

# TOWN OF CALEDON PLANNING RECEIVED

Sept. 17, 2021

# Kennedy Pond – Stormwater Management Facility Retrofit

Mayfield Road and Kennedy Road

Town of Caledon Region of Peel

GHD | 65 Sunray Street Whitby Ontario L1N 8Y3 Canada 11129100 | 200 | Report No 3 | May 2017



# **Table of Contents**

| 1. | Introd                                     | troduction 1                               |                                                                            |         |  |
|----|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|---------|--|
| 2. | Class                                      | ass Environmental Assessment               |                                                                            |         |  |
| 3. | Existi                                     | Existing Conditions                        |                                                                            |         |  |
|    | 3.1                                        | Original D                                 | esign                                                                      | 4       |  |
|    | 3.2                                        | SWM Fac                                    | ility Monitoring and Bathometric Survey                                    | 5       |  |
|    |                                            | 3.2.1<br>3.2.2                             | Performance Monitoring<br>Bathometric Survey                               |         |  |
| 4. | Reha                                       | bilitation &                               | Retrofit Options                                                           | 6       |  |
|    | 4.1                                        | Maintain (                                 | Current Pond                                                               | 6       |  |
|    | 4.2                                        | Supplemental Treatment Prior to Pond Inlet |                                                                            |         |  |
|    | 4.3                                        | Supplemental Treatment at Pond Outfall     |                                                                            |         |  |
|    | 4.4                                        | SWM Fac                                    | ility Modification                                                         | 7       |  |
| 5. | Propo                                      | osed Pond                                  | Design                                                                     | 8       |  |
|    | 5.1 Stormwater Management Quality Controls |                                            |                                                                            | 8       |  |
|    |                                            | 5.1.1<br>5.1.2<br>5.1.3<br>5.1.4           | Tributary Area<br>Extended Detention<br>Pond Characteristics<br>SWM Shield | 9<br>10 |  |
|    | 5.2                                        | Stormwate                                  | er Quantity Controls                                                       | 11      |  |
| 6. | Lands                                      | scaping                                    |                                                                            | 14      |  |
| 7. | Temporary Erosion and Sediment Controls    |                                            |                                                                            | 15      |  |
| 8. | Maint                                      | enance                                     |                                                                            | 16      |  |
| 9. | Conclusions 17                             |                                            |                                                                            | 17      |  |

# **Figure Index**

| Figure 3.1 | Site Location Plan                     | 3   |
|------------|----------------------------------------|-----|
| Figure 3.2 | Overgrown Forebay Inlet – Looking West | . 4 |
| Figure 3.3 | Outlet Structure – Looking Southwest   | . 4 |
| Figure 5.1 | Tributary Drainage Area                | 8a  |



# **Table Index**

| Table 5.1 | Drainage Area for Pond Volumetric Calculations | 8  |
|-----------|------------------------------------------------|----|
| Table 5.2 | Pond Volume Requirements                       | 9  |
| Table 5.3 | Original Peak Flows                            | 12 |
| Table 5.4 | Proposed Peak FLowsTitle                       | 12 |

# **Drawings Index**

| 11129100-SWM-201 | Kennedy Stormwater Management Facility Retrofit - Plan                 |
|------------------|------------------------------------------------------------------------|
| 11129100-SWM-202 | Kennedy Stormwater Management Facility Retrofit – Sections and Details |
| 11129100-ERS-201 | Erosion and Sediment Control Plan                                      |

# **Appendix Index**

| Appendix A | SWM Facility Sizing Calculations                       |
|------------|--------------------------------------------------------|
| Appendix B | Visual Otthymo Output Files                            |
| Appendix C | SWM Shield Product Information                         |
| Appendix D | Ecological Impact Memo                                 |
| Appendix E | Stormwater Management Operations and Maintenance Manua |
| Appendix F | Original Design Information                            |



# 1. Introduction

The Region of Peel has been monitoring its stormwater facilities so that the performance of each facility can be understood and tracked over time. Stormwater facilities are designed according to standards of the day but monitoring will reveal if the facility is meeting the targets set during design for pollutant removal, extended detention and quantity control. This report will look at one facility owned and operated by the Region of Peel at the northeast corner of Mayfield Road and Kennedy Road.

The Kennedy Road Stormwater Management Facility has had a monitoring program on this facility and two others under its jurisdiction from December 2014 onwards. Calder Engineering was retained by the Region of Peel to provide the equipment, collect the results and provide an analysis of the data collected. The collected data and analysis has revealed that the Kennedy Facility experiences some shortfalls in water quality control for relatively minor storm events.

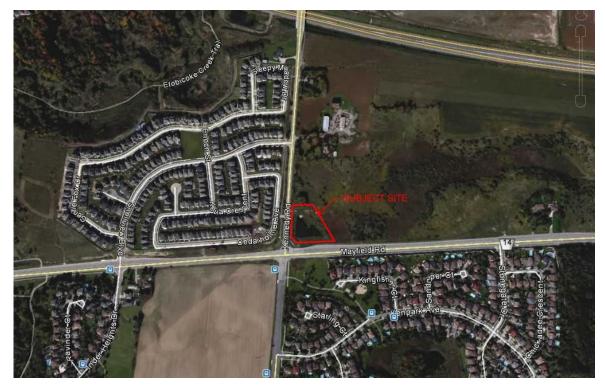
The Region of Peel retained GHD Limited to perform a Class Environmental Assessment to review the pond and determine what actions are required if any to improve the conveyance and stormwater quality control treatment of the Mayfield Road and Kennedy Road drainage. Other design parameters that the Region of Peel has requested be investigated with the design alternatives is to improve the ease and efficiency of pond maintenance. Given the above criteria, some possible design changes would include altering to the pond inlet and outlet, and changing the pond configuration/layout. There is also the possibility of the addition of supplemental infrastructure or changing the primary means of treatment. All of these items will be investigated and a best alternative solution selected to meet the criteria.

The following report includes a summary of a field inspection, proposed rehabilitation alternatives, a hydrologic/hydraulic review of the facility and the conclusion/recommendations based on the above analysis.

Reports and documents utilized in the preparation of this review include the following:

- Stormwater Management Design Brief, prepared by Stantec Consulting Ltd., December 7, 2007
- <u>Stormwater Management Facility Monitoring Dec 2014 to Feb 2016 Report</u>, prepared by Calder Engineering Ltd., March 2016
- <u>Stormwater Management Planning and Design Manual</u>, prepared by the Ministry of the Environment, March 2003




# 2. Class Environmental Assessment

The original design parameters anticipated that the works that would be required to complete the facility improvements would be classified as a Class 'B' Environmental Assessment(EA) process. Upon review of the requirements and issues associated with the facility, it was determined that the proposed works can be classified as a Class 'A+' EA process. The Class 'A+' plus provides for less sensitive work that is deemed as a pre-approved standard municipal project, and does not require the purchase of the additional lands. Through examination of property constraints and servicing constraints, the anticipated solutions to augment the facility did not project passed the limits of a Class 'A+' EA scenario. The possible solutions to improve the performance of the facility did not necessitate the purchase of additional lands and fell within standard Municipal works. As such, the design of the facility improvements was determined to fall under a typically engineering design project. The Class 'A+' EA designation will require the Region of Peel to provide public notice of the works prior to commencing construction.



# 3. Existing Conditions

The Kennedy Stormwater Management Facility is located on the northeast corner of the intersection of Mayfield Road and Kennedy Road in the Town of Caledon, Region of Peel. The pond is located on Region of Peel property, with Kennedy Road to the west, Mayfield Road to the south, and private property to the east and north. Although the area to the east is private property, the area is considered Provincial Significant Wetland which cannot be developed. The location of the SWM Facility is illustrated on **Figure 3.1**.



### Figure 3.1 Site Location Plan

A site walk was conducted on October 26, 2016, with GHD staff and Region of Peel staff present. Different aspects of the pond were investigated including the part of the outfall structure, inlet structure, forebay, pond banks, and the condition of the pond vegetation. The visual inspection identified sediment accumulation within the forebay near the storm sewer inlet. Vegetation had begun to creep into the sewer outfall rip-rap, collecting miscellaneous garbage as well. Upon examination of the outlet structure, it was found that the water level was approximately halfway up the lower control orifice. This may have been due to a small storm event that occurred the day prior to the visit.





Figure 3.2 Overgrown Forebay Inlet – Looking West



Figure 3.3 Outlet Structure – Looking Southwest

### 3.1 Original Design

The original pond was designed and constructed as a Wetland SWM Facility as per the Stormwater Management Design Brief, prepared by Stantec Consulting Ltd. The design of the pond commenced in 2007 with finalized drawings and construction occurring in 2009. Based on the original design, the SWM Facility was designed to provide the stormwater quality and quantity controls for approximately 10.59ha of road allowance and field area, prior to being released along the facility's east banks and flowing to the existing wetland. Some characteristics of the original pond design are as follow:

- 718m<sup>3</sup> permanent pool
- 1902m<sup>3</sup> extended detention Erosion Control Volume
- 0.3m pond depth in main cell
- 1.5m deep sediment forebay



Other design characteristics can be found in the original report, attached in **Appendix F**. Stormwater quality design characteristics are discussed further in Section 4.1.3.

### 3.2 SWM Facility Monitoring and Bathometric Survey

### 3.2.1 Performance Monitoring

In accordance with the original Environmental Compliance Approval provided by the Ministry of Environment, the Region of Peel obtained the services of an engineering consultant to monitor the performance of the SWM Facility. Calder Engineering Ltd. performed the monitoring from December 2014 to February 2016. Water samples were taken from the pond outlet during 5 significant storm events from March 2015 to August 2015. The results found that during 3 different occasions, the Total Suspended Solids (TSS) exceeding the Region of Peel's storm sewer by-law criteria. The remaining storms were below the required level.

The Ministry of Environment(MOE) <u>Stormwater Management Planning and Design Manual</u> does not have requirements for a specific TSS level. The MOE criteria for stormwater management facility design is for the facility to remove a percentage of TSS during any given storm event. As the monitoring program did not include the incoming TSS content, confirmation of compliance with MOE criteria was not possible. It is noted that construction activities were continued along Mayfield Road and Kennedy Road throughout 2015 and into 2016. Although it is not known for certain, there is a high likelihood that the increased TSS levels may have been the result of higher levels of road sediment from construction activities.

### 3.2.2 Bathometric Survey

To understand the performance of the facility, a bathometric survey was completed to determine the accumulation of sediment over the lifespan of the facility. It is our understanding that the pond has not been serviced since initial construction. The bathometric survey found that the volume within the pond is approximately 860m<sup>3</sup>, providing a surplus of permanent pool volume when compared to the original design. Based on this information, the existing pond has the required volume to continue to perform in accordance with Stormwater Management Planning and Design Manual.



# 4. Rehabilitation & Retrofit Options

The Region of Peel's initiative for the review of the existing infrastructure had two primary reasons. The first goal was to improve the performance of the existing facility in providing stormwater quality controls, and the second was to provide a more efficient means of maintaining the facility, both in terms of cost and execution. Several options were considered as potential solutions in meeting these objections and are outlined below.

### 4.1 Maintain Current Pond

The results of the monitoring program by Calder Engineering Ltd. identifies that the TSS leaving the pond exceeds the Regional sewer by-law during 3 of the 5 severe storm events. With construction occurring along Mayfield Road and Kennedy Road throughout 2015, the high TSS identified for these storms may have been caused by construction sediment transportation. The MOE TSS removal guidelines are intended for anticipated use and do not account for constant construction within the area. It is anticipated that TSS levels will be significantly reduced once the road construction has been finalized.

The high concentrations of Manganese were fairly constant throughout the monitoring period. This may be attributed to the construction equipment within the area. The MOE Stormwater Design Guideline does not specify any limits with regards to Manganese content in stormwater runoff.

The sediment accumulation within the pond has also been identified. Based on the bathometric survey, the sediment forebay has accumulated between 0.2m and 0.3m of sediment. The pond has a surplus of permanent pool volume and the accumulated sediment in the forebay does not exceed the 0.5m recommend in the original report prepared by Stantec Consulting Ltd.; therefore, the pond does not required sediment removal at this time.

In light of the above, the pond performance is in general conformance with the MOE guidelines and is providing adequate stormwater quality controls. While this solution is the most cost effective, it does not address the Region of Peel's concerns with regards to ease of maintenance and the Region's concerns with regards the permit process and high costs associated with the removal of sediment from the forebay.

### 4.2 Supplemental Treatment Prior to Pond Inlet

One of the options for improving the efficiency of sediment removal from the pond was to provide supplemental treatment of stormwater flows prior to being discharge to the facility. This included the possibility of installing an oil/grit separator manhole on the inlet pipe. There is adequate area within the SWM Facility property to provide such a manhole. Currently, the maintenance path for the facility is located on Kennedy Road and accesses the forebay from the north. A new maintenance path would be required from Mayfield Road to service an oil/grit separator manhole upstream of the pond inlet. It is not recommended to provide infiltration or bioretention treatments prior to the SWM facility, as the sediment would begin to clog these features quickly, resulting in their performance being reduced and replacement required frequently and at great cost.



### 4.3 Supplemental Treatment at Pond Outfall

In addition to supplemental stormwater treatment at the Facility inlet, supplemental treatment at the pond outlet was also suggested as a possible solution to enhance the quality of stormwater being drained by the Mayfield Road/Kennedy Road storm sewer system. There is limited space between the pond outlet structure and the PSW limits located east of the facility. The discharge location of the outfall is currently located within the PSW setback limits and it isn't recommended that the supplement infrastructure be located in this area. If the infrastructure was located in this area it would disturb the existing wetland vegetation and would also require more frequent maintenance access, which is not desired considering the potential ecological impacts. This would limit the possibilities of supplemental treatment to within the pond banks/maintenance path. Possible solutions for supplemental treatment would be an oil/grit separator manhole, jellyfish filter manhole, or an infiltration gallery. This location is not ideal for infiltration due to the high groundwater elevation from the pond and adjacent wetland. The concern with the oil/grit separator manhole or jellyfish solution is similar to the concerns with regards to maintaining the facility in its current conditions. The majority of sediment will be treated by and accumulate within the SWM Facility prior to being treated by the oil/grit separator manhole at the outfall. The Region of Peel will still have the concerns with regards to ease of maintenance within the pond including the permitting process and high costs associated with the removal of sediment from the forebay.

### 4.4 SWM Facility Modification

The Region of Peel suggested the use of a new stormwater treatment product to be used within the existing facility. SWM Shield is a submerged concrete box culvert designed to intercept storm sewer discharge at the pond inlet. Stormwater is conveyed over a series of grates on the top of the culvert, slowing the discharge down and allowing the sediment to accumulate within the submerged box culvert. The product is promoted as simulating the performance of the typical sediment forebay required in SWM Wet Pond and Wetland designs. The product is meant to have a maintenance access path constructed adjacent to, and along the length of the culvert to allow for vac-truck access in cleaning out the culvert chambers. The above retrofit scenario would have a high upfront cost associated with the installation of the SWM Shield Product and reconfiguration of the sediment forebay area, but the product would achieve the Region's objective of providing a solution for the cost and ease of future maintenance. Due to the new technology being proposed and limited data about the product available, a monitoring program would be required to ensure proper stormwater treatment is being provided by the facility.

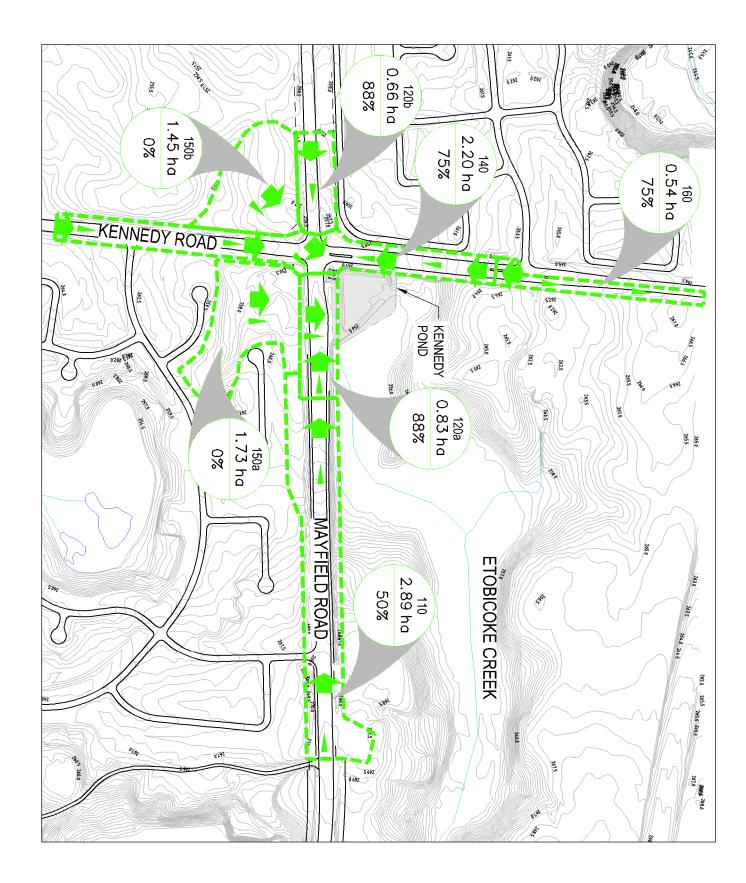


# 5. Proposed Pond Design

After evaluation of the available options noted is Section 3, and through conversations with the Region of Peel, it was decided that the preferred solution would be the retrofit of the existing facility to include the SWM Shield product. Although there are higher installation costs associated with using the product, the Region of Peel believes the ease of maintenance, the reduction in maintenance costs, and the lengthened service period between pond excavation requirements, provides sufficient benefits to offset the initial cost. The product will be included to supplement the function of a typical forebay. The remainder of the pond will be designed in accordance with the MOE Stormwater Management Plan & Design Guidelines. The parameters of the proposed pond retrofit are explored below.

### 5.1 Stormwater Management Quality Controls

The original design of the Kennedy SWM Facility was to provide an 'Enhanced Level' of stormwater quality controls for the runoff coming from Mayfield Road and Kennedy Road. The proposed pond is to maintain the 'Enhanced Level' of controls with the proposed facility retrofit. The following Section will outline how the proposed changes to the facility will maintain the Enhance Level of stormwater quality controls.


### 5.1.1 Tributary Area

To appropriately size the SWM Shield product and confirm the facility complies with the MOE Stormwater Management Plan & Design Guidelines, a review of the tributary area contributing drainage to the facility was completed. The original design of the facility accounted for a drainage area of approximately 10.59ha, and a 41% percent ratio of impervious surface. GHD examined the available GIS mapping for the area and examined the Region of Peel plan and profile drawings for Mayfield Road, and established a contributing drainage area for pond sizing of 9.76 ha with an imperious surface ratio of 45%. Tabulated below is a comparison of the pond design parameters for the original drainage area, and proposed drainage area.

| Design Scenario | Drainage Area (ha) | Percent Impervious |
|-----------------|--------------------|--------------------|
| Original        | 10.59              | 41                 |
| Proposed        | 9.76               | 45                 |

### Table 5.1 Drainage Area for Pond Volumetric Calculations

As reported above, it can be seen that the contributing drainage area has changed from the original design of the facility. For comparison, the original drainage scheme prepared by Stantec Consulting Ltd. has been included in the background data(**Appendix F**) and the update drainage scheme by GHD has been attached as Figure 5.1. During the original design, undeveloped areas northwest of the Kennedy and Mayfield intersection drained southeast to the Kennedy SWM Facility. This land has since been developed and no longer contributes drainage to the Kennedy facility. With the acquisition of updated contour mapping, the contributing areas from the agricultural and park lands have been updated as well. Also of note, is the change in contributing drainage from Kennedy

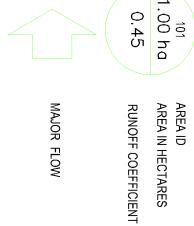


gwb

Scott Sexton

Plot Date:

# Job Number 11129100 Revision A Date MAR 2017 Figure 5.1


65 Sunray Street Whitby Ontario L1N 8Y3 T 1 905 686 6402 F 1 905 432 7877 E ytomail@ghd.com W www.ghd.com



# REGION OF PEEL KENNEDY POND RETROFIT CITY OF BRAMPTON TRIBUTARY DRAINAGE AREA



SCALE ទ AT ORIGINAL -10 SIZE 150m



LEGEND:

DRAINAGE AREA BOUNDARY

MINOR FLOW



Road. The Town of Caledon has urbanized Kennedy Road north to the overpass located at Highway No. 410. Although they designed the minor system to take 0.53 ha of drainage west, the major flows from this area continue south, and contribute to the Kennedy SWM Facility. Due to the changes in the drainage area, and the addition of the proposed SWM Shield product changing the geometry and volume characteristics of the pond, the permanent pool within the facility will require a review to ensure the pond volumes maintain compliance with MOE guidelines.

### 5.1.2 Extended Detention

Having confirmed the SWM Facility's service area, a review was completed to ensure the SWM Facility physical characteristics were in conformance with MOE Criteria. Tabulated below is a comparison of pond storage requirements based on the original design and the new drainage area.

| Design<br>Scenario           | Drainage<br>Area-<br>Quality<br>Storm (ha) | Percent<br>Imperviou<br>s | Permanent Pool<br>Requirements |                         | Quality<br>Control          | Erosion Control<br>Extended           |
|------------------------------|--------------------------------------------|---------------------------|--------------------------------|-------------------------|-----------------------------|---------------------------------------|
|                              |                                            |                           | m³/ha                          | Volume(m <sup>3</sup> ) | Volume<br>(m <sup>3</sup> ) | Detention<br>Volume*(m <sup>3</sup> ) |
| Original<br>Drainage<br>Area | 10.59                                      | 41                        | 48                             | 508                     | 423                         | 1058                                  |
| Existing<br>Pond<br>Volumes  | -                                          | -                         | -                              | 860                     | -                           | 1072                                  |
| Proposed<br>Drainage<br>Area | 9.76                                       | 45                        | 52                             | 509                     | 390                         | 1392*                                 |
| Proposed<br>Pond<br>Volumes  | -                                          | -                         | -                              | 880                     |                             | 1486                                  |

### **Table 5.2 Pond Volume Requirements**

• \*Refer to calculations in Appendix 'A"

The SWMP Manual states that the extended detention storage is based on the greater of 40m<sup>3</sup>/ha or the storage volume required to retain the runoff from the 25 mm storm for 24 to 48 hours. The original design objective of the facility was for a 48 hour drawdown time which will be maintained with the proposed retrofit. The computer program Visual Otthymo 3.0 was utilized in performing the hydrologic modelling of the watershed and establish the recalculated runoff from the 25 mm, 4 hour Chicago rainfall event. The required extended detention storage based on the runoff volume detained for 48 hours was determined to be approximately 1392 m<sup>3</sup> (refer to **Appendix A**). The runoff volume from the erosion control event was found to exceed the quality control objective of 40m<sup>3</sup>/ha, therefore the erosion control storage volume of 1392 m<sup>3</sup> will be used in the design of the facility. A copy of the model schematic and the output file are included in **Appendix B**. The hydrologic model is also available in digital format on CD (rear pocket).

The extended detention outflow control device will consist of a 100mm diameter orifice located within a control manhole at the outlet from the facility(MH 1). The orifice will have an invert elevation of 255.55 m and will provide outlet control for the extended detention portion of the total storage.



Drawing 11129100-SWM-202 (rear pocket) shows the control manhole details. This outlet design will provide a detention time of 48 hours, based on a storage volume of approximately 1484 m<sup>3</sup> at a water elevation of 256.15m. Refer to **Appendix A** for the stage-storage-discharge information for the orifice and the detention time calculations. Aggressiveness

### 5.1.3 Pond Characteristics

The existing facility was constructed as a wetland facility with a 1.5m deep sediment forebay at the southeast limits and 0.3m deep mail cell. The as-built pond characteristics are described below:

- 5:1 slope embankments above the permanent pool elevation(PPE)
- 4:1 slope embankments below the PPE
- PPE of elevation of 255.55m
- PPE volume of 862m<sup>3</sup>
- Erosion Control Elevation of 256.00m
- Quality Control/Erosion Control Pool volume of m<sup>3</sup>
- 48 hour drawdown time for 25mm storm event
- Hickenbottom outlet structure
- 4:1 pond length to width ratio
- Retaining walls along pond east and west bank
- Geosynthetic Clay liner `
- Construction vehicle access along the north and east banks

The original design of the pond is illustrated on Drawing 41328-D prepared by Stantec Consulting Ltd. and is included with the background information attached in **Appendix F**.

The introduction of the SWM Shield product changes the physical characteristics of the pond. The SWM Shield product essential performs the function of the sediment forebay; however, the continued presence of the forebay is recommended to provide a deep area in which the velocity of the incoming sewer flows can continue to be reduced a further promote the settling of sediment. To accommodate the SWM Shield product, a second pond maintenance path has been introduced from Mayfield Road. The maintenance path will be located along the east pond bank near the inlet headwall. This will allow for access adjacent to the SWMShield product for the regular maintenance.

In addition to the SWM Shield product, there are other modifications to the pond that are proposed to improve the quality control efficiency. It is proposed that the hickenbottom outlet structure be removed and a new outlet structure installed. The stormwater flow control components are proposed to be installed within a maintenance manhole outside the pond, on top of the pond banks. It will allow for easier access for maintenance equipment and personal. A storm sewer headwall will be introduced within the pond to convey flows to a sump within the control manhole. A rock check dam is proposed to surround the outlet sewer to reduce the velocity of the pond flows and help minimize the conveyance of any remaining sediment.



Efforts have been made to maintain the existing characteristics of the wetland main cell and portions of the forebay. This will assist in minimizing disturbance to the existing pond vegetation. The majority of disturbance will occur within the forebay area and the pond outlet structure. The proposed pond characteristics are summarized below:

- 3:1 slope embankments above the permanent pool elevation(PPE)
- 5:1 slope embankments below the PPE
- PPE of elevation of 255.55m
- PPE volume of 880m<sup>3</sup>
- Erosion Control Elevation of 256.15m
- Quality Control/Erosion Control Pool volume of 1484m<sup>3</sup>
- 48 hour drawdown time for 25mm storm event
- 4:1 Pond length to width ratio
- Outlet headwall with grate and rock check dam
- Retaining walls along pond east and west banks
- Geosynthetic Clay liner
- SWM Shield stormwater quality control product at pond inlet
- New construction vehicle access path at facility south banks
- Construction vehicle access at north banks to remain

The proposed pond layout is illustrated in Drawings 11129100-SWM-201 appended at the end of this report.

### 5.1.4 SWM Shield

The SWM Shield product is a submerged concrete structure that assists in the reduction in incoming flow velocity. The grates on the structure surface encourage the slowing of flows and settling of sediment into the still waters of the submerged storage tank. Based on the SWM Shield design parameters provided by the product designer, the product is to be sized with  $2m^2$  of SWM Shield surface area for every hectare of drainage area contributing to the facility(with a 50% impervious coefficient). With approximately 9.76ha of drainage and an impervious ratio of 45%, the required product surface area is approximately  $19.5m^2$ . The proposed unit is to be a 3.0m wide product with a grated section 6.7m long, providing a surface area  $20.1m^2$ . The product depth is to be 2.4m, to allow for increased settlement of sediment and to provide an increased timeframe between maintenance periods. The SWM Shield characteristics are summarized below:

### 5.2 Stormwater Quantity Controls

The pond currently outfalls to the adjacent wetlands through a gabion basket flow spreader. The gabion basket is located below grade with water rising through the gabion basket and dispersing once the water level reaches the surface. Quantity control objectives were established by Stantec



Consulting Ltd. that the discharge from the Kennedy SWM facility was to be control to predevelopment conditions for the 2 though 100 year storm event. Tabulated below are the predevelopment peak flow design objectives as established in the original design:

| Return Period<br>Storm Event(yr) | Peak Flow(m <sup>3</sup> /s) |
|----------------------------------|------------------------------|
| 2                                | 0.25                         |
| 5                                | 0.44                         |
| 10                               | 0.58                         |
| 25                               | 0.77                         |
| 50                               | 0.92                         |
| 100                              | 1.07                         |
| Regional                         | 1.44                         |

### **Table 5.3 Original Peak Flows**

To provide the required quantity controls, a control weir is proposed in the control manhole. The control weir will act in addition to the 100mm quality control orifice specified in Section 4.1.2. The base of the proposed weir will be set at the extended detention elevation of 259.55m established as part of the quality control objectives. The control weir will have a width of 0.35m and allow for the release of stormwater for minor storm events which exceed the 25mm storm. The limited space available to construct the original pond restricted the ability to control post-development flows within the minor sewer discharge system. An embankment control weir was designed as part of the original pond for more severe storm events, as opposed to the more typical use as an emergency overflow spillway. The area constraints remain for the proposed design and the embankment weir will continue to be used. The combination of the 3 control structures will support a gradual increase in the discharge from the pond and will limit the post-development peak flows to the pre-development levels.

The computer program Visual Otthymo 3.0 was used to simulate the tributary drainage areas and attenuation characteristics of the facility. The STANDHYD subroutine was used to simulate the urban drainage areas contributing to the stormwater facility and the NASHYD subroutine to simulate the rural fields bypassing the pond. The ROUTE RESERVOIR subroutine was used to simulate the performance of the control structures and the attenuation volume of the pond Tabulated below is a comparison of the pre-development peak flows and new peak flows from the revised quantity controls configuration.

| Return Period<br>Storm Event(yr) | Original Pre-<br>Development<br>Peak Flows(m <sup>3</sup> /s) | Revised Peak<br>Flows(m <sup>3</sup> /s) | Attenuation<br>Volume(m <sup>3</sup> ) | Pond Water<br>Surface<br>Elevation(m) |
|----------------------------------|---------------------------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------|
| 2                                | 0.25                                                          | 0.04                                     | 1821                                   | 256.27                                |
| 5                                | 0.44                                                          | 0.17                                     | 2147                                   | 256.38                                |
| 10                               | 0.58                                                          | 0.29                                     | 2272                                   | 256.40                                |
| 25                               | 0.77                                                          | 0.44                                     | 2429                                   | 256.45                                |
| 50                               | 0.92                                                          | 0.57                                     | 2535                                   | 256.49                                |

#### **Table 5.4 Proposed Peak Flows**



### Table 5.4 Proposed Peak Flows

| Return Period<br>Storm Event(yr) | Original Pre-<br>Development<br>Peak Flows(m <sup>3</sup> /s) | Flows(m <sup>3</sup> /s) | Attenuation<br>Volume(m <sup>3</sup> ) | Pond Water<br>Surface<br>Elevation(m) |
|----------------------------------|---------------------------------------------------------------|--------------------------|----------------------------------------|---------------------------------------|
| 100                              | 1.07                                                          | 0.74                     | 2677                                   | 256.53                                |

As reported above, the post-development peak flows for the proposed pond retrofit are below the pre-development levels; therefore, no adverse effect is anticipated from the proposed pond retrofit. Details for the revised outfall structures are illustrated on drawings 11129100-SWM-202, attached at the end of this report.



# 6. Landscaping

The existing vegetation included within the facility is consistent with the original design. It was evident that Typha plants had moved into the facility and occupied much of the pond shoreline. The proposed facility retrofit will introduce more maintenance pathway and disturb the eastern and west pond banks. It is proposed that areas disturb for grading be restored with similar plan species. An ecological review of the ponds was completed as part of the pond review and found that there is no significant plant or wildlife species within the facility and there should be no issues with the proposed retrofit. A Ecological Impact Memo has been completed and parameters have been specified to minimize impact as the local wildlife. The Ecological Impact memo is included in **Appendix D**.



# 7. Temporary Erosion and Sediment Controls

During the construction process, the removal of vegetation and moving of dirt was the potential to transport sediment downstream. Temporary sediment controls will be put in place to assist in preventing the transportation of sediment. Typical erosion and sediment control methods will be implemented around the work site. This would include such items as the installation of perimeter enviro fence around the work area, installation of silt sacs on local catchbasins, the use of a construction vehicle mudmat for site access, and the inclusion of a dust control/street sweeping program. Another control feature also proposed is a temporary bulkhead within the outfall manhole. The construction process will also be examined to determine an efficient means to provide controls. The temporary erosion control details and notes are included on the Erosion and Sediment Control Plan, Dwg 11129100-ES-201, attached at the end of this report.



# 8. Maintenance

As with all end of pipe SWM solutions, the wetland facility requires maintenance to ensure continued performance and sediment removal rates. Although the SWM Shield product has been included within the facility, there will be continued maintenance procedures which will be required for the facility. A maintenance manual has been provided in **Appendix E**, outlining the various items that will require attention, the frequency in which they should be attended, and estimated costs. Maintenance requires for the SWM Shield product are also included within the manual.



### 9. Conclusions

The above report examined the existing Kennedy Wetland Stormwater Management Facility to determine if the pond is providing adequate stormwater quality controls, and whether the pond can be updated to provide a more efficient means of maintenance. Based on the information provided, it appears the pond is providing adequate stormwater quality controls in conformance with the MOE Stormwater Management Guidelines; however, more suitable options are available to improve the efficiency of pond maintenance. The investigation resulted in a new pond layout to allow for the Region of Peel to have a more proficient means of access in the removal of sediment and maintenance of infrastructure. The findings of the study are summarized as follows:

- The redesigned pond will provide a permanent pool volume in accordance with MOE requirements for an 'Enhanced' level of stormwater quality control;
- The runoff from the 25mm rainfall event will be detained within the SWM facility for a minimum of 48 hours to provide extended detention control;
- The SWM Shield product will be installed to complement the sediment forebay, a high percentage of sediment entering the facility;
- A relocated outfall structure will allow for ease of access to the pond control infrastructure
- The retrofit works were limited to the forebay and outlet of the pond to help minimize disturbance to established plant life;
- A maintenance manual has been provided to assist the Region of Peel in establishing the frequency and costs to sustain the facility

We trust the above review and recommendations of the Region of Peel's existing Kennedy Stormwater Management Facility is sufficient for the Region of Peel to move forward with the construction of the proposed infrastructure improvements. Should there be any questions with regards to this review, please contact our office.

Respectfully submitted, GHD

Jamie lantomasi, P.Eng.

Jamie Iantomasi, P.Eng Water Resource Engineer 905 429 5053



Karen Edginton, P.Eng. Water Resources Manager 905 499 5002 PROFESSIONAL K. L. EDGINGTON

GHD | Kennedy Pond SWM Facility Retrofit | 11129100 | Page 17

# **Appendices**

GHD | Kennedy Pond SWM Facility Retrofit | 11129100

# Appendix A SWM Facility Sizing Calculations



| Project Name | KENNEDY POND RETROFIT             |
|--------------|-----------------------------------|
| Project No.  | 11129100                          |
| Subject      | Permanent Pool Volume Calculation |

| ID  | DESCRIPTION                   | AREA | % IMPERV | AC     |
|-----|-------------------------------|------|----------|--------|
| 110 | Mayfield - East of Pond       | 2.89 | 50%      | 1.445  |
| 120 | Mayfield - Road               | 1.49 | 88%      | 1.3112 |
| 140 | Kennedy Road                  | 2.2  | 75%      | 1.65   |
| 150 | SE Subdivision & Agricultural | 3.18 | 0%       | 0      |
|     | Total                         | 9.76 | 45%      | 4.4062 |

\* Drainage from Major System Only

| Criteria: | 80% | T.S.S | Removal |
|-----------|-----|-------|---------|
|-----------|-----|-------|---------|

45%

Area: 9.76 ha

Imperviousness:

### Permanent Pool Volume<sup>1</sup> = $(92m^3/ha - 40m^3/ha) \times Area$ = 509 m<sup>3</sup>

<sup>1</sup> As per the Stormwater Management Planning and Design Manual, Ministry of the Environment, March 2003



### CALCULATIONS Prepared by SS Checked by JI

| Project Name | KENNEDY POND RETROFIT           |
|--------------|---------------------------------|
| Project No.  | 11129100                        |
| Subject      | Extended Detention Calculations |
|              |                                 |

| ID    | DESCRIPTION                   | AREA  | % IMPERV | AC     |
|-------|-------------------------------|-------|----------|--------|
| 110   | Mayfield - East of Pond       | 2.89  | 50%      | 1.445  |
| 120   | Mayfield - Road               | 1.49  | 88%      | 1.3112 |
| 140   | Kennedy Road                  | 2.2   | 75%      | 1.65   |
| 150   | SE Subdivision & Agricultural | 3.18  | 0%       | 0      |
|       |                               |       |          |        |
| 130*  | Pond                          | 0.53  | 35%      | 0.1855 |
| 160** | Kenendy Road                  | 0.54  | 75%      | 0.405  |
|       | Total                         | 10.83 | 46%      | 4.9967 |

\*Pond drainage area not included in quality control

\*\*Major Flow Only

| Criteria: 25m          | nm event ov | ver 48 hours       |                       |
|------------------------|-------------|--------------------|-----------------------|
| Area:                  | 10.83       | ha Site Area       | (From Visual Otthymo) |
|                        |             |                    |                       |
| Runoff Volume =        | 13.53       | mm                 | (From Visual Otthymo) |
| =                      | 135.3       | m <sup>3</sup> /ha |                       |
|                        |             |                    |                       |
| Ext. Det. Volume = Run | off Volume  | x Area             |                       |
| =                      | 1465        | m <sup>3</sup>     |                       |
| Qpeak = Ext.           | Det Volum   | o / Duration       |                       |
| •                      |             |                    |                       |
| Qpeak(24h) =           | 0.017       | m³/s               |                       |





# Project Name KENNEDY POND RETROFIT Project No. 11129100 Subject SWM Facility Stage-Volume Information

|                                         |        | Elevation (m) | Depth (m) | Surface Area (m <sup>2</sup> ) | Incr. Area (m <sup>2</sup> ) |
|-----------------------------------------|--------|---------------|-----------|--------------------------------|------------------------------|
| Depth Increment (m)                     | 0.05   | 254.00        | 0         | 104                            | 7.4                          |
| Perm. Pool Vol. Req'd (m <sup>3</sup> ) | 509    | 254.25        | 0.3       | 141                            | 8.6                          |
| Permanent Pool Elevation (m)            | 255.55 | 254.50        | 0.5       | 184                            | 9.6                          |
| Permanent Pool Vol. (m <sup>3</sup> )   | 880.42 | 254.75        | 0.8       | 232                            | 13.6                         |
| Bottom of Main Cell (m)                 | 255.25 | 255.00        | 1.0       | 300                            | 196.2                        |
| Permanent Pool Depth (m)                | 0.30   | 255.25        | 1.3       | 1281                           | 120.8                        |
| Bottom of Pond (m)                      | 254.00 | 255.55        | 1.6       | 2006                           | 100.0                        |
| Max. Pond Elevation (m)                 | 256.90 | 255.70        | 1.7       | 2306                           | 60.6                         |
| Max Active Storage (m <sup>3</sup> )    | 3876   | 256.00        | 2.0       | 2670                           | 72.1                         |
|                                         |        | 256.50        | 2.5       | 3391                           | 85.1                         |
|                                         |        | 256.90        | 2.9       | 4072                           | 85.1                         |
|                                         |        |               |           |                                |                              |

| Elevation<br>(m) | Depth<br>(m) | Area<br>(m²) | Incr. Volume<br>(m³) | Cum. Volume<br>(m³) | Ext. Det.<br>Volume<br>(m³) | Storage<br>Volume<br>(m³) |
|------------------|--------------|--------------|----------------------|---------------------|-----------------------------|---------------------------|
| 254.00           |              | 104          |                      |                     |                             |                           |
| 254.05           | 0.05         | 111          | 5                    | 5                   |                             |                           |
| 254.10           | 0.10         | 119          | 6                    | 11                  |                             |                           |
| 254.15           | 0.15         | 126          | 6                    | 17                  |                             |                           |
| 254.20           | 0.20         | 134          | 6                    | 24                  |                             |                           |
| 254.25           | 0.25         | 141          | 7                    | 31                  |                             |                           |
| 254.30           | 0.30         | 150          | 7                    | 38                  |                             |                           |
| 254.35           | 0.35         | 158          | 8                    | 46                  |                             |                           |
| 254.40           | 0.40         | 167          | 8                    | 54                  |                             |                           |
| 254.45           | 0.45         | 175          | 9                    | 62                  |                             |                           |
| 254.50           | 0.50         | 184          | 9                    | 71                  |                             |                           |
| 254.55           | 0.55         | 194          | 9                    | 81                  |                             |                           |
| 254.60           | 0.60         | 203          | 10                   | 91                  |                             |                           |
| 254.65           | 0.65         | 213          | 10                   | 101                 |                             |                           |
| 254.70           | 0.70         | 222          | 11                   | 112                 |                             |                           |
| 254.75           | 0.75         | 232          | 11                   | 123                 |                             |                           |
| 254.80           | 0.80         | 246          | 12                   | 135                 |                             |                           |
| 254.85           | 0.85         | 259          | 13                   | 148                 |                             |                           |
| 254.90           | 0.90         | 273          | 13                   | 161                 |                             |                           |
| 254.95           | 0.95         | 286          | 14                   | 175                 |                             |                           |
| 255.00           | 1.00         | 300          | 15                   | 190                 |                             |                           |
| 255.05           | 1.05         | 496          | 20                   | 210                 |                             |                           |
| 255.10           | 1.10         | 692          | 30                   | 239                 |                             |                           |
| 255.15           | 1.15         | 889          | 40                   | 279                 |                             |                           |
| 255.20           | 1.20         | 1085         | 49                   | 328                 |                             |                           |
| 255.25           | 1.25         | 1281         | 59                   | 387                 |                             |                           |

## CALCULATIONS



| ( | ч | l h | ٦ |
|---|---|-----|---|
| U | 1 | Ľ.  | J |
|   | _ | -   |   |

| 255.30 | 1.30 | 1402 | 67  | 454  |      |      |
|--------|------|------|-----|------|------|------|
| 255.35 | 1.35 | 1523 | 73  | 528  |      |      |
| 255.40 | 1.40 | 1643 | 79  | 607  |      |      |
| 255.45 | 1.45 | 1764 | 85  | 692  |      |      |
| 255.50 | 1.50 | 1885 | 91  | 783  |      |      |
| 255.55 | 1.55 | 2006 | 97  | 880  |      |      |
| 255.60 | 1.60 | 2106 | 103 | 983  | 103  |      |
| 255.65 | 1.65 | 2206 | 108 | 1091 | 211  |      |
| 255.70 | 1.70 | 2306 | 113 | 1204 | 323  |      |
| 255.75 | 1.75 | 2367 | 117 | 1321 | 440  |      |
| 255.80 | 1.80 | 2427 | 120 | 1440 | 560  |      |
| 255.85 | 1.85 | 2488 | 123 | 1563 | 683  |      |
| 255.90 | 1.90 | 2548 | 126 | 1689 | 809  |      |
| 255.95 | 1.95 | 2609 | 129 | 1818 | 938  |      |
| 256.00 | 2.00 | 2670 | 132 | 1950 | 1070 |      |
| 256.05 | 2.05 | 2742 | 135 | 2085 | 1205 |      |
| 256.10 | 2.10 | 2814 | 139 | 2224 | 1344 |      |
| 256.15 | 2.15 | 2886 | 143 | 2367 | 1486 | 21   |
| 256.20 | 2.20 | 2958 | 146 | 2513 | 1633 | 167  |
| 256.25 | 2.25 | 3030 | 150 | 2663 | 1782 | 317  |
| 256.30 | 2.30 | 3102 | 153 | 2816 | 1936 | 470  |
| 256.35 | 2.35 | 3175 | 157 | 2973 | 2093 | 627  |
| 256.40 | 2.40 | 3247 | 161 | 3133 | 2253 | 788  |
| 256.45 | 2.45 | 3319 | 164 | 3298 | 2417 | 952  |
| 256.50 | 2.50 | 3391 | 168 | 3465 | 2585 | 1120 |
| 256.55 | 2.55 | 3476 | 172 | 3637 | 2757 | 1291 |
| 256.60 | 2.60 | 3561 | 176 | 3813 | 2933 | 1467 |
| 256.65 | 2.65 | 3646 | 180 | 3993 | 3113 | 1647 |
| 256.70 | 2.70 | 3732 | 184 | 4178 | 3297 | 1832 |
| 256.75 | 2.75 | 3817 | 189 | 4366 | 3486 | 2021 |
| 256.80 | 2.80 | 3902 | 193 | 4559 | 3679 | 2214 |
| 256.85 | 2.85 | 3987 | 197 | 4756 | 3876 | 2411 |
| 256.90 | 2.90 | 4072 | 201 | 4958 | 4078 | 2612 |



| Project Name | KENNEDY POND RETROFIT |
|--------------|-----------------------|
| Project No.  | 11129100              |
| Subject      | Outlet Design         |

Incremental Depth(m) = 0.05

| Orifice: Q=CA(2gH) <sup>^0.5</sup>   |           |           | Weir: Q=2/3*Cd*(2*g)^0.5*L*H^3/2 |                 |        | Extended Detention                  |        |
|--------------------------------------|-----------|-----------|----------------------------------|-----------------|--------|-------------------------------------|--------|
|                                      | Orifice 1 | Orifice 2 |                                  | Weir 1 Weir 2 V |        | Volume Required (m <sup>3</sup> ) = | 1465   |
| Contraction coeff, C=                | 0.62      | 0.62      | Length (m)=                      | 0.35            | 3.00   | Detention Time (hr)=                | 55     |
| Orifice Diameter (mm) =              | 100.0     |           | Coef.C <sub>d</sub> =            | 0.62            | 0.62   | Depth (m)=                          | 0.60   |
| Area of Orifice(m <sup>2</sup> ), A= | 0.0079    |           | Rect'lr (y/n) =                  | у               | у      | EL (m)=                             | 256.15 |
| Horizontal Orifice (y/n)             | n         | n         | Crest Hght (m)=                  | 0.60            | 0.60   | Max.Qrel (m <sup>3</sup> /s)=       | 0.016  |
| Invert 1 (m) =                       | 255.55    |           | Crest EL (m)=                    | 256.15          | 256.30 | Volume Available(m <sup>3</sup> )=  | 1486   |
| N.W.L./Inlet Elevation (m) =         | 255.55    |           |                                  |                 |        |                                     |        |

| Water<br>Elevation<br>(m) | Depth<br>(m) | Head 1<br>(m) | Orifice 1 Q<br>(I/s) | Head 2<br>(m) | Orifice 2 Q<br>(I/s) | Weir 1 Q<br>(m <sup>3</sup> /s) | Weir 2 Q<br>(m <sup>3</sup> /s) | Total Q<br>(m <sup>3</sup> /s) | Total<br>Storage<br>(m <sup>3</sup> ) |
|---------------------------|--------------|---------------|----------------------|---------------|----------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------------------|
| 255.55                    |              |               |                      |               |                      |                                 |                                 |                                |                                       |
| 255.60                    | 0.05         |               |                      |               |                      |                                 |                                 |                                | 103                                   |
| 255.65                    | 0.10         | 0.05          | 4.82                 |               |                      |                                 |                                 | 0.005                          | 211                                   |
| 255.70                    | 0.15         | 0.10          | 6.82                 |               |                      |                                 |                                 | 0.007                          | 323                                   |
| 255.75                    | 0.20         | 0.15          | 8.35                 |               |                      |                                 |                                 | 0.008                          | 440                                   |
| 255.80                    | 0.25         | 0.20          | 9.65                 |               |                      |                                 |                                 | 0.010                          | 560                                   |
| 255.85                    | 0.30         | 0.25          | 10.78                |               |                      |                                 |                                 | 0.011                          | 683                                   |
| 255.90                    | 0.35         | 0.30          | 11.81                |               |                      |                                 |                                 | 0.012                          | 809                                   |
| 255.95                    | 0.40         | 0.35          | 12.76                |               |                      |                                 |                                 | 0.013                          | 938                                   |
| 256.00                    | 0.45         | 0.40          | 13.64                |               |                      |                                 |                                 | 0.014                          | 1070                                  |
| 256.05                    | 0.50         | 0.45          | 14.47                |               |                      |                                 |                                 | 0.014                          | 1205                                  |
| 256.10                    | 0.55         | 0.50          | 15.25                |               |                      |                                 |                                 | 0.015                          | 1344                                  |
| 256.15                    | 0.60         | 0.55          | 16.00                |               |                      |                                 |                                 | 0.016                          | 1486                                  |
| 256.20                    | 0.65         | 0.60          | 16.71                |               |                      | 0.005                           |                                 | 0.022                          | 1633                                  |
| 256.25                    | 0.70         | 0.65          | 17.39                |               |                      | 0.015                           |                                 | 0.032                          | 1782                                  |
| 256.30                    | 0.75         | 0.70          | 18.05                |               |                      | 0.029                           |                                 | 0.047                          | 1936                                  |
| 256.35                    | 0.80         | 0.75          | 18.68                |               |                      | 0.045                           | 0.061                           | 0.125                          | 2093                                  |
| 256.40                    | 0.85         | 0.80          | 19.29                |               |                      | 0.064                           | 0.174                           | 0.257                          | 2253                                  |
| 256.45                    | 0.90         | 0.85          | 19.89                |               |                      | 0.085                           | 0.319                           | 0.424                          | 2417                                  |
| 256.50                    | 0.95         | 0.90          | 20.46                |               |                      | 0.109                           | 0.491                           | 0.620                          | 2585                                  |
| 256.55                    | 1.00         | 0.95          | 21.02                |               |                      | 0.134                           | 0.686                           | 0.841                          | 2757                                  |
| 256.60                    | 1.05         | 1.00          | 21.57                |               |                      | 0.161                           | 0.902                           | 1.085                          | 2933                                  |
| 256.65                    | 1.10         | 1.05          | 22.10                |               |                      | 0.190                           | 1.137                           | 1.349                          | 3113                                  |
| 256.70                    | 1.15         | 1.10          | 22.62                |               |                      | 0.221                           | 1.389                           | 1.633                          | 3297                                  |
| 256.75                    | 1.20         | 1.15          | 23.13                |               |                      | 0.254                           | 1.657                           | 1.934                          | 3486                                  |
| 256.80                    | 1.25         | 1.20          | 23.63                |               |                      | 0.288                           | 1.941                           | 2.253                          | 3679                                  |
| 256.85                    | 1.30         | 1.25          | 24.11                |               |                      | 0.324                           | 2.239                           | 2.588                          | 3876                                  |
| 256.90                    | 1.35         | 1.30          | 24.59                |               |                      | 0.362                           | 2.552                           | 2.938                          | 4078                                  |

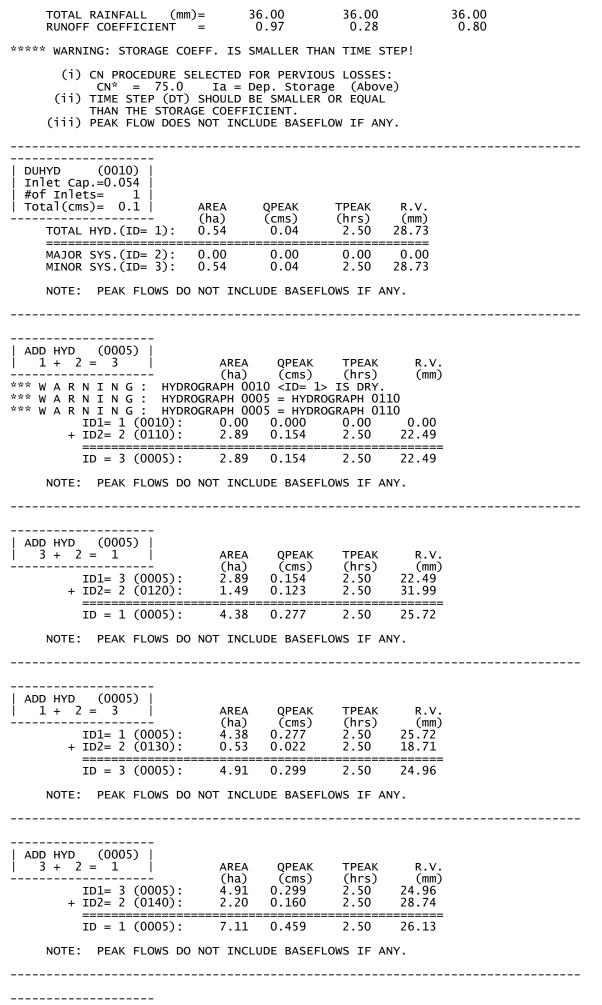


# CALCULATIONS

Prepared by SS Checked by JI

| Project Name | KENNEDY POND RETROFIT |
|--------------|-----------------------|
| Project No.  | 11129100              |
| Subject      | Detention Time        |

### Equation 4.10 SWM Planning & Design Manual (MOE, 2003)


| n Time = t = 2 $A_p(h_1^{0.5} - h_2^{0.5})/(C A_0 (2g)^{0.5})$ |                                                                                                                                                                                                                                                          |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| C = dishcarge coefficient=                                     | 0.62                                                                                                                                                                                                                                                     |  |  |
| $h_1$ = starting water elevation above the orifice(m)          |                                                                                                                                                                                                                                                          |  |  |
| h <sub>2</sub> = ending water elevation above the orifice(m)   |                                                                                                                                                                                                                                                          |  |  |
| $A_o$ = cross sectional area of orifice =                      |                                                                                                                                                                                                                                                          |  |  |
| $A_p = surface area of pond(m2)$                               |                                                                                                                                                                                                                                                          |  |  |
| t = 198468 s                                                   |                                                                                                                                                                                                                                                          |  |  |
| t = 55 hr                                                      |                                                                                                                                                                                                                                                          |  |  |
|                                                                | C = dishcarge coefficient=<br>$h_1$ = starting water elevation above the orifice(m)<br>$h_2$ = ending water elevation above the orifice(m)<br>$A_o$ = cross sectional area of orifice =<br>$A_p$ = surface area of pond(m <sup>2</sup> )<br>t = 198468 s |  |  |

# Appendix B Visual Otthymo Output Files

| V V I SSSSS U U A L<br>V V I SS U U A A L<br>V V I SS U U AAAAA L<br>V V I SS U U A A L<br>VV I SSSSS UUUUU A A LLLLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 000 TTTTT TTTTT H H Y Y M M 000 TM<br>O O T T H H Y Y MM MM O O<br>O O T T H H Y M M O O<br>000 T T H H Y M M 000<br>Developed and Distributed by Civica Infrastructure<br>Copyright 2007 - 2013 Civica Infrastructure<br>All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| **** DETAILED OUTPUT ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Input filename: C:\Program Files (x86)\VH Suite 3.0\VO2\voin.dat<br>Output filename: C:\Users\jiantomasi\AppData\Local\Temp\Oca6545a-89e5-4cbd-9772-39d4c2518c8e\Scenario.out<br>Summary filename: C:\Users\jiantomasi\AppData\Local\Temp\Oca6545a-89e5-4cbd-9772-39d4c2518c8e\Scenario.sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| DATE: 05/24/2017 TIME: 08:01:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| READ STORM   Filename: C:\Users\jiantomasi\AppD<br>  ata\Local\Temp\<br>  Oca6545a-89e5-4cbd-9772-39d4c2518c8e\14a167bf<br>  Ptotal= 36.00 mm   Comments: Toronto Bloor: 6-hr, 2-yr storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| TIME         RAIN         TIME         RAIN         TIME         RAIN         TIME         RAIN         TIME         RAIN         RAIN <th< td=""></th<> |  |  |  |  |  |
| <br>  CALIB  <br>  NASHYD (0150)   Area (ha)= 3.18 Curve Number (CN)= 75.0<br> ID= 1 DT= 5.0 min   Ia (mm)= 1.50 # of Linear Res.(N)= 3.00<br>U.H. Tp(hrs)= 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

4.32 | 2.833 4.32 | 2.917 4.32 | 3.000 1.333 5.83 9.36 | 4.333 1.44 | 0.72 1.44 9.36 | 4.417 9.36 | 4.500 1.417 5.92 0.72 1.500 6.00 0.72 Unit Hyd Qpeak (cms)= 0.217 (cms)= 0.048 (i) PEAK FLOW 3.000 TIME TO PEAK (hrs) =9.987 RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= 36.000 RUNOFF COEFFICIENT 0.277 = (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ CALIB STANDHYD (0110) Area (ha)= 2.89 |ID= 1 DT= 5.0 min | Total Imp(%) = 50.00Dir. Conn.(%)= 50.00 IMPERVIOUS PERVIOUS (i) 1.45 1.00 2.00 138.80 (ha)= Surface Area 1.45 Dep. Storage (mm)= 1.50 2.00 Average Slope (%)= Length (m)= 40.00 0.013 0.250 Mannings n = Max.Eff.Inten.(mm/hr)= 33.12 10.77 over (min) 5.00 25.00 3.93 (ii) 5.00 Storage Coeff. (min)= Unit Hyd. Tpeak (min)= 21.14 (ii) 25.00 Unit Hyd. peak (cms)= 0.24 0.05 \*TOTALS\* 0.03 0.154 (iii) PEAK FLOW (cms) =0.13 2.50 2.50 2.75 TIME TO PEAK (hrs)= (mm)= (m RUNOFF VOLUME 35.00 36.00 36.00 TOTAL RAINFALL 36.00 RUNOFF COEFFICIENT = 0.97 0.28 0.62 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 75.0 Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii)THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ CALTR | STANDHYD (0120) | |ID= 1 DT= 5.0 min | Area (ha)= 1.49 Total Imp(%)= 88.00 Dir. Conn.(%)= 88.00 \_\_\_\_\_ IMPERVIOUS PERVIOUS (i) 1.31 (ha)= Surface Area 0.18 Dep. Storage 1.00 1.50 (mm)= Average Slope 2.00 (%)= 1.00 (m)= 40.00 Length 0.013 0.250 Mannings n Max.Eff.Inten.(mm/hr)= 33.12 10.12 over (min) 5.00 25.00 3.22 (ii) 5.00 Storage Coeff. (min)= 24.95 (ii) Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 25.00 0.27 0.05 \*TOTALS\* PEAK FLOW TIME TO PEAK 0.12 0.00 0.123 (iii) (cms) =2.50 2.50 (hrs)= 2.75 (mm)= (mm)= RUNOFF VOLUME 35.00 9.99 31.99 36.00 TOTAL RAINFALL 36.00 36.00 RUNOFF COEFFICIENT 0.97 0.89 0.28 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 75.0 Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii)THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ CALIB STANDHYD (0130) Area (ha)= 0.53

| ID= 1 DT= 5.0 min                                                                                                                                                                                                                                              | Total I                                         | mp(%)= 35.00                                          | Dir. Conn.(%                                           | )= 35.00                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--|
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                                                                                                                                          | (ha)=<br>(mm)=<br>(%)=                          | IMPERVIOUS<br>0.19<br>1.00<br>1.00<br>59.44<br>0.013  | PERVIOUS (i)<br>0.34<br>1.50<br>1.00<br>40.00<br>0.250 |                                                           |  |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                                                                                                                                                                 | (mm/hr)=<br>(min)<br>(min)=<br>(min)=<br>(cms)= |                                                       |                                                        | *TOTALS*                                                  |  |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI                                                                                                                                                                                | (cms)=<br>(hrs)=<br>(mm)=<br>(mm)=<br>ENT =     | 0.02<br>2.50<br>35.00<br>36.00<br>0.97                | 0.01<br>2.75<br>9.99<br>36.00<br>0.28                  | 0.022 (iii)<br>2.50<br>18.71<br>36.00<br>0.52             |  |
| ***** WARNING: STORA                                                                                                                                                                                                                                           | GE COEFF.                                       | IS SMALLER THA                                        | N TIME STEP!                                           |                                                           |  |
| CN* =<br>(ii) TIME STEF                                                                                                                                                                                                                                        | 75.0 Ia<br>(DT) SHOU<br>STORAGE CO              | EFFICIENT.                                            | je (Above)<br>OR EQUAL                                 |                                                           |  |
|                                                                                                                                                                                                                                                                |                                                 |                                                       |                                                        |                                                           |  |
| CALIB<br>  STANDHYD (0140)  <br> ID= 1 DT= 5.0 min                                                                                                                                                                                                             | Area<br>Total I                                 | (ha)= 2.20<br>mp(%)= 75.00                            | Dir. Conn.(%                                           | )= 75.00                                                  |  |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                                                                                                                                          | (ha)=<br>(mm)=<br>(%)=<br>(m)=                  | IMPERVIOUS<br>1.65<br>1.00<br>2.00<br>121.11<br>0.013 | PERVIOUS (i)<br>0.55<br>1.50<br>2.00<br>40.00<br>0.250 |                                                           |  |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                                                                                                                                                                 | (mm/hr)=<br>(min)<br>(min)=<br>(min)=<br>(cms)= | 33.12<br>5.00<br>3.62 (ii)<br>5.00<br>0.25            | 10.77<br>25.00<br>20.83 (ii)<br>25.00<br>0.05          | *****                                                     |  |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI                                                                                                                                                                                | (cms)=<br>(hrs)=<br>(mm)=<br>(mm)=              | 0.15<br>2.50<br>35.00<br>36.00                        | 0.01<br>2.75<br>9.99<br>36.00<br>0.28                  | *TOTALS*<br>0.160 (iii)<br>2.50<br>28.74<br>36.00<br>0.80 |  |
| ***** WARNING: STORA                                                                                                                                                                                                                                           | GE COEFF.                                       | IS SMALLER THA                                        | N TIME STEP!                                           |                                                           |  |
| <ul> <li>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:<br/>CN* = 75.0 Ia = Dep. Storage (Above)         (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL<br/>THAN THE STORAGE COEFFICIENT.         (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</li> </ul> |                                                 |                                                       |                                                        |                                                           |  |
| CALIB  <br>  STANDHYD (0160)  <br> ID= 1 DT= 5.0 min                                                                                                                                                                                                           | Total I                                         | (ha)= 0.54<br>mp(%)= 75.00                            | Dir. Conn.(%                                           | )= 75.00                                                  |  |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                                                                                                                                          | (ha) =                                          | 0.41                                                  | PERVIOUS (i)<br>0.14<br>1.50<br>2.00<br>40.00<br>0.250 |                                                           |  |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                                                                                                                                                                 | (mm/hr)=<br>(min)=<br>(min)=<br>(cms)=          | 33.12<br>5.00<br>2.38 (ii)<br>5.00<br>0.30            | 10.77<br>20.00<br>19.59 (ii)<br>20.00<br>0.06          | *TOTALS*                                                  |  |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME                                                                                                                                                                                                                     | (hrs) =                                         | 0.04<br>2.50<br>35.00                                 | 2.67                                                   | 0.040 (iii)<br>2.50<br>28.73                              |  |



| ID = 3 (0005): 10.29 0.486 2.50 21.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PEAK FLOW REDUCTION [Qout/Qin](%)= 8.96<br>TIME SHIFT OF PEAK FLOW (min)=115.00<br>MAXIMUM STORAGE USED (ha.m.)= 0.1821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min       Area (ha)= 0.00<br>Total Imp(%)= 50.00 Dir. Conn.(%)= 35.00         IMPERVIOUS PERVIOUS (i)<br>Surface Area (ha)= 0.00 0.00<br>Dep. Storage (mm)= 1.00 1.50<br>Average Slope (%)= 1.00 2.00<br>Length (m)= 0.013 0.250         Max.Eff.Inten.(mm/hr)= 33.12 24.32<br>over (min) 5.00 15.00<br>Unit Hyd. peak (cms)= 0.01 10.242 (ii)<br>Unit Hyd. peak (cms)= 0.34 0.13         PEAK FLOW (cms)= 0.00 0.00 0.00 0.000 (iii)<br>TIME TO PEAK (hrs)= 0.00 0.00 0.00 0.00<br>RUNOFF VOLUME (mm)= NaN NaN NaN<br>TOTAL RAINFALL (mm)= 36.00 36.00 36.00<br>RUNOFF COEFFICIENT = NaN NaN NaN         ****** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!         (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES:<br>Fo (mm/hr)= 7.50 Cum.Inf. (mm)= 0.00         (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL<br>THAN THE STORAGE COEFFICIENT.         (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. |
| ADD HYD (0012)  <br>1 + 2 = 3   AREA QPEAK TPEAK R.V.<br>(ha) (cms) (hrs) (mm)<br>*** W A R N I N G : HYDROGRAPH 0011 <id= 2=""> IS DRY.<br/>*** W A R N I N G : HYDROGRAPH 0003 = HYDROGRAPH 0001<br/>*** W A R N I N G : HYDROGRAPH 0003 = HYDROGRAPH 0001<br/>ID1= 1 (0010): 0.54 0.040 2.50 28.73<br/>+ ID2= 2 (0011): 0.54 0.040 2.50 28.73<br/>ID = 3 (0012): 0.54 0.040 2.50 28.73<br/>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.</id=>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| READ STORM                                                                           | <br>  Fi                                                                                                                                                                                                                                                                                                                                                          | lename: C:\U<br>ata\                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Local∖Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | emp\                                                                                                                                                            | DD<br>2-39d4c2518c8e\;                                                                                                                                                                  | 76622466                                                                      |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| <br>  Ptotal= 47.80                                                                  | mm   Co                                                                                                                                                                                                                                                                                                                                                           | omments: Toro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nto Bloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or: 6-hr, 5-                                                                                                                                                    | -yr storm                                                                                                                                                                               | DDa34CC                                                                       |
|                                                                                      | TIME F<br>hrs mm<br>0.25 (0<br>0.50 (0<br>0.75 (0<br>1.00 (0<br>1.25 5<br>1.50 5                                                                                                                                                                                                                                                                                  | AIN         TIME           1/hr         hrs           0.96         1.75           0.96         2.00           0.96         2.25           0.96         2.50           0.74         2.75           0.74         3.00                                                                                                                                                                                                                                                                            | RAIN<br>mm/hr<br>16.25<br>16.25<br>43.98<br>43.98<br>12.43<br>12.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ' TIME<br> ' hrs<br>  3.25<br>  3.50<br>  3.75<br>  4.00<br>  4.25<br>  4.50                                                                                    | RAIN       TIME         mm/hr       hrs         6.69       4.75         6.69       5.00         3.82       5.25         3.82       5.50         1.91       5.75         1.91       6.00 | RAIN<br>mm/hr<br>0.96<br>0.96<br>0.96<br>0.96<br>0.96<br>0.96                 |
| CALIB<br>  NASHYD (015<br> ID= 1 DT= 5.0 m<br>                                       |                                                                                                                                                                                                                                                                                                                                                                   | ea (ha)=<br>(mm)=<br>1. Tp(hrs)=<br>MAS TRANSFORM                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 | er (CN)= 75.0<br>r Res.(N)= 3.00<br>ME STEP.                                                                                                                                            |                                                                               |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                   | ТР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 | DU                                                                                                                                                                                      |                                                                               |
|                                                                                      | hrs         mm           0.083         0           0.167         0           0.250         0           0.333         0           0.417         0           0.5083         0           0.583         0           0.667         0           0.833         0           0.917         0           1.083         1           1.250         1           1.333         1 | AIN         TIME           n/hr         hrs           0.96         1.583           0.96         1.667           0.96         1.750           0.96         1.833           0.96         1.917           0.96         2.083           0.96         2.167           0.96         2.250           0.96         2.333           0.96         2.500           0.96         2.583           0.96         2.583           0.74         2.583           0.74         2.750           0.74         2.833 | RAIN<br>mm/hr<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>16.25<br>1 | ' hrs<br>  3.083<br>  3.167<br>  3.250<br>  3.333<br>  3.417<br>  3.500<br>  3.583<br>  3.667<br>  3.750<br>  3.833<br>  3.917<br>  4.000<br>  4.083<br>  4.167 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                  | RAIN<br>mm/hr<br>0.96<br>0.96<br>0.96<br>0.96<br>0.96<br>0.96<br>0.96<br>0.96 |
| Unit Hyd Qp                                                                          | eak (cms)                                                                                                                                                                                                                                                                                                                                                         | = 0.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                         |                                                                               |
| PEAK FLOW<br>TIME TO PEA<br>RUNOFF VOLU<br>TOTAL RAINF<br>RUNOFF COEF<br>(İ) PEAK FL | K (hrs)<br>ME (mm)<br>ALL (mm)<br>FICIENT                                                                                                                                                                                                                                                                                                                         | = 3.000<br>= 16.369<br>= 47.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IF ANY.                                                                                                                                                         |                                                                                                                                                                                         |                                                                               |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                         |                                                                               |
| CALIB<br>  STANDHYD (011<br> ID= 1 DT= 5.0 m                                         | 0)   Are<br>in   Tot<br>                                                                                                                                                                                                                                                                                                                                          | ea (ha)=<br>cal Imp(%)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.89<br>50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dir. Conn.(                                                                                                                                                     | (%)= 50.00                                                                                                                                                                              |                                                                               |
| Surface Are<br>Dep. Storag<br>Average Slo<br>Length<br>Mannings n                    | e (mm)<br>pe (%)<br>(m)                                                                                                                                                                                                                                                                                                                                           | IMPERVIO<br>= 1.45<br>= 1.00<br>= 2.00<br>= 138.80<br>= 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ERVIOUS (i)<br>1.45<br>1.50<br>2.00<br>40.00<br>0.250                                                                                                           |                                                                                                                                                                                         |                                                                               |
| Max.Eff.Int<br>Storage Coe<br>Unit Hyd. T<br>Unit Hyd. p                             | over (min)<br>ff. (min)<br>peak (min)                                                                                                                                                                                                                                                                                                                             | 5.00<br>= 3.51<br>= 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.61<br>20.00<br>17.34 (ii)<br>20.00<br>0.06                                                                                                                   | *****                                                                                                                                                                                   |                                                                               |
| PEAK FLOW<br>TIME TO PEA<br>RUNOFF VOLU                                              | K (hrs)                                                                                                                                                                                                                                                                                                                                                           | = 0.18<br>= 2.50<br>= 46.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05<br>2.67<br>16.37                                                                                                                                           | *TOTALS*<br>0.221 (iii)<br>2.50<br>31.58                                                                                                                                                | )                                                                             |

| TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =                                                                                                                                                                                                                                   | 47.80<br>0.98                                                                                                                                                                                                                                                 | 47.80 47.80<br>0.34 0.66                                                                                                                                                                                                                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ***** WARNING: STORAGE COEFF.                                                                                                                                                                                                                                                  | IS SMALLER THA                                                                                                                                                                                                                                                | AN TIME STEP!                                                                                                                                                                                                                                                   |  |
| (i) CN PROCEDURE SELEC                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |  |
| CN* = 75.0 I<br>(ii) TIME STEP (DT) SHO                                                                                                                                                                                                                                        | ULD BE SMALLER                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 |  |
| THAN THE STORAGE C<br>(iii) PEAK FLOW DOES NOT                                                                                                                                                                                                                                 | OEFFICIENT.                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |  |
| CALIB  <br>  STANDHYD (0120)   Area<br> ID= 1 DT= 5.0 min   Total                                                                                                                                                                                                              | (ha)= 1.49<br>Imp(%)= 88.00                                                                                                                                                                                                                                   | Dir. Conn.(%)= 88.00                                                                                                                                                                                                                                            |  |
| Surface Area (ha)=<br>Dep. Storage (mm)=<br>Average Slope (%)=<br>Length (m)=<br>Mannings n =                                                                                                                                                                                  | IMPERVIOUS<br>1.31<br>1.00<br>2.00<br>99.67<br>0.013                                                                                                                                                                                                          | PERVIOUS (i)<br>0.18<br>1.50<br>1.00<br>40.00<br>0.250                                                                                                                                                                                                          |  |
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)=                                                                                                                                                               |                                                                                                                                                                                                                                                               | 17.70<br>25.00<br>20.25 (ii)<br>25.00<br>0.05                                                                                                                                                                                                                   |  |
| PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =                                                                                                                                                                 | 0.16<br>2.50<br>46.80<br>47.80                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 |  |
| ***** WARNING: STORAGE COEFF.                                                                                                                                                                                                                                                  | IS SMALLER THA                                                                                                                                                                                                                                                | AN TIME STEP!                                                                                                                                                                                                                                                   |  |
| <ul> <li>(i) CN PROCEDURE SELEC</li> <li>CN* = 75.0 I</li> <li>(ii) TIME STEP (DT) SHO</li> <li>THAN THE STORAGE C</li> <li>(iii) PEAK FLOW DOES NOT</li> </ul>                                                                                                                | a = Dep. Storag<br>ULD BE SMALLER<br>OEFFICIENT.                                                                                                                                                                                                              | ge (Above)<br>OR EQUAL                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |  |
| CALIB  <br>  STANDHYD (0130)   Area<br> ID= 1 DT= 5.0 min   Total                                                                                                                                                                                                              | (ha)= 0.53<br>Imp(%)= 35.00                                                                                                                                                                                                                                   | Dir. Conn.(%)= 35.00                                                                                                                                                                                                                                            |  |
| STANDHYD (0130)   Area                                                                                                                                                                                                                                                         | Imp(%) = 35.00                                                                                                                                                                                                                                                | Dir. Conn.(%)= 35.00<br>PERVIOUS (i)<br>0.34<br>1.50<br>1.00<br>40.00<br>0.250                                                                                                                                                                                  |  |
| STANDHYD (0130) Area                                                                                                                                                                                                                                                           | Imp(%)= 35.00<br>IMPERVIOUS<br>0.19<br>1.00<br>1.00<br>59.44<br>0.013                                                                                                                                                                                         | PERVIOUS (i)<br>0.34<br>1.50<br>1.00<br>40.00<br>0.250<br>17.70<br>20.00<br>19.97 (ii)<br>20.00<br>0.06                                                                                                                                                         |  |
| STANDHYD(0130)AreaID=1DT=5.0minTotalSurfaceArea(ha)=Dep.Storage(mm)=AverageSlope(%)=Length(m)=Manningsn=                                                                                                                                                                       | <pre>Imp(%)= 35.00 IMPERVIOUS     0.19     1.00     1.00     59.44     0.013     43.98     5.00     2.60 (ii)     5.00     0.29</pre>                                                                                                                         | PERVIOUS (i)<br>0.34<br>1.50<br>1.00<br>40.00<br>0.250<br>17.70<br>20.00<br>19.97 (ii)<br>20.00<br>0.06<br>*TOTALS*                                                                                                                                             |  |
| STANDHYD (0130)AreaID= 1 DT= 5.0 minTotalDep. Storage (mm)=Average Slope (%)=Length (m)=Mannings n=Max.Eff.Inten.(mm/hr)=over (min)Storage Coeff. (min)=Unit Hyd. Tpeak (min)=Unit Hyd. peak (cms)=                                                                            | <pre>Imp(%)= 35.00 IMPERVIOUS     0.19     1.00     1.00     59.44     0.013     43.98     5.00     2.60 (ii)     5.00     0.29     0.02     2.50     46.80     47.80     0.98</pre>                                                                          | PERVIOUS (i)<br>0.34<br>1.50<br>1.00<br>40.00<br>0.250<br>17.70<br>20.00<br>19.97 (ii)<br>20.00<br>0.06<br>*TOTALS*<br>0.01<br>0.033 (iii)<br>2.67<br>2.50<br>16.37<br>27.00<br>47.80<br>0.34<br>0.56                                                           |  |
| STANDHYD (0130)AreaID= 1 DT= 5.0 minTotalDep. Storage (mm)=Average Slope (%)=Length (m)=Mannings nMax.Eff.Inten.(mm/hr)=over (min)Storage Coeff. (min)=Unit Hyd. Tpeak (min)=Unit Hyd. peak (cms)=TIME TO PEAK (hrs)=RUNOFF VOLUME (mm)=TOTAL RAINFALL (mm)=RUNOFF COEFFICIENT | <pre>Imp(%)= 35.00 IMPERVIOUS     0.19     1.00     1.00     59.44     0.013     43.98     5.00     2.60 (ii)     5.00     0.29     0.02     2.50     46.80     47.80     0.98 IS SMALLER THATED FOR PERVIOU a = Dep. Storag ULD BE SMALLER OEFFICIENT.</pre> | PERVIOUS (i)<br>0.34<br>1.50<br>1.00<br>40.00<br>0.250<br>17.70<br>20.00<br>19.97 (ii)<br>20.00<br>0.06<br>*TOTALS*<br>0.01<br>0.033 (iii)<br>2.67<br>2.50<br>16.37<br>27.00<br>47.80<br>0.34<br>0.56<br>NN TIME STEP!<br>JS LOSSES:<br>Jge (Above)<br>OR EQUAL |  |

| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                  | (mm)=<br>(%)=<br>(m)=<br>=                                       |                                                                                         | 0.55<br>1.50<br>2.00<br>40.00<br>0.250                          |                           |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------|-----------------------------------------------|
| Max.Eff.Inten.(n<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                                        | nm/hr)=<br>(min)<br>(min)=<br>(min)=<br>(cms)=                   | 43.98<br>5.00<br>3.23 (ii)<br>5.00<br>0.27                                              | 18.61<br>20.00<br>17.06 (<br>20.00<br>0.06                      | ii)<br>*T                 | 'OTALS*                                       |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICIE                                                       | (cms)=<br>(hrs)=<br>(mm)=<br>(mm)=<br>ENT =                      | 0.20<br>2.50<br>46.80<br>47.80<br>0.98                                                  | 0.02<br>2.67<br>16.37<br>47.80<br>0.34                          | - 1                       | 0.219 (iii)<br>2.50<br>39.19<br>47.80<br>0.82 |
| ***** WARNING: STORAC                                                                                                                  |                                                                  |                                                                                         |                                                                 |                           |                                               |
| (ii) TIME STEP                                                                                                                         | 75.0 Ia =<br>(DT) SHOULD<br>STORAGE COEF                         | Dep. Stora<br>BE SMALLER<br>FICIENT.                                                    | ge (Above<br>OR EQUAL                                           |                           |                                               |
| CALIB  <br>  STANDHYD (0160)  <br> ID= 1 DT= 5.0 min                                                                                   |                                                                  |                                                                                         |                                                                 | nn.(%)=                   | 75.00                                         |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                  | IM<br>(ha)=<br>(mm)=<br>(%)=<br>(m)=<br>=                        | IPERVIOUS<br>0.41<br>1.00<br>2.00<br>60.00<br>0.013                                     | PERVIOUS<br>0.14<br>1.50<br>2.00<br>40.00<br>0.250              | (i)                       |                                               |
| Max.Eff.Inten.(n<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                                        |                                                                  |                                                                                         |                                                                 | ii)<br>*T                 | 'OTALS*                                       |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICIE                                                       | (mm)=<br>(mm)=                                                   | 46.80<br>47.80                                                                          | 0.00<br>2.67<br>16.37<br>47.80<br>0.34                          |                           | 0.054 (iii)<br>2.50<br>39.18<br>47.80<br>0.82 |
| ***** WARNING: STORAC                                                                                                                  | GE COEFF. IS                                                     | SMALLER TH                                                                              | AN TIME ST                                                      | EP!                       |                                               |
| (ii) TIME STEP                                                                                                                         | 75.0 Ia =<br>(DT) SHOULD<br>STORAGE COEF<br>DOES NOT IN          | Dep. Stora<br>BE SMALLER<br>FICIENT.<br>ICLUDE BASEF                                    | ge (Above<br>OR EQUAL<br>LOW IF ANY                             |                           |                                               |
| DUHYD (0010)  <br>  Inlet Cap.=0.054                                                                                                   |                                                                  |                                                                                         |                                                                 |                           |                                               |
| #of Inlets= 1  <br>  Total(cms)= 0.1  <br>                                                                                             | (ha)<br>L): 0.54                                                 | (cms)<br>0.05                                                                           | (hrs)<br>2.50                                                   | (mm)<br>39.18             |                                               |
| MAJOR SYS.(ID= 2<br>MINOR SYS.(ID= 2                                                                                                   |                                                                  |                                                                                         |                                                                 |                           |                                               |
| NOTE: PEAK FLOW                                                                                                                        |                                                                  |                                                                                         |                                                                 |                           |                                               |
| ADD HYD (0005)  <br>  1 + 2 = 3  <br>*** W A R N I N G :<br>*** W A R N I N G :<br>*** W A R N I N G :<br>ID1= 1 (001<br>+ ID2= 2 (011 | ARE<br>(ha<br>HYDROGRAPH<br>HYDROGRAPH<br>HYDROGRAPH<br>L0): 0.0 | A QPEAK<br>L) (cms)<br>0010 <id= 1<br="">0005 = HYDR<br/>0005 = HYDR<br/>00 0.000</id=> | TPEAK<br>(hrs)<br>> IS DRY.<br>OGRAPH 011<br>OGRAPH 011<br>0.00 | R.V.<br>(mm)<br>0<br>0.00 |                                               |

|                                                                                      | ) = 3                                                                | (0005):                                                                               | 2.89                                                                                                                                                                                     | 0.221                                                                                                                                                                                     | 2.50                                                                                                                                                                                                             | 31.58                                                                                                                                                             | :                                                                                                                                 |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| NOTE:                                                                                | PEAK                                                                 | FLOWS DO                                                                              | NOT INCLU                                                                                                                                                                                | JDE BASEFL                                                                                                                                                                                | OWS IF AN                                                                                                                                                                                                        | NY.                                                                                                                                                               |                                                                                                                                   |  |
|                                                                                      |                                                                      |                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                   |  |
| DD HYD<br>3 + 2 =                                                                    | (0005<br>1 :                                                         | 5)                                                                                    | AREA                                                                                                                                                                                     | QPEAK                                                                                                                                                                                     | TPEAK                                                                                                                                                                                                            | R.V.                                                                                                                                                              |                                                                                                                                   |  |
| ID                                                                                   | 1 = 3                                                                | (0005):                                                                               | (ha)<br>2.89                                                                                                                                                                             | QPEAK<br>(cms)<br>0.221                                                                                                                                                                   | (hrs)<br>2.50                                                                                                                                                                                                    | (mm)<br>31.58                                                                                                                                                     |                                                                                                                                   |  |
| ==                                                                                   | =====                                                                | ========                                                                              | =========                                                                                                                                                                                | 0.165<br><br>0.386                                                                                                                                                                        | =========                                                                                                                                                                                                        |                                                                                                                                                                   | :                                                                                                                                 |  |
|                                                                                      |                                                                      |                                                                                       |                                                                                                                                                                                          | JDE BASEFL                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                   |  |
|                                                                                      |                                                                      |                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                   |  |
| DD HYD                                                                               | (0005                                                                | 5)                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                           | TREAK                                                                                                                                                                                                            | <b>B</b> 1/                                                                                                                                                       |                                                                                                                                   |  |
| 1 + 2 =                                                                              | = 5<br><br>1- 1                                                      | (0005)                                                                                | (ha)<br>4 38                                                                                                                                                                             | QPEAK<br>(cms)<br>0.386<br>0.033                                                                                                                                                          | (hrs)                                                                                                                                                                                                            | к.v.<br>(mm)<br>35 51                                                                                                                                             |                                                                                                                                   |  |
| ==                                                                                   | =====                                                                | =======                                                                               | ==========                                                                                                                                                                               | ===========                                                                                                                                                                               | ========                                                                                                                                                                                                         | =======                                                                                                                                                           | :                                                                                                                                 |  |
| ID                                                                                   | ) = 3                                                                | (0005):                                                                               | 4.91                                                                                                                                                                                     | 0.418                                                                                                                                                                                     | 2.50                                                                                                                                                                                                             | 34.60                                                                                                                                                             |                                                                                                                                   |  |
| NOTE:                                                                                | PEAK                                                                 | FLOWS DO                                                                              | NOT INCLU                                                                                                                                                                                | JDE BASEFL                                                                                                                                                                                | OWS IF A                                                                                                                                                                                                         | NY.                                                                                                                                                               |                                                                                                                                   |  |
|                                                                                      |                                                                      |                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                   |  |
| DD HYD<br>3 + 2 =                                                                    | (0005<br>1                                                           | 5)                                                                                    | AREA                                                                                                                                                                                     | QPEAK                                                                                                                                                                                     | TPEAK                                                                                                                                                                                                            | R.V.                                                                                                                                                              |                                                                                                                                   |  |
| <br>ID                                                                               | )1= 3                                                                | (0005):                                                                               | (ha)<br>4.91                                                                                                                                                                             | QPEAK<br>(cms)<br>0.418                                                                                                                                                                   | (hrs)<br>2.50                                                                                                                                                                                                    | (mm)<br>34.60                                                                                                                                                     |                                                                                                                                   |  |
| + ID<br>==                                                                           | )2= 2<br>=====                                                       | (0140):<br>======                                                                     | 2.20                                                                                                                                                                                     | 0.219<br>=======                                                                                                                                                                          | 2.50                                                                                                                                                                                                             | 39.19<br>=====                                                                                                                                                    |                                                                                                                                   |  |
|                                                                                      | , = I                                                                |                                                                                       | /.11                                                                                                                                                                                     | 0.637                                                                                                                                                                                     | 2.30                                                                                                                                                                                                             | 36.02                                                                                                                                                             |                                                                                                                                   |  |
| NOTE:                                                                                | PFAK                                                                 | FLOWS DO                                                                              | NOT TNCL                                                                                                                                                                                 | IDE BASEEL                                                                                                                                                                                | OWS TE A                                                                                                                                                                                                         | NY .                                                                                                                                                              |                                                                                                                                   |  |
| NOTE:                                                                                | PEAK                                                                 | FLOWS DO                                                                              | NOT INCLU                                                                                                                                                                                | JDE BASEFL                                                                                                                                                                                | OWS IF A                                                                                                                                                                                                         | NY.                                                                                                                                                               |                                                                                                                                   |  |
|                                                                                      |                                                                      |                                                                                       | NOT INCLU                                                                                                                                                                                | JDE BASEFL                                                                                                                                                                                | OWS IF AN                                                                                                                                                                                                        | NY.                                                                                                                                                               |                                                                                                                                   |  |
| NOTE:<br><br>DD HYD<br>1 + 2 =                                                       | (000)                                                                | <br>5)                                                                                | AREA                                                                                                                                                                                     | OPEAK                                                                                                                                                                                     | TPEAK                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                   |  |
| DD HYD<br>1 + 2 =                                                                    | (0005<br>= 3                                                         | 5)  <br> <br> <br> <br>                                                               | AREA<br>(ha)<br>7 11                                                                                                                                                                     | QPEAK<br>(cms)                                                                                                                                                                            | TPEAK<br>(hrs)                                                                                                                                                                                                   | R.V.<br>(mm)                                                                                                                                                      |                                                                                                                                   |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>==                                                | (0005<br>3<br>01= 1<br>02= 2                                         | (0005) :<br>(0150) :                                                                  | AREA<br>(ha)<br>7.11<br>3.18                                                                                                                                                             | OPEAK                                                                                                                                                                                     | TPEAK<br>(hrs)<br>2.50<br>3.00                                                                                                                                                                                   | R.V.<br>(mm)<br>36.02<br>16.37                                                                                                                                    |                                                                                                                                   |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID                                           | (0005)<br>= 3<br>01= 1<br>02= 2<br>= 3                               | (0005):<br>(0005):<br>(0005):                                                         | AREA<br>(ha)<br>7.11<br>3.18<br>10.29                                                                                                                                                    | QPEAK<br>(cms)<br>0.637<br>0.080                                                                                                                                                          | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50                                                                                                                                                                           | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94                                                                                                                           |                                                                                                                                   |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:                                  | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK                        | (0005):<br>(0005):<br>(0005):                                                         | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU                                                                                                                                       | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684                                                                                                                                                 | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50                                                                                                                                                                           | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94                                                                                                                           |                                                                                                                                   |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:<br>ESERVOIR                      | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK                        | (0005):<br>(0150):<br>(0005):<br>FLOWS DO                                             | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU                                                                                                                                       | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684                                                                                                                                                 | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50                                                                                                                                                                           | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94                                                                                                                           |                                                                                                                                   |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:                                  | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK<br>(0006<br>OUT=       | 5)  <br>(0005):<br>(0150):<br>(0005):<br>FLOWS DO                                     | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU                                                                                                                                       | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684<br>JDE BASEFL<br><br>STORAGE<br>(ha.m.)                                                                                                         | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50<br>.OWS IF AI                                                                                                                                                             | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94<br>NY.<br>                                                                                                                | STORAGE<br>(ha.m.)                                                                                                                |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:<br>ESERVOIR<br>N= 2>             | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK<br>(0006<br>OUT=       | 5)  <br>(0005):<br>(0150):<br>(0005):<br>FLOWS DO                                     | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU<br>OUTFLOW<br>(cms)<br>0.0000<br>0.0050                                                                                               | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684<br>JDE BASEFL<br>STORAGE<br>(ha.m.)<br>0.0000<br>0.0211                                                                                         | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50<br>.OWS IF AI<br>                                                                                                                                                         | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94<br>NY.<br>FLOW<br>ns)<br>0320<br>1250                                                                                     | STORAGE<br>(ha.m.)<br>0.1782<br>0.2093                                                                                            |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:<br>ESERVOIR<br>N= 2>             | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK<br>(0006<br>OUT=       | 5)  <br>(0005):<br>(0150):<br>(0005):<br>FLOWS DO                                     | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU<br>OUTFLOW<br>(Cms)<br>0.0000<br>0.0050<br>0.0080<br>0.0110                                                                           | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684<br>JDE BASEFL<br>STORAGE<br>(ha.m.)<br>0.0000<br>0.0211<br>0.0440<br>0.0683                                                                     | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50<br>.0WS IF AI<br>                                                                                                                                                         | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94<br>NY.<br>FLOW<br>ns)<br>0320<br>1250<br>4240<br>8410                                                                     | STORAGE<br>(ha.m.)<br>0.1782<br>0.2093<br>0.2417<br>0.2757                                                                        |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:<br>ESERVOIR<br>N= 2>             | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK<br>(0006<br>OUT=       | 5)  <br>(0005):<br>(0150):<br>(0005):<br>FLOWS DO                                     | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU<br>OUTFLOW<br>(Cms)<br>0.0000<br>0.0050<br>0.0080<br>0.0110<br>0.0130<br>0.0140                                                       | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684<br>JDE BASEFL<br>JDE BASEFL<br>0.0000<br>0.0211<br>0.0440<br>0.0683<br>0.0938<br>0.1205                                                         | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50<br>.OWS IF AI<br>                                                                                                                                                         | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94<br>NY.<br>FLOW<br>ns)<br>0320<br>1250<br>4240<br>8410<br>3500<br>9300                                                     | STORAGE<br>(ha.m.)<br>0.1782<br>0.2093<br>0.2417<br>0.2757<br>0.3113<br>0.3486                                                    |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:<br>ESERVOIR<br>N= 2>             | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK<br>(0006<br>OUT=       | 5)  <br>(0005):<br>(0150):<br>(0005):<br>FLOWS DO                                     | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU<br>OUTFLOW<br>(CmS)<br>0.0000<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0110<br>0.0140<br>0.0140<br>0.0160               | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684<br>JDE BASEFL<br>STORAGE<br>(ha.m.)<br>0.0000<br>0.0211<br>0.0440<br>0.0683<br>0.0938<br>0.1205<br>0.1486<br>EA OPE                             | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50<br>.OWS IF AI<br>(cr<br>0.1<br>0.1<br>0.1<br>1.1<br>2.50                                                                                                                  | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94<br>NY.<br>FLOW<br>ms)<br>0320<br>1250<br>4240<br>8410<br>3500<br>9300<br>5900<br>PEAK                                     | STORAGE<br>(ha.m.)<br>0.1782<br>0.2093<br>0.2417<br>0.2757<br>0.3113<br>0.3486<br>0.3876                                          |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:<br>ESERVOIR<br>N= 2><br>T= 5.0 m | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK<br>(0006<br>0UT=<br>11 | (0005):<br>(0150):<br>(0005):<br>FLOWS DO                                             | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU<br>OUTFLOW<br>(CmS)<br>0.0000<br>0.0050<br>0.0080<br>0.0110<br>0.0130<br>0.0140<br>0.0140<br>0.0160<br>ARR<br>(ha)<br>10.2            | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684<br>JDE BASEFL<br>STORAGE<br>(ha.m.)<br>0.0000<br>0.0211<br>0.0440<br>0.0683<br>0.0938<br>0.1205<br>0.1486<br>EA QPE<br>a) (cm                   | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50<br>.OWS IF AI<br>(cr<br>0.1<br>0.1<br>0.1<br>1.1<br>2.50                                                                                                                  | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94<br>NY.<br>FLOW<br>ms)<br>0320<br>1250<br>4240<br>8410<br>3500<br>9300<br>5900<br>PEAK<br>hrs)<br>2.50                     | STORAGE<br>(ha.m.)<br>0.1782<br>0.2093<br>0.2417<br>0.2757<br>0.3113<br>0.3486                                                    |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:<br>ESERVOIR<br>N= 2><br>T= 5.0 m | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK<br>(0006<br>0UT=<br>11 | <pre> (0005): (0150): FLOWS DO  FLOWS DO  1   1   1   1   1   1   1   1   1   1</pre> | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU<br>OUTFLOW<br>(cms)<br>0.0000<br>0.0080<br>0.0100<br>0.0100<br>0.0110<br>0.0130<br>0.0140<br>0.0160<br>ARI<br>(ha<br>) 10.2<br>) 10.2 | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684<br>JDE BASEFL<br>STORAGE<br>(ha.m.)<br>0.0000<br>0.0211<br>0.0440<br>0.0683<br>0.0938<br>0.1205<br>0.1486<br>EA QPE<br>a) (cm<br>290 0<br>290 0 | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50<br>.0WS IF AI<br>0.0<br>0.0<br>0.0<br>0.1<br>0.1<br>1.1<br>1.2<br>1.2<br>1.5<br>0.684<br>0.174<br>2.0<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0 | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94<br>NY.<br>FLOW<br>ns)<br>0320<br>1250<br>4240<br>8410<br>3500<br>9300<br>5900<br>PEAK<br>hrs)<br>2.50<br>3.50<br>](%)= 25 | STORAGE<br>(ha.m.)<br>0.1782<br>0.2093<br>0.2417<br>0.2757<br>0.3113<br>0.3486<br>0.3876<br>R.V.<br>(mm)<br>29.94<br>29.84<br>.42 |  |
| DD HYD<br>1 + 2 =<br>ID<br>+ ID<br>=<br>ID<br>NOTE:<br>ESERVOIR<br>N= 2><br>T= 5.0 m | (0005<br>3<br>01= 1<br>02= 2<br>0 = 3<br>PEAK<br>(0006<br>0UT=<br>11 | <pre> (0005): (0150): FLOWS DO  FLOWS DO  1   1   1   1   1   1   1   1   1   1</pre> | AREA<br>(ha)<br>7.11<br>3.18<br>10.29<br>NOT INCLU<br>OUTFLOW<br>(cms)<br>0.0000<br>0.0080<br>0.0100<br>0.0100<br>0.0110<br>0.0130<br>0.0140<br>0.0160<br>ARI<br>(ha<br>) 10.2<br>) 10.2 | QPEAK<br>(cms)<br>0.637<br>0.080<br>0.684<br>JDE BASEFL<br>JDE BASEFL<br>0.0000<br>0.0211<br>0.0211<br>0.0440<br>0.0683<br>0.0938<br>0.1205<br>0.1486<br>EA QPE<br>A) (cm<br>290 0        | TPEAK<br>(hrs)<br>2.50<br>3.00<br>2.50<br>.0WS IF AI<br>0.0<br>0.0<br>0.0<br>0.1<br>0.1<br>1.1<br>1.2<br>1.2<br>1.5<br>0.684<br>0.174<br>2.0<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0 | R.V.<br>(mm)<br>36.02<br>16.37<br>29.94<br>NY.<br>FLOW<br>ns)<br>0320<br>1250<br>4240<br>8410<br>3500<br>9300<br>5900<br>PEAK<br>hrs)<br>2.50<br>3.50<br>](%)= 25 | STORAGE<br>(ha.m.)<br>0.1782<br>0.2093<br>0.2417<br>0.2757<br>0.3113<br>0.3486<br>0.3876<br>R.V.<br>(mm)<br>29.94<br>29.84<br>.42 |  |

Total Imp(%) = 50.00 Dir. Conn.(%) = 35.00 |ID= 1 DT= 5.0 min | **IMPERVIOUS** PERVIOUS (i) (ha) =Surface Area 0.00 0.00 Dep. Storage (mm)= 1.00 1.50 Average Slope 1.00 (%)= 2.00 Length (m)= 0.00 40.00 Mannings n 0.013 0.250 Max.Eff.Inten.(mm/hr)= 43.98 41.85 5.00 10.00 over (min) 0.00 (ii) Storage Coeff. (min) =10.00 (ii) Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 5.00 10.00 0.34 0.16 \*TOTALS\* 0.00 0.00 0.000 (iii) (cms)= PEAK FLOW TIME TO PEAK (hrs) =0.00 0.00 0.00 NaN RUNOFF VOLUME (mm)= NaN NaN 47.80 47.80 47.80 TOTAL RAINFALL (mm) =RUNOFF COEFFICIENT = NaN NaN NaN \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES: K (1/hr)= 2.00 Cum.Inf. (mm)= 0.00 (mm/hr)= 50.00 (mm/hr)= 7.50 FO FC TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii)THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ ADD HYD (0012) | 1 + 2 = 3 | AREA **QPEAK** TPEAK R.V. \_\_\_\_\_ (ha) (cms) (hrs) (mm) \*\*\* W A R N I N G : HYDROGRAPH 0011 <ID= 2> IS DRY. \*\*\* W A R N I N G : HYDROGRAPH 0003 = HYDROGRAPH 0001 \*\*\* W A R N I N G : HYDROGRAPH 0003 = HYDROGRAPH 0001 0.54 0.054 ID1= 1 (0010): 2.50 39.18 + ID2= 2 (0011): 0.00 0.00 0.000 NaN \_\_\_\_\_ ID = 3 (0012): 0.540.054 2.50 39.18 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \*\*\*\*\* \*\* SIMULATION NUMBER: 3 \*\* \*\*\*\*\* \_\_\_\_\_ Filename: C:\Users\jiantomasi\AppD ata\Local\Temp\ READ STORM 0ca6545a-89e5-4cbd-9772-39d4c2518c8e\a3bfaa1b Ptotal = 55.70 mm Comments: Toronto Bloor: 6-hr, 10-yr storm TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs hrs mm/hr mm/hr hrs mm/hr hrs mm/hr 0.25 1.11 1.75 18.94 3.25 7.80 4.75 1.110.50 2.00 18.94 3.50 7.80 1.115.00 1.112.25 2.50 2.75 51.24 51.24 3.75 4.46 5.25 0.75 1.111.115.50 5.75 1.00 1.114.00 4.46 1.111.25 14.48 4.25 2.23 6.68 1.111.50 6.68 3.00 14.48 4.50 2.23 6.00 1.11\_\_\_\_\_ CALIB (0150) 3.18 1.50 (ha) =Curve Number (CN) = 75.0NASHYD Area |ID= 1 DT= 5.0 min | (mm) =# of Linear Res.(N)= 3.00 Ia U.H. Tp(hrs) =0.56 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. --- TRANSFORMED HYETOGRAPH ----' TIME TIME RAIN TIME RAIN RAIN | TIME RAIN hrs mm/hr hrs hrs hrs mm/hr mm/hr | mm/hr 7.80 1.583 18.94 3.083 4.58 0.083 1.111.1118.94 0.167 1.111.667 3.167 7.80 4.67 1.11

| 1.750

1.11

0.250

18.94 | 3.250

7.80

4.75

1.11

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                            | 8.94   3.417 7<br>8.94   3.500 7<br>1.24   3.583 4<br>1.24   3.667 4<br>1.24   3.750 4<br>1.24   3.833 4 | .46   5.33 1.11                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Unit Hyd Qpeak (cms)= 0.217<br>PEAK FLOW (cms)= 0.103 (i)<br>TIME TO PEAK (hrs)= 3.000<br>RUNOFF VOLUME (mm)= 21.152<br>TOTAL RAINFALL (mm)= 55.698<br>RUNOFF COEFFICIENT = 0.380                                |                                                                                                          |                                               |
| (i) PEAK FLOW DOES NOT INCLUDE BASEF                                                                                                                                                                             | LOW IF ANY.                                                                                              |                                               |
| CALIB  <br>  STANDHYD (0110)   Area (ha)= 2.<br> ID= 1 DT= 5.0 min   Total Imp(%)= 50.                                                                                                                           |                                                                                                          | )= 50.00                                      |
| IMPERVIOUSSurface Area(ha)=1.45Dep. Storage(mm)=1.00Average Slope(%)=2.00Length(m)=138.80Mannings n=0.013                                                                                                        |                                                                                                          |                                               |
| Max.Eff.Inten.(mm/hr)= 51.24<br>over (min) 5.00<br>Storage Coeff. (min)= 3.30 (i<br>Unit Hyd. Tpeak (min)= 5.00<br>Unit Hyd. peak (cms)= 0.27                                                                    |                                                                                                          | *TOTALS*                                      |
| PEAK FLOW (cms)= 0.21<br>TIME TO PEAK (hrs)= 2.50<br>RUNOFF VOLUME (mm)= 54.70<br>TOTAL RAINFALL (mm)= 55.70<br>RUNOFF COEFFICIENT = 0.98                                                                        | 0.07<br>2.67<br>21.15<br>55.70<br>0.38                                                                   | 0.266 (iii)<br>2.50<br>37.92<br>55.70<br>0.68 |
| ***** WARNING: STORAGE COEFF. IS SMALLER                                                                                                                                                                         | THAN TIME STEP!                                                                                          |                                               |
| <ul> <li>(i) CN PROCEDURE SELECTED FOR PERV<br/>CN* = 75.0 Ia = Dep. Sto</li> <li>(ii) TIME STEP (DT) SHOULD BE SMALL<br/>THAN THE STORAGE COEFFICIENT.</li> <li>(iii) PEAK FLOW DOES NOT INCLUDE BAS</li> </ul> | rage (Above)<br>ER OR EQUAL                                                                              |                                               |
| CALIB  <br>  STANDHYD (0120)   Area (ha)= 1.<br> ID= 1 DT= 5.0 min   Total Imp(%)= 88.                                                                                                                           | 49<br>00 Dir. Conn.(%                                                                                    | )= 88.00                                      |
| IMPERVIOUSSurface Area(ha)=1.31Dep. Storage(mm)=1.00Average Slope(%)=2.00Length(m)=99.67Mannings n=0.013                                                                                                         | PERVIOUS (i)<br>0.18<br>1.50<br>1.00<br>40.00<br>0.250                                                   |                                               |
| Max.Eff.Inten.(mm/hr)= 51.24<br>over (min) 5.00<br>Storage Coeff. (min)= 2.71 (i<br>Unit Hyd. Tpeak (min)= 5.00<br>Unit Hyd. peak (cms)= 0.29                                                                    | 22.90<br>20.00<br>i) 18.37 (ii)<br>20.00<br>0.06                                                         | *TOTALS*                                      |
| PEAK FLOW (cms)= 0.19<br>TIME TO PEAK (hrs)= 2.50<br>RUNOFF VOLUME (mm)= 54.70<br>TOTAL RAINFALL (mm)= 55.70<br>RUNOFF COEFFICIENT = 0.98                                                                        | 0.01<br>2.67<br>21.15<br>55.70<br>0.38                                                                   | 0.194 (iii)<br>2.50<br>50.67<br>55.70<br>0.91 |

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 75.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ CALIB STANDHYD (0130) | |ID= 1 DT= 5.0 min | (ha)= 0.53 Area Total Imp(%) = 35.00Dir. Conn.(%)= 35.00 **IMPERVIOUS** PERVIOUS (i) (ha)= 0.19 0.34 Surface Area Dep. Storage (mm)= 1.00 1.00 Average Slope (%)= 1.00 59.44 40.00 Length (m)= Mannings n 0.013 0.250 22.90 Max.Eff.Inten.(mm/hr)= 51.24 5.00 2.44 (ii) 20.00 over (min) Storage Coeff. 18.11 (ii) (min) =Unit Hyd. Tpeak (min)= 5.00 20.00 0.30 0.06 Unit Hyd. peak (cms) =\*TOTALS\* 0.040 (iii) 2.50 PEAK FLOW (cms) =0.03 0.02 TIME TO PEAK (hrs) =2.50 2.67 21.15 55.70 32.87 55.70 54.70 RUNOFF VOLUME (mm) =55.7Ŏ TOTAL RAINFALL (mm) =RUNOFF COEFFICIENT 0.98 0.38 0.59 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 75.0$ Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii)THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ CALIB STANDHYD (0140) Area (ha) =2.20 |ID= 1 DT= 5.0 min | Total Imp(%) = 75.00Dir. Conn.(%)= 75.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =1.65 0.55 Dep. Storage 1.50 (mm) =1.00 2.00 2.00 Average Slope (%)= 121.11 40.00 Length (m)= 0.250 Mannings n \_ 0.013 51.24 24.00 Max.Eff.Inten.(mm/hr)= over (min) 5.00 20.00 15.53 (ii) 20.00 Storage Coeff. 3.04 (ii) (min) =Unit Hyd. Tpeak (min)= 5.00 Unit Hyd. peak 0.07 (cms) =0.27 \*TOTALS\* 0.03 PEAK FLOW (cms) =0.23 0.258 (iii) TIME TO PEAK 2.50 (hrs) =2.50 2.67 21.15 55.70 RUNOFF VOLUME 54.70 46.31 (mm) =55.70 55.70 TOTAL RAINFALL (mm) =RUNOFF COEFFICIENT 0.38 0.83 0.98 = \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 75.0$ Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii)THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ CALIB | STANDHYD (0160) | |ID= 1 DT= 5.0 min | Area (ha) =0.54 Total Imp(%) = 75.00 Dir. Conn.(%)= 75.00 **IMPERVIOUS** PERVIOUS (i) 0.41 0.14 Surface Area (ha)= Dep. Storage (mm)= 1.00 1.50 2.00 Average Slope (%)= 2.00

| Length                                                                                                          | (m)= 6                   | 0.00                      | 40.00                   |                        |                        |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------|------------------------|------------------------|
| Mannings n                                                                                                      | = 0                      | .013                      | 0.250                   |                        |                        |
| Max.Eff.Inten.(mm/<br>over (m<br>Storage Coeff. (m<br>Unit Hyd. Tpeak (m<br>Unit Hyd. peak (c                   | nr)= 5<br>in)<br>in)-    | 1.24<br>5.00<br>2.00 (ii) | 24.00<br>15.00<br>14.49 | (ii)                   |                        |
| Unit Hyd. Tpeak (m<br>Unit Hyd. peak (ci                                                                        | in)=<br>ns)=             | 5.00<br>0.31              | 15.00<br>0.08           |                        |                        |
|                                                                                                                 |                          |                           |                         |                        | TOTALS*<br>0.064 (iii) |
| PEAK FLOW (CI<br>TIME TO PEAK (h<br>RUNOFF VOLUME (i<br>TOTAL RAINFALL (i<br>BUNDEE COEFECTENT                  | rs)=<br>nm)= 5<br>nm)- 5 | 2.50<br>4.70<br>5.70      | 2.58<br>21.15<br>55.70  |                        | 2.50<br>46.30<br>55.70 |
| RUNOFF COEFFICIENT                                                                                              | =                        | 0.98                      | 0.38                    |                        | 0.83                   |
| ***** WARNING: STORAGE                                                                                          |                          |                           |                         |                        |                        |
| (i) CN PROCEDURE<br>CN* = 75.0                                                                                  | ) Ia = D                 | ep. Stora                 | ge (Abov                |                        |                        |
| (ii) TIME STEP (D<br>THAN THE STO<br>(iii) PEAK FLOW DO                                                         | RAGE COEFFI              | CIENT.                    |                         | v                      |                        |
|                                                                                                                 |                          |                           |                         | · ·<br>                |                        |
| DUHYD (0010)                                                                                                    |                          |                           |                         |                        |                        |
| Inlet Cap.=0.054  <br>  #of Inlets= 1  <br>  Total(cms)= 0 1                                                    |                          | ODEAK                     | TDEAV                   | D V                    |                        |
| TOTAL HYD.(ID= 1):                                                                                              | (ha)<br>0.54             | (cms)<br>0.06             | (hrs)<br>2.50           | (mm)<br>46.30          |                        |
| ======================================                                                                          | 0.03                     | 0.01                      | 2.50                    | 46.30                  |                        |
| MINOR SYS. (ID= 3):                                                                                             |                          |                           |                         |                        |                        |
| NOTE: PEAK FLOWS                                                                                                |                          |                           | LOWS IF AI              | NY.                    |                        |
|                                                                                                                 |                          |                           |                         |                        |                        |
| ADD HYD (0005)  <br>  1 + 2 = 3                                                                                 | AREA                     | QPEAK                     | TPEAK                   | R.V.                   |                        |
| $\begin{vmatrix} ADD & HYD & (0003) \\ 1 & 1 + 2 = 3 \\ ID1 = 1 & (0010) \\ + & ID2 = 2 & (0110) \end{vmatrix}$ | (ha)<br>: 0.03           | (cms)<br>0.010<br>0.266   | (hrs)<br>2.50<br>2.50   | (mm)<br>46.30<br>37.92 |                        |
| ====================================                                                                            |                          |                           |                         |                        |                        |
| NOTE: PEAK FLOWS                                                                                                |                          |                           |                         |                        |                        |
|                                                                                                                 |                          |                           |                         |                        |                        |
| ADD HYD (0005)                                                                                                  |                          |                           |                         |                        |                        |
| 3 + 2 = 1                                                                                                       | (ha)                     | QPEAK<br>(cms)<br>0.277   | (hrs)                   | (mm)                   |                        |
| ID1= 3 (0005)<br>+ ID2= 2 (0120)                                                                                | : 1.49                   | 0.194                     | 2.50                    | 38.00<br>50.67         |                        |
| ID = 1 (0005)                                                                                                   |                          |                           |                         |                        |                        |
| NOTE: PEAK FLOWS I                                                                                              | DO NOT INCL              | UDE BASEFI                | LOWS IF A               | NY.                    |                        |
|                                                                                                                 |                          |                           |                         |                        |                        |
| ADD HYD (0005)                                                                                                  |                          |                           |                         |                        |                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                           | AREA<br>(ha)             | QPEAK<br>(cms)            | (hrs)                   | R.V.<br>(mm)           |                        |
| + ID2 = 2 (0130)                                                                                                | 0.53                     | 0.040                     | 2.50                    | 32.87                  |                        |
| ID = 3 (0005)                                                                                                   |                          |                           |                         |                        |                        |
| NOTE: PEAK FLOWS                                                                                                | DO NOT INCL              | UDE BASEFI                | LOWS IF A               | NY.                    |                        |
|                                                                                                                 |                          |                           |                         |                        |                        |
| ADD HYD (0005)  <br>  3 + 2 = 1                                                                                 | ARFA                     | QPEAK                     | ΤΡΓΔΚ                   | R . V                  |                        |
| ID1= 3 (0005)                                                                                                   | (ha)<br>: 4.94           | (cms)<br>0.510            | (hrs)<br>2.50           | (mm)<br>41.27          |                        |
| + ID2= 2 (0140)                                                                                                 | : 2.20                   | 0.258                     | 2.50                    | 46.31                  |                        |

| ID = 1 (0005): 7.14 0.769                                                                                                                                                                                                                                                                         | 2.50 42.82                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOW                                                                                                                                                                                                                                                          | S IF ANY.                                                                                                                           |
| ADD HYD (0005)  <br>1 + 2 = 3   AREA QPEAK<br>ID1= 1 (0005): 7.14 0.769<br>+ ID2= 2 (0150): 3.18 0.103<br>ID = 3 (0005): 10.32 0.830<br>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOW                                                                                                                  | 2.50 36.14                                                                                                                          |
| RESERVOIR (0006)             IN= 2> OUT= 1             DT= 5.0 min         OUTFLOW STORAGE         (cms) (ha.m.)         0.0000 0.0000         0.0050 0.0211         0.0010 0.0683         0.0140 0.1205         0.0160 0.1486                                                                    | 0.4240       0.2417         0.8410       0.2757         1.3500       0.3113         1.9300       0.3486         2.5900       0.3876 |
| AREA QPEAK<br>(ha) (cms)<br>INFLOW : ID= 2 (0005) 10.317 0.8<br>OUTFLOW: ID= 1 (0006) 10.317 0.2<br>PEAK FLOW REDUCTION [QO<br>TIME SHIFT OF PEAK FLOW<br>MAXIMUM STORAGE USED                                                                                                                    | ut/Qin](%)= 34.98                                                                                                                   |
| MAXIMUM STORAGE USED<br>                                                                                                                                                                                                                                                                          |                                                                                                                                     |
| Mannings n = 0.013                                                                                                                                                                                                                                                                                | RVIOUS (i)<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>52.76                                                                       |
| over (min) 5.00<br>Storage Coeff. (min)= 0.00 (ii)                                                                                                                                                                                                                                                | 0.00<br>9.11 (ii)<br>10.00<br>0.16<br>*TOTALS*<br>0.00 0.000 (iii)                                                                  |
| TIME TO PEAK (hrs)= 0.00<br>RUNOFF VOLUME (mm)= NaN Na<br>TOTAL RAINFALL (mm)= 55.70<br>RUNOFF COEFFICIENT = NaN Na                                                                                                                                                                               | 0.00 0.00<br>N NaN<br>55.70 55.70<br>N NaN                                                                                          |
| <pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN   (i) HORTONS EQUATION SELECTED FOR PERVI         Fo (mm/hr)= 50.00 K (         Fc (mm/hr)= 7.50 Cum.Inf.    (ii) TIME STEP (DT) SHOULD BE SMALLER OR         THAN THE STORAGE COEFFICIENT.   (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW </pre> | OUS LOSSES:<br>1/hr)= 2.00<br>(mm)= 0.00<br>EQUAL                                                                                   |
| ADD HYD (0012)  <br>1 + 2 = 3   AREA QPEAK<br>(ha) (cms)<br>*** W A R N I N G : HYDROGRAPH 0011 <id= 2=""> I<br/>*** W A R N I N G : HYDROGRAPH 0003 = HYDROGR<br/>*** W A R N I N G : HYDROGRAPH 0003 = HYDROGR</id=>                                                                            | (hrs) (mm)<br>S DRY.<br>APH 0001                                                                                                    |

| ID1= 1 (0010):   | 0.51 | 0.054 | 2.08 | 46.30 |
|------------------|------|-------|------|-------|
| + ID2= 2 (0011): | 0.00 | 0.000 | 0.00 | NaN   |
| ID = 3 (0012):   | 0.51 | 0.054 | 2.08 | 46.30 |

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| READ STORM                           | 0ca6                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Local\Temp\<br>545a-89e5-4cbu               | d-9772-39d4c2518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c8e\551f7560                                                                            |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| hrs<br>0.25                          | RAIN       TIME         mm/hr       hrs         1.31       1.75         1.31       2.00         1.31       2.25         1.31       2.50         7.87       2.75         7.87       3.00                                                                                                                                                                                                                                                                                          | mm/hr   '                                   | IME RAIN   T<br>nrs mm/hr   1<br>25 9.18   4.<br>50 9.18   5.0<br>75 5.25   5.2<br>00 5.25   5.2<br>25 2.62   5.2<br>50 2.62   6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IME RAIN<br>hrs mm/hr<br>75 1.31<br>00 1.31<br>25 1.31<br>50 1.31<br>75 1.31<br>00 1.31 |
| ID= 1 DT= 5.0 min                    | Area (ha)=<br>Ia (mm)=<br>U.H. Tp(hrs)=<br>L WAS TRANSFORMI                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.56                                        | Number (CN)=<br>_inear Res.(N)=<br>IN. TIME STEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.0<br>3.00                                                                            |
|                                      | RAIN       TIME         mm/hr       hrs         1.31       1.583         1.31       1.667         1.31       1.750         1.31       1.750         1.31       1.833         1.31       1.917         1.31       2.000         1.31       2.083         1.31       2.167         1.31       2.250         1.31       2.417         1.31       2.500         7.87       2.583         7.87       2.667         7.87       2.750         7.87       2.750         7.87       2.750 | mm/hr   ' H<br>22.30   3.08<br>22.30   3.16 | IME     RAIN     T       nrs     mm/hr     1       83     9.18     4.       57     9.18     4.       50     9.18     4.       33     9.18     4.       34     9.18     4.       50     9.18     4.       51     9.18     4.       52     5.18     4.       53     5.25     5.       54     5.25     5.       55     5.25     5.       50     5.25     5.       53     5.25     5.       54     5.25     5.       55     5.25     5.       56     5.25     5.       57     5.25     5.       57     2.62     5.       50     2.62     5.       50     2.62     5.       53     2.62     5.       53     2.62     5.       53     2.62     5. | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                    |
| TIME TO PEAK (ĥ)<br>RUNOFF VOLUME (r | ms)= 0.136 (i)<br>rs)= 3.000<br>mm)= 27.617<br>mm)= 65.599                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         |
| (i) PEAK FLOW DOES                   | NOT INCLUDE BAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SEFLOW IF ANY                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         |
|                                      | Area (ha)=<br>Total Imp(%)=                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | Conn.(%)= 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         |
| Dep. Storage (n<br>Average Slope     | IMPERVIO<br>ha)= 1.45<br>mm)= 1.00<br>(%)= 2.00<br>(m)= 138.80<br>= 0.013                                                                                                                                                                                                                                                                                                                                                                                                        | 1.45<br>1.50<br>2.00<br>40.00               | 5 (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |

| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)=<br>PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =<br>***** WARNING: STORAGE COEFF.<br>(i) CN PROCEDURE SELECO<br>CN* = 75.0 I<br>(ii) TIME STEP (DT) SHO<br>THAN THE STORAGE COEFF | 5.00<br>3.09 (ii)<br>5.00<br>0.27<br>0.24<br>2.50<br>64.60<br>65.60<br>0.98<br>IS SMALLER THAN<br>TED FOR PERVIOUS<br>a = Dep. Storage<br>DULD BE SMALLER (<br>COEFFICIENT. | 15.00<br>14.33 (ii)<br>15.00<br>0.08<br>0.10<br>2.58<br>27.62<br>65.60<br>0.42<br>N TIME STEP!<br>5 LOSSES:<br>(Above)<br>DR EQUAL | *TOTALS*<br>0.334 (iii)<br>2.50<br>46.11<br>65.60<br>0.70 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Surface Area (ha)=<br>Dep. Storage (mm)=<br>Average Slope (%)=<br>Length (m)=<br>Mannings n =                                                                                                                                                                                                                                                                       | IMPERVIOUS<br>1.31<br>1.00<br>2.00<br>99.67<br>0.013                                                                                                                        | PERVIOUS (i)<br>0.18<br>1.50<br>1.00<br>40.00<br>0.250                                                                             | = 88.00                                                   |
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)=<br>PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =<br>***** WARNING: STORAGE COEFF.<br>(i) CN PROCEDURE SELECC<br>CN* = 75.0 I<br>(ii) TIME STEP (DT) SHO<br>THAN THE STORAGE CO    | 0.22<br>2.50<br>64.60<br>65.60<br>0.98<br>IS SMALLER THAN<br>TED FOR PERVIOUS<br>a = Dep. Storage<br>DULD BE SMALLER (                                                      | 0.01<br>2.50<br>27.62<br>65.60<br>0.42<br>N TIME STEP!<br>5 LOSSES:<br>e (Above)                                                   | *TOTALS*<br>0.234 (iii)<br>2.50<br>60.16<br>65.60<br>0.92 |
| <pre>(iii) PEAK FLOW DOES NOT<br/>CALIB  <br/>STANDHYD (0130)   Area<br/>ID= 1 DT= 5.0 min   Total<br/>Surface Area (ha)=<br/>Dep. Storage (mm)=<br/>Average Slope (%)=<br/>Length (m)=<br/>Mannings n =</pre>                                                                                                                                                      | (ha) = 0.53<br>Imp(%) = 35.00<br>IMPERVIOUS<br>0.19<br>1.00<br>1.00                                                                                                         |                                                                                                                                    | = 35.00                                                   |
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)=<br>PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =<br>***** WARNING: STORAGE COEFF.                                                                                                 | 2.29 (ii)<br>5.00<br>0.30<br>0.03<br>2.50<br>64.60<br>65.60<br>0.98<br>IS SMALLER THAN                                                                                      | 20.00<br>0.06<br>0.02<br>2.67<br>27.62<br>65.60<br>0.42<br>N TIME STEP!                                                            | *TOTALS*<br>0.050 (iii)<br>2.50<br>40.54<br>65.60<br>0.62 |

 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 75.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

CALIB Area (ha)= 2.20 Total Imp(%)= 75.00 STANDHYD (0140) |ID= 1 DT= 5.0 min | Dir. Conn.(%)= 75.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =1.65 0.55 (mm)= (%)= 1.00 1.50 Dep. Storage 2.00 2.00 Average Slope Length (m)= 121.11 40.00 0.013 0.250 Mannings n \_ Max.Eff.Inten.(mm/hr)= 60.35 31.27 over (min) Storage Coeff. (min)= 5.00 15.00 2.85 (ii) 14.09 (ii) 5.00 Unit Hyd. Tpeak (min)= 15.00 Unit Hyd. peak (cms)= 0.28 0.08 \*TOTALS\* 0.312 (iii) 2.50 55.35 PEAK FLOW (cms) =0.28 0.04 2.58 27.62 TIME TO PEAK (hrs)= 2.50 RUNOFF VOLUME 64.60 (mm)= TOTAL RAINFALL (mm) =65.60 65.60 65.60 = RUNOFF COEFFICIENT 0.42 0.84 0.98 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 75.0$ Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii) THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. -------\_\_\_\_\_ | CALIB Area (ha)= 0.54 Total Imp(%)= 75.00 STANDHYD (0160) |ID= 1 DT= 5.0 min | Dir. Conn.(%)= 75.00 \_\_\_\_\_ IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 0.41 0.14 1.50 Dep. Storage (mm)= 1.00 Average Slope 2.00 2.00 (%)= 60.00 40.00 Length (m)= Mannings n 0.013 0.250 60.35 Max.Eff.Inten.(mm/hr)= 31.27 over (min) Storage Coeff. (min)= 5.00 15.00 1.87 (ii) 13.11 (ii) (min) =5.00 Unit Hyd. Tpeak (min)= 15.00 Unit Hyd. peak 0.32 0.08 (cms)= \*TOTALS\* 0.077 (iii) 2.50 55.34 0.07 0.01 PEAK FLOW (cms) =2.58 27.62 TIME TO PEAK (hrs) =2.50 (mm)= 64.60 RUNOFF VOLUME TOTAL RAINFALL 65.60 65.60 65.60 (mm) =RUNOFF COEFFICIENT = 0.84 0.98 0.42 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 75.0$ Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii) THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ DUHYD (0010) | Inlet Cap.=0.054 #of Inlets= 1 Total(cms)= 0.1 | AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) TOTAL HYD. (ID= 1): 0.54 0.08 2.50 55.34 \_\_\_\_\_ \_\_\_\_\_ MAJOR SYS.(ID= 2): 0.06 0.02 2.50 55.34 MINOR SYS. (ID= 3): 2.08 0.48 0.05 55.34 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

\_\_\_\_\_

| ADD HYD (0005)  <br>  1 + 2 = 3  <br>+ ID1= 1 (0010):<br>+ ID2= 2 (0110):<br>ID = 3 (0005):<br>NOTE: PEAK FLOWS DO                    | (ha)<br>0.06<br>2.89<br>========<br>2.95                                               | 0.023<br>0.334<br>0.357                                                                  | (hrs)<br>2.50<br>2.50<br>2.50<br>2.50          | (mm)<br>55.34<br>46.11<br>======<br>46.30            |                                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| <pre>ADD HYD (0005)   3 + 2 = 1 ID1= 3 (0005): + ID2= 2 (0120): ID = 1 (0005): NOTE: PEAK FLOWS DO</pre>                              | 4.44                                                                                   | 0.591                                                                                    | 2.50                                           | 50.95                                                |                                                                                          |  |
| ADD HYD (0005)  <br>  1 + 2 = 3  <br>ID1= 1 (0005):                                                                                   | AREA<br>(ha)<br>4.44<br>0.53<br>4.97                                                   | QPEAK<br>(cms)<br>0.591<br>0.050<br>0.641                                                | TPEAK<br>(hrs)<br>2.50<br>2.50<br>2.50<br>2.50 | R.V.<br>(mm)<br>50.95<br>40.54<br>49.84              |                                                                                          |  |
| ADD HYD (0005)  <br>  3 + 2 = 1<br> <br>  ID1= 3 (0005):<br>+ ID2= 2 (0140):<br>============<br>ID = 1 (0005):<br>NOTE: PEAK FLOWS DO | 7.17                                                                                   | 0.953                                                                                    | 2.50                                           | 51.53                                                |                                                                                          |  |
| ADD HYD (0005)  <br>1 + 2 = 3  <br>ID1= 1 (0005):<br>+ ID2= 2 (0150):<br>ID = 3 (0005):<br>NOTE: PEAK FLOWS DO                        | 10.35                                                                                  | QPEAK<br>(cms)<br>0.953<br>0.136<br>1.036<br>JDE BASEFLC                                 | 2.50                                           | R.V.<br>(mm)<br>51.53<br>27.62<br>44.18              |                                                                                          |  |
| RESERVOIR (0006)  <br>  IN= 2> OUT= 1  <br>  DT= 5.0 min   C                                                                          | DUTFLOW<br>(cms)<br>0.0000<br>0.0050<br>0.0080<br>0.0110<br>0.0130<br>0.0140<br>0.0160 | STORAGE<br>(ha.m.)<br>0.0000<br>0.0211<br>0.0440<br>0.0683<br>0.0938<br>0.1205<br>0.1486 | (cr<br>0.0<br>0.2<br>0.4<br>0.8<br>1.5<br>1.5  |                                                      | STORAGE<br>(ha.m.)<br>0.1782<br>0.2093<br>0.2417<br>0.2757<br>0.3113<br>0.3486<br>0.3876 |  |
|                                                                                                                                       | 10.3<br>10.3                                                                           | a) (cms<br>351 1.<br>351 0.<br>EDUCTION [C                                               | 5) (ł<br>036<br>437<br>Qout/Qin]               | PEAK<br>nrs)<br>2.50<br>3.00<br> (%)= 42<br>nin)= 30 |                                                                                          |  |

|                                                                              |                                                            |                                                                                   | 0011                                                                  | (IIa.II                                              | ,                                              |                                      |                                                      |
|------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------------|
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 mir                                | <br> <br>  Area<br>  Tota                                  | (ha)=<br>1 Imp(%)=                                                                | 0.00                                                                  | Dir. Cor                                             | ın. (%)=                                       | 35.00                                |                                                      |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n        | (ha)=<br>(mm)=<br>(%)=<br>(m)=<br>=                        | IMPERVI<br>0.0<br>1.0<br>0.0<br>0.0                                               | tous<br>)0<br>)0<br>)0<br>)0<br>)0<br>13                              | PERVIOUS (<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250 | (i)                                            |                                      |                                                      |
| Max.Eff.Inter<br>ov<br>Storage Coeff<br>Unit Hyd. Tpe<br>Unit Hyd. pea       | (mm/hr) =                                                  | 60                                                                                | 35                                                                    | 65 66                                                | i)                                             | ота: с*                              |                                                      |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFAL<br>RUNOFF COEFF3 | (cms)=<br>(hrs)=<br>(mm)=<br>L (mm)=<br>CIENT =            | 0.(<br>0.(<br>NaN<br>65.(<br>NaN                                                  | )0<br>)0<br>50                                                        | 0.00<br>0.00<br>NaN<br>65.60<br>NaN                  | Na                                             | 65.60                                | )                                                    |
| **** WARNING: STO                                                            | DRAGE COEF                                                 | F. IS SMAI                                                                        | LER THA                                                               | N TIME STE                                           | P!                                             |                                      |                                                      |
| FC (<br>(ii) TIME ST                                                         | (mm/hr)= 5<br>(mm/hr)=<br>TEP (DT) S<br>HE STORAGE         | 0.00<br>7.50<br>HOULD BE S<br>COEFFICIE                                           | K<br>Cum.Inf.<br>SMALLER (<br>ENT.                                    | (1/hr)=<br>(mm)=<br>OR EQUAL                         | 2.00<br>0.00                                   |                                      |                                                      |
| + ID2= 2 (                                                                   | <br>: HYDROG<br>: HYDROG<br>: HYDROG<br>(0010):<br>(0011): | (ha)<br>RAPH 0011<br>RAPH 0003<br>RAPH 0003<br>0.48 (<br>0.00 (                   | (cms)<br><id= 2=""><br/>= HYDRO<br/>= HYDRO<br/>).054<br/>).000</id=> | GRAPH 0001<br>GRAPH 0001<br>2.08<br>0.00 N           | (mm)<br>55.34<br>Jan                           |                                      |                                                      |
|                                                                              | (0012):                                                    |                                                                                   |                                                                       | 2.08                                                 |                                                |                                      |                                                      |
| NOTE: PEAK F                                                                 | LOWS DO N                                                  | OT INCLUD                                                                         | E BASEFLO                                                             | OWS IF ANY                                           | <b>′</b> .                                     |                                      |                                                      |
| **************************************                                       | JMBER: 5                                                   | **                                                                                |                                                                       |                                                      |                                                |                                      |                                                      |
| READ STORM<br>Ptotal= 73.00 mm                                               |                                                            | ata<br>Oca                                                                        | a\Loca1\<br>a6545a-8                                                  | iantomasi\<br>Temp\<br>9e5-4cbd-9<br>oor: 6-hr,      | 9772-39d                                       | 4c2518c8e\<br>storm                  | b753d7f0                                             |
|                                                                              |                                                            | IN   TIM                                                                          | E RAII                                                                | N  ' TIME                                            | E RAI                                          | N   TIME                             | RAIN<br>mm/hr                                        |
|                                                                              | hrs mm/<br>).25 1.<br>).50 1.<br>).75 1.                   | hr   hr<br>46   1.7<br>46   2.00<br>46   2.2<br>46   2.5<br>76   2.7<br>76   3.00 | 5 24.8<br>0 24.8<br>5 67.1<br>0 67.1                                  | 2   3.25<br>2   3.50<br>6   3.75<br>6   4.00         | 10.22<br>10.22<br>5.84<br>5.84<br>2.92<br>2.92 | 4.75<br>5.00<br>5.25<br>5.50<br>5.75 | 1.46<br>1.46<br>1.46<br>1.46<br>1.46<br>1.46<br>1.46 |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit Hyd Qpeak (cms)= 0.217<br>PEAK FLOW (cms)= 0.161 (i)<br>TIME TO PEAK (hrs)= 3.000                                                                                                                                                                                                                     |
| RUNOFF VOLUME (mm)= 32.734<br>TOTAL RAINFALL (mm)= 73.000<br>RUNOFF COEFFICIENT = 0.448                                                                                                                                                                                                                    |
| (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.                                                                                                                                                                                                                                                            |
| CALIB  <br>  STANDHYD (0110)   Area (ha)= 2.89<br> ID= 1 DT= 5.0 min   Total Imp(%)= 50.00 Dir. Conn.(%)= 50.00                                                                                                                                                                                            |
| IMPERVIOUS       PERVIOUS (i)         Surface Area       (ha)=       1.45       1.45         Dep. Storage       (mm)=       1.00       1.50         Average Slope       (%)=       2.00       2.00         Length       (m)=       138.80       40.00         Mannings n       =       0.013       0.250   |
| Max.Eff.Inten.(mm/hr)= 67.16 36.99<br>over (min) 5.00 15.00<br>Storage Coeff. (min)= 2.96 (ii) 13.47 (ii)<br>Unit Hyd. Tpeak (min)= 5.00 15.00<br>Unit Hyd. peak (cms)= 0.28 0.08<br>*TOTALS*                                                                                                              |
| PEAK FLOW(cms)=0.270.120.382(iii)TIME TO PEAK(hrs)=2.502.582.50RUNOFF VOLUME(mm)=72.0032.7452.37TOTAL RAINFALL(mm)=73.0073.0073.00RUNOFF COEFFICIENT=0.990.450.72                                                                                                                                          |
| ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!                                                                                                                                                                                                                                                   |
| <ul> <li>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:<br/>CN* = 75.0 Ia = Dep. Storage (Above)         (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL<br/>THAN THE STORAGE COEFFICIENT.         (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.         </li> </ul>                                    |
| CALIB  <br>  STANDHYD (0120)   Area (ha)= 1.49<br> ID= 1 DT= 5.0 min   Total Imp(%)= 88.00 Dir. Conn.(%)= 88.00                                                                                                                                                                                            |
| $\begin{array}{rcrr} & \text{IMPERVIOUS} & \text{PERVIOUS} & (i) \\ \text{Surface Area} & (ha) = & 1.31 & 0.18 \\ \text{Dep. Storage} & (mm) = & 1.00 & 1.50 \\ \text{Average Slope} & (\%) = & 2.00 & 1.00 \\ \text{Length} & (m) = & 99.67 & 40.00 \\ \text{Mannings n} & = & 0.013 & 0.250 \end{array}$ |
| Max.Eff.Inten.(mm/hr)= 67.16 38.35<br>over (min) 5.00 10.00<br>Storage Coeff. (min)= 2.43 (ii) 7.02 (ii)<br>Unit Hyd. Tpeak (min)= 5.00 10.00<br>Unit Hyd. peak (cms)= 0.30 0.14<br>*TOTALS*                                                                                                               |

| RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI                                                                                                                                                                                                                                        | (cms)=<br>(hrs)=<br>(mm)=<br>(mm)=<br>ENT =                                                                                                                                                              | 0.24<br>2.50<br>72.00<br>73.00<br>0.99                                                                                                                                                                                                                                          | 0.02<br>2.50<br>32.74<br>73.00<br>0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.262 (iii)<br>2.50<br>67.29<br>73.00<br>0.92 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| CN* =<br>(ii) TIME STEP                                                                                                                                                                                                                                                                   | URE SELEC<br>75.0 I<br>(DT) SHO<br>STORAGE C                                                                                                                                                             | TED FOR PERVIOL<br>a = Dep. Storag<br>ULD BE SMALLER<br>OEFFICIENT.                                                                                                                                                                                                             | JS LOSSES:<br>ge (Above)<br>OR EQUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
| CALIB  <br>  STANDHYD (0130)  <br> ID= 1 DT= 5.0 min                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %)= 35.00                                     |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                                                                                                                                                                     | (ha)=<br>(mm)=<br>(%)=<br>(m)=<br>=                                                                                                                                                                      | IMPERVIOUS<br>0.19<br>1.00<br>1.00<br>59.44<br>0.013                                                                                                                                                                                                                            | PERVIOUS (i)<br>0.34<br>1.50<br>1.00<br>40.00<br>0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                                                                                                                                                                                            | mm/hr)=<br>(min)<br>(min)=<br>(min)=<br>(cms)=                                                                                                                                                           | 67.16<br>5.00<br>2.19 (ii)<br>5.00<br>0.31                                                                                                                                                                                                                                      | 36.99<br>20.00<br>15.13 (ii)<br>20.00<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *TOTALS*                                      |
| PEAK FLOW<br>TIME TO PEAK                                                                                                                                                                                                                                                                 | (cms)=<br>(hrs)=<br>(mm)=                                                                                                                                                                                | 0.03<br>2.50<br>72.00<br>73.00                                                                                                                                                                                                                                                  | 0.03<br>2.67<br>32.74<br>73.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.058 (iii)<br>2.50<br>46.46<br>73.00         |
| ***** WARNING: STORA                                                                                                                                                                                                                                                                      | GE COEFF.                                                                                                                                                                                                | IS SMALLER THA                                                                                                                                                                                                                                                                  | AN TIME STEP!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.64                                          |
| kUNOFF CUEFFICI<br>***** WARNING: STORA<br>(i) CN PROCED<br>CN* =<br>(ii) TIME STEP<br>THAN THE<br>(iii) PEAK FLOW                                                                                                                                                                        | GE COEFF.<br>URE SELEC<br>75.0 I<br>(DT) SHO<br>STORAGE C                                                                                                                                                | IS SMALLER THA<br>TED FOR PERVIOU<br>a = Dep. Storag<br>ULD BE SMALLER<br>OEFFICIENT.                                                                                                                                                                                           | O.43<br>AN TIME STEP!<br>JS LOSSES:<br>Je (Above)<br>OR EQUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.64                                          |
| (i) CN PROCED<br>(i) CN PROCED<br>CN* =<br>(ii) TIME STEP<br>THAN THE                                                                                                                                                                                                                     | GE COEFF.<br>URE SELEC<br>75.0 I<br>(DT) SHO<br>STORAGE C<br>DOES NOT<br>                                                                                                                                | IS SMALLER THA<br>TED FOR PERVIOL<br>a = Dep. Storag<br>ULD BE SMALLER<br>OEFFICIENT.<br>INCLUDE BASEFL<br>                                                                                                                                                                     | O.43<br>AN TIME STEP!<br>JS LOSSES:<br>Je (Above)<br>OR EQUAL<br>LOW IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| <pre>kunoff CUEFFICI ***** WARNING: STORA         (i) CN PROCED         CN* =         (ii) TIME STEP         THAN THE         (iii) PEAK FLOW         CALIB           STANDHYD (0140)   </pre>                                                                                            | GE COEFF.<br>URE SELEC<br>75.0 I<br>(DT) SHO<br>STORAGE C<br>DOES NOT<br><br>Area<br>Total<br>(ha)=                                                                                                      | IS SMALLER THA<br>TED FOR PERVIOL<br>a = Dep. Storag<br>ULD BE SMALLER<br>OEFFICIENT.<br>INCLUDE BASEFL<br>(ha)= 2.20<br>Imp(%)= 75.00<br>IMPERVIOUS<br>1.65                                                                                                                    | D:45<br>AN TIME STEP!<br>JS LOSSES:<br>Je (Above)<br>OR EQUAL<br>LOW IF ANY.<br>Dir. Conn.(<br>PERVIOUS (i)<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| <pre>kunoff COEFFICI ***** WARNING: STORA         (i) CN PROCED         CN* =         (ii) TIME STEP         THAN THE         (iii) PEAK FLOW CALIB   STANDHYD (0140)   ID= 1 DT= 5.0 min   Surface Area</pre>                                                                            | GE COEFF.<br>URE SELEC<br>75.0 I<br>(DT) SHO<br>STORAGE C<br>DOES NOT<br><br>Area<br>Total<br>(ha)=<br>(mm)=<br>(%)=<br>(m)=<br>=                                                                        | IS SMALLER THA<br>TED FOR PERVIOL<br>a = Dep. Storag<br>ULD BE SMALLER<br>OEFFICIENT.<br>INCLUDE BASEFL<br>(ha)= 2.20<br>Imp(%)= 75.00<br>IMPERVIOUS<br>1.65<br>1.00<br>2.00<br>121.11<br>0.013                                                                                 | Dir. Conn.(<br>PERVIOUS (i)<br>0.250<br>0.45<br>0.45<br>0.45<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0. | %)= 75.00                                     |
| <pre>kunoff CUEFFICI ***** WARNING: STORA         (i) CN PROCED         CN* =         (ii) TIME STEP         THAN THE         (iii) PEAK FLOW CALIB   STANDHYD (0140) ID= 1 DT= 5.0 min   Surface Area         Dep. Storage         Average Slope         Length         Mannings n</pre> | GE COEFF.<br>URE SELEC<br>75.0 I<br>(DT) SHO<br>STORAGE C<br>DOES NOT<br><br>Area<br>Total<br>(ha)=<br>(mm)=<br>(%)=<br>(m)=<br>(min)=<br>(min)=<br>(cms)=<br>(cms)=<br>(mm)=<br>(mm)=<br>(mm)=<br>(mm)= | IS SMALLER THA<br>TED FOR PERVIOL<br>a = Dep. Storac<br>ULD BE SMALLER<br>OEFFICIENT.<br>INCLUDE BASEFL<br>(ha)= 2.20<br>Imp(%)= 75.00<br>IMPERVIOUS<br>1.65<br>1.00<br>2.00<br>121.11<br>0.013<br>67.16<br>5.00<br>2.73 (ii)<br>5.00<br>0.29<br>0.31<br>2.50<br>72.00<br>73.00 | Dir. Conn.(<br>PERVIOUS (i)<br>0.250<br>36.99<br>15.00<br>0.08<br>0.08<br>0.43<br>0.43<br>0.43<br>0.43<br>0.52<br>0.52<br>0.55<br>1.50<br>2.00<br>40.00<br>0.250<br>36.99<br>15.00<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |

Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00 |ID= 1 DT= 5.0 min | IMPERVIOUS PERVIOUS (i) 0.41 (ha) =Surface Area 0.14 Dep. Storage (mm)= 1.00 1.50 Average Slope 2.00 2.00 (%)= 40.00 0.250 Length (m)= 60.00 Mannings n 0.013 Max.Eff.Inten.(mm/hr)= 67.16 36.99 5.00 15.00 over (min) 1.79 (ii) 12.30 (ii) 15.00 Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 5.00 0.09 \*TOTALS\* 0.08 0.01 0.086 (iii) PEAK FLOW (cms)= 2.50 2.58 32.74 2.50 62.17 TIME TO PEAK (hrs) =RUNOFF VOLUME (mm)= (mm)= 73.00 73.00 TOTAL RAINFALL 73.00 RUNOFF COEFFICIENT = 0.99 0.45 0.85 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 75.0 Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii)THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ (0010) | DUHYD Inlet Cap.=0.054 #of Inlets= 1 TPEAK Total(cms)= 0.1 | AREA QPEAK R.V. (ha) (cms) (hrs) (mm) TOTAL HYD. (ID= 1): 0.09 2.50 0.54 62.17 \_\_\_\_\_ \_\_\_\_\_ ======== ======= \_\_\_\_\_ 2.50 MAJOR SYS.(ID= 2): 0.08 0.03 62.17 MINOR SYS. (ID= 3): 0.46 0.05 2.08 62.17 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \_\_\_\_\_ \_\_\_\_\_ ADD HYD (0005) | 1 + 2 = 3AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) \_\_\_\_\_ ID1= 1 (0010): + ID2= 2 (0110): 0.08 0.032 2.50 62.17 2.89 0.382 2.50 52.37 ===== ID = 3 (0005):2.97 0.414 2.50 52.63 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0005) | 3 + 2 = 1 | AREA QPEAK TPEAK R.V. (ha) 2.97 (hrs) 2.50 (cms) (mm) \_\_\_\_\_ ID1= 3 (0005): + ID2= 2 (0120): 0.414 52.63 1.49 0.262 2.50 67.29 \_\_\_\_\_ \_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ ID = 1 (0005):4.46 0.676 2.50 57.53 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \_\_\_\_\_ ADD HYD (0005) | 1 + 2 = 3 | R.V. AREA QPEAK TPEAK (hrs) 2.50 \_\_\_\_\_ (ha) (cms) (mm) 57.53 ID1= 1 (0005): 4.46 0.676 0.53 + ID2= 2 (0130): 46.46 0.058 2.50 ========= =========== \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_-ID = 3 (0005):4.99 0.734 2.50 56.35 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \_\_\_\_\_

| ADD HYD (0005)<br>3 + 2 = 1<br>ID1= 3 (00<br>+ ID2= 2 (02)<br>====================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br>_<br>005):<br>140):                                                                                                                                                                                                                                                                             | AREA<br>(ha)<br>4.99<br>2.20                                                                                                                                                                                                                                                                                                         | QPEAK<br>(cms)<br>0.734<br>0.351                                                                                                                                  | TPEAK<br>(hrs)<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R.V.<br>(mm)<br>56.35<br>62.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| ID = 1 (00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>005):                                                                                                                                                                                                                                                                                           | 7.19                                                                                                                                                                                                                                                                                                                                 | 1.085                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =                                                                                      |
| NOTE: PEAK FLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OWS DO NO                                                                                                                                                                                                                                                                                           | T INCLU                                                                                                                                                                                                                                                                                                                              | DE BASEFL                                                                                                                                                         | OWS IF AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| ADD HYD (0005)<br>1 + 2 = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     | AREA                                                                                                                                                                                                                                                                                                                                 | QPEAK                                                                                                                                                             | TPEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
| $\begin{array}{c} 1 + 2 = 3 \\ 1 + 2 = 3 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\ 1 + 102 = 2 \\$ | -<br>005):<br>150):                                                                                                                                                                                                                                                                                 | (ha)<br>7.19<br>3.18                                                                                                                                                                                                                                                                                                                 | (cms)<br>1.085<br>0.161                                                                                                                                           | (hrs)<br>2.50<br>3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (mm)<br>58.13<br>32 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                                                                                      |
| $ID_{2} = 2$ (0)<br>====================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                                                                                      |
| NOTE: PEAK FLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OWS DO NO                                                                                                                                                                                                                                                                                           | T INCLU                                                                                                                                                                                                                                                                                                                              | DE BASEFL                                                                                                                                                         | OWS IF AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| RESERVOIR (0006)<br>IN= 2> OUT= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| DT= 5.0 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 OUT                                                                                                                                                                                                                                                                                               | FLOW<br>ms)                                                                                                                                                                                                                                                                                                                          | STORAGE<br>(ha.m.)                                                                                                                                                | OUTF<br>  (cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FLOW<br>ns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STORAGE<br>(ha.m.)                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.                                                                                                                                                                                                                                                                                                  | 0050                                                                                                                                                                                                                                                                                                                                 | 0.0000<br>0.0211<br>0.0440                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1250<br>1250<br>1240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2093                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.<br>0.                                                                                                                                                                                                                                                                                            | 0110<br>0130                                                                                                                                                                                                                                                                                                                         | 0.0683                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3410<br>3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2757<br>0.3113                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.<br>0.                                                                                                                                                                                                                                                                                            | 0140<br>0160                                                                                                                                                                                                                                                                                                                         | (ha.m.)<br>0.0000<br>0.0211<br>0.0440<br>0.0683<br>0.0938<br>0.1205<br>0.1486                                                                                     | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9300<br>5900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3486<br>0.3876                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     | ARE<br>(ha                                                                                                                                                                                                                                                                                                                           | A QPE                                                                                                                                                             | AK TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEAK<br>urs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R.V.<br>(mm)                                                                           |
| INFLOW : ID= 2<br>OUTFLOW: ID= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0005)<br>(0006)                                                                                                                                                                                                                                                                                    | ARE<br>(ha<br>10.3<br>10.3                                                                                                                                                                                                                                                                                                           | A QPE<br>.) (cm<br>70 1<br>70 0                                                                                                                                   | AK TF<br>IS) (1<br>184<br>566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEAK<br>nrs)<br>2.50<br>2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R.V.<br>(mm)<br>50.35<br>50.24                                                         |
| INFLOW : ID= 2<br>OUTFLOW: ID= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0005)<br>(0006)<br>PEAK FL                                                                                                                                                                                                                                                                         | ARE<br>(ha<br>10.3<br>10.3<br>OW RE                                                                                                                                                                                                                                                                                                  | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [                                                                                                                       | [Qout/Qin]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (%)= 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.83                                                                                   |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0005)<br>(0006)<br>PEAK FL                                                                                                                                                                                                                                                                         | ARE<br>(ha<br>10.3<br>10.3<br>OW RE                                                                                                                                                                                                                                                                                                  | A QPE<br>) (cm<br>70 1<br>70 0                                                                                                                                    | [Qout/Qin]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (%)= 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.83                                                                                   |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0005)<br>(0006)<br>PEAK FL                                                                                                                                                                                                                                                                         | ARE<br>(ha<br>10.3<br>10.3<br>OW RE                                                                                                                                                                                                                                                                                                  | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [                                                                                                                       | [Qout/Qin]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (%)= 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.83                                                                                   |
| CALIB<br>STANDHYD (0011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0005)<br>(0006)<br>PEAK FL<br>TIME SHIF<br>MAXIMUM                                                                                                                                                                                                                                                 | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)                                                                                                                                                                                                                                                                | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>                                                                                                | Qout/Qin]<br>(n<br>(ha.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (%)= 47<br>nin)= 15<br>.m.)= (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.83<br>5.00<br>0.2535                                                                 |
| CALIB<br>STANDHYD (0011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0005)<br>(0006)<br>PEAK FL<br>TIME SHIF<br>MAXIMUM                                                                                                                                                                                                                                                 | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)                                                                                                                                                                                                                                                      | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>                                                                                                | Qout/Qin]<br>(n<br>(ha.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)= 47<br>nin)= 15<br>.m.)= (<br>.m.)= (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.83                                                                                   |
| CALIB<br>STANDHYD (0011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0005)<br>(0006)<br>PEAK FLG<br>TIME SHIF<br>MAXIMUM<br>MAXIMUM<br>Area<br>Area<br>Area<br>Total                                                                                                                                                                                                    | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0                                                                                                                                                                                                                                        | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br><br>= 0.00<br>= 50.00<br>VIOUS                                                                  | Qout/Qin]<br>(n<br>(ha.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (%)= 47<br>nin)= 15<br>.m.)= (<br>.m.)= (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.83<br>5.00<br>0.2535                                                                 |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0005)<br>(0006)<br>PEAK FLG<br>TIME SHIF<br>MAXIMUM<br>MAXIMUM<br>Area<br>Area<br>Area<br>Total                                                                                                                                                                                                    | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0                                                                                                                                                                                                                                        | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br><br>= 0.00<br>= 50.00<br>VIOUS                                                                  | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (%)= 47<br>nin)= 15<br>.m.)= (<br>.m.)= (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.83<br>5.00<br>0.2535                                                                 |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0005)<br>(0006)<br>PEAK FLI<br>TIME SHIF<br>MAXIMUM<br>Area<br>Area<br>Total<br>(ha)=<br>(m)=<br>(%)=<br>(m)=<br>=                                                                                                                                                                                 | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0<br>0.                                                                                                                                                                                                              | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00                            | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (%)= 47<br>nin)= 15<br>.m.)= (<br>.m.)= (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.83<br>5.00<br>0.2535                                                                 |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0005)<br>(0006)<br>PEAK FLU<br>TIME SHIFF<br>MAXIMUM<br>Area<br>Area<br>Area<br>(ha)=<br>(mm)=<br>(%)=<br>(m)=<br>=<br>(mm/hr)=<br>r (min)                                                                                                                                                         | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0.                                                                                                                                                                                                                   | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>013<br>.16<br>.00                                   | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>74.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (%)= 47<br>nin)= 19<br>.m.)= (<br>.m.)= (<br>.m.)= (<br>.m.)= (<br>.m.)= (<br>.m.)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.83<br>5.00<br>0.2535                                                                 |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0005)<br>(0006)<br>PEAK FLU<br>TIME SHIFF<br>MAXIMUM<br>Area<br>Area<br>Area<br>(ha)=<br>(mm)=<br>(%)=<br>(m)=<br>=<br>(mm/hr)=<br>r (min)                                                                                                                                                         | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0.                                                                                                                                                                                                                   | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>013<br>.16<br>.00                                   | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>74.93<br>10.00<br>7.92 (<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (%)= 47<br>nin)= 19<br>.m.)= (<br>.m.)= (<br>.m.)= (<br>.m.)= (<br>.m.)= (<br>.m.)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.83<br>5.00<br>0.2535                                                                 |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0005)<br>(0006)<br>PEAK FLU<br>TIME SHIF<br>MAXIMUM<br>Area<br>Total<br>(ha)=<br>(m)=<br>(%)=<br>(m)=<br>(m)=<br>r (min)=<br>k (min)=<br>k (min)=<br>(cms)=                                                                                                                                        | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0<br>0.<br>67<br>5<br>0<br>0<br>5<br>0<br>0                                                                                                                                                                          | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>74.93<br>10.00<br>7.92 (<br>10.00<br>0.17<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (%)= 47<br>nin)= 19<br>.m.)= (<br>.m.)= (<br>.m.)= (<br>.m.)=<br>(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.83<br>5.00<br>0.2535<br>= 35.00<br>*TOTALS*<br>0.000 (iii)                           |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW<br>TIME TO PEAK<br>BUNOFF VOLUMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0005)<br>(0006)<br>PEAK FLU<br>TIME SHIF<br>MAXIMUM<br>Area<br>Area<br>Total<br>(ha)=<br>(mm)=<br>(%)=<br>(m)=<br>(m)=<br>(min)=<br>k (min)=<br>k (min)=<br>(cms)=<br>(hrs)=<br>(ms)=                                                                                                              | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0.<br>67<br>5<br>0<br>0<br>5<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>74.93<br>10.00<br>7.92 (<br>10.00<br>0.17<br>0.00<br>0.00<br>NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (%)= 47<br>nin)= 19<br>.m.)= (<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.83<br>5.00<br>).2535<br>= 35.00<br>= 35.00<br>*TOTALS*<br>0.000 (iii)<br>0.00<br>NaN |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW<br>TIME TO PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0005)<br>(0006)<br>PEAK FLU<br>TIME SHIF<br>MAXIMUM<br>Area<br>Area<br>Total<br>(ha)=<br>(mm)=<br>(%)=<br>(m)=<br>(m)=<br>(min)=<br>k (min)=<br>k (min)=<br>(cms)=<br>(hrs)=<br>(ms)=                                                                                                              | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0.<br>67<br>5<br>0<br>0<br>5<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>74.93<br>10.00<br>7.92 (<br>10.00<br>0.17<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (%)= 47<br>nin)= 19<br>.m.)= (<br>.m.)= (<br>.m.) | 7.83<br>5.00<br>0.2535<br>= 35.00<br>*TOTALS*<br>0.000 (iii)<br>0.00                   |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>(0005)<br/>(0006)<br/>PEAK FLC<br/>TIME SHIF<br/>MAXIMUM<br/>  Area<br/>  Total<br/>-<br/>(ha)=<br/>(mm)=<br/>(%)=<br/>(m)=<br/>(m)=<br/>r (min)<br/>(min)=<br/>k (min)=<br/>(cms)=<br/>(hrs)=<br/>(mm)=<br/>IENT =</pre>                                                                      | ARE<br>(ha<br>10.3<br>10.3<br>0W RE<br>T OF PE<br>STORAGE<br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0.<br>67<br>5<br>0<br>0<br>0.<br>87<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                       | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>74.93<br>10.00<br>7.92 (<br>10.00<br>0.17<br>0.00<br>0.17<br>0.00<br>NaN<br>73.00<br>NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (%)= 47<br>nin)= 19<br>.m.)= (<br><br>onn.(%)=<br>(i)<br>(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.83<br>5.00<br>).2535<br>= 35.00<br>*TOTALS*<br>0.000 (iii)<br>0.00<br>NaN<br>73.00   |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>OVEL<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI<br>**** WARNING: STOR/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0005)<br>(0006)<br>PEAK FLU<br>TIME SHIF<br>MAXIMUM<br>Area<br>Total<br>(ha)=<br>(m)=<br>(%)=<br>(m)=<br>(%)=<br>(m)=<br>(%)=<br>(m)=<br>(m)=<br>(m)=<br>(cms)=<br>(hrs)=<br>(mm)=<br>IENT =<br>AGE COEFF<br>EQUATION                                                                              | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0.<br>67<br>5<br>0<br>0<br>0.<br>67<br>5<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0.<br>1<br>1<br>0<br>0<br>0.<br>5<br>0<br>0<br>0<br>0<br>8<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>74.93<br>10.00<br>7.92 (<br>10.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>NaN<br>73.00<br>NaN<br>73.00<br>NaN<br>73.00<br>NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>[(%)= 47<br/>nin)= 19<br/>.m.)= (<br/>.m.)= (<br/>.m.)= (<br/>.m.)= (<br/>.m.)= (<br/>.m.)=<br/>(i)<br/>(ii)<br/>(ii)<br/>(ii)<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.83<br>5.00<br>).2535<br>= 35.00<br>*TOTALS*<br>0.000 (iii)<br>0.00<br>NaN<br>73.00   |
| CALIB<br>STANDHYD (0011)<br>ID= 1 DT= 5.0 min<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>Max.Eff.Inten.(<br>Over<br>Storage Coeff.<br>Unit Hyd. Tpeal<br>Unit Hyd. Tpeal<br>Unit Hyd. peak<br>PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI<br>**** WARNING: STOR(<br>(i) HORTONS E<br>Fo (mr<br>Fc (mr<br>(ii) TIME STEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>(0005)<br/>(0006)<br/>PEAK FLU<br/>TIME SHIF<br/>MAXIMUM<br/>AXIMUM<br/>Area<br/>Total<br/>(ha)=<br/>(mm)=<br/>(%)=<br/>(m)=<br/>(%)=<br/>(m)=<br/>(m)=<br/>(mn)=<br/>(cms)=<br/>(cms)=<br/>(hrs)=<br/>(hrs)=<br/>(mm)=<br/>IENT =<br/>AGE COEFF<br/>EQUATION<br/>n/hr)= 50<br/>n/hr)= 7</pre> | ARE<br>(ha<br>10.3<br>10.3<br>OW RE<br>T OF PE<br>STORAGE<br><br>(ha)<br>Imp(%)<br>IMPER<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                               | A QPE<br>) (cm<br>70 1<br>70 0<br>DUCTION [<br>AK FLOW<br>USED<br>= 0.00<br>= 50.00<br>VIOUS<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | Qout/Qin]<br>(n<br>(ha.<br>Dir. Co<br>PERVIOUS<br>0.00<br>1.50<br>2.00<br>40.00<br>0.250<br>74.93<br>10.00<br>7.92 (<br>10.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.17<br>0.00<br>0.00 | <pre>[(%)= 47<br/>nin)= 19<br/>.m.)= (<br/>.m.)= (<br/>.m.)= (<br/>.m.)= (<br/>.m.)= (<br/>.m.)=<br/>(i)<br/>(ii)<br/>(ii)<br/>(ii)<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.83<br>5.00<br>).2535<br>= 35.00<br>*TOTALS*<br>0.000 (iii)<br>0.00<br>NaN<br>73.00   |

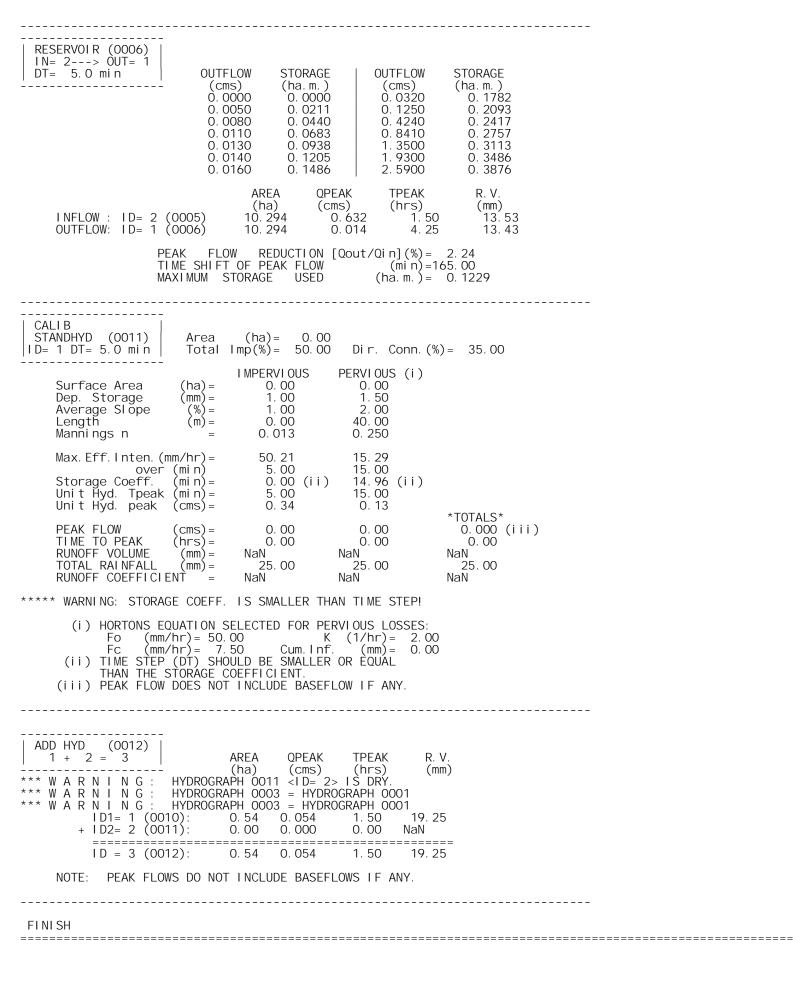
| + ID2= 2 (0011)                                                                                                                                                                   | (ha) (<br>/DROGRAPH 0011 <<br>/DROGRAPH 0003 =<br>/DROGRAPH 0003 =<br>): 0.46 0.<br>): 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                            | HYDROGRAPH 0001<br>HYDROGRAPH 0001<br>054 2.08<br>000 0.00 N                                                                 | 62.17<br>aN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NOTE: PEAK FLOWS                                                                                                                                                                  | DO NOT INCLUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BASEFLOWS IF ANY                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |  |  |
| **************************************                                                                                                                                            | 6 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |  |  |
| READ STORM                                                                                                                                                                        | Filename: C:\U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sers\jiantomasi\/<br>Local\Temp\                                                                                             | АррD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                 |  |  |
| <br>  Ptotal= 80.30 mm                                                                                                                                                            | 0ca6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 545a-89e5-4cbd-9                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e\d387665c                                                                                                                                                      |  |  |
| TIME<br>hrs<br>0.25<br>0.50<br>0.75<br>1.00<br>1.25<br>1.50                                                                                                                       | RAINTIME<br>hrsmm/hrhrs1.611.751.612.001.612.251.612.509.642.759.643.00                                                                                                                                                                                                                                                                                                                                                                                                                                   | RAIN  ' TIME<br>mm/hr  ' hrs<br>27.30   3.25<br>27.30   3.50<br>73.88   3.75<br>73.88   4.00<br>20.88   4.25<br>20.88   4.50 | RAINTIMmm/hrhr11.244.7511.245.006.425.256.425.503.215.753.216.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E RAIN<br>5 mm/hr<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61                                                                                               |  |  |
| CALIB  <br>  NASHYD (0150)  <br> ID= 1 DT= 5.0 min  <br>                                                                                                                          | U.H. Tp(hrs)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.18 Curve Nu<br>1.50 # of Lin<br>0.56<br>HED TO 5.0 MIN.                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0<br>00                                                                                                                                                        |  |  |
| hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000<br>1.083<br>1.167<br>1.250<br>1.333<br>1.417<br>1.500             | RAIN       TIME         mm/hr       hrs         1.61       1.583         1.61       1.667         1.61       1.750         1.61       1.750         1.61       1.917         1.61       2.000         1.61       2.083         1.61       2.167         1.61       2.333         1.61       2.417         1.61       2.500         9.64       2.583         9.64       2.667         9.64       2.750         9.64       2.917         9.64       2.917         9.64       2.917         9.64       3.000 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                        | RAIN       TIM         mm/hr       hr:         11.24       4.58         11.24       4.67         11.24       4.67         11.24       4.75         11.24       4.83         11.24       4.92         11.24       5.00         6.42       5.08         6.42       5.17         6.42       5.25         6.42       5.25         6.42       5.25         6.42       5.33         6.42       5.58         3.21       5.58         3.21       5.67         3.21       5.75         3.21       5.83         3.21       5.83         3.21       5.92 | s mm/hr<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61<br>1.61 |  |  |
| Unit Hyd Qpeak (cms)= 0.217<br>PEAK FLOW (cms)= 0.188 (i)<br>TIME TO PEAK (hrs)= 2.917<br>RUNOFF VOLUME (mm)= 37.985<br>TOTAL RAINFALL (mm)= 80.301<br>RUNOFF COEFFICIENT = 0.473 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |  |  |
| (i) PEAK FLOW DOES                                                                                                                                                                | 5 NOT INCLUDE BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEFLOW IF ANY.                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |  |  |
| CALIB  <br>  STANDHYD (0110)  <br> ID= 1 DT= 5.0 min                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.89<br>50.00 Dir. Con<br>DUS PERVIOUS (*                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |  |  |

| Surface Area (ha)=<br>Dep. Storage (mm)=<br>Average Slope (%)=<br>Length (m)=<br>Mannings n =                    | 1.00                                                 | 1.45<br>1.50<br>2.00<br>40.00<br>0.250                 |                                               |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)= | 73.88<br>5.00<br>2.85 (ii)<br>5.00<br>0.28           | 44.33<br>15.00<br>12.62 (ii)<br>15.00<br>0.08          | *TOTALS*                                      |
| PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =   | 2.50<br>79.30<br>80.30                               | 0.14<br>2.58<br>37.99<br>80.30<br>0.47                 | 0.430 (iii)<br>2.50<br>58.64<br>80.30<br>0.73 |
| ***** WARNING: STORAGE COEFF                                                                                     | . IS SMALLER THA                                     | N TIME STEP!                                           |                                               |
| (i) CN PROCEDURE SELE<br>CN* = 75.0<br>(ii) TIME STEP (DT) SH<br>THAN THE STORAGE<br>(iii) PEAK FLOW DOES NO     | Ia = Dep. Storag<br>OULD BE SMALLER<br>COEFFICIENT.  | e (Above)<br>OR EQUAL                                  |                                               |
| CALIB  <br>  STANDHYD (0120)   Area<br> ID= 1 DT= 5.0 min   Tota]                                                | (ha)= 1.49<br>Imp(%)= 88.00                          | Dir. Conn.(%                                           | )= 88.00                                      |
| Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n=                                         | IMPERVIOUS<br>1.31<br>1.00<br>2.00<br>99.67<br>0.013 | PERVIOUS (i)<br>0.18<br>1.50<br>1.00<br>40.00<br>0.250 |                                               |
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)= | 5.00<br>2 34 (ii)                                    | 44.33<br>10.00<br>6.76 (ii)<br>10.00<br>0.14           | *TOTALS*                                      |
| PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =   | 0.27<br>2.50                                         | 0.02<br>2.50<br>37.99<br>80.30<br>0.47                 | 0.289 (iii)<br>2.50<br>74.34<br>80.30<br>0.93 |
| ***** WARNING: STORAGE COEFF                                                                                     | . IS SMALLER THA                                     | N TIME STEP!                                           |                                               |
| (i) CN PROCEDURE SELE<br>CN* = 75.0<br>(ii) TIME STEP (DT) SH<br>THAN THE STORAGE<br>(iii) PEAK FLOW DOES NO     | Ia = Dep. Storag<br>OULD BE SMALLER<br>COEFFICIENT.  | e (Above)<br>OR EQUAL                                  |                                               |
|                                                                                                                  |                                                      |                                                        |                                               |
| CALIB  <br>  STANDHYD (0130)   Area<br> ID= 1 DT= 5.0 min   Tota]                                                | (ha)= 0.53<br>Imp(%)= 35.00                          | Dir. Conn.(%                                           | )= 35.00                                      |
| Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n=                                         | IMPERVIOUS<br>0.19<br>1.00<br>1.00<br>59.44<br>0.013 | PERVIOUS (i)<br>0.34<br>1.50<br>1.00<br>40.00<br>0.250 |                                               |
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)= | 73.88<br>5.00<br>2.11 (ii)<br>5.00<br>0.31           | 42.84<br>15.00<br>14.31 (ii)<br>15.00<br>0.08          | *TOTALS*                                      |
| PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =   | 2.50<br>79.30<br>80.30                               | 0.03<br>2.58<br>37.99<br>80.30<br>0.47                 | 0.069 (iii)<br>2.50<br>52.43<br>80.30<br>0.65 |

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 75.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ CALIB | STANDHYD (0140) | |ID= 1 DT= 5.0 min | (ha)= 2.20 Area Total Imp(%) = 75.00 Dir. Conn.(%)= 75.00 **IMPERVIOUS** PERVIOUS (i) (ha)= 0.55 Surface Area 1.65 Dep. Storage (mm)= 1.00 Average Slope (%)= 2.00 2.00 121.11 40.00 Length (m)= Mannings n 0.013 0.250 73.88 Max.Eff.Inten.(mm/hr)= 44.33 5.00 2.63 (ii) 15.00 12.40 (ii) over (min) Storage Coeff. (min) =Unit Hyd. Tpeak (min)= 5.00 15.00 0.29 0.08 Unit Hyd. peak (cms) =\*TOTALS\* 0.390 (iii) 2.50 0.05 PEAK FLOW (cms) =0.34 2.58 37.99 TIME TO PEAK (hrs) =2.50 79.30 68.97 RUNOFF VOLUME (mm) =80.30 80.30 80.30 TOTAL RAINFALL (mm) =RUNOFF COEFFICIENT 0.99 0.47 0.86 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 75.0 Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii)THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ CALIB STANDHYD (0160) Area (ha) =0.54 |ID= 1 DT= 5.0 min | Total Imp(%) = 75.00Dir. Conn.(%)= 75.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =0.41 0.14 Dep. Storage 1.00 (mm)= 1.50 2.00 2.00 Average Slope (%)= 60.00 40.00 Length (m)= 0.250 Mannings n \_ 0.013 73.88 44.33 Max.Eff.Inten.(mm/hr)= over (min) 5.00 15.00 (ii) Storage Coeff. 1.72 11.50 (ii) (min) =15.00 Unit Hyd. Tpeak (min)= 5.00 Unit Hyd. peak 0.32 0.09 (cms) =\*TOTALS\* PEAK FLOW (cms) =0.08 0.01 0.096 (iii) TIME TO PEAK 2.58 37.99 2.50 (hrs) =2.42 RUNOFF VOLUME 79.30 68.96 (mm) =80.30 80.30 80.30 TOTAL RAINFALL (mm) =RUNOFF COEFFICIENT 0.99 0.47 0.86 = \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 75.0$ Ia = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii)THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (0010) DUHYD Inlet Cap.=0.054 #of Inlets= 1 Total(cms)= 0.1 AREA **QPEAK** TPEAK R.V. (ha) (cms) (hrs) (mm) TOTAL HYD.(ID= 1): 0.10 68.96 0.54 2.50 \_\_\_\_\_\_ \_\_\_\_\_ MAJOR SYS.(ID= 2): 0.10 0.04 2.50 68.96

MINOR SYS.(ID= 3): 0.44 0.05 2.08 68.96 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \_\_\_\_\_ ADD HYD (0005) | 1 + 2 = 3 | R.V. (mm) AREA QPEAK TPEAK (hrs) (ha) (cms) ID1= 1 (0010): + ID2= 2 (0110): 0.10 0.042 2.50 68.96 2.89 0.430 2.50 58.64 \_\_\_\_\_\_ ====== 2.99 ID = 3 (0005):0.472 2.50 58.97 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \_\_\_\_\_ ADD HYD (0005) | 3 + 2 = 1к.. (mm) 27 AREA QPEAK TPEAK (ha) (hrs) (cms) ID1= 3 (0005): + ID2= 2 (0120): 58.97 0.472 2.50 2.99 2.50 1.49 0.289 74.34 ID = 1 (0005):4.48 0.761 2.50 64.09 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \_\_\_\_\_ ADD HYD (0005) | 1 + 2 = 3 | R.V. AREA QPEAK TPEAK (ha) (cms) (hrs) (mm) ID1= 1 (0005): + ID2= 2 (0130): 64.09 4.48 0.761 2.50 0.53 2.50 0.069 52.43 ID = 3 (0005):5.01 0.830 2.50 62.85 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0005) | 3 + 2 = 1AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) ID1= 3 (0005): + ID2= 2 (0140): 5.01 2.50 62.85 0.830 2.20 0.390 2.50 68.97 \_\_\_\_\_ ID = 1 (0005):7.21 1.220 2.50 64.72 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ADD HYD (0005) | 1 + 2 = 3 | R.V. (mm) AREA QPEAK TPEAK (hrs) 2.50 (cms) \_\_\_\_\_ (ha) ID1= 1 (0005): + ID2= 2 (0150): 64.72 1.220 7.21 2.92 37.99 3.18 0.188\_\_\_\_\_ \_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ ID = 3 (0005):10.39 1.337 2.50 56.54 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. \_\_\_\_\_ RESERVOIR (0006) | IN= 2---> OUT= 1 | DT= 5.0 min | OUTFLOW STORAGE OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) 0.0000 0.0320 0.1782 0.0000 0.2093 0.0050 0.1250 0.0211 0.0080 0.0440 0.4240 0.2417 0.0683 0.8410 0.2757 0.0110 0.0130 0.0938 1.3500 0.3113 0.0140 0.1205 1.9300 0.3486 0.0160 0.3876 0.1486 2.5900 AREA QPEAK TPEAK R.V.

| (ha) (cms) (hrs) (mm)<br>INFLOW : ID= 2 (0005) 10.386 1.337 2.50 56.54<br>OUTFLOW: ID= 1 (0006) 10.386 0.743 2.58 56.43                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEAK FLOW REDUCTION [Qout/Qin](%)= 55.59<br>TIME SHIFT OF PEAK FLOW (min)= 5.00<br>MAXIMUM STORAGE USED (ha.m.)= 0.2677                                                                                                                                                                                                                                |
| CALIB  <br>  STANDHYD (0011)   Area (ha)= 0.00<br> ID= 1 DT= 5.0 min   Total Imp(%)= 50.00 Dir. Conn.(%)= 35.00                                                                                                                                                                                                                                        |
| IMPERVIOUSPERVIOUS (i)Surface Area $(ha) =$ $0.00$ $0.00$ Dep. Storage $(mm) =$ $1.00$ $1.50$ Average Slope $(\%) =$ $1.00$ $2.00$ Length $(m) =$ $0.00$ $40.00$ Mannings n $=$ $0.013$ $0.250$                                                                                                                                                        |
| Max.Eff.Inten.(mm/hr)= 73.88 83.93<br>over (min) 5.00 10.00<br>Storage Coeff. (min)= 0.00 (ii) 7.57 (ii)<br>Unit Hyd. Tpeak (min)= 5.00 10.00<br>Unit Hyd. peak (cms)= 0.34 0.17<br>*TOTALS*                                                                                                                                                           |
| PEAK FLOW       (cms)=       0.00       0.00       0.000       (iii)         TIME TO PEAK       (hrs)=       0.00       0.00       0.00       0.00         RUNOFF VOLUME       (mm)=       NAN       NAN       NAN         TOTAL RAINFALL       (mm)=       80.30       80.30       80.30         RUNOFF COEFFICIENT       =       NAN       NAN       |
| <pre>***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!   (i) HORTONS EQUATION SELECTED FOR PERVIOUS LOSSES:       Fo (mm/hr)= 50.00 K (1/hr)= 2.00       Fc (mm/hr)= 7.50 Cum.Inf. (mm)= 0.00   (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL       THAN THE STORAGE COEFFICIENT.   (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>    |
| ADD HYD (0012)  <br>  1 + 2 = 3   AREA QPEAK TPEAK R.V.<br>(ha) (cms) (hrs) (mm)<br>*** W A R N I N G : HYDROGRAPH 0011 <id= 2=""> IS DRY.<br/>*** W A R N I N G : HYDROGRAPH 0003 = HYDROGRAPH 0001<br/>*** W A R N I N G : HYDROGRAPH 0003 = HYDROGRAPH 0001<br/>ID1= 1 (0010): 0.44 0.054 2.08 68.96<br/>+ ID2= 2 (0011): 0.00 0.000 0.00 NaN</id=> |
| ID = 3 (0012): 0.44 0.054 2.08 68.96                                                                                                                                                                                                                                                                                                                   |
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.                                                                                                                                                                                                                                                                                                      |
| FINISH<br>====================================                                                                                                                                                                                                                                                                                                         |


| V V I SSSSS U U A L<br>V V I SS U U A A L<br>V V I SS U U AAAAA L<br>V V I SS U U A A L<br>VV I SSSSS UUUUU A A LLLLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000 TTTTT TTTTT H H Y Y M M 000 TM<br>0 0 T T H H Y Y MM MM 0 0<br>0 0 T T H H Y M M 0 0<br>000 T T H H Y M M 000<br>Developed and Distributed by Civica Infrastructure<br>Copyright 2007 - 2013 Civica Infrastructure<br>All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| **** DETAILED OUTPUT ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input filename: C:\Program Files (x86)\VH Suite 3.0\V02\voin.dat<br>Output filename: C:\Users\smsexton\AppData\Local\Temp\25f4cca4-79bc-441e-b96f-3432ac038f7e\Scenario.out<br>Summary filename: C:\Users\smsexton\AppData\Local\Temp\25f4cca4-79bc-441e-b96f-3432ac038f7e\Scenario.sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DATE: 07/17/2017 TIME: 10: 27: 24<br>USER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| READ STORMFilename:C: \Users\smsexton\AppD<br>ata\Local \Temp\<br>25f4cca4-79bc-441e-b96f-3432ac038f7e\2b887e11Ptotal = 25.00 mmComments:TWENTY-FIVE MM FOUR HR CHICAGO STORM WIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIME       RAIN       TIME |
| CALIB<br>  NASHYD (0150)   Area (ha)= 3.18 Curve Number (CN)= 75.0<br> ID= 1 DT= 5.0 min   Ia (mm)= 1.50 # of Linear Res.(N)= 3.00<br>U.H. Tp(hrs)= 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TIMERAINTIMERAINTIMERAINTIMERAINhrsmm/hrhrsmm/hrhrsmm/hrhrsmm/hrhrsmm/hr0.0832.071.0835.702.0835.193.082.800.1672.071.1675.702.1675.193.172.800.2502.271.25010.782.2504.473.252.620.3332.271.33310.782.3334.473.332.620.4172.521.41750.212.4173.953.422.480.5002.521.50050.212.5833.563.582.350.6672.881.66713.372.6673.563.672.350.7503.381.7508.292.7503.253.832.230.8333.381.8338.292.8333.253.832.230.9174.171.9176.302.9173.013.922.141.0004.182.0006.293.0003.014.002.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

PEAK FLOW (CMS) =0.022 (i) 2. 167 5. 103 TIME TO PEAK (hrs)= (mm) = RUNOFF VOLUME TOTAL RAINFALL 24.996 (mm) =RUNOFF COEFFICIENT 0.204 = (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALI B STANDHYD (0110) (ha)= 2.89 Area ID= 1 DT= 5.0 min Total Imp(%) = 50.00Dir. Conn. (%) = 50.00 \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ I MPERVI OUS PERVIOUS (i) 1.45 Surface Area (ha)= 1.45 Dep. Storage (mm) =1.00 1.50 (%) = (m) = Average Slope 2.00 2.00 138.80 40.00 Length Mannings n 0.013 0.250 Max. Eff. Inten. (mm/hr) = 50.21 5.24 30.00 (min) 5.00 over Storage Coeff. 3.33 (ii) 26. 29 (ii) (min)= Unit Hyd. Tpeak (min)= 30.00 5.00 Ūnit Hýd. peak 0.26 0.04 (CMS) = \*TOTALS\* PEAK FLOW TIME TO PEAK 0.196 (iii) 1.50 (CMS) =0.19 0.01 1.92 1.50 (hrs) =RUNOFF VOLUME ( TOTAL RAINFALL ( RUNOFF COEFFICIENT 24.00 5.10 14.54 (mm) = 25.00 25.00 (mm) =25.00 0.96 0.20 0.58 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 75.0$  I a = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (ii) THAN THE STORAGE COEFFICIENT (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALI B STANDHYD (0120) Area (ha)= 1.49 ID= 1 DT= 5.0 min Total Imp(%) = 88.00Dir. Conn. (%) = 88.00 PERVIOUS (i) I MPERVI OUS Surface Area (ha)= 1.31 0.18 Dep. Storage (mm) = 1.00 1.50 (%) = (m) = Average Slope 2.00 1.00 99.67 Length 40.00 0.013 Mannings n 0.250 50.21 4.76 Max. Eff. Inten. (mm/hr) = over (min) 5.00 35.00 Storage Coeff. Unit Hyd. Tpeak 32.09 (ii) 2.73 (ii) (min) =(min) =5.00 35.00 Unit Hýd. peak 0.29 0.03 (CMS) =\*TOTALS\* PEAK FLOW TIME TO PEAK 0.179 (iii) 1.50 (cms)= 0.18 0.00 (hrs) =1.50 2.00 5.10 RUNOFF VOLUME 24.00 21.72 (mm) =TOTAL RAINFALL ( RUNOFF COEFFICIENT 25.00 25.00 (mm) =25.00 0.96 0.87 0.20 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 75.0 I a = Dep. Storage (Above) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALI B STANDHYD (0130) Area (ha)= 0.53 ||D= 1 DT= 5.0 min | Total Imp(%) = 35.00Dir. Conn. (%) = 35.00 I MPERVI OUS PERVIOUS (i) 0.19 0.34 Surface Area (ha) = Dep. Storage (mm) =1.00 1.50 1.00 Average Slope (%) = 1.00

| Length<br>Manni ngs n                                                           | (m) =<br>=                                         | 59. 44<br>0. 013                                             | 40.00<br>0.250                                         |                                                       |
|---------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd.Tpeak<br>Unit Hyd.peak    | mm/hr) =<br>(min)<br>(min) =<br>(min) =<br>(cms) = | 50. 21<br>5. 00<br>2. 46 (i i<br>5. 00<br>0. 30              | 4.76<br>35.00<br>) 31.82 (ii)<br>35.00<br>0.03         | *TOTALS*                                              |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI | (cms)=<br>(hrs)=<br>(mm)=<br>(mm)=<br>ENT =        | 0. 03<br>1. 50<br>24. 00<br>25. 00<br>0. 96                  | 0.00<br>2.00<br>5.10<br>25.00<br>0.20                  | 0. 026 (iii)<br>1. 50<br>11. 68<br>25. 00<br>0. 47    |
| **** WARNI NG: STORA                                                            |                                                    |                                                              |                                                        |                                                       |
| (ii) TIME STEP                                                                  | 75.0 I a<br>(DT) SHOU<br>STORAGE CO                | a = Dep. Stor<br>JLD BE SMALLE<br>DEFFICIENT.                | age (Above)<br>R OR EQUAL                              |                                                       |
| CALIB<br>  STANDHYD (0140)<br> ID= 1 DT= 5.0 min                                | Area<br>Total I                                    | (ha)= 2.2<br>mp(%)= 75.0                                     | 0<br>0 Dir. Conn.( <sup>4</sup>                        | %)= 75.00                                             |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n           | (ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=            | I MPERVI OUS<br>1. 65<br>1. 00<br>2. 00<br>121. 11<br>0. 013 | PERVIOUS (i)<br>0.55<br>1.50<br>2.00<br>40.00<br>0.250 |                                                       |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak  |                                                    |                                                              |                                                        | *T0TALS*                                              |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI | (cms)=<br>(hrs)=<br>(mm)=<br>(mm)=<br>ENT =        | 0. 22<br>1. 50<br>24. 00<br>25. 00<br>0. 96                  | 0.00<br>1.92<br>5.10<br>25.00<br>0.20                  | 0. 224 (i i i )<br>1. 50<br>19. 27<br>25. 00<br>0. 77 |
| **** WARNI NG: STORA                                                            | GE COEFF.                                          | IS SMALLER T                                                 | HAN TIME STEP!                                         |                                                       |
| (ii) TIME STEP                                                                  | 75.0 I a<br>(DT) SHOU<br>STORAGE CO                | a = Dep. Stor<br>JLD BE SMALLE<br>DEFFICIENT.                | age (Above)<br>R OR EQUAL                              |                                                       |
| CALIB<br>STANDHYD (0160)<br>ID= 1 DT= 5.0 min                                   |                                                    |                                                              |                                                        | %)= 75.00                                             |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n           | (ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=            | I MPERVI OUS<br>0. 41<br>1. 00<br>2. 00<br>60. 00<br>0. 013  | PERVIOUS (i)<br>0.14<br>1.50<br>2.00<br>40.00<br>0.250 |                                                       |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd.Tpeak<br>Unit Hyd.peak    | mm/hr) =<br>(min)<br>(min) =<br>(min) =<br>(cms) = | 50. 21<br>5. 00<br>2. 01 (i i<br>5. 00<br>0. 31              | 5. 24<br>25. 00<br>) 24. 97 (ii)<br>25. 00<br>0. 05    | *T0TALS*                                              |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI | (cms)=<br>(hrs)=<br>(mm)=<br>(mm)=<br>ENT =        | 0. 06<br>1. 50<br>24. 00<br>25. 00<br>0. 96                  | 0.00<br>1.83<br>5.10<br>25.00<br>0.20                  | 0. 057 (iii)<br>1. 50<br>19. 25<br>25. 00<br>0. 77    |
| **** WARNING: STORA                                                             | GE COEFF.                                          | IS SMALLER T                                                 | HAN TIME STEP!                                         |                                                       |

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

| CN* = 75.0<br>(ii) TIME STEP (DT)<br>THAN THE STORA<br>(iii) PEAK FLOW DOES                                   | SHOULD E<br>GE COEFFI          | SE SMALLER<br>CIENT.                    | OR EQUAL                         |                                  |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|----------------------------------|----------------------------------|--|
| TOTAL HYD. (ID= 1):                                                                                           | (ha)<br>0.54                   | ======================================= | (hrs)<br>1.50<br>=======         | (mm)<br>19. 25<br>======         |  |
| MAJOR SYS. (ID= 2):<br>MINOR SYS. (ID= 3):<br>NOTE: PEAK FLOWS DO                                             |                                |                                         |                                  |                                  |  |
|                                                                                                               |                                |                                         |                                  |                                  |  |
| ADD HYD (0005)<br>1 + 2 = 3<br>I D1= 1 (0010):<br>+ I D2= 2 (0110):<br>I D = 3 (0005):<br>NOTE: PEAK FLOWS DO | 2. 89                          | 0. 199                                  | 1. 50                            | 14.55                            |  |
|                                                                                                               |                                |                                         |                                  |                                  |  |
| ================                                                                                              | (ha)<br>2.89<br>1.49           |                                         | (hrs)<br>1.50<br>1.50<br>======= | (mm)<br>14.55<br>21.72           |  |
| ID = 1 (0005):<br>NOTE: PEAK FLOWS DO                                                                         |                                |                                         |                                  |                                  |  |
|                                                                                                               |                                |                                         |                                  |                                  |  |
| ADD HYD (0005)<br>1 + 2 = 3<br>I D1= 1 (0005):<br>+ I D2= 2 (0130):                                           |                                | QPEAK<br>(cms)<br>0.378<br>0.026        | 1.50                             | 16.`99´<br>11. 68                |  |
| ID = 3 (0005):                                                                                                |                                |                                         |                                  |                                  |  |
| NOTE: PEAK FLOWS DO                                                                                           | ) NOT INCL                     | UDE BASEFI                              | LOWS IF A                        | NY.                              |  |
| ADD HYD (0005)<br>3 + 2 = 1<br>1 D1= 3 (0005):<br>+ 1 D2= 2 (0140):                                           | AREA<br>(ha)<br>4. 91<br>2. 20 | OPEAK<br>(cms)<br>0.404<br>0.224        | (hrs)<br>1.50<br>1.50            | R.V.<br>(mm)<br>16.41<br>19.27   |  |
| ID = 1 (0005):                                                                                                | 7. 11                          | 0. 628                                  | 1. 50                            | 17.30                            |  |
| NOTE: PEAK FLOWS DO                                                                                           | NOT INCL                       | UDE RASEFI                              | LUWS IF A                        | им Y .<br>                       |  |
| ADD HYD (0005)<br>1 + 2 = 3<br>I D1= 1 (0005):<br>+ I D2= 2 (0150):                                           | AREA<br>(ha)<br>7. 11<br>3. 18 | OPEAK<br>(cms)<br>0. 628<br>0. 022      | TPEAK<br>(hrs)<br>1. 50<br>2. 17 | R. V.<br>(mm)<br>17. 30<br>5. 10 |  |
| ID = 3 (0005):                                                                                                | 10. 29                         | 0. 632                                  | 1. 50                            | 13.53                            |  |
| NOTE: PEAK FLOWS DO                                                                                           | NOT INCL                       | UDE RASEFI                              | LUWS IF A                        | <b>ΙΝΥ.</b>                      |  |



## Appendix C SWM Shield Product Information



233 Cross Avenue, Suite 302 Oakville, ON L6J 2W9, Canada (T) 519-212-9161 info@cbshield.com

File: GHD-101 March 7, 2017

GHD Whitby 65 Sunray Street Whitby ON L1N 8Y3

Attention: Jamie Iantomasi, P. Eng. Water Resource Engineer

# Reference:Region of Peel SWM Facilities Retrofit, GHD # 11129100Predicted Performance of SWM Shield Units

Dear Jamie:

As requested, we are providing you with sizing and predicted performance information for your consideration in implementing SWM Shield<sup>™</sup> stormwater devices at existing SWM facility retrofits at Heart Lake Road/Mayfield Road and Kennedy Road/Mayfield Road in the City of Brampton, Region of Peel. We understand the two SWM facilities, which are owned and operated by the Region of Peel, are undergoing retrofits that will be designed by GHD.

The sizing of these devices, as you are aware, is based on ETV testing originally completed for the CB Shield<sup>™</sup>. Our scaling of the much smaller CB Shield device up to the SWM Shield size will be outlined in this letter, and will include an important statement regarding the potential limitations of that scaling. We are quite aware that the scaling involved will require confirmation through testing, and therefore we cannot support claims of performance with the same certainty as our smaller ETV verified CB Shield device. However, we are confident that theoretical calculations will provide good general expectations of performance for the two proposed units.

#### Site Parameters

We have based our review on the catchment parameters provided for the Heart Lake Road/Mayfield and Kennedy Road/Mayfield Road SWM facilities as follows:

| Heart Lake Facility: | Area = 10.29 ha                        |
|----------------------|----------------------------------------|
|                      | Imperviousness = 45%                   |
| Kennedy Facility:    | Area = 9.02 ha<br>Imperviousness = 58% |

transforming catch basins into treatment devices &

simplifying maintenance of SWM facilities

### Initial Sizing of the SWM Shields

SWM Shield sizing is based on treatment principles determined through ETV testing and verification completed for the CB Shield. Accordingly, a first approximation at sizing any given SWM Shield relates back to the average number of catch basins that would be found in a similar catchment area. The approximate the number of catch basins in a residential catchment can be roughly estimated using a ratio of 5 CB's per hectare, which is typical for residential areas. This allows a quick determination of treatment surface area as follows:

- SWM Shield Area (m<sup>2</sup>) = Area of CB Shield grate (m<sup>2</sup>) X 5 CB's/ha X Total Site Area (ha)
- SWM Shield Area = 0.36 m<sup>2</sup>/CB X 5 CB's/ha X Total Site Area (ha)

In the case of the Heart Lake Facility the approximate the number of catch basins that would typically be in a catchment area of this size can be determined as:

• 10.29 ha X 5 CB's/ha = 51.5 CB's

With this translating to a cumulative treatment area approximation of:

Heart Lake SWM Shield treatment area (m<sup>2</sup>) = 51.5 CB Shields X 0.36 m<sup>2</sup>/CB Shield
 = 18.5 m<sup>2</sup>

This initial approximation allows a corresponding number of standard precast lengths to be determined that would provide the required surface area. Each standard length of SWM Shield grate is typically:

• 3.0 m X 2.5 m = 7.5 m<sup>2</sup> per section, with this calculation corresponding to the standard concrete box section used most often - approximately 10 feet by 8 feet.

Calculating the approximate number of box sections required for the Heart Lake SWM Shield:

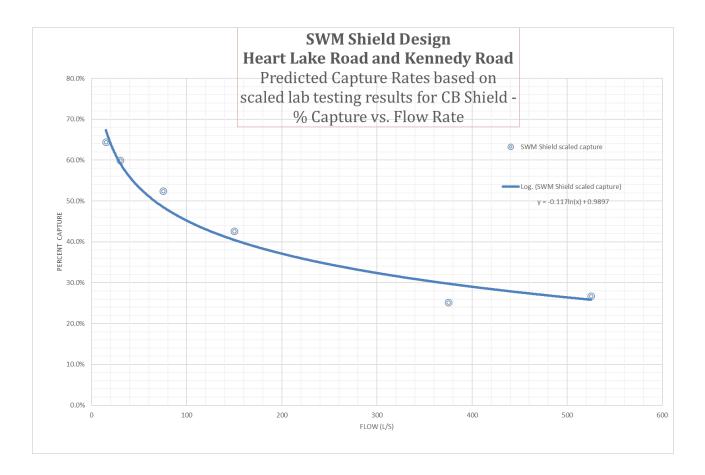
•  $18.5 \text{ m}^2 / 7.5 \text{ m}^2/\text{box section} = 2.5 \text{ box sections}$ 

Given the economies of working with whole box sections and to also ensure some additional conservativeness in design, rounding up to 3 whole box sections is warranted.

Similar calculations for the Kennedy Facility yields the same 3 whole sections as its preliminary size.

The total surface area associated with each SWM Shield is then calculated as: 3 X 7.5 = 22.5 m<sup>2</sup>

#### **Detailed Sizing and Scaling Discussion**


SWM shield predicted performance is based on a scaled version of the CB Shield's removal performance testing results as contained in CB Shield's ETV Verified Performance Claim. The scaling of performance data is made based on total treatment area of surface loading, which in this case is the area of grate. The grate is in contact with permanent water in the sump below during flow events, with sediment removed from the flow stream by gravity settling. Settled particles then proceed further through the grate and into the sump where it is stored until the unit is maintained.

The SWM Shield is also expected to mimic performance of the CB Shield with respect to its antiscour properties. The similar grate type design combined with a greater depth of sump allows for



an expectation that scour will be limited from the SWM Shield even during extreme flow events.

The following chart outlines a flow vs. capture ratio in the proposed SWM Shield model that will be implemented at both of the sites:



Data points in the capture curve above are identical to those contained in the ETV Verified claim for CB Shield except that the flow values have been increased by a factor of 62.5, which is the exact factor of increase in the surface area of the proposed SWM Shield as compared with a standard CB Shield.

It should be noted that the proposed SWM Shield has a sump depth that is only 4 times deeper than that of the standard CB Shield (i.e. 2.4 m vs. 0.6 m depth). However, this difference in depth is not predicted to affect performance other than affecting the cycle of maintenance which is outlined later in this brief.



#### Predicted Performance

Each of the catchment areas was modelled in PCSWMM, using long term continuous rainfall data from the Bloor Street meteorological station. From this, various flow rates were determined corresponding to their average annual percentage of total volume of flow. This flow was then matched against the corresponding removal rate for the SWM Shield, as determined through scaling from a CB Shield ETV Verified testing data.

If required, the simple approach outlined above can be supplemented through more advanced water quality modelling (within PCSWMM) of the catchments and the SWM Shield treatment devices. Additional modeling would target better description of sediment transport characteristics from the catchments and the associated variation with flows.

Our initial analyses for each of the two SWM Shields indicate similar predicted long term capture of sediment in each unit, due to their similar catchment characteristics. Each unit's predicted long term capture is outlined in the charts below:

| Heart Lake Road SWM Shield Predicted Performance |                |               |                |  |  |
|--------------------------------------------------|----------------|---------------|----------------|--|--|
|                                                  |                | % Capture per |                |  |  |
|                                                  | Average Annual | Scaled Lab    | Cumulative     |  |  |
| Flow (L/s)                                       | % of Flow      | Results       | Annual Capture |  |  |
|                                                  |                |               |                |  |  |
| 5                                                | 21             | 64%           | 14%            |  |  |
| 15                                               | 45             | 64%           | 15%            |  |  |
| 25                                               | 60             | 61%           | 9%             |  |  |
| 50                                               | 77             | 53%           | 9%             |  |  |
| 100                                              | 88             | 45%           | 5%             |  |  |
| 150                                              | 92             | 40%           | 2%             |  |  |
| 200                                              | 94             | 37%           | 1%             |  |  |
|                                                  |                | TOTAL:        | 55%            |  |  |
|                                                  |                |               |                |  |  |

| Kennedy Road SWM Shield Predicted Performance |                |               |                |
|-----------------------------------------------|----------------|---------------|----------------|
|                                               |                | % Capture per |                |
|                                               | Average Annual | Scaled Lab    | Cumulative     |
| Flow (L/s)                                    | % of Flow      | Results       | Annual Capture |
|                                               |                |               |                |
| 5                                             | 20             | 64%           | 13%            |
| 15                                            | 43             | 64%           | 15%            |
| 25                                            | 57             | 61%           | 9%             |
| 50                                            | 74             | 53%           | 9%             |
| 100                                           | 87             | 45%           | 6%             |
| 150                                           | 92             | 40%           | 2%             |
| 200                                           | 94             | 37%           | 1%             |
|                                               |                | TOTAL:        | 54%            |
|                                               |                |               |                |

#### Maintenance Cycle

Frequency of maintenance will be a function of total stormwater volume directed to each SWM Shield, the loading within the stormwater, and the capture rate of the SWM Shield.

Total volume of stormwater and loading annually directed to each device (on average) is calculated given:

- Approximately 792 mm of precipitation for City of Toronto
- For imperviousness values of 45% and 58%, average precipitation to runoff is estimated at 50% and 60% respectively.
- Stormwater is assumed to contain 125 mg/L of total suspended solids.
- Sediment from stormwater is assumed to have a density of 1.23 kg/L (per MOECC)

Volume of Sediment Captured Calculations:

Heart Lake Road catchment:

- Sediment loading (kg/yr) = 10.29 ha X 792 mm X 50% runoff X 125 mg/L
- Sediment loading (kg/yr) = 5,094 kg/year
- Sediment capture = 5,094 kg/year X 55% capture rate = 2802 kg/year
- Sediment volume captured = 2802 kg/year / 1.23 kg/L = 2.3 m<sup>3</sup>/year

Kennedy Road catchment:

- Sediment loading (kg/yr) = 9.02 ha X 792 mm X 60% runoff X 125 mg/L
- Sediment loading (kg/yr) = 5,358 kg/year
- Sediment capture = 5,358 kg/year X 54% capture rate = 2893 kg/year
- Sediment volume = 2893 kg/year / 1.23 kg/L = 2.4 m<sup>3</sup>/year

A quick comparison with the MOECC 2003 Guideline document (Table 6.3 reproduced below) indicates a higher predicted loading rate using Table 6.3:

| Catchment<br>Imperviousness | Annual Loading<br>(kg/ha) | Wet Density<br>(kg/m³) | Annual Loading<br>(m³/ha) |
|-----------------------------|---------------------------|------------------------|---------------------------|
| 35%                         | 770                       | 1,230                  | 0.6                       |
| 55%                         | 2,300                     | 1,230                  | 1.9                       |
| 70%                         | 3,495                     | 1,230                  | 2.8                       |
| 85%                         | 4,680                     | 1,230                  | 3.8                       |

**Table 6.3: Annual Sediment Loadings** 

SWM Planning & Design Manual - 6-13 - Operation, Maintenance and Monitoring

Heart Lake Road catchment using MOECC:

- Annual sediment loading (kg/yr) = 1,535 kg/ha X 10.29 ha = 15,795 kg/year
- Annual sediment captured = 15,795 kg/yr X 55% capture rate = 8,687 kg/year

• Sediment volume captured = 8687 kg/yr / 1.23 kg/L = 7.0 m<sup>3</sup>/year

Kennedy Road catchment using MOECC:

- Annual sediment loading (kg/yr) = 2,539 kg/ha X 9.02 ha = 22,902 kg/year
- Annual sediment captured = 22,902 kg/yr X 54% capture rate = 12,367 kg/year
- Sediment volume captured =  $12,367 \text{ kg/yr} / 1.23 \text{ kg/L} = 10.0 \text{ m}^3/\text{year}$

Given the proposed SWM Shield configuration for both locations has a sediment holding capacity (prior to maintenance requirement) of approximately 40 m<sup>3</sup>, corresponding to a depth of 1.8 m of the total available sump of 2.4 m. Accordingly, each facility should be expected to be maintained as follows:

- Heart Lake Road Facility maintained every 40m<sup>3</sup> / 7 m<sup>3</sup>/year = 5.7 years
- Kennedy Road Facility maintained every  $40m^3 / 10m^3 / year = 4$  years

Actual accumulation of sediment should be determined through an annual maintenance check. In them interim, we would recommend consideration of the higher MOECC Table 6.3 based loadings.

### <u>Closure</u>

Please note that we would be pleased to assist with pursuing approvals you may require from the Ontario Ministry of Environment and Climate Change (MOECC), Toronto Region Conservation Authority (TRCA) and others as may be required.

In summary, we are able to predict at least a 50% long term average removal of sediment from runoff in both the Heart Lake Road and Kennedy Road SWM facilities given installation of suitably sized SWM Shield units. Maintenance cycles for the SWM Shield will be approximately 4 to 6 years.

In closing, we would be happy to provide any further details required. Please feel free to contact me at your convenience.

Thank you.

Yours very truly, **CB Shield Inc.** 

Stephen Braun, P.Eng. Engineering Director stephen.braun@cbshield.com

#### SWM Shield Storm Water Quality System DESIGN CRITERIA AND SPECIFICATIONS

#### **Description**

Water quality system located in a pond at the inlet which may replace sediment fore-bay. Sediment enters the box culvert tank through slotted openings in the top slab.

#### General Design

- SWM Shield systems are designed to capture sediment before it can enter the pond. At least 90% of all runoff will pass over the entire slotted roof slab before entering the pond. At least 50% of the total suspended solids will be captured by the SWM Shield in a standard design (based on ETV particle size distribution)
- Sediment removal will be project specific and the design performance will be supplied by CB Shield staff.
- Systems are precast concrete box culvert as per OPSS 1821.
- SWM Shield is not designed for traffic loading due to a large number of slotted openings in the top slab. It has walls on each side of the top slab to contain the water and keep vehicles off. If safety concerns exist, a grate may be required to cover the entire top slab.
- SWM Shield is installed on a minimum of 6 inches of ¾ inch aggregate stone with a minimum soil bearing capacity of 2,000 psf. This may vary depending on the pond bed stability and will be left to the engineer's discretion.
- All joints of the SWM Shield system **must be water tight** so water does not leak in/out of the system during cleaning or normal operation. It is therefore the contractor's responsibility to add extra waterproofing in addition to what is supplied by the SWM Shield manufacturer. There are a number of products on the market to achieve this.
- The invert of the pipe out letting into the pond must be equal to or higher than the top of the SWM Shield system. The SWM Shield is best designed when the top slab is 350mm higher than the pond level. If that is not possible another option in the end of system design is available.
- Upon request during the design process an oil baffle or sock may be included to treat dry weather spills.
- Upon request and prior to project initiation, photo documentation of the system installation can be supplied.

#### INSPECTION AND MAINTENANCE REQUIREMENTS

- The system is designed to be in the pond with an adjacent access road. The outside wall on top of the system will be 900mm high. The inside wall which is open to the pond is 600mm high. This is to allow large storms to spill over the inside wall directly into the pond when necessary.
- The units will be accessible for inspection and cleaning through a manhole frame and cover every 2.5m. Units should be cleaned when the average depth of sediment inside the system is 1800mm. (This for the standard 3000 x 2400mm size) We recommend yearly inspections until a pattern for sediment loading is established.
- Systems can be cleaned by using a vacuum truck. A pressure water hose forcing all sediment to one end of the system may also be helpful. The units may be entered by persons trained in confined space entry.
- Water can be decanted from the SWM Shield tank directly into the pond, leaving only the sediment for the vacuum truck to remove and dispose of.

# Appendix D Ecological Impact Memo



# Memorandum

#### April 28, 2017

| To:      | John Nemeth, Region of Peel                                                                           | Ref. No.: | 11129100 |
|----------|-------------------------------------------------------------------------------------------------------|-----------|----------|
|          | Hufen                                                                                                 |           |          |
| From:    | Heather Polan/ks/3                                                                                    |           |          |
| CC:      | Karen Edgington, GHD; Jamie Iantomasi, GHD<br>Derek Morningstar, GHD                                  |           |          |
| Subject: | Natural Environment Existing Conditions<br>Kennedy Pond – Stormwater<br>City of Brampton, Peel Region |           |          |

### 1. Introduction

The Region of Peel (Region) retained GHD Limited (GHD) to complete a review of the Kennedy Stormwater Management (SWM) Facility for the purposes of improving the performance of the SWM Facility, as appropriate. The Kennedy SWM facility is located at the northeast corner of the Mayfield Road and Kennedy Road intersection (Site), City of Brampton, Region of Peel. The Region also requested that design alternatives be investigated to look for ways to improve the ease and efficiency of pond maintenance. This Natural Environment Existing Conditions report has been prepared to describe the characteristics of the terrestrial and aquatic environment associated with the SWM Pond in advance of those improvement designs.

## 2. Study Area

From a natural environment perspective, the characterization of existing conditions within the Study Area are depicted on Figure 1. The Study Area has been defined as the SWM facility (Site) parcel plus a 120-metre (m) buffer. General photos of the Study Area are provided in Appendix A.

### 3. Methodology

Information on the natural environment existing conditions within the Study Area was gathered from a combination of secondary source material, agency consultation and several Site visits.

#### 3.1 Secondary Source Information Collection and Review

Available secondary sources of information were collected and reviewed to determine the existing natural environment conditions within the Study Area. The sources reviewed are outlined in Table 1.



| Source                                                                         | Information reviewed                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ministry of Natural Resources<br>and Forestry (MNRF)                           | Species at Risk (SAR)     Natural Horitage Information Conter (NHIC) mapping                                                                                                                                                                |
|                                                                                | <ul> <li>Natural Heritage Information Center (NHIC) mapping</li> <li>Natural Heritage Features data layers from Land Information<br/>Ontario</li> </ul>                                                                                     |
| Fisheries and Oceans Canada (DFO)                                              | Species at Risk Fish and Mussel Maps (2015)                                                                                                                                                                                                 |
| Ontario Breeding Bird Atlas                                                    | Breeding Bird Data for Study Area                                                                                                                                                                                                           |
| Region of Peel Official Plan<br>(Working Office Consolidation<br>October 2014) | <ul> <li>Schedule A – Core Areas of the Greenlands Systems in Peel</li> <li>Schedule D1 – Oak Ridges Moraine Conservation Plan Area<br/>(ORMCPA) Land Use Designations</li> <li>Figure 2 – Selected Areas of Provincial Interest</li> </ul> |
| iNaturalist                                                                    | <ul> <li>Plant and animal observations in vicinity of Study Area</li> </ul>                                                                                                                                                                 |
| Ontario Reptile and Amphibian                                                  | <ul> <li>Plant and animal observations in vicinity of Study Area</li> <li>Species records for Study Area</li> </ul>                                                                                                                         |
| Atlas                                                                          | Species records for Study Area                                                                                                                                                                                                              |
| Ontario Butterfly Atlas                                                        | Species records for Study Area                                                                                                                                                                                                              |
| eBird                                                                          | Avian species records in vicinity of Study Area                                                                                                                                                                                             |
| Government of Canada                                                           | The Atlas of Canada – Toporama                                                                                                                                                                                                              |
| Rare Vascular Plants of Ontario                                                | Checked rare plant records for the Peel Region                                                                                                                                                                                              |
| Atlas of the Mammals of<br>Ontario                                             | Checked for records of rare mammals in the general area                                                                                                                                                                                     |
| Bat Conservation International                                                 | Checked range maps in species profiles for the four listed bat species that occur in Ontario                                                                                                                                                |
| Species at Risk of Ontario List (SARO)                                         | <ul> <li>Checked range maps for SAR species not included in other<br/>atlases</li> </ul>                                                                                                                                                    |
| Alvars of Ontario                                                              | Checked for any known alvars in the general area                                                                                                                                                                                            |
| Tallgrass Ontario                                                              | <ul> <li>Checked for any known tallgrass prairies, savannahs and<br/>indicator species</li> </ul>                                                                                                                                           |
| Toronto and Region<br>Conservation Authority (TRCA)                            | Met with the TRCA onsite to discuss constraints                                                                                                                                                                                             |
| Greenbelt Plan Area                                                            | Checked mapping to determine if the Study Area intersects     with the Greenbelt Plan Area                                                                                                                                                  |
| Niagara Escarpment Plan Area                                                   | Checked mapping to determine if the Study Area intersects     with the Niagara Escarpment Plan Area                                                                                                                                         |
| Oak Ridges Moraine Plan Area                                                   | Checked mapping to determine if the Study Area intersects     with the Oak Ridges Moraine Plan Area                                                                                                                                         |

#### Table 1 Secondary Source Information Reviewed

#### 3.2 Agency Consultation

The Aurora District MNRF was consulted on October 24, 2016 to request available natural heritage information, Species at Risk (SAR) records, and relevant wildlife records. A response was received on March 7, 2017, the results of which are detailed in Section 4.6. During a Site visit on October 26, 2016 and CVC meeting on November 30, 2016, GHD discussed with TRCA the property boundaries and the potential permitting requirements. TRCA also expressed the need to maintain wetland function at the site.

#### 3.3 Site Visits

A Site visit by a qualified ecologist was conducted on October 26, 2016, with the purpose of determining natural environment conditions within the Study Area, and to supplement the results of the secondary source review. Particular attention was paid to the habitat that could be provided for SAR, and a list of incidental wildlife and plants was collected.

Furthermore, surveys for the federally threatened western chorus frog (*Pseudacris triseriata*) were conducted on April 5, April 10, and April 13, 2017, according to applicable protocols available at the time of survey, due to the potential for federal funding for portions of the project.

## 4. Characterization of the Existing Environment

#### 4.1 Surrounding Land Use

The Study Area falls at the edge of the City of Brampton, part of a wetland area between remnant agricultural fields and across from residential development.

#### 4.2 Significant Natural Features

There are no significant natural features within the Study Area, but the Study Area does fall within the regulation limits of the TRCA's Ontario Regulation 166/06: Development, Interference with Wetlands and Alterations to Shorelines and Watercourses.

The Study Area does not fall within the Oak Ridges Moraine, Niagara Escarpment Plan Area or Greenbelt Plan Area.

#### 4.3 Terrestrial Environment

The SWM pond is at the northeast corner of the intersection, but is adjacent to a wetland feature that runs along Mayfield Road. The SWM pond is surrounded by emergent wetland vegetation, primarily narrow-leaved cattails (*Typha angustifolia*). The cultural meadow surrounding the pond is mostly goldenrod species (*Solidago sp.*) and European grasses with some growth of invasive shrubs. A small, young coniferous plantation is to the north of the SWM ponds and a cattail marsh is to the northeast. The wetlands along Mayfield Road are not classified as provincially significant, but are likely unevaluated.

A list of vegetation and wildlife observed during the Site visit is provided in Appendix B; more detail on the potential for SAR is provided in Section 4.6.

#### 4.4 Aquatic Environment

There does not appear to be any direct flow between the SWM pond and the adjacent wetlands, and there was no distinguished channel although mapping from LIO indicate that there may be a channel through the wetland towards the inline pond to the northeast of the Study Area.

While no fish were observed during the Site visits, SWM ponds often become inhabited by fish from adjacent natural sources or through unlawful introductions. Fish eggs are occasionally transferred via migratory waterfowl into adjacent waterbodies and some of the eggs survive and develop; or humans release aquarium fish into SWM ponds. Common SWM pond species found in the greater Toronto area would include small, common minnows such as creek chub (*Semotilus atromaculatus*), fathead minnow

(*Pimephales promelas*), goldfish (*Carassius auratus*); or pumpkinseed (*Lepomis gibbosus*). These species are able to tolerate the warmer lentic water temperatures and eutrophic conditions of SWM ponds. Endangered redside dace (*Clinostomus elongatus*), found in streams in the vicinity of the study site, would not be able to survive under these conditions, and therefore there are no concerns of encountering this SAR in the SWM Pond.

Redside dace are reported to most often reside in headwater streams, in areas of clear, cool, slow-flowing water with riffle-pool sequences and overhanging vegetation (RDRT, 2010; Scott and Crossman, 1973; COSEWIC, 2007). Riffles are generally used for spawning and pools are used as resident habitat. Habitat temperatures are usually less than 24°C and dissolved oxygen concentrations are at least 7 milligrams per litre (RDRT, 2010). Bottom substrate most often includes boulders, gravel, rock, or sand with a shallow surface covering of detritus or silt (RDRT, 2010). Although they are typically found in clear water, they have been found to tolerate moderate levels of turbidity (COSEWIC, 2007). Redside dace are considered sensitive to turbidity, as the bulk of their ingested food consists of terrestrial insects captured through a jumping-out-of-water feeding method; cloudy waters hinder vision and capture of insects (Scott and Crossman, 1973). Important habitat elements include overhanging riparian vegetation (grasses and shrubs), undercut banks, and instream cover in the form of boulders and woody debris (COSEWIC, 2007). Unless spawning, they are reported to prefer residing in pools from 0.1 to 2.0 m in depth. Spawning occurs in shallow gravel riffles. Redside dace eggs are non-adhesive and therefore vulnerable to high flows; instream cover in the form of submerged branches and logs, aquatic vegetation, and rocks can control the velocities of flow which easily wash away eggs (Scott and Crossman, 1973).

Under the DFO Self Assessment process, the two main criteria for assessment are Waterbody Type and Activity Type and their associated criteria. The SWM ponds satisfy the Waterbody Type exemption for DFO review as they are existing artificial waterbodies that are not connected to a waterbody that contain fish at any time during any given year. As the fishery of the ponds are unknown at this time, it is still required to avoid causing serious harm to fish by adhering to best management practices, such as those described in the measures to avoid harm under the Fisheries Act. If fish are found in the ponds, consultation with the MNRF may be required and a Licence to Collect Fish for Scientific Purposes may need to be obtained in advance of any potential impact.

#### 4.5 Wildlife

The habitat in the Study Area is mostly disturbed and comprised of a high proportion of non-native vegetation. Mallards were observed in the pond, although the Site visits were conducted outside of the bird breeding period, so these could be migrants. A red-tailed hawk (*Buteo jamaicensis*) flew over the Site and black-capped chickadees (*Poecile atricapillus*) were using the trees and shrubs. Small nests were observed within some of the shrubs, but these were no longer active. The wetland vegetation around the SWM pond likely provide nesting habitat for a variety of wetland birds and other wildlife that are tolerant of high local disturbance. The SWM pond and adjacent wetlands are likely used by frogs and turtles, although no frogs or basking turtles were observed during any of the western chorus frog surveys.

#### 4.6 Species at Risk

Information relating to the locations of species listed as Endangered and Threatened under the ESA is considered sensitive, and is therefore protected under the act. The specific information provided here is

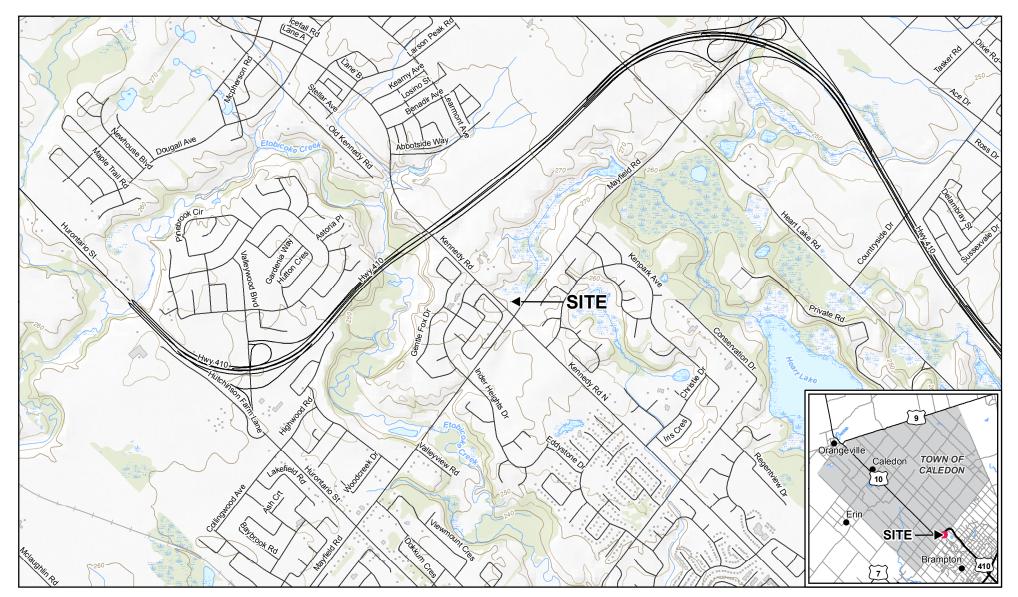
intended solely for the purpose of project planning and should be distributed only as necessary to project team constituents and regulatory agencies.

Under the ESA, there is protection afforded to both the species and their habitat, even when the habitat is not currently occupied. No SAR specific-surveys for provincially listed species were conducted at this point in the project, with the exception of plant species that could have been identified during the Site visits, if they were present. Further investigation of potential habitat available within the Study Area may be needed in order to determine the habitat occupancy of SAR, if there is any potential for impacts to those species or their habitat from scheduled activities.

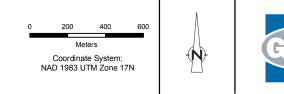
Through the review of available databases described in Table 1, 20 SAR species were identified in the general area that includes the Study Area. In most cases, the record for these species is from a broader area which does not necessarily indicate that the species occurs within the Study Area. The habitat requirements of each species was compared to the habitat available within the Study Area to determine the likelihood that it would occur. The details of this assessment are provided in Appendix C.

The SAR list includes five species that were listed as Special Concern and are therefore not directly afforded protection under the ESA even if they were present in the Study Area. Of the fourteen species listed as Endangered or Threatened, three plant species were determined not to be present in the Study Area based on the Site visits and ten species were determined to have a low probability to occur within the Study Area. The Blanding's turtle (*Emydoidea blandingii*) was considered to have moderate probability to occur in the Study Area. Blanding's turtle could use the SWM ponds and adjacent wetlands, although this species was included only based on one record from 2011 in the general area that was included in the Ontario Herpetofaunal Atlas. No species-specific studies were conducted for this species in the appropriate timing window.

One species listed on the federal Species at Risk Act (SARA), namely the western chorus frog, was determined to have a high potential for occurrence within the Study Area, but was not detected during any of the surveys.


## 5. Summary

The Study Area is a mix of naturalized and disturbed habitat with invasive and pioneer vegetation species. Some wetland habitat is provided for use by wildlife. However, no frogs or turtles were observed during the Site visits. It is adjacent to a larger wetland complex that is unevaluated. The SWM ponds may be considered part of this wetland complex if an evaluation is completed under the Ontario Wetland Evaluation System (OWES). Permits for the alteration of the pond may be required from TRCA or the MNRF in the event that there is any predicted impact to these species or their habitat, including the wetland. Further investigation of potential habitat available within the Study Area may be required in order to determine the habitat occupancy of SAR, if there is any potential for impacts to those species or their habitat from scheduled activities.


### 6. References

Brownell, V.R and J.L. Riley, 2000. The Alvars of Ontario: Significant Alvar natural Areas in the Ontario Great Lakes Region. Federation of Ontario Naturalists, Don Mills, Ontario. 269 p.

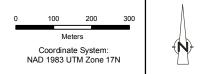
- Cadman, M.D., D.A. Sutherland, G.G. Beck, D. Lepage, and A.R. Couturier (eds.), 2007. Atlas of Breeding Birds of Ontario, 2001-2005. Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature, Toronto, xxii + 706 pp.
- COSEWIC, 2007. COSEWIC assessment and update status report on the Redside Dace Clinostomus elongatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa.
- CVC and TRCA, 2014. Conservation Authority Natural Heritage System Mapping for the City of Brampton. Credit Valley Conservation and Toronto and Region Conservation Authority. Final Technical Report. Viii + 62 p plus appendices.
- Dobbyn, J.S., 1994. Atlas of the Mammals of Ontario. Federation of Ontario Naturalists, Toronto. 120 pp.
- eBird, 2015. eBird: An online database of bird distribution and abundance [web application]. eBird, Ithaca, New York. Available: http://www.ebird.org. (Last accessed August 2016).
- Fisheries and Oceans Canada, 2015. Distribution of Fish and Mussel Species at Risk. Available: http://www.dfo-mpo.gc.ca/species-especes/fpp-ppp/index-eng.htm (Last accessed Mar 2017).
- iNaturalist, 2016. iNaturalist: Observations. Available: http://www.inaturalist.org/observations (Last accessed August 2016).
- Oldham, M.J. and S.R. Brinker, 2009. Rare Vascular Plants of Ontario, 4th Edition. Natural Heritage Information Centre, Ministry of Natural Resources, Peterborough, Ontario.
- Ontario Nature, 2015. Ontario Reptile and Amphibian Atlas. Available: http://www.ontarioinsects.org/herpatlas/herp\_online\_expert.html (Last accessed August 2016).
- Region of Peel, 2014. Region of Peel Official Plan: Working Office Consolidation October 2014.
- The Atlas of Canada, 2016. Toporama-Mapping Tool. Available: http://atlas.gc.ca/toporama/en/index.html (Last accessed August 2016).
- Toronto Entomologists' Association, 2016. Ontario Butterfly Atlas Online: Observations. Available: http://www.ontarioinsects.org/atlas\_online.htm (Last accessed August 2016).
- Toronto and Region Conservation Authority (TRCA), 2006. Heart Lake Conservation Area Master Plan. Prepared by Heart Lake Conservation Area Master Plan Advisory Committee, Conservation Land Planning Group, TRCA. 183 p



Source: MNRF NRVIS, 2017. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2017.



REGIONAL MUNICIPALITY OF PEEL KENNEDY SWM POND, TOWN OF CALEDON, ONTARIO NATURAL ENVIRONMENT EXISTING CONDITIONS


### SITE LOCATION MAP

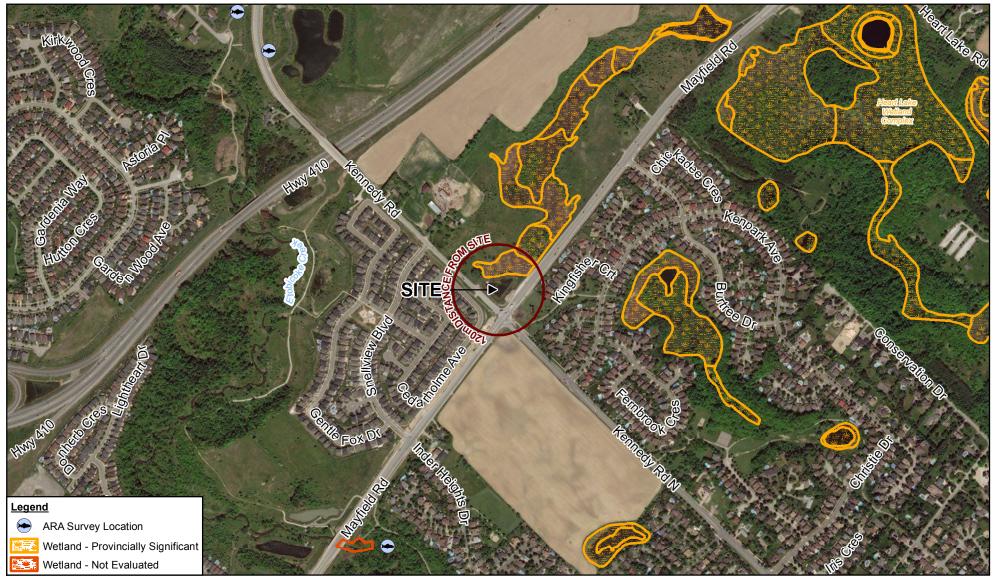
11129100-100 Mar 20, 2017

**FIGURE 1** 

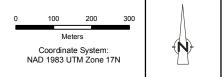


Source: MNRF NRVIS, 2017. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2017. Bing Imagery: Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.






REGIONAL MUNICIPALITY OF PEEL KENNEDY SWM POND, TOWN OF CALEDON, ONTARIO NATURAL ENVIRONMENT EXISTING CONDITIONS


# SIGNIFICANT NATURAL FEATURES

11129100-100 Mar 20, 2017

**FIGURE 2** 



Source: MNRF NRVIS, 2017. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2017. Bing Imagery: Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.





REGIONAL MUNICIPALITY OF PEEL KENNEDY SWM POND, TOWN OF CALEDON, ONTARIO NATURAL ENVIRONMENT EXISTING CONDITIONS

## AQUATIC FEATURES AND WETLANDS

11129100-100 Mar 20, 2017

**FIGURE 3** 

GIS File: Q:\GIS\PROJECTS\11129000s\11129100\Layouts\MEMO003\11129100-100(MEMO003)GIS-WA003.mxd

# Attachments

Attachment A Photographic Log



Photo 1 - Kennedy Pond facing east



Photo 2 - Kennedy Pond facing west



# Site Photographs

GHD | 11129100Memo3-ATTA | Page 1

# Attachment B Vegetation and Wildlife Species Records

#### Attachment B

#### Incidental Wildlife and Vegetation Inventory Kennedy Pond Natural Environment Existing Conditions Region of Peel

| Common Name            | Scientific Name       |
|------------------------|-----------------------|
| Birds                  | 1                     |
| Red-winged blackbird   | Agelauis phoeniceus   |
| Mallard                | Anas platyrhynchos    |
| Great blue heron       | Ardea herodias        |
| Canada goose           | Branta canadensis     |
| Red-tailed hawk        | Buteo jamaicensis     |
| Northern cardinal      | Cardinalis cardinalis |
| Turkey vulture         | Cathartes aura        |
| Killdeer               | Charadrius vociferus  |
| Song sparrow           | Melospiza melodia     |
| Black-capped chickadee | Poecile atricapillus  |
| Eastern pheobe         | Sayornis pheobe       |
| American robin         | Turdus migratorius    |
| Vegetation             |                       |
| Norway maple           | Acer platanoides      |
| Staghorn sumac         | Rhus typhina          |
| Wild mustard sp.       | Cruciferae sp.        |
| Late goldenrod         | Solidago gigantea     |
| Common mullien         | Verbascum thapsus     |
| Willow                 | Salix sp.             |
| Purple loosestrife     | Lythrum salicaria     |
| Red-osier dogwood      | Cornus sericea        |
| Eastern-white cedar    | Thuja occidentalis    |
| Garlic mustard         | Alliaria petiolata    |
| Field sow thistle      | Sonchus arvensis      |
| Wild Carrot            | Daucus carota         |
| Sweet cherry           | Prunus avium          |
| Cow vetch              | Vicia cracca          |
| Reed canary grass      | Phalaris arundinacea  |
| Coneflower             | Echinacea sp.         |
| Burdock                | Arctium sp.           |
| Hawthorn               | Crataegus             |
| Eastern cottonwood     | Populus deltoides     |
| Teasel                 | Dipsacus fullonum     |
| Sweet white clover     | Melilotus albus       |
| Common yarrow          | Achillea millefolium  |
| Narrow-leaved cattail  | Typha angustifolia    |

# Attachment C Species at Risk Screening Table

#### Attachment C

#### Species at Risk Screening Kennedy Pond

|                       |                        |                |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Likelihood to     |                                                                                                                                                                                                                                      |
|-----------------------|------------------------|----------------|------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Common                |                        |                |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Occur on the      |                                                                                                                                                                                                                                      |
|                       | Scientific Name        | Taxon          |                        | ESA Status <sup>2</sup> | Habitat Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Site <sup>3</sup> | Rationale for Likelihood                                                                                                                                                                                                             |
| Barn Swallow          | Hirundo rustica        | Birds          | MNRF,<br>OBBA          |                         | In Ontario barn swallow breeding habitat contains a suitable nesting structure, open areas for foraging, and a body of water that provides mud for nest construction (Lepage 2007, COSEWIC 2011). This species nests in human made structures including barns, buildings, sheds, bridges, and culverts (Lepage 2007, COSEWIC 2011). This species commonly nests in small colonies, occasionally reaching 50 pairs or more in number (Lepage 2007). Preferred foraging habitat includes grassy fields, pastures, agricultural cropland, lake and river shorelines, cleared rights-of-way, and wetlands. Mud nests are fastened to vertical walls or built on a ledge underneath an overhang. Suitable nests from previous years are reused (Brown and Brown 1999). In Ontario the barn swallow is widespread and common in southern Ontario south of the Canadian Shield and has a scattered distribution in the Southern Shield. It breeds in isolated pockets in northwestern Ontario especially in the vicinities of Thunder Bay and Lake of the Woods, and has a sporadic breeding distribution north to the Hudson Bay lowlands, largely absent from the boreal forest (Lepage 2007). |                   | Although Barn Swallows may feed over the wetlands, there<br>are no suitable structures for nesting. This species was not<br>observed during the Site visit.                                                                          |
| Bank Swallow          | Riparia riparia        | Birds          | MNRF,<br>OBBA          |                         | Bank swallows nest in burrows in natural and human-made settings where there are vertical faces in silt and sand deposits. Many nests are on banks of rivers and lakes, but they are also found in active sand and gravel pits or former ones where the banks remain suitable. The birds breed in colonies ranging from several to a few thousand pairs. The bank swallow migrates south for the winter, primarily to South America.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | Although Bank Swallows may feed over the wetlands, there are no suitable banks for nesting. This species was not observed during the Site visit.                                                                                     |
| Bobolink              | Dolichonyx             | Birds          | MNRF,                  | Threatened              | In Ontario, the bobolink (Dolichonyx oryzivorus) breeds in grasslands or graminoid dominated hayfields with tall vegetation (Gabhauer 2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low               | Grassland is present in the Site, but it is dominated by large-                                                                                                                                                                      |
|                       | orizivorus             |                | OBBA                   |                         | Bobolinks prefer grassland habitat with a broad-leaf component and a substantial litter layer. They have low tolerance for presence of woody vegetation and are sensitive to extensive mowing. They are found in greater numbers in old fields where mowing and re-sowing are infrequent, preferably at intervals of several years (Martin & Gavin 1995). Their nest is woven from grasses and forbs. It is built on the ground, in dense vegetation, usually under the cover of one or more broad-leaved forbs (Martin & Gavin 1995).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | leaved vegetation and not a large enough grassland overall to<br>be suitable for nesting of this species. This species was not<br>observed during the Site visit.                                                                    |
| Chimney<br>Swift      | Chaetura<br>pelagica   | Birds          | OBBA                   |                         | Chimney swift breeding habitat is varied and includes urban, suburban, rural and wooded sites. They are most commonly associated with towns and cities with large concentrations of chimneys (COSEWIC 2007). Preferred nesting sites are dark, sheltered spots with a vertical surface to which the bird can grip. Unused chimneys are the primary nesting and roosting structure, but other anthropogenic structures and large diameter cavity trees are also used. Chimney swifts usually nests one pair to a chimney, and will roost in large colonies outside of the breeding season (COSEWIC 2007, Cink and Collins 2002).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Although Chimney may feed over the wetlands, there are no suitable structures (chimneys) for nesting. This species was not observed during the Site visit.                                                                           |
| Common<br>Nighthawk   | Chordeiles minor       | Birds          | OBBA                   | Concern                 | In Ontario, Common nighthawk habitat consists of opens habitats with little groundcover including: forested, rural-agricultural and urban<br>environments (Sandilands 2007, COSEWIC 2007). It is found in rock barrens, alvars, sand barrens, bogs, fens, and in forest openings created by<br>natural and anthropogenic disturbance (Sandilands 2007). In southern Ontario farmlands it has nested in grasslands, gravel pits, alvars, pastures<br>and airports. In urban areas, Common nighthawks nest mainly on graveled rooftops (Sandilands 2007). Nest on the ground usually in the open.<br>Urban nesting birds may prefer large roofs (Brigham et al. 2011).<br>The Common nighthawk breeds throughout the entire province of Ontario from the Carolinian region to the Hudson's Bay Lowlands. South of the<br>Southern Shield this species occurs most commonly in urban environments and is largely absent from areas of intensive agriculture (Sandilands<br>2007). Egg dates in Ontario have been reported between May 26th and August 13th (Peck and James 1983, Peck and James 1994).                                                                                       |                   | There are no suitable open gravel or rock areas or roofs for<br>Common Nighthawk to nest. This species was not observed<br>during the Site visit.                                                                                    |
| Eastern<br>Meadowlark | Sturnella magna        | Birds          | MNRF,<br>OBBA          |                         | In Ontario, breeding habitat of eastern meadowlark is pastures, hayfields, meadows/old fields (Leckie 2007). Eastern meadowlarks prefer moderately tall grasslands with abundant litter cover, high grass proportion, and a forb component (Hull 2002). They prefer well drained sites or on slopes (Roseberry and Klimstra 1970). Sites with different cover layers are preferred (Hull 2002, Skinner 1975). The Eastern meadowlark builds a nest of woven grasses on the ground amongst dense vegetation. Most eggs are laid in late May or early June although the Eastern meadowlark may begin laying as early as the beginning of May (Leckie 2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | Grassland is present in the Site, but it is dominated by large-<br>leaved vegetation and not a large enough grassland overall to<br>be suitable for nesting of this species. This species was not<br>observed during the Site visit. |
|                       | Contopus virens        | Birds          | MNRF,                  | Special                 | The eastern wood-pewee lives in the mid-canopy layer of forest clearings and edges of deciduous and mixed forests. It is most abundant in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Low               | There is no mature woodland within the Site. This species was                                                                                                                                                                        |
| Wood-pewee            |                        |                | OBBA                   |                         | intermediate-age mature forest stands with little understory vegetation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | not observed during the Site visit.                                                                                                                                                                                                  |
| Wood Thrush           | mustelina              | Birds          | MNRF,<br>OBBA          |                         | The wood thrush lives in mature deciduous and mixed (conifer-deciduous) forests. They seek moist stands of trees with well-developed undergrowth<br>and tall trees for singing perches. These birds prefer large forests, but will also use smaller stands of trees. They build their nests in living saplings,<br>trees or shrubs, usually in sugar maple or American beech. The wood thrush flies south to Mexico and Central America for the winter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | There are no mature deciduous stands of forest with moist soil<br>and well-developed undergrowth that would be suitable for<br>Wood Thrush. This species was not observed during the Site<br>visit.                                  |
|                       | Panax<br>quinquefolius | Vascular Plant |                        |                         | In Ontario, American ginseng is found in rich, moist, undisturbed and relatively mature deciduous woods often dominated by sugar maple<br>(COSEWIC 2000a). It is also commonly found on south-facing slopes and in ravines. Ginseng grows under closed canopies in neutral, loamy soils.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | There are no mature deciduous forest stands suitable for<br>American ginseng within the Site. This species was not<br>observed during the Site visit.                                                                                |
| Butternut             | Juglans cinerea        | Vascular Plant | MNRF,<br>NHIC,<br>RVPO | Ū                       | In Ontario, butternut is found along stream banks, in swamps, and in deciduous and mixed forests (Voss and Reznicek 2012). It is commonly associated with species including beech, maple, oak and hickory (Voss and Reznicek 2012). Butternut prefers moist, fertile, well-drained soils, but will also grow in rocky limestone soils (Farrar 1995). This species is shade intolerant (Farrar 1995).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | Butternut can occur across a wide variety of soil types, but this species was not observed during the Site visit.                                                                                                                    |

#### Attachment C

#### Species at Risk Screening Kennedy Pond

| Common<br>Name         | Scientific Name           | Taxon                      | Source <sup>1</sup> | ESA Status <sup>2</sup> | Habitat Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Likeliho<br>Occur o<br>Site |
|------------------------|---------------------------|----------------------------|---------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Dense<br>Blazing Star  | Liatris spicata           | Vascular Plant             | RVPO                | Threatened              | In Ontario, the dense blazing star is found mainly in moist tall-grass prairies, oak savannahs, wet meadows and along roadsides (COSEWIC 2010a;<br>Voss and Reznicek 2012). It grows in moist to wet, sandy calcareous soils (WDNR 2013). This species requires full sun and so is found in open<br>habitats (COSEWIC 2010a).                                                                                                                                                                                                                                                                                                                                                                        | Non                         |
| Monarch                | Danaus<br>plexippus       | Insects                    | OBA                 | Special<br>Concern      | Throughout their life cycle, Monarchs use three different types of habitat. Only the caterpillars feed on milkweed plants and are confined to meadows and open areas where milkweed grows. Adult butterflies can be found in more diverse habitats where they feed on nectar from a variety of wildflowers. Monarchs spend the winter in Oyamel Fir forests found in central Mexico.                                                                                                                                                                                                                                                                                                                 | Low                         |
| Small-footed<br>Myotis | Myotis leibii             | Mammals                    | MNRF,<br>BCI        | Endangered              | In the spring and summer, eastern small-footed bats will roost in a variety of habitats, including in or under rocks, in rock outcrops, in buildings,<br>under bridges, or in caves and mines. This species does not roost in trees. These bats often change their roosting locations every day, but stay<br>within a general area with multiple roost options. At night, they hunt for insects to eat, including beetles, mosquitos, moths, and flies. In the winter,<br>these bats hibernate, most often in caves and abandoned mines, or other underground passages. They seem to choose colder and drier sites than<br>similar bats and will return to the same spot each year.                  | Low                         |
| Little Brown<br>Myotis | Myotis lucifugus          | Mammals                    | MNRF,<br>BCI        | Endangered              | During the day this species roosts mostly in trees and buildings. They often select attics, abandoned buildings and barns for summer colonies where they can raise their young. Bats can squeeze through very tiny spaces (as small as six millimetres across) and this is how they access many roosting areas. Little brown bats hibernate from October or November to March or April, most often in caves or abandoned mines or similar underground spaces that are humid and remain above freezing.                                                                                                                                                                                               | Low                         |
| Northern<br>Myotis     | Myotis<br>septentrionalis | Mammals                    | MNRF,<br>BCI        | Endangered              | Northern long-eared bats normally roost in trees and rarely in buildings, choosing to roost under loose bark and in the cavities of trees. These bats hibernate from October or November to March or April, most often in caves, abandoned mines or similar underground spaces where they can find stable temperatures above freezing and high humidity.                                                                                                                                                                                                                                                                                                                                             | Lov                         |
| Tricolored<br>Bat      | Perimyotis<br>subflavus   | Mammals                    | MNRF,<br>BCI        | Endangered              | During the summer, the Tri-colored Bat is found in a variety of forested habitats. It forms day roosts and maternity colonies in older forest and occasionally in barns or other structures. Although their specific roosting requirements in Ontario are very poorly known, they are most often roosting in leaf clumps, hanging mosses or squirrel nests. They forage over water and along streams in the forest. Tri-colored Bats eat flying insects and spiders gleaned from webs. These bats hibernate from October or November to March or April, most often in caves, abandoned mines or similar underground spaces where they can find stable temperatures above freezing and high humidity. | Lov                         |
| Snapping<br>Turtle     | Chelydra<br>geographica   | Reptiles and<br>Amphibians | MNRF,<br>OHA        | Special<br>Concern      | Snapping turtles spend most of their lives in water, but will often move over open terrestrial landscapes and roads. They prefer shallow waters so they can hide under the soft mud and leaf litter, with only their noses exposed to the surface to breathe. During the nesting season, from early to mid summer, females travel overland in search of a suitable nesting sites, usually gravelly or sandy areas along streams. Snapping turtles often take advantage of man-made structures for nest sites, including roads (especially gravel shoulders), dams and aggregate pits.                                                                                                                | High                        |
| Blanding's<br>Turtle   | Emydoidea<br>blandingii   | Reptiles and Amphibians    | OHA                 | Threatened              | Blanding's Turtles live in shallow water, usually in large wetlands and shallow lakes with lots of water plants. It is not unusual, though, to find them hundreds of metres from the nearest water body, especially while they are searching for a mate or traveling to a nesting site. Blanding's Turtles hibernate in the mud at the bottom of permanent water bodies from late October until the end of April.                                                                                                                                                                                                                                                                                    | Moder                       |
| Red-side<br>Dace       | Clinostomus<br>elongatus  | Fish                       | MNRF                | Endangered              | The Redside dace is found in pools and slow-moving areas of small streams and headwaters with a gravel bottom. They are generally found in areas with overhanging grasses and shrubs, and can leap up to 10 cm out of the water to catch insects. During spawning, they can be found in shallow parts of streams, which are also popular spawning areas for other minnow species.                                                                                                                                                                                                                                                                                                                    | Low                         |
| Western<br>Chorus Frog | Pseudacris<br>triseriata  | Reptiles and<br>Amphibians | ОНА                 | Not Listed*             | The Western Chorus Frog occupies a variety of lowland habitats with an open or discontinuous canopy, where slight depressions in topography allows the formation of wetlands (e.g., marshes, swamps, ponds) that generally dry out in summer. The vegetation in those habitats is mainly herbaceous and partly submerged trees. The home range of an individual must provide for the specific needs of all life cycles (breeding, foraging, movement and hibernation).                                                                                                                                                                                                                               | Higl                        |

Notes:

1 Species identified through a request to the Ontario Ministry of Natural Resources and Forestry (MNRF), Obtained from the Natural Heritage Information Centre (NHIC), the local Conservation Authority (CA),

the Rare Vascular Plants of Ontario (RVPO), the Ontario Herpetofaunal Atlas (OHA), the Atlas of the Breeding Birds of Ontario (OBBA), the rare fish and mussel maps from the Department of Fisheries and Oceans (DFO) or the Ontario Butterfly Atlas (OBA). 2 Status of the species on the Species at Risk in Ontario list, and protected under the provincial Endangered Species Act.

3 Probability to occur is based on the reliability of the historic record, suitability of the habitat on site and classified as "None" for species where a sufficient survey confirmed absence, and "confirmed" if a survey identified the species on habitat. \* Species is not listed on the Endangered Species Act, but is listed on the federal Species at Risk Act.

| ihood to<br>Ir on the<br>Site <sup>3</sup> | Rationale for Likelihood                                                                                                                                                                         |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lone                                       | Although the open field within the Site could be suitable for<br>this species, it was not observed during the Site visit.                                                                        |
| Low                                        | No Milkweed was found within the Site. This species was not observed during the Site visit.                                                                                                      |
| Low                                        | There are no rock features suitable for roosting and no<br>underground features suitable for hibernation for this species.                                                                       |
| Low                                        | There are no mature trees or buildings suitable for summer<br>roosting and no underground features suitable for hibernation<br>for this species.                                                 |
| Low                                        | There are no mature trees or buildings suitable for summer roosting and no underground features suitable for hibernation for this species.                                                       |
| Low                                        | There are no mature trees or buildings suitable for summer<br>roosting and no underground features suitable for hibernation<br>for this species.                                                 |
| ligh                                       | The ponds and wetlands in the Site are suitable for Snapping<br>Turtles, although none were observed during the Site visit.                                                                      |
| derate                                     | The ponds and wetlands in the Site are suitable for Blanding's<br>Turtles, although none were observed during the Site visit.<br>However, there are very few historic records and little basking |
| Low                                        | Aquatic habitat in the pond is not suitable for this species.                                                                                                                                    |
| High                                       | The ponds and wetlands in the Site are suitable for Western<br>Chorus Frogs, although none were observed during the Site<br>visit.                                                               |

Appendix E Stormwater Management Operations and Maintenance Manual



# **Stormwater Management Operations and Maintenance Manual**

Kennedy Stormwater Management Wetland

Town of Caledon Region of Peel

GHD | 65 Sunray Street Whitby Ontario L1N 8Y3 Canada 11129100 |March 2017



# **Table of Contents**

| 1. | Introd        | luction                                            | 1  |  |  |  |  |
|----|---------------|----------------------------------------------------|----|--|--|--|--|
| 2. | Storm         | nwater Management Facility                         | 3  |  |  |  |  |
| 3. | 3. Operations |                                                    |    |  |  |  |  |
|    | 3.1           | Siltation Control                                  | 4  |  |  |  |  |
|    | 3.1.1         | Upon Initial Completion of Facility Retrofit Works | 4  |  |  |  |  |
|    | 3.1.2         | Continued Facility Operation by the Region         | 4  |  |  |  |  |
| 4. | Inspe         | ction after Municipal Assumption                   | 5  |  |  |  |  |
|    | 4.1           | Frequency of Inspection                            | 5  |  |  |  |  |
|    | 4.2           | Inspection Checklist                               | 5  |  |  |  |  |
| 5. | Maint         | enance Procedures                                  | 6  |  |  |  |  |
|    | 5.1           | Grass Cutting                                      | 6  |  |  |  |  |
|    | 5.2           | Weed Control                                       | 6  |  |  |  |  |
|    | 5.3           | Plantings                                          | 6  |  |  |  |  |
|    | 5.4           | Litter and Debris Removal                          | 6  |  |  |  |  |
|    | 5.5           | Sediment Removal                                   | 6  |  |  |  |  |
|    | 5.5.1         | SWM Shield Removals                                | 6  |  |  |  |  |
|    | 5.5.2         | Forebay/Main Cell Sediment Removal Frequency       | 7  |  |  |  |  |
|    | 5.5.3         | Method of Removal                                  | 7  |  |  |  |  |
|    | 5.5.4         | Sediment Disposal                                  | 8  |  |  |  |  |
| 6. | Maint         | enance Costs                                       | 9  |  |  |  |  |
| 7. | Safet         | fety                                               |    |  |  |  |  |
|    | 7.1           | Vegetation                                         | 10 |  |  |  |  |
|    | 7.2           | Signage                                            | 10 |  |  |  |  |
|    | 7.3           | Infrastructure                                     | 10 |  |  |  |  |

# **Table Index**



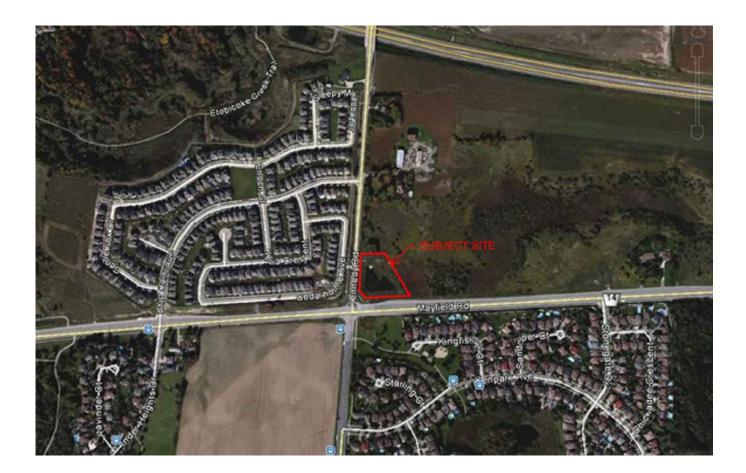
## **Figure Index**

Figure 1 Key Plan......2

### **Appendices**

| Appendix A | Inspection Checklist                                       |
|------------|------------------------------------------------------------|
| Appendix B | Sediment Removal Frequency                                 |
| Appendix C | CB Shield Inc. – Predicted Performance of SWM Shield Units |

### **Drawings**


11129100 SWM-201 – Kennedy Pond Retrofit Plan View (rear pocket) 11129100 SWM-202 – Kennedy Pond Retrofit Details (rear pocket)



### 1. Introduction

This Operations and Maintenance Manual has been prepared for the Region of Peel to provide an outline of the maintenance responsibilities, inspection procedures and associated estimated costs for the Kennedy Stormwater Management Facility, in accordance with the Ministry of the Environment Stormwater Management Planning and Design Manual (SWMP Manual), March 2003.

The existing SWM facility is located within the Etobicoke Creek watershed, adjacent to the intersection of Kennedy Road and Mayfield Road, in the Town of Caledon, Regional Municipality of Peel. The SWM facility services 9.76 hectare (ha) of existing road allowance. **Figure 1**, Key Plan, indicates the location of the existing facility and the contributing drainage area.





REGION OF PEEL KENNEDY SWMF RETROFIT CITY OF BRAMPTON SITE LOCATION PLAN

Job Number | 111-29100 Revision A Date MAR.2017 Figure 01

Plotted by: Scott Sexton

65 Sunray Street, Whitby Ontario L1N 8Y3 T 1 905 686 6402 F 1 905 432 7877 E ytomail@ghd.com W www.ghd.com Cad File No: G:\111\11129100\CADD\Drawings\Water Resources\11129100 - Figure 1.dwg



# 2. Stormwater Management Facility

Full details of the SWM facility are described in the report entitled Kennedy Pond Stormwater Management Facility Retrofit, March 2017. Refer to **Drawing SWM-201** (rear pocket) for the detailed design of the facility. A brief summary of the facility design is as follows:

- Drainage from 9.76 ha of existing road allowance is directed to the SWM facility located adjacent to a tributary of Etobicoke Creek.
- A permanent pool volume of approximately 880 m<sup>3</sup> for quality control at a water elevation of 255.55m (geodetic).
- The erosion portion of the pond (extended detention) will have a depth of 0.60 m corresponding to a 25 mm water surface elevation of 256.15 m.
- An outlet control manhole containing a concrete wall with a 100mm diameter orifice at an invert elevation of 255.55m, will provide the extended detention storage for a detention time of approximately 55 hours. An overflow control weir at an elevation of 256.15m will control larger storm events.
- A 3.0m wide overflow spillway is located along the northeast side of the facility at an elevation of 256.30m, to control peak flows for the 5 through 100 year storm events to predevelopment levels.
- A SWM Shield quality control structure located at the pond inlet to capture a significant portion of incoming sediment



# 3. **Operations**

### 3.1 Siltation Control

#### 3.1.1 Upon Initial Completion of Facility Retrofit Works

Upon initial completion of the facility retrofit works, the as-constructed permanent pool volume will be confirmed as per the approved design drawing (**SWM-201**). If required, the pond will be re-excavated to obtain the required storage volume. Cleanout procedures will be in accordance with Section 5.0. Facility landscaping will be rehabilitated with compensatory plantings to account for the introduction of the new maintenance access path.

### 3.1.2 Continued Facility Operation by the Region

All inspection and maintenance requirements are detailed in Sections 4.0 and 5.0.



# 4. Inspection after Municipal Assumption

### 4.1 Frequency of Inspection

- After every significant rainfall (>10 mm) for the first two years of operation.
- Minimum of four visits per year after the first two years of operation (winter, spring, summer and fall).
- After the first 2 years, annual inspection of SWM Shield product for monitoring of sediment accumulation levels.

### 4.2 Inspection Checklist

An inspection checklist is located in **Appendix A**. This checklist can be completed following each site visit. The Region should keep a record of the completed checklists.



## 5. Maintenance Procedures

### 5.1 Grass Cutting

Grass cutting is not recommended for the pond in order to maintain a "natural" environment and increased water quality benefits. It is recommended that pond facility banks be cut to a height of 10cm every third year and the following practices should be considered:

- Minimize the frequency of cutting;
- Do not cut the grass up to the edge of the facility to maintain shading and nutrient uptake; and
- Do not blow grass clippings into the facility to minimize the organic loading in the pond.

### 5.2 Weed Control

Weed control of invasive alien species such as Dog Strangling Vines, European Buckthorn, Norway Maple, Garlic Mustard, etc., is recommended to be implemented on a bi-annual basis and the following item should also be considered:

• Prohibit the use of herbicides and insecticides due to the potential water quality concerns associated with downstream uses;

### 5.3 Plantings

Any replacement plantings required due to disturbance or die-out (upland, shoreline fringe or aquatic) are to be replaced in accordance with the original Landscape Plans or as otherwise deemed appropriate by the Region. Native species should be used for all plantings.

### 5.4 Litter and Debris Removal

Accumulated litter and debris within the facility can be removed by hand during the regular inspection periods.

### 5.5 Sediment Removal

#### 5.5.1 SWM Shield Removals

The SWM Shield product has been design as a means to capture sediment as it enters the SWM Facility. As the product is new and historical information unavailable, the timeline for removals is unknown at this time. It is anticipated that the SWM Shield will capture approximately 50% of the incoming sediment loading, resulting in the product's storage capacity reaching 50% after 3 years. Due to the unknown performance of the new product, it is recommended the sediment accumulation be reviewed two times per year the first 2 years, and annual thereafter. Based on the sediment accumulation, a more accurate loading rate can be determine and better estimate of cleanout frequency determined.



The SWM Shield has been design for sediment to be removed via vac-truck. The SWM Shield has been designed to stay separate from the permanent pool; therefore the drawdown of the permanent pool is not required to provide sediment removal services. It is recommended that excavated sediment be placed immediately into dump trucks for disposal. It can be noted that a sediment drying area is not always required, as the contractors which specialize in this work prefer to remove and haul away sediment in one operation to avoid double handling of materials. This method has proven to be more time and cost efficient.

Before removal, sediments are to be tested in accordance with MOE sediment disposal guidelines (most private laboratories are familiar with the guidelines) to ensure that sediment is handled and disposed of in an appropriate manner.

### 5.5.2 Forebay/Main Cell Sediment Removal Frequency

In accordance with MOE guidelines, the accumulated sediments within the SWM facility should be excavated upon a 5% decrease in total suspended solids (TSS) removal efficiency. Based on the enhanced protection level provided (80% TSS removal), cleanout will be required every 15 years (refer to **Appendix B** for calculations). At that time, MOE loading guidelines estimate that approximately 142 m<sup>3</sup> of sediment will have accumulated in the pond. The introduction of the SWM Shield product is meant to provide a means of reducing the sediment accumulation within the SWM facility. As such, the facility will not receive the above noted sediment loading anticipated for a typical end-of-pipe treatment method. It is recommended that a bathometric survey be provided at the 10 year period to determine the sediment accumulation. A review will be required to analyse the accumulation rate, and whether the permanent pool has adequate capacity to continue to provide the required quality controls in conformance with MOECC guidelines. Based on the sediment accumulation at that time, there will be a better understanding of the performance of the SWM Shield in conjunction with the SWM facility, and the maintenance schedule can be adjusted accordingly.

### 5.5.3 Method of Removal

To initiate the sediment removal process, several items need to be completed prior to commencement of works. A bathymetric survey will be required to estimate the volume to be removed. Engineering reports and plans, such as a Sediment Control Plan, may require completion to ensure that maintenance activities do not adversely affect the downstream watercourse. This process may also require communication and coordination with the Conservation Authority as regards servicing requirements and permits.

To remove the sediment, the permanent pool will be required to be pumped out. The bathometric survey will determine if both the forebay and main cell require excavation/sediment removal. A temporary bulk head can be placed in MH2 and water pumped to this location. The majority of this can be completed within the control manhole to minimize sediment disturbance

Once the facility is drained, the accumulated sediments can be excavated by backhoe or vactruck from the forebay area. The form of excavation should be given consideration based on the composition of the sediment within the forebay. Best efforts should be made to minimize



disturbance to the structural base materials of the forebay(rip-rap, etc.). A temporary sediment drying area is not feasible due to the limited land available and proximity to the wetland. It is therefore recommended that the excavated sediment be placed immediately into trucks for disposal to minimize disturbance to existing aquatic and local vegetation.

### 5.5.4 Sediment Disposal

It is recommended that excavated sediment be placed immediately into dump trucks for disposal. This would assist in minimizing the disturbance of existing aquatic and local vegetation. It can be noted that a sediment drying area is not always required, as the contractors which specialize in this work prefer to remove and haul away sediment in one operation to avoid double handling of materials. This method has proven to be more time and cost efficient.

Before removal, sediments are to be tested in accordance with MOE sediment disposal guidelines (most private laboratories are familiar with the guidelines) to ensure that sediment is handled and disposed of in an appropriate manner.



### 6. Maintenance Costs

Based on **Table 1** below, the anticipated average annual maintenance cost for the pond will be approximately \$19,515 based on 2017 dollars.

#### **Table 1 Unit Costs for Operations and Maintenance**

| Type of Maintenance                                                  | Interval<br>(# / yr) | Amount | Unit | Price / Unit<br>(2016) | Total Cost |
|----------------------------------------------------------------------|----------------------|--------|------|------------------------|------------|
| Litter/Debris Removal                                                | 1.0                  | 0.53   | ha   | \$1,200                | \$636      |
| Vegetation Maintenance<br>(Aquatic/Shoreline Fringe)                 | 1.0                  | 0.53   | ha   | \$850                  | \$450      |
| Vegetation Maintenance<br>(Upland/Flood Fringe)                      | 1.0                  | 0.53   | ha   | \$1120                 | \$594      |
| SWM Shield Sediment<br>Removal and<br>Disposal(Off-Site Landfill)    | 0.25                 | 40.5   | m³   | \$100                  | \$1,620    |
| Sediment Removal and<br>Disposal <sup>2</sup><br>(Off-Site Landfill) | 0.05                 | 96     | m³   | \$220                  | \$1,056    |
| Sediment Testing <sup>2</sup><br>(Lab Tests on Quality)              | 0.1                  | 1      | each | \$600                  | \$60       |
| Bathymetric Survey,<br>Engineering Reports and<br>Permits            | 0.1                  | 1      | each | \$12,000               | \$1,200    |
| Inspection<br>(Inlet/Outlet, etc.)                                   | 1.0                  | 1      | -    | \$170                  | \$170      |
|                                                                      | \$5,786              |        |      |                        |            |

<sup>1</sup> Source: Table 7.5 MOE, SWM Planning and Design Manual, March 2003.

<sup>2</sup> Sediment removal frequency determined to be once every 11 years, however maintenance is recommended after is typically done every10 years. Due to SWM Shield, pond excavation requirements are estimated to extend to 20 years. Costs are based on maintenance every 10 years.



# 7. Safety

### 7.1 Vegetation

The original SWM Pond Landscape Plan utilizes strategic planting location and species to discourage direct access to the pond wherever possible. Any revegetation should be completed in accordance with the original plans where plantings do not interfere with the new maintenance path.

### 7.2 Signage

Safety signage should be confirmed as installed per **Drawing SWM-201 and SWM -202** to notify the public of the potential safety concerns associated with the permanent pool within the pond and flooding that may occur during rainfall events.

### 7.3 Infrastructure

Headwall has been constructed as per OPSD 804.030 with grates as per OPSD 804.05. Pedestrian guard rails are proposed in areas where standard side slopes were not possible. Details are included on **Drawing SWM-202**.



# Appendix A Inspection Checklist



### APPENDIX A

### Pond Inspection/Monitoring Checklist

\_

Date: \_\_\_\_\_

|     | Engineering Item                                                                                                    | Maintenance<br>Required (Y/N) | Comments |
|-----|---------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|
| 1.  | Outlet Blockage<br>(Is the pond level higher than the normal<br>permanent pool level 24 hours after a<br>rainfall?) |                               |          |
| 2.  | Inlet Blockage<br>(Is the pond level lower than the<br>permanent pool elevation?)                                   |                               |          |
| 3.  | Pollutants (Hydrocarbon (oil), algae etc.)                                                                          |                               |          |
| 4.  | Sediment Depth<br>(Has minimum depth ofm been<br>achieved at low point?)                                            |                               |          |
| 5.  | Trash Build-up                                                                                                      |                               |          |
| 6.  | Outlet<br>(Signs of erosion)                                                                                        |                               |          |
| 7.  | Berm Stability and Shoreline Erosion                                                                                |                               |          |
| 8.  | Inlet Structure                                                                                                     |                               |          |
| 9.  | Outlet Structure                                                                                                    |                               |          |
| 10. | Maintenance Access                                                                                                  |                               |          |
| 11. | Fence, Locks, Gate                                                                                                  |                               |          |
| 12. | Overland Flow Inlet                                                                                                 |                               |          |
| 13. | Water Levelm Elev. (Is water<br>elevated above permanent pool<br>elevation?)                                        |                               |          |
| 14. | High Water Marksm Elev.                                                                                             |                               |          |
|     | Landscaping Item                                                                                                    | Maintenance<br>Required (Y/N) | Comments |
| 15. | Aquatic Vegetation                                                                                                  |                               |          |
| 16. | Shoreline Vegetation                                                                                                |                               |          |
| 17. | Upland Vegetation                                                                                                   |                               |          |

- 18. Invasive Species Present?
- 19. Additional Comments

# Appendix B Sediment Removal Frequency

| Project Name: | Region of Peel - Kennedy Pond |
|---------------|-------------------------------|
| Project No.:  | 11129100                      |
| Description:  | Sediment Removal Frequency    |

| Drainage Area                       | 9.76 | ha                                                           |
|-------------------------------------|------|--------------------------------------------------------------|
| Imperviousness                      | 45%  |                                                              |
| SWMP Type                           | WL   | (Infiltration (I), Wetlands (WL), Hybrid (H), Wet Pond (WP)) |
| Protection Level                    | 1    |                                                              |
| Total Suspended Solids Removal      | 80%  |                                                              |
| Reduction in Efficiency to Initiate | 5%   |                                                              |
| Starting Storage Volume             | 52   | m³/ha                                                        |
| Permanent Pool Volume               | 508  | m <sup>3</sup>                                               |

| Table 6.3: Annual Sediment Loading<br>(MOE SWM Planning and Design Manual, March 2003)                               |      |      |      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|------|------|------|--|--|--|
| Loading         Wet Density         Loading           Imperviousness         (kg/ha)         (kg/m³)         (m³/ha) |      |      |      |  |  |  |
| 35%                                                                                                                  | 770  | 1230 | 0.63 |  |  |  |
| 55%                                                                                                                  | 2300 | 1230 | 1.87 |  |  |  |
| 70%                                                                                                                  | 3495 | 1230 | 2.84 |  |  |  |
| 85%                                                                                                                  | 4680 | 1230 | 3.80 |  |  |  |

| Annual Loading/ha | 1.3  | m <sup>3</sup> /ha/yr |
|-------------------|------|-----------------------|
| Annual Loading    | 12.2 | m³/yr                 |

| Year | Starting<br>Storage<br>Volume<br>m <sup>3</sup> /ha | Sediment<br>Removal<br>Efficiency<br>% | Amount of<br>Sediment<br>Removed<br>m <sup>3</sup> | Starting<br>Permanent<br>Pool Volume<br>m <sup>3</sup> | End of Year<br>Permanent<br>Pool Volume<br>m <sup>3</sup> | End of Year<br>Storage<br>Volume<br>m <sup>3</sup> /ha | Cumulative<br>Sediment<br>Removed<br>m <sup>3</sup> |
|------|-----------------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|
| 1    | 52                                                  | 80.0%                                  | 9.760                                              | 507.8                                                  | 498.1                                                     | 51.0                                                   | 9.8                                                 |
| 2    | 51.0                                                | 79.6%                                  | 9.715                                              | 498.1                                                  | 488.3                                                     | 50.0                                                   | 19.5                                                |
| 3    | 50.0                                                | 79.3%                                  | 9.669                                              | 488.3                                                  | 478.7                                                     | 49.0                                                   | 29.1                                                |
| 4    | 49.0                                                | 78.9%                                  | 9.624                                              | 478.7                                                  | 469.0                                                     | 48.1                                                   | 38.8                                                |
| 5    | 48.1                                                | 78.5%                                  | 9.579                                              | 469.0                                                  | 459.5                                                     | 47.1                                                   | 48.3                                                |
| 6    | 47.1                                                | 78.2%                                  | 9.535                                              | 459.5                                                  | 449.9                                                     | 46.1                                                   | 57.9                                                |
| 7    | 46.1                                                | 77.8%                                  | 9.490                                              | 449.9                                                  | 440.4                                                     | 45.1                                                   | 67.4                                                |
| 8    | 45.1                                                | 77.4%                                  | 9.446                                              | 440.4                                                  | 431.0                                                     | 44.2                                                   | 76.8                                                |
| 9    | 44.2                                                | 77.1%                                  | 9.402                                              | 431.0                                                  | 421.6                                                     | 43.2                                                   | 86.2                                                |
| 10   | 43.2                                                | 76.7%                                  | 9.358                                              | 421.6                                                  | 412.2                                                     | 42.2                                                   | 95.6                                                |
| 12   | 41.3                                                | 76.0%                                  | 9.271                                              | 402.9                                                  | 393.6                                                     | 40.3                                                   | 114.2                                               |
| 13   | 40.3                                                | 75.6%                                  | 9.228                                              | 393.6                                                  | 384.4                                                     | 39.4                                                   | 123.4                                               |
| 14   | 39.4                                                | 75.3%                                  | 9,185                                              | 384.4                                                  | 375.2                                                     | 38.4                                                   | 132.6                                               |
| 15   | 38.4                                                | 74.9%                                  | 9.142                                              | 375.2                                                  | 366.1                                                     | 37.5                                                   | 141.7                                               |
| 16   | 37.5                                                | 74.6%                                  | 9.100                                              | 366.1                                                  | 357.0                                                     | 36.6                                                   | 150.8                                               |
| 17   | 36.6                                                | 74.2%                                  | 9.057                                              | 357.0                                                  | 347.9                                                     | 35.6                                                   | 159.9                                               |
| 18   | 35.6                                                | 73.9%                                  | 9.015                                              | 347.9                                                  | 338.9                                                     | 34.7                                                   | 168.9                                               |
| 19   | 34.7                                                | 73.5%                                  | 8.973                                              | 338.9                                                  | 329.9                                                     | 33.8                                                   | 177.9                                               |
| 20   | 33.8                                                | 73.2%                                  | 8.931                                              | 329.9                                                  | 321.0                                                     | 32.9                                                   | 186.8                                               |
| 21   | 32.9                                                | 72.9%                                  | 8.890                                              | 321.0                                                  | 312.1                                                     | 32.0                                                   | 195.7                                               |
| 22   | 32.0                                                | 72.5%                                  | 8.848                                              | 312.1                                                  | 303.3                                                     | 31.1                                                   | 204.5                                               |
| 23   | 31.1                                                | 72.2%                                  | 8.807                                              | 303.3                                                  | 294.5                                                     | 30.2                                                   | 213.3                                               |
| 24   | 30.2                                                | 71.9%                                  | 8.766                                              | 294.5                                                  | 285.7                                                     | 29.3                                                   | 222.1                                               |
| 25   | 29.3                                                | 71.5%                                  | 8.725                                              | 285.7                                                  | 277.0                                                     | 28.4                                                   | 230.8                                               |
| 26   | 28.4                                                | 71.2%                                  | 8.684                                              | 277.0                                                  | 268.3                                                     | 27.5                                                   | 239.5                                               |
| 27   | 27.5                                                | 70.9%                                  | 8.644                                              | 268.3                                                  | 259.7                                                     | 26.6                                                   | 248.2                                               |
| 28   | 26.6                                                | 70.5%                                  | 8.604                                              | 259.7                                                  | 251.0                                                     | 25.7                                                   | 256.8                                               |
| 29   | 25.7                                                | 70.2%                                  | 8.564                                              | 251.0                                                  | 242.5                                                     | 24.8                                                   | 265.3                                               |
| 30   | 24.8                                                | 69.9%                                  | 8.524                                              | 242.5                                                  | 234.0                                                     | 24.0                                                   | 273.9                                               |
| 50   | 8.1                                                 | 63.6%                                  | 7.764                                              | 79.4                                                   | 71.6                                                      | 7.3                                                    | 436.2                                               |
| 53   | 5.8                                                 | 62.8%                                  | 7.656                                              | 56.2                                                   | 48.5                                                      | 5.0                                                    | 459.3                                               |
| 54   | 5.0                                                 | 62.5%                                  | 7.620                                              | 48.5                                                   | 40.9                                                      | 4.2                                                    | 466.9                                               |
| 55   | 4.2                                                 | 62.2%                                  | 7.584                                              | 40.9                                                   | 33.3                                                      | 3.4                                                    | 474.5                                               |
| 56   | 3.4                                                 | 61.9%                                  | 7.549                                              | 33.3                                                   | 25.8                                                      | 2.6                                                    | 482.1                                               |
| 57   | 2.6                                                 | 61.6%                                  | 7.514                                              | 25.8                                                   | 18.2                                                      | 1.9                                                    | 489.6                                               |

| Cleanout when Sediment Removal Efficiency drops to: | 75% |                |
|-----------------------------------------------------|-----|----------------|
| Sediment Removal Frequency                          | 15  | Years          |
| Total Sediment Accumulated                          | 142 | m <sup>3</sup> |
| Recommended Cleanout                                | 10  | Years          |
|                                                     | 96  | m <sup>3</sup> |

Appendix C CB Shield Inc. – Predicted Performance of SWM Shield Units



233 Cross Avenue, Suite 302 Oakville, ON L6J 2W9, Canada (T) 519-212-9161 info@cbshield.com

File: GHD-101 March 7, 2017

GHD Whitby 65 Sunray Street Whitby ON L1N 8Y3

Attention: Jamie Iantomasi, P. Eng. Water Resource Engineer

# Reference:Region of Peel SWM Facilities Retrofit, GHD # 11129100Predicted Performance of SWM Shield Units

Dear Jamie:

As requested, we are providing you with sizing and predicted performance information for your consideration in implementing SWM Shield<sup>™</sup> stormwater devices at existing SWM facility retrofits at Heart Lake Road/Mayfield Road and Kennedy Road/Mayfield Road in the City of Brampton, Region of Peel. We understand the two SWM facilities, which are owned and operated by the Region of Peel, are undergoing retrofits that will be designed by GHD.

The sizing of these devices, as you are aware, is based on ETV testing originally completed for the CB Shield<sup>™</sup>. Our scaling of the much smaller CB Shield device up to the SWM Shield size will be outlined in this letter, and will include an important statement regarding the potential limitations of that scaling. We are quite aware that the scaling involved will require confirmation through testing, and therefore we cannot support claims of performance with the same certainty as our smaller ETV verified CB Shield device. However, we are confident that theoretical calculations will provide good general expectations of performance for the two proposed units.

#### Site Parameters

We have based our review on the catchment parameters provided for the Heart Lake Road/Mayfield and Kennedy Road/Mayfield Road SWM facilities as follows:

| Heart Lake Facility: | Area = 10.29 ha                        |
|----------------------|----------------------------------------|
|                      | Imperviousness = 45%                   |
| Kennedy Facility:    | Area = 9.02 ha<br>Imperviousness = 58% |

transforming catch basins into treatment devices &

simplifying maintenance of SWM facilities

### Initial Sizing of the SWM Shields

SWM Shield sizing is based on treatment principles determined through ETV testing and verification completed for the CB Shield. Accordingly, a first approximation at sizing any given SWM Shield relates back to the average number of catch basins that would be found in a similar catchment area. The approximate the number of catch basins in a residential catchment can be roughly estimated using a ratio of 5 CB's per hectare, which is typical for residential areas. This allows a quick determination of treatment surface area as follows:

- SWM Shield Area (m<sup>2</sup>) = Area of CB Shield grate (m<sup>2</sup>) X 5 CB's/ha X Total Site Area (ha)
- SWM Shield Area = 0.36 m<sup>2</sup>/CB X 5 CB's/ha X Total Site Area (ha)

In the case of the Heart Lake Facility the approximate the number of catch basins that would typically be in a catchment area of this size can be determined as:

• 10.29 ha X 5 CB's/ha = 51.5 CB's

With this translating to a cumulative treatment area approximation of:

Heart Lake SWM Shield treatment area (m<sup>2</sup>) = 51.5 CB Shields X 0.36 m<sup>2</sup>/CB Shield
 = 18.5 m<sup>2</sup>

This initial approximation allows a corresponding number of standard precast lengths to be determined that would provide the required surface area. Each standard length of SWM Shield grate is typically:

• 3.0 m X 2.5 m = 7.5 m<sup>2</sup> per section, with this calculation corresponding to the standard concrete box section used most often - approximately 10 feet by 8 feet.

Calculating the approximate number of box sections required for the Heart Lake SWM Shield:

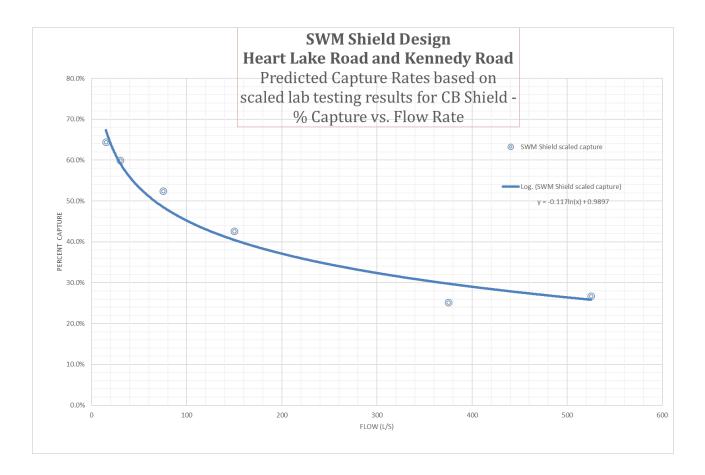
•  $18.5 \text{ m}^2 / 7.5 \text{ m}^2/\text{box section} = 2.5 \text{ box sections}$ 

Given the economies of working with whole box sections and to also ensure some additional conservativeness in design, rounding up to 3 whole box sections is warranted.

Similar calculations for the Kennedy Facility yields the same 3 whole sections as its preliminary size.

The total surface area associated with each SWM Shield is then calculated as: 3 X 7.5 = 22.5 m<sup>2</sup>

### **Detailed Sizing and Scaling Discussion**


SWM shield predicted performance is based on a scaled version of the CB Shield's removal performance testing results as contained in CB Shield's ETV Verified Performance Claim. The scaling of performance data is made based on total treatment area of surface loading, which in this case is the area of grate. The grate is in contact with permanent water in the sump below during flow events, with sediment removed from the flow stream by gravity settling. Settled particles then proceed further through the grate and into the sump where it is stored until the unit is maintained.

The SWM Shield is also expected to mimic performance of the CB Shield with respect to its antiscour properties. The similar grate type design combined with a greater depth of sump allows for



an expectation that scour will be limited from the SWM Shield even during extreme flow events.

The following chart outlines a flow vs. capture ratio in the proposed SWM Shield model that will be implemented at both of the sites:



Data points in the capture curve above are identical to those contained in the ETV Verified claim for CB Shield except that the flow values have been increased by a factor of 62.5, which is the exact factor of increase in the surface area of the proposed SWM Shield as compared with a standard CB Shield.

It should be noted that the proposed SWM Shield has a sump depth that is only 4 times deeper than that of the standard CB Shield (i.e. 2.4 m vs. 0.6 m depth). However, this difference in depth is not predicted to affect performance other than affecting the cycle of maintenance which is outlined later in this brief.



### Predicted Performance

Each of the catchment areas was modelled in PCSWMM, using long term continuous rainfall data from the Bloor Street meteorological station. From this, various flow rates were determined corresponding to their average annual percentage of total volume of flow. This flow was then matched against the corresponding removal rate for the SWM Shield, as determined through scaling from a CB Shield ETV Verified testing data.

If required, the simple approach outlined above can be supplemented through more advanced water quality modelling (within PCSWMM) of the catchments and the SWM Shield treatment devices. Additional modeling would target better description of sediment transport characteristics from the catchments and the associated variation with flows.

Our initial analyses for each of the two SWM Shields indicate similar predicted long term capture of sediment in each unit, due to their similar catchment characteristics. Each unit's predicted long term capture is outlined in the charts below:

| Heart Lake Road SWM Shield Predicted Performance |                |               |                |  |
|--------------------------------------------------|----------------|---------------|----------------|--|
|                                                  |                | % Capture per |                |  |
|                                                  | Average Annual | Scaled Lab    | Cumulative     |  |
| Flow (L/s)                                       | % of Flow      | Results       | Annual Capture |  |
|                                                  |                |               |                |  |
| 5                                                | 21             | 64%           | 14%            |  |
| 15                                               | 45             | 64%           | 15%            |  |
| 25                                               | 60             | 61%           | 9%             |  |
| 50                                               | 77             | 53%           | 9%             |  |
| 100                                              | 88             | 45%           | 5%             |  |
| 150                                              | 92             | 40%           | 2%             |  |
| 200                                              | 94             | 37%           | 1%             |  |
|                                                  |                | TOTAL:        | 55%            |  |
|                                                  |                |               |                |  |

| Kennedy Road SWM Shield Predicted Performance |                |               |                |
|-----------------------------------------------|----------------|---------------|----------------|
|                                               |                | % Capture per |                |
|                                               | Average Annual | Scaled Lab    | Cumulative     |
| Flow (L/s)                                    | % of Flow      | Results       | Annual Capture |
|                                               |                |               |                |
| 5                                             | 20             | 64%           | 13%            |
| 15                                            | 43             | 64%           | 15%            |
| 25                                            | 57             | 61%           | 9%             |
| 50                                            | 74             | 53%           | 9%             |
| 100                                           | 87             | 45%           | 6%             |
| 150                                           | 92             | 40%           | 2%             |
| 200                                           | 94             | 37%           | 1%             |
|                                               |                | TOTAL:        | 54%            |
|                                               |                |               |                |

#### Maintenance Cycle

Frequency of maintenance will be a function of total stormwater volume directed to each SWM Shield, the loading within the stormwater, and the capture rate of the SWM Shield.

Total volume of stormwater and loading annually directed to each device (on average) is calculated given:

- Approximately 792 mm of precipitation for City of Toronto
- For imperviousness values of 45% and 58%, average precipitation to runoff is estimated at 50% and 60% respectively.
- Stormwater is assumed to contain 125 mg/L of total suspended solids.
- Sediment from stormwater is assumed to have a density of 1.23 kg/L (per MOECC)

Volume of Sediment Captured Calculations:

Heart Lake Road catchment:

- Sediment loading (kg/yr) = 10.29 ha X 792 mm X 50% runoff X 125 mg/L
- Sediment loading (kg/yr) = 5,094 kg/year
- Sediment capture = 5,094 kg/year X 55% capture rate = 2802 kg/year
- Sediment volume captured = 2802 kg/year / 1.23 kg/L = 2.3 m<sup>3</sup>/year

Kennedy Road catchment:

- Sediment loading (kg/yr) = 9.02 ha X 792 mm X 60% runoff X 125 mg/L
- Sediment loading (kg/yr) = 5,358 kg/year
- Sediment capture = 5,358 kg/year X 54% capture rate = 2893 kg/year
- Sediment volume = 2893 kg/year / 1.23 kg/L = 2.4 m<sup>3</sup>/year

A quick comparison with the MOECC 2003 Guideline document (Table 6.3 reproduced below) indicates a higher predicted loading rate using Table 6.3:

| Catchment<br>Imperviousness | Annual Loading<br>(kg/ha) | Wet Density<br>(kg/m³) | Annual Loading<br>(m³/ha) |  |
|-----------------------------|---------------------------|------------------------|---------------------------|--|
| 35%                         | 770                       | 1,230                  | 0.6                       |  |
| 55%                         | 2,300                     | 1,230                  | 1.9                       |  |
| 70%                         | 3,495                     | 1,230                  | 2.8                       |  |
| 85%                         | 4,680                     | 1,230                  | 3.8                       |  |

**Table 6.3: Annual Sediment Loadings** 

SWM Planning & Design Manual - 6-13 - Operation, Maintenance and Monitoring

Heart Lake Road catchment using MOECC:

- Annual sediment loading (kg/yr) = 1,535 kg/ha X 10.29 ha = 15,795 kg/year
- Annual sediment captured = 15,795 kg/yr X 55% capture rate = 8,687 kg/year

• Sediment volume captured = 8687 kg/yr / 1.23 kg/L = 7.0 m<sup>3</sup>/year

Kennedy Road catchment using MOECC:

- Annual sediment loading (kg/yr) = 2,539 kg/ha X 9.02 ha = 22,902 kg/year
- Annual sediment captured = 22,902 kg/yr X 54% capture rate = 12,367 kg/year
- Sediment volume captured =  $12,367 \text{ kg/yr} / 1.23 \text{ kg/L} = 10.0 \text{ m}^3/\text{year}$

Given the proposed SWM Shield configuration for both locations has a sediment holding capacity (prior to maintenance requirement) of approximately 40 m<sup>3</sup>, corresponding to a depth of 1.8 m of the total available sump of 2.4 m. Accordingly, each facility should be expected to be maintained as follows:

- Heart Lake Road Facility maintained every 40m<sup>3</sup> / 7 m<sup>3</sup>/year = 5.7 years
- Kennedy Road Facility maintained every  $40m^3 / 10m^3 / year = 4$  years

Actual accumulation of sediment should be determined through an annual maintenance check. In them interim, we would recommend consideration of the higher MOECC Table 6.3 based loadings.

### <u>Closure</u>

Please note that we would be pleased to assist with pursuing approvals you may require from the Ontario Ministry of Environment and Climate Change (MOECC), Toronto Region Conservation Authority (TRCA) and others as may be required.

In summary, we are able to predict at least a 50% long term average removal of sediment from runoff in both the Heart Lake Road and Kennedy Road SWM facilities given installation of suitably sized SWM Shield units. Maintenance cycles for the SWM Shield will be approximately 4 to 6 years.

In closing, we would be happy to provide any further details required. Please feel free to contact me at your convenience.

Thank you.

Yours very truly, **CB Shield Inc.** 

Stephen Braun, P.Eng. Engineering Director stephen.braun@cbshield.com

### SWM Shield Storm Water Quality System DESIGN CRITERIA AND SPECIFICATIONS

#### **Description**

Water quality system located in a pond at the inlet which may replace sediment fore-bay. Sediment enters the box culvert tank through slotted openings in the top slab.

#### General Design

- SWM Shield systems are designed to capture sediment before it can enter the pond. At least 90% of all runoff will pass over the entire slotted roof slab before entering the pond. At least 50% of the total suspended solids will be captured by the SWM Shield in a standard design (based on ETV particle size distribution)
- Sediment removal will be project specific and the design performance will be supplied by CB Shield staff.
- Systems are precast concrete box culvert as per OPSS 1821.
- SWM Shield is not designed for traffic loading due to a large number of slotted openings in the top slab. It has walls on each side of the top slab to contain the water and keep vehicles off. If safety concerns exist, a grate may be required to cover the entire top slab.
- SWM Shield is installed on a minimum of 6 inches of ¾ inch aggregate stone with a minimum soil bearing capacity of 2,000 psf. This may vary depending on the pond bed stability and will be left to the engineer's discretion.
- All joints of the SWM Shield system **must be water tight** so water does not leak in/out of the system during cleaning or normal operation. It is therefore the contractor's responsibility to add extra waterproofing in addition to what is supplied by the SWM Shield manufacturer. There are a number of products on the market to achieve this.
- The invert of the pipe out letting into the pond must be equal to or higher than the top of the SWM Shield system. The SWM Shield is best designed when the top slab is 350mm higher than the pond level. If that is not possible another option in the end of system design is available.
- Upon request during the design process an oil baffle or sock may be included to treat dry weather spills.
- Upon request and prior to project initiation, photo documentation of the system installation can be supplied.

#### INSPECTION AND MAINTENANCE REQUIREMENTS

- The system is designed to be in the pond with an adjacent access road. The outside wall on top of the system will be 900mm high. The inside wall which is open to the pond is 600mm high. This is to allow large storms to spill over the inside wall directly into the pond when necessary.
- The units will be accessible for inspection and cleaning through a manhole frame and cover every 2.5m. Units should be cleaned when the average depth of sediment inside the system is 1800mm. (This for the standard 3000 x 2400mm size) We recommend yearly inspections until a pattern for sediment loading is established.
- Systems can be cleaned by using a vacuum truck. A pressure water hose forcing all sediment to one end of the system may also be helpful. The units may be entered by persons trained in confined space entry.
- Water can be decanted from the SWM Shield tank directly into the pond, leaving only the sediment for the vacuum truck to remove and dispose of.

GHD

65 Sunray Street Whitby ON L1N 8Y3

T: 1 905 686 6402 F: 1 905 432 7877 E: whitby@ghd.com

© GHD 2017

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

G:\111\1129100\Technical\Water Resources\Documents\11129100 Kennedy SWM Operations & Maintenance Manual.doc

**Document Status** 

| Rev | Author       | Reviewer     |           | Approved for Issue |           |           |
|-----|--------------|--------------|-----------|--------------------|-----------|-----------|
| No. |              | Name         | Signature | Name               | Signature | Date      |
|     | J. lantomasi | K. Edgington |           | K. Edgington       |           | Mar 13/17 |
| 1   | J lantomasi  | K. Edgington |           | K. Edgington       |           | May 19/17 |
|     |              |              |           |                    |           |           |

# www.ghd.com



# Appendix F Original Design and Background Information

**REGIONAL STORMWATER MANAGEMENT** FACILITY FILES



# SWM POND 1 KENNEDY





3

LI TU

1. . . . I

Parts 1

1. H.

FI 1

Mayfield Road Development at Kennedy Road Stormwater Management Design Brief City of Brampton, Town of Caledon



Prepared for:

Toronto and Region Conservation Authority Development Services Section 5 Shoreham Drive Downsview ON M3N 2S4

Prepared by:

Stantec Consulting Ltd. 49 Frederick Street Kitchener ON N2H 6M7 Tel: (519) 579-4410 Fax: (519) 579-6733

Date: December 12, 2007 Project No. 602 10320-03/30 Stantec Consulting Ltd. 49 Frederick Street Kitchener ON N2H 6M7 Tel: (519) 579-4410

stantec.com



Stantec

December 6, 2007 File: 602-10320

#### Attention: Mr. Dave Hallman

Dear Mr. Hallman:

#### Reference: Mayfield Road Development at Kennedy Road Stormwater Management Design Brief City of Brampton, Town of Caledon

The purpose of this design brief is to address the water quality and water quantity concerns associated with the widening of Mayfield Road, in the Region of Peel, as recommended by the Environmental Assessment (EA) process and as described in the Environmental Study Report (ESR) by Stantec Consulting, November 2002. This brief has been prepared in support of the proposed stormwater management facility located north of Mayfield Road near Kennedy Road.

The drainage area consists of approximately 10.59 ha and includes the road right-of-way and additional areas along Mayfield Road near the intersection of Mayfield Road and Kennedy Road, which drain to the roadway. Drainage from lands external to the road right-of-way is accepted at existing condition rates, however any future development within these areas will be required to direct runoff to other areas or to provide their own water quality and water quantity controls. Discharge from the study area flows into the provincially significant Heart Lake Wetland to the north.

The following design brief outlines the stormwater management design and results for the proposed development.

#### **Existing Conditions**

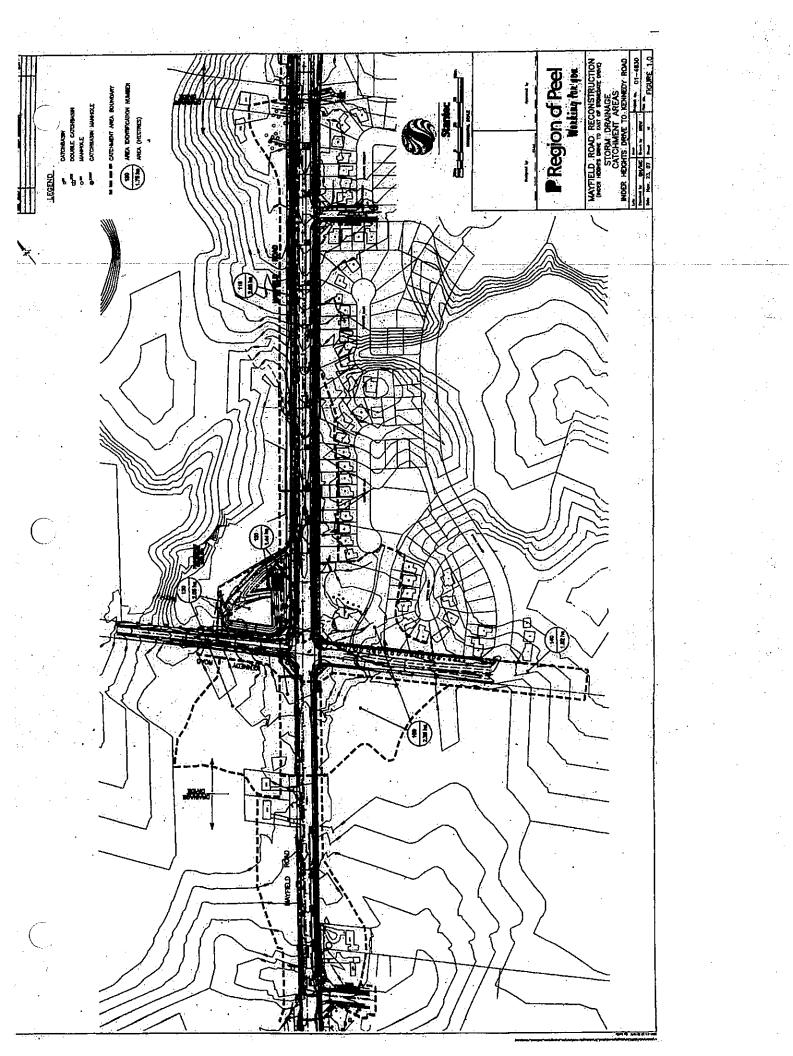
The 10.59 ha area is relatively flat and located along Mayfield Road near Kennedy Road in the City of Brampton. Mayfield Road and Kennedy Road are both two-lane roads that have been in existence for many years. The surrounding area is predominantly agricultural with some wetland areas north of Mayfield Road, and a combination of agricultural and residential land uses south of Mayfield Road.

December 6, 2007 Mr. Dave Hallman Page 2 of 8

Reference: Mayfield Road Development at Kennedy Road Stormwater Management Design Brief

The subject lands are moderately flat, with all drainage entering the Heart Lake Wetland. Borehole results, completed by Thurber Engineering Ltd., indicate that the native soil is comprised of a clayey silt glacial till. The native soil is overlain by granular fill along the roadway, and by a layer of peat in the wetlands. Peat also extends under the Mayfield Road – Kennedy Road intersection.

#### **Proposed Conditions**


The proposed development includes widening Mayfield Road, and adding appropriate turning lanes around the Mayfield and Kennedy Road intersection to accommodate increased traffic.

The proposed catchment areas are generally grouped into areas with similar conditions (e.g., land use, etc.) and drainage direction. The proposed drainage conditions for the 10.59 ha site can be seen in Figure 1.0 and are summarized as follows:

- Catchment 110: Runoff from approximately 2.93 ha from Mayfield Road east of Kennedy Road. The ultimate Mayfield Road cross-section (six lanes of traffic) and pedestrian pathways have been assumed.
- Catchment 120: Drainage from approximately 1.44 ha from Mayfield Road near Kennedy Road. The ultimate Mayfield Road cross-section including turning lanes (eight lanes of traffic) and pedestrian pathways have been assumed.
- Catchment 130: Runoff from approximately 2.05 ha from agricultural areas to the north and west of the Mayfield and Kennedy Road intersection and the stormwater management facility.
- Catchment 140: Drainage from approximately 1.82 ha from Kennedy Road north and south of Mayfield Road. The ultimate Kennedy Road cross-section including turning lanes (six lanes of traffic) and pedestrian pathways have been assumed.
- Catchment 150: Drainage from the remaining 2.35 ha from areas to the south and east of Mayfield Road at Kennedy Road including agricultural areas and Kingfisher Park.

#### Stormwater Management Design

In accordance with the approved design concept, the proposed SWM plan for the current development includes a small constructed wetland to provide the water quality, water quantity, and erosion control before discharging to the Heart Lake Wetland. The stormwater management pond will be located north of the Mayfield Road and Kennedy Road intersection. All drainage from the roadways as well as the existing surrounding drainage areas will be



December 6, 2007 Mr. Dave Hallman Page 3 of 8

Reference: Mayfield Road Development at Kennedy Road Stormwater Management Design Brief

directed to the stormwater management pond. Discharge from the pond will be a diffuse flow rather than a direct channel, to minimize impacts on the wetland.

Based on the recommendations from the ESR, the stormwater management criteria applied in the current design of the pond are as follows:

- Water Quality Storage provide sufficient permanent pool and extended detention volume to meet MOE "Enhanced" criteria (i.e., 80% long term suspended solids removal), as identified in Table 3.2 of the MOE Stormwater Management Planning and Design Manual, (March 2003)
- Erosion Control Storage provide extended detention storage in the pond to detain the runoff from a 4 hour- 25 mm storm for a minimum of 24 hours. Water Quality storage is included in Erosion Control storage.
- Water Quantity Control according to the ESR, peak flow attenuation for flood control is not required at this location. However, discussion with Toronto and Region Conservation Authority staff confirmed that proposed flows must be maintained at or below existing flow rates for all rainfall events up to and including the Regional Strom.

As a part of the SWM pond analysis, peak flow values were calculated using SWMHYMO (StormWater Management HYdrologic MOdel) for the 25 mm (first flush) through Regional Storm events. Rainfall data was based on the 6-hour AES storm distributions for Toronto, Ontario. An average ground slope of 2% and a Soil Conservation Service CN number of 75 were assumed. Peak flow rates are summarized in Table 1. Detailed modelling files are included in Appendix A.

|                                        |        |        | Storn  | n Event |          |          |
|----------------------------------------|--------|--------|--------|---------|----------|----------|
|                                        | 25 mm  | 2 year | 5 year | 10 year | 100 year | Regional |
| Existing Peak Flow (m <sup>3</sup> /s) | 0.117  | 0.253  | 0.437  | 0.575   | 1.074    | 1.440    |
| Proposed Peak Flow (m <sup>3</sup> /s) | 0.032  | 0.044  | 0.166  | 0.303   | 0.802    | 1.431    |
| Active Pond Depth (m)                  | 0.45   | 0.67   | 0.82   | 0.88    | 1.01     | 1.14     |
| Maximum Pond Elevation (m)             | 256.00 | 256.22 | 256.37 | 256.43  | 256.56   | 256.69   |
| Drawdown Time (hours)                  | 48.9   | 53.3   | 55.2   | 55.4    | 55.7     | 55.8_    |

#### **Table 1: Storm Event Data**

December 6, 2007 Mr. Dave Hallman Page 4 of 8

Reference: Mayfield Road Development at Kennedy Road Stormwater Management Design Brief

The design of the pond is illustrated on Drawing 36211-SW1 (Mayfield Road Reconstruction (Inder Heights Drive to Heart Lake Road) Storm Water Management – Kennedy Road Pond), and proposes a constructed wetland configuration to provide enhanced water quality control, with a maximum ponding elevation of approximately 256.56 m under the 100-year Chicago storm. A sediment forebay has been included in the design to allow for the centralized collection of sediment for ease of removal. In addition to the permanent pool characteristics, the pond will provide sufficient extended detention storage to achieve a 38-hour drawdown of the MOE water quality control volumes, and an approximately 49-hour detention time for the erosion control volume.

The outlet from the constructed wetland pond will consist of a fully perforated 1500 mm diameter riser in the northwest comer of the pond. Within the vertical riser, a 375 mm diameter outlet pipe will be installed with two orifice holes. A 95 mm diameter orifice will provide the necessary detention time for the water quality component of extended detention, with a 150 mm diameter orifice providing the control for the erosion component of extended detention. The outlet pipe discharges to a Ditch Inlet Catch Basin (DICB) near the Heart Lake Wetland. The DICB then flows into a gabion basket, where low flows are free to upwell to the surface (255.3 m), and discharge into the Heart Lake Wetland under diffuse, non-erosive conditions. Higher flows are discharged directly from the DICB at an elevation of 255.55 m (the permanent pool elevation). Runoff in excess of the extended detention volumes will be discharged via the orifice structures and an overflow weir (256.30 m). Erosion protection is provided along the overflow weir structure using a Maccaferri MacMat® N10 vegetated turf reinforcement mat. The maximum weir velocity is 1.3 m/s during a 100-year Chicago storm, while the turf reinforcement mat is designed for velocities up to 5 m/s. The outlet structure is detailed on Drawing 36211-SW1.

Table 2 lists the pond design characteristics. An average impervious coverage of 41% has been calculated for the area tributary to the pond. For a wetland forebay, it is recommended in the MOE *Stormwater Management Planning and Design Manual* that the surface area of deeper areas be less than 20% of the total permanent pool surface area. For the Mayfield and Kennedy Road pond the forebay represents 28% of the surface area. This was deemed to be acceptable because the permanent pool volume in the top 0.3 m of the pond area including the forebay is 524 m<sup>3</sup>, which is greater than the required volume (503 m<sup>3</sup>). All design calculations are provided in Appendix B. The underlying soil is sandy in nature and the SWM pond will be lined with impermeable material in order to maintain the permanent pool.

l

**9** ::

December 6, 2007 Mr. Dave Hallman Page 5 of 8

#### Reference: Mayfield Road Development at Kennedy Road Stormwater Management Design Brief

| Parameter                                                  | Basin Characteristics                 |
|------------------------------------------------------------|---------------------------------------|
| Total Contributing Area                                    | 10.59ha                               |
| Total Percent Impervious                                   | 41 %                                  |
| Pond Bottom Elevation                                      | 255.25 m                              |
| Permanent Pool Elevation                                   | 255.55 m                              |
| Pond Top Elevation                                         | 256.9 m                               |
| High Water Level (100 Year Storm Event)                    | 256.56m                               |
| Freeboard Provided Above High Water Level                  | 0.34 m                                |
| Quality Control (Enhanced)                                 | · · · · · · · · · · · · · · · · · · · |
| Unit Area Storage Requirement                              | 88 m³/ha                              |
| Permanent Pool Volume Required (48 m <sup>3</sup> /ha)     | 503 m <sup>3</sup>                    |
| Permanent Pool Volume Provided in Pond                     | 718 m <sup>3</sup>                    |
| Permanent Pool Depth in Main Pond                          | 0.3 m                                 |
| Extended Detention Volume Required (40 m <sup>3</sup> /ha) | 424m <sup>3</sup>                     |
| Extended Detention Volume Provided in Pond                 | 435 m <sup>3</sup>                    |
| Extended Detention Time                                    | 38 hrs                                |
| Erosion Control                                            |                                       |
| Erosion Control Volume Required (maximum storage           | 1058 m <sup>3</sup>                   |
| volume during the 25 mm rainfall event)                    |                                       |
| Erosion Control Volume Provided in Pond                    | 1902 m <sup>3</sup>                   |
| Erosion Control Detention Time                             | 48.9 hrs                              |
| Forebay                                                    |                                       |
| Length Required                                            | . 15 m                                |
| Length Provided                                            | <u>40 m</u>                           |
| Maximum Sediment Accumulation Depth                        | 0.5 m                                 |
| Cleanout Frequency                                         | ~8 yrs                                |
| Surface Area of Forebay Compared to Total Area             | 28%                                   |
| Outlet Details                                             |                                       |
| Orifice #1 Diameter                                        | 95 mm                                 |
| Orifice #1 Invert Elevation                                | 255.55 m                              |
| Orifice #2 Diameter                                        | 150 mm                                |
| Orifice #2 Invert Elevation                                | 255.75 m                              |
| Overflow Weir Width                                        | 3 m                                   |
| Overflow Weir Invert Elevation                             | 256.30m                               |

### Table 2: Pond Characteristics

December 6, 2007 Mr. Dave Hallman Page 6 of 8

Reference: Mayfield Road Development at Kennedy Road Stormwater Management Design Brief

#### Water Balance

The study area flows into the provincially significant Heart Lake Wetland. To ensure that the wetland stays wet after the proposed development occurs, the runoff volume from the more frequent modelled events are examined and shown in Table 3. As expected, the volume of surface water runoff to the wetland increased under the proposed development conditions for all storm events.

| Storm Event | Existing<br>Runoff Volume<br>(m <sup>3</sup> ) | Proposed<br>Runoff Volume<br>(m <sup>3</sup> ) | Increase in<br>Runoff Volume<br>(m <sup>3</sup> ) |
|-------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------|
| 25 mm       | 612                                            | 1335                                           | 723                                               |
| 2 Year      | 865                                            | 1697                                           | 833                                               |
| 5 Year      | 1501                                           | 2532                                           | 1031                                              |

#### Table 3: Change in Runoff Volumes to Heart Lake Wetland

Average annual water balance calculations, contained in Appendix B, show that the average annual runoff to the wetland will increase by approximately 22,000 m<sup>3</sup>/year. Since the wetland has an outlet under Mayfield Road, which will be retained under proposed conditions, the increase in runoff volume should not result in increased ponding in the wetland since peak flows are controlled to less than existing conditions.

#### Maintenance Report

Monitoring and maintenance activities are an important part of a stormwater management plan to ensure that the designed features continue to operate as intended. Long term monitoring and maintenance should involve annual inspections of the stormwater management facilities and downstream areas. The following section is intended to provide guidance for long term maintenance of the stormwater management facility.

- Annual Inspections during annual inspections, the following items should be recorded:
- o Is the regular pond level above or below the permanent pool elevation (255.55m)?
- Damage to facility structures including headwalls, pipes, DICB, berms, maintenance accesses, etc.
- o Condition of vegetation
- Visual characteristics of ponded water in facility (i.e. oily sheen, colour, etc.)
- Sediment depth and oil accumulation in wetland forebay

Ş –

December 6, 2007 Mr. Dave Hallman Page 7 of 8

Reference: Mayfield Road Development at Kennedy Road Stormwater Management Design Brief

- Erosion around outlet structure (overflow weir and gabion basket) or downstream
   areas
- Annual Maintenance tasks to be performed during, or as a result of, annual inspections
- Clear blockages and repair damage to SWM facility structures including inlet and outlet pipes, outlet risers, inlet manholes

 Clear accumulated debris from stone jacket around riser. Any trash or debris removed from around the SWM facility should be disposed of in a legal and appropriate location

 Inspect and repair erosion. Install slope reinforcement products or revegetate as necessary

 Sediment must be removed from the facility after a period of approximately 8 years. Sediment should be removed from the forebays when sediment accumulation reaches 254.5 m or when sediment depths reach 0.5 m. This will equate to a water depth in the forebay of approximately 1.05 m if permanent pool elevations remain as designed.

Forebay Maintenance Guidelines

- Gravity drainage of the pond is not possible because ground elevations in the surrounding Heart Lake Wetland are similar to those within the pond. Draining of the pond will be accomplished through pumping when maintenance is required. The pond should be pumped out over a 24 hour period in order to reduce peak flows to the wetland
- Removal and disposal of sediment from all facilities should be completed by a gualified party and/or licensed contractor.
- An annual loading rate of 1.0 m<sup>3</sup>/ha was assumed based on the average catchment imperviousness of 41% and Table 6.3 of the MOE Stormwater Management Planning and Design Manual, (March 2003). Sediment accumulation should be monitored and clean-out frequency confirmed over an extended period to ensure that sediment depths do not exceed 0.5 m.
- Liner Maintenance Guidelines
- In the event that the liner fails, the recommended Bentofix repair scheme should be implemented

December 6, 2007 Mr. Dave Hallman Page 8 of 8

Reference: Mayfield Road Development at Kennedy Road Stormwater Management Design Brief

#### Conclusions

Based on the preceding report, the following conclusions can be made:

- The proposed stormwater management facility will provide sufficient storage and extended detention control to achieve an Enhanced (formerly Level 1) level of water quality control and erosion protection for the development lands.
- The pond outlet to the Heart Lake Wetland incorporates sufficient diffusive flow mechanisms to ensure that erosion does not occur using a gabion basket.
- The proposed discharge rates from the pond are at or below existing flow rates.
- The volume of surface water runoff to the Heart Lake Wetland will increase under the proposed development conditions.

The SWM facility at Mayfield and Kennedy Road is designed to provide controls where applicable without manual manipulation and operate solely based on hydraulic principles. As long as the facility is constructed as designed, the above maintenance procedures are followed and repairs performed as necessary, their performance should be acceptable.

We trust this report is sufficient to obtain approvals for a Stormwater Management Pond for the proposed development. Should you have any questions or comments relating to this design, please do not hesitate to contact the undersigned at your convenience.

Sincerely,

STANTEC CONSULTING LTD.



Jayson Innes, MASc., P.Eng. Water Resources Engineer Tel: (519) 585-7282 Fax: (519) 579-8664 jinnes@stantec.com

ks w:\active\60210320\design\report\tr\_d02-07\_li\_swmbrief\_kennedy.doc

Π

Stantec

APPENDIX A SWMHYMO FILES

### Mayfield Road at Kennedy Road Storm Drainage Plan Project Number: 602-10320

٠,

Eliter

|                                                   |       | Exis    | ting    | Prop    | besod  |
|---------------------------------------------------|-------|---------|---------|---------|--------|
| Description                                       | Area  | Ітрегу. | Imperv. | Imperv. | Imperv |
|                                                   | (ha)  | (%)     | (ha)    | (%)     | (ha)   |
| Mayfield Road east of Kennedy Road                | 0.30  | 20      | 0.06    | 62      | 0.19   |
| Mayfield Road east of Kennedy Road                | 0.28  | 20      | 0.06    | 62      | 0.17   |
| Mayfield Road east of Kennedy Road                | 0.29  | 20      | 0.06    | 62      | 0.18   |
| Mayfield Road east of Kennedy Road                | 0.25  | _20     | 0.05    | 62      | 0.16   |
| Mayfield Road east of Kennedy Road                | 0.25  | 20      | 0.05    | 62      | 0.16   |
| Mayfield Road east of Kennedy Road                | 0.25  | 20      | 0.05    | 62      | 0.16   |
| Mayfield Road east of Kennedy Road                | 0.25  | 20      | 0.05    | 62      | 0.16   |
| Mayfield Road east of Kennedy Road                | 0.25  | 20      | 0.05    | 62      | 0.16   |
| Mayfield Road east of Kennedy Road                | 0.25  | 20      | 0.05    | 62      | 0.16   |
| Agricultural land along Mayfield Road             | 0.20  | 0       | 0       | 0       | 0      |
| Agricultural land along Mayfield Road             | 0.04  | 0       | 0       | 0       | 0      |
| Agricultural land along Mayfield Road             | 0.07  | 0       | 0       | 0       | 0      |
| Agricultural land along Mayfield Road             | 0.15  | 0       | 0       | 0       | 0      |
| Agricultural land along Mayfield Road             | 0.1   | 0       | 0       | Ö       | 0      |
| Subcatchment 110 Total                            | 2.93  | 16      | 0.47    | 50      | 1.47   |
|                                                   |       |         |         |         |        |
| Mayfield Road near Kennedy Road                   | 0.2   | 20      | 0.04    | 88      | 0.18   |
| Mayfield Road near Kennedy Road                   | 0.18  | 20      | 0.04    | 88      | 0.16   |
| Mayfield Road near Kennedy Road                   | 0.45  | 20      | 0.09    | 88      | 0.40   |
| Mayfield Road near Kennedy Road                   | 0.03  | 20      | 0.01    | 88      | 0.03   |
| Mayfield Road near Kennedy Road                   | 0.14  | 20      | 0.03    | 88      | 0.12   |
| Mayfield Road near Kennedy Road                   | 0.1   | 20      | 0.02    | 88      | 0.09   |
| Mayfield Road near Kennedy Road                   | 0.34  | 20      | 0.07    | 88      | 0.30   |
| Subcatchment 120 Total                            | 1.44  | 20      | 0.288   | 88      | 1.27   |
|                                                   |       |         |         |         |        |
| SWM facility N of Mayfield and Kennedy Road       | Ö.53  | Ö       | 0       | 35      | 0.19   |
| Agricultural land W of Mayfield and Kennedy Road  | 1.52  | 0       | 0       | 0       | 0      |
| Subcatchment 130 Total                            | 2.05  | 0       | 0       | 9       | 0.19   |
|                                                   |       |         |         |         |        |
| Kennedy Road S of Mayfield                        | 0.54  | 20      | 0.11    | 75      | 0.41   |
| Kennedy Road S of Mayfield                        | 0.27  |         | 0.05    | 75      | 0.20   |
| Kennedy Road S of Mayfield                        | 0.12  | 20      | 0.02    | 75      | 0.09   |
| Kennedy Road S of Mayfield                        | 0.39  | 21      | 0.08    | 76      | 0.30   |
| Kennedy Road N of Mayled                          | 0.5   | 20      | 0.10    | 75      | 0.38   |
| Subcatchment 140 Total                            | 1.82  | 20      | 0.37    |         | 1.37   |
|                                                   |       | 1       |         |         |        |
| Agricultural land SW of Mayfield and Kennedy Road | 1.12  | 0       | 0.00    | 0       | 0.00   |
| Kingfisher Park                                   | 1.23  | 5       | 0.06    |         | 0.0    |
| Subcatchment 150 Total                            | 2.35  |         | 0.06    |         | 0.0    |
|                                                   |       | -       |         | _       |        |
| Catchment Total                                   | 10.59 | 11      | 1.19    | 41      | 4.3    |

(

602 - 10320 Mayfield Road at Kennedy Road **SWMHYMO Parameters** 

ž. . 10)

--

Existing conditions

| Area Description                                  | Catchment<br>Number | SWMHYMO<br>Command | Area<br>(fail) | CN | dwbx  |       | Slope<br>(%) | Length<br>(m) | Slope<br>(%) | Tc<br>(hrs) | Tp<br>(hrs) |
|---------------------------------------------------|---------------------|--------------------|----------------|----|-------|-------|--------------|---------------|--------------|-------------|-------------|
|                                                   |                     |                    |                |    |       |       |              | -             | +            | 1           |             |
| Handald Dd East of Kannadu Rd                     | 110                 | DESIGN STANDHYD    | 2.93           | 75 | 10.01 | 0 16  | 2.0          | 6             | 2.0          |             |             |
| Maytena Na East of Nermony 144                    | 120                 | DESIGN STANDHYD    | 1.44           | 75 | 0.01  | 0.20  | 2.0          |               | 2.0          |             |             |
|                                                   |                     | DESIGN NASHHYD     | 2.05           | 75 |       | 00.0  | 2.0          | 1:17          | 2.0          | 0.42        | 0.25        |
| Mayleru nu Slave rever                            | 140                 | DESIGN STANDHYD    | 1.82           | 75 | 0.01  | 0.20  | 2.0          |               | 2.0          |             | 1           |
| Couth Kennedy Grass Arass                         | 150                 | DESIGN NASHHYD     | 2.35           | 75 |       | 0.03  | 2:0          | 125           | 2.0          | 0.44        | 0.26        |
|                                                   |                     |                    |                |    |       |       |              |               |              |             |             |
|                                                   |                     |                    | 10.59          |    |       |       |              |               |              | •           | •           |
| Proposed Conditions                               |                     |                    |                |    |       |       |              |               |              |             |             |
| Area Description                                  | Catchment<br>Number | Command            | Area<br>(ha)   | CN | AMIX  | d Wit | Stope<br>(%) | Length<br>(m) | Slope<br>(%) | Tc<br>(hrs) | Tp<br>(hrs) |
|                                                   |                     |                    |                |    |       |       |              |               | i            |             |             |
| Harris Dd East of Vennedy Dd                      | 110                 | DESIGN STANDHYD    | 2.93           | 75 | 0.50  | 0.50  | 2.0          |               | 2.0.1        |             |             |
| Maynaid Kuicast Ut Namadi Dd                      | 120                 | DESIGN STANDHYD    | 1.44           | 75 | 0.88  | 0.88  | 2.0          |               | 2:0          |             |             |
| Mayneid ru at nemery ru<br>Mayneid DJ Grass Areas | 130                 | DESIGN NASHHYD     | 2.05           | 11 |       | 0.09  | 2.0          | 117           | 2:0          | 0.42        | 0.25        |
|                                                   |                     |                    | 4 65           | 75 | 075   | 0.75  | 06           |               | 20           |             |             |

| Area Description                | Catchment<br>Number | SWMHYMO<br>Command | Area<br>(ha) | CN | XIMP | TIMP | Stope<br>(%) | Length<br>(m) | Slope<br>(%) | Tc<br>(hrs) | Tp<br>(hrs) |   |
|---------------------------------|---------------------|--------------------|--------------|----|------|------|--------------|---------------|--------------|-------------|-------------|---|
|                                 |                     |                    |              |    |      |      |              |               | :            |             |             | _ |
|                                 | 140                 | DEOLON CTANDHND    | 2 03         | 75 | 0.50 | 0.50 | 2.0          |               | 2.0.         |             |             |   |
| Mayfield Rd East of Kennedy Kd. | 21                  |                    |              | 75 | 0 AR | 980  | 00           |               | 2:0          |             |             | _ |
| Mawfield Rd at Kennedy Rd       | 120                 | DESKAN SIANUHTU    | ŧ.           | 2  | 3    | 3    | 1            |               |              |             |             | - |
| Marild D. Creek Andre           | 130                 | DESIGN NASHHYD     | 2.05         | 2  |      | 800  | 20           | 117           | Z.U          | 0.42        | C7:2        | _ |
|                                 | 140                 | DESIGN STANDHYD    | 1.82         | 75 | 0.75 | 0.75 | 2.0          | •             | 2.0          |             |             | _ |
| Kennedy Kozu                    | 141                 | DECKNY NACHWO      | 9 3E         | 75 |      | 0.03 | 2.0          | 125           | 2.0          | 0.44        | 0.26        | - |
| South Kennedy Grass Areas       | 8                   |                    | 2017         | 2  |      |      |              | 1             |              |             |             | - |
|                                 |                     |                    |              |    |      |      |              |               |              |             |             | - |
|                                 |                     |                    | 10.59        |    |      | ١.   |              |               |              | -           |             |   |
|                                 |                     |                    |              |    |      |      |              |               |              |             |             |   |

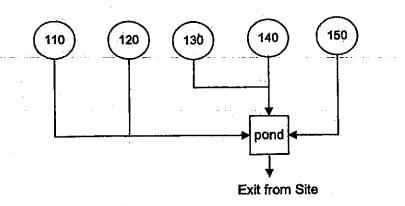
Notes:

C = Runoff Coefficient = 0.2 for undeveloped areas L = Length of Overland Flow (m) = (Area/1.5)^0.5 S = Slope (%) - Percent impervious directly connected Tc = [ 3.26 (1.1-C) L 0.6 ] / S 0.33 - Total percent impervious CN calculated for pervious areas only for DESIGN STANDHYD. CN is a weighed average for DESIGN NASHYD Where: Time of Concentration calculated using the Airport Method XIMP TIMP ۲

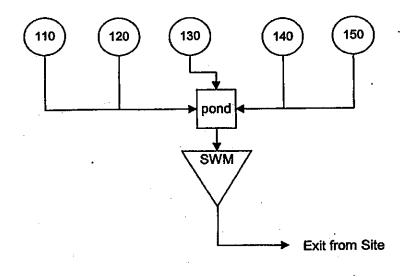
Time to Peak

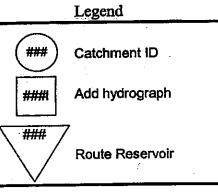
٦,

- Tp = 0.6Tc


XIMP for existing condtions based on a 9 m roadway

### 602 - 10320 Mayfield Road at Kennedy Road SYMHYMO Schematics





11 L

1. J. J.



**Proposed Conditions** 





#### (C:\...kenpre07.dat)

j,

| ·                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| / Hetric units                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Mayfield Road] Project Number: [602-10320]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -# Project Name: L<br>+B Cate = 3 J    | Mayfield Road] Project Number: [602-10320]<br>une, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | Non Machanatal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • Company : 5                          | tantec Consulting Ltd. (Kitchener)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - Company 5                            | 4730904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START                                  | TZIRC-(0:0); HETOUT-(2], MSTORM-(1), MRUM-(1)<br>["25m4br.stm"] <atorm filenese,="" for="" line="" mstorm<="" one="" per="" td=""></atorm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| READ STORM                             | STORN FILENAME- ("Storm.001")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t The follow                           | ng info is based on the Storm Drainage Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ****************                       | East of Amnuady Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -g . Maytiald Rd                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DESIGN STANDAYD                        | 10-(1], HMYD-(*110*), DT=[1]min, AREA=[2.93](ha),<br>INP=[0.01], TIMP=(0.16], DMP=[0](CHE), LOSS=[2], CM=[75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | INF=[0.01], INF(0.10], Main(1.01), Start(1.01), SUD=1<br>SLOPE=[2](4), RAINPALL=[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| **************                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eg Nayfield R                          | at Kennedy Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *************************              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DESIGN STANDAYD                        | ID-(3), MAYD-(*120*1, DT-(1)min, AREA-(1.44)(hs),<br>XIMP-(0.01, TIMP-(0.20), DMF-(0)(cma), LOSS-(3), CM-(75)<br>XIMP-(0.01, TIMP-(0.20), DMF-(0)(cma), LOSS-(3), CM-(75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | XIND=[0.01], TIND=[0.20], LNF=[0](CNN), ADD=[1], CNN=<br>SLOPE=[2](4), RAINFALL=[,,](mm/hr), END=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • Mayrield R                           | 5. Crass Arass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *******************                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DESIGN NASHID                          | ID-(3), MHYD-["130"], DT-(1)min, AREA-(2.05) (ba);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| · · · · · ·                            | DMP=[0] (cms), CM/C=[75], TP=[0.25] BT=;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ************                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +# Kennedy Ro                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ***************                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DESIGN STANDHID                        | ID=[4], MNYD=[*140*], DT=[1]min, AREA=[1.82](hm),<br>XIMP=[0.01], TIMP=[0.20], DMP=[0](comm], LOSS=[3], CN=[75]<br>SLOPE=[2](%), RAIMFALL=[,, ](mm/hr), END=-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | XIMP-[0.01], TIMP-[0.20], DMP-[0] (com), LOSS-[3], CN-[75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | SLOPE-[2] (V), RAIPALL-[ , , , , ) (WE/IL/), DOD-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | ady Graus Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **************                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DESIGN WASHID                          | ID-(5], MHYD-[*150*], DT-(1]min, AREA-(2.35) (ba),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | RAINPALL (, , , ) (um/hr), ZMD-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ADD RYD                                | IDeux=[6], MHYD=[*pond*], IDe to add=[1+2+3+4+5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ++                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PRINT HYD                              | ID-[6], # OF PCYCLUB-[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START                                  | TZINO-[0.0], METOUT-[2], METON-[2], NEUM-[2]<br>("2y6AES.stm"]storm filename, one per line for METONM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START                                  | TERC-[0.0], METOHT=[2], METOHN-[1], MUM=[3]<br>["SyShARE.sta"] < storm filename, one per line for METORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START                                  | The state of the s |
| **                                     | ["loyfhAES.sta"] < store filename, one per line for MSTORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| **                                     | STORN (1) NETONAL (1) MELDIE (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| START                                  | ["25y6hAES.stm"] <storm filemame,="" for="" line="" nstorm<="" one="" per="" td=""></storm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| **                                     | The state of the s |
| START                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START                                  | TZERC-[0.0], METOUT-[1], METORN-[1], MELM-[7]<br>[*1006bAME.stm"] <storm filename,="" for="" line="" metorn<="" one="" per="" td=""></storm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START                                  | TZERO-[0.0], METOUT-(2), METORN-[1], MRUM-[8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b></b>                                | ('hurhasis.stm') <storm filename,="" for="" line="" mstorm<="" one="" per="" td=""></storm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| **                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FINISH                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

602-10320

 $\phi^{(\ell)} = -\sum_{i=1}^{n} \phi^{(\ell)} \phi^{(\ell)}$ 

. . .

602-10320

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | apre07.sum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | м м х х х х м м осо 595 973 чилления                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S WWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | нини н н тт нини о о э э э э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SSSSS WWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | нки накан у мило о 48 9 9 9 9 Ver. 4.02<br>в ик и у м и о о 9999 9999 July 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н и х в х н и осо 9 9 9 9 8 4730904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| StormWate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r Management Hydrologic Model 595 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| erresee be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sed on the principles of HIMD and its successors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| seasone Distri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | human bur, T. C. Cabwarin and Associates IDC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ottawa, (Onterio: (613) 727-5199<br>Gatineau, Quebec: (819) 243-6858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E-Mail; swabymo@jfsa.Com essee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ****** Liceni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed user: Stanter Linisuiting Alut (Alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *******<br>*******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kitchemer SERIALE:4730904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *******************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AAAAAA PROZENM ARRAY DIMENSIONS ++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max, number of reinfell points: 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max. number of flow points : 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *** DISCRIPTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M SUMMARY TABLE HEADERS (units depend on METOUT in START)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ··· ID: H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | drograph iDentification numbers, (1-10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *** AREA: D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | drograph IDentification numbers, [1-10].<br>drograph references numbers, [6 digits or characters].<br>cainage area secolisted with hydrograph, [ac.] or [ha.].<br>ese flow of simulated hydrograph, [ft7]/s] or (m 3/s).<br>bhimm is the determine the secolist peak flow.<br>bhimm is the determine and simulated hydrograph (in) or (mm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *** QPEAK: P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hat flow of simulated hydrograph, (IC 3/8) or (m 3/8/,<br>hhim is the date and time of the peak flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *** R.V.: R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mate coefficient of similaret hydrograph, (ratio),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *** R.C.: R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | as WARNING or NOTE message printed at end of run.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e ERCR message printed at end of run.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ******* SUNNARY OUTPUT *****************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • input fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ename: C:\DOCUME-1\DMCCRE-1\MYDOCU-1\MAYFIE-2\Kenpre07.dat<br>ename: C:\DOCUME-1\DMCCRE-1\MYDOCU-1\MAYFIE-2\Kenpre07.out<br>ename: C:\DOCUME-1\DMCCRE-1\MYDOCU-1\MAYFIE-2\kenpre07.out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Summary fill</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ename: C:\DOCUME-1\DMCCRE-1\MYDOCU-1\MAYFIE-2\kenpre07.sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| * User comment<br>* 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ta:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| * 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w: (Mayfield Road) Project Rumber: [602-10320]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| # Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : Julia, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| # Modeller<br># Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : [Dan McCreery]<br>: Stanter Consulting Ltd. (Kitchemer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| # License #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 4730904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RUN: CONNANDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001:0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 101:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00 hrs on 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 101:0001<br>START<br>(TZERO<br>INETCI/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 (1=imperial, 2=metric output)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 001:0002<br>START<br>(TZERO<br>[METOUT<br>(METOUT<br>(METOUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 2 (1-imperial, 2-metric output))<br>- 1 ]<br>- 1 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 001:0002<br>START<br>(TZERO<br>INETOIN<br>(METOIN<br>(MEUM)<br>001:0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 (l-jeperiel, 2-metric output)]<br>1 ]<br>2 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 001:0001<br>START<br>(TZERO<br>INSTOUT<br>(NETOUT<br>(NETOUN<br>(NEUN)<br>001:0002<br>READ STO<br>FileDam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>2 (1.imparial, 2-metric output)) 3 1 ] 4 1 ] 7 RM 8 e Storm:001</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 001:0001<br>START<br>(TZERO<br>INSTOUT<br>(NETOUT<br>(NETOUN<br>(NEUN)<br>001:0002<br>READ STO<br>FileDam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>2 (1.imparial, 2-metric output)) 3 1 ] 4 1 ] 7 RM 8 e Storm:001</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 001:0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 [l-imparial, 2-americ output]]<br>1 ]<br>1 ]<br>NM<br>8 - Storm:001<br>- Twenty five ma Four Hour Chicago Storm<br>100/SDUR- 4:00:FTOT 25.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ODIO002<br>START<br>(TZERO<br>INSTORM<br>(INSTORM<br>(INSTORM<br>(INSTORM<br>(INSTORM<br>COMMANT<br>(SDT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10<br>STT-10                                                                                                                                                    | <pre>2 [limparial, 2=metric output/] 1 ] 2 ] 34 44 55 Storm:001 5 Twenty five ma Four Hour Chicago Storm .00;SDUR- 4:00;FTOT= 25.00] 55 Storm:00;SDUR- 55 St</pre>                                                                                                                                                                                                                                                                                                                                                                                       |
| ODIGOOJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>2 [leimparial, 2=metric output/]</li> <li>1]</li> <li>1]</li> <li>3]</li> <li>500m.001</li> <li>Twenty five me Four Hour Chicago Storm</li> <li>00:SDUR- 4:00:FTOT= 25.00]</li> <li>100wing info is based on the Storm Drainage Plan</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| COLODI-<br>START<br>(TZERG)<br>INSTOUT<br>INSTOUT<br>INSTOUT<br>INSTOUT<br>INSTOUT<br>COMMANT<br>COMMANT<br>COMMANT<br>COMMANT<br>COMMANT<br>COMMANT<br>COMMANT<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>STATE<br>ST | 2 [leimparial, 2-metric output]<br>1 ]<br>2 ]<br>RM<br>8 - Storm: 001<br>- Twenty five me Four Hour Chicago Storm<br>.00: SDUR- 4:00: FTOT- 25.00]<br>11owing info is based on the Store Drainage Plan<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 001:0001-<br>START<br>ITZERO<br>INSTOUR<br>INSTOUR<br>INSTOUR<br>READ STO<br>Filenam<br>Commant<br>(STD-10<br>Mayfie<br>Mayfie<br>Olicology<br>DESIGN 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 [leimparial, 2-metric output/]<br>1 ]<br>2 ]<br>RM<br>RM<br>S. Storm: 001<br>- Twenty five ma Four Hour Chicago Storm<br>.00: SDUR. 4:00: FTOTA 25.00]<br>11owing info is based on the Storm Drainage Plan<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0010001<br>START<br>ITZERO<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUM<br>INSTOUMINING<br>INSTOUM<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOUMINING<br>INSTOU                                                                                                                                                                                                                                                                                                                                                                                        | 2 [leimparial, 2-mmtric output/]<br>1 ]<br>2 ]<br>3 ]<br>5 Storm: 001<br>5 wenty five ma Four Hour Chicago Storm<br>100: SDUR- 4:00; FTUT- 25:00]<br>110wing info is based on the Storm Drainage Plan<br>110wing inf                                                                                                                                                                                                                                                                                                   |
| 001:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 [leimparial, 2-mmtric output/]<br>1 ]<br>3 ]<br>8 - Storm:001<br>5 - Twenty five ma Four Hour Chicago Storm<br>100:SDUR- 4:00:FTOTe 25.00]<br>100:Marting info is based on the Storm Drainage Plan<br>100:SDUR- 4:00:FTOTe 25.00]<br>100:Hours of Kennedy Rd.<br>100:SDUR- 1:0:NHTDAREAQPEAK-TpakDate hh:smR.VR.C.<br>TANDHYD 01:110 2:53 .031 No_date 1:52 6.07 .243<br>01:DTHW10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0010001<br>START<br>ITZERO<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURING<br>INFTOURIN                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 (leimparial, 2-matric output)<br>1 ]<br>3 ]<br>8 - Storm:001<br>5 - Twenty five ma Four Hour Chicago Storm<br>100:SDUR- 4:00;FTOT 25.00]<br>100:Jourg info is based on the Storm Drainage Plan<br>100:SDUR- 4:00;FTOT 25.00]<br>100:Jourg info is based on the Storm Drainage Plan<br>100:SDUR- 4:00;FTOT 25.00]<br>100:JOURG 100;FTOT 25.00]<br>100:JOURG 100;FTOT 25.00]<br>100:JOURG 100;FTOT 25.00<br>100:JOURG 10                                                                                                                                                                                                                                   |
| 001:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 [l-imperial, 2-metric output]<br>1 ]<br>2 ]<br>3 ]<br>5 Diversion<br>5 Other and Four Hour Chicago Storm<br>100:500H 4:00:FTOT- 25.00]<br>11owing info is based on the Storm Drainage Plan<br>11 Ad East of Mensedy Rd.<br>12 Add East of Mensedy Rd.<br>13 Add East of Mensedy Rd.<br>14 Ad East of Mensedy Rd.<br>15 China                                                                                                                                                                                                                                                                                                                                                                     |
| 001:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 (leimparial, 2-matric output)<br>1 ]<br>3 ]<br>NM<br>8 = Storm:001<br>5 Twenty five ma Four Hour Chicago Storm<br>100:SDUR- 4:00:FTOTe 25.00]<br>100:diff is based on the Storm Drainags Plan<br>100:diff is based on the Storm Drainags Plan<br>100:diff is based on the Storm Drainags Plan<br>100:The Storm Sto                                                                                                                                                                                                                                                                                                                                                                         |
| 001:0001-<br>START<br>ITZERO<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 2 [l-imperial, 2-matric output]<br>1 ]<br>3 ]<br>RM<br>8 = Storm:001<br>5 Twenty five ma Four Hour Chicago Storm<br>100:SSUR- 4:00:PTOTe 25.00]<br>100:000 A:00:PTOTe 25.00]<br>100:000 A:00:PTOTe 25.00]<br>100:000 A:00:000 A:00:000<br>110:000 A:00:000 A:00:000<br>110:000 A:00:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:000<br>1:50:0000<br>1:50:000<br>1:50 |
| 001:0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 2 [1-imperial, 2-ametric output]<br>1 ]<br>1 ]<br>2 ]<br>2 ]<br>3 ]<br>5 Storm:001<br>5 - Sto                                                                                                         |
| 001:0002<br>START<br>INFTOUM<br>INFTOUM<br>INFTOUM<br>INFTOUM<br>INFTOUM<br>INFORM<br>INFORM<br>INFORM<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATION<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATIONI<br>INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 2 [1-imperial, 2-ametric output]<br>1 ]<br>1 ]<br>2 ]<br>3 ]<br>5 M<br>6 = Storm:001<br>5 Total - 4:00; FTOT= 25.00]<br>1 lowing info is based on the Storm Drainage Flan<br>5 Control - 10; MNT0AREAQPEAK-TyeakDate_hh:smaR.VR.C.<br>TAMDNYD 01:110 2.93 .031 No_date 1:52 6.07 .243<br>00; TTM-1.60]<br>2 :CD-75.01<br>1 d Rd Examedy Rd<br>5 :CD-7.03<br>1 d Rd Examedy Rd<br>5 :CD-75.03<br>1 :CD-                                                                                                                |
| 001:0001-<br>START<br>ITZERO<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 2 (1-imperial, 2-ametric output))<br>1 ]<br>2 ]<br>2 ]<br>2 ]<br>3 ]<br>5 Directory five me Four Hour Chicago Storm<br>50:50UR- 4:00; FTOT= 25.00]<br>10:50UR- 4:00; FTOT= 25.00]<br>11:00:ng info is based on the Store Drainage Flan<br>50:50UR- 1:00; FTOT= 25.00]<br>11:00:10:00; FTOT= 25.00]<br>11:00:10:00; FTOT= 25.00]<br>12:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-16]<br>10:01:71W2-10]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:10:01<br>1:CH-75.0]<br>11:00:71:00:71:10:01<br>1:CH-75.0]<br>11:00:71:00:71:00<br>1:CH-75.0]<br>11:00:71:00:71:00<br>11:00:71:00:71:00<br>11:00:71:00:71:00<br>11:00:71:00:71:00<br>11:00:71:00:71:00<br>11:00:71:00<br>11:00:71:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:71:00<br>11:00:7                                                                                                           |
| 001:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 2 [l-imperial, 2-metric output]<br>1 ]<br>1 ]<br>2 ]<br>3 ]<br>5 Storm:001<br>5 Total The Storm Hour Chicago Storm<br>6 Storm Joint From 25.00]<br>110wing info is based on the Storm Drainage Flan<br>5 Storm - TD:MHTDAREAQPEAK-TyeakDate_hh:ssR.VR.C.<br>7 MNDNYD 01:110 2.93 .031 No_date 1:52 6.07 .243<br>00:TTF 1.00]<br>2 (CM-75.0]<br>1 d Rd Example Rd<br>5 Corr - 10:MHYDAREAQPEAK-TyeakDate_hh:ssR.VR.C.<br>TAMDHYD 02:120 1.44 .017 No_date 1:50 6.32 .253<br>01:TTMF20]<br>00:DT- 1.00]<br>2 (CM-75.0]<br>1 d Rd Grass Areas<br>5 Corr - 10:MHYDREAQPEAK-TyeakDate_hh:ssR.VR.C.<br>TAMDHYD 02:120 1.44 .017 No_date 1:50 6.32 .253<br>01:TTMF20]<br>02:DT- 75.0]<br>1 d Rd Grass Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 001:0001<br>START<br>ITZERO<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFTOUR<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT<br>INFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 2 [l-imperial, 2-mmtric Output]]<br>1 ]<br>1 ]<br>2 ]<br>3 ]<br>5 Diverse of the second state                                                                                                                                                                                                                                                                                                                                                                                    |
| 001:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 2 (1-imparial, 2-ametric output)<br>1 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001:0001<br>START<br>(TZERO<br>INSTOUT<br>INSTOUT<br>INSTOUT<br>PILSAL<br>COMMENT<br>OD1:0002<br>READ STO<br>PILSAL<br>COMMENT<br>OD1:0002<br>DESIGN 5<br>(LOSS-<br>Nayfie<br>Nayfie<br>Col:0004<br>DESIGN 5<br>(LASS-<br>Nayfie<br>Col:0004<br>DESIGN 5<br>(LASS-<br>Nayfie<br>Col:0005<br>DESIGN 1<br>(CN-7)<br>CN-7<br>CN-7<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMMENT<br>COMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 2 (1-imperial, 2-ametric output)<br>1 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 2 [1-imperial, 2-metric output]<br>1 ]<br>1 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 001:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 2 [l-imperial, 2-metric output]<br>1 ]<br>1 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2 ]<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

South Kennedy Grass Areas 6.07 n/a 6.32 n/a 5.10 n/a 6.32 n/a 5.10 n/a 5.10 n/a 5.75 n/a -R.Y. -R.C. n/a RUN : COMMANDS 002:0001-----START START [7ZENO = \_00 hr (METOUT = 2 \_1 [MSTURM = 2.] .00 hrs.on 0) ....[l-imperial, 2-matric output)] Project Name: [May Jung, 2007] Project Name: [May Jung, 2007] Hodeller : [Dan McCreery] Kodeller : [Dan McCreery] Licenses # : 4730506 002:0002 READ STORM Filenses # Storm.001 Cremment = 2yr/Ghr (SOT-15.00.STORM = 56.FTOT= 36.00] The following into is based on the Storm Drinage Flam The following into is based on the Storm Drainage Flan . Nayfield Rd Hast of Kannedy Rd. Mayfield Rd Grass Areas -OPEAK-TpaakDate hh:ma----R.V.-R.C. 059 Mo date 2:55 11.56 x/s 036 Mo date 2:52 19.59 r/a 048 Mo date 2:52 9.39 r/a 046 Mo date 2:53 11.96 r/a 056 Mo date 2:53 9.79 r/a .253 Mo date 2:54 11.03 r/a .253 No date 2:54 11.03 r/a -ARPA-2.93 1.44 2.05 1.82 2.35 10.59 -AREA 10.59 EUN: CONSANDS 003:0001-----START .00.hrs on 0] 2 {l=imperial, 2-metric output)] 1 ] 3 ] TZERO -INSTORM-(HRUN -\*\*\*\*\* \*\*\*\*\*\*

#### (C:\...kenpre07.sum)

Comment = 5yr/6hr [SDF-15.00:SDUR= 5.25:PTOT= 47.81] The following info is based on the Storm Draipage Plan Mayfield Rd Mast of Kennedy Rd. [1][]=-2.6][]=-2.6][]=-2.6] [[][]=-2.6][]=-2.6][]=-2.6] [][]][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][]=-2.6][ ..... Mayfield Rd Grass Areas Kennedy Road \*\*\*\*\* South Kempedy Grass Areas - OPENK-TypankData hh:mm---.123 No\_data 2:53 .044 No\_data 2:52 .011 No\_data 2:52 .011 No\_data 2:53 .050 No\_data 2:53 .137 No\_data 2:53 .37 No\_data 2:53 .37 No\_data 2:53 .37 No\_data 2:53 a hh: max--R.V. -R.C. 2:53 18.58 n/a 2:52 19.36 n/a 2:52 19.36 n/a 2:53 19.36 n/a 2:53 19.36 n/a 2:53 17.84 n/a 01:110 + 02:120 + 03:130 2.93 1.44 2.05 1.82 2.35 AREA 10.59 RUN: COMMANDS START .00 hrs on 0) (1-imperial, 2-metric output)] Project Name: [Mayfield Road] Project Number: [602-10320] Date : June. 2007 Kodallar : [Dan KcCreery] Company : Stantee Consulting Ltd. (Kitchener) License : 1 20094 004: 0502-------READ: STORM EED: STORM Fliename = Storm:001 Comment = 10yr/Ghr [SDT-15:00:SEUM= 6.25:FTOT= 55.63] The following info is based on the Storm Drainage Plan Mayfield Rd East of Kennedy Rd. 004:0003\_\_\_\_\_RVMNPT 01;110 2.93 163 Kg date 2:52 23.77.627 [XINP=.01:TIMP=.16] [SLP=2:00:DT= 1.00] [LOSS 2 :CM= 75:0] Mayfield Hd st Kennedy Rd Nayfield Rd Grass Aress **#**\* # Kennedy Road [AIR]-0.1177-1.00] [LOSS-2.:CH-75.0] ..... 

[Tp+ .26:DT= 1.00] 004:0008-------R.V.-R.C. 23.77 n/a 24.46 n/a 21.15 n/a 24.46 n/a 21.15 n/a 22.69 n/a ID: NHYD-----AREA---- QPEAK-TpeakDate\_hh:==-OPEAR-TpeakDate hh:mm 163 No\_date 2:52 085 No\_date 2:51 104 No\_date 2:52 110 No\_date 2:53 116 No\_date 2:53 575 No\_date 2:55 575 No\_date 2:52 -AREA-2.93 1.44 2.05 1.82 2.35 10.59 -AREA-10.53 -15:NATD-01:110 02:120 03:130 04:140 05:150 ADD HYD 06:pond -R.V.-R.C ID: NHYD 2:52 22.89 n/a 06:pond .00 hrs cn 0) (1=imperial, 2=metric output)] TIERO -2 2 ( 1) 5) (HSTORN-Linkini -Projact Name: [Mayfield:Road] Project Humber: [602-10320] Date : June, 2007 Modeller : [Dan McCreery] Company : State Commulting Ltd. [Kitchener] License # : 4735904 Modeller : Storm.001 Commant = 25yr/6hr Filenses - Storm.001 Commant = 25yr/6hr [STDT:S.00:Storm & 25:FTOT- 65.59] The following info is based on the Storm Drainage Plan Mayfield Rd. East of Kennedy Rd. Mayfield Rd at Kennedy Rd Kennedy Road g..... DESIGN MACHITO 051150 (DE= 75.0: N= 3.00] (TD= 26:DT= 1.00] 005:0000 -Q22AK-TpeskDate\_bhims-222 No\_date 2:50 115 No\_data 2:52 136 No\_date 2:52 145 No\_date 2:52 145 No\_date 2:52 768 No\_date 2:50 .768 No\_date 2:50 B.C. n\_hh:es----2:50 3 2:49 3 3:52 3 3:49 3 2:52 3 2:50 3 e\_hh:ms----2.93 1.44 2.05 1.82 ADD HYD 01:110 02:120 1 03:130 04:140 2.35 AREA 10.59 RUN: CONNANDS 006:0001----TZERO -.00 hrs on 0] [1=imperial, 2-metric output)] 2 1 ] 6 ] INRUM (NRUM -Project Mame: (Mayfield Road) Project Number: [602-10320] Date June, 2007 Modellar : [Dan McCreary] Company : Stante: Commulting Ltd. (Kitchener) Licenes # : 4738564 Project Meme: (Mayfield Road) Project Mumber: [602-10320] Date : Jume, 2007 Modellar : [Dan McCreary] Company : Stantec Consulting Ltd. (Kitchener) License # : 4738964 Memory : Stantec Consulting Ltd. (Kitchener) EEAD STORM Filename = Storm.001 Comment = Styr/Shr [SDT-15.00:SDUF= 6.25:PTOT= 73.00] The following info is based on the Storm Drainage Finn

Stantec Consulting Ltd. (kitchener)

#### (C:\...kenpre07.sum)

Navfield Rd East of Xannedy Rd. Mayfield Rd at Kennedy Rd Kennedy Road -OFEAX-TpeakDate hh:ms----R.V.-R.C. .259 No.date 2:49 36.20 7/s .138 No\_date 2:49 37.11 7/s .162 No\_date 2:52 32.74 7/s .162 No\_date 2:52 32.74 7/s .174 No\_date 2:48 37.11 7/s .182 No\_date 2:52 32.74 7/s .919 No\_date 2:52 35.04 7/s 2.93 1.44 2.05 1.83 2.35 10.59 -- .919 MO\_GATE 2:50 35.04 n/a -- QPRAR-TpackDate\_hb:mm----R.V.-R.C. .919 Mo\_date 2:50 35.04 n/a AREA 10.55 RUN: COMMANDS 007:0001 START (TLERO -Project Name: [Mayfield Road] Project Number: [602-10320] Date : June, 2007 Modeller : [Dan McCreery] Company : Stantee Consulting Ltd. [Kitchaner] License # : 4730904 Company License # INAD STORN ULLD STORM Filename - Storm.001 Comment - 100yr/6hr [SDT-15.00:SDIR- 6.25:FTOT- 80.31] The following info is based on the Storm Drainage Plan \*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Mayfield Rd East of Kannedy Rd. Wayfield Rd Grass Areas A Kannedy Road -OPEAK-TpeskDate hhrmm---R.V.-R.C. .315 Wo\_date 2:48 41.73 D/s .163 Wo\_date 2:48 42.78 D/s .188 Wo\_date 2:48 42.78 D/s .205 Wo\_date 2:48 42.78 D/s 7.93 1.44 2.05 01:110 + 02:120 + 03:130 + 04:140 ADD HYD 1.82

## .212 No.date 2:52 37.99 n/a 1.074 No\_dete 2:49 40.52 n/a QPEAK-TpeakDate hh:mu----R.V.-R.C. 1.074 No\_date 2:49 40.52 n/a 2.35 1921 10.59 RDF: COMAND# 008:0001------START STANT (TISHO) = .00 krs cn 0) [MISTOUT= 2 [1=imperial, 2=metric Output]] [MISTOUT= 1] [MINUM = 3] NEAD STORM Flamman - Storm.001. Communi - REDICHAL STORM [SUT-13:00:SUUR- 44.00.PTG- 285.00] The following info is based on the Store Drainage Plan Mayfield Rd Rast of Kamedy Rd. \*\*\*\*\*\* Keimedy Rosd: 000;0005 DBSTGM STANDAYD 00;140 1.82 .251 No\_date 45:00 229.22 .804 [XIMP-01:TIMP-20] [SIMP-2.00:ITM-1.00] [LOSS-2 :24 75.0] South Kennedy Grass Areas -QPERK-TpeakDate hh:mm---R.V.-R.C. .401 Mo.data 46:00 226.98 n/a. 139 Mo.data 46:00 2326.92 n/a. 275 Mo.data 46:02 231.21 n/a. 251 Mo.data 46:02 231.22 n/a. 315 Mo.data 46:02 232.2 n/a. 1.440 Mo.data 46:01 224.06 n/a. -PERK-TpeakDate\_hh:mm---R.V.-R.C. 1.440 Mo.data 46:01 224.06 n/a 2.93 1.64 2.05 1.82 2.35 10.59 AREA 10.59 THISH \*\*\*\*\*\* WARNINGS / ERBORS / NOTES 001:0003 DESIGN STANDAYD 1.003) DESIGN STANGATO \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable. \*\*\* WANTING: For areas with impervious ratios below 20%, this routine may not be applicable.

Stantec Consulting Ltd. (kitchener)

#### C:\...ken07.dat)

F

**ETWINE** 

| (C:\ken07                                                                                                                                                                                                               | .080/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Metric units                                                                                                                                                                                                            | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                         | Mayfield Road] Froject Number: [602-10320]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Date 1                                                                                                                                                                                                                  | NAYESIG KORG) FIDJEL HUNDEL (UG-ADDA)<br>Dan McCreery]<br>Santec Comulting Ltd. (Kitchener)<br>4730964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Company 1                                                                                                                                                                                                               | Stanter Consulting Ltd. (Kitchener)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| # License # :                                                                                                                                                                                                           | 4730564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ***************                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TART                                                                                                                                                                                                                    | TZERO-[0.0], METOUT-[1], METOUT-[1], METOUT-[1],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| READ STORN                                                                                                                                                                                                              | STORM PTIJEAME- SCOTE. 001"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| **                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The follow.                                                                                                                                                                                                             | ing into is based on the Storm, Drainage Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         | ing info is based on the Storm prainings from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| **                                                                                                                                                                                                                      | ID-(1). MNTD-("110"], DT-(1)min, AREA-(2.53)(ha),<br>XIMP-(0.5), TIMP-(0.5); DMF-(0)(cme), LOSS-(2), CM-(75)<br>SLOPT-(2)(5), BAIMFALL-(,,,)(mm/hr), BED1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DISTOR STANDATO                                                                                                                                                                                                         | XINP-(0.5), TINP-(0.5), DMP-(0) (Cme), LOSS-(2), CM-(75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                         | SLOPE-[2] (5), RAINFALL-[ , , , , ] (ME/NT), END-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - Hayfield R                                                                                                                                                                                                            | d at Xennedy Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ***************                                                                                                                                                                                                         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DESIGN STANDATD                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| USCIUM SCREETS                                                                                                                                                                                                          | ID-[2], NHYD-[*120], DT-(1)min, AREA-(1.44) (he),<br>X1MP-[0.88], TIMP-(0.88], DMF-[0](cms), LOSS-[2], CM-[75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                         | X1MP-[0.80], TIMP-[D.80], DWW[0][CHM, DOSANI], CARANA<br>FLOPE-[2](4), RAINVALL-[,,,,] (ima/hr), BND-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| an /Maufield R                                                                                                                                                                                                          | d Grass Arcas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *g                                                                                                                                                                                                                      | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                         | ID=[3], SHYDD=[*130*], DT=[1]min; AREA=[2.05](ha),<br>DMF=[0](cmm), CH/C=[77], TP=[0.25]hrs,<br>RAINFALL=[,,,,](mm/hr), SHD=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         | [MT-[0] (cms), CH/C-[77], TP-[0.25]hrs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                         | RAINFALL [, , , ] [REM/AT], EMD-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| +e Kennedy R                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • # • • • • • • • • • • • • • • • • • •                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DESIGN STANDARD                                                                                                                                                                                                         | ID=(4), MNTD=(*140*), DT=(1)min, AREA=(1:22)(hm),<br>XIMP=(0:75), TIMP=(0:75), DMT=(0)(cme), ZOSS=(2), CM=(75)<br>SLOPE=(2)(%), RAINTALL=(, , )(mm/hr), EMD=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         | XINP=(0.75), TINP=(0.75), DNF=(0)(cme), LOSE=(2), CM=(75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| an Court Magy                                                                                                                                                                                                           | AND OVER STERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *#**************                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DESIGN MASHID                                                                                                                                                                                                           | ID=(5), MMTD=(*150*), DT=(1)min, ANEX=(2.35)(ha),<br>DMTD=[0](CHM), CM/C=(75), TP=[0.36]hrs,<br>DNUTSTV=()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                         | DMP=[0](CHS), CH/C=(75), TP=[0.26]IITH,<br>RAINFALL=[ , , , ][mm/hr), 20D=-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| **                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ADD HYD                                                                                                                                                                                                                 | IDaum= (6), MNYD= ("pond"); IDa to add= [1+2+3+4+5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PRINT HYD                                                                                                                                                                                                               | ID-[6], 6 OF PCYCLES-[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ROUTE RESERVOIR                                                                                                                                                                                                         | IDout=(1), MEYD=["EWM"], IDin=(6],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| KOUTE KEEKVOIN                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                         | TABLE of ( CUTFLOW-STORAGE ) values<br>(cms) - (ha-m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •                                                                                                                                                                                                                       | ( 0.0 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                         | [ 0.0, 0.0]<br>[ 0.003, 0.0104]<br>[ 0.0043, 0.0211]<br>[ 0.0043, 0.0211]<br>[ 0.006, 0.0321]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                         | [0.006, 0.0321]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                         | (0.0074, 0.0435)<br>(0.0085, 0.0553)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                         | (0,0085, 0.0553)<br>[0.023]: 0.0798]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                         | [0.023; 0.0798]<br>(0.032; 0.1057]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                         | [6,038; 0,1328]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                         | (0.043, 0.1409)<br>(0.048, 0.1902)<br>(0.213, 0.2205)<br>(0.213, 0.2205)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                         | (0.215, 0.2205)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                         | 10.319, 0.43191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                         | [ _1 _1 ] (max twenty pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *\$                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *&<br>START<br>**                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| START                                                                                                                                                                                                                   | TIERO-[0.0], METOUT-[2], METORA-[1], MRUM-[2]<br>[*24FALES.stm"] <- storm filename, one per line for METORA<br>[1] METORAL (1) METORAL (1) MELLE-[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| START                                                                                                                                                                                                                   | TIERO-[0.0], METOUT-[2], METOUH-[1], MRUM-[2]<br>["2%HARE.stm"] < Storm filename, one per line for METORA<br>TIERO-[0.0], METOUT-[2], METORA-[1], MRUM-[3]<br>["5%HARE.stm"] < storm filename, one per line for METORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START<br>**<br>START<br>*4                                                                                                                                                                                              | TIERD= (0.0), METOUT=(2), METOUR=(1), FRUM=(2)<br>("2yHDAES.stm") <storm filename,="" for="" line="" metour<br="" one="" par="">TIERD= (0.0); METOUR=(2), METOUR=(1), MELU=(2)<br/>("5yHDAES.stm") <storm filename,="" for="" line="" metor<="" one="" par="" td=""></storm></storm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| START<br>**<br>START<br>*4<br>START<br>*4                                                                                                                                                                               | TZERC-[0.0], HETOUT-[2], HETORM-[1], FRUM-[2]<br>["2ydTRAES.stm"] <- storm filename, one per line for HETOR<br>["TZERC-[0.0]; HETOUT-[2], HETORM-[1], HRUM-[3]<br>["SydDAES.stm"] <- storm filename, one per line for HETOR<br>["TZERC-[0.0]; HETOUT-[2], HETORM-[1], HRUM-[4]<br>["IDERCASS.stm"] <- storm filename, one per line for HETOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| START<br>**<br>START<br>*4<br>START<br>*4<br>START<br>*4                                                                                                                                                                | TZERO-[0.0], METOUT-[2], METORA-[1], MEUM-[2]<br>[*2yFLAES.stm*] <- mtorm filename, one per lime for METORA<br>[*5yFLAES.stm*] <- mtorm filename, one per lime for METORA<br>[*5yFLAES.stm*] <- mtorm filename, one per lime for METORA<br>[*10yFLAES.stm*] <- mtorm filename, one per lime for METORA<br>[*10yFLAES.stm*] <- mtorm filename, one per lime for METORA<br>[*10yFLAES.stm*] <- mtorm filename, one per lime for METORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| START<br>*\$<br>START<br>*4<br>*4<br>*4<br>START<br>*3<br>*3<br>*3<br>*3<br>*3<br>*3<br>*3<br>*3<br>*3<br>*3                                                                                                            | TZERO=[0.0], METOUT=[2], METORN=[1], MELM=[2]<br>["2yHALE.stm"] <mtorm filename,="" for="" lime="" metorn="&lt;br" one="" per="">[1] ("5yHALE.stm") <mtorm filename,="" for="" lime="" metorn="&lt;br" one="" per="">[3] ("5yHALE.stm") <mtorm filename,="" for="" lime="" metorn="&lt;br" one="" per="">[4] (*18yHALE.stm") <mtorm filename,="" for="" lime="" metorn="&lt;br" one="" per="">[4] (*18yHALE.stm") <mtorm filename,="" for="" lime="" metorn="&lt;br" one="" per="">[4] (*18yHALE.stm"] <mtorm filename,="" for="" lime="" metorn="&lt;br" one="" per="">[2] (*18yHALE.stm"] <mtorm filename,="" for="" lime="" metorn="&lt;br" one="" per="">[2] (*28yHALE.stm"] &lt;</mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm></mtorm> |
| START<br>**<br>START<br>*4<br>START<br>*4<br>START<br>*4                                                                                                                                                                | TZERO-[0.0], METOUT-[2], METORA-[1], MELM-[2]<br>[*2y#DAES.stm*] <storm filename,="" for="" line="" metora-<br="" one="" per="">[1], METOUT-[2], METORA-[1], MELM-[3]<br/>[*5yEARE.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*10yEARES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*10yEARES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*25yEARES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*25yEARES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*25yEARES.stm*] <storm filename,="" for="" line="" metora<="" one="" per="" td=""></storm></storm></storm></storm></storm></storm></storm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| START<br>*0<br>START<br>*1<br>START<br>*1<br>START<br>*1<br>*1<br>START<br>*1<br>START<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1                                                                      | TZERO-[0.0], METOUT-[2], METORA-[1], TRUM-[2]<br>[*2yfDAES.stm*] <- StOrm filename, one par line for METORA-<br>[1], METOUT-[3], METORA-[1], METORA-[1], MELM=[3]<br>[*5yfBAES.stm*] <- Storm filename, one par line for METORA-<br>[*10yfDAES.stm*] <- Storm filename, one par line for METORA-<br>[*10yfDAES.stm*] <- Storm filename, one par line for METORA-<br>[*10yfDAES.stm*] <- Storm filename, one par line for METORA-<br>[*25yfDAES.stm*] <- Storm filename, one par line for METORA-<br>[************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| START<br>• 9<br>• 5<br>• 5<br>• 5<br>• 5<br>• 5<br>• 5<br>• 5<br>• 5                                                                                                                                                    | TZERO-[0.0], METOUT-[2], METORA-[1], MEUM-[2]<br>["24FALBE.stm"] <storm filename,="" for="" lime="" metora<br="" one="" per="">["SyGBAES.stm"] <storm filename,="" for="" lime="" metora<br="" one="" per="">["SyGBAES.stm"] <storm filename,="" for="" lime="" metora<br="" one="" per="">["IDYSDAES.stm"] <storm filename,="" for="" lime="" metora<="" one="" per="" td=""></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| START<br>**<br>**<br>START<br>**<br>START<br>**<br>START<br>**<br>**<br>START<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>*                                                                                | <pre>TZERC=[0.0], METOUT=[2], METORM=[1], FRLM=[2]<br/>["2ydTRLMES.stm"] <storm come="" filename,="" for="" line="" metorm="&lt;br" per="">[1], METOUT=[2], METORM=[1], MELM=[3]<br/>["5ydTLAES.stm"] <storm come="" filename,="" for="" line="" metorm<br="" per="">["1], MELMING STORM=[1], MELMING STORM=[4],<br/>["1], METOUT=[2], METORM=[1], MELMING STORM<br/>["2], METOUT=[2], METORM=[1], MELMING STORM<br/>["50ySTARS] <storm come="" filename,="" for="" line="" meto<br="" per="">["50ySTARS] <storm come="" filename,="" for="" line="" meto<br="" per="">["50ySTARS] <storm come="" filename,="" for="" line="" metorm<br="" per="">["50ySTARS] =storm filename, come per line for METORM<br/>["50ySTARS] <storm come="" filename,="" for="" line="" metorm<br="" per="">["50ySTARS] <storm filename<="" td=""></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></pre>                                                                                                            |
| START<br>*0<br>START<br>*1<br>START<br>*1<br>START<br>*1<br>*1<br>START<br>*4<br>*5<br>START<br>*4<br>*5<br>START<br>*4<br>*5<br>START<br>*4<br>*5<br>START<br>*5<br>*5<br>*5<br>*5<br>*5<br>*5<br>*5<br>*5<br>*5<br>*5 | TZERG-[0.0], METOUT-[2], METORM-[1], MELM-[2]<br>["2ydTRAES.stm"] <storm filename,="" for="" line="" metorm-<br="" one="" per="">[1], METOUT-[2], METORM-[1], MELM-[3]<br/>["5ydFAES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["10005AES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["10056AES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["25ydFAES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["25ydFAES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["25ydFAES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["50ydFAES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["50ydFAES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["50ydFAES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["10005AES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["10005AES.stm"] <storm filename,="" for="" line="" metorm<="" one="" per="" td=""></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| START<br>*0<br>START<br>*1<br>START<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1                                                                                                                         | TZERO-[0.0], METOUT-[2], METORA-[1], MELM-[2]<br>[*2yGLAES.stm*] <-=storm filename, one per line for METORA<br>[*2yGLAES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*5yGLAES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*10yGLAES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*10yGLAES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*20yGLAES.stm*] <storm filename,="" for="" line="" metora<br="" one="" per="">[*100GLAES.stm*] <storm f<="" filename,="" line="" one="" per="" td=""></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm>                                                                 |
| START<br>***<br>***<br>START<br>***<br>***<br>START<br>***<br>***<br>***<br>***<br>***<br>***<br>***<br>*                                                                                                               | TZERG=[0.0], METOUT=[2], METORM=[1], MELM=[2]<br>["2ydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["SydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["SydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["SydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["10005ALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["23ydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["23ydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["30ydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["50ydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["50ydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["100ydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["100ydTALES.stm"] <storm filename,="" for="" line="" metorm<br="" one="" per="">["100ydTALES.stm"] <storm filename,="" for="" line="" metorm<="" one="" per="" td=""></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| START<br>*0<br>START<br>*1<br>START<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1<br>*1                                                                                                                         | TIERO-[0.0], METOUT-[2], METORA-[1], MELM-[2]<br>["2yHDLES.stm") <storm filename,="" for="" line="" metora-<br="" one="" par="">["SyHDLES.stm"] <storm filename,="" for="" line="" metora-<br="" one="" par="">["SyHDLES.stm"] <storm filename,="" for="" line="" metora-<br="" one="" par="">["TERO-[0.0], METOUT-[2], METORA-[1], MELM-[4]<br/>["2SyHDLES.stm"] <storm filename,="" for="" line="" metora-<br="" one="" par="">["2SyHDLES.stm"] <storm filename,="" for="" line="" metora-<br="" one="" par="">["2SyHDLES.stm"] <storm filename,="" for="" line="" metora-<br="" one="" par="">TERO-[0.0], METOUT-[2], METORA-[1], MELM-[5]<br/>["2SyHDLES.stm"] <storm filename,="" for="" line="" metora-<br="" one="" par="">["1005LAES.stm"] <storm filename,="" for="" line="" metora-<br="" one="" par="">["Data starge] /storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm></storm>                                                                                          |

(C:\...ken07.sum) 999 55565 599 YN ж 000 5 55555 9 8 4730904 999 8 999 \$ \$\$\$\$\$ 9 9 9 9 StorwWater Management HYdrologic Hodel 399 A single event and continuous, hydrologic simulation model based on the principles of KNND and its successors OTHYNO-33 and OTHYND-39. Distributed by: J.F. Sabourin and Associates Inc. Octaves, Onterio: (613) 727-5139 Catinesu, Ouebec: (819) 243-6858 E-Mail sumhynosjfs.Com \*\*\*\*\*\*\* Licenzed user: Starte: Consulting Ltd. (kitchader) \*\*\*\*\*\* Kitchader Kitchader SIRLAS:4730904 \*\*\*\*\*\* 
 Harring vilue for ID industries

 Harring vilue for ID industry : 10

 Hax, number of risinfall points: 1500

 Hax, number of flow points: 15000
 \*\*\* DESCRIPTION SUMMARY TABLE READERS (units depend on METOUT in START) \*\*\* DESCRIPTION SUMMARY TABLE MEADERS (units depend on MATUAT in SLAVI)
 iD: Mydrograph IDaniification numbers (1-10).
 MACDI Mydrograph reference numbers (6 digits or characters).
 AREA: Draineg area area associated with hydrograph. (ac.) or (ha.).
 OPEAR. Pack flow of simulated hydrograph (ic.) or (ma).
 TpeakDate\_hhume us the date and time of the peak flow. (m<sup>3</sup>/s).
 R.V.: Runoff Volume of simulated hydrograph, (in) or (mm).
 R.V.: Runoff Coefficient of simulated hydrograph, (in) or (mm).
 see MARNING or MOTE massage printed at and of run.
 see KEROR message printed at end of run. ------ALLESS SUNNARY OUTPUT DATE: 2007-08-03 TINE: 10:01:45 RUM COUNTER: 004075 Input filename: C:\umr\90\ken07.dat Output filename: C:\umr\90\ken07.dat Summary: Cilename: C:\umr\90\ken07.mum Usar comments: \* 3, ----ā• .00 hrs on 0) (1=imperial, 2=metric output)) Dolibus-READ: STORM Filename - Storm.001 Comment - Twenty five mm Four Nour Chicago Storm [SDT-10.00:SDUR- 4.00:FTUR- 23.00] The following info is based on the Storm Drainage Fian Nayzield Rd-Esst Of Kannedy, Rd. Nayfield Rd at Kannedy Md ANTIAL REGENERATES Kennedy Road. 

Π

............... South Kernindy Grann Arons PEAK-TpeakDat 195 No date 172 No date 026 No date 184 No date 559 No date 953 No date Braisson----R.V.-X.C. 1:30 14.65 n/a 1:30 21.91 n/a 1:46 5.56 n/a 1:30 19.42 n/a 1:47 5.10 n/a 1:30 12.58 n/a -ID: NHY 01:110 02:120 03:130 04:140 05:150 -AREA 2.93 1.44 2.05 1.82 2.35 10.59 -AREA 10.59 
 PRINT HYD
 06:pond

 0010
 -10:HYD

 ROUTE ALEBRYOIR -> 06:Pond
 (HYD

 (ALT-: 1.0) Out<< 0::Pond</td>
 (HYD

 (MCSLOUMD#.1058E+00)
 SND\_OF\_RUM : 1
 AREA 10.59 HIM: CONSANDS .00 hrs on 0] 2 [l-imperial, 2-setric output]] 1 ] 2 ] TTART METOUT-[NRUM -Project Mame ( Mayfield Road) Project Number: [502-10320] Date : Juna, 2007 Modellar : [Dan McCreary] Company : Stanter Computing Ltd. [Kitchener] Liceman # : 473936 The following info is based on the Storm Drainage Plan ..... S Kayfield Rd at Kannedy Rd XESTCH FTANTHYD 02:120 1.44 .119 (XIMP-.88:TIMF-.88) [SLP-2.00:D7-1.00] [LOSS-2.iCN-75:0] Mayfield Rd Grass Areas 9.39 .277 - OPEAK-TpeakDate hh:mm .157 Ho\_date 2:45 .119 Ho\_date 2:45 .052 Ho\_date 2:45 .121 Ho\_date 2:45 .132 Ho\_date 2:45 .054 Ho\_date 2:53 .050 Ho\_date 2:45 .050 Ho\_date 2:45 .050 Ho\_date 2:45 hh: m-2:45 2:45 2:52 2:45 2:53 2:45 ----R.V.-R.C. 22.59 n/a 32.17 n/a 10.74 n/a 28.90 n/a 9.99 n/a 19.90 n/a ----R.V.-R.C. 2.93 1.44 2.05 1.82 90 V.-R.C. 90 л/а С. 10:59 - OPEAK-TpeakLate\_himm---SOD No dete 2:45 -OPEAK-TpeakLate\_himm--.SOD No dete 2:45 .044 No\_dete 4:26 ---R.V.-R. 19.90 л ---R.V.-R. -AREA 10.55 -3883 10.55 19.90 19.90 n/a10.59 PUN - COMMANDE 003:0001----START START [TZERO = [METOUT+ [NETOUT+ [NRUW] = .00 hrs on hra on 0) [1-imperial, 2-metric output]] . 1 ................. # Project Mane: (Nayfield Road) Project Mumbar: [602-10320] # Date : June, 2007

Stantec Consulting Ltd. (kitchener)

-602-10320

#### 602-10320

| C:\ken07.sum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modeller : (Den McCreery)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 006:0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| a filmman # 1 4730904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [XINP75:TINP75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [51,9-2,00: 07# 1.00]<br>[1065= 2: 04 75.0]<br>geostensteeteeteeteeteeteeteeteeteeteeteeteetee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 003;0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| READ STORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | South Membery Glass Annual Annua                                                                                                                              |
| Commit Syr/6hr<br>Commit Syr/6hr<br>(SDT=15.00,EDUR 6:25:PTOT 47.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THEST CHI MASHTU USIISV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The following info is based on the Storm Drainage Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [138-73:0:0-7.0]<br>[The _26:DT0]<br>[The _26:DT |
| seeden and a man of Vermely Ed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + 021140 - 113 Mo date 2152 22156 31/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6 NayTisld No Ast Of Arthouse AntiAOPEAK-TpeakOste hh:mmR.VR.C.<br>003:0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 04:140 1.42 .214 Mo date .2:45 46.45 D/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 003:0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IXINF= 59; TANKO - 59;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [DT= 1.00] SUM= 05:pood 10:59 .474 Mo. Gate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROUTE RESERVOIR -> duipont 10 55 .303 Ho_date 1:19 35:55 M/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ANYTHIA AU C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (HcStoVsed= 21968+00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 003:0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ··· mon CP RUN : 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [XIMP=: 88:TIMP=: 88]<br>[S1,P=2.00; DT= 1.80]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The set of grant Brath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Exyrians An University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DRSIGN WASKIN USING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RUM: (COMBOND)<br>008:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [HETOUT= 2 (1-imperial, 2-matric output)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6 Amminoy Metalessania and Ammino br>Ammino Ammino                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project Hungi [Navfield Boad] Project Hunger: Louis Louis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [X1HPs:75:TIMPs:75]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S Project Panet Ture, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [LC85- 2 ; Cf- 75:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 Company : Stantec Consulting Ltd. (Kitchener)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| South Xennery Class A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 005.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ID: MYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The 26 DT= 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pilenana - Storm.001<br>Commant - 25yr/Shr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Plinnen - /33y7/Shr<br>Comment - /33y7/Shr<br>[SUT-15.00:EPUR- 6.25:PTOT- 65.53]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADD HYD 01.12.5 1.44 .160 Ho date 2.152 .17.55 1/a<br>+ 02.1209 2.05 .064 Ho date 2.152 .17.55 1/a<br>+ 03.120 2.05 .064 Ho date 2.152 .17.55 1/a<br>+ 04.140 1.82 .181 Ho date 2.145 .19.35 1/a<br>+ 05.150 2.35 .099 Ho date 2.145 .16.37 1/a<br>+ 05.150 0.59 .735 Ho date 2.145 .24.5 / a / a / a / a / a / a / a / a / a /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The following info is based on the Storm Drainage Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| + 04:140 2.82 .181:160 date 2:53 16.37 n/s<br>+ 05:150 2.35 .090 No date 2:53 16.37 n/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (DT= 1.00) SUR4 06; pond 10.59 .719 No date 2:45 28.45 H/H<br>[DT= 1.00] SUR4 06; pond 10.59 .719 No date bh: mmR.V. R.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hayfield ad Bast of Kamady Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 003:0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Meyfield ad Bast of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 003160097 100 0610000 10.59 719 NO_BALCE 100 100 061000 061000 06100 061000 061000 0610000 0010 0610000 00.59 719 No_BALCEADE himmon-R.VR.C.<br>003:0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (XINP50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| REALTH RESERVOIR -> 06:0011 10.59 .166 No date 3:41 28.45 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [SLP=2, 00:DT= 1.90]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| {Mr8t0Uand2117#+00}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •• <u>1990</u> DD-ROM :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [LOSSA 2 (LMa / 10)]<br>Neytesid Hd at Karinady Rd<br>Neytesid Hd at Karinady Rd<br>005:0004REA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ****************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 005:0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [SI2=2.00/DIM 1.00/<br>[TASS= 2:00-75.0]<br>generations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RUM: COMMAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RUM: COMPUTO<br>004:001-<br>START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mayfield Rd Grass Areas<br>Mayfield Rd Grass Areas<br>005:0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TTIERO = .00 hrs on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| reconstruction to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Tmm .25,0Tm 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 Kannedy Road<br>5 Kannedy Road<br>5 Konton - 10: Horto - ARADPEAK-TpeakDate Dhimm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| # Date : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 005:0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [31,9-2,00;D7= 2,100]<br>[L035-2:CH= 75.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HID STURM - Storm.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 005:0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [CH= 7510: NH 3.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Comment = 10yr/6hr<br>[SDF=15.00:STUR= 6:25:PTOT= 55.69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Combant = 1072/5nr<br>[SDF+15.00:SDUR = 6:35:9707= 55.69]<br>[soft-15.00:SDUR = 6:35:9707= 55.69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TTP26:D7- 1.00)<br>TTP26:D7- 1.00)<br>005:0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Combant = 1072/6hr<br>[SUTF15 00: SDUR 6.25: FTOT= 55.69]<br>The following info is based on the Storm Drainage Flan<br>The following info is based on the Storm Drainage Flan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Combant = 1072/6hr<br>[SUT13:00:SDUR= 6.25:FTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>The following info is based on the Storm Drainage Plan<br>Hayriald Rd Mast of Remacky Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADD STD 021120 1.46 .223 % Cate 2145 60.35 m<br>+ 021120 1.46 .223 % Cate 2152 29.35 m<br>+ 031130 2.05 .145 Modate 2145 55.50 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Combant = 10y2/6hr<br>[SUT-15.00:SEUR= 6.25:FTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>The following info is based on the Storm Drainage Plan<br>Wayfield Rd Hast of Kennedy Rd.<br>Wayfield Rd Hast of Kennedy Rd.<br>004:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADD HTD 02:120 1.66 .223 &c_date 2:45 60.35 m<br>+ 02:120 2.05 145 Mo_date 2:52 23.35 m<br>+ 03:130 2.05 145 Mo_date 2:53 23.35 m<br>+ 06:140 1.62 .257 Mo_date 2:52 27.61 m<br>- 05:150 2:35 153 Mo_date 2:52 27.61 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Combant = 10y2/6hr<br>[SDT15:00:SDUR= 6.25:FTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>Maylald Rd Mast of Remacy Rd.<br>04:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AND HTD 02:120 1.46 .223 Kc_Gate 2:45 60:33 .0<br>+ 03:130 2.05 .145 MO Gate 2:52 29:35 m.<br>+ 04:140 1.62 .257 Mo Gate 2:52 27.61 m.<br>+ 05:150 2:35 .153 Mo Gate 2:45 42.33 m.<br>(DT= 1.00) SUM= 06:pond 10.59 1.080 Mo Gate 1:45 42.33 m.<br>D5:009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Combernit = 10/27/5hr<br>[SDT 415 00: SDUR= 6.25: FTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>Maylald Rd Hast of Remacky Rd.<br>Naviald Rd Hast of Remacky Rd.<br>004:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AND HTD 02:128 1.46 .223 Kc_Gate 2:45 60.33 m<br>+ 03:120 2.05 .145 Mo Gate 2:52 29.35 m<br>+ 03:120 2.05 .145 Mo Gate 2:52 29.35 m<br>+ 04:140 1.62 .257 Mo Gate 2:45 55.50 m<br>+ 05:150 2:35 .153 Mo Gate 2:45 27.61 m<br>(DT= 1.00) SUM= 06:pond 10.59 .1000 Mo Gate 2:45 42.33 m<br>105:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Combent = 107/5hr<br>[SDT 415 00: SDUR 6.25: FTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>Mayfield Rd Mast of Kennedy Rd.<br>Nayfield Rd Mast of Kennedy Rd.<br>00:0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADD HTD 02:120 1.46 .223 Kc_Gate 2:45 60.33 fu<br>+ 03:120 2.05 .145 Mo_date 2:52 29.35 fu<br>+ 04:140 1.82 2.57 Mo_date 2:45 85.50 fu<br>+ 05:150 2:35 1.53 Mo_date 2:45 27.61 fu<br>+ 05:150 2:35 1.53 Mo_date 2:45 2.52 27.61 fu<br>05:009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Combinent = 10y2/Shr<br>[SJDT-15 00: SJDR= 6.25: FTOT= 55.69]<br>The following info is based on the Storm Drainage Flan<br>Nayfield Rd Kast of Kennedy Rd.<br>004: DBD]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AND HTD 02:128 1.46 .223 kc_date 2:45 62.03 m<br>+ 03:120 2.05 .145 MO date 2:52 29.35 m<br>+ 03:120 2.05 .145 MO date 2:52 29.35 m<br>+ 04:140 1.62 .257 MO date 2:52 27.61 m<br>+ 05:150 2:35 .153 WO date 2:52 27.61 m<br>105:009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Comment = 1092/517<br>[SUF45:00:SUUM= 6.25:PTOT= 55.63]<br>The following info is based on the Storm Drainage Flan<br>Hayfield Rd Hast of Remmedy Rd.<br>004:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AND HTD 02:120 1.46 .223 % Cate 2:55 02.35 m<br>+ 03:120 2.05 .155 % Oate 2:52 29.35 m<br>+ 03:120 2.05 .155 % Oate 2:52 29.35 m<br>+ 05:150 2:35 % Oate 2:52 27.61 %<br>+ 05:150 2:35 1.53 % Oate 2:52 27.61 %<br>05:009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Combant = 10y2/ShT<br>[SJT 415 00: SJUR= 6.25: FTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>Heyflald Rd Hast of Kennedy Rd.<br>Weyflald Rd Hast of Kennedy Rd.<br>04: 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AND HTD 02:128 1.46 .223 kc_Gate 2:45 62.33 m<br>+ 03:120 2.05 .145 Mo Gate 2:52 29.35 m<br>+ 03:120 2.05 .145 Mo Gate 2:52 29.35 m<br>+ 04:140 1.62 .257 Mo Gate 2:52 27.61 m<br>+ 05:150 2:35 .153 Wo Gate 2:52 27.61 m<br>105:009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Combant = 10y2/ShT<br>[SJT 415 00: SJUR= 6.25: FTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>Heyflald Rd Hast of Kennedy Rd.<br>Weyflald Rd Hast of Kennedy Rd.<br>04: 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AND HTD 02:128 1.46 .223 kc_Gate 2:45 62.33 m<br>+ 03:120 2.05 .145 Mo Gate 2:52 29.35 m<br>+ 03:120 2.05 .145 Mo Gate 2:52 29.35 m<br>+ 04:140 1.62 .257 Mo Gate 2:52 27.61 m<br>+ 05:150 2:35 .153 Wo Gate 2:52 27.61 m<br>105:009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Comment = 10y2/Shr<br>[SDT:45:00:SDUR= 6.25:PTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>MayZiald Rd Hast of Remacky Rd.<br>WayZiald Rd Hast of Remacky Rd.<br>004:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AND HTD 02:120 1.46 .223 kc_date 2:45 60.35 m<br>+ 03:120 2.05 .145 Mo_date 2:52 29.35 m<br>+ 04:140 1.62 2.57 Mo_date 2:52 29.35 m<br>+ 05:150 2:35 .153 Mo_date 2:45 45.55 m<br>+ 05:150 2:35 .153 Mo_date 2:45 42.33 m<br>[DT= 1.00] SUM= 06:pond 10.59 1.080 Mo_date 2.145 42.33 m<br>PRINT HTD 06:pond 10.59 1.080 Mo_date 2:45 42.33 m<br>ROUTE RESERVOIR -> 06:pond 10.59 1.080 Mo_date 2:45 42.33 m<br>ROUTE RESERVOIR -> 06:pond 10.59 .476 Mo_date 3:12 42.33 m<br>(MDS:tolect.2475E+00)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Comment = 10y2/Shr<br>[SDT 415 00: STARE 6.25: FTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>Mayfield Rd East of Rennedy Rd.<br>Nayfield Rd East of Rennedy Rd.<br>(NUTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AND HTD 02120 1.46 .223 kc_Gate 2:52 29.35 m<br>+ 03:120 2.05 .145 Mo_Gate 2:52 29.35 m<br>+ 04:140 1.62 .257 Mo_Gate 2:52 29.35 m<br>+ 05:150 1.62 .257 Mo_Gate 2:52 27.61 m<br>+ 05:150 1.00 Mo_Gate 2:52 27.61 m<br>105:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Comment = 10y2/6hr<br>ISD713:00:STARE 6.25:FTOT 55.69]<br>The following info is based on the Storm Drainage Plan<br>Mayfield Rd East of Remachy Rd.<br>Wayfield Rd East of Remachy Rd.<br>004:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AND HTD 02120 1.46 .223 kc_Gate 2:52 29.35 m<br>+ 03:120 2.05 .145 Mo_Gate 2:52 29.35 m<br>+ 04:140 1.62 .257 Mo_Gate 2:52 29.35 m<br>+ 05:150 1.62 .257 Mo_Gate 2:52 27.61 m<br>+ 05:150 1.00 Mo_Gate 2:52 27.61 m<br>105:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Comment = 10y2/ShT<br>[SDT:45.00:SDUR= 6.25:PTOT= 55.69]<br>The following info is based on the Storm Drainage Plan<br>Mayfield Rd Hast of Remmedy Rd.<br>Wayfield Rd Hast of Remmedy Rd.<br>004:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AND HTD 02:120 1.44 .223 kc_date 2:55 29:35 m<br>+ 03:120 2.05 .145 Mo_date 2:52 29:35 m<br>+ 04:140 1.62 2.57 Mo_date 2:52 29:35 m<br>+ 05:150 2:35 .153 Mo_date 2:52 27.61 m<br>105:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Comment = 10y2/Sur<br>[SUF13:00:STURE 6.25:PTOTE 55.63]<br>The following info is based on the Storm Drainags Plan<br>Mayfield Rd East of Kennedy Rd.<br>Wayfield Rd East of Kennedy Rd.<br>(Martin Content of Co | AND HTD 02:120 1.44 .223 kc_date 2:55 22:35 m<br>+ 03:120 2.05 .145 Mo_date 2:52 22:35 m<br>+ 04:140 1.62 2.57 Mo_date 2:52 22:35 m<br>+ 05:150 2:35 .153 Mo_date 2:52 27.61 m<br>105:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Stantec Consulting Ltd. (kitchener)

..

5

1

**.**[]

2007

1 -

. . .

Ĩ

19-1 F 10

| [NETOUT= 2 (l-imperial, 2-metric Output)]<br>[NSTORM= 1 ]<br>[NRIM = 6 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 007:0005R.VR<br>DESIGN MASHYD 03:130 2.05 .200 No_date 2:51 40.15 .<br>(ON= 17.0: N= 3.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Tp= .25:DT+ 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Project Name: [Mayfield Road] Project Number: [602-10320]<br>Dare : June, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A Kennedy Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date : June, 2007<br>Nodeller : [Dan McCreary]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 007:0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Company : Stanter Consulting Ltd. (Kitchemer)<br>License: # : 4730904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DESIGN STANDAYD 04:140 1.82 .322 No_date 2:45 69.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [XIMP=.75:TIMP=.75]<br>[SLP=2.00:DT= 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6:0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (LOCK- 2) (M- 75 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| READ STORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | South Kennedy Grass Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Filenské – Storm:001<br>Comment – Söyr/Shr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [SDT-15.00:BDUR 6.25: FTOT= 73.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 007:0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The following info is based on the Stors Drainage Flan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [CN= 7510: H= 3.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Tp= .25:D7= 1.00]<br>007:0008R.VR.EAQPEAK-TpeskDate_hh:mmR.VR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| the set of a set warm and the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADD NTD 01:110 2:93 433 No date 2:45 58.75<br>+ 02:120 1:44 276 No date 2:45 74.53<br>+ 03:130 2.05 200 No date 2:51 40.15<br>+ 06:140 1.82 322 No date 2:45 69.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 02:120 1.64 .276 HO_GALE 2:51 40.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DISIGN STANDATO 01:110 2.93 .365 No date 2:45 52.47 .719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + 04:140 1.82 .322 Mo_date 2:45 69:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [X1MP=.50:TIMF=.50]<br>[S1P=2:00:DT= 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 05:150 2.35 .112 No date 2:52 37:99<br>[DT= 1.00] SUN- 06:pond 10.59 1.401 No date 2:45 54.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [LOSS+ 2 :CH= 75.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 007:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reyfield Ed at Kannedy Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROUTE RESERVOIR -> 06:pond 10:59 1.401 Mo date 2:45 54.47<br>[RDT= 1.00] oute- 01:50 10:59 .802 Mo_date 2:56 54.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16:0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Mistoliad-: 27158+00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++ BAD OP RUN : 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [S1922,00:DT-'1.00]<br>[LOSS- 2 :CN+ 75:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nayfield Rd Grass Arans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6:0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LENG. 77.01:20 3.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RUN: CONNAIDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [Tp= .25:DT= 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 008 (0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tennedy Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (TINO00 hrs on 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S:0005R.VR.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [METOUT= 2 [l=imperial, 2=metric output]]<br>[METOUNE= 1]<br>[METOUNE= 4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DESIGN STANDAYD 04:140 1.82 .290 Mo_date 2:45 62.33 .854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [WIXIN - 5 ]<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [XINP-,75]<br>[SLP=2.00:DT- 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # Project Name: [Nayfield Road] Project Number: [502-10320]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [LOSS# 2 (CH= 75.0]<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Date : Juns, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Princh Manager Drang Trang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>6 Modellar : [Dam McCreery]<br/>9 Company : Stanter Consulting Ltd. (Kitchensr)<br/>6 Licence 6 : 4730506</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6:0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (CH= 12:01 N= 3:001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 008:0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [Tp= .26:DT= 1.00]<br>5:0008ID:MMYDAREAQPEAK-TpeakDate_hb:msR.VR.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Filename = Storm.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ADD HYD 01:110 2.93 .385 No date 2:45 52.47 n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comment = REGIONAL STORM<br>[SDT=15:00:SDUR= 48.00:PTOT= 285.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| T MALANY ALTO LAND IN MOUT ALTO UILED IN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| + 03:130 2.05 172 Ho date 2:52 34.69 N/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| + 03:130 2.05 .172 Mo_date 2:52 34.69 n/s<br>+ 04:140 1.82 .290 Mo_date 2:45 62.33 n/s<br>+ 05:150 2.33 .122 No date 2:53 32.74 n/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The following into is based on the Storm Drainage Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 7/A<br>+ 04:140 1.82 .309 Mo_date 2:45 52.33 7/A<br>+ 05:150 2.33 .182 Mo_date 2:53 23.74 7/A<br>(mo_4.01 mix64.00 Mo_10.65 1.240.Mo_date 2:45 44.18 7/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sterreiter following info is based on the Storn Drainage Plan<br>ferenet and the state of the stat                                                                                                                                                                                           |
| + 03:130 2.05 .172 Νο_dete 3:52 3/4.69 π/A<br>+ 04:140 1.82 .295 Μο_dete 3:55 52.33 π/A<br>+ 05:150 2.33 .182 Νο_dete 3:53 32.74 π/A<br>(DT= 1.00) SUM- 66:poind 10.55 1.340 No_date 3:45 44.38 π/A<br>5:0095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The following into is based on the Storm Drainage Flan<br>Mayfield Rd East of Kannedy Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| + 03:130 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>The following info is based on the Storn Drainage Plan</li> <li>The following info is based on the Storn Drainage Plan</li> <li>Mayfaeld Rd East of Kannedy Rd.</li> <li>Mayfaeld Rd East of Kannedy Rd.</li> <li>Mayfaeld Rd East of Kannedy Rd.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05 1.72 Mo_data 2:45 37.8 m/a<br>+ 04:140 1.82 1.70 Mo_data 2:45 57.33 m/a<br>+ 05:150 2.33 1.82 Mo_data 2:45 57.33 m/a<br>[DT= 1.00] SUM- 06:pond 10.59 1.340 Mo_data 2:45 44.38 m/a<br>05:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The following into is based on the Storn Drainage Plan<br>Mayfield Rd East of Kannedy Rd.<br>(08:000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>The following into is based on the Storn Drainage Flan</li> <li>Mayfield Rd East of Kannedy Rd.</li> <li>Mayfield Rd East of Kannedy Rd</li></ul>                                                                                                                                                                                                                                                                                                                                                                       |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 04:140 1.02 .205 Mo_dete 2:45 52.33 r/a<br>+ 05:150 2.33 1.82 Mo_dete 2:45 52.33 r/a<br>(DT= 1.00] SUM- 05:0010 10.55 1.240 Mo_dete 3:53 32.74 r/a<br>(DT= 1.00] SUM- 05:0010 10.55 1.240 Mo_dete 3:45 44.38 r/a<br>50:0009RVRRVRRVR-TPeakDete hhimm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>Mayfield Rd East of Kannedy Rd.<br/>Mayfield Rd East of Kannedy</pre> |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 04:140 1.02 .205 Mo_dete 2:45 52.33 r/a<br>+ 05:150 2.33 1.82 Mo_dete 2:45 52.33 r/a<br>(DT= 1.00] SUM- 05:0010 10.55 1.240 Mo_dete 3:53 32.74 r/a<br>(DT= 1.00] SUM- 05:0010 10.55 1.240 Mo_dete 3:45 44.38 r/a<br>50:0009RVRRVRRVR-TPeakDete hhimm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The following into is based on the Storm Drainage Plan<br>Mayfield Rd East of Kannedy Rd.<br>005:0001RUNYDREEAOPEAK-TpeakDate_hhimmR.V <br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 04:140 1.02 .205 Mo_dete 2:45 52.33 r/a<br>+ 05:150 2.33 1.82 Mo_dete 2:45 52.33 r/a<br>(DT= 1.00] SUM- 05:0010 10.55 1.240 Mo_dete 3:53 32.74 r/a<br>(DT= 1.00] SUM- 05:0010 10.55 1.240 Mo_dete 3:45 44.38 r/a<br>50:0009RVRRVRRVR-TPeakDete hhimm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The following into is based on the Storm Drainage Plan<br>Nayfield Rd Zest of Kannedy Rd.<br>005:000]RUEAQPEAK-TpeakDate_himmR.V<br>DESIGN JTATUMP.50]<br>[XINF.50.TIMP.50]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-2.00.DT-1.00]<br>[SLP-         |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 04:140 1.02 .20 Mo_date 2:45 52.33 r/a<br>+ 05:150 2.33 182 Mo_dete 3:53 32.74 r/a<br>[DT= 1.00] SUM- 05:poind 10.55 1.240 Mo_date 3:53 32.74 r/a<br>50:0099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The following into is based on the Storm Drainage Plan<br>Mayfield Rd East of Kannedy Rd.<br>005:0001RUNYDREEAOPEAK-TpeakDate_hhimmR.V <br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + 03:130 2.05 .172 Mo_data 2:45 32.65 fr/a<br>+ 03:130 2.05 .172 Mo_data 2:45 52.33 r/a<br>+ 05:150 2.33 .182 Mo_data 2:45 52.33 r/a<br>(DT= 1.00) SUM= 06:pond 10.59 1.340 Mo_data 2:45 44.38 r/a<br>16:0009DINHYDAREAOPERA-TPenkOnte himmR.V.R.C.<br>PRINT HTD 05:pond 10.59 1.240 Mo_data 2:45 48.38 n/a<br>(NOTE RESERVOIR -> 05:pond 10:59 1.240 No_data 2:45 48.38 n/a<br>(NOTE COLORIDO 1:05 1.240 No_data 2:45 48.38 n/a<br>(NOTE 0:05 1:00] OUC: 01:59 1.240 No_data 2:45 48.38 n/a<br>(NOTE 0:59 ER+00)<br>- END'OF RUN : 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>The following into is based on the Storn Drainage Flam<br/>Mayfield Rd East of Kannedy Rd.<br/>008:0001RDINNYD</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| + 03:130 2.05 .172 Mo_Gata 2:53 34.69 fr/a<br>+ 04:140 1.02 .20 Mo_Gata 2:45 52.33 r/a<br>+ 05:150 2.33 .182 Mo_Gata 2:45 52.33 r/a<br>(DT= 1.00) SUM- 05:pond 10.59 1.240 Mo_Gata 2:45 44.38 r/a<br>(S:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>The following into is based on the ftorm Drainage Flam<br/>Mayfield Rd East of Kannedy Rd.<br/>008:0001</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| + 03:130 2.05 .172 Mo_Gete 2:53 34.69 fr/a<br>+ 04:140 1.02 .200 Mo_Gete 2:45 52.33 r/a<br>+ 05:150 2.33 .182 Mo_Gete 3:53 32.74 r/a<br>[DT= 1.00] SUM- 05:pond 10.59 1.240 Mo_Gete 3:45 44.38 r/a<br>5:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The following into is based on the Storn Drainage Flam<br>Nayfield Rd Est of Kannedy Rd.<br>005:0001R.V<br>DESIGN STANDATO 01:110 2.93 :412 No_date 46:00 251.25<br>[XLM30:TIMP.30]<br>[SLD-2.00:DT-1.00]<br>[LDSE-2 :00:DT-1.00]<br>[LDSE-2 :00:DT-1.00]<br>[LDSE-2 :00:DT-1.00]<br>[LDSE-2 :00:DT-1.00]<br>[LDSE-2 :00:DT-1.00]<br>[LDSE-2 :00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT-1.00]<br>[SLD-2.00:DT    |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 1.02 .30 Mo_dete 2:45 52.33 r/a<br>+ 05:150 2.33 .182 Mo_dete 2:45 42.81 r/a<br>[DT=1.01 SUM= 06:poind 10.59 1.240 Mo_dete 3:45 44.38 r/a<br>6:0009RURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The following infe is based on the Storn Drainage Flam<br>Mayfield Rd East of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 Mo_date 2:45 57.33 r/a<br>+ 05:150 2.33 1.82 Mo_date 2:45 47.38 r/a<br>(DT= 1.00) SUM= 06:pond 10.59 1.240 Mo_date 2:45 44.38 r/a<br>9RIMT HYD 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 48.38 r/a<br>(RUTT RESERVOIR -> 00 hrs on 0]<br>(METOUT - 2 (1-imperiel; 2=metric output)]<br>(METOUT - 2 (1-imperiel; 2=metric output)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The following into is based on the Storn Drainage Flam<br>Mayfield Rd East of Kennedy Rd.<br>008:0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 .172 Mo_dete 2:55 52.33 r/a<br>+ 05:150 2.33 .182 Mo_dete 2:45 42.35 r/a<br>(DT= 1.00] SUK- 06:pond 10.59 1.240 Mo_date 2:45 44.35 r/a<br>06:pond 10.59 1.240 Mo_date 2:45 44.35 r/a<br>0010RUTRYDAREAOPEAN-TpeakDate bhimmR.VR.C.<br>ROUTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 06:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>(NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>[NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>[NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>[NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 2:45 46.38 n/a<br>[NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 3:45 46.38 n/a<br>[NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 3:45 46.38 n/a<br>[NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 3:45 46.38 n/a<br>[NGTE RESERVOIR -> 00:pond 10.59 1.240 Mo_date 3:45 46.38 n/a<br>[NGTE RESERVOIR -> 00:pond 10:pond 10:                                                      | The following into is based on the Storn Drainage Flan           Mayfield Rd East of Kennedy Rd.           008:0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 04:140 1.83 .20 Mo_date 2:45 52.33 r/a<br>+ 05:150 2.33 .182 Mo_date 2:45 52.33 r/a<br>+ 05:150 2.33 .182 Mo_date 2:45 54.38 r/a<br>[DT=1.00] SUM- 05:poind 10.59 1.240 Mo_date 2:45 44.38 r/a<br>5:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The following into is based on the Storn Drainage Flam<br>Mayfield Rd East of Kannedy Rd.<br>(06:000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 04:140 1.92 .20 Mo_date 2:45 52.33 r/a<br>+ 05:150 2.33 .122 Mo_dete 2:45 52.33 r/a<br>+ 05:150 2.33 .122 Mo_dete 2:45 54.38 r/a<br>(DT=1.00) SUM- 05:poind 10.59 1.240 Mo_date 2:45 54.38 r/a<br>5:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The following info is based on the Storn Drainage Plan<br>Mayfield Rd Hest of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 Mo_date 2:45 57.33 r/a<br>+ 05:157 2.33 1.82 Mo_date 2:45 57.33 r/a<br>(DT=1.00) SUM- 05:poind 10.59 1.240 Mo_date 2:45 44.38 r/a<br>S0:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The following into is based on the Storn Drainage Plan           Mayfield Rd Zset of Kannedy Rd.           005:0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + 03:130 2.05 .172 Mo_date 2:55 34.69 fr/a<br>+ 03:130 2.05 Mo_date 2:45 52.33 r/a<br>+ 05:150 2.33 1.82 Mo_date 2:45 42.35 r/a<br>(DT= 1.00] SUK- 06:pond 10.59 1.240 Mo_date 2:45 44.38 r/a<br>fr0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The following into is based on the Storn Drainage Flam           Mayfald Rd Est of Kannedy Rd.           008:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 Mo_date 2:45 52.33 r/a<br>+ 05:150 2.35 1.22 Mo_dete 2:45 52.33 r/a<br>(DT= 1.00) SUM- 06:poind 10.59 1.240 Mo_date 2:45 44.38 r/a<br>5:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The following into is based on the Storn Drainage Flam           Mayfield Rd Eset of Kannedy Rd.           005:0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 Mo_date 2:45 52.33 r/a<br>+ 05:150 2.33 1.82 Mo_date 2:45 52.33 r/a<br>(DT=1.00) SUM- 06:poid 10.59 1.240 Mo_date 2:45 44.38 r/a<br>(DT=1.00] SUM- 06:poid 10.59 1.240 Mo_date 2:45 44.38 r/a<br>6:0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The following info is based on the Storn Drainage Flam<br>Mayiald Rd East of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 Mo_date 2:45 57.33 r/a<br>+ 05:157 2.33 1.82 Mo_date 2:45 57.33 r/a<br>+ 05:157 2.35 1.82 Mo_date 2:45 54.38 r/a<br>(DT=1.00) SUM- 05:poind 10.59 1.240 Mo_date 2:45 44.38 r/a<br>5:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The following info is based on the Storn Drainage Plan<br>Mayfield Rd Heat of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 Mo_date 2:45 57.33 r/a<br>+ 05:157 2.33 1.82 Mo_date 2:45 57.33 r/a<br>+ 05:157 2.35 1.82 Mo_date 2:45 44.38 r/a<br>(DT=1.00) SUM- 06:point 10.59 1.240 Mo_date 2:45 44.38 r/a<br>6:0009RVRADENHYDAREADENA-TpeakDate hhimmR.V.R.C.<br>RRUTE RESERVOIR -> 06:point 10.59 1.240 Mo_date 2:45 44.38 r/a<br>(NDC:COMENDE -> 00 hrs on 0]<br>(NT:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The following into is based on the Storn Drainage Flam           Mayfield Rd East of Kannedy Rd.           008:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + 03:130 2.05 .172 Mo_dets 2:45 3:4.69 fr/a<br>+ 03:130 2.05 .172 Mo_dets 2:45 52.33 r/a<br>+ 05:150 2.35 1.82 Mo_dets 2:45 52.33 r/a<br>(DT=1.00) SUM- 06:poid 10.59 1.240 Mo_dats 2:45 44.38 r/a<br>(DT=1.00) SUM- 06:poid 10.59 1.240 Mo_dats 2:45 44.38 r/a<br>(ROUTE RESERVOIR D6:poid 10.59 1.240 Mo_dats 2:45 44.38 r/a<br>(ROUTE RESERVOIR 06:poid 10.59 1.240 Mo_dats 2:45 45.38 r/a<br>(ROUTE 2:1.001 cut01:SMM 10.55 .614 Mo_dats 2:45 45.38 r/a<br>(ROUTE 2:1.001 cut01:SMM 10.51 .615 .015 .015 .015 .015 .015 .015 .015 .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The following info is based on the ftorm Drainage Plan           Mayfield Rd Hast of Kannedy Rd.           State         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 .172 Mo_dete 2:55 5.33 r/a<br>+ 05:150 2.33 .182 Mo_dete 2:45 62.33 r/a<br>from the second 10.59 1.240 Mo_dete 2:45 64.38 r/a<br>(Magret 1.00] outc-01:5MM 10.53 .634 Mo_dete 3:03 40.38 r/a<br>(Magret 2.58 Model 2:59 More 2.58 Model 2:45 64.38 r/a<br>(Magret 2.58 Model 2:59 Model 2:59 Model 2:45 64.38 r/a<br>(Magret 2.58 Model 2:59 Model 2:59 Model 2:45 64.38 r/a<br>(Magret 2.59 Model 2:59 Model 2:59 Model 2:45 64.38 r/a<br>(Magret 2.59 Model 2:59 Model 2:50 Model 2:59 Model 2:50                                                                          | The following into is based on the Storn Drainage Flam<br>Mayiald Rd East of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 .172 Mo_dete 2:55 62.33 r/a<br>+ 05:150 2.35 1.22 Mo_dete 2:45 62.33 r/a<br>f(DT=1.00) SUM- 06:poid 10.59 1.240 Mo_date 2:45 44.38 r/a<br>f0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The following infe is based on the Storn Drainage Flam<br>Mayiald Rd East of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 .172 Mo_dete 2:45 57.33 r/a<br>+ 05:150 2.35 1.22 Mo_dete 2:45 67.33 r/a<br>(DT=1.00) SUM- 06:poind 10.59 1.240 Mo_date 2:45 44.38 r/a<br>5:0009RVD:MMYDAREAQPEAK-TpeakDete hh:mmR-VR.C<br>PRINT MYD 06:poind 10.59 1.240 Mo_date 2:45 44.38 r/a<br>f:0010RV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The following infe is based on the Storn Drainage Flam<br>Mayiald Rd East of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| + 03:130 2.05 .172 Mo_dete 2:53 34.69 fr/a<br>+ 03:130 2.05 .172 Mo_dete 2:45 52.33 r/a<br>+ 05:150 2.33 1.22 Mo_dete 2:45 54.33 r/a<br>(DT=1.00) SUM- 05:poid 10.59 1.240 Mo_date 2:45 44.38 r/a<br>5:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The following info is based on the Storn Drainage Flan           Mayfail Rd East of Kannedy Rd.           State         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05 .172 Mo_dete 2:55 2:46.9 fr/a<br>+ 03:130 2.05 .172 Mo_dete 2:45 52.33 r/a<br>+ 05:150 2.33 .182 Mo_dete 2:45 52.33 r/a<br>+ 05:150 2.35 1.240 Mo_dete 2:45 42.35 r/a<br>5:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The following into is based on the Storn Drainage Flam<br>Neyfield Rd East of Kannedy Rd.<br>Neyfield Rd Hast of Kannedy Rd.<br>Store Statement DinnyrD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| + 03:130 2.05 .172 Mo_dete 2:25 52.33 r/s<br>+ 03:130 1.00 Got 2:45 52.33 r/s<br>+ 05:150 2.33 1.22 Mo_dete 2:25 52.37 r/s<br>5:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The following info is based on the #torn Drainage Plan           Mayfield Rd Hast of Kannedy Rd.           State         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| + 03:130 2.05 .172 Mo_date 2:45 52.33 r/s<br>+ 03:130 2.05 .172 Mo_date 2:45 52.33 r/s<br>+ 05:150 2.33 .182 Mo_date 2:45 52.33 r/s<br>+ 05:003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The following info is based on the Storn Drainage Flam           Mayfail Rd Hast of Kannedy Rd.           State         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| + 03:130 2.05 .172 Mo_date 2:45 52.33 r/s<br>+ 03:130 2.03 .172 Mo_date 2:45 52.33 r/s<br>+ 05:150 2.33 .122 Mo_date 2:45 52.33 r/s<br>+ 05:009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The following into is based on the Ftorm Drainage Plan<br>Mayisld Rd East of Kannedy Rd.<br>005:0001REAOPEAK-TpeakDate_hhimmR.V<br>DESIGN STANDWYD 01:110 2.93 :412 No_date 46:00 251.25<br>[XIDP-3.00.DTF 1.00]<br>[XDEF-2 1.0DF 75:0]<br>Mayfield Rd at Kennedy Rd<br>Stars 2:00:07-1.00]<br>[XDEF-2 1.0DF 75:0]<br>Mayfield Rd Grass Areas<br>008:0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| + 03:130 2.05 .172 Mo_date 2:45 52.33 r/s<br>+ 03:130 2.03 .172 Mo_date 2:45 52.33 r/s<br>+ 03:150 2.33 .182 Mo_date 2:45 54.53 r/s<br>50:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The following into is based on the Ftorm Drainage Plan           Mayfield Rd Hast of Kannedy Rd.           Mayfield Rd Hast of VRD           DESIGN STANDAYD 01.110         2.33         412 No_date 46:00 251.25           IXIM300TTMP.50]         Start TMP.50]           Start STANDAYD 02.120         1.44         No_date 46:00 276.25           Mayfield Rd at Kennedy Rd         Start TMP.50]         Start TMP.50]           Start TMP.50]         Start TMP.50]         Start TMP.50]           Mayfield Rd Grass Areas         Start TMP.50]         Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| + 03:130 2.05 .172 Mc_date 2:45 52.33 r/s<br>+ 03:130 2.03 .172 Mc_date 2:45 52.33 r/s<br>+ 03:150 2.33 .182 Mc_date 2:45 54.38 r/s<br>(DT= 1.00] SUM- 06:point 10.55 1.340 Mc_date 3:53 32.74 r/s<br>(DT= 1.00] SUM- 06:point 10.55 1.340 Mc_date 3:45 44.38 r/s<br>50:0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The following into is based on the Ftorm Drainage Plan<br>Mayisid Rd Hast of Kannedy Rd.<br>005:0001RMEAOPEAK-TpeakDate himmR.V<br>DESIGN STANDAYD 01:110 2.93 :412 No_date 46:00 251.25<br>[XINP-30:TINP-50]<br>[LOSF 2.00:DT 1.00]<br>[LOSF 3.1CH 75:0]<br>Mayisid Rd Rase Areas<br>008:0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| + 03:130 2.05 .172 Mo_date 2:45 62.33 r/a<br>+ 03:130 2.03 .172 Mo_date 2:45 62.33 r/a<br>+ 05:150 2.33 .182 Mo_date 2:45 62.33 r/a<br>+ 05:0009RMYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The following into is based on the Ftorm Drainage Plan<br>Mayiald Rd East of Kannedy Rd.<br>008:0001RUEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| + 03:130 2.05 .172 Mo_date 2:45 62.33 r/a<br>+ 03:130 2.05 .172 Mo_date 2:45 62.33 r/a<br>+ 05:150 2.33 122 Mo_date 2:45 62.33 r/a<br>+ 05:150 2.33 122 Mo_date 2:45 64.38 r/a<br>(DT= 1.00) SUM- 05:pord 10.55 1.240 Mo_date 2:45 64.38 r/a<br>(DT= 1.00] SUM- 05:pord 10.55 1.240 Mo_date 2:45 64.38 r/a<br>(DT- 1.01) outc-01:SMM 10.55 .1240 Mo_date 3:03 64.38 r/a<br>(NOTO 07 RUM: 6<br>STAT<br>[NOTO: 1.01] outc-01:SMM 10.55 .514 Mo_date 3:03 64.38 r/a<br>(NOTO: 2 (1-1mperial, 2-metric output)]<br>[NTOUT- 2 (1-1mperi | The following into is based on the Ftorm Drainage Plan<br>Mayfield Rd Hast of Kannedy Rd.<br>Mayfield Rd Hast of Kannedy Rd.<br>South Statement Dillo 2.33 412 No_date 46:00 251.25<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[XIMP-30.01DT+1.00]<br>[X   |
| + 03:130 2.05 .172 Mc_date 2:45 52.33 r/s<br>+ 03:130 2.05 .172 Mc_date 2:45 52.33 r/s<br>+ 03:150 2.33 .182 Mc_date 3:53 32.74 r/s<br>0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The following into is based on the Ftorm Drainage Plan<br>Mayiald Rd East of Kannedy Rd.<br>005:0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Stantec Consulting Ltd. (kitchener)

Page 3

## ada Adist Maghasi Anas at sanaay 2000 Anstronga gase Ghana tarining

| hadan gir Shekkar ranke a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | nako general<br>Teoret herbener          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|
| nen onen el la marcanizzarie en regent franceser el transmerte el tr | APPENDIX B                            |                                          |
| Teach cycles s eachang onalta codo<br>2011 - Stach Done of Hoospoor and<br>Brasio Europpi<br>Nacado Serio o antino acquiro nacadatation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DESIGN CALCULATIONS                   | 17:00<br>동금: 2년 년<br>- 신남한년 동6년<br>- 21월 |
| Treases on Protificat) Stantec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · | s Mar<br>Apra                            |
| Nexterior a classication of the total Caracter and read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                          |

Magner, a contest para e a conservação da atabé conservação de la conservação da conservação da conservação da

化合合物 我们还是这些法律问题,也是我们还是不是非常知道。

1

l

0

a second a Leitenna and a construction of the test of the construction of the second second second second second

| • • • • •           |                             | · · · · · · · · · · · ·                | and a second s<br>and a second s<br>and a second s | د (۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰    |   |
|---------------------|-----------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---|
| -<br>-<br>-         | 111、11996-141304、1416-1436( |                                        | 4 V<br>2 V - 12 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |   |
| n<br>n 22<br>1 - Lu |                             | ······································ | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ••• • •••                                   |   |
|                     | 。<br>注释在影响,这些是在1            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a tanan ang ang ang ang ang ang ang ang ang | • |

# 602-10320 Mayfield Road at Kennedy SWM

# Sediment Forebay Sizing Calculations

Using MOE - SWMPD Manual Criteria (2003)

|                   | •                                     | STORMWATER MANAGEMENT FACILITY                                                                     | · .                                    | 1 A.  |
|-------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|-------|
|                   |                                       |                                                                                                    |                                        |       |
|                   |                                       |                                                                                                    | <b>r</b> =                             | 2.22  |
| etting            |                                       |                                                                                                    |                                        | .0074 |
| Dist = sqrt(r*0   | _ <b>N_</b> )                         | r:1 = i to w ratio<br>$Q_p = peak SWM$ outflow for water quality portion of E.D. zone              | ······································ | .0003 |
|                   | 7.4 m                                 | $Q_p = peak SYVM OBBOH for Hard quite (m/s)$                                                       | v <sub>s</sub> ≖ 0.                    | 0005  |
| =                 |                                       | $v_s$ = settling velocity for 0.15 mm particles (m/s)                                              |                                        |       |
| <u></u>           |                                       |                                                                                                    |                                        |       |
|                   |                                       |                                                                                                    |                                        | 0.874 |
| Dispersion Length |                                       | Q = 10 yr max inlet flow (m <sup>3</sup> /s)                                                       | d =                                    | 1     |
| Dist = 8Q/dv      | 14.0 10                               | d = denth of Defini DOOLIN (Devely (0))                                                            | Y; ==                                  | 0.5   |
| · · ·             | 14.0 m                                | $v_f = desired vel in forebay (m/s)$                                                               |                                        |       |
|                   |                                       |                                                                                                    | y ===                                  | 1     |
|                   |                                       | y = total depth of forebay from perm. pool (m)                                                     | b ==                                   | 10    |
| Velocity          |                                       | b = bottom width (avg) of forebay (m)                                                              | Q 🗯                                    | 0.874 |
| v = Q/A           | · •                                   | Q = 10 yr inlet flow (m <sup>3</sup> /8)                                                           | A =                                    | 17    |
|                   | 0.05 m/s                              | A = cross-sectional area (m2)                                                                      | V <sub>time</sub> =                    | 0.15  |
|                   |                                       | A = cross-sectional and (iii )<br>Target velocity = 0.15                                           | V targ                                 |       |
| Therefore, Veloc  | ity Target Satisfied                  |                                                                                                    |                                        |       |
|                   |                                       |                                                                                                    |                                        |       |
|                   |                                       |                                                                                                    | Anne =                                 | 10.59 |
| Cleanout Frequen  | cy .                                  | Asser = Contributing Sewer Area (ha)                                                               | im 💬 🗇                                 | 41%   |
| Table 6.3 MOE SW  | MPD Guidelines                        | imp = Percent Impervious (%)                                                                       | loa 😅 📍                                | 1.0   |
|                   |                                       | load = Sediment Loading (m <sup>3</sup> /ha)                                                       | effi 🧲 👎                               | 80%   |
| cleanout = Vol/(  | load*A <sub>sew</sub> *effic)         |                                                                                                    |                                        | 7     |
| =                 | 8.3 years                             | En a Closport Frankency Larger (Vebra)                                                             | Vol-                                   | 70    |
|                   | *                                     | $Vol \approx Sediment volume (m3) (0.5m depth)$                                                    |                                        |       |
|                   | · · · · · · · · · · · · · · · · · · · |                                                                                                    | - *                                    |       |
|                   |                                       |                                                                                                    | S Aª                                   | 549   |
| Surface Area Che  | ick                                   | $SA_r = Forebay Surface Area (m2)$                                                                 | S/ <b>**</b> =                         | 1,97  |
| SA/SApp =         | 27.8%                                 |                                                                                                    |                                        | 259   |
| antarity -        |                                       | SApp = Total Permanent Pool Sunact Vool Area)<br>Targ = Forebay size (as % of Permanent Pool Area) | Taergr                                 |       |
|                   | _                                     |                                                                                                    |                                        |       |
|                   |                                       |                                                                                                    |                                        |       |

Ē ł

1. Total depth and cross-sectional area are 'worst-case' values, representative of conditions just prior to sediment clean-out

2. Interpolated based on percent Impervious

3. Volume of bottom 0.5 m depth, the maximum sediment accumulation depth

# 602-10320 Mayfield Road at Kennedy Water Balance and Infiltration Calculations

| ····                                          |                      | 2 C              | ing Drainage         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                   | Topography<br>Rolling to Hilly (~2% |
|-----------------------------------------------|----------------------|------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------|
| urface Water Regime                           | Clayey Silt Till     | 159 mm           | vyr Infiltration Rat | - Pervious Areas (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | Cover                               |
| he soils are:                                 | Rooted Crops         | E 40 mm          | www.Evenotranspir    | ation Rate - Pervious Areas (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | oderately Rooted Cr                 |
| Brio, oo i oit                                | Y ROOLDG OIDPO       | 650 mn           | /vr Pan Evaporati    | on Rate for Open Water Areas (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 "                 | Soils                               |
| )pen water:                                   |                      | • • • • • • •    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Clayey Sitt Till                    |
|                                               | n - t - Cail (ba)    | 10,59            | Impervious 1         | 1% Open Water (ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Ciayoy Cill Tim                     |
| vea with:                                     | Sandy Soil (ha)      | 10.59            | Impervious 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                   |                                     |
|                                               | Total (ha)           | 10.05            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ·<br>·                              |
|                                               | Clayey Silt Till     |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
|                                               |                      | πm/yr (2)        | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| Precipitation                                 | 483 1                | nm/vr (3) (E     | T*(1-%IMP))          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| Evapotranspiration                            | 141                  | ото/уг (1) - (ll | VFIL*(1-%IMP))       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| Infiltration                                  |                      |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | •                                   |
| Evaporation (Open Water)                      | •                    | mm/yr (*         | = Pracinitation - E  | aporation - Infiltration - Evaporatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n)                  |                                     |
| Runoff                                        | 319                  | nanoya (*        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
|                                               |                      | Tabal            |                      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                     |
| 9 -                                           | I.                   | Total            | 3                    | 940.0 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                     |
| Precipitation                                 |                      | 99,548 π         | 1./yr<br>34:         | 483.3 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                     |
| Total Evapotranspiration (existing)           |                      | 51,178           | 1 /yr                | 141.3 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                     |
| Total Existing Infiltration                   |                      | 14,967           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                 |                                     |
| I Otal Existing annuador                      |                      | 0 n              | n /yr                | 0.0 mm/ýr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                     |
| Total Evaporation (existing)                  |                      | 33,401 г         | n <sup>a</sup> /yr   | 315.4 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                     |
| Total Runoff (existing)                       |                      |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| ·                                             |                      | Pro              | nosed Draina         | ge Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Topography                          |
|                                               |                      |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Rolling to Hilly (-                 |
| Surface Water Regime                          |                      | 484 -            | moder infiltration F | tate - Pervious Areas (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                     |
| The soils are:                                | Clayey Silt Till     |                  | uneyi manadoni<br>   | piration Rate - Pervious Areas (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Cover                               |
| Land cover:                                   | Urban Lawns          | . 531 (          |                      | ration Rate for Open Water Areas (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4)                 | Urban Lawns                         |
| Open water:                                   |                      | 650              | mm/yr Pan Evapu      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Soils                               |
| Open materi                                   |                      |                  |                      | 41% Open Water (ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                 | Clayey Silt Ti                      |
|                                               | Sandy Silt Till (ha) | 10.59            | Impervious           | and the state of t | 0.2                 | · · ·                               |
| Area with:                                    | Total (ha            |                  | Impervious           | 41% Open Water (na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                     |
|                                               |                      |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
|                                               | Clayey Silt Till     |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
|                                               | 940                  |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| Precipitation                                 | 307                  | mm/vr (3)        | (ET*(1-%IMP))        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| Evapotranspiration                            | 95                   | mm/vr (5)        | (INFIL*(1-%IMP))     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                     |
| Infiltration                                  |                      | mm/yr (4)        |                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                     |
| Evaporation                                   | 12                   | mm/yr            | / = Precipitation -  | Evaporation - infiltration - Evapora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation)              |                                     |
| Runoff                                        | 526                  | плаут            | (                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
|                                               | ,                    | ,<br>            |                      | 940.0 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                     |
| Precipitation                                 |                      | 99,548           | ini/ya<br>           | 307.4 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                     |
| Total Evapotranspiration (post)               |                      | 32,551           | i m'7yr              | 94.7 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                     |
| Total Infiltration (post)                     |                      | 10,029           | ) m³/yr              | 12.3 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                     |
| Total Evaporation (post)                      |                      | 1,300            | ) m³/yr              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| ( otal Evaporatori ( post)                    |                      | 55,666           | 3 m <sup>3</sup> /yr | 525.6 mm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                     |
| Total Runoff (post)                           |                      |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.7 mm/            | <i>я</i> .                          |
|                                               |                      |                  |                      | 10,029 m <sup>3</sup> /yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -47 mm/             |                                     |
| Infiliration Post Development k               |                      |                  |                      | -4,938 m <sup>3</sup> /yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                     |
| Total Infiltration Deficit:                   |                      |                  |                      | 22,265 m <sup>3</sup> /yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 210.3 mm/           | yı                                  |
| Total Runoff Surplus:                         |                      |                  |                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                     |
|                                               |                      | 1/000031 Tob     | le 3 1 Hydrologic    | Cycle Components, prorated to loc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | al precipitation    |                                     |
| (1) inflitration rate based on MOE            | SWMPP Manua          | 1 (2003), 180    | no ol i i garonegio  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| ISOBVE DO head noticellation based on average | 10 Stitunsu huomikus |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nated to IDCall Dit | cipitation                          |
| (o) Europerenerging Values 08                 | Sed OR MUE OWN       | Ad. L. Latencedu | (//                  | ted Lake Evaporation Data, 1951-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1980 (Ontario Clir  | nate Centre)                        |
| (4) Open water evaporation (650               | mm/yr) based on      | Environmer       | nt Canada Calcula    | Hydrologic Cycle Components, pro-<br>ted Lake Evaporation Data, 1951-1<br>Table 3.1, prorated to local precipil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lation and impervi  | ousness                             |
| (4) Open water event infiltration             | estimate based N     | IOE SWMPF        | Manual (2003) -      | Table 3.1, prorated to local precipil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                     |
|                                               |                      |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| (5) Post development initiation               |                      |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| (5) Post development annuauon                 |                      |                  | =                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |
| (5) Post development innueson                 | ·                    |                  | <u> </u>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                     |

F

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |                     |                      | ŀ                           |                                           |                                     |            | ľ                                            |                                    |                   |                                                    |         |                         |                      |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|---------------------|----------------------|-----------------------------|-------------------------------------------|-------------------------------------|------------|----------------------------------------------|------------------------------------|-------------------|----------------------------------------------------|---------|-------------------------|----------------------|-------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         | ad—Ind<br>Ieart Lai | ŗ.                   | \$                          | ST(<br>ST(                                | DRM S                               |            | <u> </u>                                     | DESIGN P.                          | ARAMETE<br>FOPM · | - RS                                               | ć       | Į                       |                      |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                  | DATE. Jan               | 18 S                | BUD                  |                             | DE                                        |                                     | SHEET      | <u>,                                    </u> | JESIGN S<br>? = A (T) <sup>Β</sup> | <u></u>           | 1 In<br>tterpolation                               | uatior  | ears                    |                      |                                     |
| No.         No. <th></th> <th>SIGNED</th> <th>101 Au</th> <th>VSL<br/>VSL</th> <th>[ dol.</th> <th>Number:</th> <th>602</th> <th>10320</th> <th></th> <th></th> <th></th> <th>1ANNINGS<br/>11NIMUM C<br/>1ME OF EN</th> <th></th> <th></th> <th>m<br/>min.</th> <th>51.300<br/>-0.686</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | SIGNED                  | 101 Au              | VSL<br>VSL           | [ dol.                      | Number:                                   | 602                                 | 10320      |                                              |                                    |                   | 1ANNINGS<br>11NIMUM C<br>1ME OF EN                 |         |                         | m<br>min.            | 51.300<br>-0.686                    |
| Number         Numbr         Numbr         Numbr <th>2</th> <th>on<br/>Rom<br/>M.H.</th> <th>TO<br/>M.H.</th> <th>AREA C</th> <th></th> <th>RAINAGE ARE<br/>C ACCUM.<br/>AREA<br/>) (ha)</th> <th>A<br/>TofC<br/>(min) (m</th> <th>u)<br/>(4)</th> <th>(m)</th> <th></th> <th>ad</th> <th>SELECTION<br/>CAP.<br/>(FULL)<br/>(m<sup>3</sup>/s)</th> <th></th> <th></th> <th></th> <th>MANHOLE<br/>TIME OF<br/>FLOW<br/>(min)</th>                                                                                                                                                                                                                                                                                                                                                                                                | 2                                         | on<br>Rom<br>M.H.       | TO<br>M.H.          | AREA C               |                             | RAINAGE ARE<br>C ACCUM.<br>AREA<br>) (ha) | A<br>TofC<br>(min) (m               | u)<br>(4)  | (m)                                          |                                    | ad                | SELECTION<br>CAP.<br>(FULL)<br>(m <sup>3</sup> /s) |         |                         |                      | MANHOLE<br>TIME OF<br>FLOW<br>(min) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRAINAGE AR                               | IEA 1                   |                     |                      |                             |                                           |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| n         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mayfield Road<br>11+175                   | - Inder Height<br>45    | s Drive C           |                      |                             |                                           | 15.000                              |            |                                              | 300                                | 1.50              | 0.118                                              |         |                         | 1.374                | 0.607                               |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11+125                                    | 43 44                   | 42                  |                      | 111                         |                                           | 15.964                              |            |                                              | 300<br>375                         | 3.00<br>0.80      | 0.167<br>0.157                                     |         |                         | 2.097<br>1.448       | 0.355<br>0.495                      |
| 1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                         |                     |                      |                             |                                           |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| 3         4         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11+041                                    | 42L1                    | 42                  |                      | 0.90 0.5                    |                                           | 15.000 91<br>15.086                 | .990 0.166 | 16.0                                         | 300                                | 4.00              | 0.193                                              |         | 2.736                   | 3.092                | 0.086                               |
| 1         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11+037                                    | 42                      | 41                  |                      | 0.35 0.0<br>0.90 0.0        |                                           |                                     |            |                                              | 450                                | 1.70              | 0.372                                              | 73.757  | 2.337                   | 2.571                | 0.253                               |
| Protoclame         Constrained and a constrained and constrained and a constrained and a constrained and c | 10+997                                    | 41 4                    | 40 R                |                      | 0.90 0.0                    |                                           | 16.712 85<br>16.803                 | .334 0.293 | 16.0                                         | 450                                | 2.25              | 0.428                                              |         | 2.689                   | 2.918                | 0.091                               |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10+987                                    | CSP<br>NLET             | 40R                 |                      | 0.25 2.0                    | 38 2.038                                  |                                     |            | 22.0                                         | 600                                | 1.14              | 0.656                                              | 52.783  | 2.319                   | 2.342                | 0.157                               |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                         |                     |                      | loool                       |                                           | 0073772                             |            | 2                                            | NEGON                              |                   | 0000                                               |         |                         |                      |                                     |
| Control         Control <t< td=""><td>10+983<br/>10+050</td><td>40 R 40</td><td></td><td></td><td>1 1 1</td><td>3.518</td><td>27.256</td><td></td><td></td><td>SZ5</td><td>3.00</td><td>0.745</td><td>79.685</td><td>3.441</td><td>3.837</td><td>0.135</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10+983<br>10+050                          | 40 R 40                 |                     |                      | 1 1 1                       | 3.518                                     | 27.256                              |            |                                              | SZ5                                | 3.00              | 0.745                                              | 79.685  | 3.441                   | 3.837                | 0.135                               |
| Categorie         Categorie <t< td=""><td>DRAINAGE AR</td><td></td><td></td><td></td><td></td><td>010.0</td><td>160.12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRAINAGE AR                               |                         |                     |                      |                             | 010.0                                     | 160.12                              |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| 1         0.01         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mayfield Road                             | - East Catchme          | aut                 |                      |                             |                                           |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12+000                                    | 61                      | 09                  |                      | 0.90 0.1                    | 70 0.320                                  | 15.000 91                           | .990 0.082 |                                              | 300                                | 1.50              | 0.118                                              | 69.042  | 1.675                   | 1.82                 | 0.52                                |
| 8         9         0.85         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06         0.06<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11+943<br>11+885                          | 60<br>59                | 59<br>58            |                      | 0.90 0.2                    | 52 0.582<br>61 0.843                      | 15.523 89<br>15.937 88.             |            | 58.0<br>50.0                                 | 375<br>375                         | 2.00<br>3.20      | 0.248<br>0.314                                     | 1 1     | 2.245<br>2.840          | 2.33<br>3.04         | 0.41                                |
| m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11+835<br>11+785                          | 58<br>57                | 57<br>56<br>5       |                      | 0.90 0.2                    | 25 1.068<br>25 1.293                      | 16.211 87<br>16.601 85              |            | 50.0<br>50.0                                 | 450<br>450                         | 1.10<br>2.50      | 0.299<br>0.451                                     |         | 1.880<br>2.834          | 2.13<br>3.08         | 0.39                                |
| 4         53         0.53         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63         0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11+/35<br>11+685                          | 90                      | 8 2                 |                      | 0.90 0.2<br>0.25 0.0        | 25 1.518<br>18<br>25 1 761                | 16.872 84<br>17 136 83              |            | 20.0                                         | 450<br>525                         | 2.50              | 0.451                                              |         | 2.834                   | 3.16                 | 0.26                                |
| 3         52         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11+635                                    | 54                      | 53                  |                      | 0.90 0.2<br>0.25 0.0        |                                           |                                     | 826        |                                              | 600                                | 0.75              | 0.532                                              |         | 1.881                   | 2.13                 | 0.39                                |
| N         Tot         Dia         Dia <thdia< th=""> <thdia< th=""> <thdia< th=""></thdia<></thdia<></thdia<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11+585                                    |                         | 52                  |                      | 0.90 0.2<br><u>3.25 0.0</u> | 25 2.248<br>25                            | 17.837 81                           | 557        |                                              | 675                                | 0.50              | 0.594                                              |         | 1.661                   | 1.88                 | 0.37                                |
| W         C (50 (3:15)         C (50 (3:15) <thc (3:15)<="" (50="" th=""> <thc (50="" (<="" td=""><td>11+540<br/>11+508<br/>11+495</td><td></td><td>51L<br/>HW</td><td></td><td>0.90 0.1<br/>0.90 0.1</td><td>80 2.453<br/>62 2.615<br/>00 6.130</td><td>18.210 80<br/>18.550 79<br/>29.094 58</td><td></td><td></td><td>675<br/>750<br/>900</td><td>0.40</td><td>0.594<br/>0.704<br/>1.145</td><td></td><td>1.661<br/>1.594<br/>1.800</td><td>1.91<br/>1.79<br/>2.04</td><td>0.34</td></thc></thc></thc></thc></thc></thc></thc></thc></thc></thc></thc></thc></thc>                       | 11+540<br>11+508<br>11+495                |                         | 51L<br>HW           |                      | 0.90 0.1<br>0.90 0.1        | 80 2.453<br>62 2.615<br>00 6.130          | 18.210 80<br>18.550 79<br>29.094 58 |            |                                              | 675<br>750<br>900                  | 0.40              | 0.594<br>0.704<br>1.145                            |         | 1.661<br>1.594<br>1.800 | 1.91<br>1.79<br>2.04 | 0.34                                |
| W         50         0.201         0.000         0.201         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.011         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101 <th0.011< th="">         0.0101         <th0.011< th=""></th0.011<></th0.011<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11+474<br>Mavfield Rnad                   |                         | ant                 |                      |                             | 6.130                                     | 29.135                              |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| 0         0.250         0.030         0.031         0.531         0.140         0.151         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.161         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |                     |                      |                             | 11                                        |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| 0         FUL         0.000         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011 <th0.011< th="">         0.011         0.011&lt;</th0.011<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                         |                     |                      | 111                         |                                           |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| Mito         Mito <th< td=""><td>11+420<br/>11+474<br/>11+495</td><td></td><td>51L</td><td></td><td>1   1</td><td></td><td>28.759 58.<br/>28.759 58.<br/>29.094</td><td></td><td></td><td>825<br/>900</td><td>0.20</td><td>0.574</td><td>880</td><td></td><td>1.224</td><td>0.626</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11+420<br>11+474<br>11+495                |                         | 51L                 |                      | 1   1                       |                                           | 28.759 58.<br>28.759 58.<br>29.094  |            |                                              | 825<br>900                         | 0.20              | 0.574                                              | 880     |                         | 1.224                | 0.626                               |
| 0.0         231         0.270         0.600         0.543         0.754         0.000         0.571         0.000         0.571         0.000         0.572         0.532         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533         0.533 <th0.533< th="">         0.533         0.53</th0.533<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kennedy Road<br>5+221 EX.                 | I - South Leg           | 100                 |                      | 900 0.4                     | 0.48(                                     | 15.000 91.                          |            |                                              | 375                                | 1 23              | 11                                                 |         |                         | 1 862                | 0.439                               |
| Number         Control         Control <thcontrol< th=""> <thcontrol< th=""> <thco< td=""><td>5+172 EX.<br/>5+092</td><td>100<br/>23 O</td><td>23<br/>Juttlet</td><td></td><td>900 0.2</td><td>0.729</td><td>15.438 90<br/>16.004 87</td><td></td><td></td><td>450<br/>525</td><td>1.80<br/>0.40</td><td></td><td></td><td></td><td>2.357</td><td>0.566</td></thco<></thcontrol<></thcontrol<>                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5+172 EX.<br>5+092                        | 100<br>23 O             | 23<br>Juttlet       |                      | 900 0.2                     | 0.729                                     | 15.438 90<br>16.004 87              |            |                                              | 450<br>525                         | 1.80<br>0.40      |                                                    |         |                         | 2.357                | 0.566                               |
| LLass         Load         T.0         400         T.0         11.0         0.13         3.450         66.245         0.111         36.0         60.0         0.13         3.450         66.245         0.111         36.0         60.0         13.3         36.0         13.0         0.13         34.360         66.245         0.111         36.0         600         13.0         0.13         34.360         66.245         0.111         36.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.927</td> <td>10.009</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                         |                     |                      |                             | 0.927                                     | 10.009                              |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| (e)         0.225         15.063         56.063         0.000 0.524         0.000 0.521         50.055           (h)         (000105-PETC=TERTING 120)         (000105-PETC=TERTING 120)         (000105-PETC=TERTING 120)         (000105-PETC=TERTING 120)           (h)         (0.21)         0.220         0.230         0.230         0.230         0.231         0.133         0.231         0.133           (h)         (0.10)         0.300         0.813         2.450         65.015         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.134         0.133         0.133         0.134         0.133         0.134         0.134         0.134         0.134         0.133         0.135         0.133         0.135         0.133         0.135         0.133         0.135         0.133         0.135         0.133         0.135         0.133         0.135         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133         0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kennedy Road<br>4+963                     | North Leg<br>DCB 13 O   | Juttet              |                      |                             | 0.225                                     |                                     |            | 7.0                                          | 400                                | 1.00              | 0.175                                              | 32.792  | 1.587                   | 1.405                | 0.083                               |
| Side International         0.270         0.300         0.613         24.536         6.0111         36.0         600         0.33         0.221         50.183           Inter Durine         0.100         0.300         0.613         25.356         0.111         36.0         600         0.13         0.221         50.183           Inter Durine         0.100         0.300         0.613         25.356         65.245         0.111         36.0         60.13         0.221         50.183           Internation         0.613         25.356         0.613         25.356         0.613         26.336         67.460         0.21         0.210         0.221         50.183         66.00         0.13         67.460         760         0.21         67.160         77.60         67.160         77.160         77.160         77.160         77.176         77.176         77.176         77.176         77.176         77.176         77.176         77.176         77.176         77.176         77.176         77.176         77.177         77.177         77.176         77.177         77.177         77.176         77.177         77.177         77.176         77.176         77.176         77.176         77.177         77.177         77.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11+420<br>Mavfield Road                   | Outlet<br>South Side In | ta                  |                      | <u>e</u>                    | 0.225<br>PMC=EW                           |                                     |            | 2                                            | OOICSPIN                           | 0:02480           | <u>=</u> 0:095                                     |         |                         |                      |                                     |
| P         0.220         0.200         0.243         0.221         0.021         0.221         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                         |                     |                      |                             |                                           |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| Ifelater Park         Image: Second Seco | 11+255                                    | CSP C                   | SP                  |                      | 900 0.2<br>250 0.2          | 43<br>80<br>0613                          | 24 500 65                           |            | C ac                                         | 600                                |                   |                                                    |         |                         | 60× 0                | 000                                 |
| Itelet Park         0.827         0.813         0.813         0.813         0.813         0.813         0.813         0.814         0.814         0.814         0.814         0.813         0.813         0.813         0.813         0.813         0.813         0.813         0.813         0.814         0.813         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814         0.814 <th0.814< th="">         0.814         0.814</th0.814<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11+355                                    | 1                       |                     |                      | (600)                       | 0.613<br>58110=101                        | 25.356<br>25.356<br>25.820]         |            | 2000                                         | OOICSPIN                           | =0:024%G          |                                                    |         | 11                      | 0.103                | 00''n                               |
| SP         CSP         0.130         0.300         1.56         5.8.276         BIG O BOSS POLYTITE PIPE (SMOOTH WALL).           In Side Inlet         26.276         36.276         36.276         36.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         56.276         36.07         57.460         36.07         56.276         36.07         56.276         36.07         57.460         36.07         56.276         36.07         56.276         56.00         36.07         57.460         36.07         56.07         56.07         56.07         56.07         56.07         56.07         56.07         56.07         56.07         56.07         56.07         56.07         56.07         56.07         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56         56.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mayfield Road                             | - Kingfisher Pa         | ž                   |                      | 0.0                         | 27                                        |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| This Idea Inlist         26.276         BIG O BIOSS POLYTTIE PIPE (SWOOTH WALL)           In Side Inlist         0.1440         0.225         0.1440         0.225           SP OCSP         0.1440         0.300         0.126         0.313         49.177           SP OCSP         0.200         0.126         0.313         0.911         27.190         6001CSPINE)00248Q=01170         49.177           SP OCSP         0.200         0.300         0.126         0.310         0.112         50.00         0.314         0.317         49.177           SP OCSP         0.200         0.300         0.126         0.317         0.901         27.191         6000CSP1(C=30376313)         6000CSP1(C=30376313)         6000CSP1(C=30376313)         49.177           A OC         0.300         0.360         0.360         0.360         0.360         0.375         20.00         278         6000CSP1(C=3037646666         600         278         6000CSP1(C=3037646666         600         278         6000CSP1(C=3037646666         600         278         6000CSP1(C=3037646666         600         278         6000CSP1(C=30376466666         600         278         278         278         278         6000CSP1(C=303764666666         600         278         278         278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11+410                                    | CSP 0                   | SP                  | 0.130 0.<br>1.230 0. | 900 0.1<br>250 0.3          |                                           | 25.820 63.                          | 0.344      |                                              | 750                                | 0.21              | 0.510                                              | 67.460  | 1.155                   | 1.241                | 0.456                               |
| In Side Inter         0.125         0.125         0.110         0.225         0.313         49.177           SP         CSP         0.140         0.900         0.180         0.313         49.177           SP         CSP         0.140         0.900         0.180         0.313         49.177           SP         CSP         0.200         0.900         0.180         0.310         0.313         49.177           SP         CSP         0.200         0.900         0.180         0.360         0.360         0.360         57.763           S         0.400         0.90         0.360         1.300         0.360         5.00         30.0         1.000         0.967         6.166           S         62.4         0.400         0.90         0.360         1.300         0.364         0.365         0.300         0.304         65.563           S         62.1         0.400         0.90         0.301         1.40         1.776         80.0         376         3.00         0.364         65.563           S         62.1         0.400         0.90         0.301         1.40         1.776         80.0         376         3.00         376         5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |                     |                      |                             |                                           | 26.276                              |            |                                              | ISS POLY                           |                   | LOOMS)                                             | H WALL) |                         |                      |                                     |
| Pr         CSP         0.140         0.300         0.126         0.313         49.177           let $0.200$ 0.800         0.811         27.190         60.01528 0.313         49.177           let $0.161$ $1.520$ 0.301 $0.719$ 60.01528 0.313         49.177           let $0.161$ $1.520$ 0.301 $0.719$ 60.01528 0.313         49.177           let $0.400$ 0.30 $0.360$ $0.720$ $0.315$ $30.0$ $0.266$ $66.668$ 25 $0.400$ 0.90 $0.360$ $0.720$ $5.844$ $88.56$ $0.177$ $80.0$ $375$ $2.300$ $0.266$ $66.668$ 25 $0.400$ 0.90 $0.360$ $1.200$ $1.306$ $375$ $2.300$ $0.266$ $66.668$ 25 $0.400$ $0.90$ $0.360$ $1.7306$ $0.375$ $2.300$ $0.266$ $66.668$ 25 $0.400$ $0.90$ $0.301$ $0.00$ $0.375$ $2.300$ $0.261$ $67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mayfield Road                             | - North Side In         | let                 |                      | Ó                           | 25                                        |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| It of SWM Poind         0.011 $27.768$ 0.00055PartCe=3825801331         0.000055PartCe=3825801331         0.000055PartCe=382311         0.000055PartCe=382311         0.001030103031         0.0118         0.2137         0.2390         0.2500         0.2501         0.5201         0.5201         0.5201         0.5201         0.5201         0.5201         0.5201         0.5101         0.2131         0.2001         0.5201         0.5201         0.5201         0.5201         0.5201         0.5201         0.5201         0.5201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11+370                                    | CSP (                   | CSP                 |                      | ololo                       | 0.91                                      |                                     |            |                                              | MADO                               | 0.06              |                                                    | 177     |                         | 1 006                | 0 578                               |
| tof SWM Poind Inter-Future         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                         |                     |                      |                             | 0.911                                     |                                     |            |                                              | OOICSPIN                           | 0.024%0           |                                                    |         |                         | 0001                 |                                     |
| Action         Data bio of the form         Data bio of the form <td>DRAINAGE AR</td> <td></td>                                                                                                                                                                                                                                                                                                             | DRAINAGE AR                               |                         |                     |                      |                             |                                           |                                     |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mayrield Road<br>12+140 FUT<br>12+220 FUT | 1 of 5W                 |                     | Future<br>0.400      |                             | 0.720                                     | 15.000 91.<br>15.844 88.            |            |                                              | 300<br>375                         | 1.000<br>2.300    |                                                    | 11      | 11                      | 1.580                | 0.844                               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12+300 FUT<br>12+380 FUT                  | 5 2                     | 52.2                |                      |                             | 1.080<br>1.440                            | 16.788 85.                          |            |                                              | 375<br>525                         | 3.000<br>1.500    |                                                    | 111     |                         | 3.107<br>2.603       | 0.512                               |
| Control         Control <t< td=""><td>12+460 FUT<br/>12+540<br/>12±40</td><td>2010</td><td>62</td><td></td><td></td><td>1.800<br/>2.331</td><td>17.300 83.<br/>17.999 81.</td><td></td><td></td><td>600<br/>675</td><td>0.600</td><td></td><td>1   1</td><td></td><td>1.909</td><td>0.698</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12+460 FUT<br>12+540<br>12±40             | 2010                    | 62                  |                      |                             | 1.800<br>2.331                            | 17.300 83.<br>17.999 81.            |            |                                              | 600<br>675                         | 0.600             |                                                    | 1   1   |                         | 1.909                | 0.698                               |
| orth Leg-Future         0.320         0.90         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.288         0.281         0.288         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         73.35         2.900         0.281         5.583         0.335         0.280         0.281         73.35         0.281         73.35         0.281         73.35         0.281         73.35         0.281         73.35         0.281         73.35         0.281         73.35         0.281         73.35         0.281         73.35         0.281         73.355         0.281         73.355         0.281         73.355         0.281         73.355         0.281         73.355         0.280         0.280         0.281         73.355 </td <td>Mayfield Road</td> <td>- East of SWM</td> <td></td> <td>et l</td> <td></td> <td>100.2</td> <td>212201</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mayfield Road                             | - East of SWM           |                     | et l                 |                             | 100.2                                     | 212201                              |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heart Lake Ros                            | ad - North Leg-F        | Future              |                      |                             |                                           | 15 000 24                           | 1200       |                                              |                                    |                   |                                                    |         | 11                      |                      |                                     |
| FUT         732         731         0.220         0.25         0.065         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4+750 FUT                                 | 733                     | 732                 |                      | 0.25 0.1                    |                                           | 15.751 88.                          |            |                                              | 300                                | 1.500<br>2 750    |                                                    |         |                         | 1.776<br>2.685       | 0.751                               |
| 731         73         0.180         0.25         0.045         1.281         16.690         85.413         0.304         28.0         5.26         0.700           73         0.290         0.30         0.56         0.261         1.281         16.690         85.413         0.304         28.0         5.26         0.700           73         67         0.250         0.306         0.225         1.533         16.920         84.601         0.362         26.0         600         0.400           67         0.250         0.306         0.235         1.539         17.195         44.601         0.362         0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 732                     | 731                 |                      | 0.25 0.0                    |                                           | 16.247 87.                          |            |                                              | 375                                | 2.900             | 0.299                                              |         |                         | 3.014                | 0.442                               |
| 73         67         0.130         0.255         0.033           67         0.250         0.30         0.225         1.539         16.920         84.601         0.362         26.0         600         0.400           67         0.250         0.30         0.225         1.533         17.195         1.500         1.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | 731                     | 73                  |                      | 0.25 0.0                    |                                           | 16.690 85.                          |            | 26.0                                         | 525                                | 0.700             | 0.360                                              | 84.467  | 1.662                   | 1.878                | 0.231                               |
| - 656. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4+965                                     | 73                      | 67                  |                      | 0.25 0.0<br>0.90 0.2        |                                           | 16.920 84.                          | .601 0.362 | 26.0                                         | 600                                | 0.400             | 0.388                                              | 93.104  | 1.373 `                 | 1.579                | 0.274                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41300                                     | ò                       |                     |                      |                             | av0.1                                     | 11.180                              |            |                                              |                                    |                   |                                                    |         |                         |                      |                                     |

.

 $\mathbb{C}$ 

(

|                  | LOCATION                       |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|------------------|--------------------------------|-----------------------------------------------------|----------------------|---------------------|---------------------------------------------|---------------------|--------------------|------------------------|-------------------|---------------------------------|------------------|----------|-------|--------------------|
|                  | Mayfeld Road—I<br>Heart        | Mayfeld Road—Inder Heights Dr. to<br>Heart Lake Rd. |                      | STO                 | STORM SEWER                                 | WER                 |                    | nesign                 | UESIGN PARAMETERS | ŝ                               |                  |          |       |                    |
|                  |                                |                                                     | -1                   |                     | REGION FOR CITY OF BRAMPION<br>DESIGN SHEFT | Brampton<br>4 F F F |                    | DESIGN STORM           | ORM :             | L<br>Ľ                          | 6                | Years    |       |                    |
|                  | DATE: lanuary 18, 2008         | 8 2008                                              |                      | í                   | 5                                           |                     |                    | к = A (T) <sup>-</sup> |                   | Interpolatic                    | <u>p</u>         | <u> </u> |       |                    |
|                  | IJ                             | MG                                                  | Job Number:          | nber:               | 602 10320                                   | 3320                |                    | 8 ¥                    | 35.1<br>-0.695    | MANNING'S n =<br>MINIMUM COVER: |                  | 0.013    | E     | 51.300<br>-0.686   |
|                  | CHECKED BY:                    | ASL                                                 |                      |                     |                                             |                     |                    |                        | - 1               | TIME OF ENTRY                   | ENTRY            | I        | mln.  |                    |
| Ś                | LOCATION<br>FROM TO            | AREA C                                              | DRAI                 | NAGE AREA<br>ACCUM. | Tofc                                        | a                   | LENGTH             | PiPE                   | SLOPE             | PIPE SELECTION<br>CAP.          | N<br>Q/Q         | VEL.     |       | MANHOLE<br>TIME OF |
|                  | м.н. м.н.                      | 1-12                                                | 1040                 | AREA                |                                             | 5                   |                    | SIZE                   |                   | (FULL)                          | CAP.             | (FULL)   | _     | FLOW               |
| Mayfield Road    |                                | -/15/                                               | (01)                 | 1001                |                                             |                     |                    | (uuu)                  | (R)               | fer III)                        | (q.)             | (S/II)   | (m/s) | (min)              |
| 124820           | AG CA                          | 0.61 0.25                                           | 11                   |                     | 0.405 45.000 04.000                         | 00 0103             | 0.76               |                        |                   | 1010                            | 1.50             |          | 000   |                    |
| A30. 71          |                                |                                                     | 25 0.028             |                     |                                             |                     |                    |                        | ne n              | U. 124                          | 1/5.60           | 1.123    | 502.1 | U.488              |
| 12+780<br>12+731 | 68 67<br>67                    |                                                     |                      | 0.693               | 15.488 89.964<br>16.166                     | 64 0.173            | 3 53.5             | 450                    | 0.40              | 0.180                           | 96.042           | 1.134    | 1.315 | 0.678              |
| Manfald Brad     |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
| 12+731           |                                |                                                     | 1                    | 2.295               | 17.195 83.6                                 |                     |                    |                        | 0.400             | 0.704                           | 75.731           | 1 594    | 1.761 | 0 473              |
| 12+680           | 66 65                          |                                                     | 1 !                  | 2.439               | 17.668 82.0                                 | 1 1                 |                    |                        | 0.350             | 0.849                           | 65.483           | 1.589    | 1.700 | 0.294              |
| 12+650<br>12+620 | 65 64<br>64 63                 | 0.270 0.90                                          | 90 0.243<br>90 0.135 | 2.682               | 2.682 17.962 81.161<br>2.817 18.240 80.300  | 61 0.605            | 02 29.0<br>88 17.0 | 006                    | 0.360             | 1.086                           | 55.656<br>58.656 | 1.707    | 1.742 | 0.278              |
| 12+610           |                                |                                                     |                      | 2.817               | 18.401                                      | 1 1                 |                    |                        |                   |                                 |                  |          |       | 5                  |
| Mayfield Road -  | Mayfield Road • SWM Pond Inlet |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
| 12+610           | 63 63R                         | 0.000 0.900                                         | 0000000              | 5.148               | 18.401 79.8                                 | 09 1.141            | 11 19.0            | 976                    | 0.60              | 1.736                           | 65.738           | 2.325    | 2.488 | 0.127              |
| 12+611           | 63R                            |                                                     |                      | 5.148               | 18.529                                      |                     |                    |                        |                   |                                 |                  |          |       |                    |
| 12+710           | 63R2 63R1                      |                                                     | 1                    | 0.090               | 15.000 91.9                                 |                     |                    | 300                    | 0.50              | 0.068                           | 33,633           | 0.967    | 0.856 | 0.973              |
| 12+660           | 63R1 63R                       | 0.03 0.35                                           | 35 0.011             | 0.101               | 15.973 88.056                               | 56 0.025            | 25 49.5            | 300                    | 0.50              | 0.068                           | 35.951           | 0.967    | 0.871 | 0.948              |
| 12+611           | 63R                            |                                                     |                      | 0.101               | 16.921                                      |                     |                    |                        |                   |                                 |                  |          | I     |                    |
| 12+611           | 63R HW                         | 0.050 0.350                                         | 50 0.018             |                     | 5.266 18.529 79.427                         | 27 1.162            | 52 18.0            | 1050                   | 0.50              | 1.931                           | 60.165           | 2.230    | 2.341 | 0.128              |
| 12+612           | MH                             |                                                     |                      | 5.266               | 18.657                                      |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
| 1                |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     | _                  |                        |                   |                                 |                  |          |       |                    |
|                  | *********                      |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
| *****            |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |
|                  |                                |                                                     |                      |                     |                                             |                     |                    |                        |                   |                                 |                  |          |       |                    |

1/27/2014, 4:21 PM,10320(Ph3\_St2\_south stm\_4lane\_option)\_Stm\_Design\_08check.xls

2 OF 2

Stantec Consulting Lic

Memo



| То:   | Dave Hallman     | From: | Grant Whitehead   |
|-------|------------------|-------|-------------------|
|       | Kitchener Office |       | Kitchener Office  |
| File: | 60210320         | Date: | December 20, 2007 |
|       |                  |       |                   |

#### Reference: Mayfield Road/Kennedy Road SWM Pond Heart Lake Wetland Complex, Groundwater Level Monitoring

In July 2006, Stantec installed a drive-point piezometer within the Provincially Significant Wetland (PSW) located to the north and east of the proposed stormwater management (SWM) facility near the intersection of Mayfield Road and Kennedy Road (Figure 1). This wetland area is part of the greater Heart Lake Wetland Complex and the purpose of the piezometer installation was to establish a baseline in seasonal groundwater level fluctuations within the PSW prior to the construction of the SVM facility. Subsequently, these baseline data will be compared to post-development water level fluctuations within the PSW, which will then be used to evaluate whether the form and function of the wetland would be notably impacted as a result of the SVM facility operation.

The installed drive-point piezometer consists of a 19 mm diameter, 0.42 m long steel screen that is connected to a series of 25 mm diameter steel risers. The piezometer was inserted into the PSW using manual driving techniques and then developed to remove fine-grained material from around the screened interval in order to obtain groundwater levels representative of subsurface conditions. Groundwater level fluctuations within DP1-06 were recorded using a Solinst<sup>®</sup> LT Levelogger<sup>®</sup>, which was programmed to record water level measurements at 15-minute intervals. Manual water level measurements were also collected using a battery operated probe and calibrated tape to compliment the Levelogger data. Manual water depths were recorded in meters below the top of the well casing. Monitoring of groundwater level fluctuations in the PSW occurred from July to November, 2006, and from May to October, 2007. Monitoring was not performed during months typically characterized by sub-zero temperatures, given that the freezing of the water column within piezometer pipes have been documented to damage water level recording equipment such as Leveloggers. The results of this groundwater level monitoring are presented in Figure 2.

Water levels in DP1-06 experienced an overall increase of approximately 1.5 m throughout the 2006 monitoring period, with water levels increasing steadily from an elevation of 253.68 m AMSL in July to 255.15 m AMSL in November (Figure 2). Total precipitation recorded over this monitoring period was 443 mm, which was obtained from the Sandhill Climate Station (CS) located approximately 10 km to the north of subject area. In comparison, the 30-year average for total precipitation over this same period is 315 mm. Consequently, these data suggested that this observed increase in

One Team. Infinite Solutions.

December 20, 2007 Dave Hailman Page 2 of 2

the water table was likely attributable to the overall greater than average precipitation (+128 mm) that occurred throughout the region over the monitoring period.

In 2007, groundwater elevations recorded at DP1-06 remained relatively constant, with the water table experiencing an overall decline of 0.17 m from May (255.48 m AMSL) to October (255.31 m AMSL) (Figure 2). Total rainfall that occurred over this monitoring period (May to October) was roughly 268 mm, which was 217 mm less than the 30-year average for total precipitation over this same period (i.e., 485 mm). The ability of the water levels beneath the PSW to remain relatively unchanged in response to the lack of rainfall suggests that this wetland system is likely located in an area where upward vertical hydraulic gradients are present. These data also suggest that the steady water level increase observed in DP1-06 during 2006 was a partial reflection of the water level within the pipe equilibrating with the surrounding shallow groundwater system.

Since the re-initiation of groundwater level monitoring within the PSW occurred in late May 2007, it is reasonable to assume that the monitoring completed to date has not yet captured the high water table condition in the wetland system. Overall, the highest water table elevation that has been recorded in the vicinity of DP1-06 during the monitoring period is 255.48 m AMSL.

In the Toronto and Region Conservation Authority (TRCA) letter dated June 21, 2007, the TRCA requests that the monitoring of water levels in the PSW be continued during and after the construction of the proposed SWM facility. Additionally, the TRCA requests that this monitoring be started earlier in the year (i.e., prior to May) so that water level fluctuations in the PSW associated with the spring thaw are recorded. As a result, Stantec will continue with the monitoring of groundwater levels at DP1-06, with this monitoring being re-initiated in March 2008.

STANEC CONSULTING LTD.

. A Stutebend

Grant Whitehead, MES Environmental Scientist grant.whitehead@stantec.com

Attachment: Figure 1 – Site Plan Figure 2 – Water Level Hydrograph - DP1-06



V:\01609\active\60210320\_Mayfield\_Road\_Reconstruction\planning\drawing\May 2007 ~ Wetland Monitoring\60210320\_em\_Kennedy.gwg {Site PlanBx11} 2007-12-03 02:26PM By: ccalhoun

#### Legend

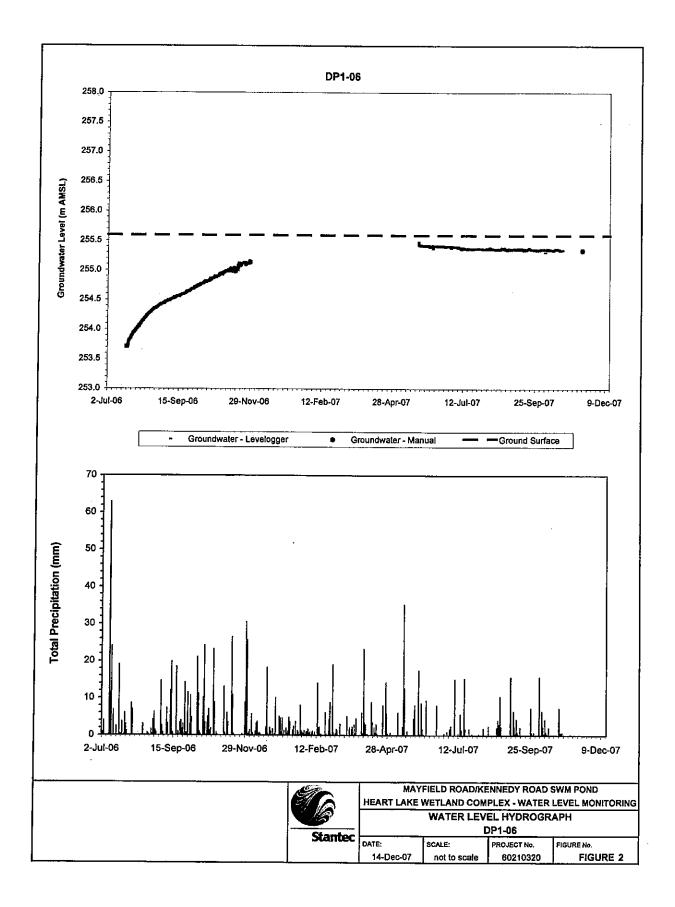
Notes



DP1-06 Wetland Piezometer (Stantec, 2006) Proposed Stormwater Management Pond



- 1. Aerial Photography: Toronto and Region Conservation Authority, 2000.
- Ground surface contours: Ontorio Base Mapping Digital Elevation Model, 2006.


Client/Project Region of Peel

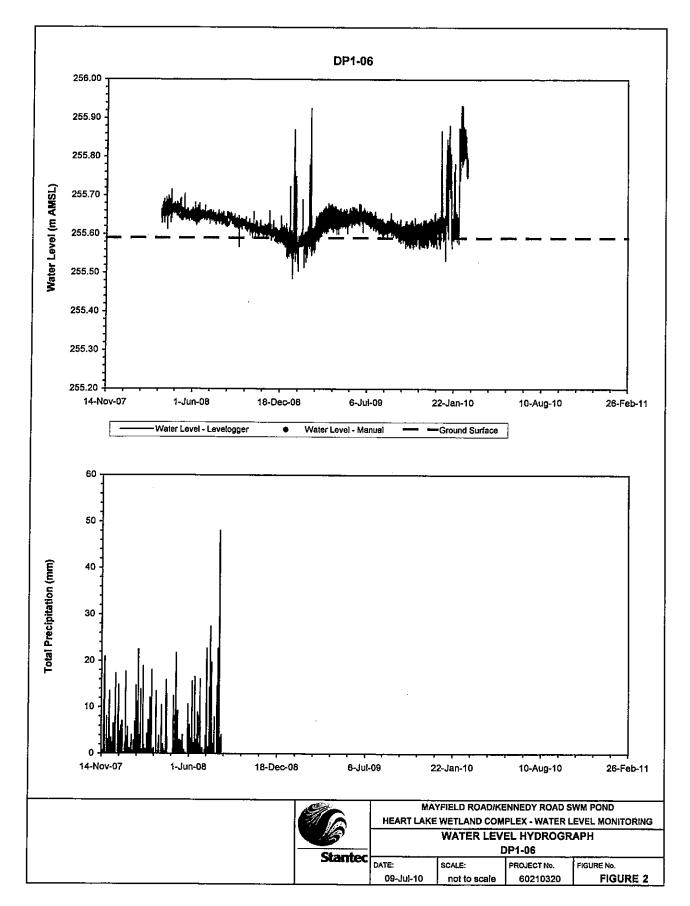
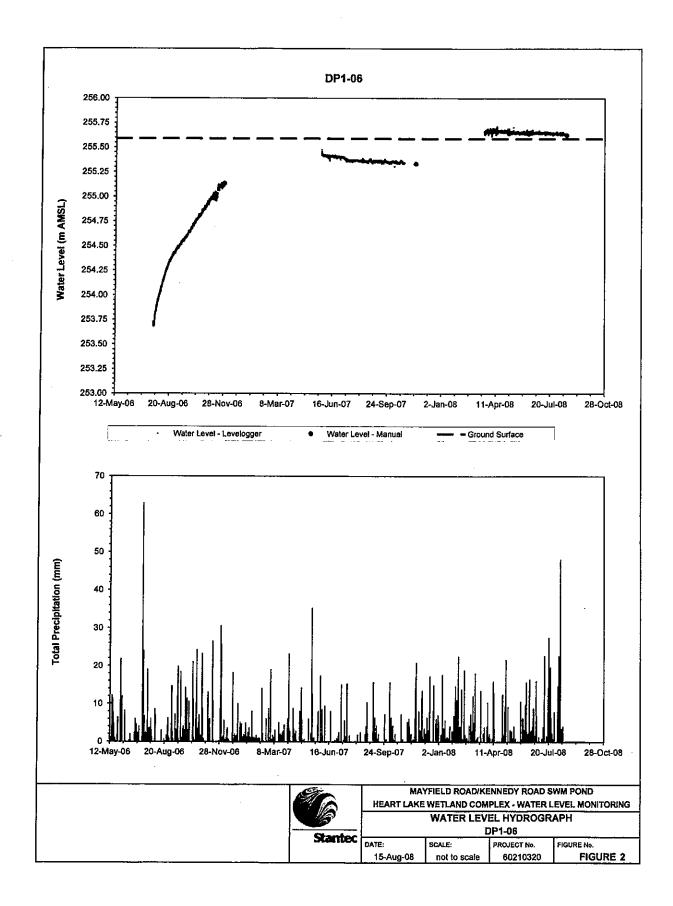
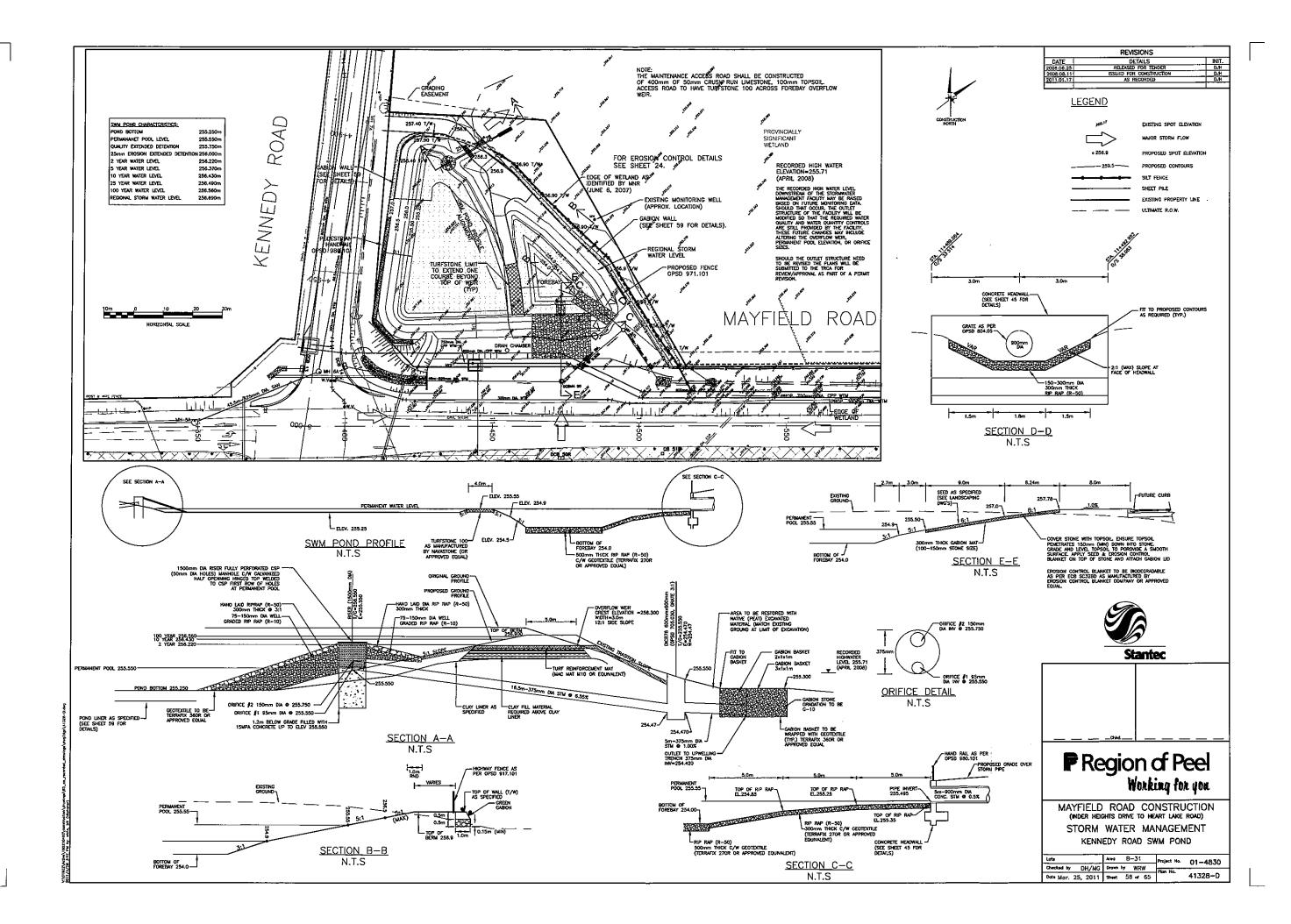

Kennedy and Mayfield Rood SWM Pond PSW Groundwater Level Monitoring

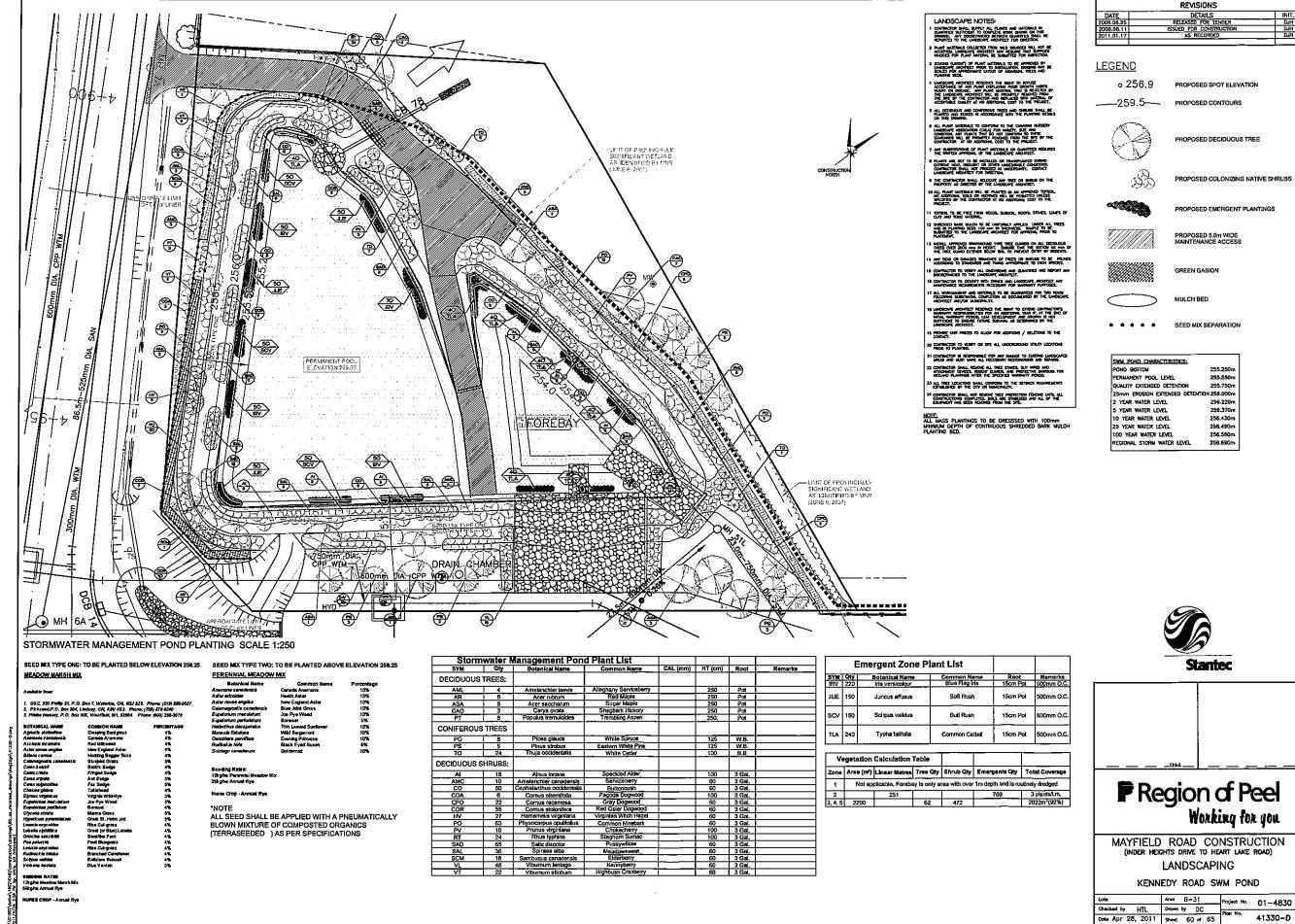
Figure No. · 1


Title

Site Plan

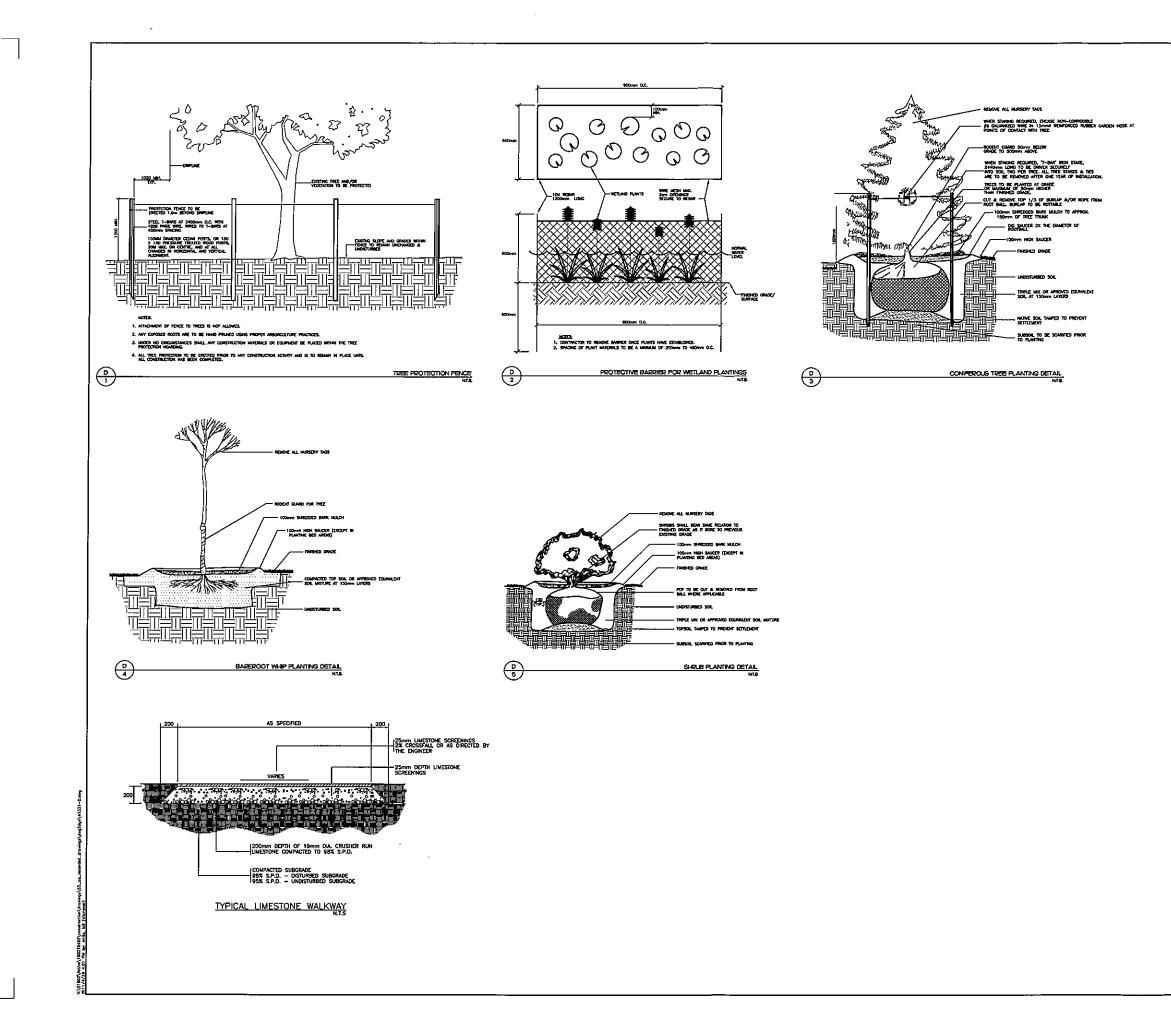






\...

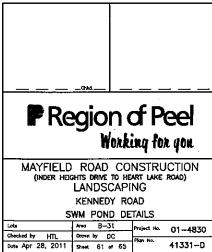


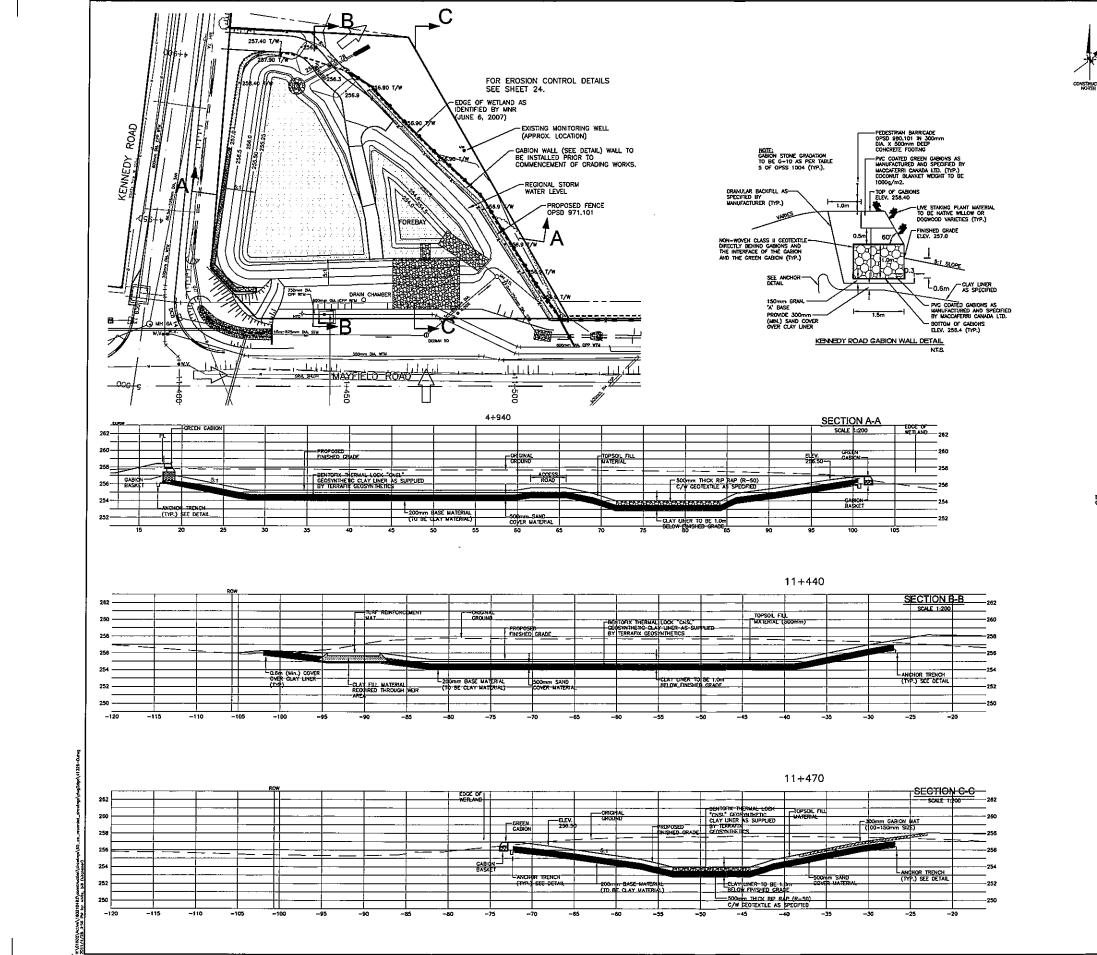
, .

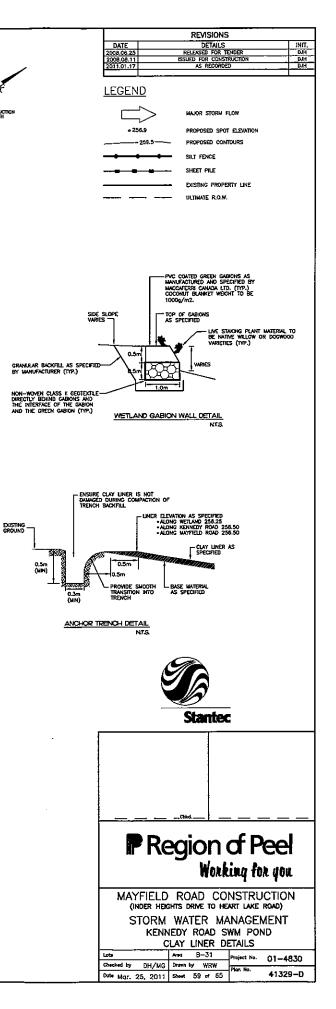


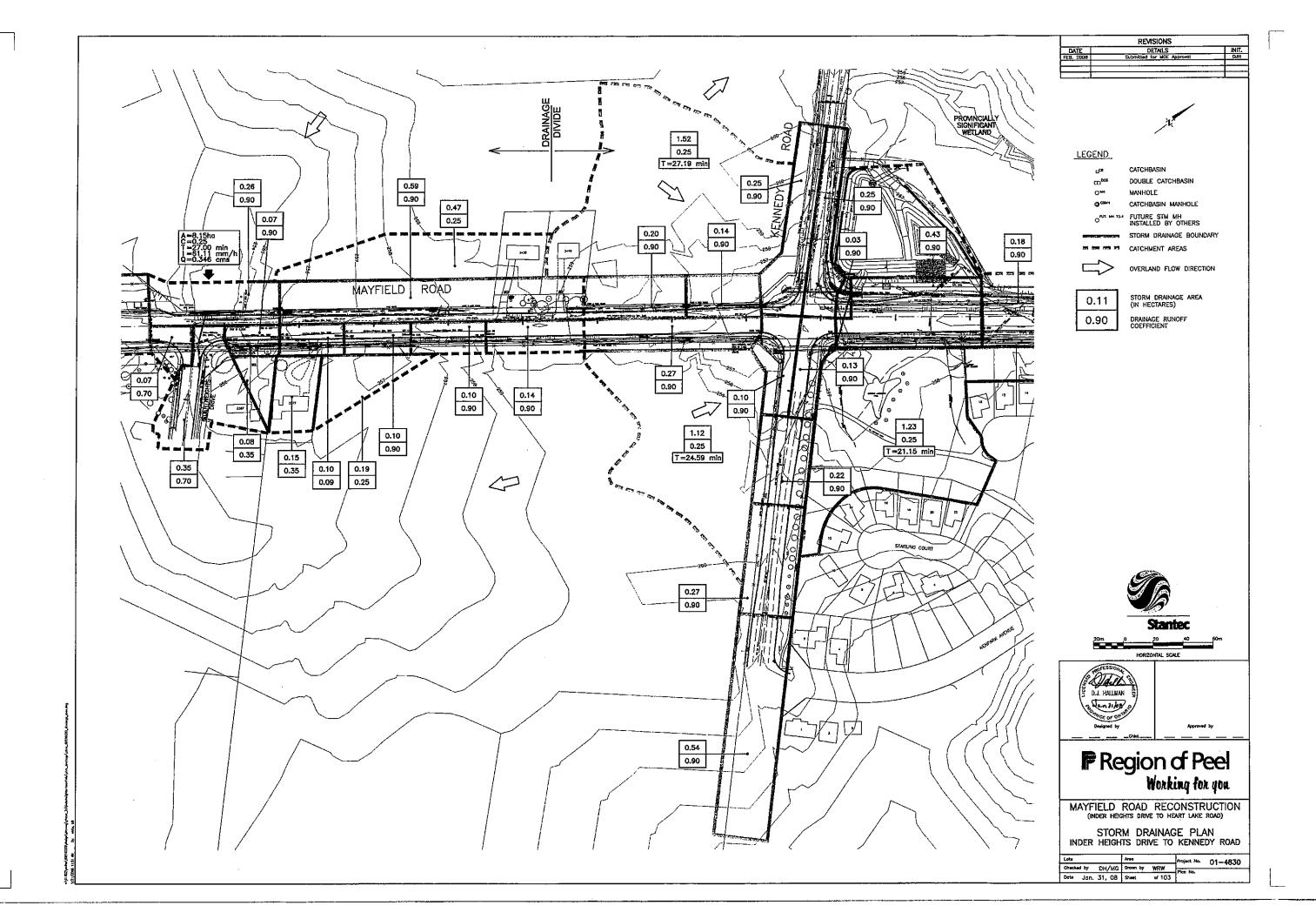

 $\left( \int \right)$ 

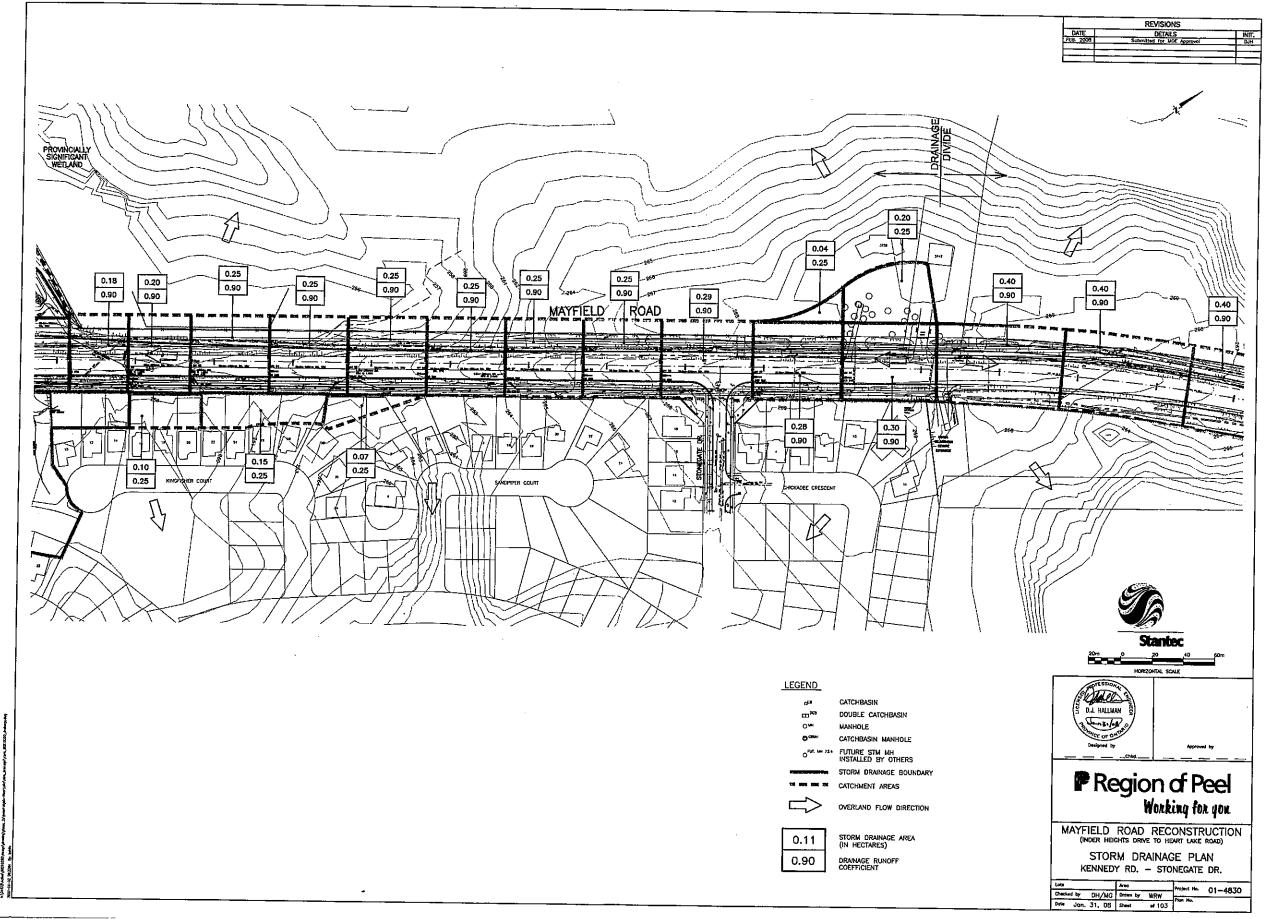



| NO MATTERALS IN<br>K SHOWN (M) PHE<br>Shumitis Shall be<br>The Meetings<br>Manages Will kot be<br>Queey that Shuffer                                                                         | DATE<br>2008.06.25<br>2008.08.11<br>2011.01.17 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| TED FOR INSPECTION.<br>D BE APPROVED BY<br>NOLAL TREES AND                                                                                                                                   | <u>LEGEND</u>                                  |
| IT TO REFUSE<br>CORE OF ANY HARTS<br>TO A CONTROL HARTS<br>INTU A CALONED FROM<br>CED WITH MATCHING OF<br>DATE TO THE MEMORY<br>ONE TO THE MEMORY<br>ONE TO THE MEMORY<br>OF EXPLANED OF DAS | o 256.9<br>259.5-                              |
| RE CALADARI MURSERY<br>TY, SUZ, AND<br>WORM TO THESE<br>THE PROJECT.<br>OR QUANTINES REQUIRES<br>& ANO-STEET.<br>ANOSTANED DURING                                                            | B                                              |
| SHARL CONTING.                                                                                                                                                                               | 6                                              |


| DETAILS<br>RELEASED FOR TENDER<br>ISSUED FOR CONSTRUCTION<br>AS RECORDED                                                                                                                                                                                                                                                                                       | INIT.<br>DJH<br>DJH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RELEASED FOR TENDER<br>ISSUED FOR CONSTRUCTION                                                                                                                                                                                                                                                                                                                 | СЛH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ISSUED FOR CONSTRUCTION                                                                                                                                                                                                                                                                                                                                        | DJH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AS RECORDED                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                | DUH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROPOSED SPOT ELEVATION                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROPOSED CONTOURS                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROPOSED DECIDUOUS TREE                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROPOSED COLONIZING NATIVE SI                                                                                                                                                                                                                                                                                                                                  | IRUBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PROPOSED EMERGENT PLANTING                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PROPOSED 5.0m WIDE<br>MAINTENANCE ACCESS                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GREEN GABION                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MULCH BED                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEED MIX SEPARATION                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TRISTICS:         255.250m           DVEL         255.350m           DETENDIX         255.750m           TORED         DETENDIX           DETENDIX         256.730m           L         256.320m           EL         256.430m           EL         256.430m           EL         256.430m           IER         256.550m           IER LEVEL         256.690m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                | PROPOSED CONTOURS PROPOSED DECIDUOUS TREE PROPOSED DECIDUOUS TREE PROPOSED COLONIZING NATIVE SI PROPOSED EMERGENT PLANTINGS PROPOSED 5.0m WIDE MAINTENANCE ACCESS GREEN GABION MULCH BED SEED MIX SEPARATION EMEL 255.250m L 255.250m L 255.250m L 255.250m L 255.250m L 255.350m L |





|            | REVISIONS               |       |
|------------|-------------------------|-------|
| DATE       | DETAILS                 | INIT. |
| 2008.05.25 | RELEASED FOR TENDER     | CVH   |
| 2008.08.11 | ISSUED FOR CONSTRUCTION | CUH   |
| 2011.01.17 | AS RECORDED             | , CJH |
|            |                         |       |
















Ministry of the Environment Ministère de l'Environnement

#### CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 5857-7DZPD3 Issue Date: June 6, 2008

Gary Kocialek, P.Eng. Manager, Transportation Roads Capital The Regional Municipality of Peel 11 Indell Lane City of Brampton, Ontario, L6T 3Y3

Site Location: Mayfield Road at Kennedy Road City of Brampton, Regional Municipality of Peel L6Z 4P9

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

the establishment of a stormwater management (SWM) facility to service the widening of Mayfield Road, east of Kennedy Road, for the collection, treatment and disposal of stormwater runoff from a catchment area of 10.59 hectares to provide Enhanced (Level 1) water quality protection and to attenuate post-development peak flows to pre-development levels, through a constructed wetland discharging to a Ditch Inlet Catch Basin (DICB) flowing to into the Heart Lake Wetland, then to the Etobicoke Creek with final discharge to Lake Ontario, for all storm events up to and including the 100-year AES storm, consisting of the following:

#### Stormwater Management System

- a constructed wetland to service the transportation expansion development located at the north east intersection of Kennedy Road and Mayfield Road, having a design permanent pool volume of 818 m<sup>3</sup> (first orifice elev.), an extended detention volume of 435 m<sup>3</sup> (second orifice elev.), a total storage volume of 3,150 m<sup>3</sup> for the Regional Storm event, with a proposed discharged peak flow rate from the pond of 1.431 m<sup>3</sup>/s for the Regional Storm; with approximate triangular dimensions 27.6 m base length and 43.5 m base width and 5H:1V side slopes; complete with:

- a forebay that represents 28% of the pond surface area, with approximate triangular dimensions 9.6 m base length and 10.6 m base width and 3H:1V side slopes, designed to achieve Level 1 quality objective removing grit and sediment accumulation up to pond bottom level;

- two (2) orifice outlet pipes, the first of 95 mm diameter at invert elevation of 255.55 m to provide necessary detention for water quality purposes; and the second of 150 mm diameter at invert elevation of 255.75 m to provide control for the erosion component of extended detention;

- one (1) emergency overflow weir of 3.0 m length, located in the north side of the pond at an invert elevation of 256.30 m to direct the major flow towards the existing municipal Ditch Inlet Catch Basin;

- including erosion/sedimentation control measures during construction, which consist of: silt fencing (or equivalent) on all site boundaries where there is potential for runoff to be discharged offsite; steep slopes (>3:1) with erosion blankets; berms/swales in appropriate areas to divert flows to temporary storage locations; swales constructed onsite with temporary rock check dams to help attenuate flows and encourage deposition of suspended sediment where appropriate; erect tree protecting fencing prior to grading or construction along the outside perimeter of drip lines of preserved trees; and temporary sediment ponds (or equivalent), all with appropriate monitoring of erosion and sediment control measures particularly after rain or snow melt events; and

- all other controls and appurtenances essential for the proper operation of the aforementioned Works .

all in accordance with the Application for Approval of Municipal and Private Sewage Works submitted by the Region of Peel dated February 12, 2008, SWM Design Brief, drawings issued on December 2007, and addendum documents prepared by Jayson Innes, P.Eng., of Stantec Consulting Ltd.

# For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"Certificate " means this entire certificate of approval document, issued in accordance with Section 53 of the Ontario Water Resources Act, and includes any schedules;

"Director " means any Ministry employee appointed by the Minister pursuant to section 5 of the Ontario Water Resources Act;

"District Manager " means the District Manager of the Halton-Peel District Office of the Ministry ;

"Ministry " means the Ontario Ministry of the Environment;

"Owner " means the Regional Municipality of Peel and includes its successors and assignees;

"Works " means the sewage works described in the Owner 's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

#### 1. <u>GENERAL PROVISIONS</u>

(1) Except as otherwise provided by these Conditions, the Owner shall design, build, install,

operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.

(2) Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.

(3) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.

#### 2. EXPIRY OF APPROVAL

The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

#### 3. CHANGE OF OWNER

The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within thirty (30) days of the change occurring:

(a) change of Owner;

(b) change of address of the Owner;

(c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*; and

(d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations</u> <u>Information Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*.

#### 4. OPERATION AND MAINTENANCE.

(1) The Owner shall inspect the Works at least once a year and, if necessary, clean and maintain the Works to prevent the excessive build-up of sediments, oil/grit and/or vegetation.

(2) The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at Owner's Head/Administration Office and at the site for inspection by the *Ministry*. The logbook shall include the following:

(a) the name of the Works ; and

(b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed.

#### 5. <u>RECORD KEEPING</u>

The *Owner* shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation and maintenance including temporary sediment and erosion control measures required by this *Certificate*.

#### 6. <u>GENERAL SAFETY</u>

The *Owner* shall make all necessary investigations, take all necessary steps and obtain all necessary approvals so as to ensure that the physical structure, sitting and operations of the stormwater works do not constitute a safety or health hazard to the general public.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.
- 3. Condition 3 is included to ensure that the Ministry records are kept accurate and current with respect to approved works and to ensure that subsequent owners of the works are made aware of the certificate and continue to operate the works in compliance with it.
- 4. Condition 4 is included to require that the *Works* be properly operated and maintained such that the environment is protected.
- 5. Condition 5 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the *Works*.
- 6. Condition 6 is imposed because it is not in the public interest for the *Director* to approve facilities which, by reason of potential health and safety hazards do not generally comply with legal standards or approval requirements falling outside the purview of the *Ministry*.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u> , R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

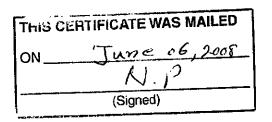
1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;

2. The grounds on which you intend to rely at the hearing in relation to eachportion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.


#### This Notice must be served upon:

The Secretary\* Environmental Review Tribunal 655 Bay Street, 15th Floor Toronto, Ontario <u>AND</u> M5G 11:5 The Director Section 53, Ontario Water Resources Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

\* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 6th day of June, 2008



ET/ c:

District Manager, MOE Halton-Peel Jayson Innes, P. Eng., Stantec Consulting Ltd.

Mansoor Mahmood, P.Eng. Director Section 53, Ontario Water Resources Act

|                                                                                                                                                                | FEB 1 9 2008                                                            | in Tractory of the E<br>Ministry of the E                                                                                                                                                                                           |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                | FEB 1 9 2008                                                            | lago (energia) en cantante en la constante de l<br>National de la constante de la c |                           |
|                                                                                                                                                                |                                                                         | Ministry of the E                                                                                                                                                                                                                   |                           |
|                                                                                                                                                                |                                                                         | Ministère de l'Env                                                                                                                                                                                                                  |                           |
|                                                                                                                                                                | MUNIC                                                                   | CERTIFICATE OF A                                                                                                                                                                                                                    | GE WORKS                  |
| anderstands, name appendies when an ended the test.<br>Subjects and                                                                                            | ा शामितमा स्टब्स् अन्यु अन्यु अन्यु<br>प्रारम्भय सन्य १९४१ मिन (जुल्ली) | Han Ball Stan NUMBER 85                                                                                                                                                                                                             | 28-7BRKWY<br>ary 13, 2008 |
| The Regional Municipality of Peel                                                                                                                              |                                                                         | and for the second s                                                                                                                     | <b>3</b> 5-5              |
| 11 Indell Lane                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                   | ·                                                                                                                                                                                                                                   |                           |
| Brampton, Ontario                                                                                                                                              |                                                                         |                                                                                                                                                                                                                                     |                           |
| L6T 3Y3                                                                                                                                                        | THE MERINE PARTY                                                        | 品品。" 的复数转移 (3)                                                                                                                                                                                                                      | i di 12.0                 |
| te Location: Mayfield Road, Kennedy Road and<br>Brampton City, Regional Municipa<br>You have applied in accordance with Section                                | ality of Peel                                                           | 2 <u>en 1334</u> (g                                                                                                                                                                                                                 |                           |
| Sectors S. Constant Particular Sciences                                                                                                                        | ،                                                                       |                                                                                                                                                                                                                                     | ·-····                    |
| orm sewers to be constructed in the City of Bramp<br>ake Road and Kennedy Road;                                                                                | and the regard                                                          | dull 4014, agental ste                                                                                                                                                                                                              | 950                       |
| in accordance with the application from the Regi                                                                                                               |                                                                         | Statuted Rebriery 5, 200                                                                                                                                                                                                            |                           |
| al plans and specifications prepared by Stantec C                                                                                                              |                                                                         |                                                                                                                                                                                                                                     |                           |
|                                                                                                                                                                | .tu 1                                                                   | guilluoun Capitanei Alenei                                                                                                                                                                                                          |                           |
|                                                                                                                                                                |                                                                         | unautik under Hinnender in<br>A B BOO 1000 Charles in                                                                                                                                                                               |                           |
| In accordance with Section 100 of the <u>Ontar</u><br>nended, you may by written notice served upon me<br>ter receipt of this Notice, require a hearing by the | e and the Environment                                                   | al Review Tribunal within                                                                                                                                                                                                           | 15 days                   |
| R.S.O. 1990, Chapter 0.40, provides that the Notic                                                                                                             |                                                                         |                                                                                                                                                                                                                                     | <u>ources ACI</u>         |
| The portions of the approval or each term or condition                                                                                                         | in the approval in respect of                                           | of which the hearing is required                                                                                                                                                                                                    | . and:                    |

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

| This Notice must be served upon:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| The Secretary Annual Control of C |                                                   |
| The above noted sewage works are approved und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er Section 53 of the Ontario Water Resources Act. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| DATED AT TORONTO this 13th day of February, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |

| and have 🚑 a the Qual Mark and a second have the             |
|--------------------------------------------------------------|
| 1995 Anne Logar Death and and an Angelt<br>16 Matter and 200 |
| Zafar Bhatti, P.Eng.                                         |
| Section 53, Ontario Water Resources Act                      |
|                                                              |

- NE/Data's bisfula (A at a condition of the analysis) and an application of the condition of the conditis of the condition of the condition of the condition of the
- W. Won, City of Brampton is deally on the period of the back meaning a network of the back as the analysis.
   W. Won, City of Brampton
   M. Goorts, Stantec Consulting Ltd.

Dave Hallman, P. Eng, Stantec Consulting Ltd. 🗸

an ann anna an an Calintan an Colann Caline Caling an Caling an Caling Caling Caling an amailteac an mar 14 an 14 an 14 anna 13 searth an an an An Caling Caling an Caling Caling Caling Caling Anna searth an Caling Caling Caling Caling An Sala an An Caling Caling Caling Caling Caling Salar an Caling An Caling An Caling Cal

(a) and as a figure of a second se

We have a set of the state of the

and the table of the second 
addaese alb from the spectrum.

- $(2, 1, 1)^{-1} = (4, 8, 8, 4, 1, 1, 1, 1, 1, 1)^{-1}$
- u ter breu nordatte la Prosta i en d
  - the first of the second s
- $(1 + 1) = \frac{1}{2} \left[ 

and strength and the state of the second state of the state of the

## SUPPLEMENTARY **GEOTECHNICAL INVESTIGATION** MAYFIELD ROAD WIDENING HURONTARIO STREET TO HEART LAKE ROAD **REGION OF PEEL, ONTARIO**

٠.

Report to

## Stantec Consulting Ltd.

Steven Sather, P. Eng. **Review Principal** 

Thurber Engineering Ltd. Suite 103, 2010 Winston Park Drive Oakville, Ontario L6H 5R7 Phone: (905) 829-8666 (905) 829-1166

Date: July 22, 2005 File: 17-308-292

Fax:

6.10

-

÷

111

I

E1 - 163

TRAFT

- 1111-1

1 . . . .

P. K. Chatterji, P. Eng. **Review Principal** PROFESSION S. PANG WINCE OF ON Sydney Pang, P. Eng. **Project Engineer** 

## **TABLE OF CONTENTS**

| SEC  | TION                                                            | PAGE      |
|------|-----------------------------------------------------------------|-----------|
| 1 IN | NTRODUCTION                                                     | 1         |
| 2 S  | SITE INVESTIGATION                                              | 2         |
| 3 SI | SUBSURFACE CONDITIONS                                           | 5         |
| 3.1  | Topsoil Depths                                                  | 5         |
| 3.2  | Peat/Organic/Soft Soil Deposits                                 | 5         |
| 3.3  | Storm Sewer Crossing at Stn 10+250 (BH 04-20C and 04-21)        | 7         |
| 3.4  | Storm Water Pond at Kennedy/Mayfield                            | 8         |
|      | (BH 105-05, 106-05, 05-3, 6, 7 and 8)                           | 8         |
| 3.5  | Storm Water Pond at Mayfield/Heart Lake Road                    | 10        |
|      | (BH 101-05, 102-05, 103-05, 104-05, and 05-16)                  | 10        |
| 3.6  | South Side of Culvert Crossing near Stn 12+350                  | 11        |
|      | (BH 05-10 and 05-11)                                            | 11        |
| 4 GE | EOTECHNICAL EVALUATION AND RECOMMENDATIONS                      | 12        |
| 4.1  | Topsoil Depths                                                  | 12        |
| 4.2  | Peat/Soft Soil Areas                                            | 12        |
| 4.2  | 2.1 Mayfield Road and Kennedy Road                              | 12        |
| 4.2  | 2.2 Mayfield Road / Heart Lake Road                             | 14        |
| 4.2  | 2.3 Culvert Crossing at Stn 12 + 350                            | 15        |
| 4.2  | 2.4 Pavement Design in Wetland / Swampy Areas                   | 15        |
| 4.3  | Storm Sewer Crossing at Stn 10+250                              | 16        |
| 4.4  | Storm Water Management Facility (Wetland 1 - Kennedy and Mayfie | eld) 18   |
| 4.5  | Storm Water Management Facility (Wetland 3 – Heart Lake and Mag | yfield)21 |

## **APPENDICES**

| Appendix A | Records of Boreholes, Table A1       |
|------------|--------------------------------------|
| Appendix B | Geotechnical Laboratory Test Results |
| Appendix C | Selected Stability Analysis Results  |

| 3 - 1<br>2 - 1<br>1 |
|---------------------|
| (                   |
| Ē                   |
|                     |
| а<br>1<br>1         |
|                     |
|                     |
| ja<br>Altaria       |
| r<br>e              |
| 5                   |
| P                   |
|                     |
| Land Let            |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |

## 1 INTRODUCTION

This report presents the results of a supplementary geotechnical investigation carried out by Thurber Engineering Ltd. (Thurber) at the site of the proposed widening of Mayfield Road between Hurontario Street and Heart Lake Road. This work is part of the Region of Peel Mayfield Road Reconstruction project. The supplementary investigation includes the following tasks:

- Investigation of topsoil depths in ditches and adjacent open fields along the Mayfield Road corridor from west of Hurontario Street to Valley View Drive and from Inder Heights Drive to east of Heart Lake Road.
- Geotechnical investigation/recommendations for the two storm water management (SWM) ponds proposed at Mayfield Road/Kennedy Road and at Mayfield Road/Heart Lake Road.
- Geotechnical investigation/recommendations for the proposed storm sewer crossing of Mayfield Road at Station 10+250.
- Peat investigation and probing at :
  - a) southeast and southwest corners of Mayfield and Kennedy,
  - b) south side of Mayfield Road at existing culvert crossing near Station 12+350 and
  - c) SWM ponds and wetland areas 1(Kennedy/Mayfield), 2 (Stn. 12+350) and 3 (Mayfield/Heart Lake).

The above scope of work has been authorized by an electronic mail message from Stantec Consulting Ltd. (Stantec) to Thurber, dated March 16, 2005. This scope of work has been reduced from the original scope detailed on a request for proposal letter from Stantec dated October 28, 2004.



Page 2

In addition to the above, monitoring wells were installed in both the SWM pond areas for hydrogeological study as authorized by a Stantec fax to Thurber, entitled "Mayfield Road Improvements, Additional TRCA Work" and dated May 6, 2005.

An earlier geotechnical investigation was conducted for the proposed widening of Mayfield Road which included investigation for widening of the Snelgrove Bridge over Etobicoke Creek. That investigation was reported in an earlier Thurber report dated July 24, 2003. This supplementary report should be read in conjunction with the previous July 2003 report.

The contents of this report are subject to the Statement of General Conditions attached at the end of the text. The reader's attention is specifically drawn to these conditions as it is considered essential that they be followed for the proper use and interpretation of this report.

### 2 SITE INVESTIGATION

The supplementary site investigation was carried out between May 16 and 20, 2005. The investigation consisted of several components:

- Hand excavated pits for assessing depth of topsoil along the corridor.
- Probing for peat/organic soil thickness at selected locations.
- Borehole investigation program at the two SWM ponds, the storm sewer crossing of Mayfield Road and at selected wetland areas. This program included installation of 50 mm diameter monitoring wells at the two SWM ponds for hydrogeology study by Stantec.

The topsoil depth investigation involved excavation of pits in ditches and adjacent open fields on both sides of Mayfield Road from Hurontario Street to Valley View Drive and from Inder Heights Drive to east of Heart Lake Road.



(LI III)

Peat/organic soil thickness was probed at the following locations:

- SE and SW corners of Mayfield Road and Kennedy Road. This area was not accessible to a drill rig due to ponding water and sloping ground, and was probed manually using a steel rod.
- Two SWM ponds at wetlands 1 and 3, and south side of Mayfield Road at existing culvert crossing at Stn. 12+350 within wetland 2.

The depth of probing for peat and soft soils ranged from 0.3 m to 6 m.

The borehole numbers, locations and piezometer details are summarized in the table below.

| LCERIO .                                               | Borcholo<br>Numbere                          | MaximumDepth<br>belov/Cround<br>subiceo<br>(m) | , Plezometor/<br>Monitoring Welli                   |
|--------------------------------------------------------|----------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| Storm Sewer<br>Crossing at<br>Stn. 10+250              | 04-20C, 04-21                                | 8.2, 9.8                                       | Piezometer<br>in BH 04-20C                          |
| SWM Pond at<br>Mayfield/Kennedy<br>(wetland 1)         | 105-05, 106-05,<br>05-3, 05-6, 05-7,<br>05-8 | 11.3, 11.3,<br>8.2, 3.7, 3.7,<br>3.7           | Wells in BH 105-05<br>and 106-05                    |
| SWM pond at<br>Mayfield/Heart Lake<br>Road (wetland 3) | 101-05, 102-05,<br>103-05, 104-05,<br>05-16  | 8.2, 9.8,<br>9.8, 9.8,<br>6.7                  | Wells in BH 101-05,<br>102-05, 103-05 and<br>104-05 |
| South side of existing<br>culvert, Stn. 12+350         | 05-10, 05-11                                 | 5.2, 5.2                                       | -                                                   |



The borehole locations and elevations were surveyed by Stantec upon completion of drilling. The boreholes where monitoring wells were installed for hydrogeological studies are numbered 101-05 to 101-06 as requested by Stantec. Drawing Nos. 17-308-292-1 to 4 show the approximate locations of the boreholes.

All borehole locations were cleared of underground utilities prior to drilling. Permission to enter the SWM pond sites were provided to Thurber by Stantec.

Track and truck mounted auger drill rigs equipped with continuous flight solid and hollow stem augers were used to advance the boreholes. Each borehole was logged and soil samples were obtained at selected intervals in conjunction with Standard Penetration Tests (SPT). Water level readings were taken on completion of drilling. The piezometers/wells were subsequently monitored on May 26 and 30, 2005. All boreholes were grouted on completion and the monitoring wells were decommissioned on May 30, 2005.

The drilling equipment was supplied and operated by DBW Drilling Ltd of Toronto, Ontario. The drilling and sampling operations were supervised on a full time basis by a member of Thurber's technical staff. Topsoil thicknesses were measured by manual excavation of shallow pits. Peat and soft/loose soil probing was carried out by manually pushing a 12 mm (0.5 in.) diameter steel rod until high resistance to further rod advance was encountered.

All samples were brought back to Thurber's laboratory for visual classification and water content determination. Selected samples were also subjected to gradation analysis.

The field drilling, sampling and laboratory testing data are summarized in the Record of Borehole sheets enclosed in Appendix A. The geotechnical laboratory test results are included in Appendix B.



## 3 SUBSURFACE CONDITIONS

Details of the subsurface conditions encountered at each borehole are presented in the Record of Borehole Sheets attached in Appendix A. A general description and summary of the stratigraphy is given in the following paragraphs. The detailed information provided in the records of boreholes takes precedence to this general description of site conditions. Subsurface conditions will vary between and beyond borehole locations.

## 3.1 Topsoil Depths

Topsoil depths noted along the Mayfield Road corridor from west of Hurontario Street to Valley View Drive and from Inder Heights Drive to east of Heart Lake Road are tabulated in Table A1 in Appendix A. The test pit data indicates that the topsoil depths range from 0 to 600 mm. The data also shows that at an offset of 4 to 15 m from the centreline of the proposed widened road the topsoil thickness generally ranges from 0 to 100 mm. However thicker topsoil ranging from 150 to 600 mm was encountered at greater offsets (15 to 27 m) from the proposed centreline.

It should be recognized that thicker deposits of topsoil may be present at locations between and beyond the hand pit locations particularly where old streambed/drainage channels, farm fields and poorly drained areas exist.

## 3.2 Peat/Organic/Very Soft Soil Deposits

The probe results of the peat/organic/very soft soil deposit in swampy areas are summarized below. It should be noted that the depths reported below are the depths to which a 12 mm (0.5 in.) diameter probe rod could be pushed by moderate manual effort. Since no samples were retrieved, the probe depth is an initial estimation of the approximate depth of peat, organic and very soft/loose soils.



## Stantec Consulting Ltd.

51 1

-

1 S I.

. . .

10

1:11

| -                                                                                                                                                | ,                                                                          |                                                    |                                                                                                                    | Fage o                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Location:of<br>Reat/Organic/<br>Son Soil/Area                                                                                                    | Approximate<br>Rian Area of<br>Peat/Organic/<br>AVery Soft Soil<br>Deposit | Probe<br>Number                                    | Approximate<br>Depthors<br>Reat/Organics/<br>Soft Solis at<br>Locations Probed                                     | Approximate<br>Depth of Water,<br>Above<br>Peat/Organics at<br>ALocations<br>Probed                            |
| SW Corner of<br>Mayfield/Kennedy                                                                                                                 | 50 m X 4 m                                                                 | P1<br>P2                                           | P1 = 3.0 m<br>P2 = 3.7 m                                                                                           | P1 = $0.2 \text{ m}$<br>P2 = $0 \text{ m}$<br>(water at surface)                                               |
| SE Corner of<br>Mayfield/Kennedy                                                                                                                 | 30 m X 25 m with<br>additional<br>15 m X 4 m in<br>ditch                   | P3<br>P4                                           | P3 = 3.7 m<br>P4 = 2.5 m                                                                                           | P3 = 0.5 m<br>P4 = 0.5 m                                                                                       |
| NW Corner of<br>Mayfield/Heart<br>Lake                                                                                                           | 70 m X 4 m                                                                 | P5<br>P6<br>P7                                     | P5 = 0.6 m<br>P6 = 2.5 m<br>P7 = 2.1 m                                                                             | P5 = 0 m<br>P6 = 0 m<br>P7 = 0 m<br>(water at surface)                                                         |
| SW Corner of<br>Mayfield/Heart<br>Lake<br>(SWM_Pond 2)                                                                                           | 65 m X 30 m                                                                | P8<br>P9<br>P10<br>P11<br>P12<br>P13<br>P14<br>P15 | P8 = 1.4 m<br>P9 = 2.7 m<br>P10 = 2.5 m<br>P11 = 4.6 m<br>P12 = 1.7 m<br>P13 = 4.6 m<br>P14 = 2.7 m<br>P15 = 1.1 m | P8 = 0.15 m $P9 = 0.6 m$ $P10 = 0.6 m$ $P11 = 0.3 m$ $P12 = 0.15 m$ $P13 = 0.3 m$ $P14 = 0.3 m$ $P15 = 0.15 m$ |
| NE Corner of<br>Mayfield/Kennedy<br>(SWM Pond 1)<br>Ditch south of<br>SWM Pond 1                                                                 | 100 m X 3 m                                                                | P16<br>P17<br>P18                                  | P16 = 1.5 m<br>P17 = 1.2 m<br>P18 = 0.3 m                                                                          | P16 = 0 m<br>P17 = 0 m<br>P18 = 0 m<br>(water at surface)                                                      |
| NE Corner of<br>Mayfield/Kennedy<br>(SWM Pond 1)<br>Ditch east of<br>SWM Pond 1<br>along south edge<br>of Provincially<br>Significant<br>Wetland | 200 m long                                                                 | P19<br>P20<br>P25<br>P26<br>P27                    | P19 = 0.6 m<br>P20 = 6.0 m<br>P25 = 3.0 m<br>P26 = 1.2 m<br>P27 = 4.3 m                                            | P19 = 0 m<br>(water at surface)<br>P20 = $0.15$ m<br>P25 = $0.3$ m<br>P26 = $0.3$ m<br>P27 = $0.3$ m           |
| NE Corner of<br>Mayfield/Kennedy<br>(SWM Pond 1)<br>Edge of<br>Provincially<br>Significant<br>Wetland on NE<br>side of SWM<br>Pond 1             | 130 m long                                                                 | P21<br>P22<br>P23<br>P24                           | P21 = 3.2 m<br>P22 = 1.8 m<br>P23 = 3.4 m<br>P24 = 4.0 m                                                           | P21 = 0.15 m<br>P22 = 0.3 m<br>P23 = 0.3 m<br>P24 = 0.3 m                                                      |



1111

1.1.1

1

It should be recognized that greater thicknesses of peat, organics and very soft/loose soils may be encountered during excavation than that determined by probing.

## 3.3 Storm Sewer Crossing at Stn 10+250 (BH 04-20C and 04-21)

BH 04-20C was drilled near the north toe of the existing Mayfield Road embankment, while BH 04-21 was drilled through the south shoulder of the existing road near the proposed crossing location.

BH 04-20C indicates a stratigraphy of 170 mm of topsoil underlain by about 1.4 m of firm to stiff clayey silt (SPT blow count of 6 to 9). A deposit of dense to very dense (SPT blow count of 48 to over 50) silt and sand with occasional cobbles and boulders and 0.3 m thick wet sand layers was encountered below the upper clayey silt. Below about 5.8 m depth, hard (SPT blow counts of 84 and 48) clayey silt till with occasional sand layers was encountered to the end of the borehole.

Figure B1 shows grain size distribution curves of samples of this clayey silt till including one sample obtained from Borehole 05-20C.

The water content of the surficial clayey silt layer ranged from 20 to 30% and in the underlying silt and sand layer, the water content ranged from 9 to 12%. The water content of the lower till ranged from 9 to 19%.

BH 04-21 drilled through the road shoulder encountered 125 mm of asphalt over 640 mm of sand and gravel (pavement structure). This was underlain by about 3 m of road embankment fill consisting primarily of sandy to clayey silt with a 0.3 m layer of dense sand and gravel fill. Below the road embankment, a 1.2 m layer of dense to compact gravelly sand was noted which was



underlain by a sequence of stiff to dense clayey silt to sandy silt till to a depth of 8.7 m. Below 8.7 m, a layer of dense silty sand was encountered to the end of the borehole.

Although not directly encountered in the boreholes, the glacial tills inherently contain cobbies and boulders.

Figures B3 and B4 show the grain size distribution curves of samples of the sandy silt and silty sand, respectively.

The water content in the road fill ranged from 2 to 16% and in the native soils from 9 to 29%.

The water level in the piezometer installed in BH 04-20C indicated a water level at about 6 m depth (Elev. 243.5).

## 3.4 Storm Water Pond at Kennedy/Mayfield (BH 105-05, 106-05, 05-3, 6, 7 and 8)

BH 105-05, 106-05 and 05-3 were drilled in the storm pond area and BH 05-6, 05-7 and 05-8 were drilled along the proposed access road on the east side of the pond.

About 1 m of topsoil and peat was encountered in BH 05-3 drilled near the southwest corner of the proposed pond (see Dwg. 17-308-292-2). Peat ranging in thickness from 0.5 to 1.1 m was also encountered in BH 05-6, 05-7 and 05-8 drilled along the east side of the pond. The peat was mixed with silt and clay and was noted to be very soft and loose. Standing water was encountered in some areas. The water content of the peat/organic soils ranged from 25 to 75%.



8 - 2 - 2 - 2 - 2

101114

in the state

C. Road 1 of

No peat was encountered in BH 105-05 and 06; however 150 mm of topsoil was encountered in these two boreholes.

For the boreholes drilled in the pond area (105-05 and 106-05), the stratigraphy below the topsoil and peat consisted of a sequence of clayey silt till overlying sand to sandy silt. These native deposits are firm and compact near the surface and becomes dense or stiff, and occasionally very dense or hard, below a depth of about 2 m. The water content of the deposits ranges from a low of 4% to a high of about 20%.

The gradation of two samples of the clayey silt till from BH 105-05 and 106-05 are shown on Figure B2. The gradation of samples of the sandy silt, silty sand and sand are shown on Figures B3, B4 and B5.

In BH 05-6, 05-7 and 05-8 drilled along the east access road, the peat is underlain by a deposit of firm to very stiff grey clayey silt till. The water content in the samples ranges from 10 to 19%.

Although not directly encountered in the boreholes, the glacial tills inherently contain cobbles and boulders.

The peat and standing water indicate shallow groundwater at the surface.

The monitoring wells installed at about 11 m depths in BH 105-05 and 105-06 indicated a water level of 9.4 to 9.5 m below ground surface (Elev. 248.2). The water level is BH 05-6, 05-7 and 05-8 were noted to be at the surface to 2.4 m below surface at the completion of drilling. These observations are very short term and water table may rise with time or fluctuate with seasonal condition.



l home in l

+

( ) 言

14 15 19

Ĕ

### 3.5 Storm Water Pond at Mayfield/Heart Lake Road (BH 101-05, 102-05, 103-05, 104-05, and 05-16)

The boreholes drilled within the swampy area at this storm pond location indicate 530 mm to 840 mm of loose topsoil/organics in BH 101-05 and 05-16. The other three boreholes located south of the swampy area (102-05, 103-05 and 104-05) encountered thinner topsoil of 0.15 m to 0.3 m in thickness. The water content of samples from the topsoil/organics layer range from 28 to 75%.

Underlying the topsoil, the soils consist of a sequence of silty clay to clayey silt till. Layers of non-plastic silt and sandy silt were encountered at 7.2m depth in BH 102-05 and at 7.6 m depth in BH 104-05. The till layer has a stiff to hard consistency. Grinding of augers was noted at varying depths in several boreholes (BH 102-05, 103-05 and 104-05) indicating the presence of gravel, cobbles or boulders.

Although not directly encountered in the boreholes, the glacial tills inherently contain cobbles and boulders.

Figure B1 shows the grain size distribution curves of selected samples of this till.

The water content of the silty clay to clayey silt till ranges from 12 to 18%.

Monitoring wells installed in selected boreholes (101-05, 102-05, 103-05 and 104-05) indicate ground water level at 5.5 to 7.5 m below ground surface (approximate elev. ranging from 252.4 to 256.1 m). These are short term observations and the water level may fluctuate with time and seasonal conditions.



5

÷

t.

л Ц

1) D

1991

11

1111

# 3.6 South Side of Culvert Crossing near Stn 12+350 (BH 05-10 and 05-11)

BH 05-10 encountered 80 mm of topsoil which was underlain by firm to stiff clayey silt till.

BH 05-11 on the east side encountered 130 mm of topsoil overlying about 1.4 m of soft clayey silt fill. Below the fill, soft peat containing wood fragments was encountered to 3.35 m depth. The water content of the peat ranged from 59 to 150%. Very loose to compact wet sandy silt was encountered below the peat.

The groundwater level in BH 05-11 was noted at 2.4 m depth on completion of drilling.



Ĵ.

51.14 L

Ē

- Bullins

**HILLER** 

## 4 GEOTECHNICAL EVALUATION AND RECOMMENDATIONS

## 4.1 Topsoil Depths

Topsoil depths noted along the Mayfield Road corridor from west of Hurontario Street to Valley View Drive and from Inder Heights Drive to east of Heart Lake Road are presented in Table A1 in Appendix A. It should be noted that thicker deposits of topsoil may be present at locations between and beyond the locations explored, along old streambed/drainage channels, in farm fields and in poorly drained areas.

## 4.2 Peat/Soft Soil Areas

## 4.2.1 Mayfield Road and Kennedy Road

The extent of peat and very soft/loose soils was assessed using hand probing methods. The boundaries and inferred depths of peat/organics are therefore approximate. Drawing No. 17-308-292-2 shows the approximate locations of the hand probes near the above intersection. The depths at which resistance was encountered are tabulated in Section 3.2. The probing data indicates the following:

| Location               | Approximate Depth of Peat/Very Soft Soils<br>at Locations Probed |
|------------------------|------------------------------------------------------------------|
| SW Corner              | 3 to 3.7 m                                                       |
| SE Corner              | 2.5 to 3.7 m                                                     |
| N of Mayfield Rd       | 0.3 to 1.5 m                                                     |
| (approx. Stn 11+400 to | 11+ 510)                                                         |
| N of Mayfield Rd       | 0.6 to 6 m                                                       |
| (approx. Stn 11+530 to | 11+ 650)                                                         |

It is understood that the existing Mayfield Road pavement near the SE and SW corners has suffered settlement in the past requiring pavement padding which is consistent with peat/soft soils noted at these locations.



1.1.51

Anecdotal information also indicates that the light standard near Probe P4 had to be founded at a deeper depth on firmer soils.

For widening of Mayfield Road, widened embankments will need to be constructed in the swampy areas in the SE and SW corners.

#### Subexcavation

All standing water should be drained from these swampy areas and all peat/organics/soft soils should be removed from the footprint of the new embankment. The extent and depth of subexcavation of peat/soft soil should be confirmed in the field by visual examination. Care should be exercised not to undermine or destabilize the existing Mayfield Road embankment while subexcavating peat and soft soils adjacent to the toe of the embankment. Shoring (roadway protection) may be required especially if the existing embankment is resting on peat. Attempts should be made to maintain a reasonably dry excavation. The subgrade after removal of peat/soft soils should be inspected by geotechnical personnel. Once the subgrade is inspected and approved, embankment fill may then be placed. Depending on the conditions of the final subgrade, use of geotextile or geogrid (to be placed immediately below base level of embankment) may be warranted and the contract should allow for this possibility.

#### Embankment

 Rock fill (crushed limestone of rip-rap size, but not shale) should be used to backfill the swamp subexcavation. Once the fill is above the swamp level, the upper surface should be chinked, and a geotextile should be used to cover the rock fill after which a 150 mm layer of Granular B Type II should be placed on the



geotextile. The Granular B and the geotextile are required to minimize loss of earth into the underlying rock fill.

- Inorganic earth embankment fill may then be placed in 150 mm lifts above the 150 mm granular layer to construct the remainder of the road embankment for widening. Each lift should be compacted to 98% of SPMDD at +/- 2% of optimum moisture content.
- Where new fill is being placed against old embankment fill, all topsoil and organics should be stripped from the old embankment slope and the old fill slope should be benched as per OPSD 208.010 prior to receiving new fill. All fill slopes should be provided with erosion protection.

## 4.2.2 Mayfield Road / Heart Lake Road

Drawing No. 17-308-292-4 shows the very approximate areal extent of the peat/soft soil deposits at this intersection. The probing data indicates the following approximate depth of subexcavation:

|           | Approximate Depth of Peat/Very Soft Soils |  |
|-----------|-------------------------------------------|--|
| Location  | at Locations Probed                       |  |
| NW Corner | 0.6 to 2.5 m                              |  |
| SW Corner | 1.1 to 4.6 m                              |  |

At the southwest quadrant, the thickness of peat/soft soil deposits in the area of road embankment widening ranges from 1.1 m to 4.6 m. It is recommended that all peat and soft soils under the embankment widening in this area be removed. Geotechnical/construction recommendations provided for dealing with the peat/soft soils at the



Stantec Consulting Ltd.

Mayfield/Kennedy intersection in the previous section are applicable at this intersection as well.

In areas with deep peat/soft soil deposits, it is advisable to subexcavate all such soft deposits to avoid future uneven settlement of the roadway. Field inspection should be carried out during subexcavation to confirm that firm subgrade has been reached prior to placing any fill. Depending on the condition of the subgrade, use of geotextile and geogrid (to be placed immediately below base level of embankment) may be warranted and the contract should allow for this possibility.

#### 4.2.3 Culvert Crossing at Stn 12 + 350

BHs 05-10 and 11 were drilled on the south side of Mayfield Road at this location. A peat layer was noted below the fill in BH 05-11. The peat layer is 1.9 m thick and was encountered at a depth of 1.5 m extending to 3.4 m. The sandy silt soils below the peat is also in a very loose state to a depth of about 4.5 m. For embankment widening in this area, the peat should be removed prior to construction of new embankment to minimize the future possibility of settlement of the road.

### 4.2.4 Pavement Design in Wetland / Swampy Areas

Thurber's original geotechnical report of July 24, 2003 provided pavement design recommendations for the road widening. For areas where the peat or soft soils is not completely removed or is only partly removed and where geogrid is used to cross the swampy subgrade, the pavement thickness should be increased to allow for softer subgrade condition.

As recommended in our July 24, 2003 report, the pavement design in such areas should be as follows:



| <u>Material</u>            | <u>Thickness (mm)</u> |
|----------------------------|-----------------------|
| HL-1                       | 40                    |
| HDBC                       | 100                   |
| Granular A Base            | 200                   |
| Granular B Type II Subbase | 900                   |

All Granular A and B courses should be compacted to 100% of SPMDD at +/- 2% of optimum moisture content. All asphalt should be compacted to 97% of 75 blow Marshall Density or to Region of Peel Specifications.

## 4.3 Storm Sewer Crossing at Stn 10+250

It-is understood that consideration is being given to employing trenchless excavation methods for installing a storm sewer underneath the embankment of Mayfield Road at Station 10+250. The location of the proposed sewer crossing is shown on Drawing No. 17-308-292-1. The total length of trenchless excavation will be approximately 35 m to 40 m, assuming that the work is to be carried out before the road widening. Information provided by Stantec indicates that the storm sewer pipe to be installed under the road will be 600 mm in diameter, and will connect two maintenance hole structures, MH13L and MH13R, near the north and south limits of the road crossing, respectively. The invert of the pipe will be at approximate Elevations 247.1 m and 246.7 m for the north and south limits, respectively. The proposed final road grade is at approximately Elevation 252.9 m, resulting in a crown cover in order of 5 m above the pipe.

Based on the results of Boreholes 04-20C and 04-21, the proposed pipe will be installed predominantly within non-plastic very dense sands and silts with occasional cobbles, boulders and wet sand layers, and low plastic, stiff clayey silt till. Perched water tables are anticipated to be present within the existing



3.141

No. 6

1.1.2

≣

road fill and the native soils within tunnelling depths.

Due to the anticipated low "stand-up" time and potential of loss of ground at the face of the excavation associated with cohesionless sands and silts and the potential of encountering cobbles and boulders within the glacially derived soils, conventional jack-and-bore techniques are not recommended at this site. Pipe jacking advanced with a closed face tunnel boring machine, such as Earth Pressure Balance (EPB) machines, is typically not cost-effective for short tunnels, and is therefore not recommended for this project.

Consideration may be given to the following trenchless methods:

- Method 1 Conventional tunnelling techniques involving hand-mining.
- Method 2 Pipe ramming.

Method 1 would require a larger excavation (1.5 m to 1.8 m diameter) for access of personnel and equipment. Seepage control and boulder removal procedures are likely required. Diversion of surface water from the tunnel area is also necessary.

Method 2 is generally considered feasible, but requires procedures for handling and removing obstructions. Reinforcement of the cutting head with bevelled cutting shoes will likely be required.

It is recommended that the tunnel boring be carried out in advance of the road widening and reconstruction.

In order to confirm that the tunnelling processes do not have adverse effects on the Mayfield Road embankment, it is recommended that a monitoring program be carried out as outlined in the following:



Stantec Consulting Ltd.

2

5111 5115

- Carry out pre-construction condition survey of the existing roadway and existing buried utilities in the vicinity of the proposed tunnel alignment, including documentation of the existing pavement surface condition, cracks and depressions, and survey of the integrity of buried utilities. If necessary, adjacent utilities may have to be temporarily supported and/or relocated.
- Implement an instrumentation and monitoring program that should include precision levelling, or total station, survey of settlement points located along and adjacent to the tunnel alignment, visual monitoring of the roadway including the identification of items such as opening of old and development of new cracks, potential development of sink holes.
- Carry out post-construction condition survey of the roadway and adjacent utilities.

The trenchless methods require construction of pits at either end of the tunnel. The starting and receiving pits are expected to be formed by excavating mainly through stiff clayey silt till or dense sands and silts. Temporary shoring system such as a braced soldier pile and lagging wall will be required as roadway protection. Pre-augering may be required to socket the soldier piles into the underlying hard till. Measures should be in place to provide control of seepage from perched water tables. Surface water should be diverted away from the pits at all times.

Decisions regarding shoring methods and construction sequencing should be made by the contractor. Any required shoring system must be designed by a licensed Professional Engineer.

## 4.4 Storm Water Management Facility (Wetland 1 - Kennedy and Mayfield)

Consideration is being given to constructing a storm water management



#### Stantec Consulting Ltd.

-Ì

1

1

E

1.14.1

facility, SWM 1, at the northeast quadrant of Kennedy Road and Mayfield Road. Information provided by Stantec indicates that this facility consists of a west pond and an east pond. An access road will run in a north-south direction between the two ponds, and a maintenance road will form the north and east boundaries of the facility.

The base of both ponds is triangular in shape. The base of the west pond is designed to be at approximate Elevation 255.2 m, with a side slope inclination of 5 H to 1 V at its west boundary with Kennedy Road, and at its south boundary with Mayfield Road. The base of the east pond is designed to be at approximate Elevation 254.0 m, with a side slope inclination of 5 H to 1 V at its south boundary with Mayfield Road. The remaining slopes of the ponds have inclinations varying between 5H to 1 V and 3H to 1V.

SWM 1 will be formed as a cut into predominantly low plastic, stiff to very stiff clayey silt till overlying compact to very dense sands and silts. Perched water tables are anticipated to be present within the wet sand layers in the cohesive soils and in areas covered by surficial peat/organics.

Stability of the proposed side slope configurations have been analysed using available subsurface data. The commercially available slope stability program GSLOPE developed by Mitre Software Inc. was used to assess the cut stability. Short term (undrained) and long term (drained) conditions, as well as the case of "rapid drawdown" (a situation where the water level in the pond dropped abruptly, resulting in saturated side slopes) were included in the analyses.

Results of stability analyses carried out for the proposed cut slopes indicate that adequate Factors of Safety (F.S.) can be maintained for global stability at this SWM 1 site. The estimated F.S. at selected locations are summarized in the following table:



3710.51

Ĵ

TRUE.

| Location                                              | Type of Analysis in    | F.S. MARK                                       |
|-------------------------------------------------------|------------------------|-------------------------------------------------|
| West pond<br>(west slope bordering<br>Kennedy Road)   | Short Term (Undrained) | > 2                                             |
|                                                       | Long Term (Drained)    | >2                                              |
|                                                       | Rapid Drawdown         | 1.7                                             |
| East pond<br>(east slope)                             | Short Term (Undrained) | > 2                                             |
|                                                       | Long Term (Drained)    | 1.7                                             |
|                                                       | Rapid Drawdown         | 1.35                                            |
| East pond<br>(south slope bordering<br>Mayfield Road) | Short Term (Undrained) | > 2                                             |
|                                                       | Long Term (Drained)    | > 2                                             |
|                                                       | Rapid Drawdown         | 1.35<br>(lower slope)<br>1.7<br>(overall slope) |

### SWM1 Stability Analysis Results

Figures C1 to C4 present selected stability analyses results for the critical cases of rapid drawdown at this site. The soil properties assumed in the analyses are shown on these figures.

Construction of the SWM ponds will require excavation predominantly through stiff clayey silt till and compact to dense sands and silts. Subexcavation and backfilling will be required to construct to final grade. Glacial till deposits inherently contain cobbles and boulders. The north and south boundaries of SWM 1 will encounter peat/organics. The peat/organics should be subexcavated to expose native soils and the sub-excavation backfilled with the excavated clayey silt till available on site.

The maintenance road subgrade should be sloped at a 3% and be proof-rolled to delineate loose/soft areas that should be sub-excavated and backfilled with suitable compacted fill. All road fill should be placed in loose lifts of not more than 200 mm thick and compacted to 98% of its SPMDD within  $\pm 2\%$  of the OMC. The road should be surfaced with a 400mm layer of Granular B Type II



5 B. C. 1

相子

ī. K

1.1.11

1-1-1-1

ž.

for wet weather access.

Existing borehole information indicates that the stiff clayey silt till will be exposed across the base of the east pond. This soil will have a relatively low hydraulic conductivity and the infiltration/exfiltration rates are therefore expected to be very low during periods of high precipitation. At the west pond, however, the sands and silts will be exposed at some locations. These soils will have higher hydraulic conductivities. Since the base of the pond will be above the seasonal groundwater levels, the pond may become dry during periods of low inflow.

Should it be necessary to maintain a head of water in the pond due to hydrologic and/or other reasons, consideration may be given to installing a compacted clay liner in areas where the sands and silts are exposed at the base of the pond. A typical clay liner would be approximately 0.5 m in thickness. Excavated clayey silt till materials from the cut may be used to form the liner.

The cut slope surfaces should be provided with erosion protection such as hydroseeding and vegetation, and rip-rap in areas of high velocity or concentrated water flow. Reference may be made to OPSS 572 and related special provisions.

## 4.5 Storm Water Management Facility (Wetland 3 – Heart Lake and Mayfield)

Consideration is being given to constructing a storm water management facility, SWM 2, at the southwest quadrant of Heart Lake Road and Mayfield Road. Information provided by Stantec indicates that this facility consists of a west pond and an east pond. An access road will run in a north-south direction between the two ponds, and a maintenance road will form the south



boundary of the facility.

The base of both ponds is irregularly shaped. The base of the east pond is designed to be at approximate Elevation 258.7 m, with a side slope inclination of 5H to 1V (lower slope) and 3H : 1V (upper slope) at its east boundary with Heart Lake Road and at its north boundary with Mayfield Road. The base of the west pond is designed to be at approximate Elevation 257.5 m, with south and west side slope inclinations ranging between 5H to 1V and 3H to 1V.

SWM 2 will be formed as a cut into predominantly low plastic, stiff to hard clayey silt till overlying compact to very dense sandy silt to silt. Peat to 4.6 m depth was found overlying the till at locations along the north boundary of the east pond where surface ponding water is present. Perched groundwater is anticipated to be present within the native soils.

Stability of the proposed side slope configurations have been analysed using available subsurface data. The analyses assume that all peat has been subexcavated and replaced with compacted earth fill.

Results of stability analyses carried out for the proposed cut slopes indicate that adequate F.S. can be maintained for global stability at this site. The estimated F.S. at selected locations are summarized in the following table:

| SWM2 Stability Analysis Rest | lits |  |
|------------------------------|------|--|
|------------------------------|------|--|

\_\_\_\_\_

| Focerilon                                              | Type of Antilyets      | F.S. |
|--------------------------------------------------------|------------------------|------|
| East pond<br>(north slope bordering<br>Mayfield Road)  | Short Term (Undrained) | > 2  |
|                                                        | Long Term (Drained)    | > 2  |
|                                                        | Rapid Drawdown         | 1.4  |
| East pond<br>(east slope bordering<br>Heart Lake Road) | Short Term (Undrained) | >2   |
|                                                        | Long Term (Drained)    | > 2  |
|                                                        | Rapid Drawdown         | 1.3  |



Stantec Consulting Ltd.

11 10-11

|                            | Short Term (Undrained) | > 2                                              |
|----------------------------|------------------------|--------------------------------------------------|
|                            | Long Term (Drained)    | > 2                                              |
| East pond<br>(south slope) | Rapid Drawdown         | 1.35<br>(upper slope)<br>1.65<br>(overall slope) |

Figures C5 to C8 present selected stability analyses results for the critical cases of rapid drawdown at this site. The soil properties assumed in the analyses are shown on these figures.

Construction of the SWM ponds will require excavation through stiff to occasionally hard clayey silt till. Care should be exercised when excavating within the road widening areas where surficial peat/organics are required to be subexcavated. Along the proposed north pond boundary with Mayfield Road where peat underlies the existing road embankment, shoring will be required as roadway protection to allow peat removal. Traffic detour will be required if peat removal is to be carried out under the existing embankment.

Any required temporary shoring systems for supporting the road embankments must be designed by a Professional Engineer experienced in such designs.

Existing borehole information indicates that the stiff to hard clayey silt till will be exposed across the base of both ponds. This soil has relatively low hydraulic conductivity and therefore infiltration is expected to be very low from the base of the pond. However, on the fill slopes adjacent to the new Mayfield Road widened embankment, a compacted clay liner may be installed should it be necessary to maintain a head of water in the pond.

Both the access and the maintenance roads will be constructed on stiff clayey silt subgrade. The road subgrade should be sloped at 3% and be proof-rolled to delineate loose/soft areas that should be sub-excavated and backfilled with



Page 23

-

Solution II.

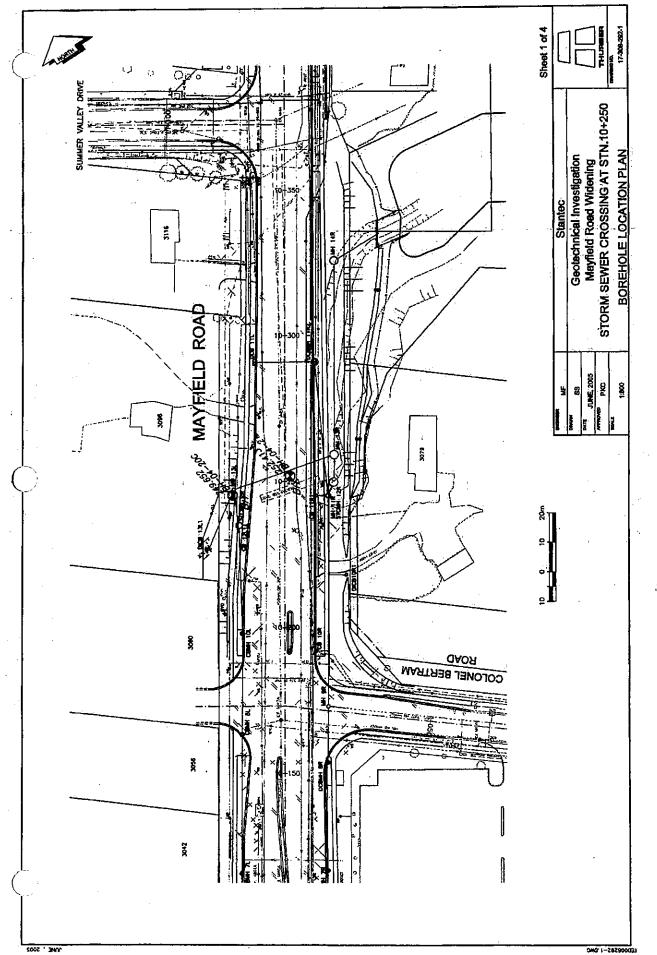
1010

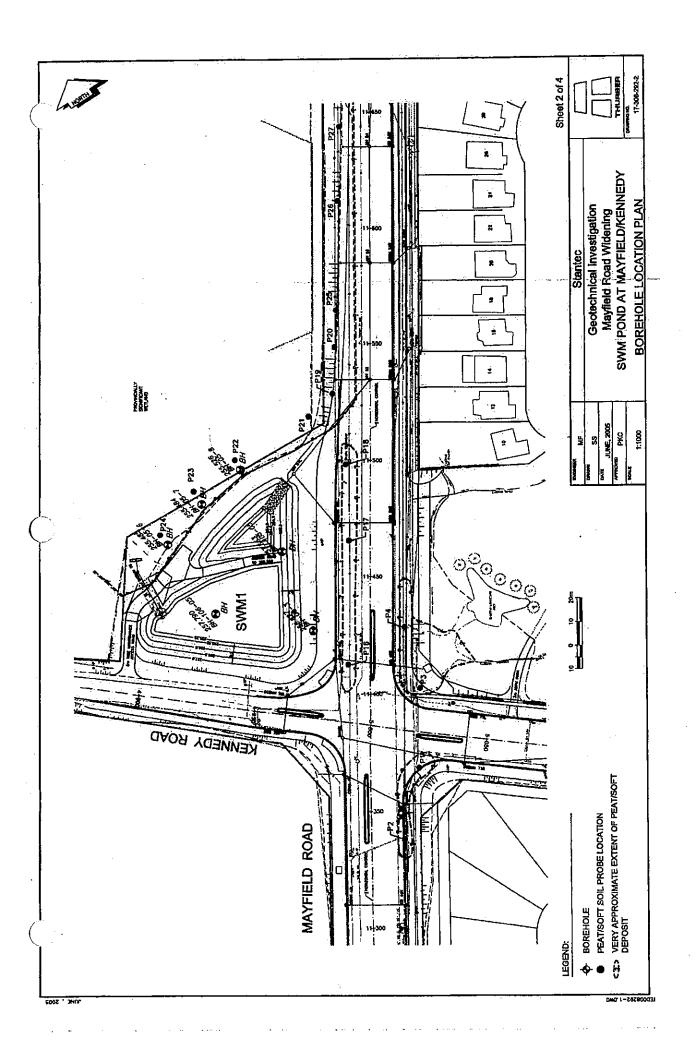
21.11.20

E 161 3

5121 1

e


EATER D

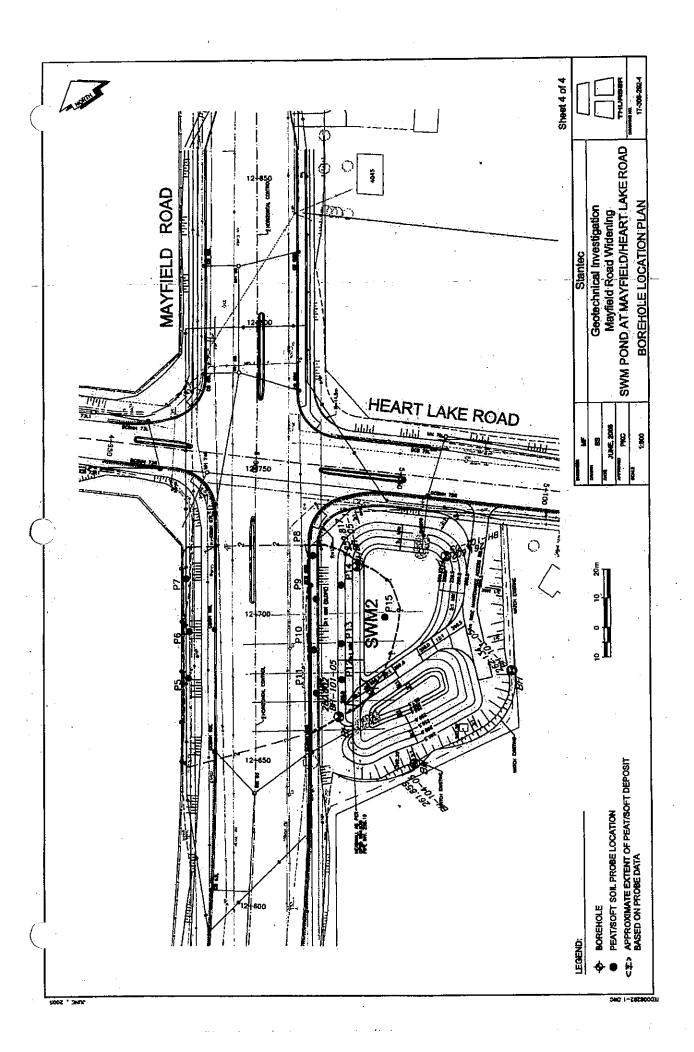

suitable compacted fill. All road fill should be placed in loose lifts of not more than 200 mm thick and compacted to 98% of its SPMDD within  $\pm$ 2% of the OMC. The road should be surfaced with a 400mm layer of Granular B Type II for wet weather access.


The cut slope surfaces should be provided with erosion protection such as hydroseeding and vegetation, and rip-rap in high velocity or concentrated flow areas. Reference may be made to OPSS 572 and related special provsions.

C:\Thurber Projects 2005\17-308-292\17308292 Mayfield Road Widening Supplementary Report Jul 05 (Rev).doc










الأرابية المراجع المتراكم بتوارين الرابي والمراجع

. . .. . .

.



### SYMBOLS, ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES

#### 1. TEXTURAL CLASSIFICATION OF SOILS

1.61

<u>11.11</u>

r.

tar:

|    | CLASSIFICATION<br>Boulders<br>Cobbles<br>Gravel                           | PARTICLE SI<br>Greater than 20<br>75 to 200mm<br>4.75 to 75mm                                     |                                                                                                                                   | VISUAL IDENTIFICATION<br>same<br>same<br>5 to 75mm                                                                          |
|----|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|    | Sand<br>Silt                                                              | 0.075 to 4.75m<br>0.002 to 0.075i                                                                 |                                                                                                                                   | Not visible particles to 5mm<br>Non-plastic particles, not visible to<br>the naked eye                                      |
|    | Clay                                                                      | Less than 0.002                                                                                   |                                                                                                                                   | Plastic particles, not visible to the naked eye                                                                             |
| 2. | COARSE GRAIN SOIL                                                         | DESCRIPTION (50% greater                                                                          | than 0.075mm)                                                                                                                     | •                                                                                                                           |
|    | TERMINOLOGY<br>Trace or Occasional<br>Some<br>Adjective (e.g. silty or sa | nduì                                                                                              |                                                                                                                                   | PROPORTION<br>Less than 10%<br>10 to 20%<br>20 to 35%                                                                       |
|    | And (e.g. sand and gravel                                                 |                                                                                                   |                                                                                                                                   | 35 to 50%                                                                                                                   |
| 3. | TERMS DESCRIBING O                                                        | ONSISTENCY (COHESIVE                                                                              | SOILS ONLY)                                                                                                                       |                                                                                                                             |
|    | DESCRIPTIVE TERM                                                          | UNDRAINED<br>STRENGTH ()                                                                          |                                                                                                                                   | APPROXIMATE SPT <sup>(1)</sup> 'N'<br>VALUE                                                                                 |
|    | Very Soft                                                                 | 12 or less                                                                                        |                                                                                                                                   | Less than 2                                                                                                                 |
|    | Soft                                                                      | 12 to 25                                                                                          |                                                                                                                                   | 2 to 4                                                                                                                      |
|    | Firm                                                                      | 25 to 50                                                                                          |                                                                                                                                   | 4 to 8                                                                                                                      |
|    | Stiff<br>Manua Sulfr                                                      | 50 to 100                                                                                         |                                                                                                                                   | 8 to 15                                                                                                                     |
|    | Very Stiff<br>Hard                                                        | 100 to 200<br>Greater than 20                                                                     | •                                                                                                                                 | 15 to 30                                                                                                                    |
|    | naru                                                                      | Greater man 20                                                                                    | U                                                                                                                                 | Greater than 30                                                                                                             |
|    | NOTE: Hierarchy of Soil                                                   | Strength Prediction                                                                               | <ol> <li>Laboratory Tria</li> <li>Field Insitu Var</li> <li>Laboratory Van</li> <li>SPT value</li> <li>Pocket Penetror</li> </ol> | e Testing<br>e Testing                                                                                                      |
| 4. | TERMS DESCRIBING D                                                        | ENSITY (COHESIONLESS                                                                              | SOILS ONLY                                                                                                                        |                                                                                                                             |
|    | DESCRIPTIVE TERM                                                          | SPT "N" VALU                                                                                      | JE .                                                                                                                              |                                                                                                                             |
|    | Very Loose                                                                | Less than 4                                                                                       |                                                                                                                                   |                                                                                                                             |
|    | Loose                                                                     | 4 to 10                                                                                           |                                                                                                                                   |                                                                                                                             |
|    | Compact                                                                   | 10 to 30                                                                                          |                                                                                                                                   |                                                                                                                             |
|    | Dense<br>Vers Dense                                                       | 30 to 50                                                                                          |                                                                                                                                   |                                                                                                                             |
|    | Very Dense                                                                | Greater than 50                                                                                   | ,                                                                                                                                 |                                                                                                                             |
| 5. | LEGEND FOR RECORD                                                         | <u>S OF BOREHOLES</u>                                                                             |                                                                                                                                   |                                                                                                                             |
|    | SYMBOLS AND<br>ABBREVIATIONS<br>FOR<br>SAMPLE TYPE                        | SS Split Spoon Sample<br>TW Thin Wall Shelby Tu<br>PH Sampler Advanced b<br>WH Sampler Advanced b | y Hydraulic Pressure                                                                                                              | AS Auger (Grab) Sample<br>TP Thin Wall Piston Sample<br>PM Sampler Advanced by Manual Pressure<br>RC Rock Core SC Soil Core |
|    |                                                                           | Undisturbed Shear Streng                                                                          | · •                                                                                                                               |                                                                                                                             |
|    | Sensitivity $=$                                                           | Removided Share Street                                                                            |                                                                                                                                   |                                                                                                                             |
|    | Vater Level                                                               | Remoulded Shear Strengtl                                                                          | <b>1</b> .                                                                                                                        |                                                                                                                             |
|    |                                                                           | Determination by Pocket Pene                                                                      | homata-                                                                                                                           |                                                                                                                             |
|    | C <sub>pon</sub> Shear Strength I                                         | rocket Pene                                                                                       | TOURCICL                                                                                                                          |                                                                                                                             |

SPT 'N' Value Standard Penetration Test 'N' Value - refers to the number of blows from a 63.5kg hammer free falling a height of 0.76m to advance a standard 50 mm outside diameter split spoon sampler for 0.3 m depth into undisturbed ground.
 DCPT Dynamic Cone Penetration Test - Continuous penetration of a 50 mm outside diameter, 60° conical steel point attached to "A" size rods driven by a 63.5 kg hammer free falling a height of 0.76 m. The resistance to cone

steel point attached to "A" size rods driven by a 63.5 kg hammer free falling a height of 0.76 m. The resistance to cone penetration is the number of hammer blows required for each 0.3 m advance of the conical point into undisturbed ground.

## UNIFIED SOILS CLASSIFICATION

| MAJOR      | DIVISIONS            | GROUP<br>SYMBOL | TYPICAL DESCRIPTION                                       |
|------------|----------------------|-----------------|-----------------------------------------------------------|
|            |                      | G₩              | Well-graded gravels or gravel-sand mixtures, little or    |
|            | GRAVEL               |                 | no fines.                                                 |
|            | AND                  | GP              | Poorly-graded gravels or gravel-sand mixtures, little     |
| , s        | GRAVELLY             |                 | or no fines.                                              |
| COARSE     | SOILS                | GM              | Silty gravels, gravel-sand-silt mixtures.                 |
| GRAINED    |                      | GC              | Clayey gravels, gravel-sand-clay mixtures.                |
| SOILS      |                      | SW              | Well-graded sands or gravelly sands, little or no         |
| -          | SAND AND             |                 | fines.                                                    |
|            | SANDY                | SP              | Poorly-graded sands or gravelly sands, little or no       |
|            | SOILS                |                 | fines.                                                    |
|            |                      | SM              | Silty sands, sand-silt mixtures.                          |
|            |                      | SC              | Clayey sands, sand-clay mixtures.                         |
|            |                      | ML              | Inorganic silts and very fine sands, rock flour, silty or |
|            |                      |                 | clayey fine sands or clayey silts with slight plasticity. |
|            |                      | CL              | Inorganic clays of low to medium plasticity, gravelly     |
|            | SILTS AND            |                 | clays, sandy clays, silty clays, lean clays.              |
| FINE       | CLAYS                |                 | (W <sub>L</sub> < 30%).                                   |
| GRAINED    | W <sub>L</sub> < 50% | CI              | Inorganic clays of medium plasticity, silty clays.        |
| SOILS      |                      |                 | $(30\% < W_L < 50\%).$                                    |
|            |                      | OL              | Organic silts and organic silty-clays of low plasticity.  |
|            |                      | MH              | Inorganic silts, micaceous or diatomaceous fine           |
|            | SILTS AND            |                 | sandy or silty soils, elastic silts.                      |
|            | CLAYS                | СН              | Inorganic clays of high plasticity, fat clays.            |
|            | $W_L > 50\%$         | OH              | Organic clays of medium to high plasticity, organic       |
|            |                      |                 | silts.                                                    |
| HIGHLY     |                      | Pt              | Peat and other highly organic soils.                      |
| ORGANIC    |                      |                 |                                                           |
| SOILS      |                      |                 |                                                           |
| CLAY SHALE |                      |                 |                                                           |
| SANDSTONE  |                      |                 |                                                           |
| SILTSTONE  |                      |                 |                                                           |
| CLAYSTONE  |                      |                 |                                                           |
| COAL       |                      |                 |                                                           |

•

E-14-11-13 1 P - 11 

# EXPLANATION OF ROCK LOGGING TERMS

5.4.2.20

]

11

| EXPLANATION OF ROCK LOGGING TERMS       ROCK WEATHERING CLASSIFICATION       SYMBOLS |                                                                                                                                      |                             |                         |                     |                                                                                                          |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|---------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| <b>ROCK WEATHERING</b>                                                               | CLASSIFICATION                                                                                                                       |                             |                         | SYMBOLS             |                                                                                                          |  |  |  |  |  |  |  |  |
| Fresh (FR)                                                                           | No visible signs of weathering                                                                                                       | ng.                         |                         |                     |                                                                                                          |  |  |  |  |  |  |  |  |
| Fresh Jointed (FJ)                                                                   | Weathering limited to the su discontinuities.                                                                                        | rface of major              |                         |                     | CLAYSTONE                                                                                                |  |  |  |  |  |  |  |  |
| Slightly Weathered<br>(SW)                                                           | Penetrative weathering deve<br>surfaces, but only slight wea                                                                         |                             |                         |                     | SILTSTONE                                                                                                |  |  |  |  |  |  |  |  |
| Moderately Weathered<br>(MW)                                                         | Weathering extends through rock material is not friable.                                                                             | out the rock ma             | ss, but the             |                     | SANDSTONE                                                                                                |  |  |  |  |  |  |  |  |
| Highly Weathered<br>(HW)                                                             | Weathering extends through rock is partly friable.                                                                                   | out the rock ma             | ss and the              |                     | COAL                                                                                                     |  |  |  |  |  |  |  |  |
| Completely Weathered<br>(CW)                                                         | Rock is wholly decomposed<br>but the rock texture and stru                                                                           | cture are preser            | ved.                    | <u></u>             | Bedrock (general)                                                                                        |  |  |  |  |  |  |  |  |
| DISCONTINUITY SPA                                                                    | CING                                                                                                                                 | STRENGTH                    |                         |                     |                                                                                                          |  |  |  |  |  |  |  |  |
| Bedding                                                                              | Bedding Plane Spacing                                                                                                                | Rock<br>Strength            | Approxima<br>Compressiv |                     | Field Estimation<br>of Hardness*                                                                         |  |  |  |  |  |  |  |  |
| 1. Comme                                                                             |                                                                                                                                      |                             | (MPa)                   | (psi)               |                                                                                                          |  |  |  |  |  |  |  |  |
| Very thickly bedded                                                                  | Greater than 2m                                                                                                                      | Extremely<br>Strong         | Greater than<br>250     | <u> </u>            | Specimen can only be chipped with a                                                                      |  |  |  |  |  |  |  |  |
| Thickly bedded                                                                       | 0.6 to 2m                                                                                                                            |                             |                         |                     | geological hammer                                                                                        |  |  |  |  |  |  |  |  |
| Medium bedded                                                                        | 0.2 to 0.6m                                                                                                                          | Very Strong                 | 100-250                 | 15,000 to<br>36,000 | Requires many<br>blows of geological                                                                     |  |  |  |  |  |  |  |  |
| Thinly bedded                                                                        | 60mm to 0.2m                                                                                                                         | •                           |                         |                     | hammer to break                                                                                          |  |  |  |  |  |  |  |  |
| Very thinly bedded                                                                   | 20 to 60mm                                                                                                                           | Strong                      | 50-100                  | 7,500 to<br>15,000  | Requires more than one blow of                                                                           |  |  |  |  |  |  |  |  |
| Laminated                                                                            | 6 to 20mm                                                                                                                            |                             |                         | -                   | geological hammer<br>to break                                                                            |  |  |  |  |  |  |  |  |
| Thinly Laminated                                                                     | Less than 6mm                                                                                                                        | Medium<br>Strong            | 25.0 to 50.0            | 3,500 to<br>7,500   | Breaks under single blow of                                                                              |  |  |  |  |  |  |  |  |
| TERMS                                                                                |                                                                                                                                      |                             |                         |                     | geological<br>hammer.                                                                                    |  |  |  |  |  |  |  |  |
|                                                                                      | Core recovered as a percentage of total core run length.                                                                             | Weak                        | 5.0 to 25.0             | 750 to 3,500        | Can be peeled by a pocket knife with                                                                     |  |  |  |  |  |  |  |  |
| (SCR)                                                                                | Percent Ratio of solid core of<br>full cylindrical shape<br>recovered. Expressed with<br>respect to the total length of<br>core run. | Very Weak                   | 1.0 to 5.0              | 150 to 750          | difficulty<br>Can be peeled by a<br>pocket knife,<br>crumbles under<br>firm blows of<br>geological pick. |  |  |  |  |  |  |  |  |
| Designation:<br>(ROD)                                                                | Total length of sound core<br>recovered in pieces 0.1m in<br>length or larger as a percentage<br>of total core run length.           | Extremely<br>Weak<br>(Rock) | 0.25 to 1.0             | 35 to 150           | Indented by<br>thumbnail                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                      | Axial stress required to break the specimen                                                                                          |                             |                         |                     |                                                                                                          |  |  |  |  |  |  |  |  |
|                                                                                      | Frequency of natural fractures<br>per 0.3m of core run.                                                                              |                             |                         |                     |                                                                                                          |  |  |  |  |  |  |  |  |



Stantec Consulting Ltd.

\_\_\_\_\_L

EL LUL

12.1

1.1.1

11 14

l.

LI II

## **APPENDIX A**

## **RECORD OF BOREHOLE SHEETS**

TABLE A1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RECORD OF BOREHOLE 04-20C |               |                                                                                                       |             |                          |                 |            |             |                                                         |                                                                |                            |                                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|-------------------------------------------------------------------------------------------------------|-------------|--------------------------|-----------------|------------|-------------|---------------------------------------------------------|----------------------------------------------------------------|----------------------------|---------------------------------|--|--|
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ຼີແ                       | CATH          | DN : Mayfield Road, Region                                                                            |             | eel                      |                 |            |             |                                                         | Project No. 17~300-292                                         | SHEET                      |                                 |  |  |
| IJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 'Arte<br>Mpli | D : 19 May 2005<br>TED : 19 May 2005                                                                  |             |                          |                 |            |             |                                                         |                                                                | DATUM                      | ι <b>υ</b> Γι                   |  |  |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | щ                         | Ģ             | SOIL PROFILE                                                                                          | т.<br>Т.    |                          | SAN             | /PL        | ES          | ,                                                       | SHEAR STRENGTH: Cu, KPa<br>nat V - ● Q - X<br>ram V - ● Cpen ▲ | NO<br>NO                   | PIEZOMETER                      |  |  |
| [] ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEPTH SCALE<br>(metres)   | BORING METHOD | DESCRIPTION                                                                                           | STRATA PLOT | ELEV.<br>DEPTH           | NUMBER          | T PE       | BLOWS/0.3m  | COMMENTS<br>DYNAMIC COME PENETRATION<br>RESISTANCE PLOT | 40 80 120 160<br>WATER CONTENT, PERCENT<br>wp I                | ADDITTONAL<br>LAB. TESTING | OR<br>STANOPIPE<br>INSTALLATION |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               | GROUND SURFACE                                                                                        | 3           | (m)                      | Ц               | _          | BL          | 20 40 60 80 100                                         |                                                                |                            |                                 |  |  |
| U I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | ╞┈┠╌          | TOPSCH, some rootels, brown<br>SILT, cleyey, some sand, trace gravel, firm                            | ā           | 249.65<br>240.90<br>0.17 |                 | 88         | 6           |                                                         |                                                                |                            | 50 mm Well                      |  |  |
| State of the second sec | -<br>-<br>- 1             |               | to stift, brown: (CL-ML)                                                                              |             | •                        |                 | 55         | 9           |                                                         |                                                                |                            |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               | SAND and SILT, some clay, trace gravel,<br>very dense, brown: (SIA)                                   |             | 248.13<br>1.52           |                 | 86         | 51          |                                                         | p                                                              |                            | 50 mm Well                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2                        |               |                                                                                                       |             | · .                      |                 | <b>S</b> 5 | 54          |                                                         | o                                                              |                            |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3                        | AUGERS        |                                                                                                       |             | L                        | 5               | 88         | 50<br>100   |                                                         | o                                                              |                            |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4                        | LOW STIEM     | occasional cobbias and bouldars<br>wat aand layer between 3.98 and 4.27 m                             |             |                          |                 | ,          |             |                                                         |                                                                |                            | 245.69                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5                        | 210 mm HOL    | occasional cobbies and boulders                                                                       |             |                          | 6               | 83         | 52/<br>.150 |                                                         | c                                                              |                            | 244.93                          |  |  |
| FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6                        | ~             | wel sand layer between 5.49 and 5.79 m<br>SILT, clayer, some sand, trace gravel,                      |             | 243.80<br>5.79           |                 |            |             |                                                         |                                                                |                            | <b>∑</b> 243.55                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               | hard, groy: (TILL)(ML)                                                                                |             |                          | 7               | SS         | <b>84</b>   | Grain Size Analysis:<br>Gr 7%/ Sa 32%/Si 45%/ Ci 16%    | 0                                                              |                            | Sixted                          |  |  |
| 450 - 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                         |               | wet sand layer between 7.0 and 7.47 m                                                                 |             |                          |                 | ł          |             |                                                         |                                                                |                            | Screen 242.03                   |  |  |
| 0.11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -8                        |               | END OF BOREHOLE AT 8.23 m.                                                                            |             | 241.42<br>8.23           |                 | <b>5</b> 5 | 48          |                                                         | 0                                                              |                            | 241,42                          |  |  |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -9                        |               | Well installation consists of 50 mm diameter<br>Schedule 40 PVC pipe with a 1,52 m statied<br>screen. |             |                          |                 |            |             |                                                         |                                                                |                            |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               | WATER LEVEL READINGS:<br>DATE DEPTH                                                                   |             |                          |                 |            |             |                                                         |                                                                |                            |                                 |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10                       |               | (m)<br>28/05/05 5.97<br>30/05/05 6.10                                                                 |             |                          |                 |            |             |                                                         |                                                                |                            |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11                      |               |                                                                                                       |             |                          |                 |            |             |                                                         |                                                                |                            | -                               |  |  |
| E-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -12                       |               |                                                                                                       |             |                          |                 |            |             |                                                         |                                                                |                            |                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 13                      |               |                                                                                                       |             |                          |                 |            |             |                                                         |                                                                |                            |                                 |  |  |
| ام- ل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -14                       |               |                                                                                                       |             |                          |                 |            |             |                                                         |                                                                |                            | -                               |  |  |
| ETTU<br>2GPJ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |               |                                                                                                       |             |                          |                 |            |             |                                                         |                                                                |                            |                                 |  |  |
| 3 829.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b> </b>                  | <u> </u>      | GROUNDWATER ELE                                                                                       | VA          | TIONS                    | <u>r 1</u><br>S |            |             | <u> </u>                                                |                                                                | 1                          |                                 |  |  |
| HURDERZS S202 GPJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |               | 모 SHALLOW/SINGLE INSTA<br>WATER LEVEL (data)                                                          | LLA         | TION                     |                 |            |             | EEP/DUAL INSTALLATION<br>TER LEVEL (date)               | Logged : MF<br>Checked : Sp                                    |                            |                                 |  |  |

|          |                         | OJEC                  |                                                                                                                             | g          |                       | :01    | RI          | ) (         | OF BOREHOLE 0                                           |          | No. 1                      | 7-308-          | 292                    |            |                            |                                               |
|----------|-------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|--------|-------------|-------------|---------------------------------------------------------|----------|----------------------------|-----------------|------------------------|------------|----------------------------|-----------------------------------------------|
|          | ST                      | Catio<br>Arte<br>Mple |                                                                                                                             | of P       | eel                   |        |             |             |                                                         |          |                            |                 |                        | D/         | ieet 1<br>Ntum             | THURBER<br>OF 1                               |
| t        | ц<br>Ц                  | ş                     | SOIL PROFILE                                                                                                                |            |                       | SA     | MPL         | ES          |                                                         | SHEA     | R STREN<br>net V<br>rem V  | GTH: C          | , KPa<br>Q-X<br>Cpen A |            | 72                         |                                               |
|          | DEPTH SCALE<br>(metres) | BORING METHOD         | DESCRIPTION                                                                                                                 | STRATAPLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | TYPE        | BLOWS/0.3m  | COMMENTS<br>DYNAMIC COME PENETRATION<br>RESISTANCE PLOT | W        | k0 t<br>ATERCC<br>¢p I−−−− | 0 1:<br>WITENT, | 20 164<br>PERCEN       | ם<br>תיייי | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
|          |                         |                       | GROUND SURFACE<br>ASPHALT (125 mm)                                                                                          | 1538       | 252.41<br>0.00        |        |             |             |                                                         | ·        |                            |                 |                        |            |                            |                                               |
|          | -1                      |                       | SAND and GRAVEL, trace slit, very<br>danse, brown: (FILL)<br>SILT, sandy, clayey, trace graval, very<br>stiff, grey: (FILL) |            | 251.85<br>0.76        |        | 55<br>68    |             |                                                         | 0        | 0                          |                 |                        |            |                            |                                               |
|          | -2                      |                       |                                                                                                                             |            |                       | 3      | \$3         | 18          |                                                         |          | <b>0</b>                   |                 |                        |            |                            |                                               |
|          |                         |                       | SAND and GRAVEL leyer from 2.3m to<br>2.4m, very dense                                                                      |            |                       | Ŧ      | 35          | 50/<br>.150 |                                                         | 0        |                            |                 |                        | · :        |                            |                                               |
|          | 3                       | S                     | SAND, gravely, some sill, very dense to                                                                                     |            | 248,68                |        | \$\$        | 15          |                                                         |          | 0                          |                 |                        |            |                            |                                               |
| İ        | 4                       | AUGERS                | compact, brown: (SP)                                                                                                        |            | 4                     | 6      | <b>'8</b> S | 55          |                                                         |          | 0                          |                 |                        |            |                            |                                               |
|          | 5                       | NETS CLUD STEM        | SILT, clayey, some sand, trace gravel,<br>cccasional day layers, occasional sand<br>layers, sliff, brown: (TILL)(CL-ML)     |            | 247.53                | 7<br>1 | 88          | 17          |                                                         |          | 0                          |                 |                        |            |                            |                                               |
|          | -6                      | 100 mm                |                                                                                                                             |            |                       | •8     | 55          | 12          |                                                         |          |                            |                 |                        |            |                            |                                               |
|          | 7                       |                       | SILT, sandy, some cley, trace gravel,                                                                                       |            | 245.25<br>7.16        |        |             |             |                                                         |          |                            |                 |                        |            |                            |                                               |
|          | -8                      |                       | occusional wet sand layers, vary dense,<br>grey: (ML)                                                                       | XXX        |                       | 9.     | 5S          | 50/<br>.150 | Gnain Siza Analysia:<br>Gr 8%/ Sa 31%/ Si 51%/ Ci 10%   | c        |                            |                 |                        |            |                            |                                               |
| ŀ        | 9                       |                       | SAND, silly, some gravel, very dense,<br>gray, wet: (SM)                                                                    | K          | 243,72                |        |             |             |                                                         |          |                            |                 |                        |            |                            |                                               |
| ł        | •                       |                       |                                                                                                                             |            | 242.00                |        | 88          | 59          | Grain Size Analysis:<br>Gr 11%/Sa 50%/Si 35%/ Ci 4%     |          | 0                          |                 |                        |            |                            |                                               |
|          | -10                     |                       | END OF BOREHOLE OPEN TO 9.76 m<br>BOREHOLE OPEN TO 9.15 m AND WET<br>AT 3.66 m.                                             |            | 9.75                  |        |             |             |                                                         |          |                            |                 |                        |            |                            |                                               |
|          | 11                      |                       | BOREHOLE BACKFILLED AS<br>FOLLOWED:<br>0 - 0.15 m Asphelt Patch<br>0.15 - 0.91 m Concrete                                   |            |                       |        |             |             |                                                         |          |                            |                 |                        |            |                            |                                               |
|          | ·12                     |                       | 0.91 - 1.52 m Bentonile Holepiug<br>1.52 - 9.15 m Bentonile Grout                                                           |            |                       |        |             |             |                                                         |          |                            |                 |                        |            |                            |                                               |
| ŀ        | 13                      |                       |                                                                                                                             |            |                       |        |             |             |                                                         |          |                            |                 |                        |            |                            |                                               |
|          | -14                     |                       |                                                                                                                             |            |                       |        |             |             |                                                         |          |                            |                 |                        |            |                            |                                               |
|          | .7                      |                       |                                                                                                                             |            |                       |        |             |             |                                                         |          |                            |                 |                        |            |                            |                                               |
|          |                         |                       |                                                                                                                             |            |                       | 5      | <br>•       | ·           | •<br>•                                                  | <b>.</b> |                            |                 |                        |            |                            |                                               |
| HURBERZS |                         |                       | SHALLOW/SINGLE INST/<br>WATER LEVEL (data)                                                                                  | ALL/       | ATION                 |        |             |             | DEEP/DUAL INSTALLATION<br>TER LEVEL (date)              |          |                            | gged<br>Iecked  | : MF<br>: SP           |            | •                          |                                               |

|             | LOC    | NEC<br>ATI                | ON : Mayfield Road, Region                                                                                                           |             | ei                       |        |            |            |                                                         | Project  | <sub>No.</sub> 17-308                   | -292          | SHEET                      |                                               |
|-------------|--------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|--------|------------|------------|---------------------------------------------------------|----------|-----------------------------------------|---------------|----------------------------|-----------------------------------------------|
|             | _      | _                         | SOIL PROFILE                                                                                                                         |             |                          | SA     | MPL        | ÉS         | · · · · · · · · ·                                       | SHEA     | R STRENGTH: C<br>nat V - •<br>nam V - • | AL KPa<br>O-X | 1                          | · · · · · · · · · · · · · · · · · · ·         |
| DEPTH SCALE | (samu) | BORING METHOD             | DESCRIPTION                                                                                                                          | STRATA PLOT | ELEV.<br>DEPTH<br>(m)    | NUMBER | TYPE       | BLOWS/0.3m | COMMENTS<br>DYNAMIC COME PENETRATION<br>RESISTANCE PLOT |          | КО 80 1<br>АТЕРСОМТЕМ<br>ир I           | 120 160       | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
|             | T      |                           | GROUND SURFACE                                                                                                                       | 22          | 257.55                   |        |            |            |                                                         | I        | - 0                                     |               |                            |                                               |
| - 1         |        |                           | SILT, clayer, trace gravel, some sand,<br>occasional cobbles, occasional rootes, firm<br>to very silf, brown: (TILL)(ML)             |             |                          |        | 85<br>55   |            |                                                         |          | 0                                       |               |                            | 50 mm Well<br>256,95                          |
| -2          |        |                           |                                                                                                                                      |             |                          | 3      | 88         | 25         |                                                         |          | 0                                       |               |                            | Grout                                         |
| - 3         |        |                           | 75 mm SAND layer, wet                                                                                                                |             | 254.21                   | 4      | 88<br>83   |            | Grain Stas Analysis:<br>Gr 5%/ Sa 32%/ Si 50%/ Ci 14%   |          | o                                       |               | :                          |                                               |
| -4          |        |                           | SAND, some sit, trace day, dense to very<br>dense, brown: (SP)                                                                       |             | 254.21<br>3.36           | 5      | 83<br>88   |            | Grain Siza Analysia:<br>Gr 0%/ Sa 80%/Si & Ci 20%       | 0        |                                         |               | 2 .                        |                                               |
| - 5         |        | TIEM AUGERS               |                                                                                                                                      |             |                          | 7      | 88         | 44         |                                                         | 0        |                                         |               |                            |                                               |
| -6          |        | 210 mm KOLLOW STEM AUGERS |                                                                                                                                      |             |                          | 8      | <b>8</b> 8 | 89         |                                                         |          |                                         |               |                            |                                               |
| 7           |        | 210                       | becoming dense                                                                                                                       |             |                          | ·      |            |            |                                                         |          |                                         |               |                            |                                               |
| -8          |        |                           |                                                                                                                                      |             |                          | 9<br>  | 85         | 47         |                                                         | 0        |                                         |               |                            | 249,45<br>Benlanite<br>Seel 248,67            |
| - 9         |        |                           | becoming wet at 9.15 m, compact                                                                                                      |             |                          | 10     | 55         | 22         |                                                         |          | o                                       |               |                            | Filter S2/18-42                               |
| -1(         |        |                           | becoming dense at 10.67 m                                                                                                            |             | 246,28                   | 11     | 88         | 40         |                                                         |          | o                                       |               |                            | 248,89                                        |
| - 12        |        |                           | END OF BOREHOLE AT 11.26 m.<br>Weil installation consists of 60 mm diameter<br>Schedule 40 PVC pipe with a 1.52 m stotled<br>acreen. |             | 246,28<br>11, <b>2</b> 8 |        |            |            |                                                         |          |                                         |               |                            |                                               |
| - 13        | 3.     |                           | WATER LEVEL READING3:<br>DATE DEPTH<br>(m)<br>16/06/05 9.40<br>26/05/05 9.43<br>30/06/05 9.44                                        |             |                          |        |            |            |                                                         |          |                                         |               |                            |                                               |
| -14         |        |                           |                                                                                                                                      |             |                          |        |            |            |                                                         |          |                                         |               |                            |                                               |
|             | _1_    |                           | GROUNDWATER ELE                                                                                                                      |             |                          | 5      |            |            | I<br>DEEP/DUAL INSTALLATION<br>TER LEVEL (data)         | <u> </u> |                                         | : MF          | <b>t</b>                   |                                               |

| La<br>S                 | RECORD OF BOREHOLE 106-05         PROJECT       Mayfield Road Widening       Project No.       17-308-292         LOCATION       Mayfield Road, Region of Peel       SHEET 10         STARTED       16 May 2005       SHEET 10         COMPLETED       16 May 2005       DATUM         W       SOIL PROFILE       SAMPLES         SOIL PROFILE       SAMPLES       Intel V - Cont A |                           |                                                                                                                                                                                    |             |                        |        |             |                  |                                                         |                             |                               |                        |                            |                                               |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|--------|-------------|------------------|---------------------------------------------------------|-----------------------------|-------------------------------|------------------------|----------------------------|-----------------------------------------------|--|
|                         | Í                                                                                                                                                                                                                                                                                                                                                                                   | 8                         | SOIL PROFILE                                                                                                                                                                       |             |                        | SA     | MPL         | ES               | ····-                                                   | SHEAR STR<br>net V<br>rem V | ENGTH: Cu,                    | KPa<br>Q-X             |                            |                                               |  |
| DEPTH SCALE<br>(metres) |                                                                                                                                                                                                                                                                                                                                                                                     | BORING METHOD             | DESCRIPTION                                                                                                                                                                        | STRATA PLOT | ELEV.<br>DEPTH<br>(m)  | NUMBER | TYPE        | BLOWS/0.3m       | COMMENTS<br>DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT | 40                          | 80 120<br>CONTENT, F<br>20 30 | 9 180<br>92RCENT<br>{w | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |  |
|                         | ŀ                                                                                                                                                                                                                                                                                                                                                                                   |                           | GROUND SURFACE                                                                                                                                                                     |             | 257.70                 |        |             |                  |                                                         | ┨──┤──                      | + +                           |                        | 1.1                        |                                               |  |
| -<br>-<br>- 1           |                                                                                                                                                                                                                                                                                                                                                                                     |                           | SiLT, clayay, some sand, trace gravel,<br>occasional rootiets, occasional saind lanees,<br>vary still, brown: (TILL)(CL-ML)                                                        |             |                        |        | SS<br>SS    | 6<br>21          | Grain Size Analysis:<br>Gr 1%/ Sa 27%/ Si 55%/ Ci 18%   | 0                           |                               |                        |                            | 50 mm Well 257.18                             |  |
| -2                      |                                                                                                                                                                                                                                                                                                                                                                                     |                           | SAND, sily, some gravel, dense, brown:                                                                                                                                             |             | 255, <b>60</b><br>2.13 |        | <b>SS</b>   | 26               |                                                         | . 0                         |                               |                        |                            | Grout                                         |  |
| -3                      |                                                                                                                                                                                                                                                                                                                                                                                     |                           | (SM)<br>SILT, sendy, trace clay, compact, brown:<br>(ML-NONPLASTIC)                                                                                                                |             | 254.82<br>2.97         | 4      | 8S<br>      | <b>4</b> 9<br>16 | Grain Size Analysis;<br>Gr 20%/Sa 49%/Si & Ci 31%       | 0                           |                               |                        |                            |                                               |  |
| -4                      |                                                                                                                                                                                                                                                                                                                                                                                     |                           | wat at 3,8 m                                                                                                                                                                       |             |                        | 6      | <b>\$</b> 5 | 24               | Grain Stza Analysia;<br>Gr 0%/ Sa 33%/ Si 63%/ Ci 5%    |                             | 0                             |                        | · .                        |                                               |  |
| - 5                     |                                                                                                                                                                                                                                                                                                                                                                                     | STEM AUGERS               | ан<br>С                                                                                                                                                                            |             |                        | 7      | <b>S</b> S  | 12               |                                                         | o                           |                               |                        |                            |                                               |  |
| <b>–</b> 6              |                                                                                                                                                                                                                                                                                                                                                                                     | 210 mm HOLLOW STEM AUGERS | SAND, ality, danse, brown: (SM)                                                                                                                                                    |             | 251,60<br>8,10         |        | <b>S</b> S  | 39               |                                                         | o                           |                               |                        |                            |                                               |  |
| -8                      |                                                                                                                                                                                                                                                                                                                                                                                     |                           | SAND, trace sit, dense to compact,<br>brown: (SP)                                                                                                                                  |             | 250,17<br>7,62         | 9      | <b>SS</b>   | з                |                                                         | o                           |                               |                        |                            | 249.71                                        |  |
| -9                      |                                                                                                                                                                                                                                                                                                                                                                                     |                           | wei at 9.1 m                                                                                                                                                                       |             |                        | 10     | <b>S</b> S  | 26               |                                                         |                             | 0                             |                        |                            | Filter Sand<br>Stotted                        |  |
| -10<br>-                |                                                                                                                                                                                                                                                                                                                                                                                     |                           | becoming grey                                                                                                                                                                      |             |                        | <br>   |             |                  |                                                         |                             |                               |                        |                            | Screen 247,12                                 |  |
| - 11                    |                                                                                                                                                                                                                                                                                                                                                                                     |                           | END OF BOREHOLE AT 11.28 m.<br>Well installation consists of 50 mm diameter<br>Schedule 40 PVC pipe with a 1.52 m stotled<br>screen.                                               |             | 246.51<br>11.20        |        | 55          | 19               |                                                         |                             | P                             |                        |                            | 246.51                                        |  |
| -12<br>- 13             | 1                                                                                                                                                                                                                                                                                                                                                                                   |                           | Actest.           WATER LEVEL READINGS:           DATE         DEPTH           (m)           16/05/05         9.50           28/05/05         9.50           30/05/05         9.50 |             |                        |        |             |                  |                                                         |                             |                               |                        |                            |                                               |  |
| -14                     |                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                                                    |             |                        |        |             |                  |                                                         |                             |                               |                        |                            |                                               |  |
| HURBERZS 824            |                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                  | GROUNDWATER ELE<br>SHALLOW/SINGLE INSTA<br>WATER LEVEL (data)                                                                                                                      |             |                        | 5      |             |                  | DEEP/DUAL INSTALLATION<br>TER LEVEL (data)              |                             | LOGGED<br>CHECKED             | : MF<br>: SP           | •                          |                                               |  |

|                  | PROJECT : Mayfield Road Widening Project No. 17-308-292 |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             |                               |
|------------------|---------------------------------------------------------|--------------------|--------------------------------------------------------------------------|----------|---------------------------|--------|------------|----------------|---------------------------------------------|------------------|------------------------------|-------------|-------------------------|----|-----------------------------|-------------------------------|
| <u> </u>         | •                                                       |                    | •                                                                        | g        |                           |        |            |                |                                             |                  |                              | 7-308       | 292                     |    |                             |                               |
|                  | 4                                                       | )<br>CATI          |                                                                          | of Peel  | 1                         |        |            |                |                                             |                  |                              |             |                         | S  | HEET 1                      |                               |
| 3                |                                                         |                    | ETED : 16 May 2005                                                       |          |                           |        |            |                |                                             |                  |                              |             |                         | Д  | ATUM                        |                               |
|                  | щ                                                       | ĝ                  | SOIL PROFILE                                                             | T. T     |                           | SAM    | (PLE       | ŝ              |                                             | SHE/             | R STRE<br>net V -<br>nem V - | NGTH: C     | u, KPa<br>Q-X<br>Cpen A | -  | ي و                         |                               |
| J                | H SCA                                                   | E S                |                                                                          |          | iev.                      | £      |            | Ē              | COMMENTS                                    | L.               | 40                           | <u>80 1</u> | 20 10                   | 0  | ADDITTIONAL<br>Lab. testing | PIEZOMETER<br>OR<br>STANDORDE |
| 5                | DEPTH SCALE<br>(metres)                                 | BORING METHOD      | DESCRIPTION                                                              | ξb       | (11)<br>(11)              | NUMBER | Ĩ          | BLOWS/0.       | DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT | ۱ <sup>۰</sup> ۱ | wp I—                        |             | . PERCE                 | đ  | <u>ê</u> g                  | STANDPIPE<br>INSTALLATION     |
|                  | -                                                       |                    | GROUND SURFACE                                                           |          | 256,83                    |        |            | <u>.</u>       | 20 40 80 80 100                             |                  | ļ                            | 20          | ř 1                     | ·  | ·                           |                               |
|                  | F                                                       |                    | TOPSOIL, some rootlets, trace gravel,<br>brown                           |          | 256.45                    | 1 !    | ss         | 6              |                                             |                  | 0                            |             |                         | 75 |                             |                               |
|                  | ł.                                                      |                    | PEAT, silly, black                                                       | <b>1</b> | 0.36<br>255.84            |        |            |                |                                             |                  |                              |             |                         | 51 |                             |                               |
| <b>ر</b> ي       | <b>¦¹</b>                                               |                    | GLAY, sity, some sand, trace gravel, firm, grey: (CL)                    |          | 0.90                      | 2 8    | <b>8</b> 5 | 5              |                                             |                  |                              | <u>ه</u>    |                         |    |                             |                               |
|                  | [                                                       |                    | SILT, clayey, some send, trace gravel,<br>still, gray: (TILL)(CL-ML)     |          | 255.31<br>1.52            | 3 5    | 55         | 9              |                                             |                  | 0                            |             |                         |    |                             |                               |
| J                | -2                                                      |                    |                                                                          |          |                           |        |            | 1              |                                             |                  | ľ                            |             |                         |    |                             |                               |
| 3                | ŀ                                                       |                    |                                                                          |          |                           | 4 8    | ss         | 9 <sup>:</sup> |                                             |                  | 0                            |             |                         |    |                             |                               |
|                  | - 3                                                     | AUGERS             |                                                                          |          |                           | -+     |            |                |                                             | 1                |                              |             |                         |    |                             | -                             |
| ÷,               | ł                                                       |                    | wet sand løyer                                                           |          |                           | 5 5    | SS         | 11             |                                             |                  | 0                            |             |                         |    |                             |                               |
|                  | <b>Ļ</b> 4                                              | N STE              | wet sand lever<br>stiff to hard                                          |          |                           | 6 5    | s          | 13             |                                             | ĺ                | 0                            |             |                         |    |                             | -                             |
|                  | Į                                                       | 210 mm HOLLOW STEL |                                                                          |          |                           |        | _          |                |                                             |                  | 0                            |             |                         |    |                             |                               |
|                  | -5                                                      | Ē                  |                                                                          |          |                           | 7 8    | 36         | 16             |                                             |                  | þ                            |             |                         |    |                             |                               |
|                  | ŀ                                                       | 정                  |                                                                          |          |                           |        |            |                | ·                                           |                  | 1                            |             | E                       |    |                             |                               |
| $\left[ \right]$ | ₹<br>4-6                                                |                    |                                                                          |          |                           |        |            |                |                                             |                  | 1                            |             | ĺ .                     |    |                             | · · ·                         |
|                  |                                                         |                    |                                                                          |          |                           | 8 5    | s          | 47             |                                             |                  |                              |             |                         |    |                             |                               |
| 3                | ;                                                       |                    |                                                                          |          | 249,97<br>24 <b>9,9</b> 7 |        |            |                |                                             |                  |                              |             |                         |    |                             |                               |
|                  | 7                                                       |                    | BOULDER<br>SAND, the grained, trace allt, dense,<br>brown: (SP)          |          | 7.01                      |        | ľ          |                |                                             |                  | •                            |             |                         |    |                             | •                             |
|                  |                                                         |                    |                                                                          |          |                           |        | _          | ľ              |                                             |                  |                              |             |                         |    |                             | •                             |
|                  | -8                                                      |                    | END OF BOREHOLE AT 8.23 m.                                               |          | 248. <b>6</b> 0<br>8.23   | 8 5    | 39 :       | 36             |                                             | 0                |                              |             |                         |    |                             | <u>-</u>                      |
| 1                | È                                                       |                    | BOREHOLE OPEN TO 7.32 m AND<br>WATER LEVEL AT 6.10 m UPON                |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             | •                             |
|                  | - 9                                                     |                    | COMPLETION.<br>BOREHOLE GROUTED WITH<br>BENTONITE GROUT TO 1.52 m AND TO |          |                           |        |            | - :            |                                             |                  |                              |             |                         |    |                             | -                             |
| ;]               |                                                         |                    | SURFACE WITH BENTONITE<br>HOLEPLUG.                                      |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             |                               |
| 1                | -10                                                     |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             | -                             |
|                  |                                                         |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             |                               |
| -                | - 11                                                    |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             | :                             |
|                  |                                                         |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             |                               |
| J.               | -12                                                     |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             |                               |
| ]                |                                                         |                    |                                                                          |          |                           |        |            |                |                                             |                  | 1                            |             |                         |    |                             |                               |
|                  | 10                                                      |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              | ł           |                         |    |                             |                               |
| 7                | - 13                                                    |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              | ŀ .         |                         |    |                             | •                             |
| ي ا              |                                                         |                    |                                                                          |          |                           |        |            |                |                                             | 1                |                              |             |                         | 1  |                             |                               |
| (                | <u>-14</u>                                              |                    |                                                                          |          |                           |        |            |                |                                             |                  |                              |             |                         |    |                             |                               |
| 2.GP.1           |                                                         |                    |                                                                          |          |                           | j      |            |                |                                             |                  |                              |             |                         |    |                             |                               |
| 629              | '                                                       |                    | GROUNDWATER ELEV                                                         |          |                           |        |            | <u>. 1</u>     | <u> </u>                                    | 1                | 4                            | <u> </u>    | 1                       | 1  | I                           |                               |
| U BER25          |                                                         |                    |                                                                          | LLATIO   | ON                        |        |            |                | EEP/DUAL INSTALLATION                       |                  |                              | GGED        | : MF                    |    |                             |                               |
| 의 휠              | I                                                       |                    | WATER LEVEL (dete)                                                       |          |                           |        | W          | /AT            | ER LEVEL (da <b>le</b> )                    |                  | CH                           | ecked       | : SP                    |    |                             | THURBER                       |

|                    | RECORD OF BOREHOLE 05-6 |               |                 |                                                                                                                                                                                                                       |             |                       |        |                |            |                                                         |        |                     |                     |                       |               |                            |                                               |   |
|--------------------|-------------------------|---------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|--------|----------------|------------|---------------------------------------------------------|--------|---------------------|---------------------|-----------------------|---------------|----------------------------|-----------------------------------------------|---|
|                    | ់ ៤០                    | CAT<br>FART   | 10<br>ED        | N : Mayfield Road, Region                                                                                                                                                                                             |             | <b>ee</b> l           |        |                |            |                                                         | Projec | t No. 🥬             | 7-300               | -292                  |               | HEET 1<br>Atum             |                                               |   |
|                    | ш                       | 8             | Т               | SOIL PROFILE                                                                                                                                                                                                          |             |                       | SAN    | APLI           | ES         |                                                         | SHE    | IR STREI<br>nel V - | GTH: C              | au, KPa<br>Q-X        |               |                            |                                               |   |
|                    | DEPTH SCALE<br>(maires) | BORING METHOD |                 | DESCRIPTION                                                                                                                                                                                                           | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | TYPE           | BLOWS/0.3m | COMMENTS<br>DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT | ,      | /ATER C             | no 1<br>L<br>DNTENT | Cpen ▲<br>120 10<br>1 | NT<br>A       | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |   |
|                    |                         |               | 1               | GROUND SURFACE                                                                                                                                                                                                        |             | 255.49                |        | _1             | -          |                                                         |        | 1                   |                     |                       |               |                            |                                               |   |
|                    | -1                      |               | AUGERS          | PEAT, some sill, trace clay, trace gravel,<br>some roaliets, very loose to compact, dark<br>brown, wet<br>weier flowing into borehole<br>SILT, clayey, some send, trace gravel, firm<br>to stiff, gray; (TILL)(CL-ML) |             | 254.36<br>1.14        | 1      | ss             | 10         |                                                         |        |                     |                     |                       | 72<br>68<br>( |                            |                                               |   |
|                    | -2                      |               | TOURN SOLU SIEN |                                                                                                                                                                                                                       |             |                       | 4      | 85<br>85<br>85 |            | -<br>-                                                  |        | 0<br>0              |                     |                       |               |                            | -                                             |   |
|                    | - 3<br>-4               |               |                 | END OF BOREHOLE AT 3.86 m.<br>BOREHOLE OPEN TO 3.86 m AND<br>WATER LEVEL TO SURFACE ON                                                                                                                                |             | 251,63<br>3.66        | 6      | SS             | 14         | :                                                       |        | ¢                   |                     |                       |               |                            |                                               | - |
| )                  | -5                      |               |                 | COMPLETION.<br>BOREHOLE BACKFILLED WITH DRILL<br>CUTTINGS.                                                                                                                                                            |             | 2                     |        |                |            |                                                         |        |                     |                     |                       |               |                            |                                               |   |
|                    | -6                      |               |                 | . •                                                                                                                                                                                                                   |             |                       |        |                |            |                                                         |        |                     |                     |                       |               |                            |                                               |   |
|                    | -7                      |               |                 |                                                                                                                                                                                                                       |             |                       |        |                |            |                                                         |        |                     |                     |                       |               |                            | •<br>•<br>•                                   |   |
|                    | -9                      |               |                 |                                                                                                                                                                                                                       |             |                       |        |                |            |                                                         |        |                     |                     |                       |               |                            |                                               |   |
|                    | -10                     |               |                 |                                                                                                                                                                                                                       |             |                       |        |                |            |                                                         |        |                     |                     |                       |               |                            |                                               |   |
|                    | - 11<br>- 12            |               |                 |                                                                                                                                                                                                                       |             |                       |        |                |            |                                                         |        |                     |                     |                       |               |                            |                                               |   |
|                    | - 13                    |               |                 |                                                                                                                                                                                                                       |             |                       |        |                |            |                                                         |        |                     |                     |                       |               |                            |                                               |   |
| 92.GP.1 2 5        | -14                     |               |                 |                                                                                                                                                                                                                       |             |                       |        |                |            |                                                         |        |                     |                     |                       |               |                            |                                               |   |
| 3 825              | !                       | <u></u>       |                 | GROUNDWATER ELE                                                                                                                                                                                                       |             |                       | 3      |                |            | · · · · · · · · · · · · · · · · · · ·                   |        | -                   | <u></u>             |                       | •             | -                          |                                               |   |
| -IURBER25 8282 GPJ |                         |               |                 | SHALLOW/SINGLE INSTA<br>WATER LEVEL (date)                                                                                                                                                                            | LLA         | TION                  |        |                |            | EEP/DUAL INSTALLATION<br>TER LEVEL (date)               |        |                     | gged<br>Ecked       |                       |               |                            |                                               |   |

|                   | RECORD OF BOREHOLE 05-7         PROJECT       :       Mayfield Road Widening       Project No. 17-308-292       Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2"         PROJECT       :       Mayfield Road Widening       Project No. 17-308-292       Image: Colspan="2">Image: Colspan="2"         LOCATION       :       Mayfield Road, Region of Peel       Image: Colspan="2">Thursday |           |                         |                                                                                                                              |             |                  |        |      |            |                                                         |                                          |         |                            |                                               |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|--------|------|------------|---------------------------------------------------------|------------------------------------------|---------|----------------------------|-----------------------------------------------|
|                   | LO<br>ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XCA<br>AR | tio<br>Tee              | N : Mayfield Road, Region<br>: 17 May 2005                                                                                   |             | 9 <b>0</b> 1     |        |      |            |                                                         | Project No. 17-30                        | s       | HEET 1                     |                                               |
|                   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                         | TED : 17 May 2005<br>SOIL PROFILE                                                                                            |             |                  | SA     | MPL  | ES         | l                                                       | SHEAR STRENGTH<br>net V - O<br>rem V - O |         | ATUM                       |                                               |
|                   | DEPTH SCALE<br>(maires)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                         | DESCRIPTION                                                                                                                  | STRATA PLOT | elev.<br>Depth   | NUMBER | TYPE | BLOWS/0.3m | COMMENTS<br>DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT | 40 80                                    | 120 180 | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
|                   | ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | Ś                       |                                                                                                                              | J.<br>€     | (m)<br>          | Ľ      |      | BLO        | 20 40 80 80 100                                         | wpi                                      | 30 40   | ×5                         |                                               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ┝┤        | ┥                       | GROUND SURFACE<br>PEAT, sandy, some sill, trace clay, trace<br>gravel, some rootiets, very loose, dark                       | EE          | 256.40           |        | ss   | σ.         | · · · · · · · · · · · · · · · · · · ·                   | ┨╌┟╾┼╼                                   | 55      |                            |                                               |
|                   | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | ωĮ                      | StLT, clayey, some send, trace gravel,<br>stLT, clayey, some send, trace gravel,<br>very still to still, gray: (TILL)(CL-ML) |             | 254,95<br>- 0,63 | -      | 55   |            |                                                         | 0                                        |         |                            |                                               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 100 mm SOLID STEM AUGER |                                                                                                                              |             |                  | 3      | 53   | 6          |                                                         | o                                        |         |                            |                                               |
|                   | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | <u>S</u>                |                                                                                                                              |             | :                | 4      | 88   | 8          |                                                         | D                                        |         |                            |                                               |
|                   | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 100 m                   |                                                                                                                              |             |                  | 5      |      |            |                                                         | 0                                        |         |                            |                                               |
|                   | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | -                       | END OF BOREHOLE AT 3.06 m.<br>BOREHOLE OPEN TO 3.06 m AND<br>WATER LEVEL AT 1.52 m UPON                                      |             | 251,82<br>3.66   |        |      | 3          |                                                         | Ĩ                                        |         |                            |                                               |
|                   | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -         |                         | COMPLETION.<br>BOREHOLE BACKFELLED WITH DRILL.<br>CUTTINGS.                                                                  |             |                  |        |      |            |                                                         |                                          |         |                            |                                               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                         |                                                                                                                              |             |                  |        |      |            |                                                         |                                          |         |                            |                                               |
| -                 | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                         |                                                                                                                              |             |                  |        |      |            |                                                         |                                          |         |                            |                                               |
|                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                         |                                                                                                                              | -           |                  |        |      |            |                                                         |                                          |         |                            |                                               |
|                   | -8 <sup>:</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | :                       |                                                                                                                              | 1.<br>      |                  |        |      | :          |                                                         |                                          | :       |                            | -                                             |
|                   | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                         | •<br>•                                                                                                                       |             |                  |        |      |            |                                                         |                                          |         |                            |                                               |
|                   | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                         |                                                                                                                              |             |                  |        |      | •          |                                                         |                                          |         |                            | -<br>-<br>-<br>-                              |
|                   | - 11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                         |                                                                                                                              |             |                  | :      |      |            |                                                         |                                          |         |                            |                                               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                         |                                                                                                                              |             |                  |        |      |            |                                                         |                                          |         |                            |                                               |
|                   | -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                         |                                                                                                                              |             |                  |        |      |            |                                                         |                                          |         |                            |                                               |
|                   | - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                         |                                                                                                                              |             |                  |        |      |            |                                                         |                                          |         |                            | -                                             |
| 12 5              | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                         |                                                                                                                              |             |                  |        |      |            |                                                         |                                          |         |                            | 4                                             |
| 6292.GP           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                         | GROUNDWATER ELI                                                                                                              |             |                  |        |      |            |                                                         |                                          |         |                            |                                               |
| IURBER2S 6292.GPJ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                         | GROUNDWATER ELI<br>SHALLOW/SINGLE INST<br>WATER LEVEL (date)                                                                 |             |                  | 2      |      |            | DEEP/DUAL INSTALLATION<br>TER LEVEL (date)              | LOGGE                                    |         |                            |                                               |

| RECORD OF BOREHOLE 05-8 |                         |               |                                                                                                                     |             |                |               |            |            |                                                         |          |                               |                 |                                |          |                            |                                 |
|-------------------------|-------------------------|---------------|---------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------------|------------|------------|---------------------------------------------------------|----------|-------------------------------|-----------------|--------------------------------|----------|----------------------------|---------------------------------|
|                         | PF                      | ROJE          |                                                                                                                     |             |                |               | • •        | _          |                                                         |          |                               | 7-308-          | 292                            |          |                            |                                 |
|                         |                         | )<br>CATI     | • •                                                                                                                 | of Po       | eei            |               |            |            |                                                         |          |                               |                 |                                | Sł       | HEET 1                     | OF1                             |
| L                       |                         |               | ETED : 17 May 2005                                                                                                  |             |                |               |            |            |                                                         |          |                               |                 |                                |          | ATUM                       |                                 |
|                         | щ                       | ₿             | SOIL PROFILE                                                                                                        | <b></b>     |                | SA            | VIPL       | ĖS         | · · · · ·                                               | SHEA     | R STREI<br>naliV -<br>rem V - | NGTH: CA        | u, KPa<br>Q-X<br>Cpen ▲        |          | ₹₽                         | PIEZOMETER                      |
| •                       | DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                                                                                                         | STRATA PLOT | ELEV.<br>DEPTH | NUMBER        | TYPE       | BLOWS/0.3m | COMMENTS<br>DYNAMIC COME PENETRATION<br>RESISTANCE PLOT | Ι,       | ATER C                        |                 | 20 18<br>     <br>  PERCEI<br> | o<br>tr  | ADDYTIONAL<br>LAB. TESTING | OR<br>STANDPIPE<br>INSTALLATION |
|                         | Ľ                       | 8             | GROUND SURFACE                                                                                                      | 5           | (m)<br>255 53  |               |            | ľ          | 20 40 60 80 100                                         |          | 10 :                          | 20 3            |                                | <u>}</u> |                            |                                 |
| 5                       |                         |               | PEAT, sandy, some all, trace cley, some<br>rootlets, very loose, blacidsh grey                                      |             | 255.53<br>0.00 | 1             | ss         | 0          | ······································                  | <u> </u> |                               | 0               |                                | <b></b>  |                            |                                 |
|                         | 1                       |               | SILT, clayey, some sand, trace gravel, firm<br>to stiff, gray: (TiLL)(ML)                                           | Ĭ           | 266.00<br>0,53 |               | SS         |            |                                                         |          | 0                             |                 |                                |          |                            | -                               |
|                         | ŀ                       |               |                                                                                                                     |             |                | 3             | ŞS         | 8          |                                                         | Ì        | 0                             | :               |                                |          |                            |                                 |
| Ð                       | <b>-</b> 2              |               |                                                                                                                     |             |                | 4.            | <b>S</b> S | 8          |                                                         |          | 0                             |                 |                                |          |                            | -                               |
|                         | -3                      |               |                                                                                                                     |             |                | 6             | 88         | 10         |                                                         |          | o<br>O                        |                 |                                | :        |                            | •                               |
|                         | ŀ                       |               |                                                                                                                     |             | 251,67         | 6             | <b>S</b> S | 8          |                                                         |          | <u>o</u>                      |                 |                                |          |                            | •                               |
|                         | <b>F</b> ₄              |               | END OF BOREHOLE AT 3.86 m.<br>BOREHOLE OPEN TO 3.86 m.<br>BOREHOLE OPEN TO 3.86 m AND<br>WATER LEVEL AT 2.44 m UPON |             | 3,66           |               | :          |            |                                                         | -        |                               |                 |                                |          |                            | -                               |
|                         | -5                      |               | COMPLETION.<br>BOREHOLE BACKFILLED WITH DRILL<br>CUTTINGS.                                                          |             |                |               |            |            |                                                         |          |                               |                 |                                |          |                            | •                               |
| $\int$                  | <br>⊢6                  |               |                                                                                                                     |             |                |               |            |            |                                                         |          |                               |                 |                                |          |                            |                                 |
|                         |                         |               |                                                                                                                     |             |                |               |            |            |                                                         | 1        |                               |                 |                                |          |                            | •                               |
| 19<br>19                | 7                       |               |                                                                                                                     |             |                |               |            |            |                                                         |          | 1                             |                 |                                |          |                            | -<br>-<br>-                     |
|                         | -8                      |               |                                                                                                                     |             |                |               |            |            |                                                         |          |                               |                 |                                |          |                            | -                               |
|                         | -9                      |               |                                                                                                                     |             |                | -             |            |            |                                                         |          | 5                             |                 |                                |          |                            |                                 |
|                         | -10                     |               |                                                                                                                     |             |                |               |            |            |                                                         |          |                               |                 |                                |          |                            | -                               |
|                         | ŀ                       |               |                                                                                                                     |             |                |               |            |            |                                                         |          |                               |                 |                                |          |                            |                                 |
|                         | - 11                    |               |                                                                                                                     |             |                |               |            |            |                                                         |          |                               |                 | ŀ                              |          |                            | -                               |
|                         | -12                     |               |                                                                                                                     |             |                |               |            |            |                                                         |          |                               |                 |                                |          |                            | -                               |
|                         | - 13                    |               |                                                                                                                     |             | -              |               |            |            |                                                         |          |                               |                 |                                |          |                            |                                 |
| l s                     |                         |               |                                                                                                                     | ļ           |                |               |            |            |                                                         |          |                               |                 |                                |          |                            |                                 |
| S.G.                    | ⊢14<br>I                |               |                                                                                                                     | İ           |                |               |            |            |                                                         |          |                               |                 |                                |          |                            |                                 |
|                         | <u> </u>                |               | GROUNDWATER ELEV                                                                                                    | l.<br>VA    | L<br>TIONS     | <u>і</u><br>З |            | L          | I                                                       | <u> </u> |                               | <u> </u>        | <u> </u>                       |          | I                          | L                               |
| HURBERZS 8292.GPJ       |                         |               | SHALLOW/SINGLE INSTA<br>WATER LEVEL (dette)                                                                         |             |                |               |            |            | EEP/DUAL INSTALLATION<br>FER LEVEL (date)               |          |                               | IGGED<br>HECKED | : MF<br>: SP                   |          |                            |                                 |

·

|        | PR                      | OJEC          |                                                                                                                                     | ,          |                         | <b>D</b> F | <u>R</u> D                                  | 0          | F BOREHOLE 10                                          | <b>)1-05</b><br>Project No. 17-308-292                                                                                                                                                                                       |                            |                                               |
|--------|-------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|------------|---------------------------------------------|------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|
|        | ST.                     | CATI          | ·                                                                                                                                   | of Pe      | ei                      |            |                                             |            |                                                        |                                                                                                                                                                                                                              | SHEET                      | THURBER                                       |
| 73     |                         |               | SOIL PROFILE                                                                                                                        |            |                         | SA         | MPL                                         | ES         |                                                        | SHEAR STRENGTH: CU, KPa                                                                                                                                                                                                      |                            |                                               |
|        | DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                                                                                                                         | STRATAPLOT | ELEV.,<br>DEPTH<br>(m)  | NUMBER     | ТУРЕ                                        | BLOWS/0.3m | COMMENTS<br>DYNAMC COME PENETRATION<br>RESISTANCE PLOT | nem         V - ●         Cpen A           40         80         120         160           WATER CONTENT, PERCENT         wp         -         -         -           10         20         30         40         -         - | ADOTTIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
|        |                         | Ī             | GROUND SURFACE                                                                                                                      |            | 200.00                  |            |                                             |            |                                                        |                                                                                                                                                                                                                              | 75                         | 50 mm <b>499/7</b> 0                          |
| 9      |                         |               | TOPSOIL, sandy, some silt, some rootets,<br>trace clay, very loose, dark brown                                                      | E          | 2 <b>59</b> ,47<br>0.53 | 1          | SS                                          | 0          |                                                        |                                                                                                                                                                                                                              | Î                          |                                               |
|        | -1                      |               | CLAY, sity, some sand, trace to some<br>gravel, stiff, brown: (TILL)(CL)                                                            |            | 258,63<br>1.37          | 2          | SS                                          | 10         |                                                        | o                                                                                                                                                                                                                            |                            |                                               |
|        | -2                      |               | SILT, clayey, some eand, trace gravel, stiff<br>to very stiff, brown to gray: (TILL)(CL-ML)                                         |            | 1.51                    | 3          | 85                                          | 12         |                                                        | 0                                                                                                                                                                                                                            |                            | Grout                                         |
|        | - 3                     | 4112589       |                                                                                                                                     |            |                         | 4          | <b>\$</b> \$                                | 17         | Grain Size Analysia:<br>Gr 16%/Sa 38%/Si 33%/ Ci 15%   | o                                                                                                                                                                                                                            |                            | Grout                                         |
|        | -4                      |               |                                                                                                                                     |            |                         |            |                                             |            |                                                        |                                                                                                                                                                                                                              |                            |                                               |
| ]      | -5                      | 20            |                                                                                                                                     |            |                         | 5          | <b>SS</b>                                   | 30         |                                                        | d                                                                                                                                                                                                                            | i.                         | 255,12                                        |
| C      | 1<br> -6                |               |                                                                                                                                     |            |                         |            |                                             |            |                                                        |                                                                                                                                                                                                                              |                            | Filler Sand on                                |
|        | ł                       |               |                                                                                                                                     |            |                         | 6          | SS                                          | 24         |                                                        | <b>0</b>                                                                                                                                                                                                                     |                            | Siotled 5.                                    |
|        | 7                       |               |                                                                                                                                     |            | ÷                       |            | •<br>: •                                    |            |                                                        |                                                                                                                                                                                                                              |                            |                                               |
|        | -8                      |               |                                                                                                                                     |            | 251,77                  |            | 85                                          | 25         |                                                        | φ                                                                                                                                                                                                                            |                            | = 252.38<br>261.77                            |
| _      | - 9                     |               | END OF BOREHOLE AT 8.23 m.<br>Well installetion consists of 50 mm diameter<br>Schedule 40 PVC pipe with a 1.52 m slotled<br>acreen. |            | 8,23                    |            |                                             |            |                                                        |                                                                                                                                                                                                                              | d.                         |                                               |
| -      |                         |               | WATER LEVEL READINGS:<br>DATE DEPTH                                                                                                 |            |                         |            |                                             |            | 1                                                      |                                                                                                                                                                                                                              |                            |                                               |
|        | -10                     |               | DATE DEPTH<br>(m)<br>19/05/05 Dyy<br>29/05/05 7.75<br>30/05/05 7.47                                                                 |            |                         |            |                                             |            |                                                        |                                                                                                                                                                                                                              |                            |                                               |
|        | -11                     |               |                                                                                                                                     |            |                         |            |                                             |            |                                                        |                                                                                                                                                                                                                              |                            |                                               |
|        | -12                     |               |                                                                                                                                     |            |                         | .<br>      |                                             |            |                                                        |                                                                                                                                                                                                                              |                            |                                               |
|        | - 13                    |               |                                                                                                                                     |            |                         |            |                                             |            |                                                        |                                                                                                                                                                                                                              |                            |                                               |
|        | 9-14                    |               |                                                                                                                                     |            |                         |            |                                             |            |                                                        |                                                                                                                                                                                                                              |                            |                                               |
|        | 202                     | 11            | GROUNDWATER ELE                                                                                                                     | EVA        | TION                    | S          | <u>ــــــــــــــــــــــــــــــــــــ</u> | ÷          | <u> </u>                                               | <u></u>                                                                                                                                                                                                                      | <u>.</u>                   |                                               |
| 1 1000 | URBERZS                 |               | SHALLOW/SINGLE INST<br>WATER LEVEL (data)                                                                                           |            |                         |            | •<br>-                                      |            | DEEP/DUAL INSTALLATION<br>(TER LEVEL (date)            | Logged : MF<br>Checked : Sp                                                                                                                                                                                                  |                            |                                               |

|               |                                                                             |               |                               |                                                                         |             | REC    | OR       | D                     | 0          | F BOREHOLE 10                                           |          |                               | 7.209     | 202                                          |        |                            |                          |
|---------------|-----------------------------------------------------------------------------|---------------|-------------------------------|-------------------------------------------------------------------------|-------------|--------|----------|-----------------------|------------|---------------------------------------------------------|----------|-------------------------------|-----------|----------------------------------------------|--------|----------------------------|--------------------------|
|               |                                                                             | CAT           |                               | Mayfield Road Widenin<br>Mayfield Road, Region                          | -           | el     |          |                       |            |                                                         | Project  | No. 1                         | -300-     | 292                                          |        |                            |                          |
| <u> </u>      |                                                                             | ART           |                               | 18 May 2005                                                             |             |        |          |                       |            |                                                         |          |                               |           |                                              |        | HEET 1<br>ATUM             |                          |
|               |                                                                             |               | ETED :                        | 18 May 2005<br>SOL PROFILE                                              |             |        | SAL      | <b>IPLE</b>           | :e         |                                                         | SHEA     | R STREN<br>nat V -<br>rem V - | GTH: C    | u, KPa                                       | _      |                            |                          |
|               | ۳<br>۲                                                                      | D HI          |                               |                                                                         | 5           |        | T        |                       | 1          |                                                         |          | naarv-<br>naarv-<br>io B      | ●<br>0 1; | Cpen /<br>20 1                               | 60     | <b>AND</b>                 | PIEZOMETER<br>OR         |
|               | DEPTH SCALE<br>(metras)                                                     | BORING METHOD |                               | DESCRIPTION                                                             | STRATA PLOT | ELEV.  | NUMBER   | TYPE                  | BLOWS/0.3m | COMMENTS<br>DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT |          | ATER CO                       | NTENT,    | . PERCE                                      |        | ADDITIONAL<br>LAB. TESTING | STANDPIPE                |
| 1             | 8                                                                           | BOR           |                               |                                                                         | STRA        | (m)    | N        |                       | BLO        | 20 40 60 60 100                                         |          | р 2<br>0 2                    | 0 3       |                                              | к<br>ф | < 3                        |                          |
| J             |                                                                             |               |                               | ID SURFACE                                                              | 22          | 261,60 |          | _                     | $\neg$     |                                                         |          |                               |           | <u>                                     </u> | 1      |                            |                          |
| ,             |                                                                             |               | SILT. d                       | eyey, some sand, trace gravel,<br>own, moist: (TILL)(CL-ML)             |             | 0,17   | 1        | SS                    | 3          |                                                         |          | 0                             |           |                                              |        |                            | 50 mm Well               |
|               |                                                                             |               |                               |                                                                         |             |        |          |                       |            |                                                         |          | 1                             |           | ľ                                            |        |                            | Seel 280.00              |
|               | - 1                                                                         |               |                               |                                                                         |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
|               |                                                                             |               |                               |                                                                         |             |        | 2        | SS 3                  | 34         | Grain Size Analysis:<br>Gr 6%/ Se 35%/ Si 40%/ Ci 19%   |          |                               |           |                                              | 1      |                            | Grout                    |
|               | -2                                                                          |               |                               |                                                                         |             |        | ┟╌┦      |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
| 3             |                                                                             |               |                               |                                                                         |             |        |          |                       |            |                                                         | ļ        |                               |           |                                              |        |                            | Grout                    |
|               | -3                                                                          |               |                               |                                                                         |             |        | $\vdash$ | $\dashv$              |            |                                                         |          |                               |           |                                              |        |                            |                          |
|               |                                                                             |               | SUDBLE                        | grinding                                                                |             |        | 3        | 5S 2                  | 29         |                                                         | °        |                               |           |                                              |        |                            |                          |
|               | -4                                                                          |               |                               |                                                                         |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
|               |                                                                             |               | S becomi                      | ng grey                                                                 |             | ľ      |          |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
|               |                                                                             |               |                               |                                                                         |             |        | 4        | ss                    | 47         | Grain Size Analysia:<br>Gr 5%/ Sa 33%/ Si 41%/ Ci 21%   |          | þ                             |           |                                              |        |                            |                          |
|               | -5                                                                          |               | 5                             |                                                                         |             |        | ┝╼┞      | i                     |            |                                                         |          |                               |           |                                              |        |                            | <b>⊻</b>                 |
|               |                                                                             |               |                               | •                                                                       |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
| $\sim$        | <b>6</b>                                                                    |               |                               |                                                                         |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            | 265.20                   |
| ~ I           |                                                                             |               |                               |                                                                         |             |        | 5        | 55                    | 38         |                                                         | 1        | P                             |           | 1                                            |        | •                          | Regionile                |
|               | -7                                                                          |               |                               |                                                                         |             | 254.44 |          |                       |            |                                                         |          |                               | }         |                                              | 1      |                            | Bentonije<br>Seel 254.69 |
| 3             |                                                                             | lł            | web (M                        | ace sand, danse to compact, grey,<br>L-NONPLASTIC)<br>grinding at 7.3 m |             | 7.11   |          |                       |            |                                                         |          |                               |           |                                              |        |                            | Filler Sand<br>253.96    |
| 1             | -8                                                                          |               |                               | ·                                                                       |             | 1      | 6        | ss                    | 34         |                                                         | · (      |                               |           |                                              |        |                            |                          |
|               |                                                                             | Ĭ             |                               |                                                                         |             |        |          |                       |            |                                                         |          | 1                             |           |                                              |        |                            | Siotled Screen           |
|               |                                                                             |               |                               |                                                                         |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            | 252.48                   |
|               | -9                                                                          |               |                               |                                                                         |             |        | ╞╤┤      | 85                    | -          |                                                         |          | 0                             |           |                                              |        |                            |                          |
| J             |                                                                             | $\square$     | END O                         | F BOREHOLE AT 8.76 m.                                                   | Ш           | 251,8  |          | <b>5</b> 3            | 10         |                                                         |          |                               |           |                                              |        | 1                          | 251,65                   |
| 7             | -10                                                                         |               | Well in                       | talletion consists of 50 mm diameter<br>is 40 PVC pipe with a 1.52 m    |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
| ]             |                                                                             |               | Slotled                       | screen.                                                                 |             |        |          |                       |            |                                                         |          | 1                             |           |                                              |        | 1                          |                          |
| .             | - 11                                                                        |               |                               | R LEVEL READINGS:                                                       |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            | 1                        |
|               | E                                                                           |               | DATE                          | DEPTH<br>(m)<br>5 Dov                                                   |             |        |          |                       |            |                                                         |          |                               |           |                                              |        | 1                          |                          |
|               | -12                                                                         |               | 18/05/0<br>19/05/0<br>26/06/0 | 5 7 <u>.2</u> 0                                                         |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
|               | t                                                                           |               | 30/05/0                       | 5 5.50                                                                  |             |        |          |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
| 1             |                                                                             |               | 1                             |                                                                         |             |        |          |                       |            |                                                         | 1        |                               |           |                                              |        |                            |                          |
|               | - 13                                                                        |               |                               |                                                                         |             |        |          |                       |            |                                                         |          |                               |           |                                              |        | 1                          |                          |
|               | E                                                                           |               |                               |                                                                         |             |        |          |                       |            |                                                         |          |                               |           | 1                                            |        |                            |                          |
|               | -14                                                                         |               |                               |                                                                         |             | ļ      |          |                       |            |                                                         |          |                               |           |                                              |        |                            |                          |
| 3 <b>P.1</b>  |                                                                             |               |                               |                                                                         |             |        |          |                       |            |                                                         |          | ļ                             |           |                                              |        |                            |                          |
| <b>8292</b> ( | GROUNDWATER ELEVATIONS<br>SHALLOW/SINGLE INSTALLATION<br>WATER LEVEL (date) |               |                               |                                                                         |             |        |          | L                     | 1          | <u> </u>                                                | <u> </u> | _ <b>_</b>                    | <u> </u>  | <u> </u>                                     | ·      |                            |                          |
| RBER2S        | S SHALLOW/SINGLE INSTALLATION                                               |               |                               |                                                                         |             | Ţ      | <u> </u> | EEP/DUAL INSTALLATION |            | ٤C                                                      | GGED     | ; N                           | IF        |                                              |        |                            |                          |
| 1             |                                                                             |               |                               | ATER LEVEL (date)                                                       |             |        |          |                       |            | TER LEVEL (date)                                        |          |                               | ÆCKED     | ): S                                         | iP     |                            | <u>   (</u><br>Thuree    |

|             |                         |               |                                       |                                                                                                  | RE     | CC                             | ORE            | ) (        | OF BOREHOLE 1                                           | 03-05                                                                                                                                                             |                                                     |
|-------------|-------------------------|---------------|---------------------------------------|--------------------------------------------------------------------------------------------------|--------|--------------------------------|----------------|------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Π           |                         | ROJI<br>OCA   |                                       | Mayfield Road Widenin<br>Mayfield Road, Region                                                   |        |                                |                |            |                                                         | Project No. 17-308-292                                                                                                                                            |                                                     |
| -           | l s                     | TAR           | -                                     | 18 May 2005                                                                                      | •••••• |                                |                |            |                                                         |                                                                                                                                                                   | THURBER<br>SHEET 1 OF 1<br>DATUM                    |
| ŋ           |                         | <b>—</b>      |                                       | SOIL PROFILE                                                                                     |        | Т                              | Samp           | LES        | · · · · · · · · · · · · · · · · · · ·                   | SHEAR STRENGTH: Cu, KPa                                                                                                                                           |                                                     |
|             | DEPTH SCALE<br>(metres) | BORING METHOD |                                       | DESCRIPTION                                                                                      | E DE   | EV.<br>PTH                     | NUMBER<br>Type | BLOWS/0.3m | COMMENTS<br>DYNAMIC COME PENETRATION<br>RESISTANCE PLOT | nam V - ●         Cpin ▲           40         80         120         180           WATER CONTENT, PERCENT         Weight = 0         100         100           Wp | PIEZOMETER<br>OS<br>EH<br>STANDPIPE<br>INSTALLATION |
| 2           |                         |               |                                       | ID SURFACE                                                                                       |        | -                              | -              | B          | 20 40 80 80 100                                         |                                                                                                                                                                   |                                                     |
| LL B        | 1                       |               | TOPSO<br>SILT, cl<br>very stif        | IL<br>ayey, some sand, trace gravel,<br>f to hard, brown: (TiLL)(CL-ML)                          | 2      | 12 13<br>0.00<br>61,83<br>0.30 | 1 85           | 5          |                                                         | 0 C                                                                                                                                                               | 50 mm Well<br>Bentonite<br>Seel 201.22              |
|             | -2                      |               |                                       |                                                                                                  |        |                                | 2 85           | 22         |                                                         | <b>a</b>                                                                                                                                                          |                                                     |
|             | -3                      |               |                                       |                                                                                                  |        |                                | 3 55           | 65         | Grain Size Analysis:<br>Gr 6%/ Sa 37%/ \$i 36%/ Ci 16%  | a                                                                                                                                                                 | Grout                                               |
|             | -4                      |               |                                       |                                                                                                  |        |                                |                |            |                                                         |                                                                                                                                                                   |                                                     |
|             | 5                       |               | becomin                               | g griey, hard augering                                                                           |        |                                | 4 55           | 62         |                                                         | •                                                                                                                                                                 |                                                     |
|             | -6                      |               | -                                     |                                                                                                  |        |                                | 5 55           | 65         |                                                         | ρ                                                                                                                                                                 | ∑ 256.03                                            |
|             | -8                      |               | occasion                              | ai sit leyers                                                                                    |        |                                | 6 55           | 53         |                                                         | o                                                                                                                                                                 | Filter Sego                                         |
|             | -9                      |               |                                       |                                                                                                  |        | :                              | 7 55           | 28         |                                                         | a                                                                                                                                                                 | Stotlad<br>Screen 252,00                            |
|             | -10                     |               | Well inst                             | BOREHOLE AT 9.76 m.<br>allation consists of 50 mm diameter<br>a 40 PVC pipe with a 1.52m slotted | 25     | 2.38<br>9.75                   |                |            |                                                         |                                                                                                                                                                   | 252.38                                              |
|             | - 11                    |               | WATER<br>DATE<br>16/05/05<br>26/05/05 | LEVEL READINGS:<br>DEPTH<br>(m)<br>8,93<br>8,15                                                  |        |                                | -              |            |                                                         |                                                                                                                                                                   |                                                     |
|             | -12                     |               | 30/05/05                              | 6,10                                                                                             |        |                                |                |            |                                                         |                                                                                                                                                                   |                                                     |
| -<br>-<br>- | - 13<br>- 14            |               |                                       |                                                                                                  |        |                                |                |            |                                                         |                                                                                                                                                                   |                                                     |
| B292.GPJ    | _ 1 <del>1</del>        |               |                                       |                                                                                                  |        |                                |                |            |                                                         |                                                                                                                                                                   |                                                     |
| HURBER23 8  |                         |               | ₽;                                    | ROUNDWATER ELE <sup>®</sup><br>SHALLOW/SINGLE INSTA<br>ITER LEVEL (data)                         |        |                                |                |            | EEP/DUAL INSTALLATION<br>ER LEVEL (date)                | Logged : Mf<br>Checked : Sp                                                                                                                                       |                                                     |

| ]                 | 1                       | ROJE          | -                                                                                                                                   | ng         |                          | OR     | D                  | OF BOREHOLE 1                                         | <b>04-05</b><br>Project No. 17-308-292                                                                                                                                          |                            |                                               |
|-------------------|-------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|--------|--------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|
|                   | •                       | TART          | ED : 17 May 2005<br>LETED : 17 May 2005                                                                                             |            |                          |        |                    |                                                       |                                                                                                                                                                                 | SHEET <sup>·</sup>         | THURBER<br>1 OF 1                             |
| 1                 |                         | 8             |                                                                                                                                     |            |                          | SAN    | PLES               | l                                                     | SHEAR STRENGTH: Cu, KPa<br>nal V - + Q - X                                                                                                                                      |                            |                                               |
|                   | DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                                                                                                                         | STRATAPLOT | ELEV.<br>DEPTH<br>(m)    | NUMBER | TYPE<br>BLOWS/0.3m |                                                       | nam V - ●         Cpan A           40         80         120         180           10         10         10         10         10           WATER CONTENT, PERCENT         wp I | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
|                   |                         |               | GROUND SURFACE                                                                                                                      |            | 201.00                   |        |                    |                                                       |                                                                                                                                                                                 |                            |                                               |
|                   | -1                      |               | TOPSQL: (150 mm)<br>SILT, dayey, some sand, brace gravel,<br>very stat to hard, brown: (TILL)(CL-ML)                                |            | 0.00                     | 1 1    | 55 10<br>          |                                                       | 0                                                                                                                                                                               |                            | 50 mm Well<br>Bentonite<br>Seal<br>200.34     |
|                   | -2                      |               |                                                                                                                                     |            |                          | 38     | 88 20              |                                                       | o                                                                                                                                                                               | 1                          |                                               |
|                   | -3                      |               |                                                                                                                                     |            |                          | ╞┼     | 35 20<br>          |                                                       |                                                                                                                                                                                 |                            | Grout                                         |
|                   | 4                       |               |                                                                                                                                     |            |                          | 6 8    | 18 39              |                                                       | o                                                                                                                                                                               |                            |                                               |
|                   | -5                      |               | becoming grey                                                                                                                       |            | 1                        | 78     | 8 30               | Grain Size Analysis:<br>Gr 4%/ Sa 37%/ Si 39%/ Ci 19% | 6                                                                                                                                                                               |                            |                                               |
| $\square$         | 6<br>-7                 | 100           | auger grinding on boulder                                                                                                           |            |                          | 3      | 15 50<br>.07       |                                                       | c                                                                                                                                                                               |                            | ∑ 255.78<br>Benionite<br>Seni<br>254.85       |
|                   | -8                      |               | SILT, sandy, trace gravel, occasional<br>cobbles and boulders, very dense, grey:<br>(ML-NONPLASTIC)<br>augers grinding at 8 - 8.5 m |            | 254.24<br>7,82           | 8 €    | 15 71              |                                                       | 0                                                                                                                                                                               |                            | Filter Sept. 24<br>Skotled<br>Screen          |
|                   | -9                      |               | SRLT, clayey, some sand, trace gravel,<br>hard, gray: (THL)(CL-ML)                                                                  |            | 252,72<br>9,14<br>262,11 | 10 5   | 15 33              |                                                       | p                                                                                                                                                                               |                            | 252.72                                        |
|                   | -10                     |               | END OF BOREHOLE AT 9.76 m.<br>Well instaliation consists of 50 mm demeter<br>Schedule 40 PVC pipe with a 1.52 m slotted<br>screen.  |            | 9,75                     |        |                    |                                                       |                                                                                                                                                                                 |                            |                                               |
|                   | - 11                    |               | WATER LEVEL READINGS:<br>DATE DEPTH<br>(m)<br>1705/05 7.55                                                                          |            |                          |        |                    |                                                       |                                                                                                                                                                                 |                            |                                               |
|                   | -12                     |               | 2805/05 6.00<br>30/05/05 6.10                                                                                                       |            |                          |        |                    |                                                       |                                                                                                                                                                                 |                            |                                               |
|                   | - 13                    |               |                                                                                                                                     |            |                          |        |                    |                                                       |                                                                                                                                                                                 |                            |                                               |
| 2GPJ              | •14                     |               |                                                                                                                                     |            |                          |        |                    |                                                       |                                                                                                                                                                                 |                            |                                               |
| 828               |                         |               | GROUNDWATER ELE                                                                                                                     |            | TIONS                    |        |                    | 1                                                     |                                                                                                                                                                                 | ليساب                      |                                               |
| HURBERZS 8292.GPJ |                         |               | 又 SHALLOW/SINGLE INSTA<br>WATER LEVEL (date)                                                                                        |            |                          |        |                    | EEP/DUAL INSTALLATION<br>TER LEVEL (date)             | Logged : MF<br>Checked : Sp                                                                                                                                                     |                            |                                               |

| F         |                                               |                    |                                                                                         | <br>       | REC             | :0     | R         | ) (    | OF BOREHOLE 0                               | 5-16 | ;<br>;          |                      |             |                            |                    |
|-----------|-----------------------------------------------|--------------------|-----------------------------------------------------------------------------------------|------------|-----------------|--------|-----------|--------|---------------------------------------------|------|-----------------|----------------------|-------------|----------------------------|--------------------|
|           | •                                             | ROJEC              |                                                                                         | 0          |                 |        |           |        |                                             |      |                 | 7-308-;              | 292         |                            |                    |
|           |                                               | OCATH              | · • •                                                                                   | of Pe      | <del>30</del> 1 |        |           |        |                                             |      |                 |                      |             | SHEET 1                    | THURBER            |
| υ<br>υ    |                                               | OMPL               | TED : 19 May 2005                                                                       |            | <u> </u>        |        |           |        |                                             | -    |                 |                      |             | DATUM                      |                    |
|           | 1                                             | ₽                  | SOIL PROFILE                                                                            | F          |                 | SAI    | VIPL      | ES     |                                             | SHEA | netV-<br>nentV- |                      | Cpen 🛦      | ₹Ë                         | PIEZOMETER         |
| 1         | DEPTH SCALE<br>(metres)                       | E S                | DESCRIPTION                                                                             | PLO.       | ELEV.           | Han I  | 쎭         | S/D.3m | COMMENTS                                    |      |                 | 0 12<br>1<br>DNTENT. | PERCENT     | ADDITIONAL<br>LAB. TESTING | OR<br>STANOPIPE    |
| n         | DEP                                           | BORING METHOD      | DESCRIPTION                                                                             | STRATAPLOT | DEPTH<br>(m)    | NUMBER | TYPE      | NOTE   | DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT | i v  | ρi              |                      | ——I wi      | ĮŽŽ                        | INSTALLATION       |
|           |                                               |                    | GROUND SURFACE                                                                          | S          | 259.62          |        |           |        |                                             |      |                 |                      |             |                            | · ·· · · · · · · · |
| 5         | ł                                             |                    | TOPSOIL, sandy, some silt, some rootlets,<br>trace gravel, very loose, black/gray       |            | 0.00            |        | ss        | 1      |                                             |      |                 | 0                    |             |                            |                    |
|           |                                               |                    | CLAY, silly to SILT, clayey, some sand,                                                 |            | 258,98<br>0.84  |        |           |        |                                             |      |                 |                      |             |                            | •                  |
| 121       |                                               |                    | trace gravel, very still, brown:<br>(TILLYCL-ML)                                        |            | 258.52<br>1,30  | 121    | SS        | 18     |                                             |      | 0               |                      |             |                            | -                  |
|           | E                                             |                    | SELT, clayey, some sand, irace gravel,<br>occasional sand pockets, stiff to very stiff. |            |                 | 3      | 88        | 41     |                                             |      | 0               |                      |             |                            |                    |
| Η         | -2                                            | 2                  | brown to grey: (TILL)(CL-ML)                                                            |            |                 | Ĵ      | _         |        |                                             |      | Ĭ               | ·                    |             |                            |                    |
| n         | ł                                             | AUGERS             |                                                                                         |            |                 |        |           |        |                                             | ļ    |                 |                      |             |                            | •                  |
|           | -3                                            |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
|           | [                                             | 210 mm HOLLOW STEM |                                                                                         |            |                 | 4      | 88        | 18     |                                             |      | þ               | ĺ                    |             |                            |                    |
|           | L4                                            | <u>F</u>           |                                                                                         |            |                 |        |           |        | ·.                                          |      |                 |                      |             |                            | -                  |
| LS .      |                                               | 6                  |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
| Π         | İ.                                            |                    |                                                                                         |            |                 | 5      | 85        | 29     |                                             |      |                 |                      |             |                            |                    |
|           | 5                                             |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            | ]                  |
| F         | ł                                             |                    |                                                                                         |            |                 |        |           |        |                                             |      | 1               |                      |             |                            |                    |
|           | f <sup>6</sup>                                |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 | ļ                    |             |                            | ام<br>۱            |
|           | ł                                             |                    |                                                                                         |            | 253.11          | -6     | <b>SS</b> | 30     |                                             |      | °               |                      |             |                            | •                  |
|           | 7                                             |                    | END OF BOREHOLE AT 8.71 m.<br>BOREHOLE OPEN TO 6.1 m AND DRY<br>UPON COMPLETION.        |            | 6,71            |        |           |        |                                             |      |                 |                      |             |                            | 1                  |
|           |                                               |                    | BOREHOLE GROUTED WITH<br>BENTONITE QUICK-GROUT TO 1.52 m                                |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
|           | -8                                            |                    | AND WITH BENTONITE HOLEPLUG TO<br>SURFACE.                                              |            |                 |        |           |        | 1                                           |      |                 |                      |             |                            | -                  |
|           |                                               |                    |                                                                                         |            |                 |        |           |        |                                             |      | l               |                      |             |                            |                    |
| pera      | -9                                            |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
|           | ľ                                             |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 | l                    |             |                            |                    |
| L8        |                                               |                    |                                                                                         |            | ·               |        |           |        |                                             |      |                 |                      |             |                            |                    |
|           | -10                                           |                    |                                                                                         |            |                 |        |           |        |                                             | İ    |                 |                      |             |                            | -                  |
|           | ŀ                                             |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
|           | 11                                            |                    |                                                                                         |            |                 |        |           |        |                                             |      | ]               | 1                    |             |                            | -                  |
|           | ł                                             |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
|           | -12                                           |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            | -                  |
|           | ł                                             |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 | Į                    |             |                            |                    |
| لن        | - 13                                          |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
| <u>[]</u> | ľ                                             |                    |                                                                                         |            |                 |        |           |        |                                             |      | 1               |                      |             |                            |                    |
| مركنة     | τ                                             |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
| - (L      | 14<br>•€                                      |                    |                                                                                         |            |                 |        |           |        |                                             |      |                 |                      |             |                            |                    |
| Ce l      |                                               |                    |                                                                                         |            |                 |        |           |        |                                             | 1    |                 |                      |             |                            |                    |
| 8         | GROUNDWATER ELEVATIONS                        |                    |                                                                                         |            |                 |        |           |        |                                             | J    | 1               | <u>.</u>             | <u>,,</u> ⊥ |                            |                    |
| URBER25   | $\mathbf{\nabla}$ SHALLOW/SINGLE INSTALLATION |                    |                                                                                         |            |                 |        |           |        | EEP/DUAL INSTALLATION                       |      | 10              | GGED                 | ; MF        |                            |                    |
|           |                                               |                    | WATER LEVEL (date)                                                                      |            |                 |        |           | WAT    | FER LEVEL (date)                            |      | Cł              | ECKED                | : SP        |                            | THURSER            |

| 5                 | <b></b>                 |                         |                                                                                   |             | REC            | OF     | RE          | ) (        | OF BOREHOLE 0                               | 5-10 | )               |             |         |         |                            |                           |
|-------------------|-------------------------|-------------------------|-----------------------------------------------------------------------------------|-------------|----------------|--------|-------------|------------|---------------------------------------------|------|-----------------|-------------|---------|---------|----------------------------|---------------------------|
|                   | · •                     | ROJEC                   |                                                                                   | 9           |                |        |             |            |                                             |      |                 | 7-308-      | 292     |         |                            |                           |
|                   |                         | )<br>Carte              | • • •                                                                             | of P        | eel            |        |             |            |                                             |      |                 |             |         | 6       | HEET 1                     |                           |
| 3                 | •                       |                         | ETED : 19 May 2005                                                                |             |                |        |             |            |                                             |      |                 |             |         |         | ATUM                       |                           |
| Π                 | щ                       | 8                       | SOIL PROFILE                                                                      |             |                | SAN    | <b>I</b> PL | ES         | · · · · ·                                   | SHEA | RSTREA<br>net V | ютн: С<br>• | Q-X     | :       | اه ـ                       |                           |
|                   |                         | L.                      |                                                                                   | LOT         |                | ĸ      |             | 1.3m       | COMMENTS                                    |      | 0 1             | 0 12        | 20 1    | 90      | NUS                        | PIEZOMETER<br>OR          |
| -                 | DEPTH SCALE<br>(metres) | BORING METHOD           | DESCRIPTION                                                                       | STRATA PLOT | ELEV.<br>DEPTH | NUMBER | ۳<br>۲      | BLOWSAD.3m | DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT | 1    | ATER CI<br>19 I | ONTENT.     | , PERCE |         | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION |
|                   | Ľ                       |                         | GROUND SURFACE                                                                    | SH S        | (m)            |        |             | d,         | 20 40 80 80 100                             | 1    | 0 2             | 20 3        | 0 4     | 0       |                            |                           |
| ម                 | ╞─                      |                         | TOPSOIL some motiets, brown (80mm) /                                              | 22          | 254.95         |        | 88          | 2          |                                             |      | 0               | 0           | ,       | ,       |                            | <u> </u>                  |
| 11.1              | İ.                      |                         | StLT, clayey, some send, trace gravel, firm<br>to stiff, brown: (TILL)(CL-ML)     |             |                |        | 00          | -          |                                             |      |                 |             |         |         |                            |                           |
|                   | <b>[</b> 1              |                         |                                                                                   |             |                | 2      | <b>S</b> 8  | 3          | •                                           |      | 0               |             |         |         |                            | •                         |
| п                 | [                       | 22                      |                                                                                   |             |                |        | _           |            |                                             | ]    |                 |             |         |         |                            |                           |
| -                 | -2                      | R R                     |                                                                                   |             |                | 3      | 68          | 8          |                                             |      |                 |             |         | 0       |                            | -                         |
|                   | ţ                       |                         |                                                                                   |             |                | Ħ      |             |            |                                             |      |                 |             |         |         |                            | •                         |
|                   |                         |                         |                                                                                   |             |                |        | <b>S</b> S  | 13         |                                             |      | 0               |             |         |         |                            | -                         |
| 6                 | - 3<br>[                | IIII HOLLOW STEM AUGERS |                                                                                   |             |                | 5      | 65          | 6          |                                             | Ì    | 0               |             |         |         |                            |                           |
| 0                 | ł                       | 20<br>20<br>20          |                                                                                   |             |                |        |             | ĺ          |                                             |      | _               |             |         |         |                            |                           |
| -                 | -4                      |                         | м.                                                                                |             |                | 6      | 88          | 7          |                                             |      | o               |             |         |         |                            | • -                       |
| <b>r</b> a        |                         |                         |                                                                                   |             |                |        | -           |            |                                             |      |                 |             |         |         |                            |                           |
|                   | 5                       |                         |                                                                                   |             | 249.77         | 7      | 85          | 9          |                                             |      |                 |             |         |         |                            | -                         |
| <b>ن</b> ا<br>م   | ł                       |                         | END OF BOREHOLE AT 5.18 m.<br>BOREHOLE OPEN TO 4.57 m AND DRY<br>UPON COMPLETION. |             | 5,18           |        |             |            |                                             |      |                 |             |         |         |                            |                           |
|                   | ۱.<br>6-76              |                         | BOREHOLE GROUTED WITH<br>BENTONITE QUICK-GROUT TO                                 |             |                | •      |             |            |                                             |      |                 |             |         |         |                            | -                         |
| Ц́                |                         |                         | SURFACE.                                                                          |             |                |        |             |            |                                             | ļ    |                 |             |         |         |                            | •                         |
| n                 |                         |                         |                                                                                   |             |                |        |             |            |                                             | ].   |                 |             |         |         |                            |                           |
|                   | 7                       | 1                       |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
|                   |                         |                         |                                                                                   |             |                |        |             |            |                                             |      | Į               |             |         |         |                            |                           |
| A                 | -8                      |                         |                                                                                   |             |                |        |             |            |                                             |      | ĺ               |             |         |         |                            | -                         |
| L                 |                         |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
| n                 | 9                       |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
|                   | ŀ                       |                         |                                                                                   |             |                |        |             |            | •                                           | · ·  |                 |             |         |         |                            |                           |
|                   | -10                     |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            | -                         |
|                   |                         |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
| ₽                 |                         |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
|                   | - 11<br>                |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
|                   |                         |                         |                                                                                   |             |                |        |             | ĺ          |                                             |      |                 |             |         |         |                            |                           |
| <b></b> }         | -12                     |                         |                                                                                   |             |                |        |             |            |                                             | ļ    |                 |             |         |         |                            | -                         |
|                   |                         |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
|                   | - 13                    |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
| []                |                         |                         |                                                                                   |             |                |        |             |            |                                             |      | ļ               |             | ;       |         |                            |                           |
| <u></u> μ         | [<br>14                 |                         |                                                                                   |             |                |        |             |            |                                             |      |                 | ļ           |         |         |                            |                           |
| 6                 | i l                     |                         |                                                                                   |             |                |        |             |            |                                             |      |                 |             |         |         |                            |                           |
| HURBER2S 8292 GPJ |                         |                         |                                                                                   |             |                |        |             |            |                                             |      |                 | ļ           |         |         |                            |                           |
| 23<br>53          |                         |                         | GROUNDWATER ELE                                                                   |             |                | ;      |             |            |                                             |      |                 |             |         | · · · · |                            |                           |
|                   |                         |                         |                                                                                   | LLA         | TION           |        |             |            | EEP/DUAL INSTALLATION                       |      |                 | GED         | : MF    |         |                            |                           |
| L) È              | 1                       |                         | WATER LEVEL (date)                                                                |             |                |        | ۷           | TAV        | ER LEVEL (dete)                             |      | СН              | ecked       | : SP    |         |                            |                           |

|    |                         |               |                                                                                                                                                                          | REC                             | OR         |            |                                                         |                                                                    |                                                       |
|----|-------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|------------|---------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|
|    |                         | OJEC          |                                                                                                                                                                          |                                 |            |            |                                                         | Project No. 17-308-292                                             |                                                       |
|    | ST                      | ARTE          | : 19 May 2005                                                                                                                                                            |                                 |            |            |                                                         |                                                                    | SHEET 1 OF 1<br>DATUM                                 |
| 7  |                         | -             | TED: 19 May 2005<br>SOIL PROFILE                                                                                                                                         |                                 | SAMP       | ۹.ES       | l                                                       | SHEAR STRENGTH: Cu, KPa<br>net V - O Q - X<br>rem V - Com A        |                                                       |
|    | DEPTH SCALE<br>(metres) | BORING METHOD | DESCRIPTION                                                                                                                                                              | STRATAPLOT<br>(E)<br>(E)<br>(E) | NUMBER     | BLOWS/0.3m | COMMENTS<br>DYNAMIC CONE PENETRATION<br>RESISTANCE PLOT | 40 30 120 180<br>WATER CONTENT, PERCENT<br>wp I W W<br>10 20 30 40 | PIEZOMETER<br>OR<br>ULL:<br>STANDPIPE<br>INSTALLATION |
|    |                         |               | GROUND SURFACE<br>TOPSOIL, some rootiels, brown, dark                                                                                                                    | 254.07                          |            | -          |                                                         |                                                                    | -                                                     |
| ан | -1                      |               | brown (125mm)<br>SBLT, clayey, some sand, trace gravel, firm<br>to soft, brown: (FILL)                                                                                   | 252.55                          | 1 5<br>2 3 | _          |                                                         | 0<br>0                                                             |                                                       |
|    | -2                      | e2            | PEAT, clayey, some sand and all,<br>occasional wood fragments, very soft,<br>black, moist                                                                                |                                 |            | S 1        |                                                         |                                                                    | 150<br>59                                             |
|    | -3                      | STEM AUGERS   |                                                                                                                                                                          | 250.77                          |            | \$0<br>    |                                                         | 0                                                                  | ¢<br>78<br>♥                                          |
|    | -4                      | MELLOW STEM   | SHLT, sandy, some rootlets and wood<br>fragments, very losse to compact, gray:<br>(ML-NONPLASTIC)                                                                        |                                 | <b>⊨</b> ‡ | -<br>s 4   |                                                         | 0                                                                  |                                                       |
|    | -5                      | 210 mm        | END OF BOREHOLE AT 5.18 m.                                                                                                                                               | 248.8<br>5.1                    |            | s z        |                                                         | a                                                                  |                                                       |
| C  | F6                      |               | BOREHOLE OPEN TO 4.57 m AND<br>WATER LEVEL AT 2.44 m UPON<br>COMPLETION.<br>BOREHOLE GROUTED WITH<br>BENTONITE GROUT TO 0.3 m AND WITH<br>BENTONITE HOLEPLUG TO SURFACE. |                                 |            |            |                                                         |                                                                    |                                                       |
|    | 7                       |               |                                                                                                                                                                          |                                 |            |            |                                                         |                                                                    |                                                       |
|    | -8                      |               |                                                                                                                                                                          |                                 |            |            |                                                         |                                                                    |                                                       |
|    | 9                       |               |                                                                                                                                                                          |                                 |            |            |                                                         |                                                                    |                                                       |
| -  | -10                     |               |                                                                                                                                                                          |                                 |            |            |                                                         |                                                                    |                                                       |
|    | -11                     |               |                                                                                                                                                                          |                                 |            |            |                                                         |                                                                    |                                                       |
|    | -12                     | <i>*</i>      |                                                                                                                                                                          |                                 |            |            |                                                         |                                                                    |                                                       |
|    | - 13                    |               |                                                                                                                                                                          |                                 |            |            |                                                         |                                                                    |                                                       |
|    | - 14                    |               |                                                                                                                                                                          |                                 |            |            |                                                         |                                                                    |                                                       |
| 22 |                         |               | GROUNDWATER EL                                                                                                                                                           |                                 | is         |            |                                                         |                                                                    |                                                       |
|    |                         |               | SHALLOW/SINGLE INST<br>WATER LEVEL (data)                                                                                                                                |                                 |            |            | DEEP/DUAL INSTALLATION<br>ATER LEVEL (date)             | LOGGED : MF<br>CHECKED : SP                                        |                                                       |

Region of Peel Working for you



August 15, 2008 File: 01-4830

#### BY MAIL AND E-MAIL (slingertat@trca.on,ca)

Sharon Lingertat Planner II, Environmental Assessment Review Planning and Development Toronto and Region Conservation Authority 5 Shoreham Drive Downsview, ON M3N 1S4

Dear Sharon:

Re: TRCA File CFN 36211

x ref CFN 36212, 32971, 37765

Response to Fill, Construction and Alteration to Waterways Application, #038/05/CAL Mayfield Road Improvements (Inder Heights Drive to east of Kennedy Road) and Stormwater Management Pond – Detailed Design Submission #5 Etobicoke Creek Watershed; City of Brampton and Town of Caledon; Regional Municipality of Peel

Further to the additional information requested in your August 14, 2008 correspondence, Item A14, this serves to confirm that the Region of Peel will be responsible for the maintenance of the Kennedy Road Stormwater Management Pond, which will be constructed as part of the Mayfield Road Widening – Phase 2 and 3. The Region of Peel also acknowledges that the sediment forebay was designed to have a cleanout frequency of 8 years, which is more frequent than the standard 10-year occurrence, as recommended by MOE.

Should you have any questions or require further information, please contact the undersigned at 905-791-7800 ext. 7813 or by e-mail at jose.montouto@peelregion.ca.

Yours truly,

Jose Montouto, P. Eng. Project Manager Region of Peel Environment, Transportation & Planning Services

#### BY E-MAIL

cc:

Region of Peel: Stantec: Gary Kocialek Dave Hallman Martin Goorts

#### Environment, Transportation and Planning Services

11 Indell Lane, Brampton, ON L6T 3Y3 Tel: 905-791-7800 www.peelregion.ca

| From:    | Innes, Jayson                        |
|----------|--------------------------------------|
| To:      | <u>Goorts, Martin;</u>               |
| Subject: | Mayfield Road                        |
| Date:    | Wednesday, April 27, 2011 3:15:30 PM |

I have cut out the maintenance sections from both SWM reports. They seem to cover most of the points you mentioned. Let me know if you need more information.

# **Kennedy**

# Maintenance Report

Monitoring and maintenance activities are an important part of a stormwater management plan to ensure that the designed features continue to operate as intended. Long term monitoring and maintenance should involve annual inspections of the stormwater management facilities and downstream areas. The following section is intended to provide guidance for long term maintenance of the stormwater management facility.

- Annual Inspections during annual inspections, the following items should be recorded:
- o Is the regular pond level above or below the permanent pool elevation (255.55m)?
  - Damage to facility structures including headwalls, pipes, DICB, berms, maintenance accesses, etc.
- Condition of vegetation
- Visual characteristics of ponded water in facility (i.e. oily sheen, colour, etc.)
- o Sediment depth and oil accumulation in wetland forebay
  - Erosion around outlet structure (overflow weir and gabion basket) or downstream areas
- Annual Maintenance tasks to be performed during, or as a result of, annual

inspections

r .

> • Clear blockages and repair damage to SWM facility structures including inlet and outlet pipes, outlet risers, inlet manholes

> Clear accumulated debris from stone jacket around riser. Any trash or debris removed from around the SWM facility should be disposed of in a legal and appropriate location

• Inspect and repair erosion. Install slope reinforcement products or revegetate as necessary

Sediment must be removed from the facility after a period of approximately 8 years. Sediment should be removed from the forebays when sediment accumulation reaches 254.5 m or when sediment depths reach 0.5 m. This will equate to a water depth in the forebay of approximately 1.05 m if permanent pool elevations remain as designed.

Forebay Maintenance Guidelines

• Gravity drainage of the pond is not possible because ground elevations in the surrounding Heart Lake Wetland are similar to those within the pond. Draining of the pond will be accomplished through pumping when maintenance is required. The pond should be pumped out over a 24 hour period in order to reduce peak flows to the wetland

• Removal and disposal of sediment from all facilities should be completed by a qualified party and/or licensed contractor.

• An annual loading rate of 1.0 m<sup>3</sup>/ha was assumed based on the average catchment imperviousness of 41% and Table 6.3 of the MOE *Stormwater Management Planning and Design Manual*, (March 2003). Sediment accumulation should be monitored and clean-out frequency confirmed over an extended period to ensure that sediment depths do not exceed 0.5 m.

Liner Maintenance Guidelines

• In the event that the liner fails, the recommended Bentofix repair scheme should be implemented