	1.03	9.00	150	PVC	2.00	21.54	1.22	0.62	4.8
Shore Street	1651195	309324	0.72	0.42	2	_	_	21	8	21	60	21	0.03	4.00	0.26	0.81	0.28	N 24	1 50	120.00	200	D\/C	1.40	38 81	1 2/1	0.60	11

=proposed sewer =existing sewer

SANDS 01/06

Water and Wastewater Modelling Demand Table - Site Plan applications

Version - January 2023

	units	persons
Proposed Residential ¹⁾		
Singles/Semis	0	0
townhouses	0	0
large apartments (>750sqft)	14	44
small apartments (<=750sqft)	5	8
Total Proposed Residential		52
Proposed Institutional Population ²⁾		n/a
Proposed Employment Population ³⁾		n/a
Total		52

Proposed GFA (commercial/retail) (sqm) n/a
--

WATER CONNECTION

Hydrant flow test			
Hydrant flow test locations 4)	FH (#651362	5) on Shore Street	t, Caledon
-			
	Pressure	Flow (in I/s)	Time
	(kPa)	1 10W (1111/3)	Tille
Minimum water pressure	386.1	53.36	June 21, 2024 1:30 PM
Maximum water pressure	400	0	June 21, 2024 1:30 PM

	Wa	ter demands			
No.			Demand (in I/s	s)	
	Demand type	Use 1 ⁶⁾	Use 2 ⁶⁾	Use 3 ⁶⁾	Total
1	Average day flow	0.17			0.17
2	Maximum day flow	0.34			0.34
	Peak hour flow	0.50			0.50
4	Fire flow ⁵⁾	83.33			83.33
Ana	llysis				
5	Maximum day plus fire flow	83.67			83.67

WASTEWATER CONNECTION

		Discharge Location (1)	Flow
6	Wastewater sewer effluent (in l/s)	new connection between EX. MH 1651195 and 309324	1.03
7	Wastewater sewer effluent (in l/s)		
8	Wastewater sewer effluent (in l/s)		
9	Total Wastewater sewer effluent (in l/s)		1.03

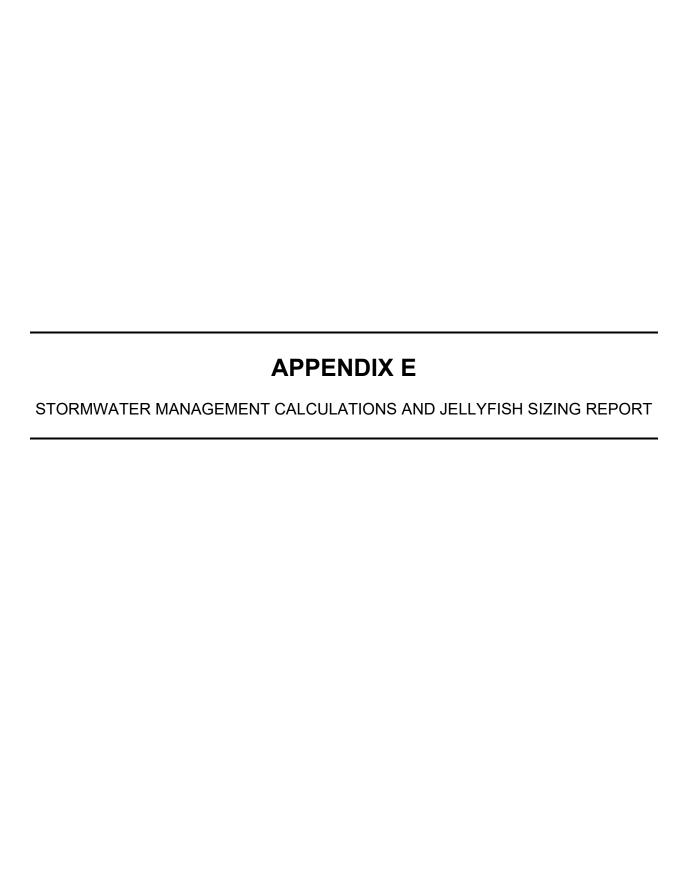
¹⁾ For the design flow calculations, please consider the following PPU's, which are found in the Region of Peel 2020 DC Background Study

□Multiples (Townhouses) – 3.4
□Large Apartments (larger than 750 square feet) – 3.0
□Small Apartments (equal to or less than 750 square feet) – 1.6

The Region will not permit hydrant flow tests during the winter, please check with the Region for scheduling

- ⁵⁾ Please reference the Fire Underwriters Survey Document
- ⁶⁾ Please identify the flows for each use type, if applicable
- 7) Please include drainage plan for mutliple discharge locations

The calculations should be based on the development proposal All required calculations must be submitted with the demand table submission Table shall include Professional Engineer's signature and stamp Site servicing concept shall be included


This table will be deemed complete when all the above is submitted and/or included. Modelling will commence with a complete table.

²⁾ refer to Region of Peel design criteria

³⁾ For the commercial and industrial design flow calculations, please use your site specific estimated population or the most current Ontario Building Code Occupant Load determination

⁴⁾ Please include the graphs associated with the hydrant flow test information table

⁴⁾ Hydrant flow tests should be performed within 2 years of submisison to the Region.

SITE CHARACTERISTICS

PROJECT: 15,21,27 Shore Street, Caledon

 FILE No.:
 24-0002CA

 DATE:
 2025-08-08

PREPARED BY: GV

Pre-Development

Land Use	Impervious Ratio (I)	Area 101 (m²)	Area 102 (m²)	Area 103 (m²)	Total Drainage Area (m2)	% Coverage
Asphalt Driveway	1	171.00	19.30	0.00	190.30	9.2%
Roof	1	372.60	0	17.16	389.76	18.9%
Hardscape	1	36.00	0	79.36	115.36	5.6%
Landscape	0	522.62	37	811.78	1371.40	66.3%
Total		1102.22	56.60	908.30	2067.12	100%
	·	1102.22				
	Impervious Ratio		0.34	0.11	0.34	
Runoff coefficient = (0.	Runoff coefficient = $(0.25*(1-i)+0.9i)$ =		0.47	0.32	0.47	

Post-Development

Land Use	Impervious Ratio (I)	Area 201 (m²)	Area 202 (m²)	Area 203 (m²)	Total Drainage Area (m2)	% Coverage
Asphalt Driveway	1	1055.04	0	0.00	1055.04	51.0%
Roof	1	423.43	0	0.00	423.43	20.5%
Hardscape	1	114.48	8.00	0.00	122.48	5.9%
Landscape	0	358.74	48.60	58.83	466.17	22.6%
Total		1951.69	56.60	58.83	2067.12	100.0%
Impervious Ratio		0.82	0.14	0.00	0.77	
Runoff coefficient = $(0.25 * (1-i) + 0.9i) =$		0.78	0.34	0.25	0.75	

PEAK FLOW CALCULATION: RATIONAL METHOD

PRE-DEVELOPMENT CONDITION

PROJECT: 15,21,27 Shore Street, Caledon

FILE No.: 24-0002CA **DATE:** 2025-08-08

PREPARED BY: GV

IDF DATA								
STORM		COEFFICIENTS						
EVENT	Α	С						
2 YR.	1070	0.8759	7.85					
5 YR.	1593	0.8789	11					
10 YR.	2221	0.908	12					
25 YR.	3158	0.9335	15					
50 YR.	3886	0.9495	16					
100 YR.	4688	0.9624	17					

Rainfall Intensity: $I = A * B / (t_{c+C})$ Peak Flow: $Q = 0.00278 * (C \cdot I \cdot A)$

Min. Inlet Time: Tc = 10.0min.

STORM	AREA	AREA	С	AxC	Tc	I	Q	Q
EVENT	I.D.	(ha)			(min.)	(mm/hr)	(m³/s)	(L/s)
2 YR.	101	0.1102	0.59	0.065	10.0	52.5	0.0095	9.5
5 YR.	101	0.1102	0.59	0.065	10.0	66.7	0.0121	12.1
10 YR.	101	0.1102	0.59	0.065	10.0	91.7	0.0166	16.6
25 YR.	101	0.1102	0.59	0.065	10.0	117.9	0.0214	21.4
50 YR.	101	0.1102	0.59	0.065	10.0	141.9	0.0257	25.7
100 YR.	101	0.1102	0.59	0.065	10.0	167.1	0.0303	30.3

STORM	AREA	AREA	С	AxC	Tc	I	Q	Q
EVENT	I.D.	(ha)			(min.)	(mm/hr)	(m ³ /s)	(L/s)
2 YR.	102	0.0057	0.47	0.003	10.0	52.5	0.000	0.4
5 YR.	102	0.0057	0.47	0.003	10.0	66.7	0.000	0.5
10 YR.	102	0.0057	0.47	0.003	10.0	91.7	0.001	0.7
25 YR.	102	0.0057	0.47	0.003	10.0	117.9	0.001	0.9
50 YR.	102	0.0057	0.47	0.003	10.0	141.9	0.001	1.1
100 YR.	102	0.0057	0.47	0.003	10.0	167.1	0.001	1.2

STORM	AREA	AREA	С	AxC	Тс	I	Q	Q
EVENT	I.D.	(ha)			(min.)	(mm/hr)	(m³/s)	(L/s)
2 YR.	103	0.0908	0.32	0.029	10.0	52.5	0.0042	4.2
5 YR.	103	0.0908	0.32	0.029	10.0	66.7	0.0054	5.4
10 YR.	103	0.0908	0.32	0.029	10.0	91.7	0.0074	7.4
25 YR.	103	0.0908	0.32	0.029	10.0	117.9	0.0095	9.5
50 YR.	103	0.0908	0.32	0.029	10.0	141.9	0.0114	11.4
100 YR.	103	0.0908	0.32	0.029	10.0	167.1	0.0135	13.5

PEAK FLOW CALCULATION: RATIONAL METHOD

POST-DEVELOPMENT CONDITION

PROJECT: 15,21,27 Shore Street, Caledon

FILE No.: 24-0002CA **DATE:** 2025-08-08

PREPARED BY: GV

IDF DATA	DATA SET: Town Std. No. 103					
STORM	COEFFICIENTS					
EVENT	Α	С				
2 YR.	1070	0.8759	7.85			
5 YR.	1593	0.8789	11			
10 YR.	2221	0.908	12			
25 YR.	3158	0.9335	15			
50 YR.	3886	0.9495	16			
100 YR.	4688	0.9624	17			

Rainfall Intensity: $I = A * B / (t_{c+C})$ Peak Flow: $Q = 0.00278 * (C \cdot I \cdot A)$

Min. Inlet Time: Tc = 10.0min.

STORM	AREA	AREA	С	AxC	Tc		Q	Q
EVENT	I.D.	(ha)			(min.)	(mm/hr)	(m ³ /s)	(L/s)
2 YR.	201	0.1952	0.78	0.152	10.0	52.5	0.0222	22.2
5 YR.	201	0.1952	0.78	0.152	10.0	66.7	0.0282	28.2
10 YR.	201	0.1952	0.78	0.152	10.0	91.7	0.0388	38.8
25 YR.	201	0.1952	0.78	0.152	10.0	117.9	0.0499	49.9
50 YR.	201	0.1952	0.78	0.152	10.0	141.9	0.0601	60.1
100 YR.	201	0.1952	0.78	0.152	10.0	167.1	0.0707	70.7

STORM	AREA	AREA	С	AxC	Tc	I	Q	Q
EVENT	I.D.	(ha)			(min.)	(mm/hr)	(m ³ /s)	(L/s)
2 YR.	202	0.0057	0.34	0.002	10.0	52.5	0.000	0.3
5 YR.	202	0.0057	0.34	0.002	10.0	66.7	0.000	0.4
10 YR.	202	0.0057	0.34	0.002	10.0	91.7	0.000	0.5
25 YR.	202	0.0057	0.34	0.002	10.0	117.9	0.001	0.6
50 YR.	202	0.0057	0.34	0.002	10.0	141.9	0.001	0.8
100 YR.	202	0.0057	0.34	0.002	10.0	167.1	0.001	0.9

STORM	AREA	AREA	С	AxC	Tc		Q	Q
EVENT	I.D.	(ha)			(min.)	(mm/hr)	(m³/s)	(L/s)
2 YR.	203	0.0059	0.25	0.001	10.0	52.5	0.0002	0.2
5 YR.	203	0.0059	0.25	0.001	10.0	66.7	0.0003	0.3
10 YR.	203	0.0059	0.25	0.001	10.0	91.7	0.0004	0.4
25 YR.	203	0.0059	0.25	0.001	10.0	117.9	0.0005	0.5
50 YR.	203	0.0059	0.25	0.001	10.0	141.9	0.0006	0.6
100 YR.	203	0.0059	0.25	0.001	10.0	167.1	0.0007	0.7

ALLOWABLEL RELEASE RATE CALCULATION: RATIONAL METHOD

Uncontrolled Flow

PROJECT: 15,21,27 Shore Street, Caledon

FILE No.: 24-0002CA **DATE:** 2025-08-08

PREPARED BY: GV

=Total Target Flow rate in proposed conditions

Existing Conditions - All existing areas are uncontrolled

	To Shore Street	To Shore Street	To North P/L	
Return Period	Area A101 (L/s)	Area A102 (L/s)	Area A103 (L/s)	Total Flow (L/s)
2	9.5	0.4	4.2	14.1
5	12.1	0.5	5.4	17.9
10	16.6	0.7	7.4	24.7
25*	21.4	0.9	9.5	31.7
50*	25.7	1.1	11.4	38.2
100*	30.3	1.2	13.5	45.0

Proposed Conditions

	To Shore Street	To Shore Street	To North P/L	
'		Uncontrolled	Uncontrolled	
Return Period	Area A201 (L/s)	Area A202 (L/s)	Area A203 (L/s)	Total Flow (L/s)
2	22.2	0.3	0.2	22.5
5	28.2	0.4	0.3	28.6
10	38.8	0.5	0.4	39.3
25*	49.9	0.6	0.5	50.5
50*	60.1	0.8	0.6	60.8
100*	70.7	0.9	0.7	71.6

Allowable Release Rate

12.6

 $Q = Q_{PRE} - Q_{U}$ Where: Q = Allowable Post-Development Release Rate

 Q_{PRE} = Pre-Development Flow

Q_U = Post-Development Uncontrolled Flow

(100-Year) (5-Year)

(100-Year)

11.7

5-YEAR Pre-Development Flow to Shore
Street (Areao 101 + 102)
Q_{PRE} (L/s)

100-YEAR Post-Development Uncontrolled
Flows to Shore Street (Area 202)
Q_U (L/s)

Allowable Post-Dev. Release Rate
Q (L/s)

0.9

Area 202 and 203 will remain uncontrolled and Area 201 will be controlled to a max of 11.7 L/s

ORIFICE CONTROL SIZING CALCULATION

PROJECT: 15,21,27 Shore Street, Caledon

FILE No.: 24-0002CA **DATE:** 2025-08-08

PREPARED BY: GV

Orifice Control Equation

$$Q = C \bullet A \bullet (2gh)^{0.5}$$

Where: Q = Flow Rate

C = Discharge Coefficient

C (tube) = 0.80

C (plate) = 0.62

A = Orifice Area

g = Acceleration Due to Gravity = 9.81 m/s²

h = Head

Orifice Diameter (mm)	78
High Water Elev. (m)		254.230
Orifice Invert Elev. (m	252.910	
Flow Boto (L/o)	Required	15.0
Flow Rate (L/s)	Provided	14.9

Orifice to come with debris screen (welded wire cage)

Orifice Center Elev. (m)	252.95
Head (m)	1.281
С	0.62
Orifice Area (m ²)	0.0048

STORMWATER STORAGE & RELEASE CALCULATION

100-YEAR STORM

PROJECT: 15,21,27 Shore Street, Caledon

 FILE No.:
 24-0002CA

 DATE:
 2025-08-08

PREPARED BY: GV

DRAINAGE AREA I.D.	201	IDF DATA S	SET:	Town S	Std. No. 103		
DRAINAGE AREA (ha)	0.195	STORM		COEFFICIENTS			
RUNOFF COEFF. (C)	0.78	EVENT	Α	В	С		
AxC	0.152	2 YR.	1070	0.8759	7.85		
TOTAL AxC	0.152	5 YR.	1593	0.8789	11		
TIME OF CONCENTRATION	10.0 min.	10 YR	2221	0.908	12		
TIME STEP	1.0 min.	25 YR.	3158	0.9335	15		
CONTROLLED RELEASE RATE (Q _C)	0.0149 m ³ /s	50 YR.	3886	0.9495	16		
MAX. STORAGE REQUIRED	46.4 m ³	100 YR.	4688	0.9624	17		

Т	I = A * B / (tc + C)	$Q_R = (C \cdot I \cdot A)^*$	$V_R = Q_R \cdot T \cdot 60$	$V_C = Q_C \cdot T \cdot 60$	$V = V_R - V_C$
TIME	RAINFALL INTENSITY	0.00278 RUNOFF	RUNOFF VOL.	CONTROLLED RELEASE	STORAGE VOI
		(m ³ /s)	(m³)	VOL. (m ³)	(m³)
(min.) 10	(mm/hr) 167.1	0.071	42.43	8.91	33.51
11	161.1	0.071	45.00	9.80	35.20
12	155.6	0.066	47.40	10.69	36.71
13	150.4	0.064	49.64	11.58	38.05
14	145.5	0.062	51.73	12.48	39.26
15	141.0	0.060	53.69	13.37	40.33
16	136.7	0.058	55.54	14.26	41.28
17	132.7	0.056	57.27	15.15	42.12
18	128.9	0.055	58.91	16.04	42.87
19	125.3	0.053	60.46	16.93	43.52
20	121.9	0.052	61.92	17.82	44.10
21	118.7	0.052	63.30	18.71	44.59
22	115.7	0.049	64.62	19.61	45.01
23	112.8	0.048	65.87	20.50	45.37
24	110.0	0.047	67.05	21.39	45.67
25	107.4	0.045	68.18	22.28	45.91
26	104.9	0.044	69.26	23.17	46.09
27	102.5	0.043	70.29	24.06	46.23
28	100.3	0.042	71.27	24.95	46.32
29	98.1	0.042	72.22	25.84	46.37
30	96.0	0.041	73.12	26.73	46.38
31	94.0	0.040	73.98	27.63	46.35
32	92.1	0.039	74.81	28.52	46.29
33	90.2	0.038	75.60	29.41	46.19
34	88.5	0.037	76.37	30.30	46.07
35	86.8	0.037	77.10	31.19	45.91
36	85.1	0.036	77.81	32.08	45.73
37	83.6	0.035	78.49	32.97	45.51
38	82.0	0.035	79.14	33.86	45.28
39	80.6	0.034	79.77	34.75	45.02
40	79.2	0.033	80.38	35.65	44.74
41	77.8	0.033	80.97	36.54	44.44
42	76.5	0.032	81.54	37.43	44.11
43	75.2	0.032	82.09	38.32	43.77
44	74.0	0.031	82.63	39.21	43.41
45	72.8	0.031	83.14	40.10	43.04
46	71.6	0.030	83.64	40.99	42.65
47	70.5	0.030	84.12	41.88	42.24
48	69.4	0.029	84.59	42.77	41.81
49	68.4	0.029	85.04	43.67	41.38

PROVIDED UNDERGROUND STORAGE CALCULATION

PROJECT: 15,21,27 Shore Street, Caledon

FILE No.: 24-0002CA DATE: 2025-08-08

PREPARED BY: DV

100-YEAR MAX. STORAGE REQUIRED	46.4	m ³	(100 Year)
100-YEAR SURFACE STORAGE PROVIDED	55.5	m ³	(ELEV. 254.25)

(100 Year) Note:

Underground pipe and structure storage not used in surface storage calculations

Structure ID	CB1	CBMH1	CBMH2
Top of Grate	254.15	254.00	253.95
Max Ponding Elev.	254.23	254.23	254.23
Max Ponding Depth	0.08	0.23	0.28
Max Ponding Area (m2)	194.50	295.04	243.83

	CB1	CBMH1	CBMH2	Total Surface	
Flood Elev.	Surface Storage Volume	Surface Storage Volume	Surface Storage Volume	Storage Volume	Notes
(m)	(m ³)	(m ³)	(m³)	(m ³)	
253.950	0.0	0.0	0.0	0.00	
253.960	0.0	0.0	0.8	0.81	
253.970	0.0	0.0	1.6	1.63	
253.980	0.0	0.0	2.4	2.44	
253.990	0.0	0.0	3.3	3.25	
254.000	0.0	0.0	4.1	4.06	
254.010	0.0	1.0	4.9	5.86	
254.020	0.0	2.0	5.7	7.66	
254.030	0.0	3.0	6.5	9.45	
254.040	0.0	3.9	7.3	11.25	
254.050	0.0	4.9	8.1	13.05	
254.060	0.0	5.9	8.9	14.84	
254.070	0.0	6.9	9.8	16.64	
254.080	0.0	7.9	10.6	18.43	
254.090	0.0	8.9	11.4	20.23	
254.100	0.0	9.8	12.2	22.03	
254.110	0.0	10.8	13.0	23.82	
254.120	0.0	11.8	13.8	25.62	
254.130	0.0	12.8	14.6	27.42	
254.140	0.0	13.8	15.4	29.21	
254.150	0.0	14.8	16.3	31.01	
254.160	0.6	15.7	17.1	33.45	
254.170	1.3	16.7	17.9	35.90	
254.180	1.9	17.7	18.7	38.34	
254.190	2.6	18.7	19.5	40.79	
254.200	3.2	19.7	20.3	43.23	
254.210	3.9	20.7	21.1	45.68	
254.220	4.5	21.6	21.9 48.12		
254.230	5.2	22.6	22.8		
254.240	5.8	23.6	23.6	53.01	
254.250	6.5	24.6	24.4	55.45	100-Year Storage Level

EROSION CONTROL / INFILTRATION CALCULATIONS

PROJECT: 15,21,27 Shore Street, Caledon

 FILE No.:
 24-0002CA

 DATE:
 2025-08-08

 PREPARED BY:
 GV

Erosion Control / Infiltration Target Volume Calculations

Minimum 5mm volume from the new impervious areas is required to be infiltrated throughout the development

Runoff from roof leaders to be directed to infiltration facility

Post-development impervious surfaces = 1593.0 m²

Erosion Control Volume Required = Total Impervious Drainage Area X 5mm

Erosion Control Volume Required = 8.0 m³

Total Volume Retained On Site = LID Storage

Storage provided by Undergronud Tank = 9.0 m³

Total Volume Retained = 9.0 m³

Storage Facility LID Volume Calculations - Landscaping / Irrigation Use

Drawdown Time

I = infiltration rate* = 6 mm/hr

*As reported by Geotechnical Report by Soil Engineers Ltd, dated

July 19, 2024

InfitIration rate is insufficient to support any infiltration measure within the site. Erosion Control to be accomplished with water re-use.

d = height of chambers = 350 mm Vr = storage void ratio = 0.96

 $t = dV_r/i$

t = 56.00 hours

more than the maximum draw down time of 48 hours.

Rain Water Harvesting - Landscaping/Irrigation or Grey Water Re-use

Graf Platin 3000 L (x3) Rainwater Cistern= 9 m³ Higher than the required Erosion Control Volume of 8.0 m3

STORM SEWER DESIGN SHEET

15, 21, 27 SHORE STREET TOWN OF CALEDON

PROJECT No.: 24-0002CA
DATE: 2024-09-23
DESIGNED BY: Deven Verma
CHECKED BY: Giancarlo Volpe

Rainfall Intensity:	I = A * B / (tc + C)	Coeff.	<u>5-Year</u>
Design Flow:	$Q = (C \cdot I \cdot A)^*2.778$	а	1593
Pipe Roughness:	n = 0.013	b	0.8789
Min. Inlet Time:	t = 10.0min.	С	11.000

System to be designe	d for	5 year Storm
: Indicates	controlled flow a	fter orifice in outlet structure

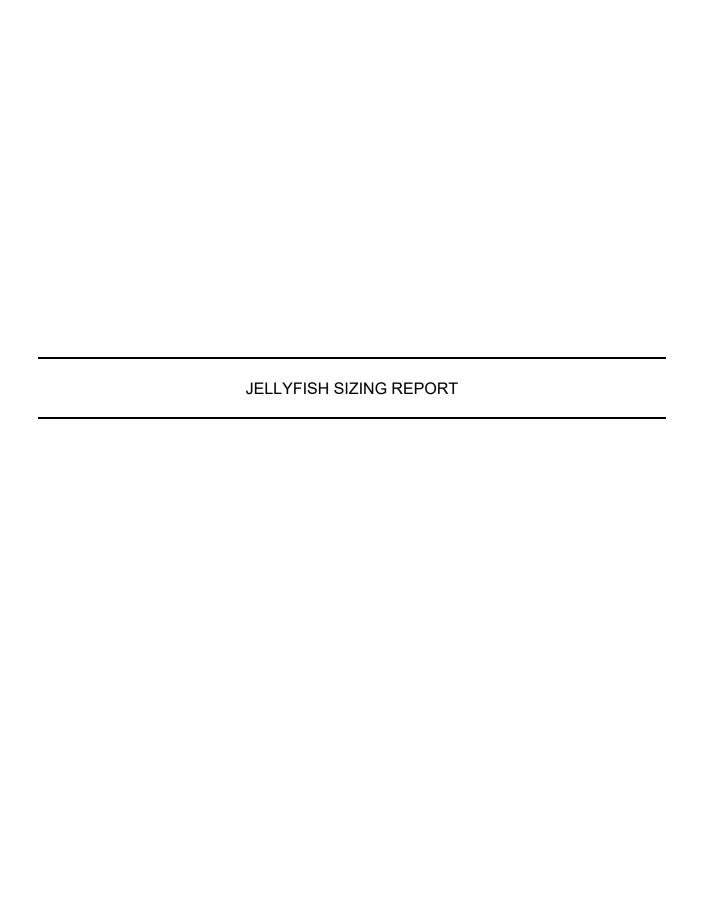
		STRU	JCTURE				DESIGN	DESIGN FLOWS PIPE DATA									ME	CAPACITY	COMMENTS			
<u>.</u>				AREA	RUNOFF	AREA	RUNOFF	Tc	RAINFALL	5-YEAR FLOW	TOTAL	LENGTH	SIZE	PIPE MAT.	GRADE	\mathbf{Q}_{FULL}	V _{FULL}	V _{ACTUAL}	SECT.	TOTAL	CHECK	
AREA				(ha)	COEFF.	RUNOFF	ACCUM.	(min.)	INT.(mm/hr)	Q ₅	Q _{TOTAL}								TIME	TIME	Q _{DESIGN} /	
AR	LOCATION	FROM	то	Α	C ₅	A x C ₅	A x C ₅		i ₅	(m³/s)	(m³/s)	(m)	(mm)		(%)	(m³/s)	(m/s)	(m/s	(min.)	(min.)	Q _{FULL}	
SIT		CB1	CBMH1	0.11	0.82	0.089	0.089	10	66.67	0.017	0.017	30.4	200	PVC	0.50	0.023	0.74	0.83	0.69	10.69	71.2%	
		CBMH1	CBMH2 (CONTROL)	0.05	0.74	0.035	0.124	10.69	64.56	0.022	0.022	19.5	250	PVC	0.30	0.033	0.66	0.74	0.49	11.18	68.2%	
		CBMH2 (CONTROL)	DIVERSION MH	0.05	0.64	0.030	0.154	11.18	63.13	0.010	0.010	12.6	250	PVC	0.30	0.033	0.66	0.53	0.32	11.49	31.9%	FLOW CONTROLLED TO 10.4 L/s AFTER ORIFICE PLATE
		DIVERSION MH	PR. STM MH 2				0.154	11.49	62.24	0.010	0.010	12.2	250	PVC	0.30	0.033	0.66	0.53	0.31	11.80	31.9%	

STORM SEWER DESIGN SHEET

SHORE STREET TOWN OF CALEDON

PROJECT No.: 24-0002CA
DATE: 2024-09-23
DESIGNED BY: Deven Verma
CHECKED BY: Giancarlo Volpe

 Rainfall Intensity:
 I = A * B / (tc + C) Coeff.
 5-Year


 Design Flow:
 $Q = (C \cdot I \cdot A) * 2.778$ a
 1593

 Pipe Roughness:
 n = 0.013 b
 0.8789

 Min. Inlet Time:
 t = 10.0min.
 c
 11.000

System to be designed for	5 year Storm
: Indicates controlled flow a	fter orifice in outlet structure

	STR	UCTURE							DESIGN	I FLOWS			P	IPE DATA				TI	ME	CAPACITY	COMMENTS	
<u>q.</u>			AREA	RUNOFF	AREA	RUNOFF	Тс	RAINFALL	5-YEAR FLOW	TOTAL	LENGTH	SIZE	PIPE MAT.	GRADE	Q _{FULL}	V _{FULL}	V _{ACTUAL}	SECT.	TOTAL	CHECK		
LOCATION			(ha)	COEFF.	RUNOFF	ACCUM.	(min.)	INT.(mm/hr)	Q₅	Q _{TOTAL}								TIME	TIME	Q _{DESIGN} /		
LOCATION	FROM	то	Α	C _s	A x C ₅	A x C ₅		i ₅	(m³/s)	(m ³ /s)	(m)	(mm)		(%)	(m³/s)	(m/s)	(m/s	(min.)	(min.)	Q _{FULL}		
301 SHORE STREET	PR. STM MH 1	PR. STM MH 2	0.37	0.77	0.286	0.286	10	66.67	0.053	0.053	82.1	375	PVC	0.35	0.104	0.94	0.95	1.46	11.46	51.0%		
301 SHOKE STREET	FR. STIVIVITI	FR. STWINITZ	0.57	0.77	0.200	0.280	10	00.07	0.055	0.055	82.1	3/3	PVC	0.55	0.104	0.94	0.95	1.46	11.40	31.0%		
302 SUBJECT PROPERTY	SITE	PR. STM MH2	0.21	-	-	-	-	-	0.010	0.010	12.2	250	PVC	0.30	0.033	0.66	0.53	-	-	31.9%	Flow from subject property controlled to 10.4 L/s	
303 SHORE STREET	PR. STM MH 2	CBMH RR050-0347	0.34	0.77	0.261	0.547	11.46	62.34	0.105	0.105	39.5	375	PVC	0.40	0.111	1.00	1.10	0.66	12.11	94.8%		

STANDARD OFFLINE Jellyfish Filter Sizing Report

Project Information

Date Thursday, September 12, 2024

Project Name 15, 21, 27 Shore St.

Project Number 24-0002CA Location Caledon

Jellyfish Filter Design Overview

This report provides information for the sizing and specification of the Jellyfish Filter. When designed properly in accordance to the guidelines detailed in the Jellyfish Filter Technical Manual, the Jellyfish Filter will exceed the performance and longevity of conventional horizontal bed and granular media filters.

Please see www.ImbriumSystems.com for more information.

Jellyfish Filter System Recommendation

The Jellyfish Filter model JF4-1-1 is recommended to meet the water quality objective by treating a flow of 7.6 L/s, which meets or exceeds 90% of the average annual rainfall runoff volume based on 18 years of TORONTO CENTRAL rainfall data for this site. This model has a sediment capacity of 85 kg, which meets or exceeds the estimated average annual sediment load.

Jellyfish Model	High-Flo		Manhole Diameter (m)		Sediment Capacity (kg)
JF4-1-1	1	1	1.2	7.6	85

The Jellyfish Filter System

The patented Jellyfish Filter is an engineered stormwater quality treatment technology featuring unique membrane filtration in a compact stand-alone treatment system that removes a high level and wide variety of stormwater pollutants. Exceptional pollutant removal is achieved at high treatment flow rates with minimal head loss and low maintenance costs. Each lightweight Jellyfish Filter cartridge contains an extraordinarily large amount of membrane surface area, resulting in superior flow capacity and pollutant removal capacity.

Maintenance

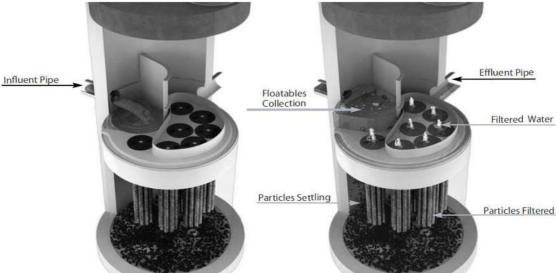
Regular scheduled inspections and maintenance is necessary to assure proper functioning of the Jellyfish Filter. The maintenance interval is designed to be a minimum of 12 months, but this will vary depending on site loading conditions and upstream pretreatment measures. Quarterly inspections and inspections after all storms beyond the 5-year event are recommended until enough historical performance data has been logged to comfortably initiate an alternative inspection interval.

Please see www.ImbriumSystems.com for more information.

Thank you for the opportunity to present this information to you and your client.

Performance

Jellyfish efficiently captures a high level of Stormwater pollutants, including:


- ☑ 89% of the total suspended solids (TSS) load, including particles less than 5 microns
- ☑ 77% TP removal & 51% TN removal
- ☑ 90% Total Copper, 81% Total Lead, 70% Total Zinc
- ☑ Particulate-bound pollutants such as nutrients, toxic metals, hydrocarbons and bacteria
- ☑ Free oil, Floatable trash and debris

Field Proven Peformance

The Jellyfish filter has been field-tested on an urban site with 25 TAPE qualifying rain events and field monitored according to the TAPE field test protocol, demonstrating:

- A median TSS removal efficiency of 90%, and a median SSC removal of 99%;
- The ability to capture fine particles as indicated by an effluent d50 median of 3 microns for all monitotred storm events, and a median effluent turbidity of 5 NTUs;
- A median Total Phosphorus removal of 77%, and a median Total Nitrogen removal of 51%.

Jellyfish Filter Treatment Functions

Pre-treatment and Membrane Filtration

Project Information

Date: Thursday, September 12, 2024

Project Name: 15, 21, 27 Shore St.

Project Number: 24-0002CA Location: Caledon

Designer Information

Company: Urbanworks Engineering Corp.

Contact: Deven Verma

Phone #:
Notes

Design System Requirements

Rainfall

Name: TORONTO CENTRAL

State: ON 100

Record: 1982 to 1999 Co-ords: 45°30'N, 90°30'W

Drainage Area

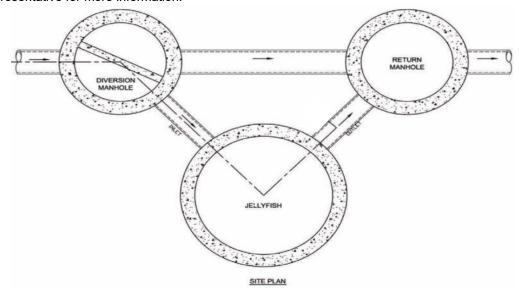
Total Area: 0.2 ha Imperviousness: 82%

Upstream Detention

Peak Release Rate: n/a
Pretreatment Credit: n/a

	- your module			
Flow	90% of the Average Annual Runoff based on 18 years	5.2 L/s		
Loading	of TORONTO CENTRAL rainfall data:	5.2 L/S		
Sediment	Treating 90% of the average annual runoff volume, 988 m³, with a suspended sediment concentration of	59 kg		
Loading	60 mg/L.	39 kg		

Recommendation


The Jellyfish Filter model JF4-1-1 is recommended to meet the water quality objective by treating a flow of 7.6 L/s, which meets or exceeds 90% of the average annual rainfall runoff volume based on 18 years of TORONTO CENTRAL rainfall data for this site. This model has a sediment capacity of 85 kg, which meets or exceeds the estimated average annual sediment load.

Jellyfish	Number of	Number of	Manhole	Wet Vol	Sump	Oil	Treatment	Sediment
Model	High-Flo	Draindown	Diameter	Below Deck	Storage	Capacity	Flow Rate	Capacity
	Cartridges	Cartridges	(m)	(L)	(m³)	(L)	(L/s)	(kg)
JF4-1-1	1	1	1.2	2313	0.34	379	7.6	85
JF4-2-1	2	1	1.2	2313	0.34	379	12.6	142
JF6-3-1	3	1	1.8	5205	0.79	848	17.7	199
JF6-4-1	4	1	1.8	5205	0.79	848	22.7	256
JF6-5-1	5	1	1.8	5205	0.79	848	27.8	313
JF6-6-1	6	1	1.8	5205	0.79	848	28.6	370
JF8-6-2	6	2	2.4	9252	1.42	1469	35.3	398
JF8-7-2	7	2	2.4	9252	1.42	1469	40.4	455
JF8-8-2	8	2	2.4	9252	1.42	1469	45.4	512
JF8-9-2	9	2	2.4	9252	1.42	1469	50.5	569
JF8-10-2	10	2	2.4	9252	1.42	1469	50.5	626
JF10-11-3	11	3	3.0	14456	2.21	2302	63.1	711
JF10-12-3		3	3.0	14456	2.21	2302	68.2	768
JF10-12-4		4	3.0	14456	2.21	2302	70.7	796
JF10-13-4	13	4	3.0	14456	2.21	2302	75.7	853
JF10-14-4	14	4	3.0	14456	2.21	2302	78.9	910
JF10-15-4		4	3.0	14456	2.21	2302	78.9	967
JF10-16-4	16	4	3.0	14456	2.21	2302	78.9	1024
JF10-17-4		4	3.0	14456	2.21	2302	78.9	1081
JF10-18-4	18	4	3.0	14456	2.21	2302	78.9	1138
JF10-19-4	19	4	3.0	14456	2.21	2302	78.9	1195
JF12-20-5	20	5	3.6	20820	3.2	2771	113.6	1280
JF12-21-5	21	5	3.6	20820	3.2	2771	113.7	1337
JF12-22-5	22	5	3.6	20820	3.2	2771	113.7	1394
JF12-23-5	23	5	3.6	20820	3.2	2771	113.7	1451
JF12-24-5	24	5	3.6	20820	3.2	2771	113.7	1508
JF12-25-5	25	5	3.6	20820	3.2	2771	113.7	1565
JF12-26-5	26	5	3.6	20820	3.2	2771	113.7	1622
JF12-27-5	27	5	3.6	20820	3.2	2771	113.7	1679

Jellyfish Filter Design Notes

• Typically the Jellyfish Filter is designed in an offline configuration, as all stormwater filter systems will perform for a longer duration between required maintenance services when designed and applied in off-line configurations. Depending on the design parameters, an optional internal bypass may be incorporated into the Jellyfish Filter, however note the inspection and maintenance frequency should be expected to increase above that of an off-line system. Speak to your local representative for more information.

Jellyfish Filter Typical Layout

- Typically, 18 inches (457 mm) of driving head is designed into the system, calculated as the
 difference in elevation between the top of the diversion structure weir and the invert of the Jellyfish
 Filter outlet pipe. Alternative driving head values can be designed as 12 to 24 inches (305 to
 610mm) depending on specific site requirements, requiring additional sizing and design assistance.
- Typically, the Jellyfish Filter is designed with the inlet pipe configured 6 inches (150 mm) above the
 outlet invert elevation. However, depending on site parameters this can vary to an optional
 configuration of the inlet pipe entering the unit below the outlet invert elevation.
- The Jellyfish Filter can accommodate multiple inlet pipes within certain restrictions.
- While the optional inlet below deck configuration offers 0 to 360 degree flexibility between the inlet and outlet pipe, typical systems conform to the following:

Model Diameter (m)	Minimum Angle Inlet / Outlet Pipes	Minimum Inlet Pipe Diameter (mm)	Minimum Outlet Pipe Diameter (mm)	
1.2	62°	150	200	
1.8	59°	200	250	
2.4	52°	250	300	
3.0	48°	300	450	
3.6	40°	300	450	

- The Jellyfish Filter can be built at all depths of cover generally associated with conventional stormwater conveyance systems. For sites that require minimal depth of cover for the stormwater infrastructure, the Jellyfish Filter can be applied in a shallow application using a hatch cover. The general minimum depth of cover is 36 inches (915 mm) from top of the underslab to outlet invert.
- If driving head caclulations account for water elevation during submerged conditions the Jellyfish Filter will function effectively under submerged conditions.
- Jellyfish Filter systems may incorporate grated inlets depending on system configuration.
- For sites with water quality treatment flow rates or mass loadings that exceed the design flow rate of
 the largest standard Jellyfish Filter manhole models, systems can be designed that hydraulically
 connect multiple Jellyfish Filters in series or alternatively Jellyfish Vault units can be designed.

STANDARD SPECIFICATION STORMWATER QUALITY - MEMBRANE FILTRATION TREATMENT DEVICE

PART 1 - GENERAL

1.1 WORK INCLUDED

Specifies requirements for construction and performance of an underground stormwater quality membrane filtration treatment device that removes pollutants from stormwater runoff through the unit operations of sedimentation, floatation, and membrane filtration.

1.2 REFERENCE STANDARDS

ASTM C 891: Specification for Installation of Underground Precast Concrete Utility Structures

ASTM C 478: Specification for Precast Reinforced Concrete Manhole Sections

ASTM C 443: Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets ASTM D 4101: Specification for Copolymer steps construction

CAN/CSA-A257.4-M92

Joints for Circular Concrete Sewer and Culvert Pipe, Manhole Sections and Fittings Using Rubber Gaskets

CAN/CSA-A257.4-M92

Precast Reinforced Circular Concrete Manhole Sections, Catch Basins and Fittings

Canadian Highway Bridge Design Code

1.3 SHOP DRAWINGS

Shop drawings for the structure and performance are to be submitted with each order to the contractor. Contractor shall forward shop drawing submittal to the consulting engineer for approval. Shop drawings are to detail the structure's precast concrete and call out or note the fiberglass (FRP) internals/components.

1.4 PRODUCT SUBSTITUTIONS

No product substitutions shall be accepted unless submitted 10 days prior to project bid date, or as directed by the engineer of record. Submissions for substitutions require review and approval by the Engineer of Record, for hydraulic performance, impact to project designs, equivalent treatment performance, and any required project plan and report (hydrology/hydraulic, water quality, stormwater pollution) modifications that would be required by the approving jurisdictions/agencies. Contractor to coordinate with the Engineer of Record any applicable modifications to the project estimates of cost, bonding amount determinations, plan check fees for changes to approved documents, and/or any other regulatory requirements resulting from the product substitution.

1.5 HANDLING AND STORAGE

Prevent damage to materials during storage and handling.

PART 2 - PRODUCTS

Imbrium Systems www.imbriumsvstems.com

Ph 888-279-8826 Ph 416-960-9900

2.1 GENERAL

- 2.1.1 The device shall be a cylindrical or rectangular, all concrete structure (including risers), constructed from precast concrete riser and slab components or monolithic precast structure(s), installed to conform to ASTM C 891 and to any required state highway, municipal or local specifications; whichever is more stringent. The device shall be watertight.
- 2.1.2 <u>Cartridge Deck</u> The cylindrical concrete device shall include a fiberglass deck. The rectangular concrete device shall include a coated aluminum deck. In either instance, the insert shall be bolted and sealed watertight inside the precast concrete chamber. The deck shall serve as: (a) a horizontal divider between the lower treatment zone and the upper treated effluent zone; (b) a deck for attachment of filter cartridges such that the membrane filter elements of each cartridge extend into the lower treatment zone; (c) a platform for maintenance workers to service the filter cartridges (maximum manned weight = 450 pounds (204 kg)); (d) a conduit for conveyance of treated water to the effluent pipe.
- 2.1.3 Membrane Filter Cartridges Filter cartridges shall be comprised of reusable cylindrical membrane filter elements connected to a perforated head plate. The number of membrane filter elements per cartridge shall be a minimum of eleven 2.75-inch (70-mm) diameter elements. The length of each filter element shall be a minimum 15 inches (381 mm). Each cartridge shall be fitted into the cartridge deck by insertion into a cartridge receptacle that is permanently mounted into the cartridge deck. Each cartridge shall be secured by a cartridge lid that is threaded onto the receptacle, or similar mechanism to secure the cartridge into the deck. The maximum treatment flow rate of a filter cartridge shall be controlled by an orifice in the cartridge lid, or on the individual cartridge itself, and based on a design flux rate (surface loading rate) determined by the maximum treatment flow rate per unit of filtration membrane surface area. The maximum design flux rate shall be 0.21 gpm/ft² (0.142 lps/m²).

Each membrane filter cartridge shall allow for manual installation and removal. Each filter cartridge shall have filtration membrane surface area and dry installation weight as follows (if length of filter cartridge is between those listed below, the surface area and weight shall be proportionate to the next length shorter and next length longer as shown below):

Filter Cartridge Length (in / mm)	Minimum Filtration Membrane Surface Area (ft2 / m2)	Maximum Filter Cartridge Dry Weight (lbs / kg)	
15	106 / 9.8	10.5 / 4.8	
27	190 / 17.7	15.0 / 6.8	
40	282 / 26.2	20.5 / 9.3	
54	381 / 35.4	25.5 / 11.6	

2.1.4 <u>Backwashing Cartridges</u> The filter device shall have a weir extending above the cartridge deck, or other mechanism, that encloses the high flow rate filter cartridges when placed in their respective cartridge receptacles within the cartridge deck. The weir, or other mechanism, shall collect a pool of filtered water during inflow events that backwashes the high flow rate cartridges when the inflow

- event subsides. All filter cartridges and membranes shall be reusable and allow for the use of filtration membrane rinsing procedures to restore flow capacity and sediment capacity; extending cartridge service life.
- 2.1.5 <u>Maintenance Access to Captured Pollutants</u> The filter device shall contain an opening(s) that provides maintenance access for removal of accumulated floatable pollutants and sediment, removal of and replacement of filter cartridges, cleaning of the sump, and rinsing of the deck. Access shall have a minimum clear vertical clear space over all of the filter cartridges. Filter cartridges shall be able to be lifted straight vertically out of the receptacles and deck for the entire length of the cartridge.
- 2.1.6 <u>Bend Structure</u> The device shall be able to be used as a bend structure with minimum angles between inlet and outlet pipes of 90-degrees or less in the stormwater conveyance system.
- 2.1.7 <u>Double-Wall Containment of Hydrocarbons</u> The cylindrical precast concrete device shall provide double-wall containment for hydrocarbon spill capture by a combined means of an inner wall of fiberglass, to a minimum depth of 12 inches (305 mm) below the cartridge deck, and the precast vessel wall.
- 2.1.8 <u>Baffle</u> The filter device shall provide a baffle that extends from the underside of the cartridge deck to a minimum length equal to the length of the membrane filter elements. The baffle shall serve to protect the membrane filter elements from contamination by floatables and coarse sediment. The baffle shall be flexible and continuous in cylindrical configurations, and shall be a straight concrete or aluminum wall in rectangular configurations.
- 2.1.9 Sump The device shall include a minimum 24 inches (610 mm) of sump below the bottom of the cartridges for sediment accumulation, unless otherwise specified by the design engineer. Depths less than 24 inches may have an impact on the total performance and/or longevity between cartridge maintenance/replacement of the device.

2.2 PRECAST CONCRETE SECTIONS

All precast concrete components shall be manufactured to a minimum live load of HS-20 truck loading or greater based on local regulatory specifications, unless otherwise modified or specified by the design engineer, and shall be watertight.

- 2.3 <u>JOINTS</u> All precast concrete manhole configuration joints shall use nitrile rubber gaskets and shall meet the requirements of ASTM C443, Specification C1619, Class D or engineer approved equal to ensure oil resistance. Mastic sealants or butyl tape are not an acceptable alternative.
- 2.4 GASKETS Only profile neoprene or nitrile rubber gaskets in accordance to CSA A257.3-M92 will be accepted. Mastic sealants, butyl tape or Conseal CS-101 are not acceptable gasket materials.
- 2.5 <u>FRAME AND COVER</u> Frame and covers must be manufactured from cast-iron or other composite material tested to withstand H-20 or greater design loads, and as approved by the

- local regulatory body. Frames and covers must be embossed with the name of the device manufacturer or the device brand name.
- 2.6 <u>DOORS AND HATCHES</u> If provided shall meet designated loading requirements or at a minimum for incidental vehicular traffic.
- 2.7 <u>CONCRETE</u> All concrete components shall be manufactured according to local specifications and shall meet the requirements of ASTM C 478.
- 2.8 <u>FIBERGLASS</u> The fiberglass portion of the filter device shall be constructed in accordance with the following standard: ASTM D-4097: Contact Molded Glass Fiber Reinforced Chemical Resistant Tanks
- 2.9 <u>STEPS</u> Steps shall be constructed according to ASTM D4101 of copolymer polypropylene, and be driven into preformed or pre-drilled holes after the concrete has cured, installed to conform to applicable sections of state, provincial and municipal building codes, highway, municipal or local specifications for the construction of such devices.
- 2.10 <u>INSPECTION</u> All precast concrete sections shall be inspected to ensure that dimensions, appearance and quality of the product meet local municipal specifications and ASTM C 478.

PART 3 - PERFORMANCE

3.1 GENERAL

- 3.1.1 <u>Verification</u> The stormwater quality filter must be verified in accordance with ISO 14034:2016 Environmental management Environmental technology verification (ETV).
- 3.1.2 <u>Function</u> The stormwater quality filter treatment device shall function to remove pollutants by the following unit treatment processes; sedimentation, floatation, and membrane filtration.
- 3.1.3 <u>Pollutants</u> The stormwater quality filter treatment device shall remove oil, debris, trash, coarse and fine particulates, particulate-bound pollutants, metals and nutrients from stormwater during runoff events.
- 3.1.4 <u>Bypass</u> The stormwater quality filter treatment device shall typically utilize an external bypass to divert excessive flows. Internal bypass systems shall be equipped with a floatables baffle, and must avoid passage through the sump and/or cartridge filtration zone.
- 3.1.5 Treatment Flux Rate (Surface Loading Rate) The stormwater quality filter treatment device shall treat 100% of the required water quality treatment flow based on a maximum design treatment flux rate (surface loading rate) across the membrane filter cartridges of 0.21 gpm/ft² (0.142 lps/m²).

3.2 FIELD TEST PERFORMANCE

At a minimum, the stormwater quality filter device shall have been field tested and verified with a minimum 25 TARP qualifying storm events and field monitoring shall have been conducted according to the TARP 2009 NJDEP TARP field test protocol, and have received NJCAT verification.

- 3.2.1 <u>Suspended Solids Removal</u> The stormwater quality filter treatment device shall have demonstrated a minimum median TSS removal efficiency of 85% and a minimum median SSC removal efficiency of 95%.
- 3.2.2 <u>Runoff Volume</u> The stormwater quality filter treatment device shall be engineered, designed, and sized to treat a minimum of 90 percent of the annual runoff volume determined from use of a minimum 15-year rainfall data set.
- 3.2.3 <u>Fine Particle Removal</u> The stormwater quality filter treatment device shall have demonstrated the ability to capture fine particles as indicated by a minimum median removal efficiency of 75% for the particle fraction less than 25 microns, an effluent d₅₀ of 15 microns or lower for all monitored storm events.
- 3.2.4 <u>Turbidity Reduction</u> The stormwater quality filter treatment device shall have demonstrated the ability to reduce the turbidity from influent from a range of 5 to 171 NTU to an effluent turbidity of 15 NTU or lower.
- 3.2.5 Nutrient (Total Phosphorus & Total Nitrogen) Removal The stormwater quality filter treatment device shall have demonstrated a minimum median Total Phosphorus removal of 55%, and a minimum median Total Nitrogen removal of 50%.
- 3.2.6 <u>Metals (Total Zinc & Total Copper) Removal</u> The stormwater quality filter treatment device shall have demonstrated a minimum median Total Zinc removal of 55%, and a minimum median Total Copper removal of 85%.

3.3 INSPECTION and MAINTENANCE

The stormwater quality filter device shall have the following features:

- 3.3.1 Durability of membranes are subject to good handling practices during inspection and maintenance (removal, rinsing, and reinsertion) events, and site specific conditions that may have heavier or lighter loading onto the cartridges, and pollutant variability that may impact the membrane structural integrity. Membrane maintenance and replacement shall be in accordance with manufacturer's recommendations.
- 3.3.2 Inspection which includes trash and floatables collection, sediment depth determination, and visible determination of backwash pool depth shall be easily conducted from grade (outside the structure).
- 3.3.3 Manual rinsing of the reusable filter cartridges shall promote restoration of the flow capacity and sediment capacity of the filter cartridges, extending cartridge service life.

- 3.3.4 The filter device shall have a minimum 12 inches (305 mm) of sediment storage depth, and a minimum of 12 inches between the top of the sediment storage and bottom of the filter cartridge tentacles, unless otherwise specified by the design engineer. Variances may have an impact on the total performance and/or longevity between cartridge maintenance/replacement of the device.
- 3.3.5 Sediment removal from the filter treatment device shall be able to be conducted using a standard maintenance truck and vacuum apparatus, and a minimum one point of entry to the sump that is unobstructed by filter cartridges.
- 3.3.6 Maintenance access shall have a minimum clear height that provides suitable vertical clear space over all of the filter cartridges. Filter cartridges shall be able to be lifted straight vertically out of the receptacles and deck for the entire length of the cartridge.
- 3.3.7 Filter cartridges shall be able to be maintained without the requirement of additional lifting equipment.

PART 4 - EXECUTION

4.1 INSTALLATION

4.1.1 PRECAST DEVICE CONSTRUCTION SEQUENCE

The installation of a watertight precast concrete device should conform to ASTM C 891 and to any state highway, municipal or local specifications for the construction of manholes, whichever is more stringent. Selected sections of a general specification that are applicable are summarized below.

- 4.1.1.1 The watertight precast concrete device is installed in sections in the following sequence:
 - aggregate base
 - base slab
 - treatment chamber and cartridge deck riser section(s)
 - bypass section
 - connect inlet and outlet pipes
 - concrete riser section(s) and/or transition slab (if required)
 - maintenance riser section(s) (if required)
 - frame and access cover
- 4.1.2 The precast base should be placed level at the specified grade. The entire base should be in contact with the underlying compacted granular material. Subsequent sections, complete with joint seals, should be installed in accordance with the precast concrete manufacturer's recommendations.
- 4.1.3 Adjustment of the stormwater quality treatment device can be performed by lifting the upper sections free of the excavated area, re-leveling the base, and reinstalling the sections. Damaged sections and gaskets should be repaired or replaced as necessary to restore original condition and watertight seals. Once the stormwater quality treatment device has been constructed, any/all lift holes must be plugged watertight with mortar or non-shrink grout.

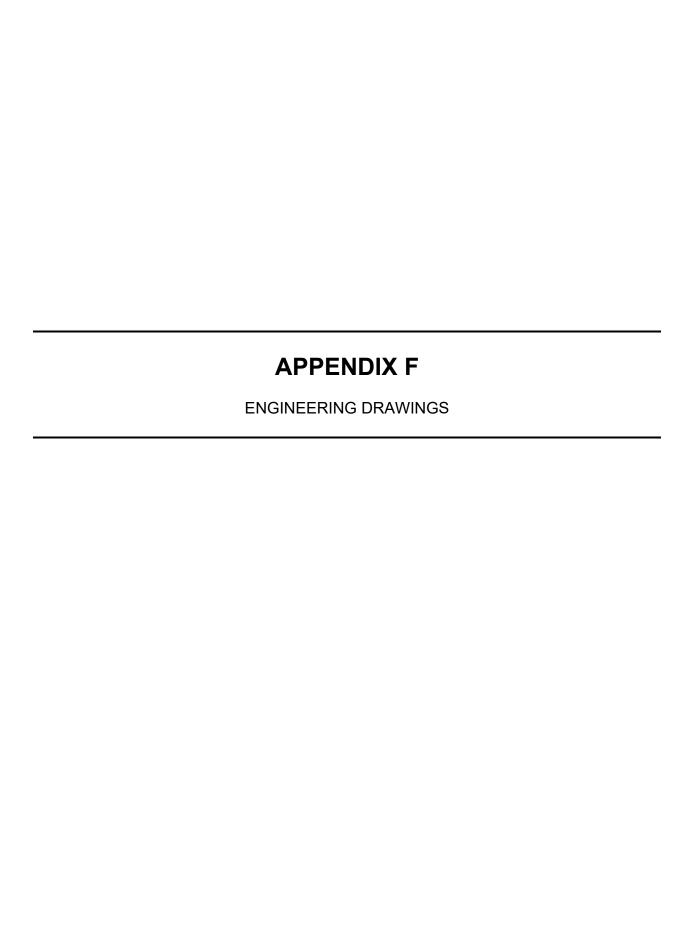
- 4.1.4 <u>Inlet and Outlet Pipes</u> Inlet and outlet pipes should be securely set into the device using approved pipe seals (flexible boot connections, where applicable) so that the structure is watertight, and such that any pipe intrusion into the device does not impact the device functionality.
- 4.1.5 <u>Frame and Cover Installation</u> Adjustment units (e.g. grade rings) should be installed to set the frame and cover at the required elevation. The adjustment units should be laid in a full bed of mortar with successive units being joined using sealant recommended by the manufacturer. Frames for the cover should be set in a full bed of mortar at the elevation specified.

4.2 MAINTENANCE ACCESS WALL

In some instances the Maintenance Access Wall, if provided, shall require an extension attachment and sealing to the precast wall and cartridge deck at the job site, rather than at the precast facility. In this instance, installation of these components shall be performed according to instructions provided by the manufacturer.

4.3 <u>FILTER CARTRIDGE INSTALLATION</u> Filter cartridges shall be installed in the cartridge deck only after the construction site is fully stabilized and in accordance with the manufacturer's guidelines and recommendations. Contractor to contact the manufacturer to schedule cartridge delivery and review procedures/requirements to be completed to the device prior to installation of the cartridges and activation of the system.

PART 5 - QUALITY ASSURANCE


5.1 FILTER CARTRIDGE INSTALLATION Manufacturer shall coordinate delivery of filter cartridges and other internal components with contractor. Filter cartridges shall be delivered and installed complete after site is stabilized and unit is ready to accept cartridges. Unit is ready to accept cartridges after is has been cleaned out and any standing water, debris, and other materials have been removed. Contractor shall take appropriate action to protect the filter cartridge receptacles and filter cartridges from damage during construction, and in accordance with the manufacturer's recommendations and guidance. For systems with cartridges installed prior to full site stabilization and prior to system activation, the contractor can plug inlet and outlet pipes to prevent stormwater and other influent from entering the device. Plugs must be removed during the activation process.

5.2 INSPECTION AND MAINTENANCE

- 5.2.1 The manufacturer shall provide an Owner's Manual upon request.
- 5.2.2 After construction and installation, and during operation, the device shall be inspected and cleaned as necessary based on the manufacturer's recommended inspection and maintenance guidelines and the local regulatory agency/body.
- 5.3 <u>REPLACEMENT FILTER CARTRIDGES</u> When replacement membrane filter elements and/or other parts are required, only membrane filter elements and parts approved by the manufacturer for use with the stormwater quality filter device shall be installed.

END OF SECTION

Imbrium Systems www.imbriumsystems.com Ph 888-279-8826 Ph 416-960-9900

