TOWN OF CALEDON PLANNING RECEIVED Sept. 17, 2021

STORMWATER MANAGEMENT REPORT

SNELL'S HOLLOW EAST SECONDARY PLAN AREA TOWN OF CALEDON

PROJECT NO.: 2019-4851 FEBRUARY 2021

Revision	Description	Prepared		Checked	
	2000.15.1011	Ву	Date	Ву	Date
0.	Original Report	Y.Gollamudi	February 2021	K. Shahbikian	February 2021

TABLE OF CONTENTS

		PAGE
	1.0 INTRODUCTION TO THE STUDY AREA	3
1.1	Study Area	
1.2	Background Studies	
1.3	Proposed Development Plan and Population	
	2.0 EXITING CONDITIONS	8
2.1	Existing Drainage	
2.2	Existing Land Use and Soil Conditions	
2.3	Existing Storm Servicing	
	3.0 EXISTING HYDROLOGY MODEL	
3.1	TRCA Existing Hydrology Model	
	3.1.1 Existing Catchment Parameters	
	3.1.2 Corresponding Flows	11
3.2	Subject Site Hydrology	
	4.0 STORMWATER MANAGEMENT DESIGN CRITERIA	14
	5.0 PROPOSED STORMWATER MANAGEMENT SCHEME	
5.1	SWM strategy – Area Draining to SWM Pond 1 (Catchment 201)	
	5.1.1 Allowable Release Rates	
	5.1.2 Quantity Control	
	5.1.4 Erosion Control	
5.2	SWM Strategy – Area Draining to SWM Pond 2 (Catchments 202 & 204)	22
	5.2.1 Allowable Release Rates	
	5.2.2 Quantity Control	
	5.2.3 Quality Control	
5.3	SWM Strategy – South Site Plan Area (Catchment 203)	
	5.3.1 Allowable Release Rates	
	5.3.2 Quantity Control	25
	5.3.3 Quality Control	
	5.3.4 Erosion Control	
	6.0 WATER BALANCE AND FEATURE-BASED WATER BALANCE	_
6.1	Water Balance Feature Base Water Balance	
6.2		
	7.0 FLOODPLAIN ANALYSIS	
7.1	Runoff Generated	33
	8.0 SUMMARY	36
	LIST OF FIGURES Figure 1.1: Location Plan	6
	Figure 1.2: Development Plan	
	Figure 2.1 Pre-development drainage plan	

SNELL'S HOLLOW EAST SECONDARY PLAN AREA

Figure 5.1: Post Development Drainage	
Figure 7.1: Future Regional Floodline	
Figure 7.2: Future Drainage Area	35
LIST OF TABLES	
Table 1-1: Development Proposal and Estimated Population	5
Table 2-1: Summary of Pre-development Drainage Areas	8
Table 3-1: Summary of TRCA Existing Model Catchment Parameters	11
Table 3-2 Existing TRCA Flows for catchments 41, 24 and 447	12
Table 3-3 Existing Peak Flows for catchments 1, 2 and 3	13
Table 4-1: TRCA Unit Flow Rate Equations for Etobicoke Creek, Catchment 224	14
Table 4-2: Unit Flow Rate as per the Draft Final Report-Etobicoke Creek Hydrology Update	15
Table 5-1: Post Development Drainage Areas	
Table 5-2: Summary of the Allowable Design Flows for SWM Pond 1	
Table 5-3: Storage Volume for SWM Pond 1	
Table 5-4: Permanent Pool Volume for SWM Pond 1	21
Table 5-5: Erosion control required volume for SWM Pond 1	
Table 5-6: Summary of the Allowable Design Flows for SWM Pond 2	
Table 5-7: Storage Volume for SWM Pond 2	
Table 5-8: Permanent Pool Volume for SWM Pond 2	
Table 5-9: Erosion control required volume for SWM Pond 2	
Table 5-10: Summary of the Allowable Design Flows for the South Site Plan (Catchment 203)	
Table 5-11: Storage Volume for the South Site Plan (Catchment 203)	
Table 5-12: Erosion control required volume for the South Site Plan	
Table 6-1: Water Balance Summary	30

APPENDICES

APPENDIX A: BACKGROUND INFORMATION

APPENDIX B: PRE-DEVELOPMENT CALCULATIONS APPENDIX C: POST-DEVELOPMENT CALCULATIONS APPENDIX D: WATER BALANCE CALCULATIONS

APPENDIX E: FLOODPLAIN ANALYSIS

APPENDIX F: ADDITIONAL BACKGROUND INFORMATION

APPENDIX G: ENGINEERING DRAWINGS

1.0 INTRODUCTION TO THE STUDY AREA

1.1 Study Area

The objective of this report is to provide a stormwater servicing plan for the proposed development.

The subject site is located south of Highway 410, northwest of Mayfield Road, and northeast of Kennedy Road, in the Town of Caledon, Region of Peel, as shown in **Figure 1.1**.

The Snell's Hollow Secondary Plan area is approximately 62.4ha that includes lands on both sides of Heart Lake Road, with the majority of the site area on the west side of Heart Lake Road. Out of the 62.4ha, development is proposed in approximately 36.97ha, as discussed in **Section 1.3** below.

1.2 Background Studies

The following documents were referenced in preparing the following report:

- Snell's Hollow East Secondary Plan Draft Comprehensive Environmental Impact Study and Management Plan (CEISMP) Terms of Reference, dated April 3, 2019.
- Stormwater Management Criteria, Toronto and Region Conservation Authority, dated August 2012. (Version 1.0);
- Draft Final Report-Etobicoke Creek Hydrology Update, by MMM Group Limited, dated April 2013.
- Kennedy Pond-Stormwater Management Facility Retrofit, Mayfield Road and Kennedy Road, by GHD, dated May 2017.
- Snell's Hollow East Secondary Plan Baseline Conditions Report-2019, by R.J. Burnside
 & Associates Limited, dated August 2020.
- Technical Memorandum-2019 Headwater Drainage Feature Assessment, by R.J. Burnside
 & Associates Limited, dated January 2020.
- Snell's Hollow East Secondary Plan Annual Wetland Monitoring Report-Year 1 (2019), by R.J. Burnside & Associates Limited, dated January 2020.

1.3 Proposed Development Plan and Population

The secondary plan area is approximately 62.4ha, including 36.97 ha of developable area, 0.7ha of existing SWM pond and 24.68ha of Natural Heritage System area, including buffer area. The proposed development consists of detached houses, semi-detached houses, townhouses, Medium-High density residential areas, commercial areas, roads, park blocks, open space and SWM blocks.

The proposed commercial block and Medium High-density residential blocks will be developed as part of a separate site plan.

Table 1-1 below summarizes the proposed development and estimated population based on the Peel Region design criteria. For ease of identification, areas have been divided into A, B and C, as shown in **Figure 1.2**.

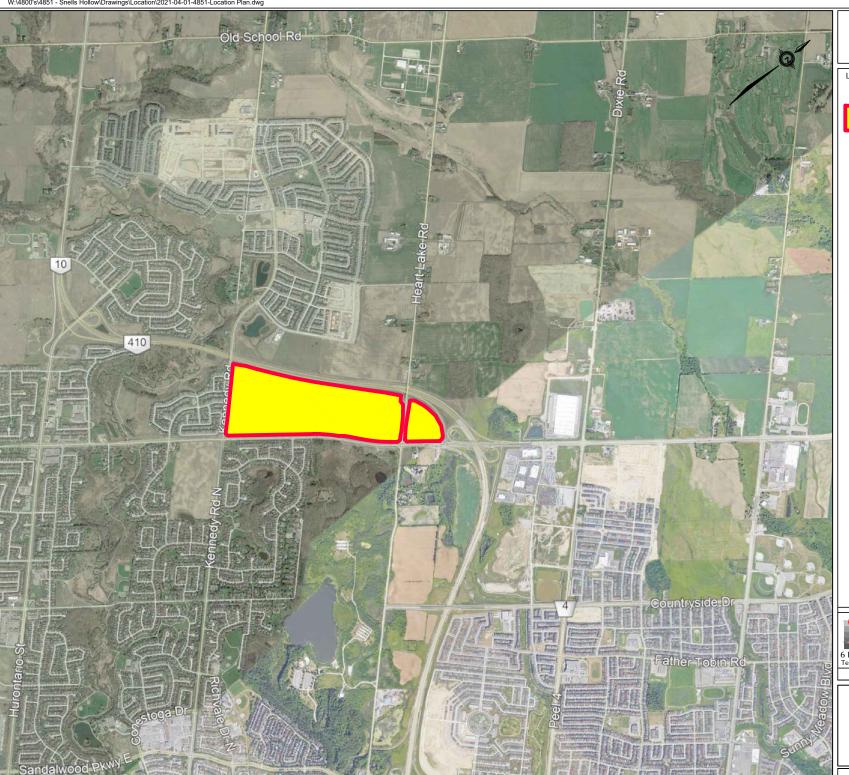
Table 1-1: Development Proposal and Estimated Population

	ID As per Figure 1.2	Block Land Use	Area (ha)	Units	Population Density (Peel Region Design Criteria) (persons/unit)	Population Estimate (persons)
		Low Density (Detached, Semi-Detached & ST. Townhouses)	10.02	351	3.43	1204
	A	Medium Density (Townhouses)	2.73	210	2.92	613
	12	SWM blocks	3.33	-		
		Right of Way	8.8	-		
		Park blocks	1.31	-		
		Open Space (MTO Setback)	2.01	-		
Developable Area	В	Low Density (Detached, Semi-Detached & ST. Townhouses)	0.37	13	3.43	45
		Medium Density (Townhouses)	1.70	135	2.92	394
		Medium-High Density	1.27	190	2.23	424
		Right of Way	2.3	-		
		Park blocks	0.38	-		
		Open Space (MTO Setback)	0.02	-		
		Servicing Block	0.01	-		
	C	Medium-High Density	1.25	188	2.23	419
		Commercial	1.47	-	-	93
		Sub-Total	36.97	1087		3192
		Natural Heritage System	21.95	-	-	
		Open Space (Buffer)	2.73	-	-	
		Existing SWM Pond	0.7	1007	-	2102
	(2.1.1.4.4.6.6	Total Area nercial Area as per the Concept Pla	62.4	1087		3192

^{*}Based on 63 Jobs/ha for Commercial Area as per the Concept Plan

SNELL'S HOLLOW SECONDARY PLAN TOWN OF CALEDON

LEGEND


SNELL'S HOLLOW SECONDARY PLAN AREA

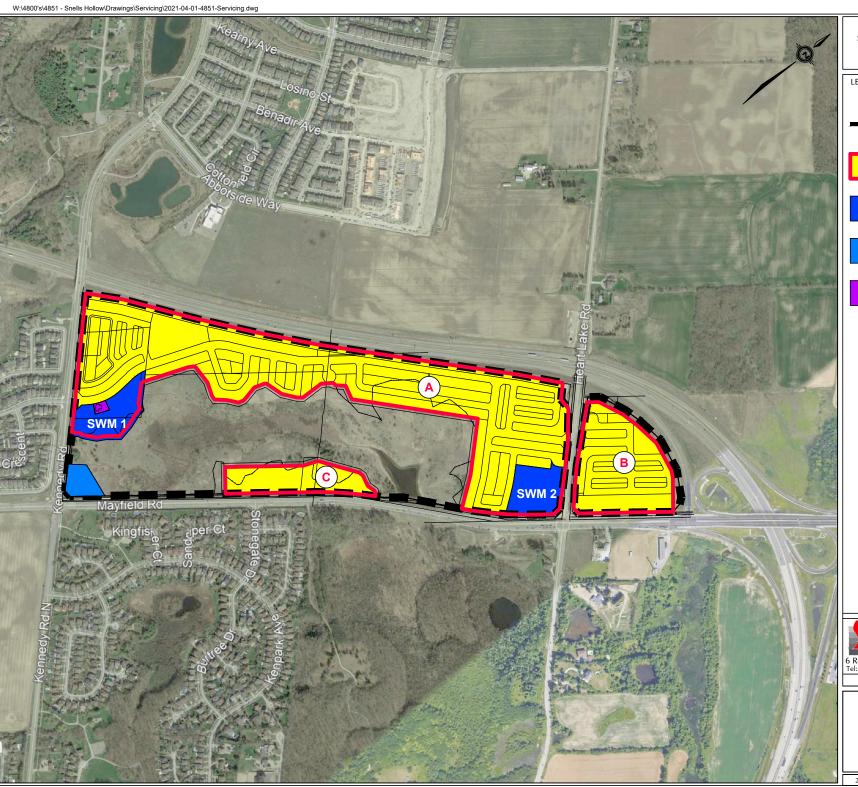


FIGURE 1.1 LOCATION PLAN

APRIL 2021

SCALE: N.T.S.

SNELL'S HOLLOW SECONDARY PLAN TOWN OF CALEDON

LEGEND

SNELL'S HOLLOW SECONDARY PLAN AREA

DEVELOPMENT BOUNDARY

PROPOSED SWM POND

EXISTING SWM POND

EXISTING HERITAGE DWELLING

6 Ronrose Drive, Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Email: general@schaeffers.com

FIGURE 1.2 DEVELOPMENT PLAN

FEBRUARY 2021 SCALE: N.T.S.

2.0 EXITING CONDITIONS

2.1 Existing Drainage

The subject site is located within the Etobicoke Creek watershed. The majority of the subject site west of Heartlake roads generally drains southeast towards the tributary of the Etobicoke located within the site. There is a drainage divide located within the site which diverts the flows from the site to east towards another tributary of the Etobicoke Creek. Please refer to **Figure 2.1** for more details.

Based on the TRCA design criteria (August 2012), the site is located within TRCA defined catchment 224.

MMM Group Limited completed a *Draft Final Report-Etobicoke Creek Hydrology Update* (April 2013), which further breaks down the catchment drainage boundaries located within the Etobicoke Creek "Spring Creek" subwatershed. The subject site was identified as part of three (3) pre-development catchment area IDs. The west portion of the site drains southerly and is within catchment ID area 41. The easterly portion of the subject site is split between catchment ID 447 and 24.

The catchment areas defined in the *Draft Final Report-Etobicoke Creek Hydrology Update* (April 2013) can be seen in **Figure J-1** (provided in **Appendix A**).

The pre-development drainage areas located within the site boundary were determined based on the available topography data and can be seen in **Figure 2.1** and summarized in **Table 2-1**.

TRCA Design Draft Final Report-Etobicoke Creek SCE Pre-development Drainage Areas Criteria Hydrology Update (April 2013) (Based on **Figure 2.1**) (August 2012) Runoff Area Catchment ID Subwatershed Catchment ID Catchment ID Direction (ha) 224 Spring Creek 41 1 SW 46.2 2 224 Spring Creek 24 SE 12.6 224 Spring Creek 3 2.9 447 NE

Table 2-1: Summary of Pre-development Drainage Areas

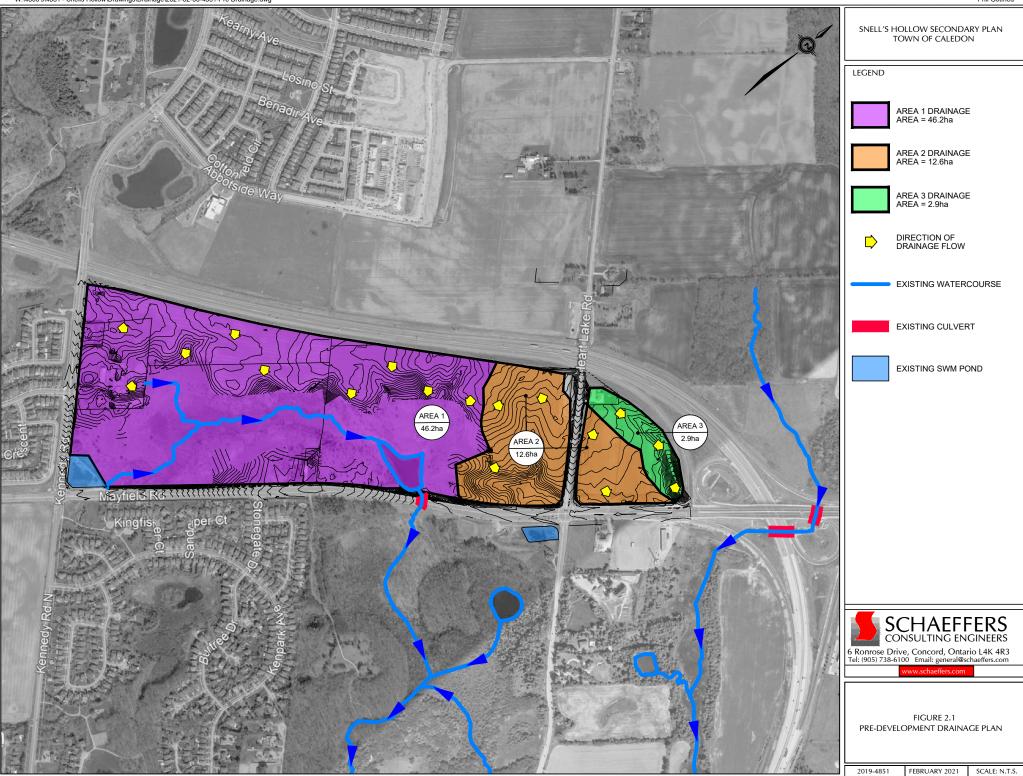
2.2 Existing Land Use and Soil Conditions

Based on google satellite imagery, the subject site is currently primarily agricultural land. The *Draft Final*

Report-Etobicoke Creek Hydrology Update (April 2013) defines existing land use in **Figure A-1** (provided in **Appendix A**) where the subject site land use is identified as agricultural, meadow, successional, estate residential, and open water. A portion of the Heart Lake Provincially Significant Wetland (PSW) is located within the site as discussed in the R.J. Burnside & Associates Limited Baseline Conditions Report (August 2020),.

As per *Draft Final Report-Etobicoke Creek Hydrology Update* (April 2013) **Figure A-3**, the subject site soils are ONEIDA throughout the developable area of the site. Similarly, the York Region Soil map identifies the soils as the Oneida series with soil type defined as clay loam. Subject site soils are therefore identified as type D.

Borehole logs from the preliminary Geotechnical Investigations completed by Golder Associates Ltd. (Refer to **Appendix A**) for the subject site confirm the soil type to be Silty clay.


2.3 Existing Storm Servicing

The existing storm infrastructure within the vicinity of the site includes existing SWM ponds, culverts and a storm sewer system on Mayfield Road, collecting the road drainage. Please refer to **Figure 2.1**, which identifies the existing SWM ponds and existing culverts.

There are two existing SWM ponds located near the sites. One of the existing stormwater management ponds is located southwest of the subject site in the northeast corner of the Kennedy Road and Mayfield Road intersection. The pond was originally designed by Stantec (2007) as was sized to accommodate the runoff from Mayfield Road and additional external area. A facility retrofit report was completed by GHD (May 2017) to ensure that the pond was providing adequate quality and quantity control. Based on the tributary drawing, the estate lots along Mayfield Road, which are within the subject boundary, were accommodated in the Pond as an external area; however, the Stantec (2007) report identifies that any future development of the external lands should provide their own quantity and quality control. The pond was sized to accommodate the Mayfield Road Widening. The pond discharges to the Spring Creek tributary that runs through the subject site.

The other SWM pond is located south of Mayfield Road and west of Heart Lake Road, as identified in **Figure 2.1**. The background data collected for the existing two SWM ponds is presented in **Appendix F** for additional information.

3.0 EXISTING HYDROLOGY MODEL

3.1 TRCA Existing Hydrology Model

The latest Etobicoke Creek Hydrology Model was completed by MMM Group Limited (April 2013). The model was created for TRCA to determine quantity control criteria for development located within the watershed. Etobicoke Creek watershed runs through Caledon, Brampton, Mississauga and Toronto. The Etobicoke Creek model delineated sub-basins, in which the Snell's Hollow East Secondary Plan Area is located within the Spring Creek subwatershed in sub-basin number 6.

3.1.1 Existing Catchment Parameters

The *Draft Final Report-Etobicoke Creek Hydrology Update* (April 2013) by MMM Group Limited determined watershed parameters through the DTM, aerial photographs, and soil maps. SCS Curve Number method was used in the model, which is a function of land use, soil type, and AMC conditions; the weighted average was calculated using GIS software. Initial abstraction was calculated based on the Visual OTTHYMO Model Hydraulic Reference manual. As discussed in **Section 2.1**, the subject site falls within three (3) catchment areas of the Spring Creek subcatchment. **Table 3-1** summarizes the existing catchment parameters defined in the MMM Group Limited TRCA hydrology model (April 2013).

TRCA Model TRCA TRCA Catchment TP **CN** IA **Catchment ID** Area (ha) (hr) Existing-2 to 100yr **AMCII** 41 263.00 74 8.9 0.516 Existing-Regional_12hr_AMCIII **AMCIII** 8.9 0.516 41 263.00 88 24 76 8.1 Existing-2 to 100yr AMCII 140.14 0.557 Existing-Regional_12hr_AMCIII **AMCIII** 24 140.14 89 8.1 0.557 79 Existing-2 to 100yr AMCII 447 106.74 6.8 0.585 Existing-Regional_12hr_AMCIII **AMCIII** 447 106.74 91 6.8 0.585

Table 3-1: Summary of TRCA Existing Model Catchment Parameters

3.1.2 Corresponding Flows

The Flows from the TRCA Hydrology modelling corresponding to the catchments 41, 24 and 447 are summarized below in **Table 3-2**

Table 3-2 Existing TRCA Flows for catchments 41, 24 and 447

	TRCA	TRCA	TRCA
Storm Event	Catchment ID	Catchment ID	Catchment ID
	41	24	447
2-Year	2.66 cms	1.55 cms	1.41 cms
5-Year	4.69 cms	2.69 cms	2.36 cms
10-Year	6.25 cms	3.55 cms	3.06 cms
25-Year	8.36 cms	4.71 cms	4.00 cms
50-Year	10.01 cms	5.62 cms	4.73 cms
100-Year	11.74 cms	6.57 cms	5.48 cms
Regional Event	32.36 cms	17.05 cms	12.96 cms

3.2 Subject Site Hydrology

A separate hydrology model was not prepared for the subject site to analyze the peak flows from the subject site. Instead, the flows from the existing TRCA model was used to establish the flows from the subject site using the MTO Prorating Methodology. This approach was used to establish the flows to ensure that the subject site flows correspond to the calibrated TRCA Existing model.

The existing flows for the subject site are summarized in **Table 3-3** below. Detailed calculations are provided in **Appendix B**.

Table 3-3 Existing Peak Flows for catchments 1, 2 and 3

Storm Event	SCE Catchment ID 1	SCE Catchment ID 2	SCE Catchment ID 3
2-Year	0.72 cms	0.26 cms	0.09 cms
5-Year	1.27 cms	0.44 cms	0.16 cms
10-Year	1.70 cms	0.58 cms	0.20 cms
25-Year	2.27 cms	0.77 cms	0.27 cms
50-Year	2.72 cms	0.92 cms	0.32 cms
100-Year	3.19 cms	1.08 cms	0.37 cms
Regional Event	8.78 cms	2.80 cms	0.87 cms

4.0 STORMWATER MANAGEMENT DESIGN CRITERIA

As per TRCA design criteria (August 2012), the following design criteria will need to be considered in the development of the Snell's Hollow East Secondary Plan Area;

• Quantity control: Peak flows are to be controlled to the unit flow rates described in the TRCA Appendix A, for Etobicoke Creek Catchment 224. The unit flow rates are summarized in the table below:

Table 4-1: TRCA Unit Flow Rate Equations for Etobicoke Creek, Catchment 224.

Return Period	Unit flow Equation
(years)	(l/s/ha)
2	7.5
5	13.3
10	18.7
25	27
50	35.2
100	42.1

- **Design Storms:** Peak flows are to be modelled using the 6-hour AES storm as defined in the TRCA criteria.
- **Erosion control:** Erosion control will be provided either through the 5mm retention (for site plans < 2.0ha) or the 25mm 48hour detention in SWM ponds.
- Quality control: Enhanced level of quality protection (80% TSS removal) is required as per the latest MOE SWMP Manual.
- Water Balance: The subject site is within a significant groundwater recharge area (SGRA); therefore pre-development recharge conditions are to be maintained in postdevelopment conditions;
- **Feature-Based Water Balance (FBWB)**: PSW's have been identified on the subject site, runoff to these features should be maintained in post-development conditions.

The following design criteria were established in the *Draft Final Report-Etobicoke Creek Hydrology Update*, by MMM Group Limited, dated April 2013:

- **Design Storms:** The report recommends utilizing the 12hr AES rainfall distribution for a 2-100 year rainfall event to establish the peak flows. The Regional event should be modelled with the final 12-hours of the Hazel event under AMC III conditions.
- Quantity Control: New unit flow rates were established for infill developments for both the 2-100 storm events and regional storm events (please see the table below); however, any development on the subject site cannot be considered infill.

It was confirmed with TRCA, that the regional control is required for this site based on the release rate of the 127.44l/s/ha.

As per the report, the pre-development Regional flows are to be maintained in post-development conditions and unit flow rates have been developed. Regional storage will require an additional 214m³/ha, which is to be added after the Regional Storm storage has been sized using the unit flow rates.

Table 4-2: Unit Flow Rate as per the Draft Final Report-Etobicoke Creek Hydrology Update

Return	Unit flow Equation	Unit flow Equation	Unit flow Equation
Period	Catchment 41	Catchment 24	Catchment 447
(years)	(l/s/ha)	(l/s/ha)	(l/s/ha)
2	10.11	11.09	13.21
5	17.85	19.20	22.06
10	23.75	25.34	28.65
25	31.77	33.63	37.45
50	38.08	40.12	44.28
100	44.65	46.85	51.32
Regional		127.44 (Basin 6)	

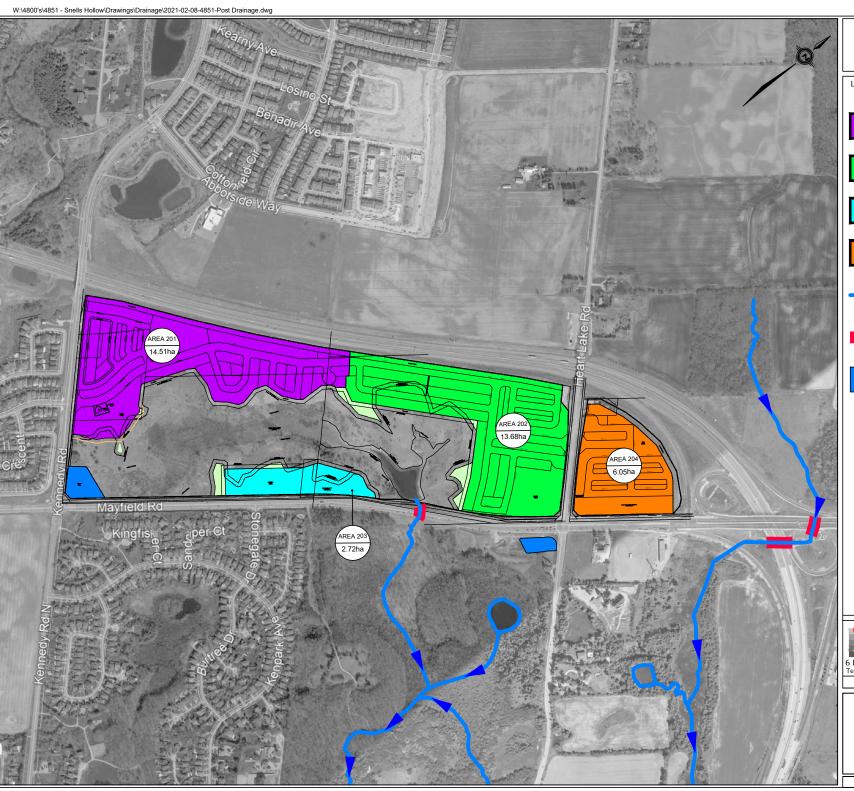
The subject site is bounded by Mayfield Region of Peel Right of Way (ROW. The applicable design criteria stated in the Region of Peel Public Works Stormwater Design Criteria and Procedural Manual, June 2019

will apply for works within the Regional ROW.

5.0 Proposed Stormwater Management Scheme

To provide the required stormwater management control and meet the design criteria presented in **Section 4**, two (2) stormwater management facilities are proposed, as shown in **Figure 5.1**. The two SWM facilities service for the majority of the site. SWM Facility 1 discharges to the Etobicoke tributary located within the subject site and SWM Facility 2 discharges to the existing 525mm diameter storm sewer on Heart Lake Road. The remaining catchment (South Site Plan – Catchment 203) is proposed to follow the existing drainage conditions and drain towards the Etobicoke's tributary located within the site, providing on-site controls.

The proposed SWM 1 and SWM 2 facilities are proposed to provide water quality, quantity treatment and erosion control during the post-development conditions. SWM Facility 1 services the western half of the subject site lands west of Heart Lake Road, and SWM Facility 2 services the eastern half and the subject lands east of Heart Lake Road. The water balance criterion is proposed to be met site-wide as discussed in **Section 6.1** below.


The tributary to each SWM facility and the corresponding imperviousness is presented in **Figure 5.1** and **Table 5-1** below. Detailed calculations are presented in **Appendix C**.

Post Development Total area Runoff **Facility** Area (ha) **Imperviousness Catchment ID** Coefficient (ha) **SWM** 201 14.51 14.51 54% 0.58 Facility 1 SWM 202 13.68 19.73 63% 0.64 Facility 2 204 6.05 On-site 203 90% 0.83 2.72 2.72 Controls

Table 5-1: Post Development Drainage Areas

Please refer to **Figure 5.1** for an illustration of the post-development drainage plan. The proposed Stormwater infrastructure is presented in **Figure 5.2**.

SNELL'S HOLLOW SECONDARY PLAN TOWN OF CALEDON

LEGEND

AREA 201 DRAINAGE AREA = 14.51ha RUNOFF COEFFICIENT = 0.58

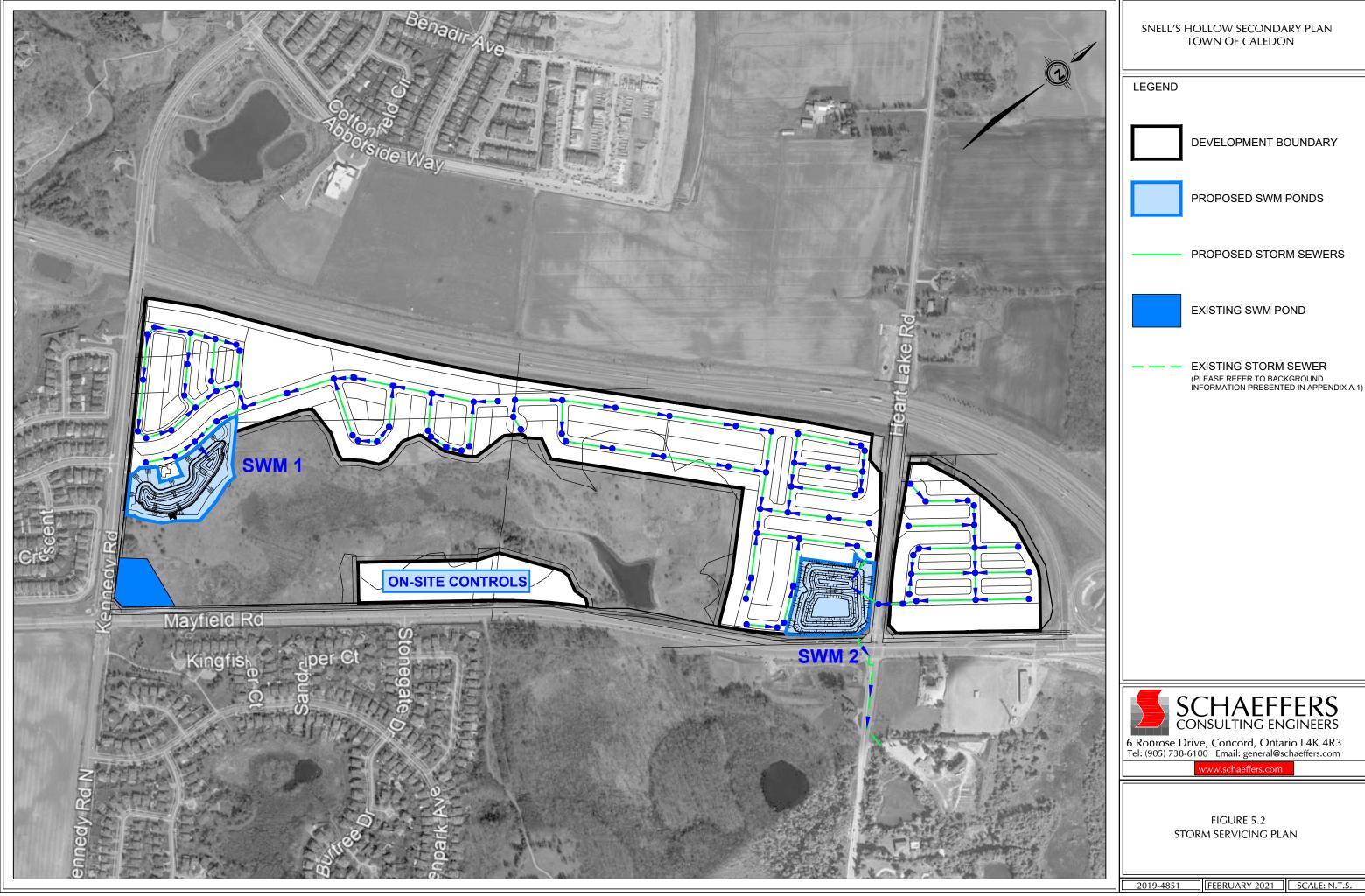
AREA 202 DRAINAGE AREA = 13.68ha RUNOFF COEFFICIENT = 0.62

AREA 203 DRAINAGE AREA = 2.72ha RUNOFF COEFFICIENT = 0.83

AREA 204 DRAINAGE AREA = 6.05ha RUNOFF COEFFICIENT = 0.67

EXISTING WATERCOURSE

EXISTING CULVERT


EXISTING SWM POND

SCHAEFFERS CONSULTING ENGINEERS

6 Ronrose Drive, Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Email: general@schaeffers.com

FIGURE 5.1 POST-DEVELOPMENT DRAINAGE PLAN

2019-4851 FEBRUARY 2021 SCALE: N.T.S.

DEVELOPMENT BOUNDARY

(PLEASE REFER TO BACKGROUND INFORMATION PRESENTED IN APPENDIX A.1)

5.1 SWM strategy – Area Draining to SWM Pond 1 (Catchment 201)

A detailed evaluation of the SWM and Low Impact development measures that apply to the proposed development were reviewed and presented in the CEISMP Section 8.3.1. As presented in the report, a SWM Pond is proposed to achieve the quality, quantity and erosion control requirements for Catchment 201, as per the design criteria discussed in **Section 4.** SWM Pond 1 discharges to the creek located within the subject site.

5.1.1 Allowable Release Rates

As discussed in the previous sections, approximately 14.51 ha is proposed to drain to the SWM facility 1. The maximum allowable release rates from SWM Pond 1 are based on the unit flow rates described in the TRCA guidelines Appendix A, for Etobicoke Creek Catchment 224. The pond release rates are based on a predevelopment drainage area of 19.44ha. A summary of the allowable flows from SWM Pond 1 are outlined in **Table 5-2** below.

Table 5-2: Summary of the Allowable Design Flows for SWM Pond 1

Return Period (years)	Target Flow Rate (m³/s/ha)	Target Rate (m³/s)
2	0.0075	0.146
5	0.0133	0.259
10	0.0187	0.364
25	0.0270	0.525
50	0.0352	0.684
100	0.0421	0.819
Regional Event	0.123*	1.785

^{*}The regional unit flow rate is based on TRCA's existing peak flow of 32.36cms for catchment 41 with an area of 263 ha.

5.1.2 Quantity Control

According to the latest stormwater management plan, it is proposed to drain approximately 14.51 ha of the subject site to SWM Pond 1.

Based on the calculations presented in **Appendix C.4**, the required 100-year storage volume is 2863 m³, and the required regional event volume is 5968 m³. Please note that since the post-development regional peak flow of 1.47m³/s was less than the allowable release rate of 1.785cms, the regional storage volume

was estimated by adding the 214m3/ha to the 100-year storage volume.

Currently, SWM Pond 1 is adequately sized to provide 100-year storage of 4200 m³ and a regional volume of 7810 m³. The full VO results are provided in **Appendix C.6**.

Table 5-3: Storage Volume for SWM Pond 1

Return Period (years)	Target Flow Rate (m ³ /s/ha)	Target Rate (m³/s)	Required volume (m³) (Governing Storm)
2	0.0075	0.146	2350
5	0.0133	0.259	2500
10	0.0187	0.364	2594
25	0.0270	0.525	2723
50	0.0352	0.684	2789
100	0.0421	0.819	2863
Regional Event	0.123	1.785	5968

5.1.3 Quality Control

Quality Control for the tributary area to SWM Pond 1 (14.51 ha) will be provided at the pond. The permanent pool was sized to provide 80% of TSS removal based on Table 3.2 in the MOE. SWM Planning and Design Manual. The required permanent pool volume is summarized in **Table 5-4** below, and calculations are provided in **Appendix C.5** for reference.

Table 5-4: Permanent Pool Volume for SWM Pond 1

Contributing Area	Overall Imperviousness (%)	Required Permanent Pool Volume (m³)	Provided Permanent Pool Volume (m³)
14.51	54	2137	2250

5.1.4 Erosion Control

As per the TRCA SWM guidelines, erosion control is required by detaining 25mm event over 48 hours. Additionally, the Fluvial Geomorphological Assessment completed by GeoMorphix (April 15, 2020) recommended a 24 hour or 48-hour detention of the 25mm to prevent erosion in the subject site area and downstream.

Therefore, SWM Pond 1 was sized to ensure that the 25mm event is released over 48 hours. Please refer to **Appendix C.3** for erosion control calculations. **Table 5-5** below provides a summary of the required erosion control volume.

Table 5-5: Erosion control required volume for SWM Pond 1

Contributing Area	RV (mm) (Value from VO model)	Required Storage Volume (m³)	Peak Outflow (m³/s)	
14.51	14.8	2147	0.019	

5.2 SWM Strategy – Area Draining to SWM Pond 2 (Catchments 202 & 204)

A detailed evaluation of the SWM and Low Impact development measures that apply to the proposed development were reviewed and presented in the CEISMP Section 8.3.1. As presented in the report, a SWM Pond is proposed to achieve the quantity, quality and erosion control requirements for Catchments 202 and 204, as per the design criteria discussed in **Section 4.** SWM Pond 2 discharges to the existing 525mm diameter storm sewer on Heart Lake Road.

5.2.1 Allowable Release Rates

As discussed in the previous sections, approximately 19.73ha is proposed to drain to the SWM facility 2. The maximum allowable release rates from SWM Pond 2 are based on the unit flow rates described in the TRCA guidelines Appendix A, for Etobicoke Creek Catchment 224. The pond release rates are based on a predevelopment drainage area of 12.65ha. A summary of the allowable flows from SWM Pond 2 are outlined in **Table 5-6** below.

Table 5-6: Summary of the Allowable Design Flows for SWM Pond 2

Return Period (years)	Target Flow Rate (m³/s/ha)	Target Rate (m³/s)
2	0.0075	0.095
5	0.0133	0.168
10	0.0187	0.236
25	0.0270	0.341
50	0.0352	0.445
100	0.0421	0.532
Regional Event	0.122*	1.538

^{*}The regional unit flow rate is based on TRCA's existing peak flow of 17.05cms for catchment 24 with an area of 140.14 ha.

5.2.2 Quantity Control

According to the latest stormwater management plan, it is proposed to drain approximately 19.73 ha of the subject site to SWM Pond 2.

Based on the calculations presented in **Appendix C.4**, the required 100-year storage volume is 7925 m³, and the required regional event volume is 19037 m³. The regional storage volume was estimated by adding the 214m3/ha to the regional storm storage sized using the unit flow rates.

Currently, SWM Pond 2 is adequately sized to provide 100-year storage of 7980 m³ and a regional volume of 19510 m³. The full VO results are provided in **Appendix C.6**.

7925

19037

Required volume Return Period **Target Flow Rate** Target Rate (m³/s) (m³) (Governing (years) $(m^3/s/ha)$ Storm) 2 4594 0.0075 0.095 5 0.0133 0.168 5719 10 0.236 0.0187 6392 25 0.0270 0.341 7099 50 0.0352 0.445 7484

0.532

1.538

0.0421

0.122

Table 5-7: Storage Volume for SWM Pond 2

5.2.3 Quality Control

100

Regional Event

Quality Control for the tributary area to SWM Pond 2 (19.73 ha) will be provided at the pond. The permanent pool was sized to provide 80% of TSS removal based on Table 3.2 in the MOE. SWM Planning and Design Manual. The required permanent pool volume is summarized in **Table 5-8** below and calculations are provided in **Appendix C.5** for reference.

Table 5-8: Permanent Pool Volume for SWM Pond 2

Contributing Area	Overall Imperviousness (%)	Required Permanent Pool Volume (m³)	Provided Permanent Pool Volume (m³)
19.73	63	3317	4400

5.2.4 Erosion Control

As per the TRCA SWM guidelines, erosion control is required by detaining 25mm event over 48 hours.

Additionally, the Fluvial Geomorphological Assessment completed by GeoMorphix (April 15, 2020) recommended a 24 hour or 48-hour detention of the 25mm to prevent erosion in the subject site area and downstream.

Therefore, SWM Pond 2 was sized to ensure that the 25mm event is released over 48 hours. Please refer to **Appendix C.3** for erosion control calculations. **Table 5-9** below provides a summary of the required erosion control volume.

Table 5-9: Erosion control required volume for SWM Pond 2

Contributing Area	RV (mm) (Value from VO model)	Required Storage Volume (m³)	Peak Outflow (m³/s)
19.73	16.776	3310	0.029

5.3 SWM Strategy – South Site Plan Area (Catchment 203)

5.3.1 Allowable Release Rates

As previously discussed, the site plan area (Catchment 203) located at the south side of the subject lands is proposed to have on-site controls. The on-site storage will control peak flows to the unit flow rates described in the TRCA guidelines Appendix A, for Etobicoke Creek Catchment 224. The release rates are based on a pre-development drainage area of 2.72ha. A summary of the south site plan's allowable flows is outlined in **Table 5-10** below.

Table 5-10: Summary of the Allowable Design Flows for the South Site Plan (Catchment 203)

Return Period (years)	Target Flow Rate (m³/s/ha)	Target Rate (m³/s)
2	0.0075	0.020
5	0.0133	0.036
10	0.0187	0.051
25	0.0270	0.073
50	0.0352	0.096
100	0.0421	0.115
Regional Event	0.123*	0.335

^{*}The regional unit flow rate is based on TRCA's existing peak flow of 32.356cms for catchment 41 with an area of 263 ha.

5.3.2 Quantity Control

On-site controls are proposed for the South Site Plan in order to maintain the allowable release rates presented in **Section 5.3.1** above.

Based on the calculations presented in **Appendix C.4**, the required 100-year storage volume is 1486 m³. and the required regional event volume is 2550 m³. The full VO results are provided in **Appendix C.6**.

The on-site retention methods (Underground storage, parking storage or roof storage) will be determined

at the site plan stage when additional information is available.

Table 5-11: Storage Volume for the South Site Plan (Catchment 203)

Return Period (years)	Target Flow Rate (m³/s/ha)	Target Rate (m³/s)	Required volume (m³) (Governing Storm)
2	0.0075	0.020	819
5	0.0133	0.036	1002
10	0.0187	0.051	1117
25	0.0270	0.073	1265
50	0.0352	0.096	1376
100	0.0421	0.115	1486
Regional Event	0.123	0.335	2550

5.3.3 Quality Control

On-site measures should be designed to provide 80% TSS removal to achieve the quality control requirements.

The on-site measures can be stand-alone units like Jellyfish Filter units or a combination of Lot-level techniques, including but not limited to infiltration galleries, bioswales, tree pits, permeable pavers or underground infiltration/retention tanks.

5.3.4 Erosion Control

As per the TRCA SWM guidelines, erosion control is required by detaining 25mm event over 48 hours. Please refer to **Appendix C.3** for erosion control calculations. **Table 5-12** below provides a summary of the required erosion control volume.

Table 5-12: Erosion control required volume for the South Site Plan

Contributing Area	RV (mm) (Value from VO model)	Required Storage Volume (m³)	Peak Outflow (m³/s)
2.72	22.692	617	0.005

Since achieving an outflow of 5 L/s is not feasible, the erosion control requirements can be met via 5mm onsite retention given the small area of the site (2.72 ha).

6.0 Water Balance and Feature-Based Water Balance

6.1 Water Balance

The subject site is not located within a WHPA-Q1/Q2 area; however, some areas are located within a significant groundwater recharge area (SGRA). Therefore, as per TRCA design criteria (August 2012), the subject site requires that post-development infiltration matches existing conditions. A post to predevelopment conditions detailed water balance was undertaken for the proposed development. The total precipitation value was based on the TRCA water budget tool.

As the TRCA water budget tool inputs do not equal outputs, the evaporation value was determined based on prorating the precipitation value. The infiltration factor for pervious areas was determined based on the M.O.E. factors. M.O.E. factors were determined to assume the site has tight clay soils, the terrain has rolling hills, and land cover varies between agricultural, meadow, and natural feature areas. The existing rooftops were considered impervious areas.

It is determined that the site annual infiltration capacity for pre-development conditions is approximately 112,905 m³, and it will drop to 75,621 m³ per year under the post-development conditions. Thus, the approximate annual infiltration deficit is calculated to be 37,284 m³.

In order to achieve the post to pre infiltration for the subject lands, the following options were explored in detail. Please note the below options are explored only for the lands west of Heart Lake Road. There are limited options for lands east of Heart Lake Road due to limited space. For example, the clean water collector system (proposed in Option 3) below will be challenging as it introduces a new sewer system that requires crossing the Regional ROW. Additionally, grading constraints and limited spacing constrict the ability to propose infiltration facilities.

Option 1: Infiltration Trenches for Catchments 201 and 202 & On-site measures for Catchment 203

The following option proposes infiltration trenches where feasible to meet the water balance requirements and assumes the Catchment 203 will provide its own site plan measures.

The proposed measures in this option are detailed below.

- Catchment 203 to provide own site plan control to achieve 5mm infiltration
 - Various LID measures that can help achieve the required SWM criteria were discussed in the CEISMP report. Please refer to Section 8.4 of the CEISMP for more details.
- Infiltration Trenches are proposed at Low-Density Development area (Detached/Semi-

Detached/St. Townhouses).

• Based on the preliminary calculation presented in Appendix D, approximately 2000m of Infiltration trench (Width = 1.5m and Depth = 0.72m) is required to meet the water balance. A design infiltration rate of 15mm/hr with a safety factor of 2.5 was utilized to complete these calculations. Based on the development plan, approximately 2339m is available for infiltration trenches, as shown in the figure in Appendix D.

• Infiltration trenches in the Park area

Based on the preliminary calculation presented in Appendix D, approximately 201m of Infiltration trench (Width = 1.5m and Depth = 0.72m) is required to meet the water balance.
 A design infiltration rate of 15mm/hr with a safety factor of 2.5 was utilized to complete these calculations.

The above measures help achieve the 34820m³/y of the above mentioned 37284m³/y deficit. This option is currently recommended for the proposed development. It helps achieve the required post to pre-water balance, and the operation and maintenance costs are estimated to be low compared to the other options discussed below. In addition to our analysis, R.J. Burnside has prepared and provided their analysis as shown in **Appendix D.** The analysis by R.J. Burnside also confirms that the proposed mitigation measures in Option 1 satisfy the post-to-pre water balance requirement.

Table 6-1 summarizes the pre to post-development conditions water balance with mitigation measures presented in Option 1.

Percent Change Post-development Change (pre to post Total Prewith mitigation with mitigation) Post-(Pre to development (OPTION 1) (OPTION1) Characteristics development Post) Inputs (Volumes) Precipitation 535,556 (m³/year) 535,556 0% 535556 0% Total Inputs (m³/year) 535,556 535,556 0% 535556 0% **Outputs (Volumes)** Precipitation surplus (m³/year) 258,625 340,197 24% 340197 24% **Net Surplus** (m³/year 258,625 340,197 24% 340197 24% Total Evapotranspiration (m³/year) 276,931 195,359 -42% 195359 -42% Total Infiltration -2% (m³/year) 112,905 75,621 -49% 110441 Total Runoff (m³/year) 145,720 264,576 45% 229756 37% **Total Outputs**

0%

535556

Table 6-1: Water Balance Summary

Option 2: Infiltration Trenches (Catchments 201 and 202), Infiltration Gallery (Catchment 201) & On-site measures for Catchment 203

535,556

The following option proposes infiltration trenches where feasible to meet the water balance requirements and assumes the Catchment 203 will provide its own site plan measures. Additionally, an infiltration gallery is proposed to provide a post to pre-water balance for the area draining to the facility.

The proposed measures in this option are detailed below.

535,556

(m³/year)

- Catchment 203 to provide own site plan control to achieve 5mm infiltration
 - Various LID measures that can help achieve the required SWM criteria were discussed in the CEISMP report. Please refer to Section 8.4 of the CEISMP for more details.
- Infiltration Gallery in Park Area (Catchment 201)
 - A separate CWC is proposed to convey the flows to an infiltration galley (approximately
 0.3ha) to provide infiltration for the roof areas within Catchment 201.
- Infiltration Trenches are proposed at Low-Density Development area (Detached/Semi-Detached/St. Townhouses) within Catchment 202 and Catchment 201.

0%

Based on the preliminary calculation presented in Appendix D, approximately 935m of Infiltration trench (Width = 1.5m and Depth = 0.72m) is required to meet the water balance.
 A design infiltration rate of 15mm/hr with a safety factor of 2.5 was utilized to complete these calculations. Based on the development plan, approximately 1111m is available for infiltration trenches, as shown in the figure in Appendix D.

The above measures help achieve the 39940m³/year, which is greater than the 37284m³/year deficit. This option is currently not recommended as it involves a third pipe system and a separate infiltration gallery. However, this option can be explored in the detail design stage to achieve the requirements, if the agency requires.

Option 3: Perforated Clean Water Collector System & On-site measures for Catchment 203

The following option proposes a perforated clean water pipe system that collects clean water from the roofs and promotes infiltration. Similar to the other two options, catchment 203 is proposed to provide its infiltration measures.

The proposed measures in this option are detailed below.

- Catchment 203 to provide own site plan control to achieve 5mm infiltration
 - Various LID measures that can help achieve the required SWM criteria were discussed in the CEISMP report. Please refer to Section 8.4 of the CEISMP for more details.
- Perforated CWC's
 - A perforated CWC system is proposed and the storm sewers to enable infiltration from the clean roof areas. As shown in the calculations in **Appendix D**, approximately 1950m of 300mm diameter perforated pipe is required to satisfy the infiltration requirements.

The above measures help achieve the 37284m³/year deficit. This option is currently not recommended as it involves a third pipe system. However, this option can be explored in the detail design stage to achieve the requirements.

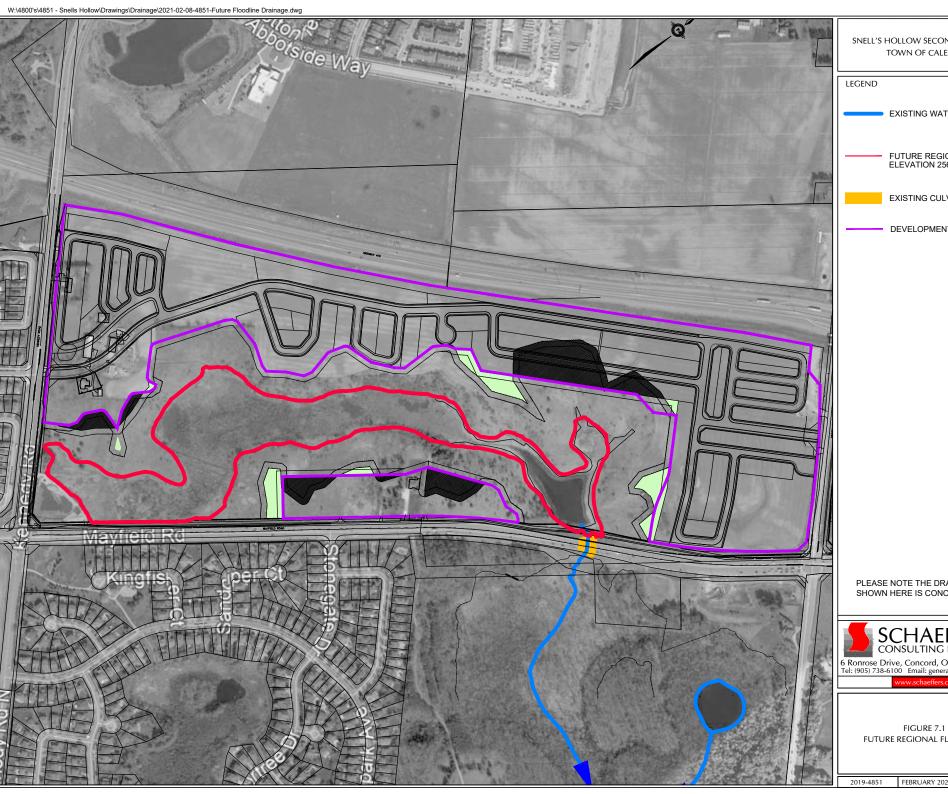
6.2 Feature Base Water Balance

The *Snell's Hollow East Secondary Plan Baselines Condition* Report by R.J. Burnside (August 2020) identifies that the subject site drains to the Heart Lake Provincial Significant Wetlands (PSW) defined by the Ministry of Natural Resources (MNRF). A portion of the PSW is within the site boundary.

R.J Burnside and Schaeffers Consulting Engineers completed a Wetland Water Balance Risk Evaluation that classified the wetlands within the subject side as "High Risk." As required by TRCA, a continuous

water balance model was prepared by Schaeffers Consulting Engineers. The details are presented in the report titled "Feature-Based Water Balance – Snells Hollow Secondary Plan Area," dated April 2021.

7.0 FLO O D PLAIN ANALYSIS


A floodplain analysis has been conducted for the subject site to determine the conveyance capacity of the tributary. The method of establishing the existing floodplain has been discussed with the TRCA due to the backwater conditions caused by the 1050 mm diameter culvert under the Mayfield Road crossing. Schaeffer's previously conducted the analysis using conventional 1-D HEC-RAS Modelling. It was found that the water spills over the Mayfield Road at various locations, including the culvert's location. Due to the very limited capacity of the culvert, the system acts in backwater; 1-D modelling ignores the impacts of storage available within the valley. This information was conveyed to the TRCA during a meeting held on August 7th, 2020 between the TRCA and Schaeffers. It was concluded to establish the floodplain assuming the culvert being plugged and assuming the valley as a complete storage unit.

In following this methodology, Schaeffer's established the floodline for the subdivision based on the total runoff volume generated from the Future drainage conditions at the request of the TRCA. It is to note that the spill elevation to Mayfield Road has been established based on the field survey as 257.50 masl. The total available storage within the valley is calculated to be 183,870 m³ at the elevation of 257.50 masl. Please refer to the floodplain shown in **Figure 7.1**. The overall drainage area towards the watercourse in Future conditions is calculated to be 51.75ha. This area includes the 9.76ha drainage area to the Kennedy SWM Pond as per the SWM report by GHD (SWM Facility Retrofit Report), the 17.23 ha from the proposed subdivision, and the 24.76 ha of drainage from the valley. Please refer to the future conditions drainage area in **Figure 7.2**.

7.1 Runoff Generated

The runoff volume calculation has been carried out using Visual OTTHYMO. Overall drainage parameters have been updated to reflect the future drainage conditions and the land uses. Based on the VO hydrograph output for the Hurrican HAZEL regional storm case, a total runoff volume of 184.452mm is expected. This amounts to 95,454 m³ of volume. VO modelling results are presented in **Appendix E**. With the assumption that the culvert is plugged, it has been estimated that the water surface elevation will be 256.65 masl within the valley when retaining 95,454 m³ of water, lower than the spill elevation. As such, the proposed grading and servicing has been carried out to safely maintain a freeboard from this elevation. The proposed floodline is depicted in **Figure 7.1.** Furthermore, this floodline has been delineated on the existing floodplain drawing.

SNELL'S HOLLOW SECONDARY PLAN TOWN OF CALEDON

EXISTING WATERCOURSE

FUTURE REGIONAL FLOODLINE ELEVATION 256.65m

EXISTING CULVERT

DEVELOPMENT BOUNDARY

PLEASE NOTE THE DRAFT PLAN SHOWN HERE IS CONCEPTUAL

6 Ronrose Drive, Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Email: general@schaeffers.com

FUTURE REGIONAL FLOODLINE

FEBRUARY 2021 SCALE: N.T.S.

2019-4851

FEBRUARY 2021 SCALE: N.T.S.

8.0 S U M M A R Y

This report presents the stormwater management plan for the proposed Snell's Hollow Secondary Plan Area located in the Town of Caledon. The report demonstrates that adequate stormwater servicing will be available for the proposed development. The key points discussed in this report are summarized below.

- Two stormwater management facilities are proposed to meet the required quantity, quality and erosion requirements for Catchments 201, 202 and 204.
- The South Site Plan (Catchment 203) is proposed to have on-site controls.
- A floodplain assessment was completed to determine the conveyance capacity of the tributary.
- Post to pre-water balance is proposed via infiltration trenches and infiltration galleries in Catchment 201 and 202. Catchment 203 will provide its own measures to achieve 5mm infiltration.

Should you have any questions or comments, please do not hesitate to call the undersigned.

Respectfully Submitted,

SCHAEFFER & ASSOCIATES LTD.

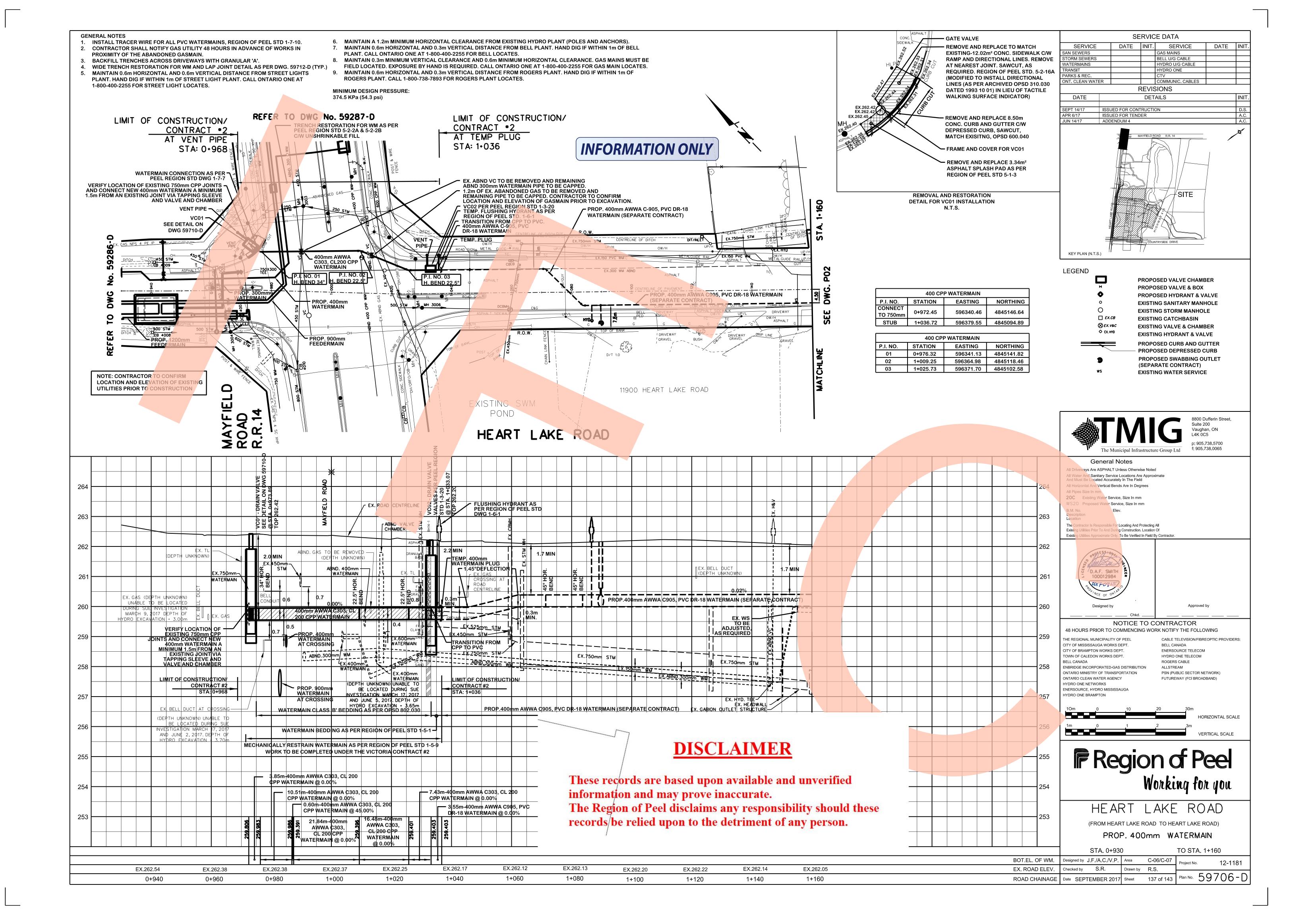
Soroh Fomoly

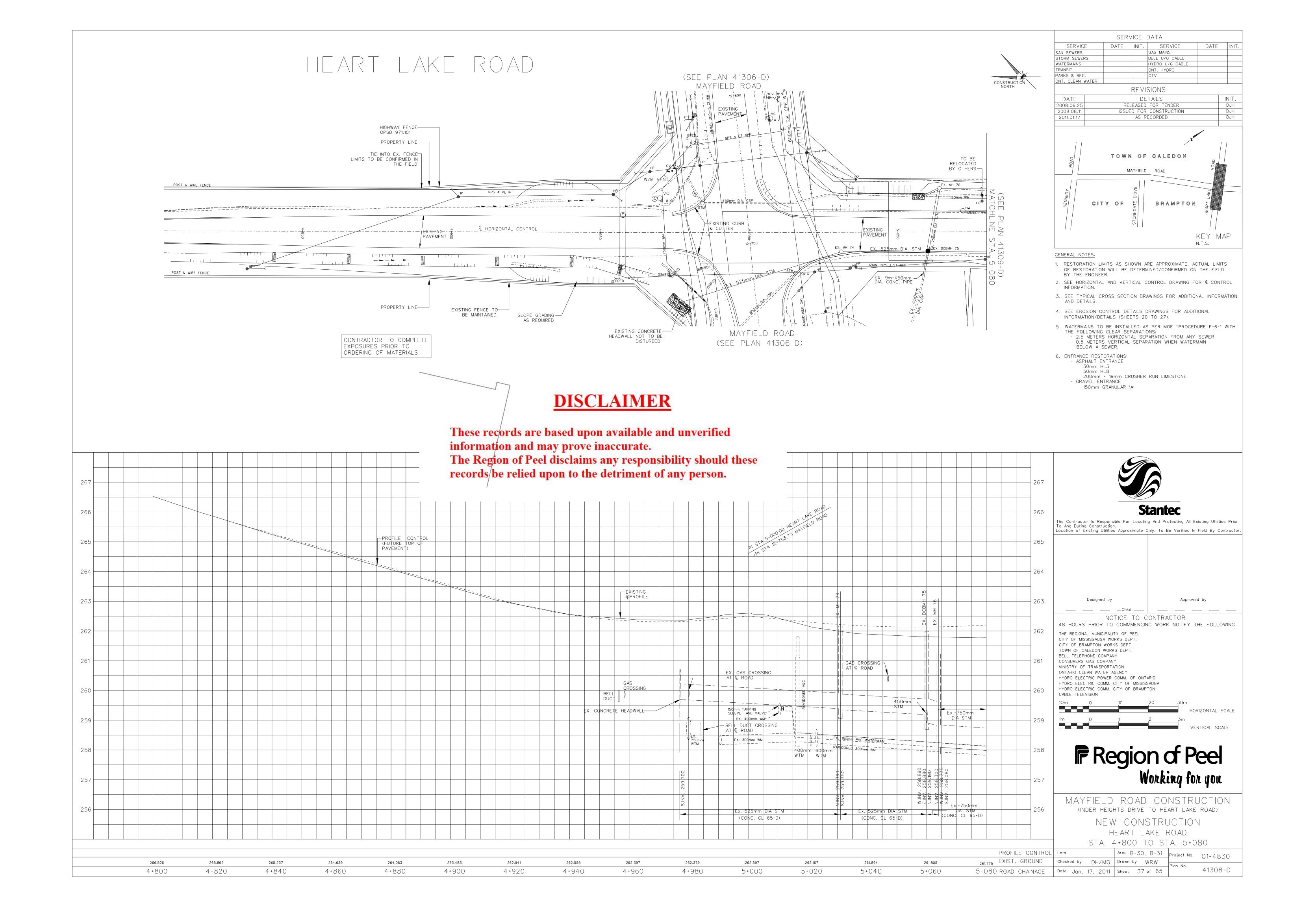
Sarah Fanous, B.Sc., E.I.T.

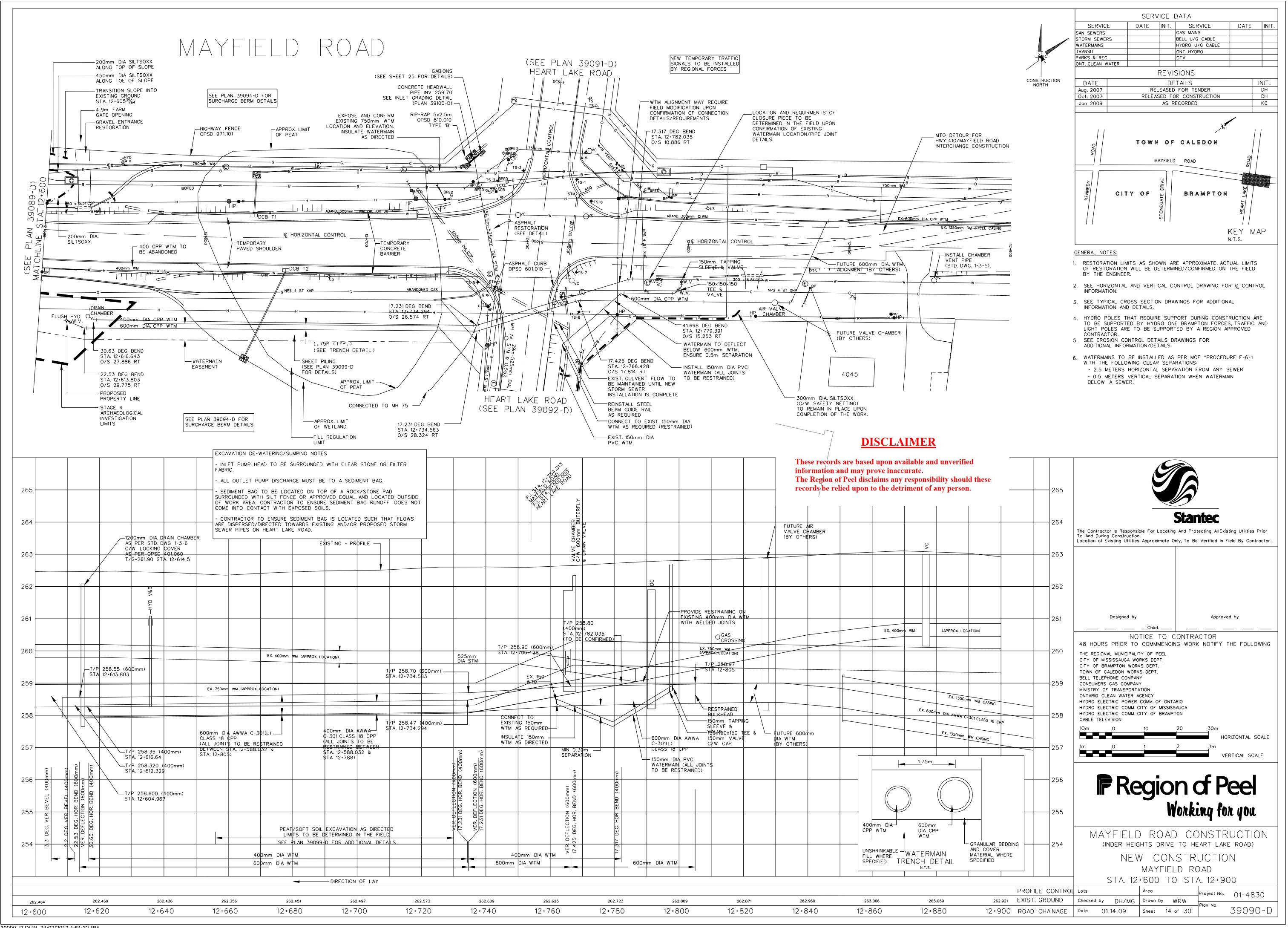
Water Resources Analyst

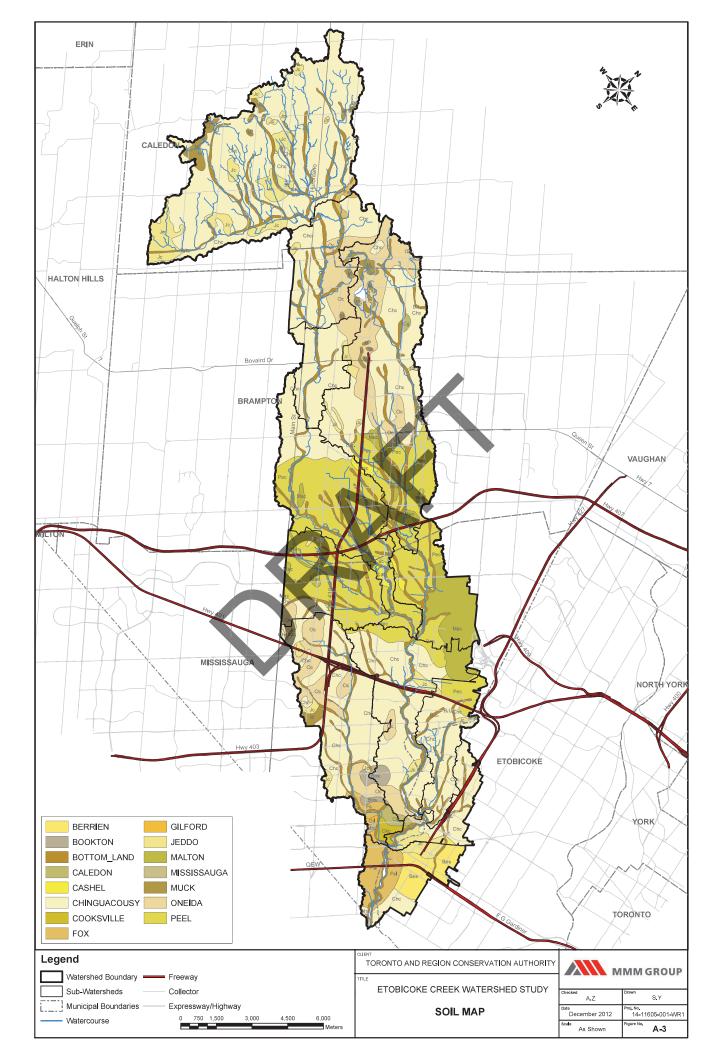
Koryun Shahbikian, LLM, M. Eng., P. Eng.

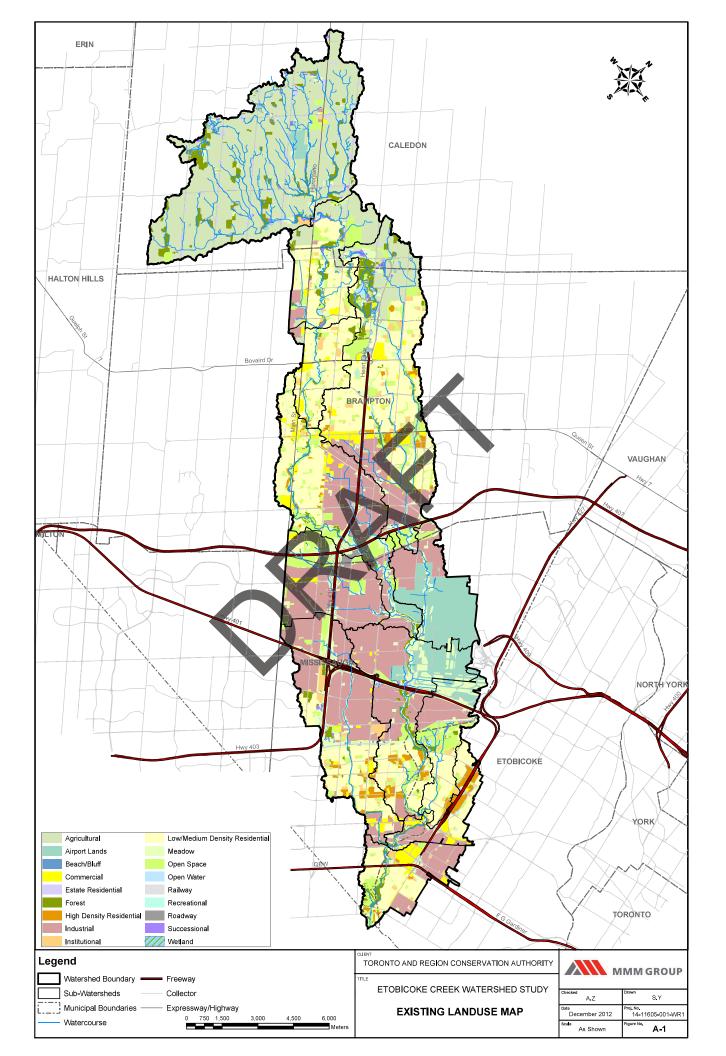
Partner


Yashaswy Gollamudi, B.Sc., E.I.T.


Water Resources Analyst




APPENDIX A: BACKGROUND INFORMATION



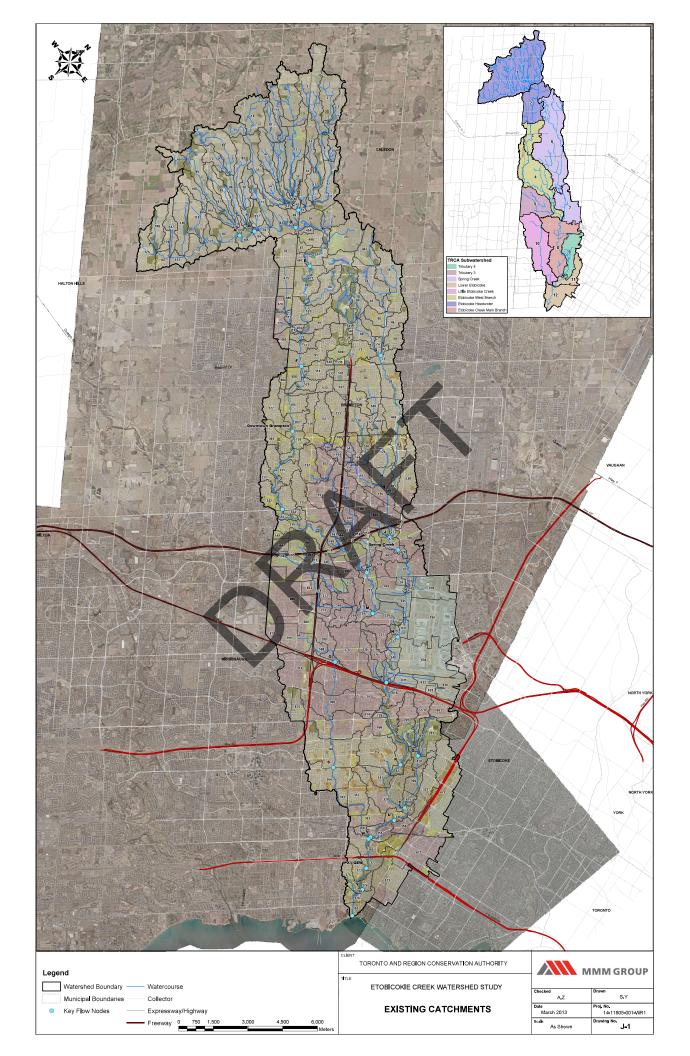


Table 5.1 Potential Storm Distributions for Etobicoke Creek

Return Period Design Storms	
	Chicago (3, 4 and 12 hours)
2 to 100 Year	AES (1, 6, 12 and 24 hours)
	SCS Type II (6, 12, and 24 hours)

Tables included in Appendix F2 present the resulting 100-year flows for all design storm distributions at all selected flow node locations. As seen from these Tables, the most conservative peak flow rates were generally found to be associated with the 12-hour AES rainfall distribution. Given that the 12-hour AES distribution is also used by TRCA in other urban watersheds (i.e., Humber and Rouge River watersheds), the present study recommends the 12-hour AES distribution for use in the Etobicoke Creek watershed for establishing peak flows. Tables 5.2 and 5.3 summarize the resulting 2 to 100-year peak flow rates by using selected 12-hour AES design storm distributions for existing and future conditions respectively.

It is recommended that for sites with small drainage areas (i.e., individual site) that the Chicago storm with 5 min time steps be used for hydrologic modelling.

6.2.3 Lower-Basins (Sub-Basins # 8, 11 and 12)

As mentioned previously, for the downstream part of the watershed (Sub-Basins #8, 11 and 12), no controls are typically required. This is because if storages are provided for the infill re-development areas (with increased imperviousness) to attenuate the peak flows to the existing levels, such controls (storage routing) will delay the peak flows (i.e., longer time to peak values) from infill areas. For large sized watersheds (e.g., Etobicoke Creek watershed has a total drainage area more than 200 km²), such delayed peak flows from the downstream watersheds will be added to the peak flows in the main branch coming from the upstream watersheds which typically occur later. As such, the peak flows in the main branch of the water course will increase due to this "timing effect" if the infill re-developments within the lower downstream part of the watershed (Sub-Basins #8, 11 and 12) are controlled. Detailed information for the Lower-Basins is included in Appendix J3.

6.2.4 Summary of Established Unit Flow Rates for 1 in 2 to 1 in 100 year Design Storm Events

In order to examine the identified quantity control strategies on an overall watershed basis, the entire Etobicoke Creek hydrology model was modified to reflect

- ► Headwatersheds (Sub-Basin #1) Control peak flows from ultimate development areas to 60% of the existing levels.
- ► Mid-Basins and Tributaries (Sub-Basins # 2 to 7, 9 and 10) Control peak flows from infill redevelopment lands (maximum 20% increases of imperviousness) to existing levels; and
- ► Lower-Basins (Sub-Basins # 8, 11 and 12) No quantity controls are required.

A summary of the resulting flows is presented in Table 6.1. As shown in the Table, by implementing the identified quantity control strategy (1 in 2 to 1 in 100 year) for the Etobicoke Creek watershed under ultimate development conditions, there will be no hydrological impact to the flows in the Etobicoke Creek watercourses (e.g. see results from Run 4 vs. target flows for existing conditions).

Consequently, the recommended Unit Flow Rates (UFRs) for 2- to 100-year design storm events (12hr AES) for Etobicoke Creek watershed are summarized in Appendix J4. The existing catchment numbers are shown in Drawing J.1 in the rear pocket.

6.3 Development of Unit Flow Rates for Regional Storms

Based on discussion with TRCA staff, for Regional Storm (final 12-hours of Hurricane Hazel), ultimate developments are required to be controlled so that there are no increases of peak flows from future development models for the Etobicoke Creek water courses.

Similar to the approaches applied to establish Unit Flow Rates for 1 in 2 to 1 in 100 year design storms, the following control strategies were implemented in the Etobicoke Creek watershed model for Regional Storms:

- ► Headwatersheds (Sub-Basin #1) Control peak flows from ultimate development areas to 60% of resulting flows from the future conditions model.
- ► Mid-Basins and Tributaries (Sub-Basins # 2 to 7, 9 and 10) Control peak flows from infill redevelopment lands (maximum 20% increases of imperviousness) to those from base model; and
- ▶ Lower-Basins (Sub-Basins # 8, 11 and 12) No quantity controls are required.

A summary of the resulting flows is presented in Table 6.2. As shown in Table 6.2, by implementing the identified quantity control strategy for Regional Storm for the Etobleoke Creek watershed under ultimate development conditions, there will be no hydrological impact to the flows in the Etobicoke Creek watercourses (e.g. results from Run 8 vs. target flows for future conditions).

Consequently, the recommended Unit Flow Rates (UFRs) for Regional Storms (final 12-hours of Hurricane Hazel with no SWM ponds) for Etobicoke Creek watershed are summarized in Appendix J5. The future catchment numbers are shown in Drawing J.2 in the rear pocket.

Required Additional Storages for Regional Controls

Hurricane Hazel is a 48-hr duration historical storm. As discussed previously, final 12-hours of Hurricane Hazel has been identified as Regional Storm for Etobicoke Creek watershed. The saturated antecedent moisture condition (AMC III) is required to be applied for the catchment to simulate the wet soil conditions resulting from the first 36-hours of Hurricane Hazel. As such, when determining the required detention storage for regional controls, it is necessary to provide additional storage to accommodate the first 36-hours of Hurricane Hazel. Since no distribution was recorded during first 36-hour Hurricane Hazel historical storm, two hypothetical distributions (constant intensities and increased intensities, both with a total depth of 73mm) were applied in the existing model to determine the storage volumes used by the existing SWM ponds within the Etobicoke Creek watershed. All study results are included in Appendix J6. As indicated, a unit storage volume of 214 m³/ha will be required as additional storages for Regional controls. Such storages should be added to the calculated storage volumes to control the post-development peak flows to the identified Unit Flow Rates for the Regional Storm.

ETOBICOKE WATERSHED QUANTITY CONTROL STRATEGY - UNIT FLOW RATES

Basin 6 - Spring Creek (U/S of Spring Creek Flow Guge) - Control to Existing Flow

Existing	Unit Flow Rates (m³/s/ha)						
Catchment #	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	
16	0.01111	0.01854	0.02409	0.03151	0.03728	0.04325	
24	0.01109	0.01920	0.02534	0.03363	0.04012	0.04685	
41	0.01011	0.01785	0.02375	0.03177	0.03808	0.04465	
45	0.01234	0.02085	0.02721	0.03576	0.04240	0.04928	
64	0.01283	0.02240	0.02964	0.03945	0.04713	0.05511	
447	0.01321	0.02206	0.02865	0.03745	0.04428	0.05132	
699	0.01475	0.02503	0.03273	0.04305	0.05108	0.05939	
734	0.01667	0.02851	0.03723	0.04878	0.05768	0.06676	
All Others	0.03300	0.04485	0.05300	0.06337	0.07113	0.07894	

ETOBICOKE WATERSHED QUANTITY CONTROL STRATEGY - UNIT FLOW RATES REGIONAL CONTROL

Basin 6 - Spring Creek (U/S of Spring Creek Flow Guge) - Control to Future Flow

Future Catchment #	Unit Flow Rates (m³/s/ha)	
ratare cateminent #	Regional	
542, 734, 764, 765, 769, 6992, 7602, 7612	0.11835	
All Others	0.12744	

Fluvial Geomorphological Assessment and Flow Monitoring

Tributary of Etobicoke Creek

Snell's Hollow Secondary Plan Town of Caledon, Ontario

Prepared for: Snell's Hollow Landowners Group c/o Jason Afonso, MCIP, RPP Glen Schnarr and Associates Inc. 700-10 Kingsbridge Garden Circle Mississauga, ON L5R 3K6

April 15, 2020 PN19033

Report Prepared by: GEO Morphix Ltd.

36 Main St. N. Campbellville, ON

LOP 1B0

Report Title: Fluvial Geomorphological Assessment and Flow

Monitoring, Tributary of Etobicoke Creek Snell's Hollow Secondary Plan Area

Town of Caledon

Project Number: PN19033

Status: FINAL

Version: 1.0

Submission Date: April 17, 2020

Prepared by: Suzanne St. Onge, M.Sc., Tye Rusnak, B.Sc. Env. Approved by: Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP

i

Table of Contents

1	Intro	duction and Background1
2	Back	ground Review and Desktop Assessment
	2.1	Physiography and Geology1
	2.2	Reach Delineation2
3	Field	Assessment2
	3.1	General Reach Observations
	3.2	Detailed Geomorphological Assessment4
4	Erosi	on Threshold Assessment5
	4.1	Methodology5
	4.2	Results5
5	Flow	Monitoring6
	5.1	Water Level Monitoring7
	5.2	Velocity and Discharge Monitoring7
6	Sumr	mary and Conclusions8
7	Refer	rences
List	of T	ables
Table	1. Ge	neral channel characteristics3
Table	2. Me	asured and computed channel parameters4
Table	3. Ero	osion thresholds and average channel parameters6
Table	4. Flo	w monitoring sites, sampling parameters, and sampling duration in 20196
Table	5. Mii	nimum and maximum water depths at each sampling location7
Table	6. Av	erage velocity and measured discharge at each sampling location8
App	end	ices

Appendix A Reach Delineation and Monitoring Station Locations

Appendix B Photographic Record

Appendix C Field Observations

Appendix D Detailed Geomorphological Assessment Summary

Appendix E Flow Monitoring Data

1 Introduction and Background

GEO Morphix Ltd. was retained to complete a fluvial geomorphological assessment and flow monitoring in support of the Snell's Hollow Secondary Plan in the Town of Caledon, hereafter referred to as the subject lands. The subject lands are bounded by Highway 410 to the north and east, Kennedy Road to the west, and Mayfield Road to the south. A portion of the Heart Lake Wetland Complex, a provincially significant wetland (PSW), is located in the southern portion of the subject lands. This wetland complex and associated drainage features are located within the Etobicoke Creek watershed and the jurisdiction of Toronto and Region Conservation Authority (TRCA).

The following activities were completed as part of the fluvial geomorphological assessment:

- Conduct rapid geomorphological assessments and collect general observations to document existing channel conditions
- Complete a detailed geomorphological assessment, including a survey of the longitudinal profile and six (6) cross sections (including two monumented cross sections)
- Install erosion pins to quantify the rate and extent of erosion at monumented crosssections
- Complete grain size analysis using a modified Wolman (1954) pebble count or through collection of bed sample to observe changes in bed composition over time, as appropriate
- Determine an erosion threshold for the reach downstream of Mayfield Road
- Collect time stamped monumented photographs to provide a record of existing conditions

The following activities were completed as part of the 2019 flow monitoring program:

- Install stream flow monitoring equipment in four (4) locations within the subject lands to record water level and temperature at 15-minute intervals
- Record local atmospheric temperature and pressure at 15-minute intervals
- Install monumented cross-sections at each monitoring station for the periodic collection of velocity measurements
- Collect time stamped monumented photographs to provide a record of existing conditions

Stream flow monitoring activities will continue in 2020, with all 4 monitoring stations re-installed on March 24, 2020 for the April 1st start of the monitoring season. This report will subsequently be updated to include additional data following removal of all monitoring equipment in the late fall of 2020.

2 Background Review and Desktop Assessment

2.1 Physiography and Geology

Channel morphodynamics are largely governed by the flow regime and the availability and type of sediments (i.e., surficial geology) within the stream corridor. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity.

The subject lands are located within the gently sloping drumlinized till plains of South Slope physiographic region (Chapman and Putnam, 2007). Published mapping indicates that the local surficial geology within and north of the subject lands consists of clay to silt-textured till derived from glaciolacustrine deposits or shale. These fine-grained till deposits are considered to be

relatively resistant to erosion. In areas where wetlands are currently present, surficial geology consists of organic deposits (OGS, 2010).

2.2 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. They are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This allows for the meaningful characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity. Reaches in the study area were delineated first through a desktop assessment using the Ministry of Natural Resources and Forestry (MNRF) stream layer and recent digital aerial photography from Google Earth Pro. Reaches were delineated based on changes in the following:

- Channel planform
- Channel gradient
- Physiography
- Land cover (land use or vegetation)
- Flow, due to tributary inputs
- Soil type and surficial geology
- Certain types of anthropogenic channel modifications

This follows scientifically defensible methodology proposed by Montgomery and Buffington (1997), Richards et al. (1997), Brierley and Fryirs (2005), and the Toronto and Region Conservation Authority (2004). A reach map is provided in **Appendix A**. Reaches were numbered from downstream to upstream to provide geographic context and then verified during field reconnaissance.

Five reaches were delineated within the subject lands. Reach **EC-1** extended from Mayfield Road to Heart Lake. Reach **EC-2** consisted of the pond feature north of Mayfield Road. Reach **EC-2a** extended from an agricultural field at the north extent of the subject lands to the pond feature. Reach **EC-3** contained the wetland that extended from Kennedy Road to the pond feature. Reach **EC-3a** extended from the property line of a landowner in the western extent of the subject lands to the wetland feature.

R.J. Burnside and Associates Limited (Burnside) completed headwater drainage feature assessments (HDFAs) within the subject lands in 2019. Existing conditions documented herein focus on geomorphologic observations and should be considered in conjunction with HDFA assessment results prepared by Burnside under separate cover.

3 Field Assessment

Field assessments of reaches within the subject lands were completed on May 10, 2019 and included the following activities:

- Observations of riparian conditions
- Estimates of bankfull channel dimensions, as appropriate
- Characterization of bed and bank material composition and structure
- Observations of erosion, scour, or deposition
- Collection of georeferenced photographs

These observations and measurements are summarized below and in **Table 1** in the following section. The descriptions are supplemented and supported with representative photographs, which

are included in **Appendix B.** Reach summary field sheets are provided in **Appendix C.** The Rapid Geomorphological Assessment (RGA; MOE, 2003) and the Rapid Stream Assessment Technique (RSAT; Galli, 1996) were not applicable due to the poorly defined nature of the features.

3.1 General Reach Observations

Reach **EC-1** began at the outlet of the pond feature (**EC-2**) and flowed through a steel culvert under Mayfield Road, continuing south through a confined valley towards Heart Lake. The reach had a low gradient and where defined, contained a wide, shallow channel. Riparian vegetation was mainly comprised of mature trees and was greater than 10 channel widths. Bank materials ranged from clay to sand and little to no bank erosion was observed. There were no riffles or pools. Bed materials consisted of organic material, clay, silt, and fine sand. Two trail crossings were present across the channel and valley. Woody debris was present in the channel but was not attributed to channel widening. Reach **EC-1** was chosen as the location for the detailed geomorphological assessment and erosion threshold analysis.

Reach **EC-2** consisted of a pond feature that separated wetland reach **EC-3** upstream to the west and Mayfield Road downstream to the southeast. Reach **EC-2a** extended from the border of an agricultural field to the north. This feature was characterized as poorly defined and had a moderate gradient. Burnside identified the upstream portion of this reach as a headwater drainage feature. The riparian vegetation buffer was continuous and comprised of grasses that extended more than 10 channel widths. The feature was extensively encroached with grasses, and a large, man-made woody debris pile was present in the middle of the reach. Bankfull width and depth at the downstream extent of the reach were 6.0 m and 0.4 m, respectively. Bank materials consisted of clay, silt, and sand. Bank angles ranged from 30 – 60 degrees with little to no erosion. There was no evidence of riffle-pool morphology. Bed materials were comprised of clay, silt, and sand.

Reach **EC-3** consisted of a large wetland feature that began at the southwest extent of the subject lands. The southwest corner of the feature was bound by a retaining wall adjacent to Mayfield Road and the stormwater management (SWM) pond at the corner of Kennedy Road and Mayfield Road. Recorded velocity measurements showed that the wetland slowly drained eastwards into the pond feature (**EC-2**). Vegetation within the wetland consisted of cattails, deciduous trees, shrubs and grasses.

Reach **EC-3a** began at the property line of a landowner in the northwest corner of the subject lands. The reach was unconfined, and consisted of a low gradient channelized feature that was moderately entrenched. Burnside identified the upstream portion of this reach as a headwater drainage feature. The riparian buffer zone was wide and mainly comprised of grasses. Average bankfull width and depth were 1.4 m and 0.3 m, respectively. Bank angles ranged from 60 – 90 degrees and the reach showed minimal signs of erosion. Bank materials consisted of clay, silt, and sand. Riffle-pool morphology was not present. Bed materials were comprised of sand and gravel.

Table 1. General channel characteristics

<u> </u>	Average	Average	Substrate				
Reach	Bankfull Width (m)	Bankfull Depth (m)	Bed	Riparian Bank Vegetation		Notes	
EC-1	17.95	0.32	Organic material, clay, silt, Find Sand	Clay, silt, sand	Mature trees	Wetland-like channel; confined valley; wide, shallow channel; no evidence of channel widening	

	Average	ge Average	Substrate			
Reach	Bankfull Width (m)	Bankfull Depth (m)	Bed	Bank	Riparian Vegetation	Notes
EC-2	N/A-Pond Feature		N/A		Grasses	Outlets south to steel culvert crossing at Mayfield Road
EC-2a	6.0	0.4	Clay, Silt, Sand	Clay, Silt, Sand	Grasses	Extensive vegetation encroached; large man- made woody debris pile mid-reach
EC-3	N/A; Wetland Feature		N/A		Grasses	Unconfined; no defined channel; cattails, trees, shrubs, grasses present
EC-3a	1.4	0.3	Clay, Silt, Sand	Sand, Gravel	Grasses	Channelized feature; moderately entrenched

3.2 Detailed Geomorphological Assessment

A detailed geomorphological assessment was completed on May 6, 2019 within Reach **EC-1** as this reach was identified as the most sensitive to erosion. The specific location within the reach was chosen as it had the most defined section of channel. The assessment included a longitudinal survey of the channel bed and water level to determine gradients, and the completion of six detailed cross-section surveys. Two of these cross-sections were monumented and included the installation of erosion pins. At each cross section, bankfull geometry was recorded, as well as riparian conditions, bank material, bank height/angle, the presence of undercutting, and bank root density. Characterization of channel bed material at each cross section was completed using a modified Wolman (1954) pebble count technique or through collection of bed samples, as appropriate. Photographs of each cross section and both channel banks were also collected at the time of the survey. Results from the detailed assessment are summarized in **Table 2**. A complete summary of the detailed assessment is provided in **Appendix D**.

Table 2. Measured and computed channel parameters

Channel Parameter	EC-1			
Measured				
Average bankfull channel width (m)	17.95			
Average bankfull channel depth (m)	0.32			
Bankfull channel gradient (%)	0.66			
D ₅₀ (mm)	< 2.0			
Manning's n roughness coefficient	0.050			
Computed				
Bankfull discharge (m³/s) *	4.30			
Average bankfull velocity (m/s)*	0.76			

^{*} Based on Manning's Equation

4 Erosion Threshold Assessment

4.1 Methodology

Erosion thresholds are used to determine the magnitude of flow required to potentially entrain and transport bed and/or bank materials. As such, they may be used to inform erosion reduction strategies in channels influenced by conceptual flow management plans. The erosion threshold analysis provides a depth, velocity, or discharge at which sediment of a particular size may potentially be entrained. This is then field-validated through sediment transport observations under a range of flows. Due to the variability between bed and bank composition and structure, erosion thresholds are typically determined for both bed and bank materials. Threshold targets are determined using different methods that are dependent on channel and sediment characteristics. For example, thresholds for non-cohesive sediments are commonly estimated using a shear stress approach, similar to that of Miller et al. (1977), which is based on a modified Shield's curve. A velocity approach could also be applied. For non-cohesive materials, a method such as that described by Komar (1987), or empirically-derived values such as those compiled by Fischenich (2001) or Julien (1994), could be applied.

An erosion threshold is quantified based on the bed and bank materials and local channel geometry, in the form of a critical discharge. Theoretically, above this discharge, entrainment and transport of sediment can occur. The velocity, U is calculated at various depths, until the average velocity in the cross section slightly exceeds the critical velocity of the bed material. The velocity is determined using a Manning's approach, where the Manning's n value is visually estimated through a method described by Arcement and Schneider (1989) or calculated using Limerinos's (1970) approach. The velocity is mathematically represented as

$$U = \frac{1}{n}d^{2/3}S^{1/2}$$
 [Eq. 1]

where, d is depth of water, S is channel slope, and n is the Manning's roughness. The discharge is then calculated using the area of a typical cross section at that depth.

For the bank materials, following Chow (1959) in a simplified cross section, 75% of the bed shear stress acts on the channel banks. In a similar approach, the depth of flow is increased until the shear stress acting on the banks exceeds the resisting shear strength of the bank materials.

4.2 Results

Erosion thresholds were determined for the bed and bank materials within **Reach EC-1** of the Tributary of Etobicoke Creek. This reach was deemed to be the most sensitive to erosion of the reaches assessed, although it was still considered to be a low risk environment as it was depositional.

Channel bed and bank materials were considered equivalent, and conservatively estimated to consist of a fairly compact to loose clay. A critical shear stress approach was taken using the criteria of Julien (1994) for this material, which has a critical shear stress of 6.2 N/m^2 . This threshold shear stress was then applied to a representative cross section measured from the detailed assessment to calculate the critical discharge, or the discharge at which it is expected that sediment entrainment will begin to occur. The results of the erosion assessment are provided in **Table 4.** Using the criteria of Chow, the critical discharge to entrain the bed materials within **Reach EC-1**, was determined to be 1.25 m^3/s .

We note that **Reach EC-1**, as well as the others that may receive stormwater flows in the subject lands, are relatively resilient to potential erosion given their low gradient and wide, oversized bankfull channels. Consequently, we do not advocate for using the erosion threshold assigned to **Reach EC-1** to aid in designing the associated SWM pond and outlet structure given the high volume of water the channel has the capacity to tolerate. Doing so could conceivably cause downstream erosion concerns in other reaches that are more sensitive to erosion. Instead, we suggest using the 24 or 48 hour detention of the 25 mm event to prevent erosion both within the study area, and downstream within Etobicoke Creek.

Table 3. Erosion thresholds and average channel parameters

Channel Parameter	Reach EC-1
Average bankfull channel width (m)	17.95
Maximum bankfull channel depth (m)	0.32
Average channel gradient (%)	0.66
Calculated bankfull discharge (m³/s)	4.3
Bankfull shear stress (N/m²)	20.53
Erosion thresholds for bed and bank m	aterials
Critical shear stress (N/m²)	6.2
Critical discharge (m³/s)	1.25

5 Flow Monitoring

During 2019, flow monitoring was conducted at four (4) locations on the subject lands to assess water quantity characteristics. A map of monitoring locations is provided for reference in **Appendix A. Table 4**, below, summarizes monitoring activities at each location.

Table 4. Flow monitoring sites, sampling parameters, and sampling duration in 2019

Site	Sampling Parameters	Monitoring Duration	# Visits
W Inlet	Continuous water level & temperature Velocity measurements when possible	April 4 – November 30	8
S Inlet	Continuous water level & temperature Velocity measurements when possible	April 4 – November 30	8
Bridge	Continuous water level & temperature Velocity measurements when possible	April 4 – November 30	8
Outlet	Continuous water level & temperature Velocity & discharge measurements when possible	April 4 – October 30*	8

^{*}Sensor stolen/lost between October 30 visit and sensor removal

Activities at all locations included the following:

• Collect water level and temperature data at 15-minute intervals using a HOBO U20 pressure and temperature logger, with an additional control sensor to measure atmospheric pressure and air temperature on- site

- Record velocity measurements using Acoustic Doppler Velocimeter (ADV), when possible, to calculate discharge
- Collect monumented photographs of all sampling activities to verify location and timing

All sampling activities adhere to the Ontario Stream Assessment Protocol outlined by the Ontario Ministry of Natural Resources and Forestry (MNRF, 2017). Daily rainfall data was acquired from a Weather Underground weather station (Climate ID: ICALED1) located approximately 1.5 km west of the subject lands to account for precipitation and climatic conditions.

5.1 Water Level Monitoring

Water level loggers recorded continuous pressure throughout the entire monitoring season (April 4 – November 30). Discrete stilling well measurements were taken during each site visit in order to ensure data quality and data verification.

Baseflow is the portion of streamflow derived from natural storage sources and does not include direct runoff from precipitation. There must not be any evidence in the stage discharge hydrograph of any recent storm events to be considered baseflow. Due to the intermittent/ephemeral nature of these watercourses, all four sites were dry following the spring freshet. During spring, the baseflow levels of the **W inlet, S inlet, Bridge,** and **Outlet** sites were approximately 0.02 m, 0.13 m, 0.10 m, and 0.03 m respectively.

Water level responses are dependent on the magnitude of the rainfall event and antecedent conditions. The maximum water levels during 2019 for the **W Inlet** site was observed on May 25 following a 33.53 mm rain event. The maximum water depth at the **W Inlet** site was 0.09 m on this day. Maximum water depths at the **S Inlet, Bridge,** and **Outlet** sites were 0.20 m, 0.19 m, and 0.09 m respectively, recorded on April 26, following a 23.37 mm rain event.

Minimum and maximum water levels recorded by monitoring equipment is summarized below in **Table 5**. The full set of continuous water level measurements, as well as discrete measurements, are provided in **Appendix E**.

Table 5. Minimum and maximum water depths at each sampling location

Sampling Location			
	Minimum	Maximum	
W Inlet	0.00	0.09	
S Inlet	0.00	0.20	
Bridge	0.00	0.19	
Outlet	0.00	0.09	

5.2 Velocity and Discharge Monitoring

In addition to continuous water level and temperature monitoring, discrete measurements of velocity (**W Inlet, S Inlet,** and **Bridge** sites) were recorded, when possible. A summary of measured discharge at each sampling location is summarized below in **Table 6**.

Table 6. Average velocity and measured discharge at each sampling location

Measurement Date (mm-dd-yyyy)	Location	Average Velocity (m/s)	Discharge (m³/s)
	W Inlet	0.0114	0.0002
04-09-2019	S Inlet	0	0
04-09-2019	Bridge	0	0
	Outlet	0.2734	0.0150
	W Inlet	0.0538	0.0009
05-10-2019	S Inlet	0	0
05-10-2019	Bridge	0.0400	0.0023
	Outlet	0.3392	0.0180
	W Inlet	0	0
06-20-2019	S Inlet	N/A*	N/A*
00-20-2019	Bridge	N/A*	N/A*
	Outlet	0.0170	0.0004

^{*}Channel dry or too shallow for measurement

Due to the intermittent/ephemeral nature of these sites, velocity measurements were only possible during the spring freshet. A full record of attempted velocity readings is provided in **Appendix E.** Velocity measurements were not possible during monitoring visits at the **S Inlet** site. This is due to the lack of channel definition and wetland characteristics at the sensor location. Maximum discharges at the **W Inlet, Bridge,** and **Outlet** sites were 0.0009 m³/s, 0.0025 m³/s, and 0.0180 m³/s respectively, which occurred on May 10, 2019 following 21.59 mm of rainfall in 24 hours.

6 Summary and Conclusions

GEO Morphix was retained to complete a fluvial geomorphological assessment of the drainage features within the subject lands. This assessment included a background review, reach delineation and rapid field reconnaissance to confirm existing conditions. A detailed geomorphic assessment was completed downstream of the subject lands, along Reach **EC-1**, to determine an appropriate erosion threshold in support of the stormwater management strategy. The critical discharge to entrain the bed materials within **Reach EC-1** was determined to be 1.25 m³/s. Notably, reaches within and downstream of the subject lands are relatively resilient to potential erosion due to their generally low gradients and wide, oversized bankfull channels. Consequently, the erosion threshold assigned to **Reach EC-1** could potentially cause downstream erosion concerns in other reaches that are more sensitive to erosion. Rather, the 24 or 48 hour detention of the 25 mm event is recommended to prevent erosion both within the study area, and downstream within Etobicoke Creek.

Water level and temperature data were collected at 15-minute intervals at 4 sites within the subject lands. Monumented cross sections were installed at each site to collect periodic velocity measurements to determine discharge. Monitoring results revealed that these drainage features are ephemeral, as they only contained water during the spring freshet. Due to a lack of channel definition, discharge could not be calculated for the **S Inlet** site. Maximum discharges at the **W**

Inlet, Bridge, and Outlet sites were 0.0009 m³/s, 0.0025 m³/s, and 0.0180 m³/s respectively, which occurred on May 10, 2019 following 21.59 mm of rainfall in 24 hours.

We trust this report meets your requirements. Should you have any questions please contact the undersigned.

Respectfully submitted,

Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP

Senior Environmental Scientist Director, Principal Geomorphologist

yanne St. Onge

7 References

Arcement, G. J., & Schneider, V. R. 1989. Guide for selecting Manning's roughness coefficients for natural channels and flood plains.

Brierley, G. J. and Fryirs, K. A. 2005. Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing, Oxford, UK, 398pp. ISBN 1-4051-1516-5.

Chapman, L.J. and Putnam, D.F. 2007. Physiography of Southern Ontario. Ontario Geological Survey Miscellaneous Release -- Data 228.

Chow, V.T. 1959. Open channel hydraulics. McGraw Hill, New York.

Fischenich, C. 2001. Stability Thresholds for Stream Restoration Materials. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-29), U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Galli, J. 1996. Rapid Stream Assessment Technique, Field Methods. Metropolitan Washington Council of Governments.

Julien, P. Y. 1994. Erosion and Sedimentation (1st ed.). Cambridge University Press.

Komar, P.D. 1987. Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology, 34: 1165-1176

Limerinos, J.T. 1970: Determination of the Manning coefficient from measured bed roughness in natural channels. United States Geological Survey Water-Supply Paper 1898B.

Miller, M.C., McCave, I.N. and Komar, P.D. 1977. Threshold of sediment erosion under unidirectional currents. Sedimentology, 24: 507-527.

Ministry of Natural Resources and Forestry (MNRF). 2017. Ontario Stream Assessment Protocol Version 10.

Ministry of the Environment (MOE). 2003. Ontario Ministry of the Environment. Stormwater Management Guidelines.

Montgomery, D.R. and J.M. Buffington. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109 (5): 596-611.

Ontario Geological Survey (OGS). 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV

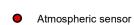
Richards, C., Haro, R.J., Johnson, L.B. and Host, G.E. 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology, 37: 219-230.

Toronto and Region Conservation Authority. 2004. Belt Width Delineation Procedures.

Wolman, M.G. 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union, 35: 951-956.

Appendix A Reach Delineation and Monitoring Station Locations

Legend



Watercourse

✓ ✓ Wetland

Contour (1 m)

Secondary Plan Area

O Pressure logger

Detailed assessment

Top of bank*

*Staked by TRCA (Oct. 23, 2018) and Biason Surveying Inc. (Sept. 20, 2011)

Reach Delineation and Monitoring Station Locations

Tributary of Etobicoke Creek

Snell's Hollow Secondary Plan Area

Imagery: Google Earth Pro, 2018.
Top of bank: GSAI, 2019.
Reach break, Monitoring locations, and
Detailed assessment: GEO Morphix Ltd., 2019.
Watercourse and Wetland: MNRF and GEO Morphix Ltd., 2019.
Contour: J.H. Gelbloom Surveying Limited and GEO Morphix Ltd., 2019.

Appendix B Photographic Record

Channel flowed through a confined, wooded valley with a low gradient. Yellow arrow denotes flow direction.

Photo 2 Tributary of Etobicoke Creek, Reach EC-1 Cross section 1

Woody debris present in the channel was not attributed to channel adjustment (e.g. widening or planform adjustment) as there was limited erosion in the reach.

Photo 3 Tributary of Etobicoke Creek Reach EC-1 Cross section 2

Channel was wide and shallow, with low bank angles on both sides.

View of one of two pedestrian crossings observed in the reach.

Photo 5
Tributary of Etobicoke Creek
Reach EC-1 Cross section 3-M

Representative view of one of two monumented cross sections installed as part of the detailed geomorphological assessment.

Vegetation established in the channel bed was indicative of low flow velocities

Photo 7
Tributary of Etobicoke Creek
Reach EC-1 Cross section 4-M

Channel showed wetland-like characteristics and contained clay, silt and sand substrates.

No riffles or pools were present.

Photo 8
Tributary of Etobicoke Creek,
Reach EC-1 Cross section 4-M

View of the left bank and associated riparian vegetation, which provided shade to the feature.

Photo 9 Tributary of Etobicoke Creek Reach EC-1 Cross section 5

Photo taken from the downstream trail crossing facing upstream.

Photo 10 Tributary of Etobicoke Creek Reach EC-1 Cross section 5

Photo taken facing downstream towards tail crossing, near the downstream extent of the detailed assessment.

Photo 11 Tributary of Etobicoke Creek Reach EC-1 Cross section 6 Photo 12 Tributary of Etobicoke Creek Reach EC-1 Cross section 6

Photo taken facing upstream towards trail crossing.

Photo taken from the trail crossing downstream into the reach.

Photo 13 Tributary of Etobicoke Creek, Reach EC-2

Photo taken from the upstream extent of the reach showing the open water feature.

Photo 14 Tributary of Etobicoke Creek Reach EC-2

Photo taken from Mayfield Road, facing north towards the pond.

Photo 15 Tributary of Etobicoke Creek Reach EC-2a

View of conditions mid-reach. Flows drain from adjacent agricultural fields and flow downslope to the pond feature.

Photo 16 Tributary of Etobicoke Creek Reach EC-2a

Photo taken from mid-reach towards the pond feature. The channel was poorly defined and lacked riffles and pools

Photo 17 Tributary of Etobicoke Creek Reach EC-2a

A large brush pile was present mid-reach.

Photo 18 Tributary of Etobicoke Creek, Reach EC-3

View from the southwest corner of the subject lands. The wetland receives input from an adjacent stormwater management pond.

Photo 19 Tributary of Etobicoke Creek Reach EC-3

Middle of the wetland feature, where standing water was present.

Photo 20 Tributary of Etobicoke Creek Reach EC-3

Photo taken from the west side of **Reach EC-3**, facing east across the wetland feature towards Mayfield Road.

Photo taken near the ${\bf W}$ Inlet flow monitoring station facing northeast.

Photo 22 Tributary of Etobicoke Creek Reach EC-3

Photo taken near the **Bridge** flow monitoring site facing southwest.

Photo 23 Tributary of Etobicoke Creek Reach EC-3a

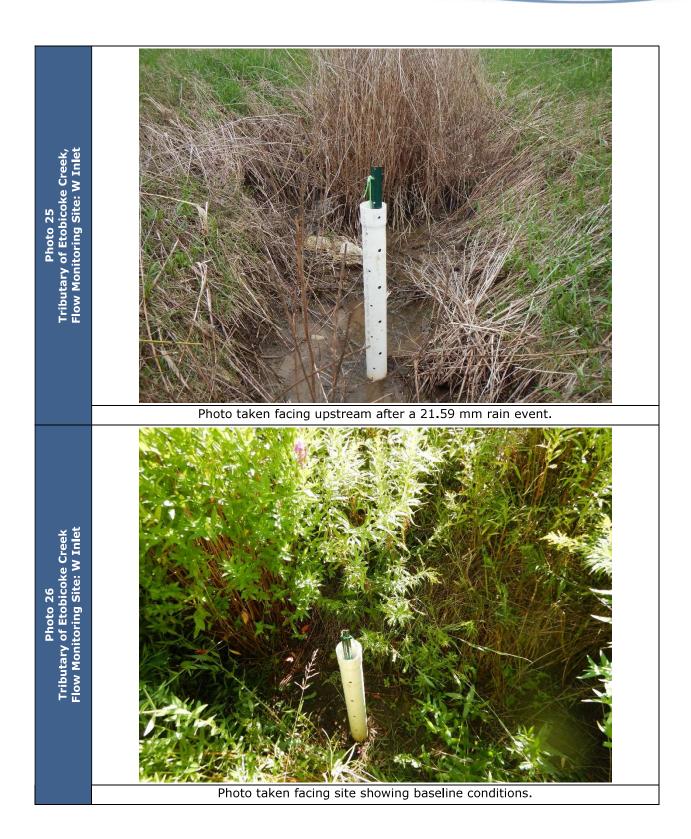


Photo taken at the **W Inlet** flow monitoring site facing downstream. Reach was a ditch feature draining a property upstream.

Photo 24 Tributary of Etobicoke Creek Reach EC-3a

Photo taken facing upstream.

Photo 27 Tributary of Etobicoke Creek Flow Monitoring Site: S Inlet Photo taken facing downstream after a 21.59 mm rain event. Photo 28 Tributary of Etobicoke Creek Flow Monitoring Site: S Inlet Photo taken facing upstream showing baseline conditions.

Photo 29 Tributary of Etobicoke Creek Flow Monitoring Site: Bridge

Photo taken facing upstream after a 21.59 mm rain event.

Photo 30 Tributary of Etobicoke Creek Flow Monitoring Site: Bridge

Photo taken facing upstream showing baseline conditions.

Photo 31 Tributary of Etobicoke Creek Flow Monitoring Site: Outlet

Photo taken facing downstream towards the Mayfield Road culvert after a 21.59 mm rain event.

Photo 32 Tributary of Etobicoke Creek Flow Monitoring Site: Outlet

Photo taken facing downstream showing baseline conditions.

Appendix C Field Observations

Reach Characteristi	ics
---------------------	-----

Project Code: PH 19033

GEO	Μ	0	R	Р	Н	ı	Х	
· ·		orpholo	97					
3	Earth	Science						
7	Obser	vations						

				\$ /			
Date: 2019-05-10	Stream/Reach:	Pond US Mayfield &d. /EC-2					
Weather: Overcast 8°C	Location:	Maurield	Rd + Fer	redy Ro	V		
Field Staff: LG + WIM	Watershed/Subwatershed:	Etobicoke	The same of the sa)			
UTM (Upstream)	UTM (Downstream)	300 300 300 300					
Land Use (Table 1) Valley Type (Table 2) Channel Type (Table 3) Channel Type (Table 3)	Zone ble 4) Flow Type (Table 5)	Groundwater □	Evidence: _	None			
Riparian Vegetation	Aquatic/Instream Ve	getation	Water Qu	ality			
Dominant Type: Coverage: Channel widths widths Age Class (yrs): Encroachme (Table 6) □ None □ 1-4 □ Immature (<5) (Table 5) Species: □ Fragmented □ 4-10 □ stablished (5-30) □ 4-10 Continuous □ > 10 □ Mature (>30) □ 4-10		Density of WD: □ Low WDJ/50	_	Odour (Table 16 / Turbidity (Table 1			
Channel Characteristics							
Sinuosity (Type) Sinuosity (Degree) Gradient Nur	mber of Channels	Clay/Silt Sand	Gravel Cobble	Boulder Paren	t Rootlets		
(Table 9) NA (Table 10) NA (Table 11) NA (Ta	ble 12) A Riffle Substra	te M(A 🗆					
Entrenchment Type of Bank Failure Downs's Classification	Pool Substra	te \D/A =					
(Table 13) NA (Table 14) NA (Table 15) NA	Bank Material	> 0					
Bankfull Width (m) Wetted Width (m)	NA>	Bank Angle □ 0 – 30	Bank Erosion	Notes:			
Bankfull Depth (m) Wetted Depth (m)	NA -	□ 30 – 60 □ 60 – 90	□ 5 – 30% □ 30 – 60%				
Riffle/Pool Spacing (m) % Riffles: NO % Pools:	Meander Amplitude:	JA Undercut	□ 60 – 100%		ů.		
Pool Depth (m) Riffle Length (m) NA Undercuts (m)	NA Comments: Po	nd:					
Velocity (m/s) Wiffle ball / ADV	/ Estimated			-			

Completed by: _____

Project Code: PN 19033

GEO MORPHIX

Λ	LOGARVALISTS .
Date: 7019-05-16	Stream/Reach: Niglet of Wetland / EC-Za
Weather: overcust, 8°C	Location: Mayfield Rd @ Kennedy Road
Field Staff: CG + WM	Watershed/Subwatershed: Ptolico Ke Col.
UTM (Upstream) 595897.89 n E 4845049.02 m N	UTM (Downstream) 595954.91 m E 4844971.78 m N
Land Use (Table 1) Valley Type (Table 2) Channel Type (Table 3) Channel Type (Table 3)	I Zone Cable 4) Groundwater Evidence:
Riparian Vegetation	Aquatic/Instream Vegetation Water Quality
Dominant Type: Coverage: channel widths widths Age Class (yrs): Encroachmer (Table 6) □ None □ 1-4 □ Immature (<5) (Table Species: □ Fragmented □ 4-10 □ Established (5-30) □ □ Continuous □ > 10 □ Mature (>30) □	adams.
Channel Characteristics	
Sinuosity (Type) Sinuosity (Degree) Gradient Num	mber of Channels Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets
(Table 9) (Table 10) (Table 11) (Table 11)	ble 12) 7 Riffle Substrate 🗖 / 🔯 🗆 🗆 🗆 🗆
Entrenchment Type of Bank Failure Downs's Classification	Pool Substrate 🗵 🖫 🗆 🗆 🗆
(Table 13)	Bank Material 🕱 🖾 🗆 🗆 🗆 🗆
Bankfull Width (m) N/A Wetted Width (m)	Bank Angle Bank Erosion O - 30 Notes: Large Man - 1
Bankfull Depth (m) VIA Wetted Depth (m)	0.05 NA VIA 0.60 0 5-30% WDJ halfway
Riffle/Pool Spacing (m) % Riffles: N/A % Pools:	Meander Amplitude: UIA Undercut 060-100% down reach.
Pool Depth (m) Riffle Length (m) Undercuts (m)	N/A Comments: Oranage feature Noviftles or
Velocity (m/s) Wiffle ball / ADV	1/Estimated from Ag-field pools
Velocity (m/s) Wiffle ball / ADV	D C 1

BFW and BFD taken at OS end of reach

Completed by:

Checked by: _____

Reach Characteristics

Project Code: PN 19033

Date: 1019-05-10	Stream/Reach:		Wet	aval	05 1	You fie	ld Rd	1/=	7-3
Weather: Overcast 8°C	Location:		Maxfel	d Kd	. 0	Kenne	dy Roc	d	
Field Staff: (G + M) M	Watershed/Sul	bwatershed:	Etobico	he (Crk.	1 2 2			
UTM (Upstream) 595371.06 nE 4844455.82 m N	UTM (Downstr	eam)	596062	2.82 m	E 4	34484	17.98m	N	
Channel Type (Table 1) Valley Type 3 Channel Type (Table 3) (Table 3)	el Zone able 4)	Flow Type (Table 5)	/A □Groui	ndwater	E	vidence: _			
Riparian Vegetation	Aqua	tic/Instream Ve	getation			Water Qu	ality		
Dominant Type: Coverage: Channel widths Age Class (yrs): Encroachment (Table 6) 3	Wood □ Pro □ Pro □ Pro	(Table8) 1 dy Debris esent in Cutbanl esent in Channe of Present	-//	WD: WDJ/5			Odour (T		
Channel Characteristics									
Sinuosity (Type) Sinuosity (Degree) Gradient Nu	mber of Channels	1	Clay/Silt	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9) (Table 10) (Table 11) (Table 11)	able 12) N/A	Riffle Substra	ate NA						
Entrenchment Type of Bank Failure Downs's Classification		Pool Substra	ate NIA						
(Table 13) (Table 14) (Table 15) (Table 15)		Bank Material							
Bankfull Width (m) Bankfull Depth (m) NIA Wetted Width (m) Wetted Depth (m) NIA Riffle/Pool Spacing (m) NIA Riffle Length (m) NIA Undercuts (m	NIA Meander An	0.0	□ 0 ★ 3 □ 6	Slope k Angle -30 0-60 0-90 Indercut	No Co Bank Er	osion 60% 60%	Notes: We no de through Docum	11	d, channe tland flow
Velocity (m/s) Wiffle ball / AD	V / Estimated	South, a	nd West	nlet i	chann	uls	betwee	en we	tard a
North in let, South in let, west in let, and o	outlet cha	annels	Comple	eted by:	UQ'	(Checked by	:	
are separate XS surveys and relociti	y data								
lorne Wam visits.	/								

GEO Project Code: PN19033 **Reach Characteristics** Earth Science Observations Wetland Date: Stream/Reach: Weather: Location: overrost Kennedy Kous Field Staff: Watershed/Subwatershed: 484445299mN 4844513.44 m N UTM (Upstream) **UTM (Downstream)** Land Use Valley Type Channel Type **Channel Zone** Flow Type ☐Groundwater Evidence: (Table 1) (Table 2) (Table 3) (Table 4) (Table 5) Riparian Vegetation Aquatic/Instream Vegetation Water Quality Coverage of Reach (%) **Dominant Type:** Coverage: Age Class (yrs): **Encroachment:** Type (Table8) Odour (Table 16) Immature (<5) (Table 6) ☐ None □ 1-4 (Table 7) **Woody Debris** Density of WD: ☐ Fragmented ₩ 4-10 ☐ Established (5-30) Species: ☐ Present in Cutbank Low WDJ/50m: Turbidity (Table 17) $\square > 10$ ☐ Mature (>30) ☐ Present in Channel ☐ Moderate Not Present ☐ High **Channel Characteristics** Sinuosity (Type) Sinuosity (Degree) Clay/Silt Gradient Number of Channels Sand Gravel Cobble Boulder Parent Rootlets (Table 9) (Table 10) (Table 11) (Table 12) X X **Riffle Substrate** Type of Bank Failure Entrenchment Downs's Classification Pool Substrate (Table 13) (Table 14) X (Table 15) **Bank Material** 5 **Bank Angle Bank Erosion** Bankfull Width (m) Wetted Width (m) \square 0 - 30 ▼ < 5% □ 30 - 60 □ 5 − 30% Bankfull Depth (m) Wetted Depth (m) ☑ 60 – 90 $\square 30 - 60\%$ □ 60 − 100% Riffle/Pool Spacing (m) % Riffles: % Pools: Meander Amplitude: ☐ Undercut Pool Depth (m) Riffle Length (m) Undercuts (m) Comments:

- XS surveyed a RTK unit at pressure logger - velocity and wetted reasurements will be taken during Completed by:

Wiffle ball / ADV / Estimated

each WQM visit

Velocity (m/s)

Checked by: _____

MORPHIX

Reach Characteristics Key

Table 1 Land Use

- 1. Forest
- 6. Institutional 7. Residential
- 3. Agricultural

2. Pasture

- 8. Golf Course
- 4. Industrial 9. Commercial
- 5. Park

Table 4 Channel Zone

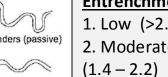
- 1. Headwater zone
- 2. Transfer zone
- 3. Deposition zone

Table 5 Flow Type

1. Perennial

2. Intermittent

3. Ephemeral

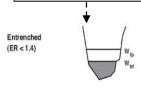

Table 9 Type of Sinuosity

- 1. Sinuous
- 2. Irregular Meanders
- 3. Regular Meanders
- 4. Tortuous Meanders
- 5. Confined pattern (within valley)

Degree of division

- Multi-thread

sinuous irregular meanders (passive)



- Bankfull Width

Table 13 **Entrenchment**

- 1. Low (>2.2)
- 2. Moderate
- 3. High (<1.4)

alluvial terrace with erosion

old tree roots exposed

no tree falls

deposits, high embeddedness

sediment deposited along banks

generally straight

stable except at sharp bends

no hank erosion

slumping, young tree roots exposed, tree falls, undercutting

deposition along inner bank (i.e.

no alluvial terrace

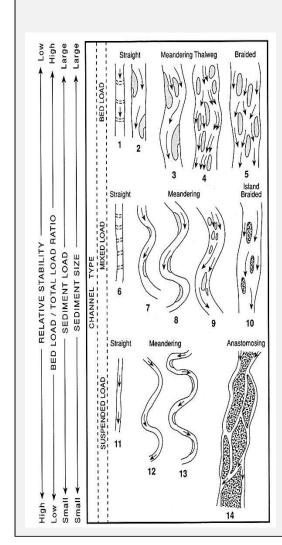
- emating valley walls straight alluvial terrace/valley wal valley wall contact and erosion at majority
 - scoured bed, low embeddedness, no bar

no bar formation, scoured ber

no alluvial terrace

channel downcutting (e.g. bed scour, lo

steep, high banks above bankfull leve


Table 3 Channel Type

3. Partially Confined

Table 2 Valley Type

1. Unconfined

2. Confined

Table 6 Dominant Vegetation

- Type 1. Trees
- 2. Shrubs
- 3. Grasses

1. None

4. Heavy

2. Minimal

3. Moderate

Vegetation

4. Herbaceous

Table 7 Extent of

Encroachment into Channel

Table 8 Type of Aquatic

1. Rooted Emergent

3. Rooted Floating

5. Floating Algae

6. Attached Algae

2. Rooted Submergent

4. Free Floating Roots

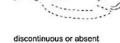
5. Extreme

Table 10 Degree of Sinuosity

- 1. Straight (1 1.05)
- 2. Low sinuosity (1.06–1.30)
- 3. Meandering (1.31 3.0)

1-1.05 (straight)

1.06-1.30


1.31-3.0

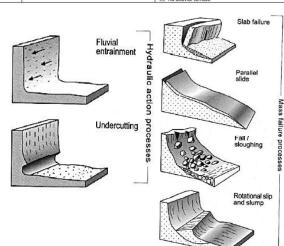
(low sinuosity)

Table 11 Gradient

1. Low

Meandering

- 2. Moderate
- 3. High


Table 12 Number of Channels

- 1. Single
- 2. Up to 3 (Wandering)
- 3. >3 (Braided)
- 4. >3 (Anastamosing or
- Anabranching)
- 5. Discontinuous or Absent

1. Fluvial Entrainment (Hydraulic

Table 14 Type of Bank Failure

- action)
- 2. Undercutting (Hydraulic action)
- 3. Slab Failure (Mass failure)
- 4. Parallel slide (Mass failure)
- 5. Fall/Sloughing (Mass failure)
- 6. Rotational slip and slump (Mass failure)

Table 15 Downs's Model of Channel Classification

S – Stable

D or d – Depositional

M or m – Lateral Migration

E or e – Enlarging

- C Compound
- R Recovering
- U Undercutting

Table 16 Odours

- 1. None
- 2. Fishy
- 3. Petroleum
- 4. Sewage

6. Other

- 5. Chemical
- 4. Opaque 5. Stained

Table 17

Turbidity

2. Slightly

3. Turbid

1. Clear

turbid

6. Other

Appendix D Detailed Geomorphological Assessment Summary

General Site Characteristics

Project Code: PU19033

Date:		May 6, 20	Stream/Reach:
Weath	ner:	500 + 15	
Field S	Staff:	CH·KI	Watershed/Subwatershed: Etobicole CIIC
Featur	' AF	CII	
H	Reach break		
× ×	Cross-section		N
	Flow direction		S D ON JG T
~~	Riffle		& N
\bigcirc	Pool		5
	Medial bar		7 / 5
111111111111	Eroded bank		0 720
	Undercut bank		4 0 9
KXXXXX	Rip rap/stabilization	/gabion	D D V
**	Leaning tree		
XX	Fence		The V
	Culvert/outfall		53 0 1 4
	Swamp/wetland		
WWW	Grasses		trail ////
	Tree		63 63 94
	Instream log/tree		a compared wet a
* * *	Woody debris		
只	Station location		a depression
W)	Vegetated Island		i Ray i
Flow T			
H1	Standing water	flour	
H3	Scarcely perceptible Smooth surface flow		X X X X X X X X X X X X X X X X X X X
пэ Н4	Upwelling	V	College of the second of the s
H5	Rippled		
H6	Unbroken standing	wave	0 1 6 0
H7	Broken standing wa		The second secon
Н8	Chute	VC	
Н9	Free fall		
Substr	***************************************		
S1	Silt	S6 Small boulder	0 X X X X X X X X X X X X X X X X X X X
S2	Sand	S7 Large boulder	
S3	Gravel	S8 Bimodal	ON WAS CO
S4	Small cobble	S9 Bedrock/till	(03 00 0)
S 5	Large cobble		
Other			(O O O O O O O O O O O O O O O O O O O
вм	Benchmark	EP Erosion pin	0 0 0
BS	Backsight	RB Rebar	
DS	Downstream	US Upstream	V X56
WDJ	Woody debris jam	TR Terrace	Many contraction or resource and an analysis a
VWC	Valley wall contact	FC Flood chute	Scale:
BOS	Bottom of slope	FP Flood plain	Additional Notes: Dawnstream
TOS	Top of slope	KP Knick point	

* This area was chosen as it is the most narrow section of method. Completed by: _____

Detailed Geomorphological Assessment Summary

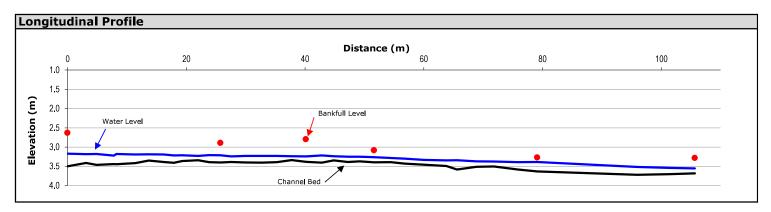
Reach EC-1

Project Number:	PN19033	Date:	May 10, 2016
Client:	Snell's Hollow Landowner Group	Length Surveyed (m):	105.6
Location:	Heart Lake Conservation Park	# of Cross-Sections:	6

Reach Characteristics Drainage Area: Not measured **Dominant Riparian Vegetation Type:** Trees Clay to silt-textured till Geology/Soils: **Extent of Riparian Cover:** Continuous Surrounding Land Use: Forest Width of Riparian Cover: >10 channel widths Confined Mature (>30 years) Valley Type: Age Class of Riparian Vegetation: Minimal **Dominant Instream Vegetation Type:** Rooted submergent **Extent of Encroachment into Channel:**

Hydrology			
Measured Discharge (m³/s):	Not measured	Calculated Bankfull Discharge (m³/s):	4.30
Modelled 2-year Discharge (m³/s):	Not modelled	Calculated Bankfull Velocity (m/s):	0.76
Modelled 2-year Velocity (m/s):	Not modelled		

Density of Woody Debris:


Profile Characteristics	
Bankfull Gradient (%):	0.66
Channel Bed Gradient (%):	0.26
Riffle Gradient (%):	N/A: no riffles
Riffle Length (m):	N/A: no riffles
Riffle-Pool Spacing (m):	N/A: no riffle and pools

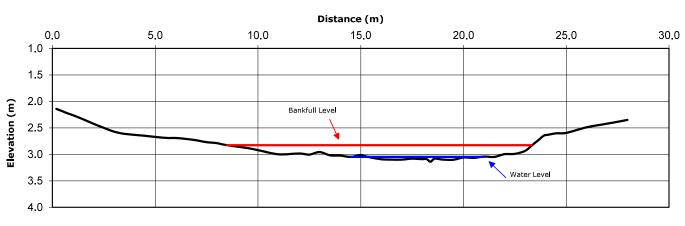
20%

Portion of Reach with Vegetation:

Planform Characteristics	
Sinuosity:	1.13
Meander Belt Width (m):	Not measured
Radius of Curvature (m):	Not measured
Meander Amplitude (m):	Not measured
Meander wavelength (m):	Not measured

Moderate

Bank Characteristics							
	Minimum	Maximum	Average		Minimum	Maximum	Average
Bank Height (m):	0.2	0.70	0.45				
Bank Angle (deg):	10	45	24	Torvane Value (kg/cm²):		Not measured	
Root Depth (m):	0.05	0.20	0.10	Penetrometer Value (kg/cm ³):		Not measured	
Root Density (%):	10	70	42	Bank Material (range):		Clay, silt, sand	
Bank Undercut (m):		No undercuts					


GEO Morphix Ltd. Page 1 of 3

Cross-Sectional Characteris	Sucs		
	Minimum	Maximum	Average
Bankfull Width (m):	12.70	27.90	17.95
Average Bankfull Depth (m):	0.18	0.49	0.32
Bankfull Width/Depth (m/m):	29	108	61
Wetted Width (m):	4.90	18.50	11.95
Average Water Depth (m):	0.04	0.25	0.13
Wetted Width/Depth (m/m):	48	175	108
Entrenchment (m):		Not measured	
Entrenchment Ratio (m/m):		Not measured	
Maximum Water Depth (m):	0.09	0.54	0.26
Manning's <i>n</i> :		0.050	

Photograph at cross section 4 (left bank)

Representative Cross-Section 4

Particle Size (mm)				Subpa	Subpavement:		Clay, si l t, sand				
D ₁₀ :	<	2.0		Particle shape:			N/A: fine graind materials				
D ₅₀ :	<	2.0		Embeddedness (%):			N/A: fine grained materials				
D ₈₄ :	<	2.0		Partic	Particle range (riffle): Particle Range (pool):			N/A: no riffles N/A: no pools			
				Partic							
100 90 80											
			$\overline{}$								
70 60 50 40											
70											

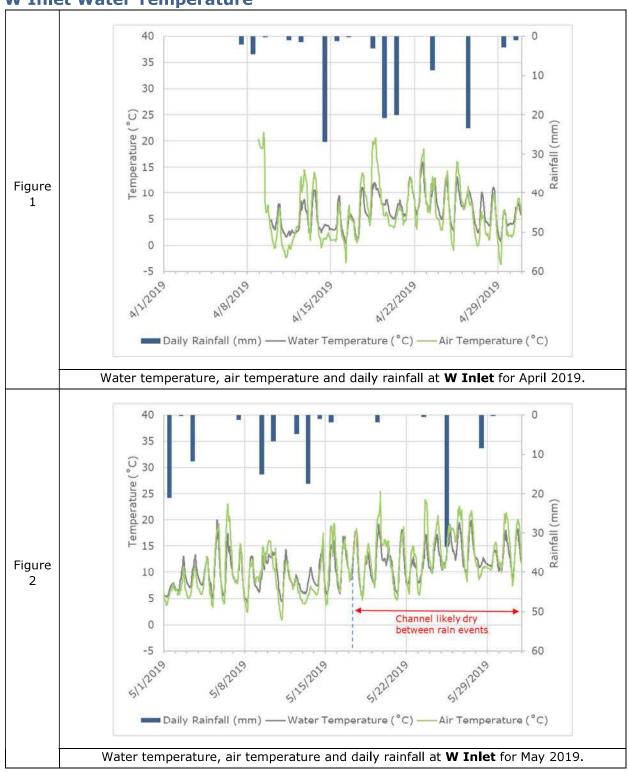
GEO Morphix Ltd. Page 2 of 3

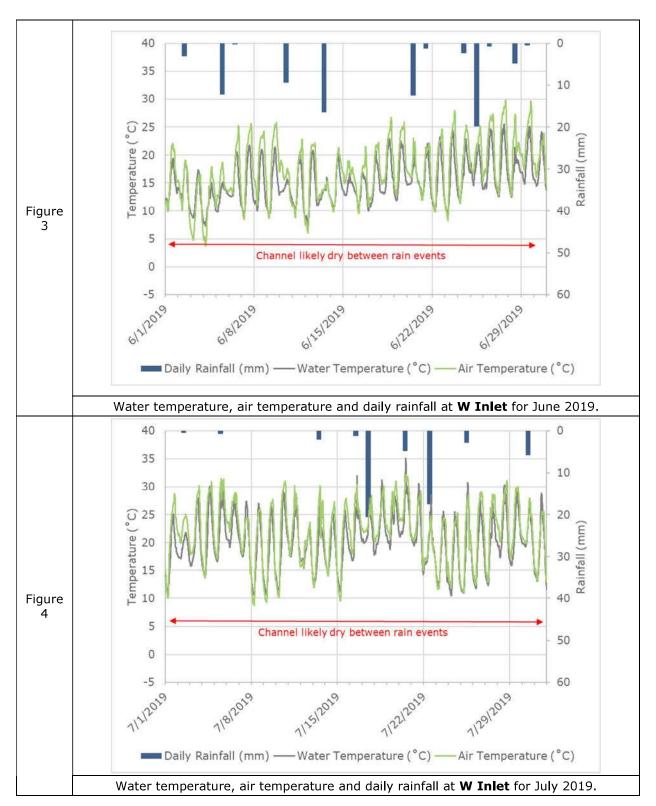
Channel Thresholds								
Flow Competency (m/s):		Tractive Force at Bankfull (N/m²):	20.53					
for D ₅₀ :	0.00	Tractive Force at 2-year flow (N/m ²):	Not modelled					
for D ₈₄ :	0.00	Critical Shear Stress (D ₅₀) (N/m ²):	0.00					
Unit Stream Power at Bankfull (W/m²):	15.50							

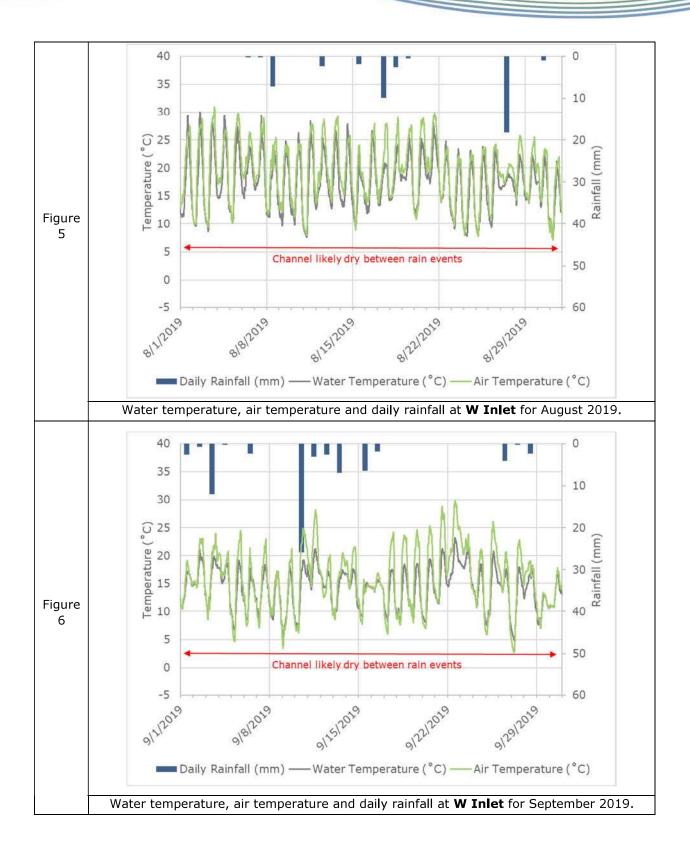
General Field Observations

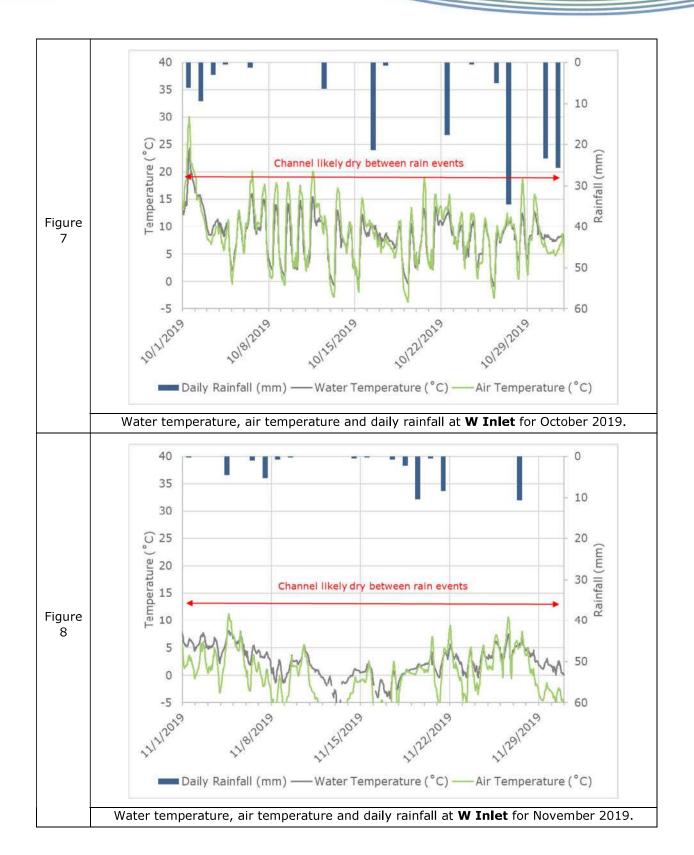
Channel Description

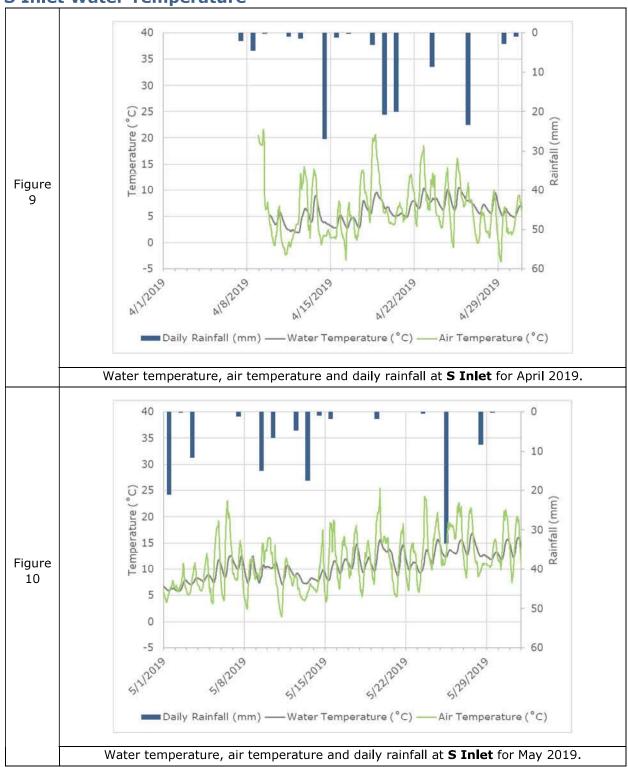
Reach EC-1 consisted of a fairly straight and low gradient channel through a confined valley. The continuous and wide riparian buffer zone consisted of mature trees. The average bankfull width and depth were 17.95 m and 0.32 m. Bank materials ranged from clay to sand. Little to no bank erosion was observed. There were no riffles or pools. Bed materials consisted of organic material, clay, silt, and fine sand. Two trail crossings were present across the channel and valley. Woody debris was present within the channel but not due to the channel widening.

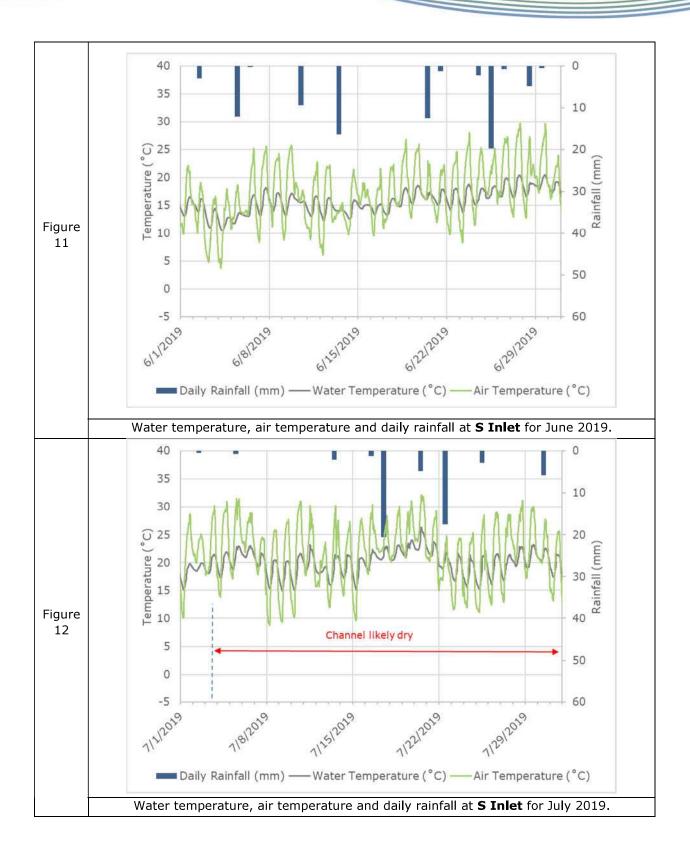


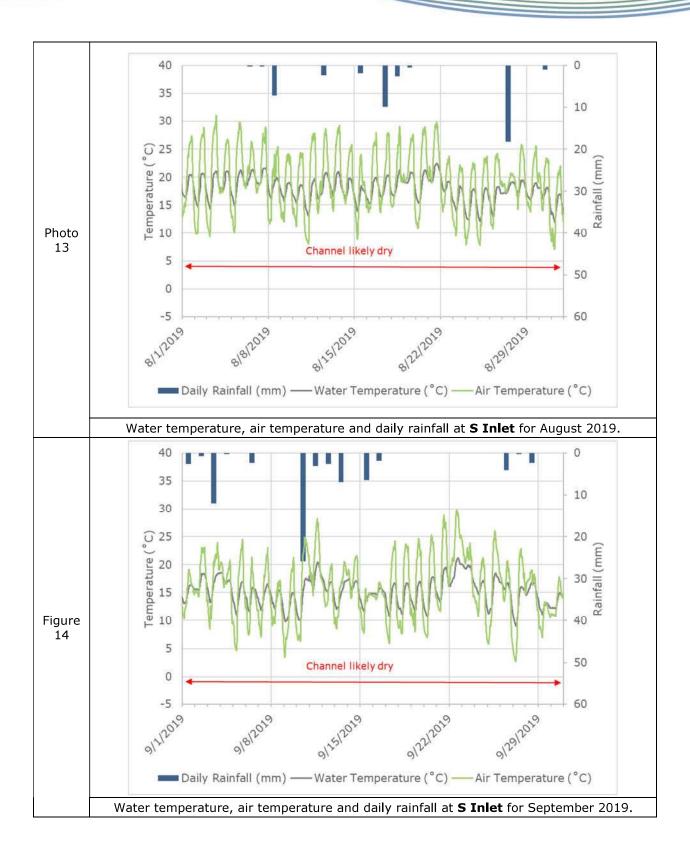

Cross Section 4 - Facing Downstream

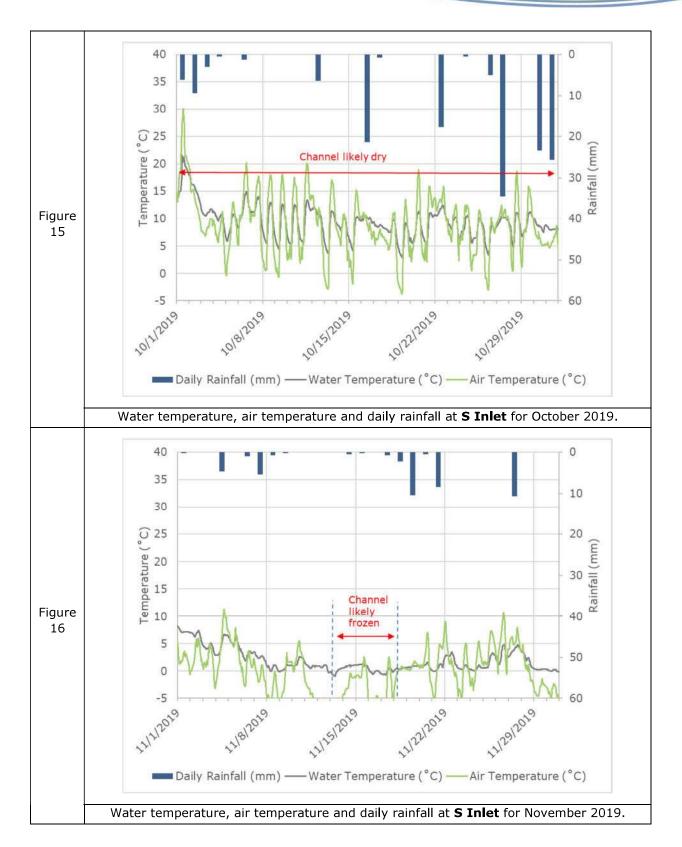

GEO Morphix Ltd. Page 3 of 3


Appendix E Flow Monitoring Data

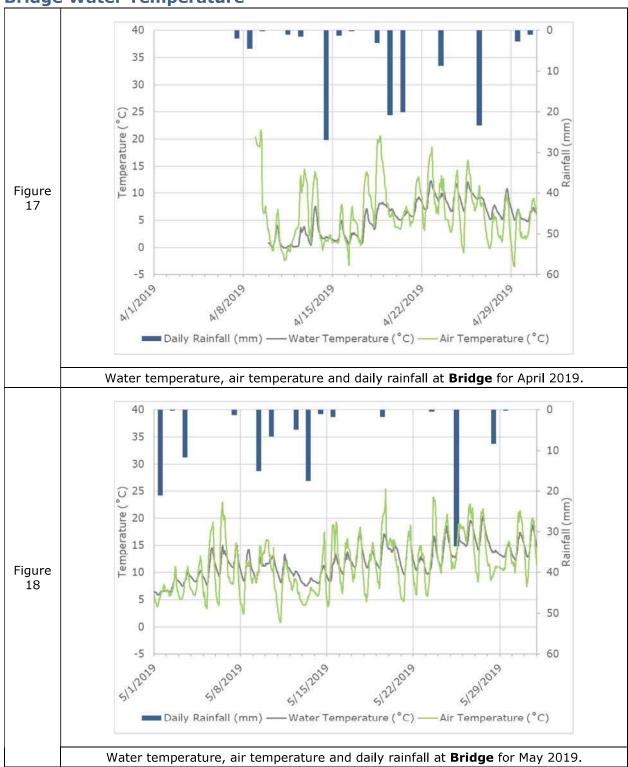


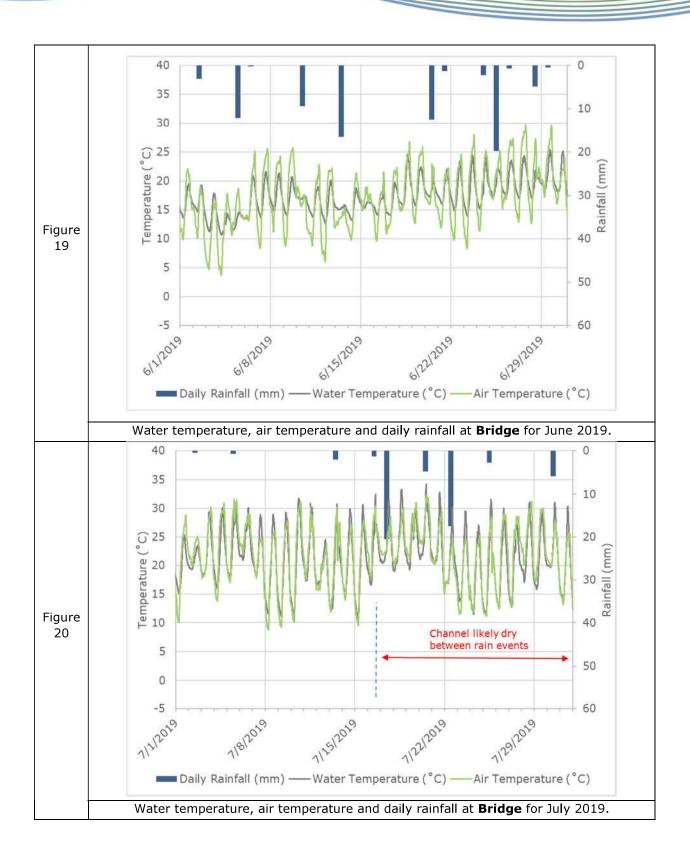


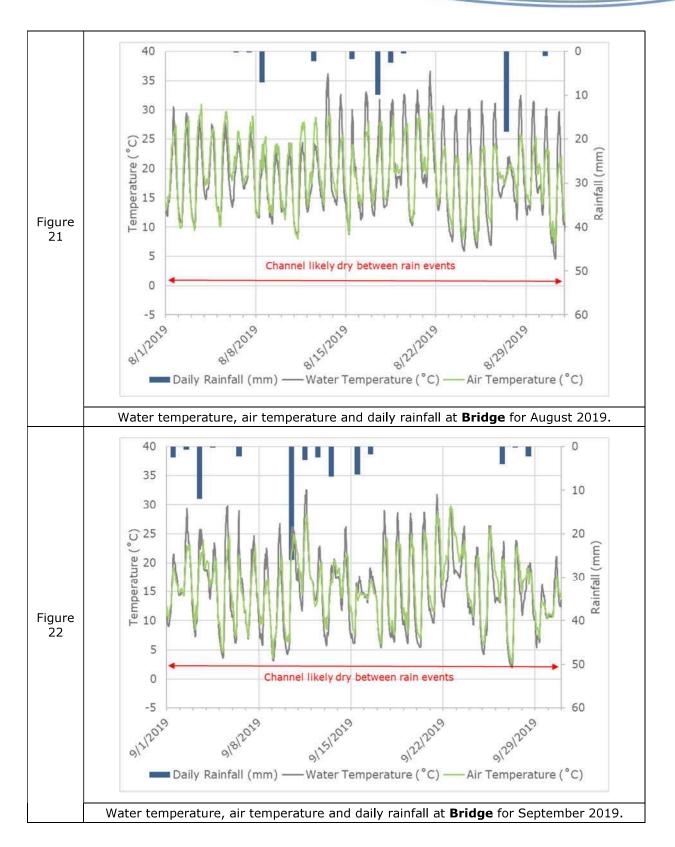


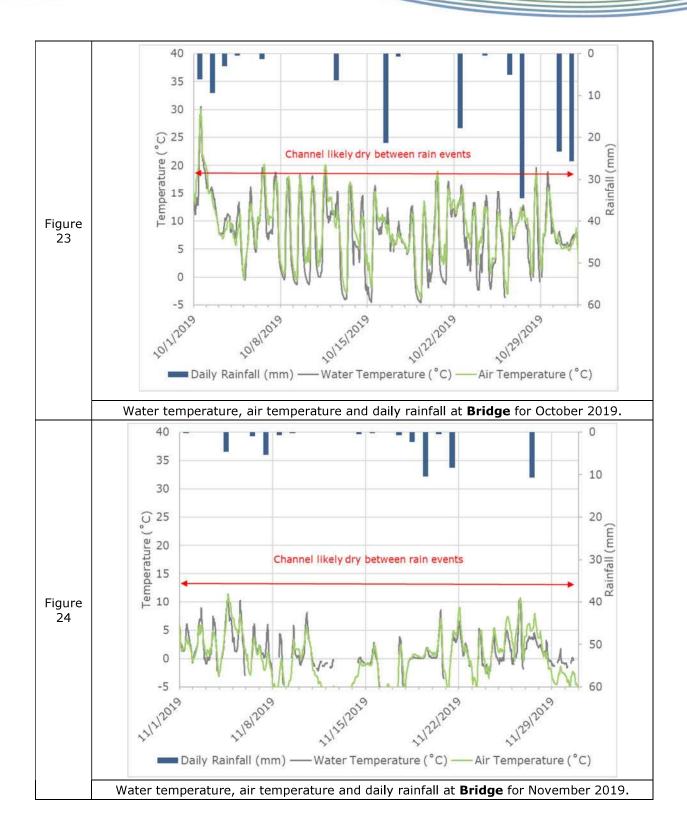


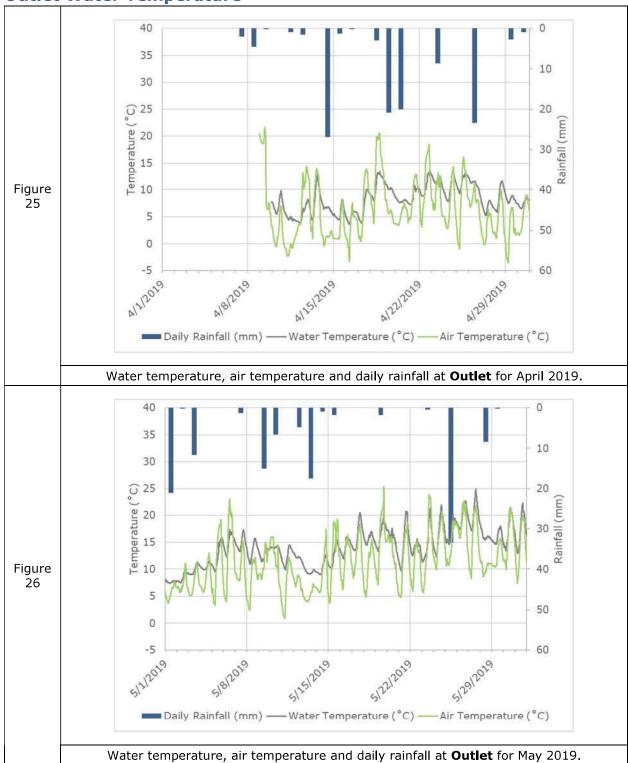
S Inlet Water Temperature

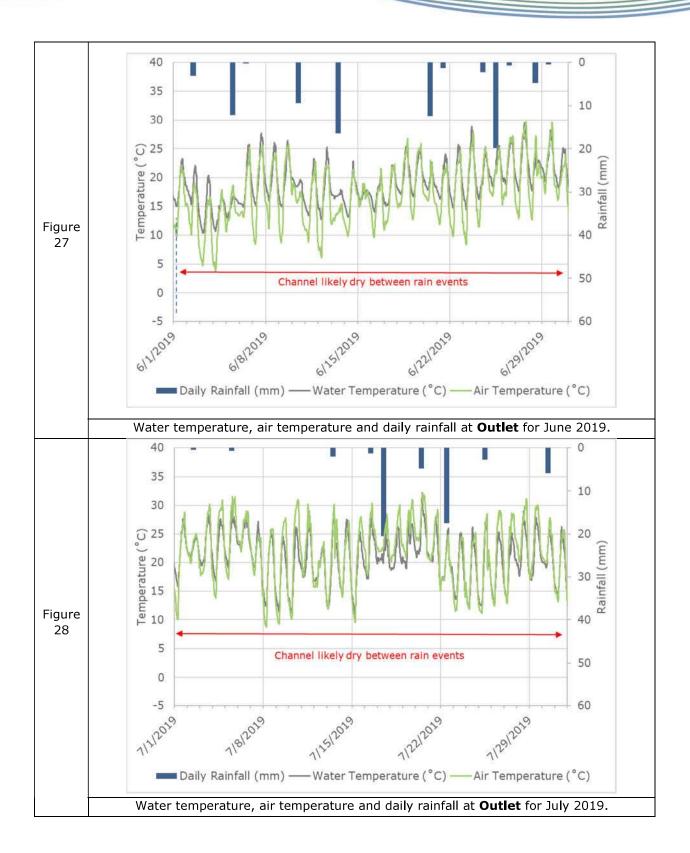


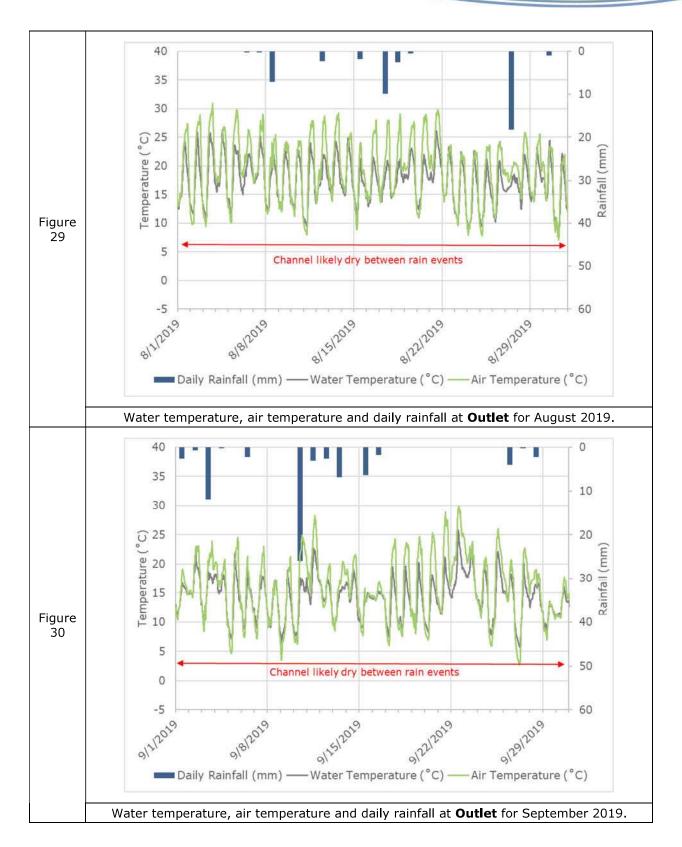


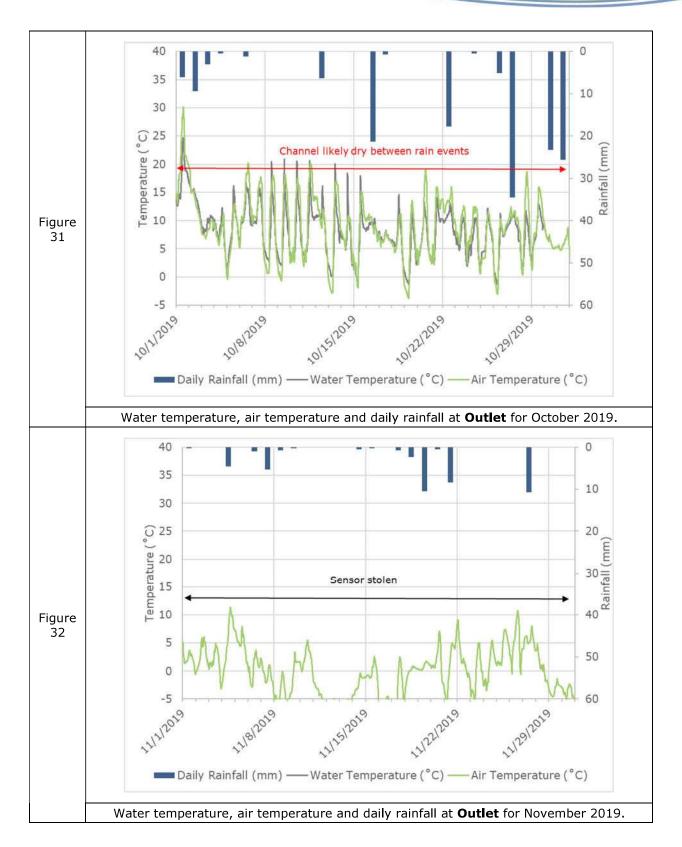


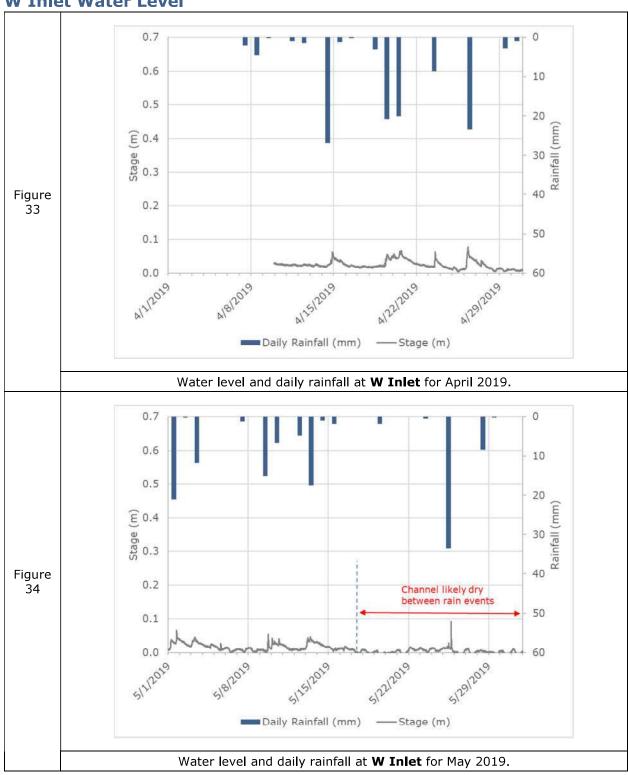


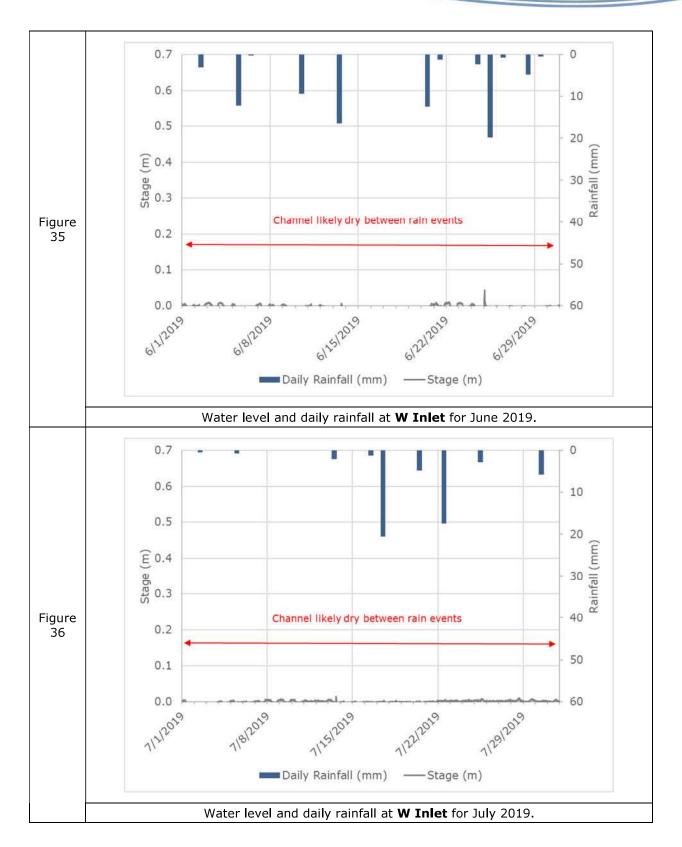


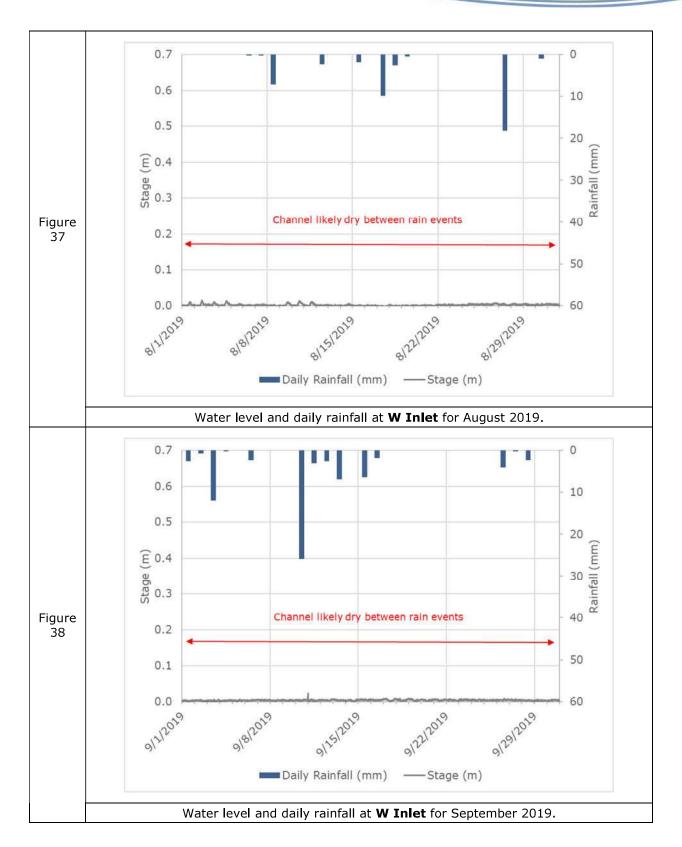


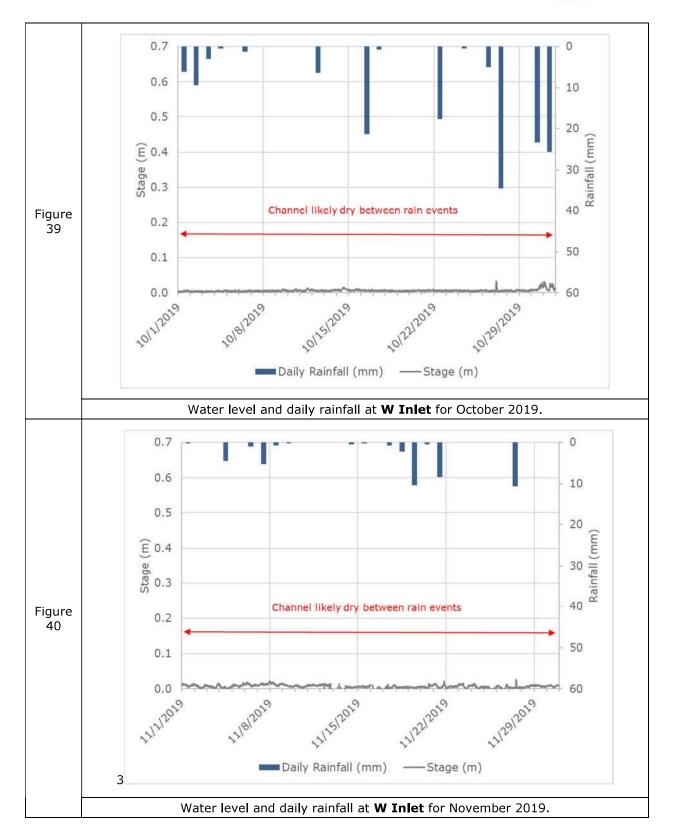




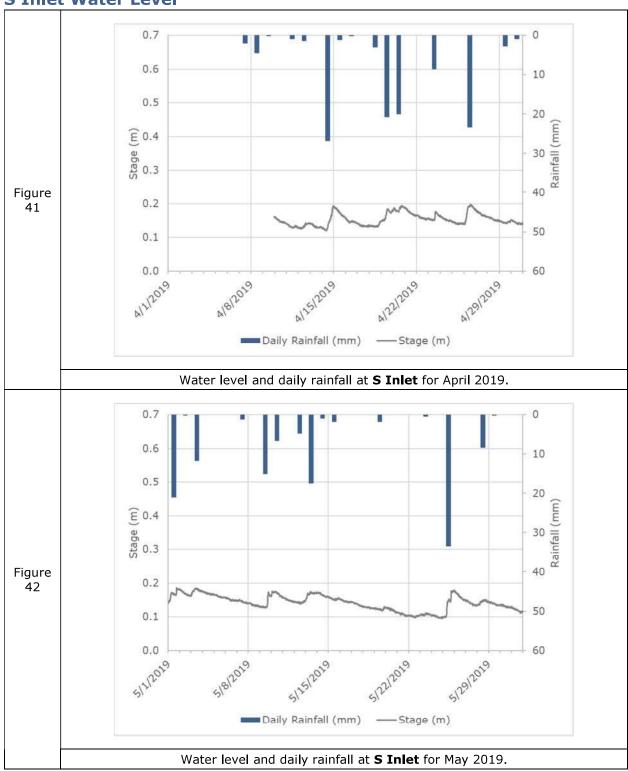


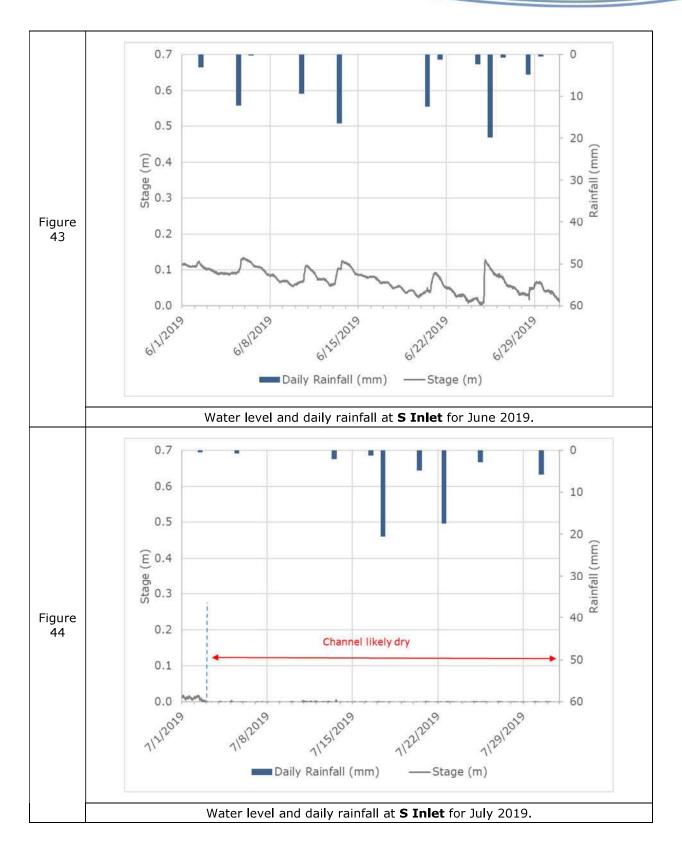


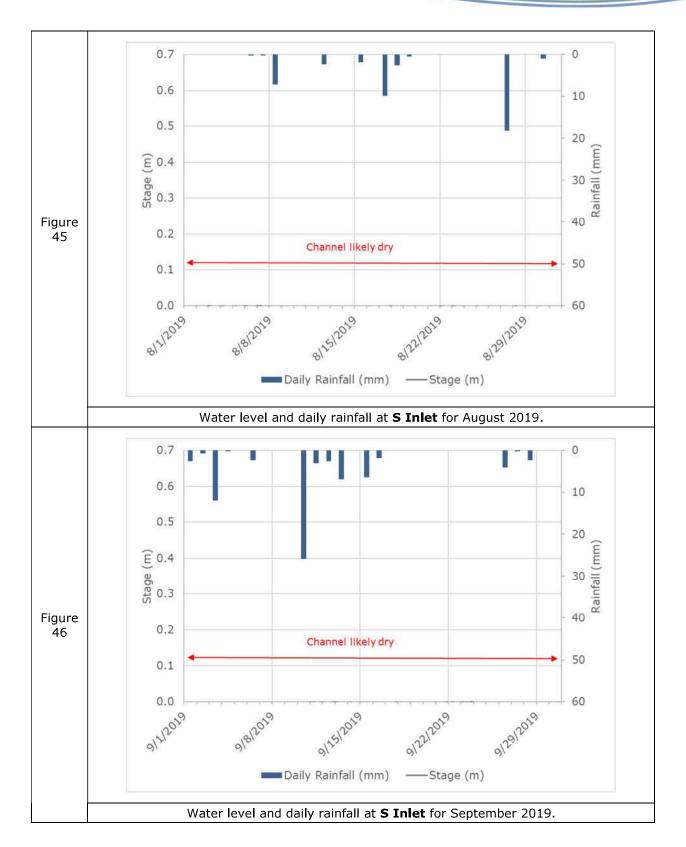


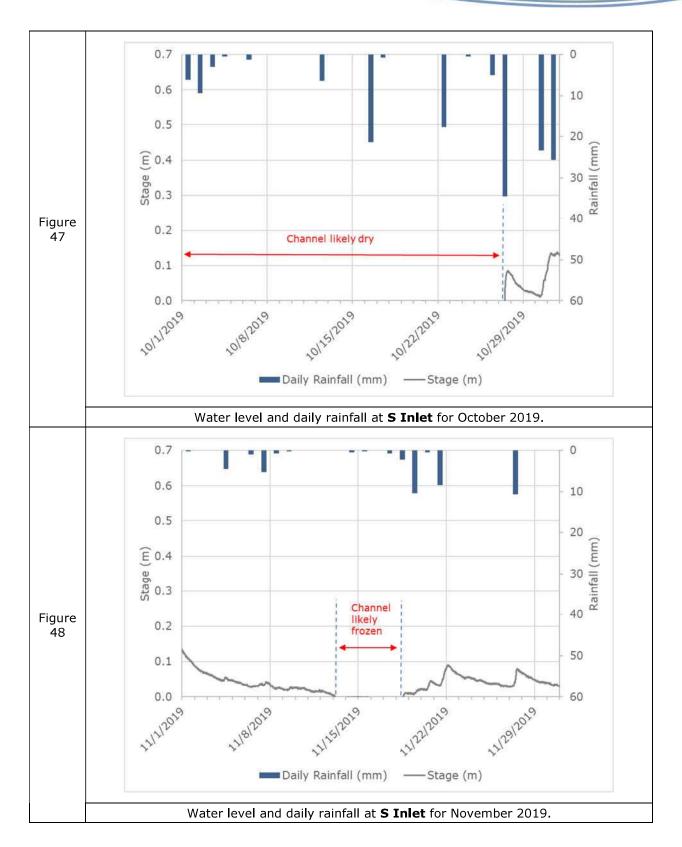


W Inlet Water Level

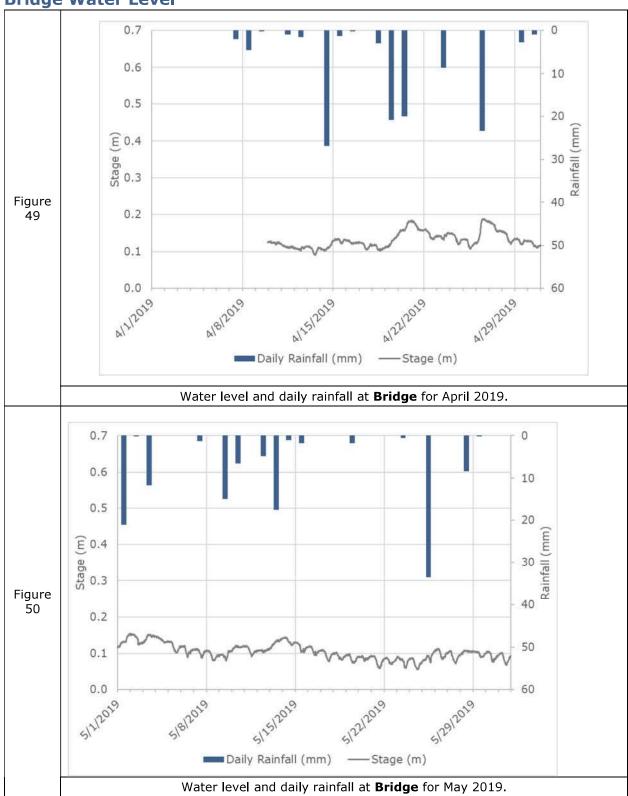


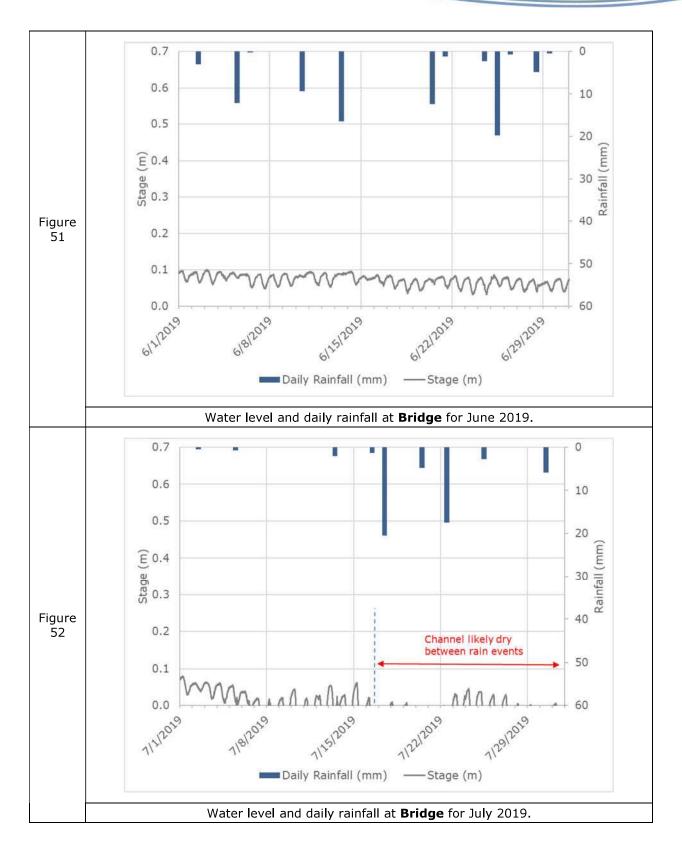


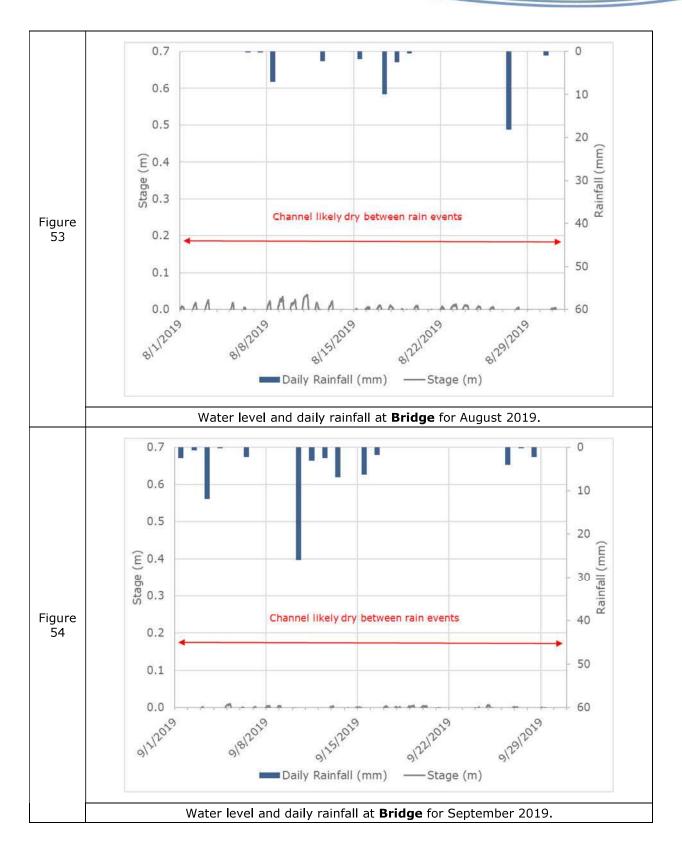


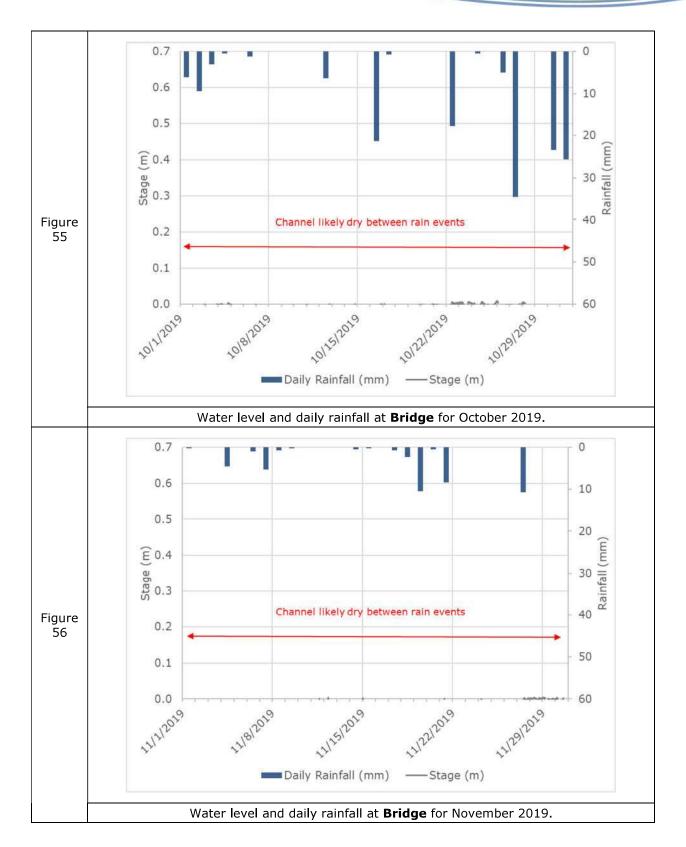


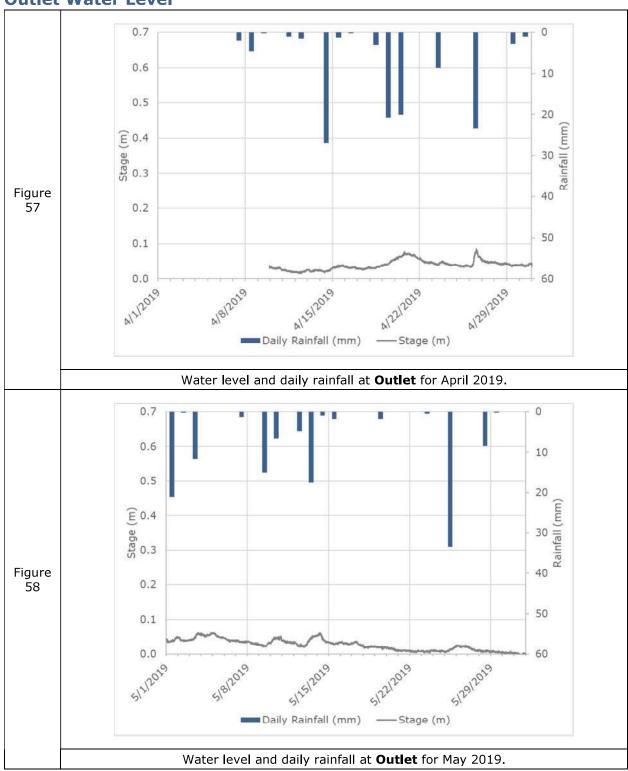
S Inlet Water Level

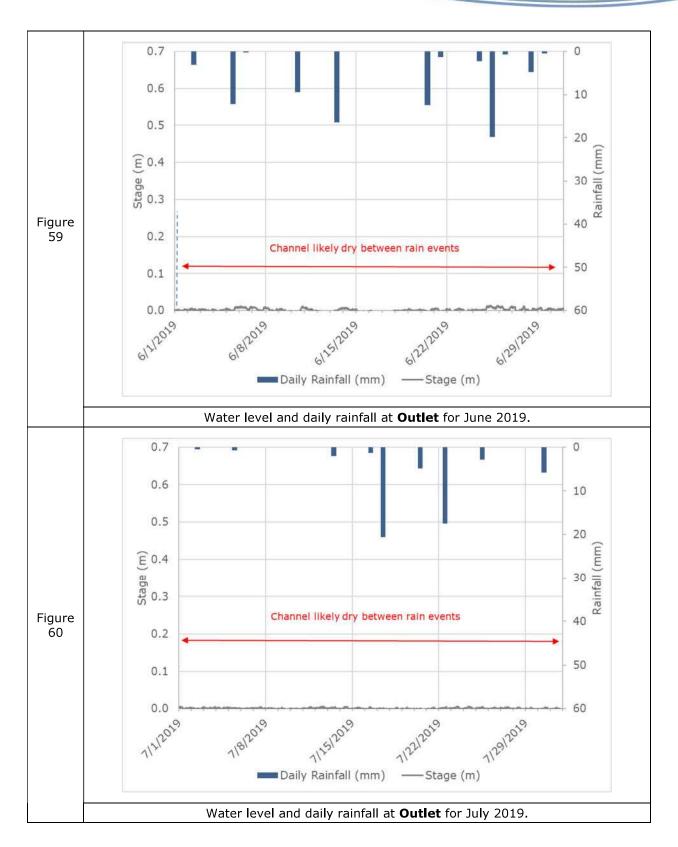


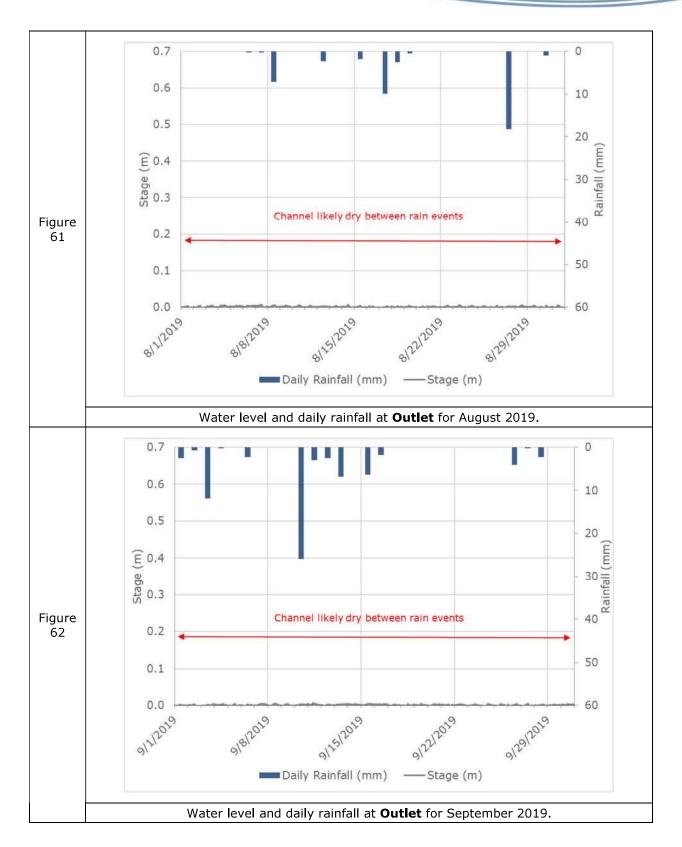


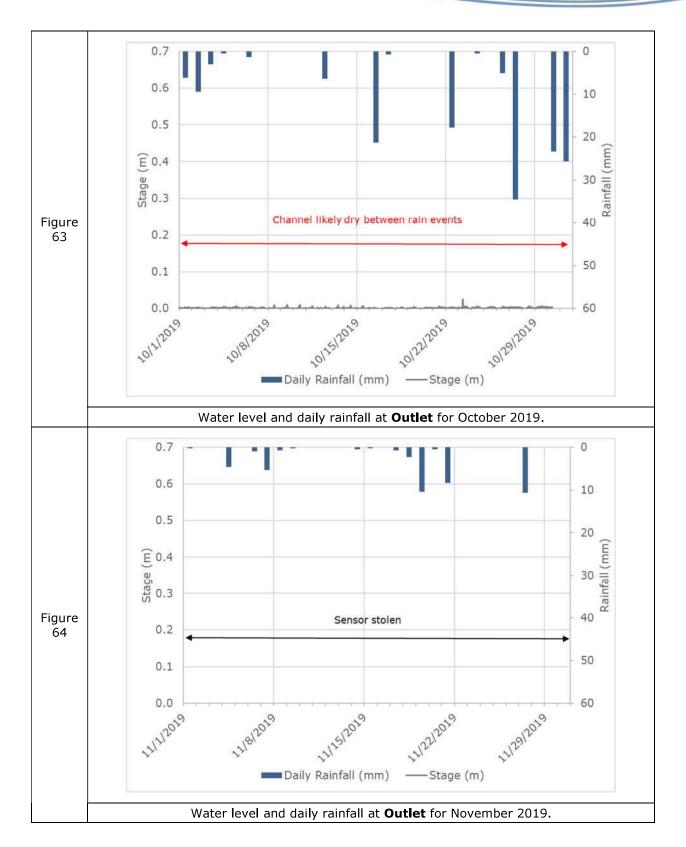












Outlet Water Level

ADV Discharge Measurement Summary

Measurement Date (mm-dd- yyyy)	Location	Average Velocity (m/s)	Measured Discharge (m³/s)
	W Inlet	0.0114	0.0002
04-09-2019	S Inlet	0	0
04-09-2019	Bridge	0	0
	Outlet	0.2734	0.0150
	W Inlet	0.0538	0.0009
05-10-2019	S Inlet	0	0
05-10-2019	Bridge	0.0400	0.0023
	Outlet	0.3392	0.0180
	W Inlet	0	0
06-20-2019	S Inlet	N/A	N/A
00-20-2019	Bridge	N/A	N/A
	Outlet	0.0170	0.0004
	W Inlet	N/A	N/A
07-16-2019	S Inlet	N/A	N/A
07-10-2019	Bridge	N/A	N/A
	Outlet	N/A	N/A
	W Inlet	N/A	N/A
08-13-2019	S Inlet	N/A	N/A
08-13-2019	Bridge	N/A	N/A
	Outlet	N/A	N/A
	W Inlet	N/A	N/A
00 20 2010	S Inlet	N/A	N/A
08-30-2019	Bridge	N/A	N/A
	Outlet	N/A	N/A
	W Inlet	N/A	N/A
10 01 2010	S Inlet	N/A	N/A
10-01-2019	Bridge	N/A	N/A
	Outlet	N/A	N/A
	W Inlet	N/A	N/A
10 20 2010	S Inlet	N/A	N/A
10-30-2019	Bridge	N/A	N/A
	Outlet	N/A	N/A

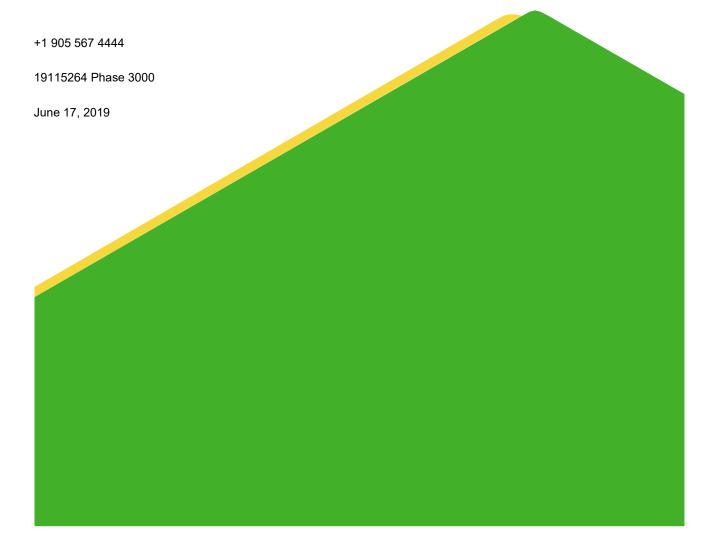
N/A - Channel dry/too shallow, unable to complete measurement

REPORT

Preliminary Geotechnical Investigation, Coscorp Inc. In Trust

Proposed Residential Development, Snell's Hollow Secondary Plan, Caledon, Ontario

Submitted to:


Coscorp Inc. In Trust

Tom Basekerville Vice President Development 6625 Kitimat Road, #58 Mississauga, On

Submitted by:

Golder Associates Ltd.

6925 Century Avenue, Suite #100, Mississauga, Ontario, L5N 7K2, Canada

Distribution List

1 e-copy: Golder Associates Ltd.

1 e-copy: Coscorp Inc. In Trust

1 e-copy: Snell's Hollow Developers Group

1 e-copy: Glen Schnarr & Associates Inc.

i

Table of Contents

1.0	INTRODUCTION1				
2.0	SITE DESCRIPTION AND BACKGROUND				
3.0	ADJACENT GEOTECHNICAL SITE INFORMATION				
4.0	REGIONAL GEOLOGY				
5.0	INVE	STIGATION PROCEDURE	3		
6.0	SUBS	SURFACE CONDITIONS	3		
	6.1	Topsoil and Reworked/Disturbed Materials	4		
	6.2	(CL) Silty Clay to sandy Silty Clay (Upper Glacial Till)	4		
	6.3	(ML) gravelly sandy SILT	4		
	6.4	(CL-ML) Clayey Silt (Lower Glacial Till)	5		
	6.5	Groundwater Conditions	5		
7.0	GEO	FECHNICAL ENGINEERING DISCUSSION	5		
	7.1	Site Preparation	6		
	7.1.1	Subgrade Preparation	6		
	7.1.2	Engineered Fill Requirements	6		
	7.2	Installation of Underground Services	7		
	7.2.1	Temporary Excavations	7		
	7.2.2	Pipe Bedding and Cover	8		
	7.2.3	Trench Backfill	8		
	7.3	Building Foundations	9		
	7.3.1	Below Grade Walls	10		
	7.4	Pavement Design within the Proposed Development	10		
	7.4.1	Subgrade Drainage	11		
8.0	SEISMIC SITE CLASSIFICATION1				
9.0	INSPECTION AND TESTING12				
10.0	0 CLOSING12				

TABLES

Table 1: Approximate Topsoil Thickness	4
Table 2: Groundwater Level Measurements	5
Table 3: Pavement Design	10
Table 5 Pavement Design	- 11

FIGURES

Figure 1 – Site and Borehole Location Plan

APPENDICES

APPENDIX A

Record of Boreholes

APPENDIX B

Geotechnical Laboratory Figures

APPENDIX C

Adjacent Properties and Previous Geotechnical Borehole Logs

APPENDIX D

Important Information and Limitations of This Report

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by Coscorp Inc. In Trust (Coscorp) to provide preliminary geotechnical consulting services to support a draft plan approval for a future residential subdivision development located north east of Heart Lake Road and Mayfield Road in Caledon, Ontario (the Site), as shown in the Site and Borehole Location Plan, *Figure 1*.

The terms of reference for the geotechnical consulting services are included in Golder's proposal No. P19115264 Rev 1, dated March 8, 2019.

The purpose of the investigation is to obtain information on the general subsurface soil and shallow groundwater conditions at the site by means of a limited number of boreholes and geotechnical laboratory tests. Based on our interpretation of the factual information collected as part of the preliminary geotechnical investigation carried out at this site, a general description of the subsurface conditions across the site is presented herein. The interpreted subsurface conditions and available project details were used to develop preliminary engineering parameters and recommendations on the geotechnical design aspects of the project, including construction considerations which could influence design decisions.

This report provides the results of the preliminary geotechnical investigation and should be read in conjunction with the "Important Information and Limitations of This Report" in Appendix D. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within twelve months of the date of the report, Golder should be given an opportunity to confirm that the recommendations in this report are still valid.

2.0 SITE DESCRIPTION AND BACKGROUND

The subject property is located north east of Kennedy Road and Mayfield Road and is part of the Snell's Hollow Secondary Plan, which is a proposed residential development to be located in the southern part of the Town of Caledon. The site is bounded by Kennedy Road to the west, adjacent agricultural properties with a valley creek to the east and south, which further connects to Mayfield Road and Heart Lake Road and Highway 410 to the north, as shown in Figure 1.

The site has a total area of approximately 7.4 hectares (18.3 acres) of predominantly flat land which slightly slopes at the property limit next to Highway 410. The site consists of agricultural land as noted by the presence of previous farming activities (crops). There are two residential dwellings outside the property boundaries located to the south-west of the site which has a municipal address of 12097 and 12141 Kennedy Road, Caledon, Ontario.

Based on our understanding, the Site is to be developed into a residential development, with associated underground services and supporting roads. For the purposes of this report, we have assumed that the future residential houses will be constructed utilizing shallow strip/spread footings, with an interior slab-on-grade, and one-level of underground basement. We have also assumed cuts and/or fills required for site grading purposes will not exceed 2.0 m and that the invert of the site servicing will be no greater than 3.0 m below existing site grades.

3.0 ADJACENT GEOTECHNICAL SITE INFORMATION

Additional geotechnical investigations consisting of seventeen boreholes were also carried out as part of the Snell's Hollow Secondary Plan on the southwest, south and east adjacent properties (Golder, 2019). Also, a previous geotechnical investigation consisting of five boreholes was carried out by Edward Wong and Associates, 2017 (Wong, 2017), on the south property.

The following is a summary of subsurface conditions obtained from boreholes located adjacent to the site (BH/MW19-02 and BH19-10 to BH/MW19-13) from Golder 2019, and (BH1 and BH5) from Wong, 2017 as shown on the Site and Borehole Location Plan, *Figure 1*.

In general, the subsurface conditions encountered typically consist of a surficial topsoil ranging in thickness from about 200 mm to over 610 mm overlying a disturbed/reworked dark to light brown silty clay layer, which contains various amounts organics, underlain by glacial till composed of stiff to hard brown silty clay to a depth ranging from 4.0 m to 6.7 m below ground surface. A 4.5 m clayey silt fill deposit was indicated in BH5 (Wong, 2017), however the fill material was not encountered in BH/MW19-02.

A stiff to hard grey clayey silt till or very dense silty sand to sand was generally found below the brown silty clay till layer. These subsurface conditions were found to be similar to the subsurface conditions encountered in the boreholes located on Coscorp site (discussed in detail in subsequent sections).

Groundwater was encountered in BH/MW19-02 at approximately Elev. 244.5 m, BH5 at approximately Elev. 262.2 m and BH19-10 at approximately Elev. 263.7 m, upon the completion of drilling and ranged from 2.8 m to 12.7 m below existing ground surface, whereas Borehole BH19-11, BH/MW19-13 and BH1, were found to be dry upon the completion of drilling.

Four, 50 mm diameter monitoring wells were installed at Boreholes BH5, BH/MW19-02 and BH/MW19-13 to permit further monitoring of the groundwater levels. The groundwater levels measured at Borehole BH/MW19-02 within the shallow 50 mm diameter monitoring well on April 17, 2019 were recorded to be 0.25 m below existing ground surface. (Elev. 257 m) and at 6.3 m below existing ground surface (Elev. 250.9 m) within the deep monitoring well. The groundwater level measured at Borehole BH/MW19-13 on April 17, 2019, was measured at 9.4 m below ground surface (Elev. 258.2 m).

The record of borehole logs from the adjacent properties are enclosed in *Appendix C*. The approximate locations of the boreholes drilled at these sites are shown on the Site and Borehole Location Plan, *Figure 1*.

4.0 REGIONAL GEOLOGY

The surficial geology aspects of the general site area were reviewed from the following publication:

■ Chapman, L.J., and Putnam, D.F., 2007, "The Physiography of Southern Ontario"; 4th Edition, Ontario Geological Survey.

Physiographic mapping in the area according to the above noted reference indicates that the site lies within the physiographic region of southern Ontario known as the South Slope. The South Slope region slopes gradually downward towards Lake Ontario. The overburden immediately below ground surface within the South Slope generally consists of clayey silt till and silty clay till and at depth, consists of alternating deposits of dense lacustrine sands and silts and overconsolidated lacustrine clays and clay tills overlying the bedrock.

The subsurface conditions encountered during the investigation are generally consistent with the physiographic mapping.

5.0 INVESTIGATION PROCEDURE

The field work for the preliminary geotechnical investigation was carried out on April 4, 2019, during which time two boreholes (designated as Boreholes BH/MW19-01 and BH/MW19-03) were advanced at the site to depths between about 8.2 m and 9.8 m below existing ground surface at the approximate locations shown on the Site and Borehole Location Plan, *Figure 1*, attached.

The boreholes were advanced using a track-mounted drill rig supplied and operated by a specialist drilling contractor, subcontracted to Golder. Standard Penetration Testing (SPT) and sampling was carried out at regular intervals of depth in the boreholes using conventional 35 mm internal diameter split spoon sampling equipment advanced using an automatic hammer, in accordance with ASTM D1586 (99). Two, 50 mm diameter monitoring wells were installed to permit further monitoring of the groundwater levels at each borehole location. Groundwater level measurements were recorded immediately following drilling procedures for all boreholes and on the monitoring wells on April 17, 2019. The well installation and water level readings are presented on the Record of Borehole sheets in **Appendix A**.

The field work for this investigation was directed by members of our engineering staff who located the boreholes in the field, directed the sampling and in-situ testing operation, logged the boreholes and cared for the samples obtained. The samples were identified in the field, placed in appropriate containers, labelled and transported to Golder's Mississauga geotechnical laboratory for further examination and laboratory testing. Index and classification tests, consisting of water content determinations, Atterberg limits and grain size distribution, were carried out on selected soil samples. The results of the geotechnical laboratory tests are included in **Appendix B** and on the Record of Borehole sheets in **Appendix A**.

The borehole locations were determined in the field using a GPS instrument based on UTM coordinates. Geodetic ground surface elevations at the borehole locations were derived from the site grading plan provided by GSAI, "Snell's Hollow Contour Plan, Town of Caledon" dated December 2018. and as such, the elevations and borehole locations given on the Record of Borehole sheets and referred to herein should be considered as approximate.

6.0 SUBSURFACE CONDITIONS

The subsurface soil and shallow groundwater conditions encountered in the boreholes and the results of the field and laboratory testing, are shown on the Record of Boreholes sheets, in **Appendix A**. Method of Soil Classification and Symbols and Terms Used on Records of Boreholes are provided to assist in the interpretation of the borehole logs. It should be noted that the boundaries between the strata have been inferred from drilling observations and non-continuous samples. They generally represent a transition from one soil type to another and should not be inferred to represent an exact plane of geological change. Further, conditions will vary between and beyond the boreholes. The following is a summary of the subsurface conditions of the boreholes advanced during this investigation followed by a more detailed description of the major soil strata and groundwater conditions.

In general, the subsurface conditions encountered at the boreholes advanced at the site typically consist of a surficial topsoil/silty clay layer underlain by native soil deposits of glacial till composed of silty clay to clayey silt containing varying amounts of sand and gravel. A gravelly sandy silt deposit was encountered in between the brown silty clay till and grey clayey silt till, about 4 m in thickness.

Details of the observations of the groundwater conditions during and upon completion of drilling are included on the Record of Borehole sheets. Shallow ground water was encountered at depths ranging from 4.0 m to 7.3 m

below existing ground surface upon the completion of drilling activities. Shallow groundwater levels measured in the 50 mm diameter monitoring wells installed at the site are also presented below.

6.1 Topsoil and Reworked/Disturbed Materials

Topsoil materials were encountered in all the boreholes and extended to depths ranging from 0.25 m to 0.35 m. A summary of topsoil thickness in each of the boreholes is outlined in the table below.

Borehole No.	Approximate Topsoil Thickness (m)			
BH/MW19-01	0.25			
BH/MW19-03	0.35			

Table 1: Approximate Topsoil Thickness

Materials identified as topsoil in this report were classified based on visual and textural evidence as no other testing for organic content or other nutrients was carried out. As such, the ability for these materials to support vegetation has not been assessed.

Reworked/disturbed silty clay material was encountered in both boreholes below the surficial topsoil. Reworked material thickness was observed to be approximately 0.45 m to 1.0 m. The reworked material consisted of silty clay with various amounts of sand and gravel and traces of organics. SPT 'N' values within the cohesive reworked material ranged from about 5 blows to 10 blows per 0.3 m of penetration indicating a firm to stiff consistency.

The natural water content of the reworked material was measured at 19 percent.

6.2 (CL) sandy Silty Clay (Upper Glacial Till)

A glacial till deposit consisting of cohesive sandy silty clay was generally encountered directly underneath the topsoil/reworked till deposits to depths of about 5.8 m below existing ground surface (Elev. 261 m). The till deposit is light brown to brown mottled with oxidation staining, about 2.7 m to 5 m in thickness, with various amounts of sand and gravel. The silty clay till increases in sand content in both boreholes at depth. The till is believed to contain cobbles and/or possible boulders which have been inferred as a result of auger grinding observed in boreholes BH/MW19-03.

The SPT 'N' values measured in these till materials range from 11 blows per 0.3 m of penetration to 32 blows per 0.3 m of penetration, indicating that the silty clay till is generally stiff to hard in consistency.

The results of grain size distribution tests carried out on selected samples from this deposit are presented in **Figure B1.** Atterberg limits tests that were carried out on the same samples from this deposit measured liquid limit values ranging from about 23 to 24 and plastic limit values ranging from about 13 to 15; yielding corresponding plasticity index values ranging from about 10, which suggests that the upper till is a clay of low plasticity. These results are plotted on the plasticity chart as shown in **Figure B2**.

The water content of selected samples ranged from about 9 percent to 17 percent.

6.3 (ML) gravelly sandy SILT

A non-cohesive gravelly sandy silt was encountered underneath the brown cohesive silty clay till, in BH/MW19-03. The sandy silt deposit, is light brown, has slight plasticity, contains various amount of gravel, with cobbles/boulders being inferred from auger grinding and is about 3 m in thickness.

The SPT 'N' values measured in this deposit ranged from 75 blows per 0.3 m to 100 blows per 0.3 m of penetration. These SPT 'N' values indicate a very dense compactness.

The water content of selected samples ranged from about 8 percent.

6.4 (CL-ML) Clayey Silt (Lower Glacial Till)

A clayey silt till deposit was encountered directly underneath the sandy silty clay till and/or sandy silt from a depth of about 5.8 m and 7.0 m below existing ground surface. The boreholes were terminated in this layer at a depth of about 8.2 m and 9.8 m below existing ground surface. The cohesive till deposit contains various amounts of sand and gravel and is grey in colour.

The SPT 'N' values of this till deposit was 12 blows to 100 per 0.3 m of penetration indicating stiff to hard consistency.

6.5 Groundwater Conditions

Groundwater level measurements were recorded immediately following drilling procedures. Monitoring wells were installed in both boreholes to permit monitoring of the groundwater level at the site. Details of the monitoring well installation and the measured groundwater levels are shown on the Record of Borehole sheets in *Appendix A*. The groundwater level measurements in the drilled boreholes and in the monitoring wells are summarized in Table 2, below.

Table 2: Groundwater Level Measurements

Borehole No.	Measurements Upon Completion of Drilling		Measurements in Monitoring Wells		
	Approximate Groundwater Depth (begs)*	Date	Approximate Groundwater Depth (begs)*	Date	
BH/MW19-01	Dry	April 4, 2019	4.0 m (Elev. 262.8 m)	April 17, 2019	
BH/MW19-03	9.1 m (Elev. 257.8 m)	April 4, 2019	7.3 m (Elev. 259.5 m)	April 17, 2019	

^{*}begs- below existing ground surface.

It should be noted that the groundwater level in the area is subject to seasonal fluctuations and precipitation events and should be expected to be higher during wet periods of the year.

7.0 GEOTECHNICAL ENGINEERING DISCUSSION

This section of the report provides preliminary geotechnical engineering recommendations on the geotechnical aspects of the proposed development based on our interpretation of the limited borehole information and on our understanding of the project scope and requirements. The information in this portion of the report is provided for the guidance of the design engineers and professionals.

Based on the results of this investigation, the subsurface soil conditions encountered at the site are considered to be generally suitable for the proposed residential development.

As noted above, at the time of this report, proposed design grades (i.e. footing elevation, pavement subgrade and utility invert levels) were not available for the proposed development. The following engineering

recommendations regarding the geotechnical design aspects of the project including underground services, pavements and building foundations should be considered as preliminary only, and should be reviewed when the design grades and utility invert levels have been finalized.

Where comments are made on construction, they are provided only in order to highlight aspects of construction which could affect the design of the project. Contractors bidding on or undertaking any work at the site should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, equipment capabilities, costs, sequencing and the like.

This report addresses only the geotechnical (physical) aspects of the subsurface conditions at this site. The geo-environmental (chemical) aspects, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, are outside of the terms of reference for this report.

7.1 Site Preparation

7.1.1 Subgrade Preparation

The existing site vegetation, surficial topsoil/organics and other near-surface soils containing significant amounts of organic matter are not considered to be suitable for the subgrade support of engineered fill, building foundations, floor slabs, or other settlement sensitive structures. These materials should be completely stripped prior to placing any engineered fill or construction of foundations or interior or exterior slab-on-grade(s).

Disturbed/reworked materials containing excessive amounts of construction debris or organic material should be disposed of following appropriate environmental procedures. Furthermore; excessively-wet soils should be suitably dried before reuse as engineered fill.

Following the stripping of the surficial topsoil and soils containing significant amounts of organics and/or soft/disturbed surficial soils, the exposed subgrade should be heavily proof-rolled with suitable equipment, in conjunction with inspection by qualified geotechnical personnel to confirm that the exposed soils are competent and have been adequately stripped of ponded water and all disturbed, loosened, softened, organic and other deleterious material. Remedial work (i.e., further subexcavation and replacement) should be carried out on poorly-performing areas identified during the proof-rolling activities, as directed by Golder.

Any filling carried out at the site in conjunction with regrading should be carried out as under engineered fill procedures. Recommendations for the placement of engineered fill are outlined in Section 7.1.2 of this report.

7.1.2 Engineered Fill Requirements

As described above, the anticipated site grading activities may include both cutting and raising (filling) the original grade to meet the final design site grades. At the time of this report, the design cut and fill depths were not available for review. As such, for the purposes of this report, it has been assumed that cuts will not exceed 2 m and grade raises will not exceed more than 2 m.

In general, the existing native material is considered to be acceptable for reuse as engineered fill. Based on the laboratory test results, the water content of soils present at the site are considered to be generally near or above their optimum water contents for compaction, and therefore may require minor drying prior to placement, in general.

It should be noted that the native materials at the site are silty in nature, and as such are susceptible to overwetting and subsequent freezing during inclement weather. Therefore, it is recommended that site grading activities not be carried out during late fall, winter, early spring seasons or any periods of inclement weather

conditions. All oversized cobbles (i.e., greater than 150 mm in size) and boulders, if present, should be removed from excavated material that will be used as engineered fill material.

If imported material is required for the engineered fill process, the material that is proposed for use as engineered fill should be approved by the geotechnical engineer at its source, prior to importing the material to the site. Suitable soils, free of topsoil, organic matter or other deleterious materials can be used as engineered fill provided that the water content of the soil at the time of placement does not vary by more than 2 percent above or below its optimum water content for compaction. Otherwise, the soils may require treatment (i.e., drying or wetting) prior to placement.

Following the inspection and approval of the subgrade as described previously in this report, engineered fill materials should be placed in maximum 300 mm-thick loose lifts and uniformly compacted to 98 percent of the Standard Proctor maximum dry density (SPMDD). Filling should continue until the design elevations are achieved.

Full-time monitoring and in-situ density testing should be carried out by Golder during placement of engineered fill.

The final surface of the engineered fill should be protected as necessary from construction traffic and should be sloped to provide positive drainage for surface water during the construction period. If the engineered fill materials will be left exposed (i.e. uncovered) during periods of freezing weather, additional soil cover should be placed above final subgrade to provide some level of frost protection. Prior to placing the granular subbase and/or base courses within pavement areas, the surface of the engineered fill/subgrade should be inspected by Golder.

7.2 Installation of Underground Services

7.2.1 Temporary Excavations

Details of the underground servicing for the proposed development are unknown at the time of this investigation; as such, for the purpose of this report, the maximum depth of the underground services was assumed to be about 3 m below the existing ground surface. Once detailed design is completed, review of the underground services should be completed by this office for compliance with the recommendations contained herein.

The founding soils are anticipated to generally consist of the native sandy silty clay or engineered fill. These materials are considered to be suitable for supporting the underground services provided that the integrity of the base of the trench excavations is maintained during construction. Where softened or disturbed native soils or other deleterious materials are encountered at the base of excavations for settlement-sensitive services, these materials should be subexcavated and replaced with compacted fills approved by the geotechnical engineer.

Care should be taken to direct surface water away from any open excavations and all temporary excavations should be carried out in accordance with the Occupational Health and Safety Act (OHSA) and Regulations for Construction Projects.

In general, the groundwater level in the open boreholes, upon completion of drilling, was measured to be at depths ranging from being dry to 9.1 m below existing ground surface or elevation 257.8 m. Whereas, the groundwater level in the monitoring wells, one month after drilling, was measured to be at depths ranging from 4.0 m to 7.0 m below existing ground surface, (Elev. 259.5 m to Elev. 262.8 m).

The groundwater in the excavations within the native deposits, are likely to be handled by collection via properly constructed and filtered sumps, located within the excavations, and then pumping and discharging the water to a suitable discharge point. However, should excavations deeper than 3-4m below existing ground surface be

required, the following recommendations will need to be review and revised to determine if some form of active dewatering, such as well points, may have to be implemented.

Excavations for the site servicing would generally extend through the native sandy silty clay deposit. Conventional excavation equipment should be suitable to excavate through these materials.

The stiff to hard native clayey till soils are classified as a "Type 2" soils under the OH&S Act. As such, all conventional temporary trench excavations should consist of open cuts with side slopes not steeper than 1 horizontal to 1 vertical in the overburden soils to within 1.2 m of the base of the excavation and then may be made vertical to the base. Where engineered fill (based on silty clay material) is used or the native sandy silt/silty clay exhibits signs of water seepage, the soil is classified as a "Type 3", as such all conventional temporary trench excavations should consist of gradient of 1 horizontal to 1 vertical.

Where the side slopes of excavations are required to be steepened to limit the extent of the excavation, then some form of trench support may be required. Some trench excavations could be carried out using a vertically-excavated, unsupported excavation (using a properly-engineered trench liner box for protection, certified by an experienced engineer); or by a supported (sheeted) excavation if conditions warrant so; such as in wet areas and/or in close proximity to adjacent underground services

7.2.2 Pipe Bedding and Cover

The bedding for the sewers and watermains should be compatible with the size, type and class of pipe and the surrounding subsoil and the requirements of the Town of Caledon. If granular bedding is deemed to be acceptable, then Ontario Provincial Standard Specifications (OPSS) Granular A should be used from at least 150 mm below invert of the pipe to the springline. Clear stone should not be used as bedding material. From springline to 300 mm above the obvert of the pipe, sand cover could be used. All bedding and cover material should be placed in 150 mm loose lifts and uniformly compacted to at least 100 percent of SPMDD. Where variable fill materials, softened or disturbed native soils or other deleterious materials are encountered at the base of excavations for settlement-sensitive services, these materials should be subexcavated and replaced with compacted fills approved by the geotechnical engineer.

7.2.3 Trench Backfill

The excavated materials from the site will consist predominantly of silty clay till materials. Based on the measured water contents, in general, the native materials encountered at the site are estimated to be near or below their optimum water contents for compaction, and therefore, will probably require only minor wetting prior to placement.

Care should be taken to maintain the water content of the soils close to/at the optimum water content for compaction during the construction operations, as difficulties with compaction and/or backfill performance would be anticipated with fine-grained soils where the water content is significantly above the optimum for compaction purposes. Soils that contain significant quantities of organics or debris are also not suitable for use as trench backfill within settlement-sensitive areas. In addition, all boulders and cobbles greater than 150 mm in size should be removed from the trench backfill materials. If there is a shortage of suitable in-situ material, an approved imported material such as Ontario Provincial Standard Specifications Select Subgrade Material should be used for trench backfill. Again, as noted above, the trench backfill materials are silty in nature and are very susceptible to wetting/freezing temperatures. Backfilling trenches during cold or wet weather is not recommended.

Trench backfill should be placed in maximum 300 mm loose lift thickness and uniformly compacted to at least 98 percent of the SPMDD of the material. Soil that is frozen should not be used as backfill.

Normal post-construction settlement of the compacted trench backfill should be anticipated with the majority of such settlement taking place within about 12 months following the completion of trench backfilling operations. If the trench backfill operations are completed during the winter months, post-construction settlements may increase beyond typical anticipated values. These settlements will be reflected at the ground surface. If the asphalt binder course is laid shortly following the completion of the trench backfilling operations, any settlement that may be reflected by subsidence of the surface of the binder asphalt should be compensated for by placing an additional thickness of binder asphalt or by padding. If possible, the surface course asphalt should not be placed over the binder course asphalt for about 12 months. Where scheduling requires that the surface course be placed over the binder course asphalt before this period, trench backfill settlement would be reflected by subsidence and possible cracking of the finished pavement surface in these areas which, depending upon the extent and magnitude, may require local repairs.

7.3 Building Foundations

As previously indicated, the existing site vegetation, surficial topsoil/organics and other near-surface soils containing significant amounts of organic matter are not considered to be suitable for the subgrade support of engineered fill, building foundations, floor slabs, or other settlement sensitive structures. These materials should be completely stripped prior to placing any engineered fill or construction of foundations or interior or exterior slab-on-grades.

Based on the subsurface conditions encountered in the boreholes, strip and spread footings that may be used, provided that the footings are founded on the native sandy silty clay deposit or on engineered fill (based on existing site soils) placed in accordance with the recommendation outlined in Section 7.1, and maintained a minimum depth of soil embedment below finished adjacent ground surface and top of slab of 1.2 m.

For such strip and spread footings, a factored geotechnical resistance at Ultimate Limit States (ULS) of 225 kPa and a geotechnical reaction at Serviceability Limit States (SLS) of 150 kPa may be assumed for design purposes, provided that the strip footings dimensions of 0.45 m in width and 10 m in length or spread footings have a minimum width of 0.60 m and a maximum width of 1.0 m.

Where spread footings are constructed at different elevations, the difference in elevation between the individual footings should not be greater than one half the clear distance 650 mm between the footings. In addition, the lower footings should be constructed first so that if it is necessary to construct the lower footings at a greater depth than anticipated, the elevation of the upper footings can be adjusted accordingly. Stepped strip footings should be constructed in accordance with the Ontario Building Code (2012), Section 9.15.3.9.

The maximum total and differential settlements are expected to be less than 25 mm and 20 mm; respectively, for footings designed, constructed and inspected as outlined above.

All exterior footings, and interior footings in unheated areas, should be founded at a minimum depth of 1.2 m below finished grade level in order to provide adequate protection against frost penetration.

The native soils are susceptible to disturbance from construction activity, especially during wet or freezing weather. Care should be taken to preserve the integrity of the materials as bearing strata. It is essential that the founding surface for the footings be inspected by qualified geotechnical personnel prior to placing concrete. If the concrete for the footings cannot be placed immediately after excavation and inspection of the subgrade, it is recommended that a working mat of lean concrete be placed in the excavation to protect the integrity of the bearing stratum.

Resistance to lateral forces/sliding resistance between the concrete footings and the subgrade should be calculated in accordance with Section 6.7.5 of the CHBDC. The unfactored coefficient of friction, tan δ, for the

interface between the cast-in-place concrete footing and the properly-prepared subgrade can be assumed to be 0.35.

7.3.1 Below Grade Walls

The exterior perimeter of all housing basement walls should be backfilled with an imported free draining, non-frost susceptible granular material approved by a geotechnical engineer, carefully placed and compacted in 200 mm thick loose lifts. The design of the foundation walls for the below-grade walls should take into account the horizontal soil loads as well as surcharge loads that may occur during or after construction and should be designed using a lateral (at-rest) earth pressure coefficient of 0.5 and a unit weight of backfill of 20 kN/m³.

The wall backfill layers should be compacted to at least 95 per cent of the materials' standard Proctor maximum dry density. Light compaction equipment should be used immediately adjacent to the foundation wall, otherwise compaction stresses on the wall may be greater than that imposed by the backfill material. With the exception of the driveway area, the upper 0.3 m of backfill should consist of clayey material to provide a low permeability cap and the exterior grade should also be shaped to slope away from the building.

Provided that the excavations adjacent to foundation/basement walls are backfilled with free-draining granular materials and a drainage collection system is provided around the perimeter of the building, the design of belowgrade walls does not need to take into account hydrostatic forces acting on the walls. However, it is recommended that the exterior of the below-grade walls be damp-proofed.

7.4 Pavement Design within the Proposed Development

Following site grading operations, as noted previously, the proposed pavement subgrade will generally consist of either re-compacted engineered fill or native silty clay till. These materials are considered to be frost susceptible, and as such, the pavement design provided in *Table 3* below has taken this condition into consideration.

Based on the proposed pavement usage, (i.e. residential development type traffic and loads/frequencies) frost susceptibility and strength of the subgrade soils, the following pavement component given are recommended for the proposed development of access roads and streets, however the Town of Caledon/Region of Peel design standards should be followed:

Table 3: Pavement Design

Material		Minimum Thickness of Pavement Components (mm)		
		Local Road (8.5m Roadway)	Neighbourhood Collector (9.5 m Roadway)	
Asphaltic Concrete (OPSS 1150)	HL 3 Surface Course	40	40	
	HL 8 Binder Course	65	90	
Granular Materials	Granular A Base	150	150	
(OPSS.MUNI 1010)	Granular B Type II Subbase	350	500	
Total Pavement Thickness (mm)		605	780	
		Prepared and Approved Subgrade		

As part of the subgrade preparation, proposed access roads should be stripped of topsoil and other obviously unsuitable fill or organic materials. Fill required to raise the grades to design elevations should conform to the engineered fill requirements outlined previously in the report. Soft or spongy trench backfill areas should be sub-excavated and properly replaced with suitable approved backfill compacted to 98 percent SPMDD. Prior to placing pavement subbase and/or base materials, the exposed soil subgrade should be heavily proof-rolled in conjunction with an inspection by Golder. The granular subbase and base materials should be placed in loose layers no thicker than 200 mm and uniformly compacted to 100 percent of their SPMDD. The binder course and surface course asphalt materials should be compacted to minimum 92.0 percent of their Marshall Maximum Relative Density according to OPSS 310, as measured in the field using a nuclear density gauge.

Where new pavement abuts existing pavement (e.g. at the development limits), proper longitudinal lap joints should be constructed to key the new asphalt into the existing asphalt surface. The existing asphalt edges should be provided with a proper sawcut edge prior to keying-in the new asphalt. It should be ensured that any undermining or broken edges resulting from the construction activities are removed by the sawcut.

It should be noted that in some cases, even though the compaction requirements have been met, the subgrade strength may not be adequate to support heavy construction loading especially during wet weather or where backfill materials wet of optimum have been placed. In this regard, the design subbase thickness may not be sufficient for a construction haul road and additional subbase (in the order of 450 mm) may be required. In any event, the subgrade should be proofrolled and inspected by Golder prior to placing the subbase and any additional material, as required, consistent with the prevailing weather conditions and anticipated use by construction traffic.

7.4.1 Subgrade Drainage

In order to preserve the integrity of the pavement, continuous subdrains should be placed at the concrete curb lines along both sides of the proposed streets. The invert of the subdrains should be at least 300 mm below the bottom of the Granular "B" subbase and should be sloped to drain to catchbasins. The subdrains should consist of perforated pipe wrapped in a suitable geotextile and surrounded on all sides with a minimum thickness of 150 mm of OPSS.PROV 1002 Concrete Fine Aggregate (i.e. concrete sand).

8.0 SEISMIC SITE CLASSIFICATION

Seismic hazard is defined in the 2012 Ontario Building Code (OBC) by uniform hazard spectra (UHS) at spectral coordinates of 0.2 second, 0.5 second, 1.0 second and 2.0 seconds and a probability of exceedance of 2% in 50 years. The OBC method uses a site classification system defined by the average soil/bedrock properties (e.g. shear wave velocity, Standard Penetration Test (SPT) resistance, undrained soil shear strength, etc.) in the 30 m below the foundation level. There are six site classes from A to F, decreasing in ground stiffness from A, hard rock, to E, soft soil; with site class F used to denote problematic soils (e.g. sites underlain by thick peat deposits and/or liquefiable soils). The site class is then used to obtain acceleration and velocity-based site coefficients F_a and F_v ; respectively, used to modify the UHS to account for the effects of site-specific soil conditions in design.

Based on the results of the preliminary geotechnical investigation and assuming soils below the maximum depth investigated exhibit similar properties / strengths, a **Site Class D** is estimated for planning purposes. The Site Class will need to be verified, and adjusted as necessary, during detail design.

9.0 INSPECTION AND TESTING

During construction, full-time observation should be carried out during engineered fill and site servicing backfill placement, and sufficient foundation inspections, subgrade inspections and in-situ materials testing should be carried out to confirm that the conditions exposed are consistent with those encountered in the boreholes and to monitor conformance to the pertinent project specifications.

10.0 CLOSING

We trust that this preliminary report provides enough preliminary geotechnical engineering information to proceed with the detailed design of the proposed development. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact this office.

Signature Page

Golder Associates Ltd.

Erti Mansaku, P.Eng. Geotechnical Engineer gu

Jeff Tolton, C.E.T.

Associate, Senior Geotechnical Technologist

JD/EM/JET/sm

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/102461/technical work/phase 3000 - coscorp in trust/19115264 (3000) draft georeport coscorp in trust.docx

Approximate Borehole and Monitoring Well Location

Approximate Previous and Adjacent Properties Geotechnical Borehole (Edward Wong, 2017, Golder 2019)

Watercourse

Waterbody

:: Wetland

Site Boundary

Coscorp Inc. In Trust Site Boundary

MM

EM

REFERENCE(S)

1. IMAGERY: ESRI, HERE, DELORME, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

© 2019 MICROSOFT CORPORATION © 2019 DIGITALGLOBE ©CNES (2019) DISTRIBUTION

AIRBUS DS

2. BASE DATA: LIO MNRF 2019

3. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

PRELIMINARY GEOTECHNICAL INVESTIGATION, PROPOSED
RESIDENTIAL DEVELOPMENT, COSCORP INC. IN TRUST, CALEDON, ON

TITLE SITE AND BOREHOLE LOCATION PLAN

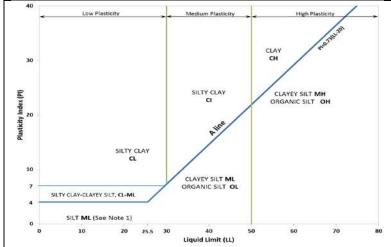
_				
	PROJECT NO.	CONTROL	REV.	FIGURE
	19115264	3000	-	1

)		75			150	
1:3,000			ME	TRES		

APPROVED

CLIENT
COSCORP INC. IN TRUST

CONSULTANT


APPENDIX A

Method of Soil Classification
Abbreviations and Terms used on
Record of Borehole
List of Symbols
Record of Boreholes

METHOD OF SOIL CLASSIFICATION

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Type of S	Soil	Gradation or Plasticity			Organic Content	USCS Group Symbol	Group Name						
		of is nm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	:3		GP	GRAVEL			
(ss)	,5 mm)	VELS / mass action 14.75 r	fines by mass)	Well Graded		≥4		1 to 3	GP GW GW GM GC SP SW SM SC Toughness Organic USCS Gro	GW	GRAVEL				
ру ша	SOILS an 0.07	GRAV 50% by varse fr er thar	Gravels with >12%	Below A Line			n/a				GP GW GM GC SP SW SM SC	SILTY GRAVEL			
3ANIC t ≤30%	ANNED ANNED (by mass)		Above A Line			n/a			<30%	GC	CLAYEY GRAVEL				
INORC	SE-GR.	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or≥	:3	Simple S	SP	SAND			
ganic (COARs by ma	VDS / mass raction n.4.75	fines by mass)	Well Graded		≥6		1 to 3	3		SW	SAND			
Ō.	%09<)	SAN 50% by parse fi	Sands with >12%	Below A Line			n/a				SM	SILTY SAND			
		Sma (P	fines by mass)	Above A Line		n/a SC			sc	CLAYEY SAND					
Organic	Soil			Laboratory			ield Indica	Organic	LISCS Group	Primary					
or Inorganic	Group	Type of S	Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	(of 3 mm thread)			Name			
		L plot		Liquid Limit	Rapid	None	None	>6 mm	roll 3 mm	<5%	ML	SILT			
(ss	75 mm	s I and L Line	SILTS lastic or Pl and L below A-Line on Plasticity Chart below)		icity low)		<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT
by ma	OILS ian 0.0	SILTS ic or Pl	ו Plasti nart be		Slow to very slow	Low to medium	S1 or ≥3	Low		OL	ORGANIC SILT				
INORGANIC content ≤30%	VED So	n-Plast be	S o S	Liquid Limit	Slow to very slow	Low to medium	Slight			<5%	МН	CLAYEY SILT			
INORC	-GRAII	oN)		≥50	None	Medium to high					ОН	ORGANIC SILT			
ganic (ORGANIC SOILS Cordent > 30% by mass) EINE-GRAINED SOILS by mass) Carbon band The band LL plot (Non-Plastic or Pl and LL plot) Carbon band Soll TS Sol	olot e on	nart	Liquid Limit <30	None	Low to medium		~ 3 mm			CL	SILTY CLAY			
Ö.	≥50% t	LAYS nd LL p	icity Challon)	Liquid Limit 30 to 50	None	Medium to high			Medium		CI	SILTY CLAY			
		(PI a	Plast	Liquid Limit ≥50	None	High	Shiny	<1 mm	High		CH	CLAY			
Z S S :	ss)	Peat and mine mixtures								to		SILTY PEAT, SANDY PEAT			
HIGH ORGA SOIL	Content by ma	Predominantly may contain mineral soil, fib amorphous	some brous or								PT	PEAT			

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)				
BOULDERS	Not Applicable	>300	>12				
COBBLES	Not Applicable	75 to 300	3 to 12				
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75				
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)				
SILT/CLAY	Classified by plasticity	<0.075	< (200)				

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier									
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL)									
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable									
> 5 to 12	some									
≤ 5	trace									

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (qt), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
TO	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

w	water content
PL, w _p	plastic limit
LL, WL	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
DR	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS

Consistency

Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

- SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure
- SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
_	3.1416	w w _l or LL	water content liquid limit
π In v			·
In x log ₁₀	natural logarithm of x x or log x, logarithm of x to base 10	w _p or PL I _p or PI	plastic limit plasticity index = (w _l – w _p)
•	acceleration due to gravity	NP	non-plastic
g t	time	Ws	shrinkage limit
	une	l _L	liquidity index = $(w - w_p) / I_p$
		Ic	consistency index = $(w - w_p) / I_p$
		e _{max}	void ratio in loosest state
		e _{min}	void ratio in densest state
		I _D	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN	_	(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
$\overset{\cdot}{\Delta}$	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
ε	linear strain	q	rate of flow
εν	volumetric strain	v	velocity of flow
η	coefficient of viscosity	İ	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress	,	
σ1, σ2, σ3	principal stress (major, intermediate,		
, - 2, - 0	minor)	(c)	Consolidation (one-dimensional)
	,	Cc	compression index
⊙ oct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_r	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	C_{α}	secondary compression index
G	shear modulus of deformation	m_{v}	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		T _v	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ′ _p	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρα(γα)	dry density (dry unit weight)	(d)	Shear Strength
ρα(γα) ρw(γw)	density (unit weight) of water	τ _p , τ _r	peak and residual shear strength
ρω(γω) ρs(γs)	density (unit weight) of solid particles		effective angle of internal friction
γ'	unit weight of submerged soil	φ΄ δ	angle of interface friction
1	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = $tan \delta$
D_R	relative density (specific gravity) of solid	c′	effective cohesion
- 11	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength (ϕ = 0 analysis)
е	void ratio	p	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
	~	q _u	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	e $\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)	_	(sompressive on ongul)/2
	3 ,,		

RECORD OF BOREHOLE: BH/MW19-01 PROJECT: 19115264-3000

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: Lat. 43.747371 Long. -79.818742

(See Figure 1)

BORING DATE: April 4, 2019

Continue	3,4,6			SOIL PROFILE	I _		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDU k, cm/s		AL NG	PIEZOMETER
Column Superace Column Superace Page 10	METRES	BORING MET		DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH nat V. + Q - • rem V. ⊕ U - ○	Wp I———	ENT PERCENT	ADDITIONAL LAB. TESTING	
CLI SELTY CLAY, frace sand timos (CLI SELTY CLAY) (CLI SELTY CLAY, frace sand timos (CLI SELTY CLAY) (CLI SELTY CLAY, frace sand timos (CLI SELTY CLAY) (CLI SELTY CLAY, frace sand timos (CLI SELTY CLAY) (CLI SELTY CLAY) (CLI SELTY CLAY, frace sand timos (CLI SELTY CLAY) (CLI	0	Н	- 1		EEE		40	00						
Some to trace sand below depth of 1.6 m 3 SS 21 4 SS 23 5 SS 32 5 SS 32 6 SS 32 7 SS 12 8 SS 32 1			(CL) SILTY CLAY, trace sand, trace gravel, trace organics; brown; cohesive, w-PL, stiff (CL) sandy SILTY CLAY, trace gravel; light brown with oxidation staining.		0.25 266.10	1B	SS			0		МН		
Silly sand layer/seams encountered below depth of 4.9 m - Silly sand layer-seams encountered below depth of 4.9 m - Silly sand layer-seams encountered below depth of 4.9 m - Silly sand layer-seams encountered below depth of 4.9 m - Silly sand layer-seams encountered below depth of 4.9 m - Silly sand layer-seams encountered below depth of 4.9 m - Silly sand layer-seams encountered below depth of 4.9 m - Silly sand layer-seams encountered below depth of 4.9 m - Silly sand layer-seams encountered below depth of 5.78	2													Bentonite
- Silty sand layers/seams encountered below depth of 4.9 m - Silty sand layers/seams encountered at 6.5 m - Silty sand layer	3						4	ss :	23					
- Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 2.7 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sitly sand layers/seams encountered below depth of 4.9 m - Sand layers/seams encountered below depth of 4.9 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m - Sand layer, approximately 70 mm thick, e		t Power Auger	Stem				5	ss	32		0			∇
CCI/CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel, with inferred cobbles; grey, (TILL); cohesive, w~PL to w~PL, stiff to hard 7 SS 12 - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling.	5	CME 75 Track Moun	100				6	ss :	21					17/04/2019
7 SS 12 - Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling.	6			(CI/CI-MI) SILTY CLAY to CLAYEY										
- Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m 8.23 END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling.				with inferred cobbles; grey, (TILL); cohesive, w~PL to w>PL, stiff to hard			7	SS	12					Screen and Sand
Notes: 1. Borehole dry upon completion of drilling.	8		- N	encountered at a depth of 8.1 m			8	SS .	48		0			Bentonite
well as follows:	9			Notes: 1. Borehole dry upon completion of drilling. 2. Water level measured in monitoring well as follows:										
Date Depth Elev. (m) April 17, 2019 3.95 mbgs 262.85 m	10			Date Depth Elev. (m) April 17, 2019 3.95 mbgs 262.85 m										

RECORD OF BOREHOLE: BH/MW19-03 PROJECT: 19115264-3000 SHEET 1 OF 2 LOCATION: Lat. 43.750098 Long. -79.814418 DATUM: Geodetic BORING DATE: April 4, 2019 (See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH OW. Wp I - w (m) GROUND SURFACE 266,88 TOPSOIL (350 mm) 0.00 SS 1A 266.53 (CL) SILTY CLAY, some sand, trace gravel, trace organics; brown with 0.35 1B SS oxidation staining; cohesive, w<PL, firm 2 SS 7 0 (CL) sandy SILTY CLAY, trace gravel, contains inferred cobbles; light brown with oxidation staining, (TILL); cohesive, w<PL, stiff to hard 1,37 ss 11 0 SS 24

Bentonite SS 5 30 b٠ мн G_CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC (ML) gravelly sandy SILT, with slight plasticity, contains inferred cobbles; light brown; non-cohesive, moist, very dense - Inferred cobbles/boulders from auger 3,99 CME 75 Track Mount Power grindings at a depth of 2 m and 7.3 m SS 75 0 Sand 7 SS 100 259.88 7.00 (CL-ML) CLAYEY SILT, some to trace sand; grey, (TILL); cohesive, w<PL, hard 17/04/2019 Screen and Sand 8 SS 100 0 - Cobbles/boulders inferred from auger grinding at a depth of 8.4 m 9 4/04/2019 9 SS 77 0 END OF BOREHOLE. 9.75 CONTINUED NEXT PAGE GTA-BHS 001 DEPTH SCALE LOGGED: JD GOLDER

1:50

CHECKED: EM

RECORD OF BOREHOLE: BH/MW19-03

SHEET 2 OF 2

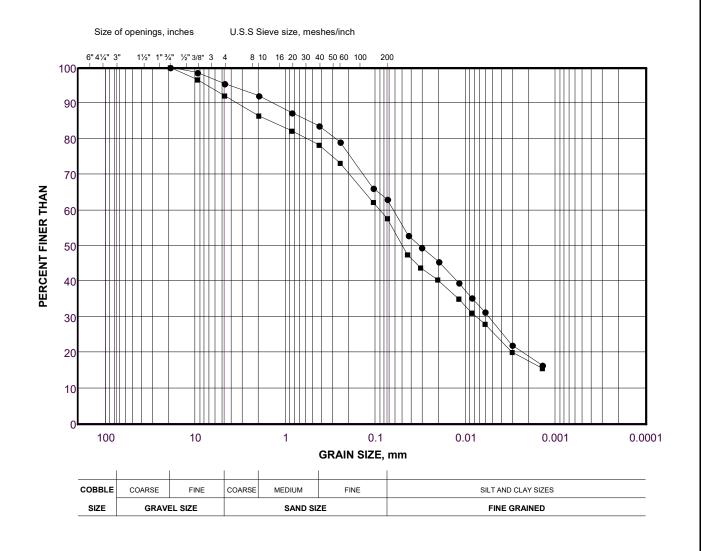
LOCATION: Lat. 43.750098 Long. -79.814418

(See Figure 1)

BORING DATE: April 4, 2019

DATUM: Geodetic

<u>.</u>	GOH.	SOIL PROFILE			SAI	MPLE		DYNAMIC PI RESISTANC	NETRAT E, BLOW	ION S/0.3m	\	LIC CONDI , cm/s		NG AL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 HEAR STR Cu, kPa 20		nat V. H	80 + Q - • + U - O	10 [°] ER CONTE	NT PERC	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE Notes:													
		Water level measured at 9.1 mbgs upon completion of drilling. Water level measured in monitoring													
11		well as follows: Date Depth Elev. (m) April 17, 2019 7.34 mbgs 259.54 m													
12															
13															
14															
15															
16															
17															
18															
19															
20															
DE	PTH S	SCALE				ĺ	^	G	וור) E	D			LOG	GED: JD

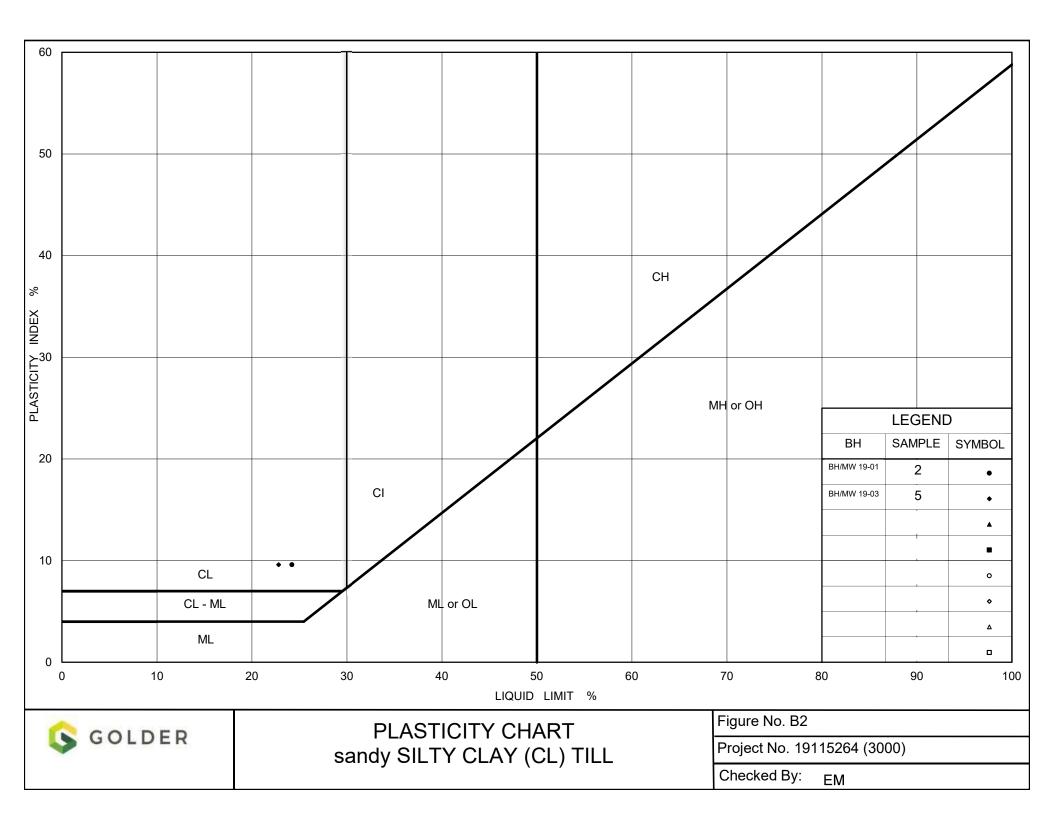

APPENDIX B

Geotechnical Laboratory Figures

GRAIN SIZE DISTRIBUTION

sandy SILT CLAY (CL) - TILL

FIGURE B1



LEGEND

SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH/MW 19-01	2	0.76 - 1.37
•	BH/MW 19-03	5	3.05 - 3.66

Project Number: 19115264

(3000) Checked By: EM Golder Associates Date: 12-Jun-19

APPENDIX C

Adjacent Properties and Previous Geotechnical Borehole Logs

RECORD OF BOREHOLE: BH/MW19-02 PROJECT: 19115264-1000/2000 SHEET 1 OF 2 LOCATION: Lat. 43.747664 Long. -79.814643 DATUM: Geodetic BORING DATE: April 2, 2019 (See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp I - w (m) GROUND SURFACE 257.20 TOPSOIL (610 mm) SS 17/0 (CL)SILTY CLAY, some to trace sand, trace gravel, trace organics; brown/dark brown with oxidation staining; w>PL, firm 256.35 0.85 SS 59. (CL) sandy SILTY CLAY, trace gravel; light brown with oxidation staining, (TILL); cohesive, w~PL, firm to stiff 2B SS 0 - Silt/sand seams/layers below 1.7 m 3 ss 8 2 SS 13 and Sand 3 5 SS 9 G_CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC (CL-ML) CLAYEY SILT, some to trace sand, trace gravel; grey, (TILL); cohesive, w>PL, very stiff to stiff to hard CME 75 Track Mount Power Auger SS 15 0 6 ∑ 17/04/2019 ss 13 0 8 SS 17 9 - Becoming sandy at 9.1 m 9 SS 57 - Auger grinding at a depth of 9.5 m to CONTINUED NEXT PAGE DEPTH SCALE LOGGED: JD

GOLDER

GTA-BHS 001

1:50

RECORD OF BOREHOLE: PROJECT: 19115264-1000/2000

BH/MW19-02

SHEET 2 OF 2

DATUM: Geodetic

LOCATION: Lat. 43.747664 Long. -79.814643

(See Figure 1)

BORING DATE: April 2, 2019

DESCRIPTION CONTINUED FROM PREVIOUS PAGE (SW-SM) SAND to SILTY SAND, medium grained, contains inferred cobbles/boulders; light brown; non-cohesive, wet, compact to very dense	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	SHEA Cu, kF	.R STREI Pa	HTDV	⊥ nat V. + rem V.⊕	Q - ● U - ○		10 ⁵ R CONTEI 20	NT PERC	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
(SW-SM) SAND to SILTY SAND, medium grained, contains inferred cobbles/boulders; light brown; non-cohesive, wet, compact to very dense		21 7:36											-		
			10	SS 26											Bentonite Sand
- Cobbles/boulders inferred from auger grinding at a depth of 12 m END OF BOREHOLE.		244.40 12.80	11 :	SS 52											Screen and Sand
Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well Date Depth Elev. (m) April 17, 2019 0.25 mbgs 256.95 m															
	Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	244.40 END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	244.40 END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	244.40 END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	244.40 END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep VVell Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	244.40 END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well	END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well

RECORD OF BOREHOLE: BH19-10

SHEET 1 OF 1

LOCATION: Lat. 43.74607 Long. -79.817117

(See Figure 1)

BORING DATE: April 3, 2019

DATUM: Geodetic

ALE 9	HOD	ŀ	SOIL PROFILE	I 🗀		SAI	MPLE		DYNAMIC PENETRAT RESISTANCE, BLOWS	ON \ 5/0.3m	k, c	C CONDUCTIVITY, m/s	48 1	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH	60 80 nat V. + Q - ● rem V. ⊕ U - ○	10 ⁻⁵ WATE Wp I —	10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ R CONTENT PERCENT W	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		+	ODOLIND CUDEACE	S				<u>ш</u>	20 40	60 80	10	20 30 40	+	
- 0	_	- 1	GROUND SURFACE TOPSOIL (230 mm)	EEE	267.80 0.00	1A	00	-					++	
		- 1	(CL-ML) CLAYEY SILT, some sand,		0.00 267.57 0.23	1A	55	5						
			trace gravel; dark brown to brown, mottled; cohesive, w~PL, firm		267.04	1B	ss					0		
- 1		- 1	(CL) sandy SILTY CLAY, some sand, trace gravel, contains inferred cobbles/boulders; light brown with oxidation staining, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>0.76</td><td>2</td><td>ss</td><td>18</td><td></td><td></td><td></td><td>0</td><td></td><td></td></pl,>		0.76	2	ss	18				0		
0						3	ss	29			01	-	МН	
2														
	er					4	ss	35						
. 3	wer Aug	اء	Augus grinding on informal sabbles at a											
	ount Po	Solid Stem	- Auger grinding on inferred cobbles at a depth of 3 m			5	ss	31						
	CME 75 Track Mount Power Auger	100 mm S				3	50	31						
- 4	CME 7													∑ 2/04/2019
						6A	ss							
- 5			(CL-ML) CLAYEY SILT, some sand, some gravel; grey, (TILL); cohesive, w~PL to w>PL, stiff to very stiff		262.86 4.94	6B	ss	25			0			
						7A	ss	10						
- 6						7B	ss	10						
					261.09	8	ss	22			0			
. 7			END OF BOREHOLE.		6.71									
,		- 1	Notes: 1. Water level measured at 4.1 mbgs upon completion of drilling.											
- 8														
. 9														
- 10														
DE	PTH	150	CALE						GOL) F D	<u> </u>		LO	GGED: JD

RECORD OF BOREHOLE: BH19-11

SHEET 1 OF 1

LOCATION: Lat. 43.74736 Long. -79.816608

(See Figure 1)

BORING DATE: April 3, 2019

DATUM: Geodetic

	Ç	3	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENE RESISTANCE, E	TRATIONS.	ON /0.3m)	HYDRA	AULIC CONE k, cm/s	UCTIVITY,	T	اود	PIEZOMETER
METRES	ODINO METUDO	BORING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENG Cu, kPa 20 40	OTH r	60 8	Q - • U- O	10 W. Wp 1	ATER CONT	10 ⁻⁴ 10 ENT PERCEI → W 1 V	NT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0			GROUND SURFACE		265.00													
			TOPSOIL (230 mm)		0.00 264.77	1A	SS											
1			(CL) sandy SILTY CLAY, trace gravel; brown, mottled brown/light brown; cohesive, wcPL, firm to stiff - Cobbles/boulders inferred from auger grinding at 6 m		0.23	1B	SS	10						Φ	-1		МН	
2		-	(CL) sandy SILTY CLAY, trace gravel; mottled light brown to brown, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>263.60 1.40</td><td>3</td><td>SS</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		263.60 1.40	3	SS	10										
3	ower Auger	me				4	SS	28						0				
4	CME 75 Track Mount Power Auger	100 mm Solid Stem				5	SS	29						0				
5						6	SS	33						0				
6			END OF BOREHOLE.		258.29 6.71	7	ss	30										
7			Notes: 1. Borehole dry upon completion of drilling.															
8																		
9																		
10 DE	рт	HS	CALE						\$ GO								10	OGGED: JD

RECORD OF BOREHOLE: BH19-12

SHEET 1 OF 2 DATUM: Geodetic

LOCATION: Lat. 43.748408 Long. -79.813559

BORING DATE: April 4, 2019

(See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp I - w (m) GROUND SURFACE 266.33 TOPSOIL (380 mm) 0.00 1A SS 265.95 (CL) sandy SILTY CLAY, trace gravel, 0.3 1B ss PP = 25 kPa trace organics; brown with oxidation staining; w<PL, firm (CL) sandy SILTY CLAY, trace gravel; brown with oxidation staining, (TILL); 0.7 SS PP = 20 kP MH 2 10 cohesive, w<PL, stiff to hard +03 ss 9 0 SS 30 PP = 440 kP - Cobbles inferred from auger grinding at SS 5 33 PP = 845 kP G_CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC 262.23 (SM) gravelly SILTY SAND, trace clay nodules, slight plasticity; light brown; non-cohesive, moist, dense to very CME 75 Track Mount Power Auger 6A SS 0 113 МН 6B SS 8 - Cobbles/boulders inferred from auger grinding at 5.3 m - Becoming silty sand, some gravel below a depth of 6.2 m ss 150 0 8 SS 32 9 - Contains layers of fine sand and silt, some clay below depth of 9.2 m 9 SS 47 0 МН 10 SS 42 CONTINUED NEXT PAGE GTA-BHS 001

GOLDER

DEPTH SCALE

RECORD OF BOREHOLE: BH19-12

SHEET 2 OF 2

LOCATION: Lat. 43.748408 Long. -79.813559

(See Figure 1)

BORING DATE: April 4, 2019

DATUM: Geodetic

لِـ	HOH	SOIL PROFILE	1 .		SA	_		DYNAMIC PENETRA RESISTANCE, BLOV	VS/0.3m	k,	cm/s		일두	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	60 80 nat V. + Q - ● rem V. ⊕ U - ○	1	ER CONTENT		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	BO		STR	(m)	ź		BLC	20 40	60 80	Wp I − 10		—— I WI 30 40		
10 -		CONTINUED FROM PREVIOUS PAGE (SM) gravelly SILTY SAND, trace clay nodules, slight plasticity; light brown; non-cohesive, moist, dense to very			10	ss	42			0				
ŀ		dense END OF BOREHOLE.		255 <u>.</u> 81 10.52										
11		Notes: 1. Borehole dry upon completion of drilling.												
		PP= unconfined compressive strength measured with pocket penetrometer in the field.												
12														
13														
14														
15														
16														
17														
18														
.5														
40														
19														
20														
DEF	PTH S	SCALE						GOL	DED				LOC	GGED: JD

RECORD OF BOREHOLE: BH/MW19-13 PROJECT: 19115264-1000/2000 SHEET 1 OF 2 LOCATION: Lat. 43.749709 Long. -79.812182 DATUM: Geodetic BORING DATE: April 4, 2019 (See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH OW. Wp I - w (m) GROUND SURFACE 267.61 TOPSOIL (300 mm) 0.00 ss 267.31 (CL) SILTY CLAY, some sand, trace organics; dark brown; cohesive, w<PL, firm 1B ss 0 (CL) SILTY CLAY and SAND, trace gravel, inferred cobbles/boulders; 0.96 2 SS 17 \circ PP = 320 kPa mottled light brown/brown, (TILL); w<PL, very stiff to hard - Cobbles/boulders inferred from auger ss 19 grinding at 1.7 m

SS 22 PP = 340 kP 5 SS 33 Bentonite MH G:\CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\9115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 263.61 (SM) gravelly SILTY SAND 4.00 cobbles/boulders inferred from auger grinding; light brown; non-cohesive, dry CME 75 Track Mount Power Auger to moist, very dense 6 SS 154 0 н МН 8 - Heavy auger grinding below depth of 5.4 m ss Sand (ML) sandy SILT, with slight plasticity, trace gravel; light brown; moist, very 7.62 SS 138 Screen and Sand 9 <u>∑</u> 17/04/2019 9 SS 137 0 10 SS 146 CONTINUED NEXT PAGE GTA-BHS 001 DEPTH SCALE LOGGED: JD GOLDER 1:50 CHECKED: EM

RECORD OF BOREHOLE: PROJECT: 19115264-1000/2000

BH/MW19-13

SHEET 2 OF 2

DATUM: Geodetic

LOCATION: Lat. 43.749709 Long. -79.812182

(See Figure 1)

BORING DATE: April 4, 2019

SS	ТНОБ	SOIL PROFILE				MPLE		DYNAMIC P RESISTANC 20			30	HYDRAULIO k, c			10 ⁻³	NAL TING	PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STR Cu, kPa	ENGTH	nat V. + rem V. ⊕	Q - •	WATE	R CONTER	NT PERCI	ENT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
10 -		CONTINUED FROM PREVIOUS PAGE (ML) sandy SILT, with slight plasticity, trace gravel; light brown; moist, very dense		257.09		SS 1	146					ФН				мн	Screen and Sand
- 11		END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling.		10.52													
		Water level measured in monitoring well as follows: Date Depth Elev. (m)															
12		April 17, 2019 9.45 mbgs 258.16 m 3. PP= unconfined compressive strength measured with pocket penetrometer in the field.															
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	
DEF		CCALE				j		G	O L [EI	₹					CH	OGGED: JD

	E. P. ASS. 1 (4)	Kumar Jain BER Ma00			PROJECT NAME 3278 Mayfield Road PROJECT LOCATION Town of Caledon
RILL RILL OGG	ING CON	TRACTOR _ HOD _Solid J.J.	Fadroy Enterprise Stem Augers	7	O/19/17 GROUND ELEVATION 270 m HOLE SIZE 150 mm GROUND WATER LEVELS: AT TIME OF DRILLING Dry AT END OF DRILLING Dry AFTER DRILLING
(m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC LOG	MATERIAL DESCRIPTION
	ss 1	3-4-5-7 (9)	MC = 17%	1 7777	TOPSOIL - ~200 mm thick. CLAYEY SILT - some sand, occasional gravel, brown, very moist, hard.
1 -	SS 2	5-6-10 (16)	PP = 400 kPa MC = 17%	634-654 654-654 654-654	
2	SS 3	4-6-10 (16)	PP >450 kPa MC = 15%	647477 647-647-647-6	
-	SS 4	6-10-14 (24)	PP >450 kPa MC = 14%	\$1-517-51 \$1-51-51-51	
3	SS 5	5-10-12 (22)	PP >450 kPa MC = 11%		SAND TILL - trace clay, trace gravel, brown, very moist, compact.
4	SS 6	6-16-20 (36)	PP >450 kPa MC = 13%		-becoming dense below ~4.5 m depth
5		(00)			
6	SS 7	50-0-0/- 0.15	PP >450 kPa MC = 10%		-becoming very dense below ~6.0 m depth Bottom of hole at 6.15 m.

GENERAL BH / TP / WELL 02995A-3278 MAYFIELD.GPJ GINT CANADA.GDT 1/4/02

WELL NUMBER 5

PAGE 1 OF 1

CLIEN	IT Dil	p Kumar Jain				PROJECT NAME 3278 Mayfield	Road		
PROJ	ECT NU	JMBER Ma0	02995a			PROJECT LOCATION Town of C	Caledon		
DRILL DRILL LOGG	ING CO ING MI SED BY	NTRACTOR Solid	Stem Augers CHECK			GROUND ELEVATION 265 m GROUND WATER LEVELS: AT TIME OF DRILLING Dry AT END OF DRILLING 2.85 m AFTER DRILLING 2.85 m / Elevents of the control of the con	/ Elev 262.	15 m	
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC		MATERIAL DESCRIPTION			L DIAGRAM
	SS 1	1-3-3-3	MC = 23%	77. 7 7. 74. 7. 74.	0.60	- ~600 mm thick. yey silt, rootlets, topsoil inclusions, dark	264.40		
1	SS 2		MC = 16%		brown and	d brown, very moist.			Bentonite
2	SS 3		MC = 22%						50 mm dia.
3	SS 4		MC = 19%		Ť				PVC Riser, Filter Sand
4	S 5		MC = 21%						
5	SS 6	3-6-8 (14)	PP = 400 kPa MC = 16%		4.50 SILTY CL	AY - trace gravel, grey, very moist, hard.	260.50		50 mm dia. PVC Slotted Pipe, Filter Sand
6	SS 7	4-6-8 (14)	PP = 250 kPa MC = 16%		-becoming	y very stiff below ~6.0 m depth Bottom of hole at 6.45 m.	258.55		

APPENDIX D

Important Information and Limitations of This Report

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

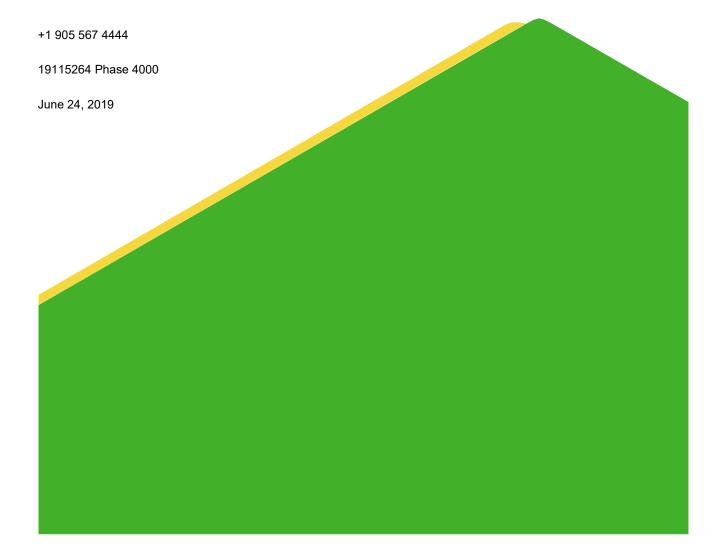
golder.com

REPORT

Preliminary Geotechnical Investigation, Mayfield Kennedy Investment Corp.

Proposed Residential Development, Snell's Hollow Secondary Plan, Caledon, Ontario

Submitted to:


Mayfield Kennedy Investment Corp.

Marco Benigno, President 7050 Weston Road, Suite 230 Woodbridge, On

Submitted by:

Golder Associates Ltd.

6925 Century Avenue, Suite #100, Mississauga, Ontario, L5N 7K2, Canada

Distribution List

1 e-copy: Golder Associates Ltd.

1 e-copy: Mayfield Kennedy Investment Corp.

1 e-copy: Snell's Hollow Developers Group

1 e-copy: Glen Schnarr & Associates Inc.

Table of Contents

1.0	INTR	ODUCTION	1
2.0	SITE	DESCRIPTION AND BACKGROUND	1
3.0	ADJ	ACENT GEOTECHNICAL SITE INFORMATION	2
4.0	REG	IONAL GEOLOGY	2
5.0	INVE	STIGATION PROCEDURE	3
6.0	SUB	SURFACE CONDITIONS	3
	6.1	Topsoil and Reworked/Disturbed Materials	4
	6.2	(CL) sandy Silty Clay (Upper Glacial Till)	4
	6.3	(CL-ML) Clayey Silt (Lower Glacial Till)	5
	6.4	Groundwater Conditions	5
7.0	GEO	TECHNICAL ENGINEERING DISCUSSION	5
	7.1	Site Preparation	6
	7.1.1	Subgrade Preparation	6
	7.1.2	Engineered Fill Requirements	6
	7.2	Installation of Underground Services	7
	7.2.1	Temporary Excavations	7
	7.2.2	Pipe Bedding and Cover	8
	7.2.3	Trench Backfill	8
	7.3	Building Foundations	9
	7.3.1	Below Grade Walls	10
	7.4	Pavement Design within the Proposed Development	10
	7.4.1	Subgrade Drainage	11
8.0	INSP	ECTION AND TESTING	11
9.0	CLO	SING	12
TAE	BLES		
Tab	le 1: Gı	roundwater Level Measurements (Adjacent Properties)	2
		pproximate Topsoil Thickness	
Tab	le 3: Gı	roundwater Level Measurements (MKIC Property)	5

FIGURES

Figure 1: Site and Borehole Location Plan

APPENDICES

APPENDIX A

Record of Boreholes

APPENDIX B

Geotechnical Laboratory Figures

APPENDIX C

Previous Geotechnical Borehole Logs

APPENDIX D

Important Information and Limitations of This Report

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by Mayfield Kennedy Investment Corp. (MKIC) to provide preliminary geotechnical consulting services to support a draft plan approval for a future residential subdivision development located north east of Kennedy Road and Mayfield Road in Caledon, Ontario (the Site), as shown in the Site and Borehole Location Plan, *Figure 1*.

The terms of reference for the geotechnical consulting services are included in Golder's proposal No. P19115264 Rev 1, dated March 8, 2019.

The purpose of the investigation is to obtain information on the general subsurface soil and shallow groundwater conditions at the site by means of a limited number of boreholes and geotechnical laboratory tests. Based on our interpretation of the factual information collected as part of the preliminary geotechnical investigation carried out at this site, a general description of the subsurface conditions across the site is presented herein. The interpreted subsurface conditions and available project details were used to develop preliminary engineering parameters and recommendations on the geotechnical design aspects of the project, including construction considerations which could influence design decisions.

This report provides the results of the preliminary geotechnical investigation and should be read in conjunction with the "Important Information and Limitations of This Report" Appendix D. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within twelve months of the date of the report, Golder should be given an opportunity to confirm that the recommendations in this report are still valid.

2.0 SITE DESCRIPTION AND BACKGROUND

The subject property is located north east of Kennedy Road and Mayfield Road and is part of the Snell's Hollow Secondary Plan, which is a proposed residential development to be located in the southern part of the Town of Caledon. The site is bounded by Kennedy Road to the west, adjacent agricultural properties to the east, south and west, which further connects to Mayfield Road to the south and Heart Lake Road to the west and Highway 410 to the north, as shown in *Figure 1*.

The site has a total area of approximately 4.5 hectares (11.2 acres) of predominantly flat land which slightly slopes towards Highway 410. The site consists of small agricultural land with a small pond, a two-storey residential house with three metal framed sheds, a previously demolished building, remaining concrete foundations, construction vehicles and trailers, with gravel road and localized asphalt/concrete pads. The property has a municipal address of 12141 Kennedy Road, Caledon, Ontario.

Based on our understanding, the Site is to be developed into a residential development with associated underground services and supporting roads. For the purposes of this report, we have also assumed that the future residential houses will be constructed utilizing shallow strip/spread footings, with an interior slab-ongrade, and one-level of underground basement. We have also assumed cuts and/or fills required for site grading purposes will not exceed 2.0 m and that the invert of the site servicing will be no greater than 3.0 m below existing site grades.

3.0 ADJACENT GEOTECHNICAL SITE INFORMATION

Additional geotechnical investigations consisting of seventeen boreholes were also carried out as part of the Snell's Hollow Secondary Plan on the north and southeast adjacent properties (Golder, 2019). Also, previous geotechnical investigation consisting of five boreholes was also carried out by Edward Wong and Associates, 2017 (Wong, 2017), to the property to the southeast.

The following is a summary of subsurface conditions obtained from boreholes located adjacent to the site (BH/MW19-01, BH/MW19-02 and BH/MW19-09) from Golder 2019, and (BH5 and BH6) from Wong, 2017 as shown on the Site and Borehole Location Plan, *Figure 1*.

In general, the subsurface conditions encountered typically consist of a surficial topsoil ranging in thickness from about 250 mm to over 600 mm overlying a disturbed/reworked dark to light brown silty clay layer or a silty sand, which contains various amounts of organics, underlain by glacial till composed of very stiff to hard brown silty clay which extends to depths ranging from about 5.8 m to about 10.6 m below ground surface. A silty sand to sand was generally found below the brown/grey silty clay till layer. These subsurface conditions were found to be similar to the subsurface conditions encountered in the recently completed boreholes located on the MKIC site (discussed in detail in subsequent sections).

The record of borehole logs from these reports are enclosed in *Appendix C*. The approximate locations of the boreholes drilled at these sites are shown on the Site and Borehole Location Plan, *Figure 1*.

The groundwater level measurements in the drilled boreholes are summarized in *Table 1*, below.

Measurements Upon Completion of Measurements in Monitoring Wells Drilling Borehole No. **Approximate Approximate Groundwater Depth Groundwater Depth Date Date** (begs)* (begs)* BH/MW19-01 Dry April 4, 2019 4.0 m (Elev. 262.8 m) April 17, 2019 BH/MW19-02 N/A April 4, 2019 0.3 m (Elev. 257.0 m) April 17, 2019 (Shallow) BH/MW19-02 12.7 m (Elev. 244.5 m) April 4, 2019 6.3 m (Elev. 244.5 m) April 17, 2019

Table 1: Groundwater Level Measurements (Adjacent Properties)

4.0 REGIONAL GEOLOGY

6.6 m (Elev. 250.0 m)

2.85 m (Elev. 262.2 m)

Dry

The surficial geology aspects of the general site area were reviewed from the following publication:

April 4, 2019

October 18, 2017

Dry

6.5 m (Elev. 250.4 m)

N/A

N/A

Chapman, L.J., and Putnam, D.F., 2007, "The Physiography of Southern Ontario"; 4th Edition, Ontario Geological Survey.

(Deep)

BH/MW19-09

BH₅

BH6

April 17, 2019

N/A

N/A

^{*}begs- below existing ground surface.

Physiographic mapping in the area according to the above noted reference indicates that the site lies within the physiographic region of southern Ontario known as the South Slope. The South Slope region slopes gradually downward towards Lake Ontario. The overburden immediately below ground surface within the South Slope generally consists of clayey silt till and silty clay till and at depth consists of alternating deposits of dense lacustrine sands and silts and over consolidated lacustrine clays and clay tills overlying the bedrock.

The subsurface conditions encountered during the investigation are generally consistent with the physiographic mapping.

5.0 INVESTIGATION PROCEDURE

The field work for the preliminary geotechnical investigation was carried out on April 3, 2019, during which time two boreholes (designated as Boreholes BH19-10 and BH19-11) were advanced at the site to depths between about 6.7 m below existing ground surface at the approximate locations shown on the Site and Borehole Location Plan, *Figure 1*, attached.

The boreholes were advanced using a track-mounted drill rig supplied and operated by a specialist drilling contractor, subcontracted to Golder. Standard Penetration Testing (SPT) and sampling was carried out at regular intervals of depth in the boreholes using conventional 35 mm internal diameter split spoon sampling equipment advanced using an automatic hammer, in accordance with ASTM D1586 (99). Groundwater level measurements were recorded immediately following completion of drilling for all boreholes.

The field work for this investigation was directed by members of our engineering staff who located the boreholes in the field, directed the sampling and in-situ testing operation, logged the boreholes and cared for the samples obtained. The samples were identified in the field, placed in appropriate containers, labelled and transported to Golder's Mississauga geotechnical laboratory for further examination and laboratory testing. Index and classification tests, consisting of water content determinations, Atterberg limits and grain size distribution, were carried out on selected soil samples. The results of the geotechnical laboratory tests are included in **Appendix B** and on the Record of Borehole sheets in **Appendix A**.

The borehole locations were determined in the field using a GPS instrument based on UTM coordinates. Geodetic ground surface elevations at the borehole locations were derived from the site grading plan provided by GSAI, "Snell's Hollow Contour Plan, Town of Caledon" dated December 2018. and as such, the elevations and borehole locations given on the Record of Borehole sheets and referred to herein should be considered as approximate.

6.0 SUBSURFACE CONDITIONS

The subsurface soil and shallow groundwater conditions encountered in the boreholes and the results of the field and laboratory testing, are shown on the Record of Boreholes sheets, in **Appendix A**. Method of Soil Classification and Symbols and Terms Used on Records of Boreholes are provided to assist in the interpretation of the borehole logs. It should be noted that the boundaries between the strata have been inferred from drilling observations and non-continuous samples. They generally represent a transition from one soil type to another and should not be inferred to represent an exact plane of geological change. Further, conditions will vary between and beyond the boreholes. The following is a summary of the subsurface conditions of the boreholes advanced during this investigation followed by a more detailed description of the major soil strata and groundwater conditions.

In general, the subsurface conditions encountered at the boreholes advanced at the site typically consist of a surficial topsoil/silty clay layer underlain by native soil deposits of glacial till composed of silty clay to clayey silt containing varying amounts of sand and gravel.

Details of the observations of the groundwater conditions during and upon completion of drilling are included on the Record of Borehole sheets. Shallow groundwater was encountered at depth of 4.1 m below existing ground surface in Borehole BH19-10, and Borehole BH19-11 was dry upon the completion of drilling activities.

6.1 Topsoil and Reworked/Disturbed Materials

Topsoil materials were encountered in all the boreholes and extended to depths ranging from 0.23 m. A summary of topsoil thickness in each of the boreholes is outlined in the table below.

Borehole No.	Approximate Topsoil Thickness (m)										
BH/MW19-10	0.23										
BH/MW19-11	0.23										

Table 2: Approximate Topsoil Thickness

Materials identified as topsoil in this report were classified based on visual and textural evidence as no other testing for organic content or other nutrients was carried out. As such, the ability for these materials to support vegetation has not been assessed.

Reworked/disturbed silty clay material was encountered in both boreholes below the surficial topsoil. Reworked material thickness was observed to be approximately 0.8 m to 1.4 m. The reworked material consisted of silty clay with various amounts of sand and gravel and traces of organics. SPT 'N' values within the reworked material was found to be about 4 blows to 10 blows per 0.3 m of penetration indicating a firm to stiff consistency.

The natural water content of the reworked material was measured at 17 to 22 percent.

The results of grain size distribution tests carried out on one selected sample from this deposit is presented in **Figure B1**. Atterberg limits tests that were carried out on the same sample from this deposit measured a liquid limit value of about 28 and a plastic limit value of about 17; yielding a corresponding plasticity index value of about 11. These results are plotted on the plasticity chart as shown in **Figure B2**.

6.2 (CL) sandy Silty Clay (Upper Glacial Till)

A glacial till deposit consisting of cohesive sandy silty clay was encountered directly underneath the topsoil/reworked till deposit at depths ranging from about 0.8 m to 1.4 m below existing ground surface. This deposit extended to a depth of about 5 m below ground surface in Borehole BH19-10 and Borehole BH19-11 was terminated within this deposit. The till deposit is described to be light brown to brown mottled with oxidation staining, with various amounts of sand and gravel. The till is believed to contain cobbles and/or possible boulders which have been inferred as a result of auger grinding observed in both boreholes.

The SPT 'N' values measured in these till materials range from 10 blows per 0.3 m of penetration to 35 blows per 0.3 m of penetration, indicating that the silty clay till is generally stiff to hard in consistency.

The results of grain size distribution tests carried out on a selected sample from this deposit is presented in **Figure B1**. An Atterberg limit test was carried out on a single sample obtained from this deposit, which measured a liquid limit value of about 23 and a plastic limit value of about 15; yielding a corresponding plasticity index value of about 8. These results are plotted on the plasticity chart as shown in **Figure B2**.

The water content of the selected samples ranged from about 11 percent to 14 percent.

6.3 (CL-ML) Clayey Silt (Lower Glacial Till)

A clayey silt till deposit was encountered directly underneath the sandy silty clay till at Borehole BH19-10 from a depth of 4.9 m below existing ground surface. The borehole was terminated in this layer at a depth of 6.7 m below existing ground surface. The cohesive till deposit contains various amounts of sand and gravel and is grey in colour.

The SPT 'N' values of this till deposit was 10 to 22 blows per 0.3 m of penetration indicating stiff to very stiff consistency.

6.4 Groundwater Conditions

Groundwater level measurements were recorded immediately following drilling procedures. The groundwater level measurements in the drilled boreholes are summarized in *Table 3*, below.

	Measurements Upor Drillin	
Borehole No.	Approximate Groundwater Depth (mbegs)*	Date
BH19-10	4.1	April 3, 2019
BH19-11	dry	April 3, 2019

Table 3: Groundwater Level Measurements (MKIC Property)

It should be noted that the groundwater level in the area is subject to seasonal fluctuations and precipitation events and should be expected to be higher during wet periods of the year.

7.0 GEOTECHNICAL ENGINEERING DISCUSSION

This section of the report provides preliminary geotechnical engineering recommendations on the geotechnical aspects of the proposed development based on our interpretation of the limited borehole information and on our understanding of the project scope and requirements. The information in this portion of the report is provided for the guidance of the design engineers and professionals.

Based on the results of this investigation, the subsurface soil conditions encountered at the site are considered to be generally suitable for the proposed residential development.

As noted above, at the time of this report, proposed design grades (i.e., finished floor slab elevation, pavement subgrade and utility invert levels) were not available for the proposed development. The following engineering recommendations regarding the geotechnical design aspects of the project including underground services, pavements and building foundations should be considered as preliminary only, and should be reviewed when the final design grades and utility invert levels have been finalized.

Where comments are made on construction, they are provided only in order to highlight aspects of construction which could affect the design of the project. Contractors bidding on or undertaking any work at the site should

^{*}mbegs- metres below existing ground surface.

examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, equipment capabilities, costs, sequencing and the like.

This report addresses only the geotechnical (physical) aspects of the subsurface conditions at this site. The geo-environmental (chemical) aspects, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, are outside of the terms of reference for this report.

7.1 Site Preparation

7.1.1 Subgrade Preparation

Based on the existing site topography, it is assumed that only minor cut and/or fill site grading operations of less than 2.0 m will be required to establish subgrade levels and permit the construction of the proposed residential development. However, in the area of the existing residential dwellings, fills of up to 2.5 m may be required once the former underground structures/basement are removed during the redevelopment.

Any filling carried out at the site in conjunction with regrading (with the exception of future green spaces) should be carried out as engineered fill. Recommendations for the placement of engineered fill are outlined in **Section 7.1.2** of this report, titled "Engineered Fill Requirements".

In general, the existing site vegetation, surficial topsoil/organics, surficial asphalt/concrete or any other near-surface soils containing significant amounts of organic matter or construction debris are not considered to be suitable for the subgrade support of engineered fill, building foundations, floor slabs, or other settlement sensitive structures. These materials should be completely stripped prior to placing any engineered fill or construction of foundations or interior or exterior slab-on-grade(s), following appropriate environmental procedures. Furthermore, excessively wet soils should be dried before reuse as engineered fill.

Furthermore; excessively-wet soils should be suitably dried before reuse as engineered fill.

The thicknesses of the concrete slabs within the footprint of the existing buildings and the condition of any fill underneath the slab or around the existing residential houses, was not assessed during this investigation. Therefore, when the granular fill and the underlying subgrade material is encountered underneath the existing structures or concrete slabs during construction activities, the acceptance of such fill as suitable for reuse on the site should be assessed by a qualified geotechnical engineer.

Former structures (existing buildings, sewers, etc.) located on site, will have to be removed or decommissioned. Remedial actions, such as removal of existing foundations or re-compaction of backfill will be required, as directed by the geotechnical engineer and the recommendations contained in the report.

Following the stripping of the surficial topsoil and soils containing significant amounts of organics and/or soft/disturbed surficial soils, the exposed subgrade should be heavily proof-rolled with suitable equipment, in conjunction with inspection by qualified geotechnical personnel to confirm that the exposed soils are competent and have been adequately stripped of ponded water and all disturbed, loosened, softened, organic and other deleterious material. Remedial work (i.e., further subexcavation and replacement) should be carried out on poorly-performing areas identified during the proof-rolling activities, as directed by Golder.

7.1.2 Engineered Fill Requirements

As described above, the anticipated site grading activities may include both cutting and raising (filling) the original grade to meet the final design site grades. At the time of this report, the design cut and fill depths were not available for review. As such, for the purposes of this report, it has been assumed that cuts will not exceed 2 m and grade raises will not exceed more than 2 m.

In general, the existing native material is considered to be acceptable for reuse as engineered fill. Based on the laboratory test results, the water content of soils present at the site are considered to be generally near or above their optimum water contents for compaction, and therefore may require minor drying prior to placement, in general.

It should be noted that the native materials at the site are silty in nature, and as such are susceptible to over-wetting and subsequent freezing during inclement weather. Therefore, it is recommended that site grading activities not be carried out during late fall, winter, early spring seasons or any periods of inclement weather conditions. All oversized cobbles (i.e., greater than 150 mm in size) and boulders, if present, should be removed from excavated material that will be used as engineered fill material.

If imported material is required for the engineered fill process, the material that is proposed for use as engineered fill should be approved by the geotechnical engineer at its source, prior to importing the material to the site. Suitable soils, free of topsoil, organic matter or other deleterious materials can be used as engineered fill provided that the water content of the soil at the time of placement does not vary by more than 2 percent above or below its optimum water content for compaction. Otherwise, the soils may require treatment (i.e., drying or wetting) prior to placement.

Following the inspection and approval of the subgrade as described previously in this report, engineered fill materials should be placed in maximum 300 mm-thick loose lifts and uniformly compacted to 98 percent of the Standard Proctor maximum dry density (SPMDD). Filling should continue until the design elevations are achieved.

Full-time monitoring and in-situ density testing should be carried out by Golder during placement of engineered fill

The final surface of the engineered fill should be protected as necessary from construction traffic and should be sloped to provide positive drainage for surface water during the construction period. If the engineered fill materials will be left exposed (i.e. uncovered) during periods of freezing weather, additional soil cover should be placed above final subgrade to provide some level of frost protection. Prior to placing the granular subbase and/or base courses within pavement areas, the surface of the engineered fill/subgrade should be inspected by Golder.

7.2 Installation of Underground Services

7.2.1 Temporary Excavations

Details of the underground servicing for the proposed development are unknown at the time of this investigation; as such, for the purpose of this report, the maximum depth of the underground services was assumed to be about 3 m below the existing ground surface. Once detailed design is completed, review of the underground services should be completed by this office for compliance with the recommendations contained herein.

The founding soils are anticipated to generally consist of the native sandy silty clay or engineered fill. These materials are considered to be suitable for supporting the underground services provided that the integrity of the base of the trench excavations is maintained during construction. Where softened or disturbed native soils or other deleterious materials are encountered at the base of excavations for settlement-sensitive services, these materials should be subexcavated and replaced with compacted fills approved by the geotechnical engineer.

Care should be taken to direct surface water away from any open excavations and all temporary excavations should be carried out in accordance with the Occupational Health and Safety Act (OHSA) and Regulations for Construction Projects.

The groundwater level in the open boreholes, upon completion of drilling, was measured to be at a depth 4 m below existing ground surface. Whereas, the groundwater level in the monitoring wells within close proximity, was measured to be at depths ranging from 0.4 m to 6.3 m below existing ground surface, (Elev. 245 m to Elev. 263 m).

In general, groundwater in the excavations within the native deposits, are likely to be handled by collection via properly constructed and filtered sumps, located within the excavations, and then pumping and discharging the water to a suitable discharge point. However, should excavations deeper than 3-4m below existing ground surface be required, the following recommendations will need to be review and revised to determine if some form of active dewatering, such as well points, may have to be implemented.

Excavations for the site servicing would generally extend through the native sandy silty clay deposit. Conventional excavation equipment should be suitable to excavate through these materials.

The stiff to hard native silt clay till soils are classified as a "Type 2" soils under the OH&S Act. As such, all conventional temporary trench excavations should consist of open cuts with side slopes not steeper than 1 horizontal to 1 vertical in the overburden soils to within 1.2 m of the base of the excavation and then may be made vertical to the base. Where engineered fill (based on silty clay material) is used or the native silty clay exhibits signs of water seepage, the soil is classified as a "Type 3", as such all conventional temporary trench excavations should consist of gradient of 1 horizontal to 1 vertical.

Where the side slopes of excavations are required to be steepened to limit the extent of the excavation, then some form of trench support may be required. Some trench excavations could be carried out using a vertically-excavated, unsupported excavation (using a properly-engineered trench liner box for protection, certified by an experienced engineer); or by a supported (sheeted) excavation if conditions warrant so; such as in wet areas and/or in close proximity to adjacent underground services

7.2.2 Pipe Bedding and Cover

The bedding for the sewers and watermains should be compatible with the size, type and class of pipe and the surrounding subsoil and the requirements of the Town of Caledon. If granular bedding is deemed to be acceptable, then Ontario Provincial Standard Specifications (OPSS) Granular A should be used from at least 150 mm below invert of the pipe to the springline. Clear stone should not be used as bedding material. From springline to 300 mm above the obvert of the pipe, sand cover could be used. All bedding and cover material should be placed in 150 mm loose lifts and uniformly compacted to at least 100 percent of SPMDD. Where variable fill materials, softened or disturbed native soils or other deleterious materials are encountered at the base of excavations for settlement-sensitive services, these materials should be subexcavated and replaced with compacted fills approved by the geotechnical engineer.

7.2.3 Trench Backfill

The excavated materials from the site will consist predominantly of silty clay till materials. Based on the measured water contents, in general, the native materials encountered at the site are estimated to be near or below their optimum water contents for compaction, and therefore, will probably require only minor wetting prior to placement.

Care should be taken to maintain the water content of the soils close to/at the optimum water content for compaction during the construction operations, as difficulties with compaction and/or backfill performance would be anticipated with fine-grained soils where the water content is significantly above the optimum for compaction purposes. Soils that contain significant quantities of organics or debris are also not suitable for use as trench backfill within settlement-sensitive areas. In addition, all boulders and cobbles greater than 150 mm in size should be removed from the trench backfill materials. If there is a shortage of suitable in-situ material, an approved imported material such as Ontario Provincial Standard Specifications Select Subgrade Material should

be used for trench backfill. Again, as noted above, the trench backfill materials are silty in nature and are very susceptible to wetting/freezing temperatures. Backfilling trenches during cold or wet weather is not recommended.

Trench backfill should be placed in maximum 300 mm loose lift thickness and uniformly compacted to at least 98 percent of the SPMDD of the material. Soil that is frozen should not be used as backfill.

Normal post-construction settlement of the compacted trench backfill should be anticipated with the majority of such settlement taking place within about 12 months following the completion of trench backfilling operations. If the trench backfill operations are completed during the winter months, post-construction settlements may increase beyond typical anticipated values. These settlements will be reflected at the ground surface. If the asphalt binder course is laid shortly following the completion of the trench backfilling operations, any settlement that may be reflected by subsidence of the surface of the binder asphalt should be compensated for by placing an additional thickness of binder asphalt or by padding. If possible, the surface course asphalt should not be placed over the binder course asphalt for about 12 months. Where scheduling requires that the surface course be placed over the binder course asphalt before this period, trench backfill settlement would be reflected by subsidence and possible cracking of the finished pavement surface in these areas which, depending upon the extent and magnitude, may require local repairs.

7.3 Building Foundations

As previously indicated, the existing site vegetation, surficial topsoil/organics and other near-surface soils containing significant amounts of organic matter are not considered to be suitable for the subgrade support of engineered fill, building foundations, floor slabs, or other settlement sensitive structures. These materials should be completely stripped prior to placing any engineered fill or construction of foundations or interior or exterior slab-on-grades.

Based on the subsurface conditions encountered in the boreholes, strip and spread footings that may be used, provided that the footings are founded on the native sandy silty clay deposit or on engineered fill (based on existing site soils) placed in accordance with the recommendation outlined in **Section 7.1**, and maintained a minimum depth of soil embedment below finished adjacent ground surface and top of slab of 1.2 m.

For such strip and spread footings, a factored geotechnical resistance at Ultimate Limit States (ULS) of 225 kPa and a geotechnical reaction at Serviceability Limit States (SLS) of 150 kPa may be assumed for design purposes, provided that the strip footings dimensions of 0.45 m in width and 10 m in length or spread footings have a minimum width of 0.60 m and a maximum width of 1.0 m.

Where spread footings are constructed at different elevations, the difference in elevation between the individual footings should not be greater than one half the clear distance 650 mm between the footings. In addition, the lower footings should be constructed first so that if it is necessary to construct the lower footings at a greater depth than anticipated, the elevation of the upper footings can be adjusted accordingly. Stepped strip footings should be constructed in accordance with the Ontario Building Code (2012), Section 9.15.3.9.

The maximum total and differential settlements are expected to be less than 25 mm and 20 mm; respectively, for footings designed, constructed and inspected as outlined above.

All exterior footings, and interior footings in unheated areas, should be founded at a minimum depth of 1.2 m below finished grade level in order to provide adequate protection against frost penetration.

The native soils are susceptible to disturbance from construction activity, especially during wet or freezing weather. Care should be taken to preserve the integrity of the materials as bearing strata. It is essential that the founding surface for the footings be inspected by qualified geotechnical personnel prior to placing concrete. If the concrete for the footings cannot be placed immediately after excavation and inspection of the subgrade,

it is recommended that a working mat of lean concrete be placed in the excavation to protect the integrity of the bearing stratum.

Resistance to lateral forces/sliding resistance between the concrete footings and the subgrade should be calculated in accordance with Section 6.7.5 of the CHBDC. The unfactored coefficient of friction, $\tan \delta$, for the interface between the cast-in-place concrete footing and the properly-prepared subgrade can be assumed to be 0.35.

7.3.1 Below Grade Walls

The exterior perimeter of all housing basement walls should be backfilled with an imported free draining, non-frost susceptible granular material approved by a geotechnical engineer, carefully placed and compacted in 200 mm thick loose lifts. The design of the foundation walls for the below-grade walls should take into account the horizontal soil loads as well as surcharge loads that may occur during or after construction and should be designed using a lateral (at-rest) earth pressure coefficient of 0.5 and a unit weight of backfill of 20 kN/m3.

The wall backfill layers should be compacted to at least 95 per cent of the materials' standard Proctor maximum dry density. Light compaction equipment should be used immediately adjacent to the foundation wall, otherwise compaction stresses on the wall may be greater than that imposed by the backfill material. With the exception of the driveway area, the upper 0.3 m of backfill should consist of clayey material to provide a low permeability cap and the exterior grade should also be shaped to slope away from the building.

Provided that the excavations adjacent to foundation/basement walls are backfilled with free-draining granular materials and a drainage collection system is provided around the perimeter of the building, the design of belowgrade walls does not need to take into account hydrostatic forces acting on the walls. However, it is recommended that the exterior of the below-grade walls be damp-proofed.

7.4 Pavement Design within the Proposed Development

Following site grading operations, as noted previously, the proposed pavement subgrade will generally consist of either re-compacted engineered fill or native silty clay till. These materials are considered to be frost susceptible, and as such, the pavement design provided in *Table 4*, below has taken this condition into consideration.

Based on the proposed pavement usage, (i.e. residential development type traffic and loads/frequencies) frost susceptibility and strength of the subgrade soils, the following pavement component given are recommended for the proposed development of access roads and streets, however the Town of Caledon/Region of Peel design standards should be followed:

Minimum Thickness of Pavement Components (mm) 9.5 m Neighbourhood Local Road **Material** Collector (7.9m Road Pavement (8.9 m Road Pavement Width) Width) HL 3 Surface Course Asphaltic Concrete 40 40 (OPSS 1150) 90 **HL 8 Binder Course** 65 Granular A Base 150 150

Table 4: Pavement Design

		Minimum Thickness of Pa	avement Components (mm)
Material	rial Local Road (7.9m Road Pavemer Width)		9.5 m Neighbourhood Collector (8.9 m Road Pavement Width)
Granular Materials Granula (OPSS.MUNI 1010) Subbas	r B Type II e	350	500
Total Pavement Thickness (mm	1	605	780
		Prepared and Approved Su	bgrade

As part of the subgrade preparation, proposed access roads should be stripped of topsoil and other obviously unsuitable fill or organic materials. Fill required to raise the grades to design elevations should conform to the engineered fill requirements outlined previously in the report. Soft or spongy trench backfill areas should be sub-excavated and properly replaced with suitable approved backfill compacted to 98 percent SPMDD. Prior to placing pavement subbase and/or base materials, the exposed soil subgrade should be heavily proof-rolled in conjunction with an inspection by Golder. The granular subbase and base materials should be placed in loose layers no thicker than 200 mm and uniformly compacted to 100 percent of their SPMDD. The binder course and surface course asphalt materials should be compacted to minimum 92.0 percent of their Marshall Maximum Relative Density according to OPSS 310, as measured in the field using a nuclear density gauge.

Where new pavement abuts existing pavement (e.g. at the development limits), proper longitudinal lap joints should be constructed to key the new asphalt into the existing asphalt surface. The existing asphalt edges should be provided with a proper sawcut edge prior to keying-in the new asphalt. It should be ensured that any undermining or broken edges resulting from the construction activities are removed by the sawcut.

It should be noted that in some cases, even though the compaction requirements have been met, the subgrade strength may not be adequate to support heavy construction loading especially during wet weather or where backfill materials wet of optimum have been placed. In this regard, the design subbase thickness may not be sufficient for a construction haul road and additional subbase (in the order of 450 mm) may be required. In any event, the subgrade should be proofrolled and inspected by Golder prior to placing the subbase and any additional material, as required, consistent with the prevailing weather conditions and anticipated use by construction traffic.

7.4.1 Subgrade Drainage

In order to preserve the integrity of the pavement, continuous subdrains should be placed at the concrete curb lines along both sides of the proposed streets. The invert of the subdrains should be at least 300 mm below the bottom of the Granular "B" subbase and should be sloped to drain to catchbasins. The subdrains should consist of perforated pipe wrapped in a suitable geotextile and surrounded on all sides with a minimum thickness of 150 mm of OPSS.PROV 1002 Concrete Fine Aggregate (i.e. concrete sand).

8.0 SEISMIC SITE CLASSIFICATION

Seismic hazard is defined in the 2012 Ontario Building Code (OBC) by uniform hazard spectra (UHS) at spectral coordinates of 0.2 second, 0.5 second, 1.0 second and 2.0 seconds and a probability of exceedance of 2% in 50 years. The OBC method uses a site classification system defined by the average soil/bedrock properties

(e.g. shear wave velocity, Standard Penetration Test (SPT) resistance, undrained soil shear strength, etc.) in the 30 m below the foundation level. There are six site classes from A to F, decreasing in ground stiffness from A, hard rock, to E, soft soil; with site class F used to denote problematic soils (e.g. sites underlain by thick peat deposits and/or liquefiable soils). The site class is then used to obtain acceleration and velocity-based site coefficients F_a and F_v ; respectively, used to modify the UHS to account for the effects of site-specific soil conditions in design.

Based on the results of the preliminary geotechnical investigation and assuming soils below the maximum depth investigated exhibit similar properties / strengths, a **Site Class D** is estimated for planning purposes. The Site Class will need to be verified, and adjusted as necessary, during detail design.

9.0 INSPECTION AND TESTING

During construction, full-time observation should be carried out during engineered fill and site servicing backfill placement, and sufficient foundation inspections, subgrade inspections and in-situ materials testing should be carried out to confirm that the conditions exposed are consistent with those encountered in the boreholes and to monitor conformance to the pertinent project specifications.

10.0 CLOSING

We trust that this preliminary report provides enough preliminary geotechnical engineering information to proceed with the detailed design of the proposed development. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact this office.

Signature Page

Golder Associates Ltd.

Erti Mansaku, P.Eng. Geotechnical Engineer gu

Jeff Tolton, C.E.T.

Associate, Senior Geotechnical Technologist

JD/EM/JET/sm

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/102461/technical work/phase 4000 - kenndy mayfield investement/19115264 (4000) draft georeport mayfield kennedy.docx

Approximate Borehole Location

Approximate Previous and Adjacent Properties Geotechnical Borehole (Edward Wong 2017, Golder 2019)

Watercourse

Waterbody

:: Wetland

Site Boundary

Mayfield Investment Corp. Site Boundary

CLIENT
MAYFIELD KENNEDY INVESTMENT CORP.

CONSULTANT

YYYY-MM-DD	2019-04-16	TIT
DESIGNED	MM	s
PREPARED	MM	
REVIEWED	EM	PR
APPROVED	-	19

REFERENCE(S)

1. IMAGERY: ESRI, HERE, DELORME, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

© 2019 MICROSOFT CORPORATION © 2019 DIGITALGLOBE ©CNES (2019) DISTRIBUTION

AIRBUS DS

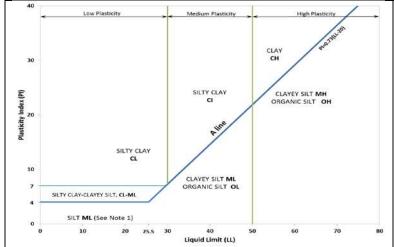
2. BASE DATA: LIO MNRF 2019

3. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

PROJECT
PRELIMINARY GEOTECHNICAL INVESTIGATION, PROPOSED RESIDENTIAL
DEVELOPMENT, MAYFIELD KENNEDY INVESTMENT CORP., CALEDON, ON

SITE AND BOREHOLE LOCATION PLAN

_				
	PROJECT NO.	CONTROL	REV.	FIGURE
	19115264	4000	-	1


APPENDIX A

Method of Soil Classification
Abbreviations and Terms used on
Record of Borehole
List of Symbols
Record of Boreholes

METHOD OF SOIL CLASSIFICATION

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Type of S	Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D_1)^2}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name			
		of is nm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	:3		GP	GRAVEL			
(ss)	,5 mm)	LS ass tior 75	fines by mass)	Well Graded		≥4		1 to 3	1		GW	GRAVEL			
ру ша	SOILS an 0.07	GRAV 50% by varse fr er thar	Gravels with >12%	Below A Line			n/a				GM	SILTY GRAVEL			
3ANIC t ≤30%	AINED rger th	(>; cc larg	fines by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL			
INORGANIC (Organic Content ≤30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or ≥	:3	±30 /0	SP	SAND			
ganic (COARs by ma	SANDS % by mass se fraction than 4.75	fines by mass)	Well Graded		≥6		1 to 3	3		SW	SAND			
Ō.	%09<)	음 플 눼	Sands with >12%	Below A Line			n/a				SM	SILTY SAND			
		Sma (P	fines by mass)	Above A Line			n/a				sc	CLAYEY SAND			
Organic	Soil			Field Indicators		itors		Organic	USCS Group	Primary					
or Inorganic	Group	Type of Soil		Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Content	Symbol	Name			
		- plot	L plot		L plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT
(ss	75 mm	75 mm	and Ll line sity ow)	city low)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT		
by ma	OILS ian 0.0	SILTS (Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)			Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT			
INORGANIC content ≤30%	VED So	VED S	VED S	VED S	n-Plast be	Liquid Limit	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT
INORC	FINE-GRAINED SOILS mass is smaller than 0	oN)		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT			
ganic ((Organic Content ≤30% by mass) FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm) CLAYS SILTS SILTS and LL plot hot below A-Line on Plasticity Chart below) Chart below) CHart below)	olot e on	nart	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY			
Ö.		CLAYS (PI and LL plot above A-Line on Plasticity Chart below)		Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY			
				Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY			
Z S S :	ss)	Peat and mine mixtures								30% to 75%		SILTY PEAT, SANDY PEAT			
HIGHLY ORGANIC SOILS	Peat and mineral soil mixtures Predominantly peat, may contain some mineral soil, fibrous or amorphous peat								75% to 100%	PT	PEAT				

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (qt), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
TO	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

w	water content
PL , w _p	plastic limit
LL , W _L	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
M	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

SPT 'N' (blows/0.3m) ¹
0 to 4
4 to 10
10 to 30
30 to 50
>50

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS

Consistency

Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

- SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure
- SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
_	3.1416	w w _l or LL	water content liquid limit
π In v			·
ln x	natural logarithm of x x or log x, logarithm of x to base 10	w _p or PL I _p or PI	plastic limit plasticity index = $(w_l - w_p)$
log ₁₀	acceleration due to gravity	NP	non-plastic
g t	time	Ws	shrinkage limit
	une	l _L	liquidity index = $(w - w_p) / I_p$
		Ic	consistency index = $(w - w_p) / I_p$
		e _{max}	void ratio in loosest state
		e _{min}	void ratio in densest state
		I _D	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN	_	(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
$\overset{\cdot}{\Delta}$	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
ε	linear strain	q	rate of flow
εν	volumetric strain	v	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress	,	
σ1, σ2, σ3	principal stress (major, intermediate,		
, - 2, - 0	minor)	(c)	Consolidation (one-dimensional)
	,	Cc	compression index
⊙ oct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_r	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
Ε	modulus of deformation	C_{α}	secondary compression index
G	shear modulus of deformation	m_{v}	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		T _v	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ′ _p	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρα(γα)	dry density (dry unit weight)	(d)	Shear Strength
ρα(γα) ρw(γw)	density (unit weight) of water	τ _p , τ _r	peak and residual shear strength
ρω(γω) ρs(γs)	density (unit weight) of solid particles		effective angle of internal friction
γ'	unit weight of submerged soil	φ΄ δ	angle of interface friction
1	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = $tan \delta$
D_R	relative density (specific gravity) of solid	C'	effective cohesion
- 11	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength (ϕ = 0 analysis)
е	void ratio	p	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
	~	q _u	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	e $\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)	_	(sompressive on ongul)/2
	3 ,,		

PROJECT: 19115264-4000

1:50

RECORD OF BOREHOLE: BH19-10

SHEET 1 OF 1

CHECKED: EM

LOCATION: Lat. 43.74607 Long. -79.817117

(See Figure 1)

BORING DATE: April 3, 2019

DATUM: Geodetic

,	C E		SOIL PROFILE			SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	 	PIEZOMETER
METRES	RORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 \ SHEAR STRENGTH nat V. + Q 4 \ Cu, kPa rem V. ⊕ U - 0 \ 20 40 60 80	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0			GROUND SURFACE TOPSOIL (230 mm)	222	267 <u>.</u> 80 0.00							
			(CL-ML) CLAYEY SILT, some sand, trace gravel; dark brown to brown, mottled; cohesive, w~PL, firm		267.04	1A 1B	ss ss	5		0		
1			(CL) sandy SILTY CLAY, some sand, trace gravel, contains inferred cobbles/boulders; light brown with oxidation staining, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>0.76</td><td>2</td><td>ss</td><td>18</td><td></td><td>Φ</td><td></td><td></td></pl,>		0.76	2	ss	18		Φ		
2						3	SS	29		O 1	МН	
3	ower Auger	tem	 Auger grinding on inferred cobbles at a 			4	SS	35				
	CME 75 Track Mount Power Auger	100 mm Solid St	depth of 3 m			5	SS	31				
4						6A	SS					2/04/2019
5		-	(CL-ML) CLAYEY SILT, some sand, some gravel; grey, (TILL); cohesive, w~PL to w>PL, stiff to very stiff		262.86 4.94	6B 7A	ss ss	25				
6							SS	10		0		
			END OF BOREHOLE.		261.09 6.71						Ш	
7			Notes: 1. Water level measured at 4.1 mbgs upon completion of drilling.									
8												
9												
10												

PROJECT: 19115264-4000

RECORD OF BOREHOLE: BH19-11

SHEET 1 OF 1

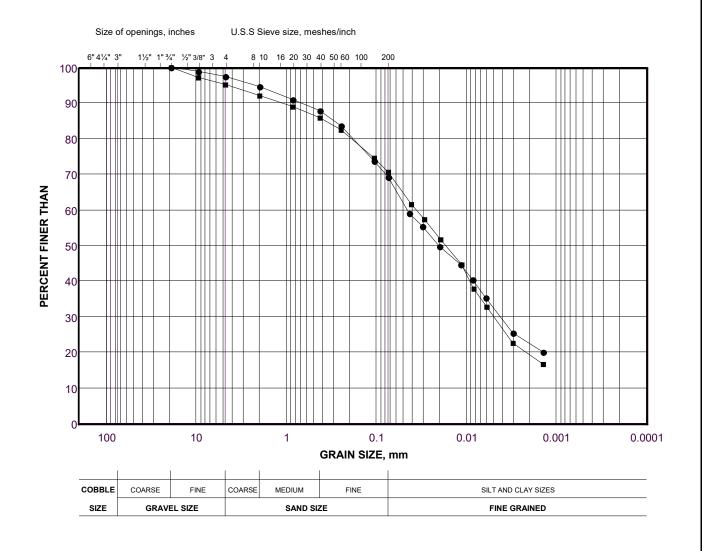
LOCATION: Lat. 43.74736 Long. -79.816608

(See Figure 1)

BORING DATE: April 3, 2019

DATUM: Geodetic

E	QQP	SOIL PROFILE			SA	MPLES	DYNAMI RESIST.	IC PENETRAT ANCE, BLOW	TON S/0.3m	\	HYDRAUL k,	C CONDU	CTIVITY,	Į "Į	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 SHEAR Cu, kPa	STRENGTH	60 80 nat V. + rem V. ⊕	Q - • U- O			10 ⁻⁴ 10 ⁻³ NT PERCENT	B. TEI	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		265,00								Ī			
		TOPSOIL (230 mm)		0.00 264.77 0.23	1A	SS 10									
1		(CL) sandy SILTY CLAY, trace gravel; brown, mottled brown/light brown; cohesive, w <pl, -="" 6="" at="" auger="" boulders="" cobbles="" firm="" from="" grinding="" inferred="" m<="" stiff="" td="" to=""><td></td><td></td><td>1B</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Φ</td><td>1</td><td>мн</td><td></td></pl,>			1B							Φ	1	мн	
		(CL) sandy SILTY CLAY, trace gravel; mottled light brown to brown, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>263.60 1.40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		263.60 1.40											
2					3	SS 10									
	Auger				4	SS 28									
3	5 Track Mount Power A 100 mm Solid Stem				5	SS 29					0				
- 4	CME 75 Track Mount Power 100 mm Solid Stem														
5					6	SS 33					C				
6				259 20	7	SS 30									
7		END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling.	<i>\$\times</i>	258.29 6.71											
. 8															
9															
10															
DE	PTH S	SCALE					2	GOL	DEB	•				LC	DGGED: JD

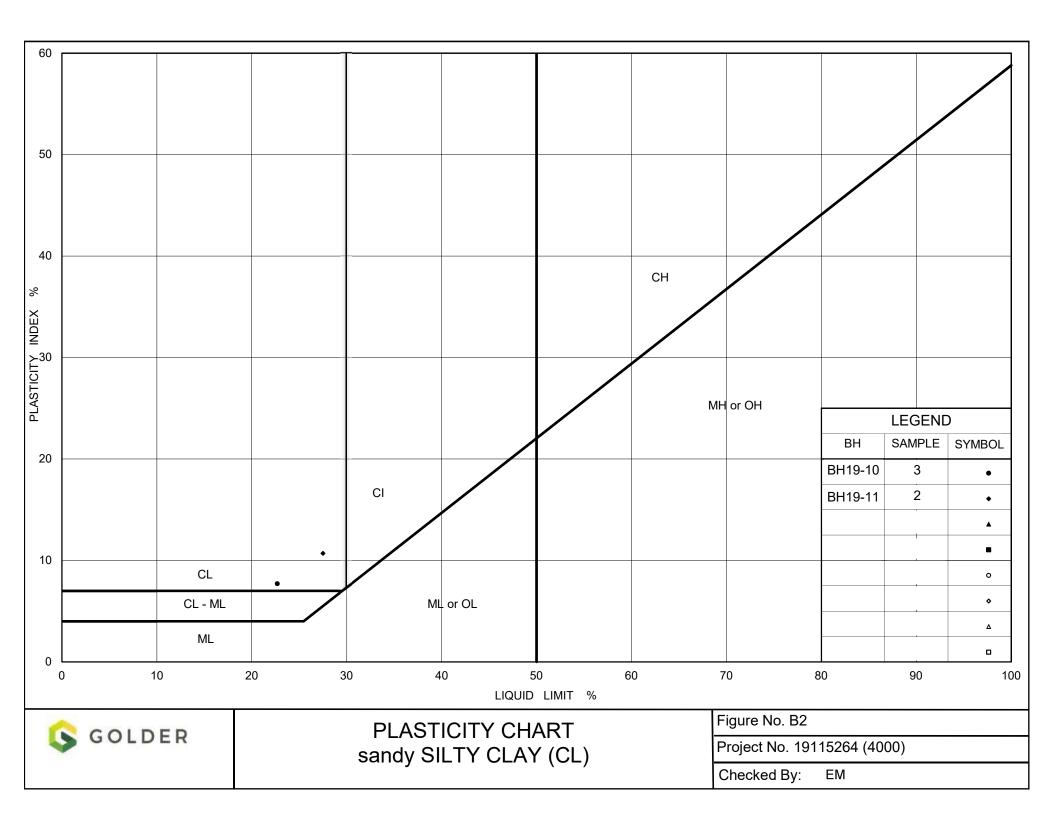

APPENDIX B

Geotechnical Laboratory Figures

GRAIN SIZE DISTRIBUTION

sandy SILTY CLAY (CL)

FIGURE B1



LEGEND

SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH19-11	2	0.76 - 1.37
•	BH19-10	3	1.52 - 2.13

Project Number: 19115264

(4000) Checked By:EM Golder Associates Date: 12-Jun-19

APPENDIX C

Previous Geotechnical Borehole Logs

RECORD OF BOREHOLE: BH/MW19-01 PROJECT: 19115264-3000

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: Lat. 43.747371 Long. -79.818742

(See Figure 1)

BORING DATE: April 4, 2019

<u></u>	HOH	SOIL PROFILE	1.		SAM	PLES	DYNAMIC PENE RESISTANCE, I	ETRATION BLOWS/0.3m	(HYDRAUL k,	C CONDU cm/s	ICTIVITY,	T	ଅ PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 41 SHEAR STREN Cu, kPa	GTH nat V. + rem V. €	80 - Q - • - U - O	10 ⁻⁵ WATE Wp I — 10		10 ⁻⁴ 10 ⁻¹ NT PERCEN' W W 30 40	ı de ADİİÇ	OR STANDPIPE INSTALLATION
0		GROUND SURFACE TOPSOIL (250 mm)	E 2 2	266.80			20 4	0 00		10	20	30 40		
		(CL) SILTY CLAY, trace sand, trace		266,55 0.25	1A S	10								
		gravel, trace organics; brown; cohesive, w~PL, stiff		266.10 0.70	1B S	SS								
1		(CL) sandy SILTY CLAY, trace gravel; light brown with oxidation staining, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>0.70</td><td>2 8</td><td>SS 16</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>M</td><td>н</td></pl,>		0.70	2 8	SS 16				0			M	н
		- Some to trace sand below depth of 1.6 m			3 8	SS 21								
2														Bentonite
					4 8	SS 23								
3	eL				5 8	SS 32								
4	CME 75 Track Mount Power Auger 100 mm Solid Stem													17/04/2019
	IE 75 Track I 100 mm													Sand
5	อี	- Silty sand layers/seams encountered below depth of 4.9 m			6 8	SS 21								
		(CI/CL-ML) SILTY CLAY to CLAYEY		261.01 5.79										
6		SILT, trace to some sand, trace gravel, with inferred cobbles; grey, (TILL); cohesive, w~PL to w>PL, stiff to hard												Screen and Sand
					7 8	SS 12								
7														
					\dashv									
8					8 8	SS 48					,			Bentonite
-	\dashv	- Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m END OF BOREHOLE.		258.57 8.23	+	+								
		Notes: 1. Borehole dry upon completion of												
9		drilling. 2. Water level measured in monitoring												
		well as follows: Date Depth Elev. (m)												
10		April 17, 2019 3.95 mbgs 262.85 m												
DE	тн 9	CALE					S GO							LOGGED: JD

RECORD OF BOREHOLE: BH/MW19-02 PROJECT: 19115264-1000/2000 SHEET 1 OF 2 LOCATION: Lat. 43.747664 Long. -79.814643 DATUM: Geodetic BORING DATE: April 2, 2019 (See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp I - w (m) GROUND SURFACE 257.20 TOPSOIL (610 mm) SS 17/0 (CL)SILTY CLAY, some to trace sand, trace gravel, trace organics; brown/dark brown with oxidation staining; w>PL, firm 256.35 0.85 SS 59. (CL) sandy SILTY CLAY, trace gravel; light brown with oxidation staining, (TILL); cohesive, w~PL, firm to stiff 2B SS 0 - Silt/sand seams/layers below 1.7 m 3 ss 8 2 SS 13 and Sand 3 5 SS 9 G_CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC (CL-ML) CLAYEY SILT, some to trace sand, trace gravel; grey, (TILL); cohesive, w>PL, very stiff to stiff to hard CME 75 Track Mount Power Auger SS 15 0 6 ∑ 17/04/2019 ss 13 0 8 SS 17 9 - Becoming sandy at 9.1 m 9 SS 57 - Auger grinding at a depth of 9.5 m to CONTINUED NEXT PAGE DEPTH SCALE LOGGED: JD

GOLDER

GTA-BHS 001

RECORD OF BOREHOLE: PROJECT: 19115264-1000/2000 LOCATION: Lat. 43.747664 Long. -79.814643

BH/MW19-02

SHEET 2 OF 2

DATUM: Geodetic

(See Figure 1)

BORING DATE: April 2, 2019

HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0W -ı wı Wp I (m) --- CONTINUED FROM PREVIOUS PAGE --10 217:06 (SW-SM) SAND to SILTY SAND, medium grained, contains inferred cobbles/boulders; light brown; non-cohesive, wet, compact to very Bentonite TI 11 CME 75 Track Mount Power Auger 10 SS 26 Sand Screen and Sand - Cobbles/boulders inferred from auger grinding at a depth of 12 m 11 SS 52 244.40 2/04/2019 END OF BOREHOLE. 13 Notes: 1. Water level measured in monitoring well as follows:
 Deep Well Date
 Depth G. CLIENTSICLEARBROOKDEVELOPMENTSICALEDONN2_GINT119115264-SNELLSHOLLOW BH LOGS.GPJ_GAL-MIS.GDT_17/6/19_ 14 Shallow Well Date Depth Elev. (m)
April 17, 2019 0.25 mbgs 256.95 m 15 16 17 18 19 20

GOLDER

GTA-BHS 001

PROJECT: 19115264-1000/2000

RECORD OF BOREHOLE: BH/MW19-09

SHEET 1 OF 2

LOCATION: Lat. 43.745322 Long. -79.814288

(See Figure 1)

BORING DATE: April 3, 2019

DATUM: Geodetic

S	THOD	SOIL PROFILE	Ŀ		SA	MPL	-	DYNAMIC PE RESISTANC	E, BLOWS	S/0.3m		HYDRAULIC k, cm	's		JAN NG NG	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR STR Cu, kPa 20	ENGTH	nat V. + rem V. ⊕	30 · Q - ● · U - ○	10° WATER Wp ►	CONTENT	0 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE	555	256.95 0.00												
1		TOPSOIL (430 mm) (CL) sandy SILTY CLAY, trace organics, trace gravel; light brown mottled with oxidation staining; cohesive, w <pl, (cl)="" (till);="" -="" 2.3="" 5.5="" a="" and="" at="" brown="" clay="" clay,="" cobbles;="" cohesive,="" depth="" encountered="" gravel,="" inferred="" m="" m<="" mottled="" of="" oxidation="" sand="" sand,="" silty="" soft="" some="" staining,="" stiff="" td="" to="" trace="" very="" w<pl,="" with=""><td></td><td>256.52 20.43 256.34 0.61</td><td>1A 1B</td><td>\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$</td><td>3 17 22 23</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>PP = 125 kPa PP = 440 kPa PP = 440 kPa</td><td></td></pl,>		256.52 20.43 256.34 0.61	1A 1B	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	3 17 22 23					0			PP = 125 kPa PP = 440 kPa PP = 440 kPa	
3	ower Auger	- Cobbles/boulders inferred from auger grinding at a depth of 3 m			5	SS	23								PP = 245 kPa	Bentonite
5	CME 75 Track Mount Power Auger 100 mm Solid Stem	(CL-ML/CL) CLAYEY SILT to SILTY CLAY, trace sand, trace gravel; grey, (TILL); cohesive, w~PL, stiff	**************************************	252,99 3,96		SS	9								PP = 125 kPa	
6		(SM-SW) SILTY SAND to sand, medium grained, some silt, trace gravel; light brown; non-cohesive, wet, compact		251.16 5.79	7	SS	27					0				17/04/2019 Screen and Sand
8		END OF ROPEHOLE		248.72 8 23	8	SS	16									Bentonite
9		END OF BOREHOLE. Notes: 1. Water level measured at 6.57 mbgs upon completion of drilling. 2. Water level measured in monitoring well as follows: Date Depth Elev. (m) April 17, 2019 6.54 mbgs 250.41 m 3. PP= unconfined compressive strength measured with pocket penetrometer in CONTINUED NEXT PAGE		8.23			. —									
		I CONTINUED NEXT PAGE	1	I			i		1	1	ii.			1 1		

RECORD OF BOREHOLE: PROJECT: 19115264-1000/2000

BH/MW19-09

SHEET 2 OF 2

DATUM: Geodetic

(See Figure 1)

LOCATION: Lat. 43.745322 Long. -79.814288

BORING DATE: April 3, 2019

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER OR STANDPIPE STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp **⊢** H WI (m) --- CONTINUED FROM PREVIOUS PAGE ---10 11 12 13 GTA-BHS 001 G:\CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\\\ 2_GINT\\\ 9115284-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT \\ 17\\\ 6/19 JMC 14 15 16 17 18 19 20

DEPTH SCALE

GENERAL BH / TP / WELL 02995a-3278 MAYFIELD.GPJ GINT CANADA,GDT 1/4/02

WELL NUMBER 5

PAGE 1 OF 1

		Kumar Jain			PROJECT NAME 3278 Mayfield Road PROJECT LOCATION Town of Caledon		
DATE DRILL DRILL LOGG	STARTE ING CON ING MET ED BY	D 10/18/17 TRACTOR HOD Solid	COMPL Fadroy Enterprise Stem Augers	ED BY _	0/18/17 GROUND ELEVATION _265 m HOLE SIZE GROUND WATER LEVELS: AT TIME OF DRILLING _Dry E.W. AT END OF DRILLING _2.85 m / Elev 262.19	5 m	
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC LOG	MATERIAL DESCRIPTION	WEL	L DIAGRAM
	ss 1	1-3-3-3 (6)	MC = 23%	70 7 7 74 7 7 7	TOPSOIL - ~600 mm thick60 264.40		
- ₁	SS 2	3-4-5 (9)	MC = 16%		FILL - clayey silt, rootlets, topsoil inclusions, dark brown and brown, very moist.		Bentonite
2	SS 3	2-4-5 (9)	MC = 22%				
	SS 4	4-7-10 (17)	MC = 19%				50 mm dia. PVC Riser, Filter Sand
3 4	SS 5	2-5-9 (14)	MC = 21%				
5	SS 6	3-6-8 (14)	PP = 400 kPa MC = 16%	4	SILTY CLAY - trace gravel, grey, very moist, hard.		50 mm dia. PVC Slotted Pipe, Filter Sand
6	SS 7	4-6-8 (14)	PP = 250 kPa MC = 16%	6	-becoming very stiff below ~6.0 m depth 45 258.55 Bottom of hole at 6.45 m.		

====	EDWA	RD WONG)						BORIN	G NUME PAGE	1 OF 1
500000000000000000000000000000000000000	SA CHUUNON	Kumar Jain					PROJECT NAME _		MONTH OF THE PARTY		
DRILL	ING CON	TRACTOR					GROUND ELEVATION GROUND WATER LEVE AT TIME OF DRIL	LS:		Orr 0	
LOGG		J.J.					AT END OF DRILL AFTER DRILLING	LING Dry			
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC				DESCRIPTION			
-	SS 1	4-5-5-5 (10)	MC = 17%	34	0.20		~200 mm thick.	, brown, loose.			259.80
		(10)									
1 -	SS 2	6-13-20 (33)	PP >450 kPa MC = 14%		0.90	CLAYEY S	ILT - some sand, trace gr	avel, oxidized, b	rown, very moi	st, hard.	259.10
2	SS 3	6-16-24 (40)	PP >450 kPa MC = 13%								
-	SS 4	12-17-27 (44)	PP >450 kPa MC = 14%								
3	SS 5	6-11-21 (32)	PP >450 kPa MC = 15%	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-							
4											
5	SS 6	7-24-15 (39)	PP >450 kPa MC = 13%								
-											
6 -	SS 7	10-20-33	PP >450 kPa MC = 12%	000	6.00	SAND TILL	brown, very moist, very	dense.			254.00
-		(53)	WIC - 1276	4 P	6.45		Bottom	of hole at 6.45	m,		253.55

APPENDIX D

Important Information and Limitations of This Report

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder can not be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

2018 1 of 2

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

golder.com

REPORT

Preliminary Geotechnical Investigation, Clearbrook Developments Limited

Proposed Residential Development, Snells Hollow Secondary Plan, Caledon, Ontario

Submitted to:

Clearbrook Developments Limited

Jane Deighton, President 506 - 80 Front Street East Toronto, ON M5E 1T4

Submitted by:

Golder Associates Ltd.

6925 Century Avenue, Suite #100, Mississauga, Ontario, L5N 7K2, Canada

Distribution List

1 e-copy: Golder Associates Ltd.

1 e-copy: Clearbrook Developments Limited

1 e-copy: Snells Hollow Developers Group

1 e-copy: Glen Schnarr & Associates Inc.

Table of Contents

	INIK	ODUCTION	1
2.0	SITE	DESCRIPTION AND BACKGROUND	1
3.0	ADJ	ACENT GEOTECHNICAL SITE INFORMATION	2
4.0	REG	ONAL GEOLOGY	3
5.0	INVE	STIGATION PROCEDURE	3
6.0	SUB	SURFACE CONDITIONS	3
	6.1	Topsoil and (CL-ML) Silty Clay / Clayey Silt (possibly re-worked)	4
	6.2	(CL) Silty Clay to sandy Silty Clay (Upper Glacial Till)	5
	6.3	(SM to ML) SILTY SAND to sandy SILT	5
	6.4	(CL-ML) Clayey Silt (Lower Glacial Till)	6
	6.5	Groundwater Conditions	6
7.0	GEO	TECHNICAL ENGINEERING DISCUSSION	7
	7.1	Site Preparation	7
	7.1.1	Subgrade Preparation	7
	7.1.2	Engineered Fill Requirements	8
	7.2	Installation of Underground Services	8
	7.2.1	Temporary Excavations	8
	7.2.2	Pipe Bedding and Cover	9
	7.2.3	Trench Backfill	10
	7.3	Building Foundations	10
	7.3.1	Below Grade Walls	11
	7.4	Pavement Design within the Proposed Development	11
	7.4.1	Subgrade Drainage	13
8.0	SEIS	MIC SITE CLASSIFICATION	13
9.0	INSP	ECTION AND TESTING	13
40 O	CLO	BING	13

FIGURES

Figure 1 - Site and Borehole Location Plan

APPENDICES

APPENDIX A

Record of Boreholes

APPENDIX B

Geotechnical Laboratory Figures

APPENDIX C

Previous Geotechnical Borehole Logs

APPENDIX D

Important Information and Limitations of This Report

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by Clearbrook Development Limited (CDL) to provide preliminary geotechnical consulting services to support a draft plan approval for a future residential subdivision development located north east of Kennedy Road and Mayfield Road in Caledon, Ontario (the Site), as shown in the Site and Borehole Location Plan, *Figure 1*.

The terms of reference for the geotechnical consulting services are included in Golder's proposal No. P19115264 Rev 1, dated March 8, 2019.

The purpose of the investigation is to obtain information on the general subsurface soil and shallow groundwater conditions at the site by means of a limited number of boreholes and geotechnical laboratory tests. Based on our interpretation of the factual information collected as part of the preliminary geotechnical investigation carried out at this site, a general description of the subsurface conditions across the site is presented herein. The interpreted subsurface conditions and available project details were used to develop preliminary engineering parameters and recommendations on the geotechnical design aspects of the project, including construction considerations which could influence design decisions.

This report provides the results of the preliminary geotechnical investigation and should be read in conjunction with the "Important Information and Limitations of This Report" Appendix D. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within twelve months of the date of the report, Golder should be given an opportunity to confirm that the recommendations in this report are still valid.

2.0 SITE DESCRIPTION AND BACKGROUND

The subject property is located north west of Heart Lake Road and Mayfield Road and is part of the Snells Hollow Secondary Plan, which is a proposed residential development to be located in the southern part of the Town of Caledon. The site is bounded by Heart Lake Road to the east, Mayfield Road to the south, adjacent agricultural properties to the west and Highway 410 to the north, as shown in **Figure 1**.

The site has a total area of approximately 24 hectares (61 acres) of agricultural land, a pond and a valley creek lands. The valley and watercourse / wetland running through the southern portion of the Site, understood to be a tributary to Heart Lake and Etobicoke Creek. The site is predominantly flat land which slopes towards the north to Highway 410 and towards the pond and creek to the south.

Based on our understanding, the Site is to be developed into a residential development with associated underground services and associated roads. For the purposes of this report, we have assumed that the future residential houses will be constructed utilizing shallow strip/spread footings, with an interior slab-on-grade, and one-level of underground basement. We have also assumed cuts and/or fills required for site grading purposes will not exceed 2.0 m and that the invert of the site servicing will be no greater than 3.0 m below existing site grades.

A separate geotechnical slope stability assessment report is carried out as part of the development setback of the property and documented in report titled, "Geotechnical Setback Assessment For Erosion Hazard Limit, Snell's Hollow Secondary Plan, Caledon, Ontario" dated June 2019, by Golder Associated.

3.0 ADJACENT GEOTECHNICAL SITE INFORMATION

An additional geotechnical investigation consisting of ten boreholes were also carried out as part of the Snells Hollow Secondary Plan to the east and west adjacent properties (Golder, 2019). Also, a previous geotechnical investigation consisting of three boreholes was also carried out by Edward Wong and Associates, 2017 (Wong, 2017), to the west property.

The following is a summary of subsurface conditions obtained from boreholes located adjacent to the site (BH/MW19-03, BH/MW19-13, BH/MW19-07 and BH19-18 to BH19-19) from Golder, 2019, and (BH1, BH2 and BH4) from Wong, 2017 as shown on the Site and Borehole Location Plan, *Figure 1*.

In general, the subsurface conditions encountered typically consist of a surficial topsoil ranging in thickness from about 200 mm to over 350 mm overlying a disturbed/reworked dark to light brown silty clay layer, which contains various amounts organics, underlain by glacial till composed of very stiff to hard brown silty clay to sandy silty clay/clayey silt (which in BH4 is possible considered as clayey silty fill) extending to depth ranging from 4 m to 6.1 m below ground surface. A stiff to hard grey clayey silt till was generally found below the brown silty clay till layer. A deposit of gravelly silty sand was found between the brow silty clay till and grey clayey silt till. These subsurface conditions were found to be similar to the subsurface conditions encountered in the boreholes located on CDL site (discussed in detail in subsequent sections).

The record of borehole logs from these reports are enclosed in *Appendix C*. The approximate locations of the boreholes drilled at these sites are shown on the Site and Borehole Location Plan, *Figure 1*.

The groundwater level measurements in the drilled boreholes are summarized in *Table 1*, below.

Table 1: Groundwater Level Measurements (Adjacent Properties)

	Measurements Upor Drillin		Measurements in Monitoring Wells				
Borehole No.	Approximate Groundwater Depth (mbegs)*	Date	Approximate Groundwater Depth (mbegs)*	Date			
BH/MW19-03	9.1 m (Elev. 257.8 m)	April 4, 2019	7.3 m (Elev. 259.5 m)	April 17, 2019			
BH/MW19-07 (Shallow)	N/A	March 27, 2019	6.9 m	April 17, 2019			
BH/MW19-07 (Deep)	12.8 m	March 27, 2019	12.8 m	April 17, 2019			
BH/MW19-13	Dry	April 4, 2019	9.5 m (Elev. 258.2 m)	April 17, 2019			
BH19-18	2.7 m	March 27, 2019	N/A	N/A			
BH19-19	Dry	March 28, 2019	N/A	N/A			
BH1	Dry	Oct 19, 2018	N/A	N/A			
BH2	Dry	Oct 19, 2018	N/A	N/A			
BH4	Dry	Oct 18, 2018	N/A	N/A			

^{*}mbegs- meters below existing ground surface.

4.0 REGIONAL GEOLOGY

The surficial geology aspects of the general site area were reviewed from the following publication:

Chapman, L.J., and Putnam, D.F., 2007, "The Physiography of Southern Ontario", 4th Edition, Ontario Geological Survey.

Physiographic mapping in the area according to the above noted reference indicates that the site lies within the physiographic region of southern Ontario known as the South Slope. The South Slope region slopes gradually downward towards Lake Ontario. The overburden immediately below ground surface within the South Slope generally consists of clayey silt till and silty clay till and at depth consists of alternating deposits of dense lacustrine sands and silts and overconsolidated lacustrine clays and clay tills overlying the bedrock.

The subsurface conditions encountered during the investigation are generally consistent with the physiographic mapping.

5.0 INVESTIGATION PROCEDURE

The field work for the preliminary geotechnical investigation was carried out between March 28, 2019 and on April 5, 2019, during which time seven boreholes (designated as Boreholes BH/MW19-04 to BH/MW19-06, BH19-14 to BH19-17) were advanced at the site to depths between about 6.7 m to 17.4 m below existing ground surface at the approximate locations shown on the Site and Borehole Location Plan, *Figure 1*, attached.

The boreholes were advanced using a track-mounted drill rig supplied and operated by a specialist drilling contractor, subcontracted to Golder. Standard Penetration Testing (SPT) and sampling was carried out at regular intervals of depth in the boreholes using conventional 35 mm internal diameter split spoon sampling equipment advanced using an automatic hammer, in accordance with ASTM D1586 (99).

The shallow groundwater conditions were noted in the open boreholes during and immediately following the drilling operations. Three of the boreholes advanced at the site were equipped with 50 mm diameter monitoring wells to permit further monitoring of the groundwater levels on April 17, 2019. The well installation details and water level readings are presented on the Record of Borehole sheets in *Appendix A*.

The field work for this investigation was directed by members of our engineering staff who located the boreholes in the field, directed the sampling and in-situ testing operation, logged the boreholes and cared for the samples obtained. The samples were identified in the field, placed in appropriate containers, labelled and transported to Golder's Mississauga geotechnical laboratory for further examination and laboratory testing. Index and classification tests, consisting of water content determinations, Atterberg limits and grain size distribution, were carried out on selected soil samples. The results of the geotechnical laboratory tests are included in **Appendix B** and on the Record of Borehole sheets in **Appendix A**.

The borehole locations were determined in the field using a GPS instrument based on UTM coordinates. Geodetic ground surface elevations at the borehole locations were derived from the site grading plan provided by GSAI, "Snell's Hollow Contour Plan, Town of Caledon" dated December 2018. And as such, the elevations and borehole locations given on the Record of Borehole sheets and referred to herein should be considered as approximate.

6.0 SUBSURFACE CONDITIONS

The subsurface soil and shallow groundwater conditions encountered in the boreholes and the results of the field and laboratory testing, are shown on the Record of Boreholes sheets, in **Appendix A**. Method of Soil

Classification and Symbols and Terms Used on Records of Boreholes are provided to assist in the interpretation of the borehole logs. It should be noted that the boundaries between the strata have been inferred from drilling observations and non-continuous samples. They generally represent a transition from one soil type to another and should not be inferred to represent an exact plane of geological change. Further, conditions will vary between and beyond the boreholes. The following is a summary of the subsurface conditions of the boreholes advanced during this investigation followed by a more detailed description of the major soil strata and groundwater conditions.

In general, the subsurface conditions encountered at the boreholes advanced at the site typically consist of a surficial topsoil/silty clay layer underlain by native soil deposits of glacial till composed of silty clay to clayey silt containing varying amounts of sand and gravel. Deposits of silty sand to sand were found below and in between the till deposits in one of the boreholes. The presence of cobbles and/or boulders in the till deposit are inferred from auger grinding, effective refusal of the SPT, and/or rock fragments collected within the SPT sampler.

Details of the observations of the groundwater conditions during and upon completion of drilling are included on the Record of Borehole sheets. Shallow ground water was encountered at depths ranging from 0.4 m to 14.5 m below existing ground surface or between Elev. 252 m to Elev. 262.8 m upon the completion of drilling activities.

6.1 Topsoil and (CL-ML) Silty Clay / Clayey Silt (possibly re-worked)

Topsoil materials were encountered in all the boreholes and extended to depths ranging from 0.23 m to 0.41 m. A summary of topsoil thickness in each of the boreholes is outlined in the table below.

Table 2: Approximate Topsoil Thickness

Borehole No.	Approximate Topsoil Thickness (m)
BH/MW19-04	0.20
BH/MW19-05	0.28
BH/MW19-06	0.41
BH19-14	0.30

Borehole No.	Approximate Topsoil Thickness (m)
BH19-15	0.30
BH19-16	0.33
BH19-17	0.33

Materials identified as topsoil in this report were classified based on visual and textural evidence as no other testing for organic content or other nutrients was carried out. As such, the ability for these materials to support vegetation has not been assessed.

A layer of silty clay/clayey silt soil was encountered in the relevant boreholes (with exception of BH19-14 and BH19-17) below the surficial topsoil. The silty clay / clayey silt resembled a disturbed till or reworked soil, likely the result of past agricultural or re-grading activities, with an interpreted thickness ranging from about 0.3 m to 1.0 m. Variable amounts of organics (rootlets), sand and gravel were observed in the silty clay / clayey silt soils.

SPT 'N' values within the reworked material was found to be 4 blows to 12 blows per 0.3 m of penetration indicating a firm to stiff consistency.

The natural water content of the reworked material was measured at 19 to 21 percent.

The results of grain size distribution tests carried out on one selected sample from this deposit is presented in **Figure B1**. Atterberg limits tests that were carried out on the same sample from this deposit measured liquid

limit value of about 25 and plastic limit value of about 15; yielding corresponding plasticity index value at about 10. These results are plotted on the plasticity chart as shown in **Figure B2**.

6.2 (CL) Silty Clay to sandy Silty Clay (Upper Glacial Till)

A till deposit consisting of cohesive silty clay to sandy silty clay was generally encountered directly underneath the topsoil and clayey (reworked till) deposit to depths ranging from about 0.3 m to 6.7 m below ground surface (Elev. 259.8 m to Elev. 269.7m). The upper till deposit is mottled light brown to brown with oxidation staining, about 1.6 m to 4 m in thickness and contains various amounts of sand and gravel. Silt and sand seams / layers were encountered within the till and a strata of silty sand (about 3 m thick) was found within the till in BH19-14 (as described in section 6.3). Based on previous experience with glacial tills in this area and frequent auger grinding during the advancement of the augers during this investigation, the presence of cobbles and/or possible boulders are inferred within the till deposit.

The SPT 'N' values measured in these till materials range from 6 blows to 44 blows per 0.3 m of penetration, but typically are greater than 7 blows and less than 30 blows, suggesting that the silty clay till is firm to hard in consistency, but generally stiff to very stiff.

The results of grain size distribution tests carried out on three samples of the silty clay till are presented in *Figure B2*.

Three Atterberg Limits tests carried out on selected samples of this till deposit measured liquid limits ranging between 21 and 27, and plastic limits between 14 and 15; yielding a corresponding plasticity index between 8 and 11. These results are plotted on the plasticity chart as shown in *Figure B3*.

The water content measured on selected samples of the upper till ranged from about 7 percent to 19 percent.

6.3 (SM to ML) SILTY SAND to sandy SILT

A deposit of silty sand to sandy silt was encountered within and below the silty clay till deposit in Boreholes BH/MW19-04 and BH19-14 and within the clayey silt till deposit in borehole BH19-15. In Borehole BH/MW19-04, the gravelly silty sand to sand deposit was encountered at depths ranging from 10.7 m to 17 m, and Borehole BH/MW19-04 was terminated within this deposit. In Borehole BH/MW19-14 the silty sand deposit was encountered at depths ranging from about 4 m to 7 m below ground surface and about 8 m to 10 m below ground surface. Borehole BH/MW19-14 was terminated within this deposit. In Borehole BH19-15, the silty sand was about 1 m in thickness, found at a depth of about 10 m to 11 m below ground surface. The silty sand to sand to gravelly sandy silt contains various amounts of gravel, clay nodules, is light brown to grey in colour, and is considered non-cohesive in nature with slight plasticity. Similar layers/seems were also found in other boreholes.

The SPT 'N' values measured in the silty sand to sandy silt deposit range from 19 to over 120 blows per 0.15 m of penetration; however, most of the SPT 'N' values measured were greater then 30 blows per 0.3 m of penetration, indicating a compact to very dense, but generally dense to very dense compactness.

The results of grain size distribution tests carried out on selected samples from this deposit are presented in *Figure B5*. Atterberg Limits tests that were carried out on one sample of this deposit measured a liquid limit value about 19, a plastic limit value about 15; yielding a corresponding plasticity index value about 3. These results are plotted on the plasticity chart as shown in *Figure B6, Appendix B*.

The water content of selected samples ranged from about 4 percent to 19 percent.

6.4 (CL-ML) Clayey Silt (Lower Glacial Till)

A clayey silt to sandy clayey silt till deposit was generally encountered directly underneath the silty clay till in all boreholes (with exception of BH19-14) between a depth of 2.1 m to 14.3 m below existing ground surface. The till deposit is cohesive and contains various amounts of sand and gravel, is grey in colour and is believed to contain cobbles and/or possible boulders which have been inferred in this deposit as a result of auger grinding and limestone fragments within the SPT sampler. Silt/sand layers were encountered within BH/MW19-05, BH19-15 and BH19-16 at depths of 6.1 m to 7.6 m below ground surface as noted above.

The SPT 'N' values measured in the of this till deposit range from 14 blows per 0.3 m of penetration to 100 blows per 0.3 m of penetration; however, most of the SPT 'N' values measured within the till were greater between 13 blow to about 34 blows per 0.3 m of penetration, suggesting a stiff to hard consistency. The higher blow counts are possibly attributed to the presents of the cobbles/boulders within the till deposit.

The results of grain size distribution tests carried out on a sample of this till deposit are presented in *Figure B7*. One Atterberg Limit test was carried out on a selected sample of clayey silt till deposit and measured a liquid limit of about 15, plastic limit of about 10; yielding a corresponding plasticity index of 4. These results are plotted on the plasticity chart as shown in *Figure B8*, *Appendix B*.

The water content of selected samples ranged from about 4 percent to 18 percent.

6.5 Groundwater Conditions

Groundwater level measurements were recorded immediately following drilling procedures. The groundwater level measurements in the drilled boreholes are summarized in *Table 3*, below.

Table 3: Groundwater Level Measurements (CDL Property)

	Measurements Upor Drillin		Measurements in Monitoring Wells		
Borehole No.	Approximate Groundwater Depth Date (begs)*		Approximate Groundwater Depth (begs)*	Date	
BH/MW19-04 (Shallow)	N/A March 29, 20		3.8 m (Elev. 262.8 m)	April 17, 2019	
BH/MW19-04 (Deep)	14.8 m (Elev. 251.7 m)	March 29, 2019	14.5 m (Elev. 252 m)	April 17, 2019	
BH/MW19-05	Dry	March 28, 2019	8.3 m (Elev. 262.2 m)	April 17, 2019	
BH/MW19-06	2.5 m (Elev. 259. 5 m)	March 28, 2019	0.4 m (Elev. 262.4 m)	April 17, 2019	
BH19-14	Dry	April 5, 2019	N/A	N/A	
BH19-15	6.0 m (Elev. 257.5 m)	April 1, 2019	N/A	N/A	
BH19-16	1.4 m (Elev. 257.0 m)	March 26, 2019	N/A	N/A	

^{*}begs- below existing ground surface.

It should be noted that the groundwater level in the area is subject to seasonal fluctuations and precipitation events and should be expected to be higher during wet periods of the year.

7.0 GEOTECHNICAL ENGINEERING DISCUSSION

This section of the report provides preliminary geotechnical engineering recommendations on the geotechnical aspects of the proposed development based on our interpretation of the limited borehole information and on our understanding of the project scope and requirements. The information in this portion of the report is provided for the guidance of the design engineers and professionals.

Based on the results of this investigation, the subsurface soil conditions encountered at the site are considered to be generally suitable for the proposed residential development.

As noted above, at the time of this report, proposed design grades (i.e., finished floor slab elevation, pavement subgrade and utility invert levels) were not available for the proposed development. The following engineering recommendations regarding the geotechnical design aspects of the project including underground services, pavements and building foundations should be considered as preliminary only, and should be reviewed when the final design grades and utility invert levels have been finalized.

Where comments are made on construction, they are provided only in order to highlight aspects of construction which could affect the design of the project. Contractors bidding on or undertaking any work at the site should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, equipment capabilities, costs, sequencing and the like.

This report addresses only the geotechnical (physical) aspects of the subsurface conditions at this site. The geo-environmental (chemical) aspects, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, are outside of the terms of reference for this report.

7.1 Site Preparation

7.1.1 Subgrade Preparation

Based on the existing site topography, it is assumed that only minor cut and/or fill site grading operations of less than 2.0 m will be required to establish subgrade levels and permit the construction of the proposed residential development.

Any filling carried out at the site in conjunction with regrading (with the exception of future green spaces) should be carried out as engineered fill. Recommendations for the placement of engineered fill are outlined in **Section 7.1.2** of this report, titled "Engineered Fill Requirements".

In general, the existing site vegetation, surficial topsoil/organics, surficial asphalt/concrete or any other near-surface soils containing significant amounts of organic matter or construction debris are not considered to be suitable for the subgrade support of engineered fill, building foundations, floor slabs, or other settlement sensitive structures. These materials should be completely stripped prior to placing any engineered fill or construction of foundations or interior or exterior slab-on-grade(s), following appropriate environmental procedures. Furthermore, excessively wet soils should be dried before reuse as engineered fill.

Furthermore; excessively-wet soils should be suitably dried before reuse as engineered fill.

Following the stripping of the surficial topsoil and soils containing significant amounts of organics and/or soft/disturbed surficial soils, the exposed subgrade should be heavily proof-rolled with suitable equipment, in conjunction with inspection by qualified geotechnical personnel to confirm that the exposed soils are competent

and have been adequately stripped of ponded water and all disturbed, loosened, softened, organic and other deleterious material. Remedial work (i.e., further subexcavation and replacement) should be carried out on poorly-performing areas identified during the proof-rolling activities, as directed by Golder.

7.1.2 Engineered Fill Requirements

As described above, the anticipated site grading activities may include both cutting and raising (filling) the original grade to meet the final design site grades. At the time of this report, the design cut and fill depths were not available for review. As such, for the purposes of this report, it has been assumed that cuts will not exceed 2 m and grade raises will not exceed more than 2 m.

In general, the existing native material is considered to be acceptable for reuse as engineered fill. Based on the laboratory test results, the water content of soils present at the site are considered to be generally near or above their optimum water content for compaction, and therefore may require minor drying prior to placement, in general.

It should be noted that the native materials at the site are silty in nature, and as such are susceptible to over-wetting and subsequent freezing during inclement weather. Therefore, it is recommended that site grading activities not be carried out during late fall, winter, early spring seasons or any periods of inclement weather conditions. All oversized cobbles (i.e., greater than 150 mm in size) and boulders, if present, should be removed from excavated material that will be used as engineered fill material.

If imported material is required for the engineered fill process, the material that is proposed for use as engineered fill should be approved by the geotechnical engineer at its source, prior to importing the material to the site. Suitable soils, free of topsoil, organic matter or other deleterious materials can be used as engineered fill provided that the water content of the soil at the time of placement does not vary by more than 2 percent above or below its optimum water content for compaction. Otherwise, the soils may require treatment (i.e., drying or wetting) prior to placement.

Following the inspection and approval of the subgrade as described previously in this report, engineered fill materials should be placed in maximum 300 mm-thick loose lifts and uniformly compacted to 98 percent of the Standard Proctor maximum dry density (SPMDD). Filling should continue until the design elevations are achieved.

Full-time monitoring and in-situ density testing should be carried out by Golder during placement of engineered fill.

The final surface of the engineered fill should be protected as necessary from construction traffic and should be sloped to provide positive drainage for surface water during the construction period. If the engineered fill materials will be left exposed (i.e. uncovered) during periods of freezing weather, additional soil cover should be placed above final subgrade to provide some level of frost protection. Prior to placing the granular subbase and/or base courses within pavement areas, the surface of the engineered fill/subgrade should be inspected by Golder.

7.2 Installation of Underground Services

7.2.1 Temporary Excavations

Details of the underground servicing for the proposed development are unknown at the time of this investigation; as such, for the purpose of this report, the maximum depth of the underground services was assumed to be about 3 m below the existing ground surface. Once detailed design is completed, review of the underground services should be completed by this office for compliance with the recommendations contained herein.

The founding soils are anticipated to generally consist of the native sandy silty clay or engineered fill. These materials are considered to be suitable for supporting the underground services provided that the integrity of the base of the trench excavations is maintained during construction. Where softened or disturbed native soils or other deleterious materials are encountered at the base of excavations for settlement-sensitive services, these materials should be subexcavated and replaced with compacted fills approved by the geotechnical engineer.

Care should be taken to direct surface water away from any open excavations and all temporary excavations should be carried out in accordance with the Occupational Health and Safety Act (OHSA) and Regulations for Construction Projects.

In general, the groundwater level in the open boreholes, upon completion of drilling, was measured to be at depths ranging from about 1.4 m to 14.8 m below existing ground surface (Elev. 251.7 m to 261.6 m)Whereas, the groundwater level in the monitoring wells within close proximity, was measured to be at depths ranging from 0.4 m to 14.5 m below existing ground surface, (Elev. 252.0 m to Elev. 262.8 m).

In general, groundwater in the excavations within the native deposits, are likely to be handled by collection via properly constructed and filtered sumps, located within the excavations, and then pumping and discharging the water to a suitable discharge point. However, should excavations deeper than 3m below existing ground surface be required, the following recommendations will need to be review and revised to determine if some form of active dewatering, such as well points, may have to be implemented.

Excavations for the site servicing would generally extend through the native sandy silty clay deposit. Conventional excavation equipment should be suitable to excavate through these materials.

The stiff to hard native silt clay till soils are classified as a "Type 2" soils under the OH&S Act. As such, all conventional temporary trench excavations should consist of open cuts with side slopes not steeper than 1 horizontal to 1 vertical in the overburden soils to within 1.2 m of the base of the excavation and then may be made vertical to the base. Where engineering fill (based on silty clay material) is used or the native silty clay exhibits signs of water seepage, the soil is classified as a "Type 3", as such all conventional temporary trench excavations should consist of gradient of 1 horizontal to 1 vertical.

Where the side slopes of excavations are required to be steepened to limit the extent of the excavation, then some form of trench support may be required. Some trench excavations could be carried out using a vertically-excavated, unsupported excavation (using a properly-engineered trench liner box for protection, certified by an experienced engineer); or by a supported (sheeted) excavation if conditions warrant so; such as in wet areas and/or in close proximity to adjacent underground services

7.2.2 Pipe Bedding and Cover

The bedding for the sewers and watermains should be compatible with the size, type and class of pipe and the surrounding subsoil and the requirements of the City of Caledon. If granular bedding is deemed to be acceptable, then Ontario Provincial Standard Specifications (OPSS) Granular A should be used from at least 150 mm below invert to springline. Clear stone should not be used as bedding material. From springline to 300 mm above the obvert of the pipe, sand cover could be used. All bedding and cover material should be placed in 150 mm loose lifts and uniformly compacted to at least 100 percent of SPMDD. Where variable fill materials, softened or disturbed native soils or other deleterious materials are encountered at the base of excavations for settlement-sensitive services, these materials should be subexcavated and replaced with compacted fills approved by the geotechnical engineer.

7.2.3 Trench Backfill

The excavated materials from the site will consist predominantly of silty clay till materials. Based on the measured water contents, in general, the native materials encountered at the site are estimated to be near or above their optimum water contents for compaction, and therefore, will probably require only minor drying prior to placement.

Care should be taken to maintain the water content of the soils close to/at the optimum water content for compaction during the construction operations, as difficulties with compaction and/or backfill performance would be anticipated with fine-grained soils where the water content is significantly above the optimum for compaction purposes. Soils that contain significant quantities of organics or debris are also not suitable for use as trench backfill within settlement-sensitive areas. In addition, all boulders and cobbles greater than 150 mm in size should be removed from the trench backfill materials. If there is a shortage of suitable in-situ material, an approved imported material such as Ontario Provincial Standard Specifications Select Subgrade Material should be used for trench backfill. Again, as noted above, the trench backfill materials are silty in nature and are very susceptible to wetting/freezing temperatures. Backfilling trenches during cold or wet weather is not recommended.

Trench backfill should be placed in maximum 300 mm loose lift thickness and uniformly compacted to at least 98 percent of the SPMDD of the material. Soil that is frozen should not be used as backfill.

Normal post-construction settlement of the compacted trench backfill should be anticipated with the majority of such settlement taking place within about 12 months following the completion of trench backfilling operations. If the trench backfill operations are completed during the winter months, post-construction settlements may increase beyond typical anticipated values. These settlements will be reflected at the ground surface. If the asphalt binder course is laid shortly following the completion of the trench backfilling operations, any settlement that may be reflected by subsidence of the surface of the binder asphalt should be compensated for by placing an additional thickness of binder asphalt or by padding. If possible, the surface course asphalt should not be placed over the binder course asphalt for about 12 months. Where scheduling requires that the surface course be placed over the binder course asphalt before this period, trench backfill settlement would be reflected by subsidence and possible cracking of the finished pavement surface in these areas which, depending upon the extent and magnitude, may require local repairs.

7.3 Building Foundations

As previously indicated, the existing site vegetation, surficial topsoil/organics and other near-surface soils containing significant amounts of organic matter are not considered to be suitable for the subgrade support of engineered fill, building foundations, floor slabs, or other settlement sensitive structures. These materials should be completely stripped prior to placing any engineered fill or construction of foundations or interior or exterior slab-on-grades.

Based on the subsurface conditions encountered in the boreholes, strip and spread footings that may be used, provided that the footings are founded on the native sandy silty clay deposit or on engineered fill (based on existing site soils) placed in accordance with the recommendation outlined in **Section 7.1**, and maintained a minimum depth of soil embedment below finished adjacent ground surface and top of slab of 1.2 m.

For such strip and spread footings, a factored geotechnical resistance at Ultimate Limit States (ULS) of 225 kPa and a geotechnical reaction at Serviceability Limit States (SLS) of 150 kPa may be assumed for design purposes, provided that the strip footings dimensions of 0.45 m in width and 10 m in length or spread footings have a minimum width of 0.60 m and a maximum width of 1.0 m.

Where spread footings are constructed at different elevations, the difference in elevation between the individual footings should not be greater than one half the clear distance 650 mm between the footings. In addition, the

lower footings should be constructed first so that if it is necessary to construct the lower footings at a greater depth than anticipated, the elevation of the upper footings can be adjusted accordingly. Stepped strip footings should be constructed in accordance with the Ontario Building Code (2012), Section 9.15.3.9.

The maximum total and differential settlements are expected to be less than 25 mm and 20 mm; respectively, for footings designed, constructed and inspected as outlined above.

All exterior footings, and interior footings in unheated areas, should be founded at a minimum depth of 1.2 m below finished grade level in order to provide adequate protection against frost penetration.

The native soils are susceptible to disturbance from construction activity, especially during wet or freezing weather. Care should be taken to preserve the integrity of the materials as bearing strata. It is essential that the founding surface for the footings be inspected by qualified geotechnical personnel prior to placing concrete. If the concrete for the footings cannot be placed immediately after excavation and inspection of the subgrade, it is recommended that a working mat of lean concrete be placed in the excavation to protect the integrity of the bearing stratum.

Resistance to lateral forces/sliding resistance between the concrete footings and the subgrade should be calculated in accordance with Section 6.7.5 of the CHBDC. The unfactored coefficient of friction, $\tan \delta$, for the interface between the cast-in-place concrete footing and the properly-prepared subgrade can be assumed to be 0.35.

7.3.1 Below Grade Walls

The exterior perimeter of all housing basement walls should be backfilled with an imported free draining, non-frost susceptible granular material approved by a geotechnical engineer, carefully placed and compacted in 200 mm thick loose lifts. The design of the foundation walls for the below-grade walls should take into account the horizontal soil loads as well as surcharge loads that may occur during or after construction and should be designed using a lateral (at-rest) earth pressure coefficient of 0.5 and a unit weight of backfill of 20 kN/m³.

The wall backfill layers should be compacted to at least 95 per cent of the materials' standard Proctor maximum dry density. Light compaction equipment should be used immediately adjacent to the foundation wall, otherwise compaction stresses on the wall may be greater than that imposed by the backfill material. With the exception of the driveway area, the upper 0.3 m of backfill should consist of clayey material to provide a low permeability cap and the exterior grade should also be shaped to slope away from the building.

Provided that the excavations adjacent to foundation/basement walls are backfilled with free-draining granular materials and a drainage collection system is provided around the perimeter of the building, the design of belowgrade walls does not need to take into account hydrostatic forces acting on the walls. However, it is recommended that the exterior of the below-grade walls be damp-proofed.

All foundation elements in unheated areas must be provided with at least 1.2 meter of earth cover for frost protection purposes. In addition, the bearing soil and fresh concrete should be protected from freezing during cold weather construction.

7.4 Pavement Design within the Proposed Development

Following site grading operations, as noted previously, the proposed pavement subgrade will generally consist of either re-compacted engineered fill or native silty clay till. These materials are considered to be frost susceptible, and as such, the pavement design provided in *Table 4*, below has taken this condition into consideration.

Based on the proposed pavement usage, (i.e. residential development type traffic and loads/frequencies) frost susceptibility and strength of the subgrade soils, the following pavement component given are recommended for the proposed development of access roads and streets, however the Town of Caledon/Region of Peel design standards should be followed:

Table 4: Pavement Design

		Minimum Thickness of Pavement Components (mm)			
Material		Local Road (7.9m Road Pavement Width)	9.5 m Neighbourhood Collector (8.9 m Road Pavement Width)		
Asphaltic Concrete	HL 3 Surface Course	40	40		
(OPSS 1150)	HL 8 Binder Course	65	90		
Granular Materials	Granular A Base	150	150		
(OPSS.MUNI 1010)	Granular B Type II Subbase	350	500		
Total Pavement Thickness (mm)		605	780		
		Prepared and Approved Sul	bgrade		

As part of the subgrade preparation, proposed access roads should be stripped of topsoil and other obviously unsuitable fill or organic materials. Fill required to raise the grades to design elevations should conform to the engineered fill requirements outlined previously in the report. Soft or spongy trench backfill areas should be sub-excavated and properly replaced with suitable approved backfill compacted to 98 percent SPMDD. Prior to placing pavement subbase and/or base materials, the exposed soil subgrade should be heavily proof-rolled in conjunction with an inspection by Golder. The granular subbase and base materials should be placed in loose layers no thicker than 200 mm and uniformly compacted to 100 percent of their SPMDD. The binder course and surface course asphalt materials should be compacted to minimum 92.0 percent of their Marshall Maximum Relative Density according to OPSS 310, as measured in the field using a nuclear density gauge.

Where new pavement abuts existing pavement (e.g. at the development limits), proper longitudinal lap joints should be constructed to key the new asphalt into the existing asphalt surface. The existing asphalt edges should be provided with a proper sawcut edge prior to keying-in the new asphalt. It should be ensured that any undermining or broken edges resulting from the construction activities are removed by the sawcut.

It should be noted that in some cases, even though the compaction requirements have been met, the subgrade strength may not be adequate to support heavy construction loading especially during wet weather or where backfill materials wet of optimum have been placed. In this regard, the design subbase thickness may not be sufficient for a construction haul road and additional subbase (in the order of 450 mm) may be required. In any event, the subgrade should be proofrolled and inspected by Golder prior to placing the subbase and any additional material, as required, consistent with the prevailing weather conditions and anticipated use by construction traffic.

7.4.1 Subgrade Drainage

In order to preserve the integrity of the pavement, continuous subdrains should be placed at the concrete curb lines along both sides of the proposed streets. The invert of the subdrains should be at least 300 mm below the bottom of the Granular "B" subbase and should be sloped to drain to catchbasins. The subdrains should consist of perforated pipe wrapped in a suitable geotextile and surrounded on all sides with a minimum thickness of 150 mm of OPSS.PROV 1002 Concrete Fine Aggregate (i.e. concrete sand).

8.0 SEISMIC SITE CLASSIFICATION

Seismic hazard is defined in the 2012 Ontario Building Code (OBC) by uniform hazard spectra (UHS) at spectral coordinates of 0.2 second, 0.5 second, 1.0 second and 2.0 seconds and a probability of exceedance of 2% in 50 years. The OBC method uses a site classification system defined by the average soil/bedrock properties (e.g. shear wave velocity, Standard Penetration Test (SPT) resistance, undrained soil shear strength, etc.) in the 30 m below the foundation level. There are six site classes from A to F, decreasing in ground stiffness from A, hard rock, to E, soft soil; with site class F used to denote problematic soils (e.g. sites underlain by thick peat deposits and/or liquefiable soils). The site class is then used to obtain acceleration and velocity-based site coefficients F_a and F_v ; respectively, used to modify the UHS to account for the effects of site-specific soil conditions in design.

Based on the results of the preliminary geotechnical investigation and assuming soils below the maximum depth investigated exhibit similar properties / strengths, a **Site Class D** is estimated for planning purposes. The Site Class will need to be verified, and adjusted as necessary, during detail design.

9.0 INSPECTION AND TESTING

During construction, full-time observation should be carried out during engineered fill and site servicing backfill placement, and sufficient foundation inspections, subgrade inspections and in-situ materials testing should be carried out to confirm that the conditions exposed are consistent with those encountered in the boreholes and to monitor conformance to the pertinent project specifications.

10.0 CLOSING

We trust that this preliminary report provides enough preliminary geotechnical engineering information to proceed with the detailed design of the proposed development. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact this office.

Signature Page

Golder Associates Ltd.

Erti Mansaku, P.Eng. Geotechnical Engineer Jeff Tolton, C.E.T.

Associate, Senior Geotechnical Technologist

JD/EM/JET/sm

Golder and the G logo are trademarks of Golder Associates Corporation

 $https://golder associates.share point.com/sites/102461/technical\ work/phase\ 5000-clear brook\ developments\ Itd/19115264\ (5000)\ final\ georeport\ clear brook.docx$

Approximate Borehole Location

Approximate Borehole and Monitoring Well Location

Approximate Previous and Adjacent Properties Geotechnical Borehole (Edward Wong 2017, Golder 2019)

Watercourse

Waterbody

Wetland

Site Boundary

Clearbrook Developments Ltd. Site Boundary

CLIENT
CLEARBROOK DEVELOPMENTS LTD.

CONSULTANT

YYYY-MM-DD	2019-04-16	٦
DESIGNED	MM	— ;
PREPARED	MM	
REVIEWED	EM	F
APPROVED	-	

REFERENCE(S)

1. IMAGERY: ESRI, HERE, DELORME, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

© 2019 MICROSOFT CORPORATION © 2019 DIGITALGLOBE ©CNES (2019) DISTRIBUTION

AIRBUS DS

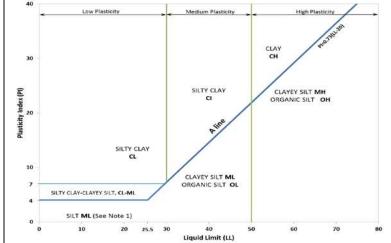
2. BASE DATA: LIO MNRF 2019

3. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

PROJECT
PRELIMINARY GEOTECHNICAL INVESTIGATION, PROPOSED RESIDENTIAL
DEVELOPMENT, CLEARBROOK DEVELOPMENTS, CALEDON, ON

SITE AND BOREHOLE LOCATION PLAN

_				
	PROJECT NO.	CONTROL	REV.	FIGURE
	19115264	5000	-	1


APPENDIX A

Method of Soil Classification
Abbreviations and Terms used on
Record of Borehole
List of Symbols
Record of Boreholes

METHOD OF SOIL CLASSIFICATION

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Си	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D_1)^2}{D_{10}}$	$\frac{(30)^2}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name		
		of is nm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	≥3		GP	GRAVEL		
ss)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL		
by ma	SOILS an 0.07	GRAY 50% by varse fr er thar	Gravels with >12%	Below A Line			n/a				GM	SILTY GRAVEL		
INORGANIC (Organic Content ≤30% by mass)	AINED rger th	(×) cc larg	fines (by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL		
INORG	SE-GR/ ss is la	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or ≥	≥3	≥30%	SP	SAND		
ganic (COARS by mas	SANDS % by mass se fraction than 4.75	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND		
Ō.	%05<)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with	Below A Line			n/a				SM	SILTY SAND		
		(≥¢ smal	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND		
Organic	0-11			1 -bt			Field Indica	itors		0		Dulman		
or Inorganic	Group	Type of Soil	Soil Type of	of Soil	Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name	
		- plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT		
(ss	FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)	75 mm	75 mm	SILTS (Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)	7		Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT
by ma		SILTS	below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT		
ANIC ≤30%		n-Plast	S o C	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT		
INORGANIC Content ≤30%	-GRAIN	Į Š		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT		
INORGANIC (Organic Content ≤30% by mass)	FINE- y mass	olot	e on nart	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY		
Ö.	≥50% t	CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)		Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY		
				Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY		
1LY NNIC LS	anic >30% ass)		mineral soil tures					30% to 75%	SILTY PEAT, SANDY PEAT					
HIGH	Peat and mineral soil mixtures Peat and mineral soil mixtures Predominantly peat, may contain some mineral soil, fibrous or amorphous peat									75% to 100%	PT	PEAT		

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier		
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL)		
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable		
> 5 to 12	some		
≤ 5	trace		

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (qt), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

SAMPLES

AS	Auger sample	
BS	Block sample	
CS	Chunk sample	
DD	Diamond Drilling	
DO or DP	Seamless open ended, driven or pushed tube sampler – note size	
DS	Denison type sample	
GS	Grab Sample	
MC	Modified California Samples	
MS	Modified Shelby (for frozen soil)	
RC	Rock core	
SC	Soil core	
SS	Split spoon sampler – note size	
ST	Slotted tube	
TO	Thin-walled, open – note size (Shelby tube)	
TP	Thin-walled, piston – note size (Shelby tube)	
WS	Wash sample	

SOIL TESTS

W	water content
PL, w _p	plastic limit
LL, WL	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
M	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
Υ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS

Consistency

Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

- SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure
- SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
_	3.1416	w w _l or LL	water content liquid limit
π In v			·
In x log ₁₀	natural logarithm of x x or log x, logarithm of x to base 10	w _p or PL I _p or PI	plastic limit plasticity index = (w _l – w _p)
•	acceleration due to gravity	NP	non-plastic
g t	time	Ws	shrinkage limit
	une	l _L	liquidity index = $(w - w_p) / I_p$
		Ic	consistency index = $(w - w_p) / I_p$
		e _{max}	void ratio in loosest state
		e _{min}	void ratio in densest state
		I _D	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN	_	(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
$\overset{\cdot}{\Delta}$	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
ε	linear strain	q	rate of flow
εν	volumetric strain	v	velocity of flow
η	coefficient of viscosity	İ	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress	,	
σ1, σ2, σ3	principal stress (major, intermediate,		
, - 2, - 0	minor)	(c)	Consolidation (one-dimensional)
	,	Cc	compression index
⊙ oct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_r	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	C_{α}	secondary compression index
G	shear modulus of deformation	m_{v}	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		T _v	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ′ _p	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρα(γα)	dry density (dry unit weight)	(d)	Shear Strength
ρα(γα) ρw(γw)	density (unit weight) of water	τ _p , τ _r	peak and residual shear strength
ρω(γω) ρs(γs)	density (unit weight) of solid particles		effective angle of internal friction
γ'	unit weight of submerged soil	φ΄ δ	angle of interface friction
1	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = $tan \delta$
D_R	relative density (specific gravity) of solid	c′	effective cohesion
- 11	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength (ϕ = 0 analysis)
е	void ratio	p	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
	~	q _u	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	e $\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)	_	(sompressive on ongul)/2
	3 ,,		

RECORD OF BOREHOLE: BH/MW19-04 PROJECT: 19115264-1000/5000 SHEET 1 OF 2 LOCATION: Lat. 43.750748 Long. -79.810026 DATUM: Geodetic BORING DATE: March 28, 2019 (See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp I - w (m) GROUND SURFACE 266.50 0.00 266.30 0.20 TOPSOIL (200 mm) 1A SS (CL) SILTY CLAY, some sand, trace organics; dark brown; cohesive, w<PL, 1B SS 265.74 (CL) gravelly sandy SILTY CLAY; light brown with oxidation staining, (TILL); SS 0 cohesive, w<PL, stiff to very stiff 2 16 PP = 50 kPa PP = 245 kP ss 12 0 2 SS 12 a-MH PP = 290 kPa Bent-5 SS 19 0 PP = 845 kP 17/04/2019 CME 75 Track Mount Power Auger SS 28 0 PP = 390 kPa 6 - Cobble/boulders inferred from auger grinding at a depth of 6 m
- Silty sand seam at a depth of 6.2 m Scree and Sand 7 SS 30 0 259.79 (CL-ML) sandy CLAYEY SILT, trace gravel; grey, (TILL); cohesive, w>PL, stiff to hard PP = 340 kP SS 13 0 PP = 440 kP 9 SS 37 0 9 Bentonite

0

GOLDER GOLDER

CONTINUED NEXT PAGE

10 SS 79

G.\. CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ_GAL-MIS.GDT_17\6/19_JMC

GTA-BHS 001

DEPTH SCALE

1:50

LOGGED: JD

RECORD OF BOREHOLE: BH/MW19-04

SHEET 2 OF 2

LOCATION: Lat. 43.750748 Long. -79.810026

(See Figure 1)

BORING DATE: March 28, 2019

DATUM: Geodetic

YLE ,	дон.	SOIL PROFILE	1.		SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTI k, cm/s	VITY,	AL NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - C	10° 10° 10 WATER CONTENT Wp	PERCENT WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE										
- 11		(CL-ML) sandy CLAYEY SILT, trace gravel; grey, (TILL); cohesive, w>PL, stiff to hard (SW/SM) gravelly SILTY SAND, coarse to fine; light brown to brown; non-cohesive, dry to wet, compact to very dense		255.76 10.74	11A 11B	ss ss	120/ 6"				PP = 150 kPa	
	wer Auger m				12	SS	62		0			
- 14	CME 75 Track Mount Power 100 mm Solid Stem	(SP) SAND, some silt, trace clay; light		251.75 14.75	13	ss	19		0			∑ 17/04/2019
- 15		grey; wet, compact to dense			14	SS	31		0		мн	Sand Screen and Sand
- 17		END OF BOREHOLE.		249.13 17.37	15	SS	22					
- 18		Notes: 1. Water level measured in monitoring well as follows: Deep Well Date Depth Elev. (m) March 29, 2019 14.8 mbgs 251.7 m April 17, 2019 14.55 mbgs 251.95 m Shallow Well										
- 19		Date Depth Elev. (m) April 17, 2019 3.75 mbgs 262.75 m 2. PP = unconfined compressive strength measured using pocket penetrometer on sample in the field.										
DEI		CALE	1		<u> </u>			GOLDER				DGGED: JD ECKED: EM

RECORD OF BOREHOLE: BH/MW19-05

LOCATION: Lat. 43.75409 Long. -79.807715 (See Figure 1)

BORING DATE: March 28, 2019

SHEET 1 OF 2 DATUM: Geodetic

S ALE	THOD		SOIL PROFILE	1 -	1	SA	MPLE	-	DYNAMIC PENETRA RESISTANCE, BLOV		1		k, cm/			Ţ	NG ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 I I SHEAR STRENGTH Cu, kPa		Q - • U - O	w	ATER (10 ⁵ 1 CONTENT	Γ PERCE	o ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	m	4	GROUND SURFACE	ST				m	20 40	60 8	30					40		
- 0	Т	+	TOPSOIL (280 mm)	EEE	270.50 0.00													
			(CL) SILTY CLAY, trace gravel, trace organics; dark to light brown; cohesive, w~PL, stiff		270.22 0.28		SS	12						•				
1			(CL) SILTY CLAY, some sand, trace gravel; light brown with oxidation staining, (TILL); w <pl, stiff<="" td="" very=""><td></td><td>269.74 0.76</td><td>2</td><td>ss</td><td>24</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></pl,>		269.74 0.76	2	ss	24					0					
						3	SS	26										
2						4	ss	23					0					Bentonite
3						5	SS	26					0					
- 4	ack Mount	100 mm Solid Stem	(CL-ML) CLAYEY SILT, trace sand to sandy, trace gravel; grey, (TILL); cohesive, w <pl, hard<="" th=""><th></th><th>265.64 4.86</th><th></th><th>SS</th><th>44</th><th></th><th></th><th></th><th></th><th>С</th><th>)</th><th></th><th></th><th></th><th>Sand</th></pl,>		265.64 4.86		SS	44					С)				Sand
7			- Becoming sandy, with sand seams below a depth of 6.1 m			7	SS	77										Screen and Sand
8			- Silty sand layer/stratum encountered at a depth of 7.6 m			8	SS	94					0					17/04/2019
9					260.75	9	ss	100										Bentonite
- 10		-[END OF BOREHOLE. — — — — — — — — — — — — — — — — — — —		9.75			-						<u> </u>				
DEI		1 80	CALE	•	•	•			GOL	DEI	₹		,					OGGED: JD

RECORD OF BOREHOLE: BH/MW19-05

BORING DATE: March 28, 2019

LOCATION: Lat. 43.75409 Long. -79.807715 (See Figure 1)

SHEET 2 OF 2 DATUM: Geodetic

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0W Wp **I**− -ı wı (m) --- CONTINUED FROM PREVIOUS PAGE ---10 1. Borehole dry upon completion of drilling. 2. Water level measured in monitoring well as follows:
 Date
 Depth
 Elev. (m)

 March 28, 2019
 Dry
 Dry

 April 17, 2019
 8.32 mbgs
 262.18 m
 11 12 13 GTA-BHS 001 G:\ CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\\ 12 GINT\\ 9115264-SNELLSHOLLOW BH LOGS\.GPJ GAL-MIS\.GDT 17\\ 6/19 JMC 14 15 16 17 18 19 20 LOGGED: JD

GOLDER

RECORD OF BOREHOLE: PROJECT: 19115264-1000/5000

BH/MW19-06

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: Lat. 43.752469 Long. -79.804999 BORING DATE: March 2, 2019

(See Figure 1)

S	ТНОБ	SOIL PROFILE	Τь		SAN	/IPLES	DYNAMIC PENETRAT RESISTANCE, BLOW	S/0.3m	HYDRAULIC CONDUCTIVI k, cm/s	TY,	NG I	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa 20 40	60 80 nat V. + Q - ● rem V. ⊕ U - ○	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	10 ⁻³		OR STANDPIPE NSTALLATION
- 0		GROUND SURFACE	Ĺ	262,00					.5 25 30			
ا		TOPSOIL (410 mm)		0.00	1A	ss						
- 1		(CL) SILTY CLAY, trace organics, some to trace sand, trace gravel; dark brown; cohesive, w>PL, firm		261.59 0.41	1B	9						17/04/2019
2		(CL) SILTY CLAY, some sand to sandy, trace gravel; light brown, (TILL); cohesive, w>PL, stiff to very stiff	2	260.55 1.45	3	SS 14					Bentoni	te
3			A WAY WAY WAY	250.00		SS 28						∑ 28/03/2019
	Power Auger	(CL-ML) CLAYEY SILT, trace sand and gravel; grey, (TILL); cohesive, w>PL, very stiff to hard		258.88 3.12	5A 5B							
5	CME 75 Track Mount Power Auger 100 mm Solid Stem				6	SS 15					Sand	
7					7	SS 27					Screen	and Sand
. 8		END OF BOREHOLE.		253.68 8.32	8	SS 36					Bentoni	te
. 9		Notes: 1. Water level measured in monitoring well as follows: Date Depth Elev. (m) March 28, 2019 2.54 mbgs 259.46 m April 17, 2019 0.38 mbgs 261.62 m		0.02								
10												
DEI		CCALE					GOL	DER			LOGGED	

RECORD OF BOREHOLE: BH19-14

SHEET 1 OF 2

DATUM: Geodetic

LOCATION: Lat. 43.749015 Long. -79.809338

(See Figure 1)

BORING DATE: April 5, 2019

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp I - w (m) GROUND SURFACE 269.00 TOPSOIL (300 mm) 0.00 ss 268.70 (CL) sandy SILTY CLAY, trace to some gravel; brown with oxidation staining, (TILL); cohesive, w<PL, firm to hard ss 1B SS PP = 320 kP MH 2 19 OF3 SS 21 0 - Cobbles/boulders inferred from auger grinding at 2.3 m SS 23 PP = 245 kP 3 5 SS 0 36 PP = 340 kP 265.00 (SM) SILTY SAND, trace gravel; light brown; moist, compact to dense CME 75 Track Mount Power Auger SS 24 0 ss 32 261.99 (CL) sandy SILTY CLAY, trace gravel; brown, (TILL); cohesive, w~PL, hard SS 8A PP = 40 kPa 261.00 94 0 (ML/SM) gravelly sandy SILT to gravelly SILTY SAND, fine grained, trace clay, slight plasticity, trace cobbles inferred 8B ss from auger grinding; light brown; non-cohesive, moist, very dense 9 SS 96 0 259.25 9.75 END OF BOREHOLE. CONTINUED NEXT PAGE

DEPTH SCALE 1:50

GTA-BHS 001

G_CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC

GOLDER 6

LOGGED: JD

CHECKED: EM

RECORD OF BOREHOLE: BH19-14

SHEET 2 OF 2

LOCATION: Lat. 43.749015 Long. -79.809338

(See Figure 1)

BORING DATE: April 5, 2019

DATUM: Geodetic

H SCA	ᇤᅵ								NETRAT I , BLOWS		`.		NDUCTI			7 之 l	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	HEAR STRE u, kPa	NGTH	nat V. + rem V. ⊕	Q - • U - O	ATER CC	ONTENT F	PERCENT		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE Notes: 1. Borehole dry upon completion of drilling. 2. PP= unconfined compressive strength measured with pocket penetrometer in the field.															
- 12																	
13																	
- 14																	
15																	
16																	
17																	
18																	
19																	
- 20																	

1:50

RECORD OF BOREHOLE: BH19-15

(See Figure 1)

LOCATION: Lat. 43.751797 Long. -79.80950

BORING DATE: April 1, 2019

SHEET 1 OF 2 DATUM: Geodetic

CHECKED: EM

	GOH.	SOIL PROFILE	1. 1		SA	MPLE	_	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m		HYDRAULIC CONDUCTIVITY, k, cm/s	T	U PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH nat V. + rem V. ⊕	Q - • U - O	WATER CONTENT PERCE	IONOT LINE WI 40	OR STANDPIPE B: INSTALLATION
0		GROUND SURFACE TOPSOIL (300 mm)	2221	263 <u>.</u> 50 0.00		1	_					
				263.20	1A	ss	7					
		(CL) SILTY CLAY, trace organics, trace gravel; brown; cohesive, w>PL, firm		0.30 262.89	1B	ss						
		(CL) SILTY CLAY and SAND, trace gravel; mottled light brown to brown,		0,61								
1		(TILL); cohesive, w <pl, firm="" stiff<="" td="" to=""><td></td><td></td><td>2</td><td>ss</td><td>7</td><td></td><td></td><td>0</td><td></td><td></td></pl,>			2	ss	7			0		
					3A	ss					PF) <u> </u>
2		(CL-ML) CLAYEY SILT, some sand to		261.52 1.98		ss	13				250	kPa
		sandy, trace gravel; grey, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to=""><td></td><td>1,00</td><td>36</td><td>33</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		1,00	36	33						
					4	ss	14			a-1	PF) =
											345 M	kPa H
3												
					5	ss	15			þ þ	PF 250	° = kPa
4												
	-ie											
	ver Aug											
	5 Track Mount Pow 100 mm Solid Stem				6	ss	31			0	PF) =
5	rack Mc										300	кма
	CME 75 Track Mount Power Auger 100 mm Solid Stem											
	5											
6												
					7	ss	15				l l) <u>=</u>
							15				320	
_												
7												
		Operation and the constant										
8		- Contains sand layers at 7.8 m			8	SS	17				PF 320	e = kPa
9												
J												
				252.01	9A	ss	27				PF 320	r = kPa
		(SM) SILTY SAND to SILT, trace to some clay; grey; wet, compact		253.84 9.66	9B	ss					М	н
10		CONTINUED NEXT PAGE	_1213				-	+		 	+ -	
_								GOLDE				

RECORD OF BOREHOLE: BH19-15

SHEET 2 OF 2

LOCATION: Lat. 43.751797 Long. -79.80950

(See Figure 1)

BORING DATE: April 1, 2019

DATUM: Geodetic

ا . لا	유 단	SOIL PROFILE	1.	_	SAM	IPLES	1	IC PENET ANCE, BL	.OWS/	N 0.3m	,	HIDRA	k, cm/s	NDUCTI	VIII,	T 28	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NOMBER	TYPE	SHEAR Cu, kPa	STRENG	TH na	at V. + em V. ⊕	Q - ● U - O		ATER CO	ONTENT	PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE						, 1 0			<i>5</i>				, 10		
10		(SM) SILTY SAND to SILT, trace to some clay; grey; wet, compact		253.01													
- 11	Je	(CL-ML) CLAYEY SILT, some sand to sandy, trace gravel; grey, (TILL); cohesive, w <pl, hard<="" td=""><td>X</td><td>10.49</td><td>10 8</td><td>SS 4</td><td>5</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>PP = 440 kPa</td><td></td></pl,>	X	10.49	10 8	SS 4	5					0				PP = 440 kPa	
12	CME 75 Track Mount Power Auger 100 mm Solid Stem	- Increased sand content below 12.5 m depth		_	11 5	SS 4	1					0	Н			PP = 440 kPa MH	
13					12 \$	SS 3	1						0			PP = 420 kPa	
		END OF BOREHOLE.	*1	249.17 14.33	+	+										+	
- 15		Notes: 1. Water level measured at 6.0 mbgs upon completion of drilling. 2. PP= unconfined compressive strength measured with pocket penetrometer in the field.															
16																	
17																	
- 18																	
19																	
- 20 DE	PTH S	CCALE						~ ~ !								LO	GGED: JD

RECORD OF BOREHOLE: BH19-16

(See Figure 1)

LOCATION: Lat. 43.751797 Long. -79.80950

BORING DATE: March 26, 2019

SHEET 1 OF 1 DATUM: Geodetic

HOD	SOIL PROFILE			SA			DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	k, cm/s	무의	PIEZOMETER
BORING MET	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ 20 40 60 80	10° 10° 10° 10° 10° WATER CONTENT PERCENT Wp W W W W W W W W W	ADDITIONA LAB. TESTIN	OR STANDPIPE INSTALLATION
	GROUND SURFACE	888	257.00							
			256.67	1A	ss	,				
	some gravel, trace organics; brown to grey; cohesive, w>PL, soft		0.33 256.39 0.61	1B	ss	4		H-10	МН	
	trace gravel; light brown, (TILL); cohesive, w <pl, stiff="" stiff<="" td="" to="" very=""><td></td><td></td><td>2</td><td>ss</td><td>12</td><td></td><td></td><td></td><td></td></pl,>			2	ss	12				
										∑ 26/03/2019
				3	ss	25		0		
- Auger				4	SS	21				
lount Power				- 5	22	17				
75 Track M 100 mm 8						.,				
OME										
			252.35	6A						
	(CL-ML) CLAYEY SILT, trace gravel; grey, (TILL); cohesive, w <pl, stiff="" to="" very<br="">stiff - Silt/sand layer at a depth of 4.9 m</pl,>		4.65	6B	SS	14				
	- Silty sand/sandy silt layer at a depth of 6 m - 6.2 m			7A 7B	ss ss	27				
\perp	END OF BOREHOLE	717	250.29 6.71	7C	SS					
	Notes: 1. Water level measured at 1.4 mbgs upon completion of drilling.									
	CME 75 Track Mount Power Auger BORING METHOD 100 nm Solid Stem BORING METHOD	GROUND SURFACE TOPSOIL (330 mm) (CL-ML) sandy CLAYEY SILT, trace to some gravel, trace organics; brown to grey; cohesive, w>PL, soft (CL) sandy SILTY CLAY, trace sand, trace gravel; light brown, (TILL); cohesive, w <pl, (cl-ml)="" (till);="" -="" 1.="" 1.4="" 4.9="" a="" at="" borehole="" clayey="" cohesive,="" depth="" end="" gravel;="" grey,="" layer="" level="" m="" mbgs<="" measured="" notes:="" of="" silt,="" siltysand="" stiff="" td="" to="" trace="" very="" w<pl,="" water=""><td>GROUND SURFACE TOPSOIL (330 mm) (CL-ML) sandy CLAYEY SILT, trace to some gravel, trace organics; brown to grey; cohesive, w>PL, soft (CL) sandy SILTY CLAY, trace sand, trace gravel; light brown, (TILL); cohesive, w<pl, (cl-ml)="" (till);="" -="" 1.="" 1.4="" 4.9="" a="" at="" borehole="" clayey="" cohesive,="" depth="" end="" gravel;="" grey,="" layer="" level="" m="" mbgs<="" measured="" notes:="" of="" sand="" silt,="" silty="" stiff="" td="" to="" trace="" very="" w<pl,="" water=""><td>GROUND SURFACE TOPSOIL (330 mm) (CL-ML) sandy CLAYEY SILT, trace to some gravel, trace organics; brown to grey; cohesive, w>PL, soft (CL) sandy SILTY CLAY, trace sand, trace gravel; light brown, (TILL); cohesive, w<pl, (cl-ml)="" (till);="" -="" 1.="" 1.4="" 6="" 6.2="" a="" at="" borehole="" clayey="" cohesive,="" depth="" end="" gravel;="" grey,="" layer="" level="" m="" mbgs<="" measured="" notes:="" of="" sand="" sandy="" silt="" silt,="" silty="" stiff="" td="" to="" trace="" very="" w<pl,="" water=""><td> DESCRIPTION DESCRIPTION DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTIO</td><td> DESCRIPTION DESCRIPTION DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) </td><td> DESCRIPTION DESCRIPTION DESCRIPTION DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DE</td><td>DESCRIPTION Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Com</td><td>DESCRIPTION Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column</td><td> GROUND SURFACE 257.00 - 20 40 60 80 10 20 30 40 </td></pl,></td></pl,></td></pl,>	GROUND SURFACE TOPSOIL (330 mm) (CL-ML) sandy CLAYEY SILT, trace to some gravel, trace organics; brown to grey; cohesive, w>PL, soft (CL) sandy SILTY CLAY, trace sand, trace gravel; light brown, (TILL); cohesive, w <pl, (cl-ml)="" (till);="" -="" 1.="" 1.4="" 4.9="" a="" at="" borehole="" clayey="" cohesive,="" depth="" end="" gravel;="" grey,="" layer="" level="" m="" mbgs<="" measured="" notes:="" of="" sand="" silt,="" silty="" stiff="" td="" to="" trace="" very="" w<pl,="" water=""><td>GROUND SURFACE TOPSOIL (330 mm) (CL-ML) sandy CLAYEY SILT, trace to some gravel, trace organics; brown to grey; cohesive, w>PL, soft (CL) sandy SILTY CLAY, trace sand, trace gravel; light brown, (TILL); cohesive, w<pl, (cl-ml)="" (till);="" -="" 1.="" 1.4="" 6="" 6.2="" a="" at="" borehole="" clayey="" cohesive,="" depth="" end="" gravel;="" grey,="" layer="" level="" m="" mbgs<="" measured="" notes:="" of="" sand="" sandy="" silt="" silt,="" silty="" stiff="" td="" to="" trace="" very="" w<pl,="" water=""><td> DESCRIPTION DESCRIPTION DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTIO</td><td> DESCRIPTION DESCRIPTION DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) </td><td> DESCRIPTION DESCRIPTION DESCRIPTION DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DE</td><td>DESCRIPTION Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Com</td><td>DESCRIPTION Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column</td><td> GROUND SURFACE 257.00 - 20 40 60 80 10 20 30 40 </td></pl,></td></pl,>	GROUND SURFACE TOPSOIL (330 mm) (CL-ML) sandy CLAYEY SILT, trace to some gravel, trace organics; brown to grey; cohesive, w>PL, soft (CL) sandy SILTY CLAY, trace sand, trace gravel; light brown, (TILL); cohesive, w <pl, (cl-ml)="" (till);="" -="" 1.="" 1.4="" 6="" 6.2="" a="" at="" borehole="" clayey="" cohesive,="" depth="" end="" gravel;="" grey,="" layer="" level="" m="" mbgs<="" measured="" notes:="" of="" sand="" sandy="" silt="" silt,="" silty="" stiff="" td="" to="" trace="" very="" w<pl,="" water=""><td> DESCRIPTION DESCRIPTION DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTIO</td><td> DESCRIPTION DESCRIPTION DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) </td><td> DESCRIPTION DESCRIPTION DESCRIPTION DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DE</td><td>DESCRIPTION Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Com</td><td>DESCRIPTION Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column</td><td> GROUND SURFACE 257.00 - 20 40 60 80 10 20 30 40 </td></pl,>	DESCRIPTION DESCRIPTION DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DEPTH (m) DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTIO	DESCRIPTION DESCRIPTION DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m) DEPTH (m)	DESCRIPTION DESCRIPTION DESCRIPTION DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DE	DESCRIPTION Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Comparison Com	DESCRIPTION Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column Column	GROUND SURFACE 257.00 - 20 40 60 80 10 20 30 40

1:50

RECORD OF BOREHOLE: BH19-17

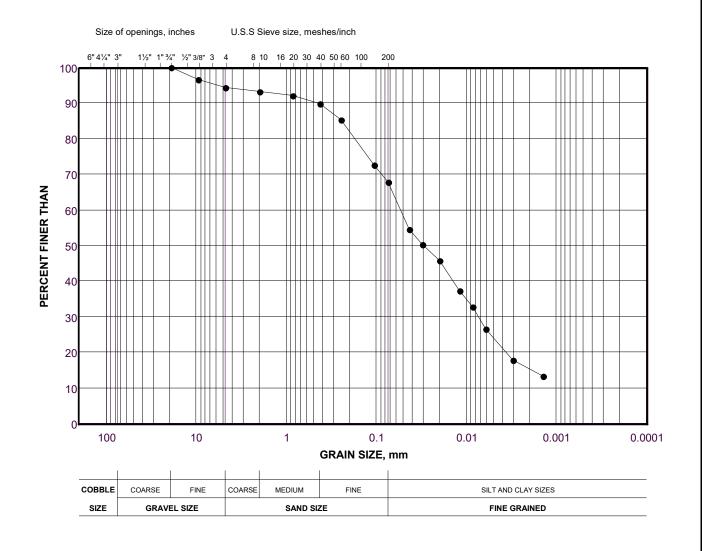
(See Figure 1)

LOCATION: Lat. 43.753061 Long. -79.806846

BORING DATE: March 28, 2019

SHEET 1 OF 1 DATUM: Geodetic

CHECKED: EM

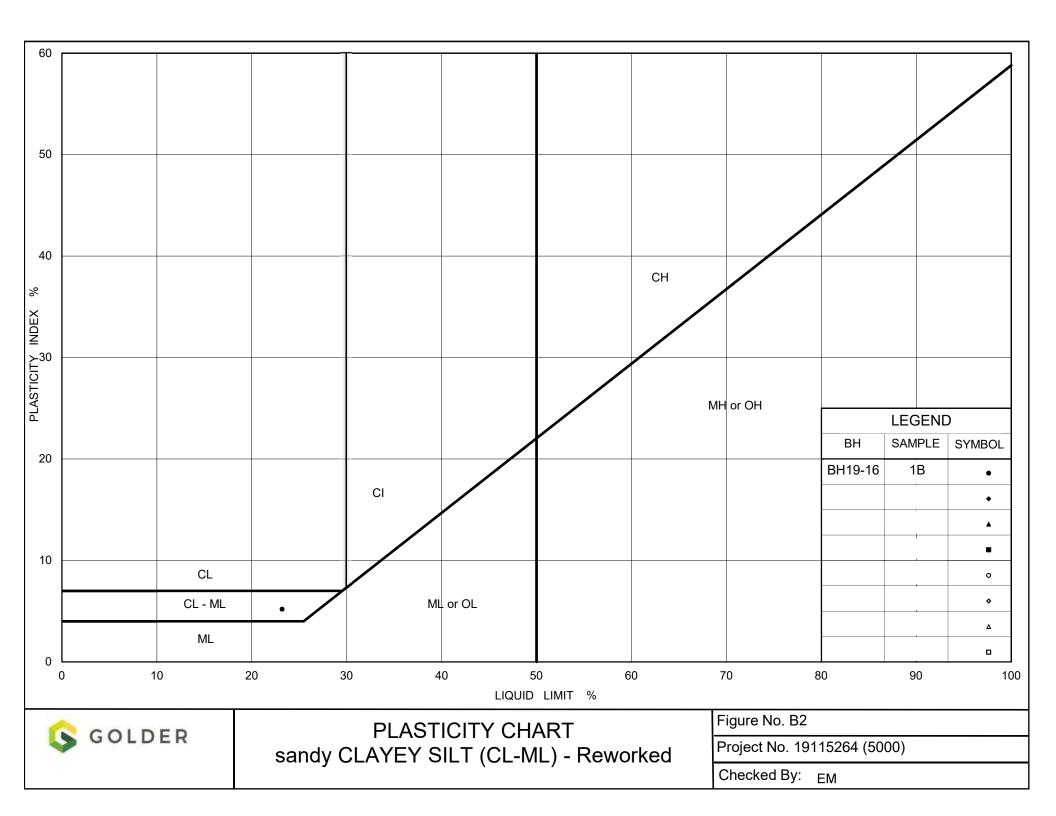

	5	3	SOIL PROFILE			SA	MPL	_	DYNAMIC PENI RESISTANCE, I	TRATI BLOWS	ON 5/0.3m	1	HYDRA	AULIC C k, cm/s	ONDUCT	IVITY,	T 29	PIEZOMETER
METRES	BOBING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 4 SHEAR STREN Cu, kPa	GTH	nat V. + rem V. ⊕	Q - • U - O		ATER C	ONTENT	0 ⁻⁴ 10 ⁻³ PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0			GROUND SURFACE	222	269.50													
			TOPSOIL (330 mm)		269.17	1A	ss	12										
			(CL) SILTY CLAY and SAND to sandy SILTY CLAY, trace gravel; light brown		0.33	1B	ss							C				
			with oxidation staining, (TILL); cohesive, w <pl, stiff="" stiff<="" td="" to="" very=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>															
1						2A	SS	18										
						2B	SS							a—			MH	
								200						0				
2						3	SS	29						0				
	-					4	ss	14										
3	ver Aug	ا ا																
	CME 75 Track Mount Power Auger	100 mm Solid Stem																
	rack Mc	0 mm S				5	SS	29										∑ 28/03/2019
	ME 75 1	10																
4	ō																	
					264.93													
			(CL-ML) CLAYEY SILT, some sand, trace gravel; grey, (TILL); cohesive,		4.57													
5			w <pl, hard<="" td=""><td></td><td></td><td>6</td><td>SS</td><td>34</td><td></td><td></td><td></td><td></td><td>0</td><td>١</td><td></td><td></td><td></td><td></td></pl,>			6	SS	34					0	١				
6																		
					262.79	7	SS	46										
	_	\exists	END OF BOREHOLE.	OF J M	6.71													
7			Notes: 1. Water level measured at 3.4 mbgs upon completion of drilling.															
			apost completion of animy.															
8																		
9																		
10																		
. 5																		

APPENDIX B

Geotechnical Laboratory Figures

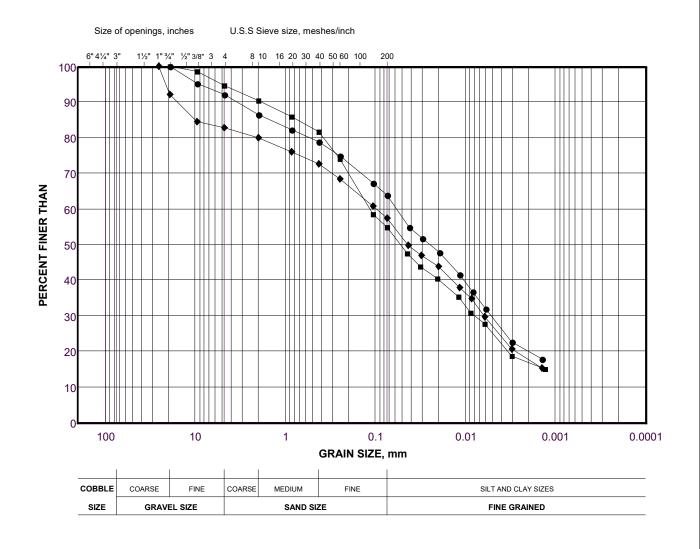
sandy CLAYEY SILT (CL-ML) - Reworked

FIGURE B1



LEGEND

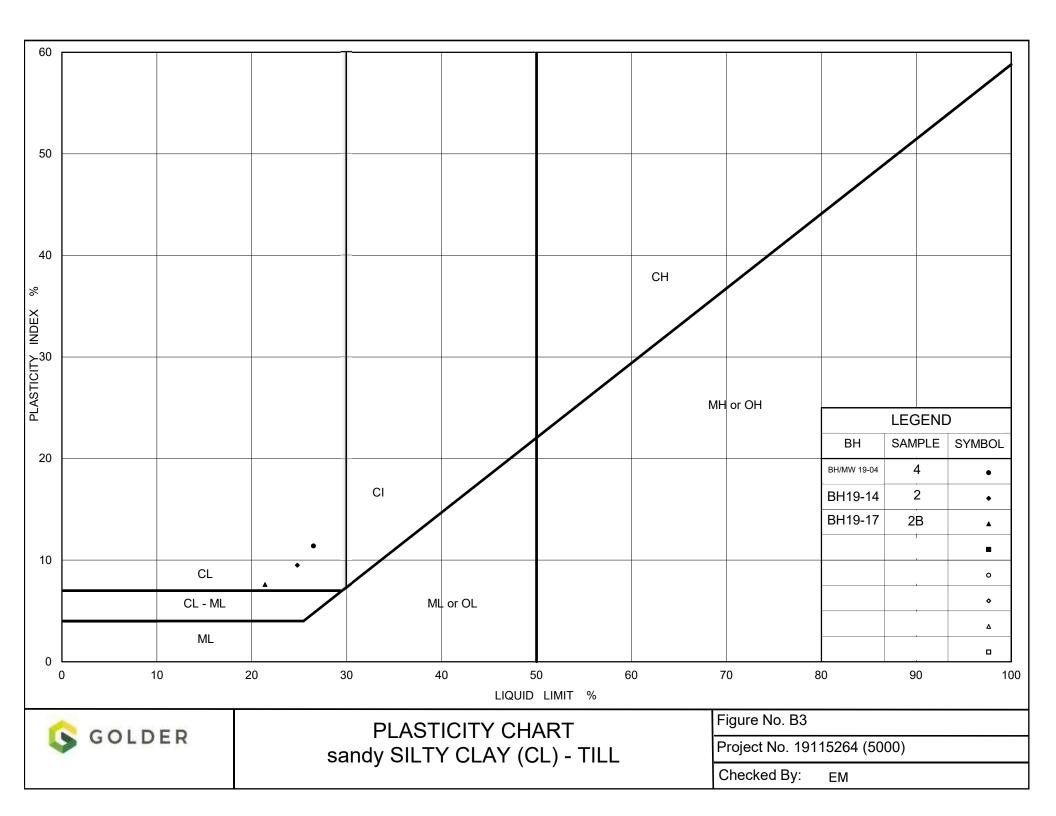
SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH 19-16	1B	0.34 - 0.61


Project Number: 19115264 (5000)

Checked By: EM Golder Associates Date: 12-Jun-19

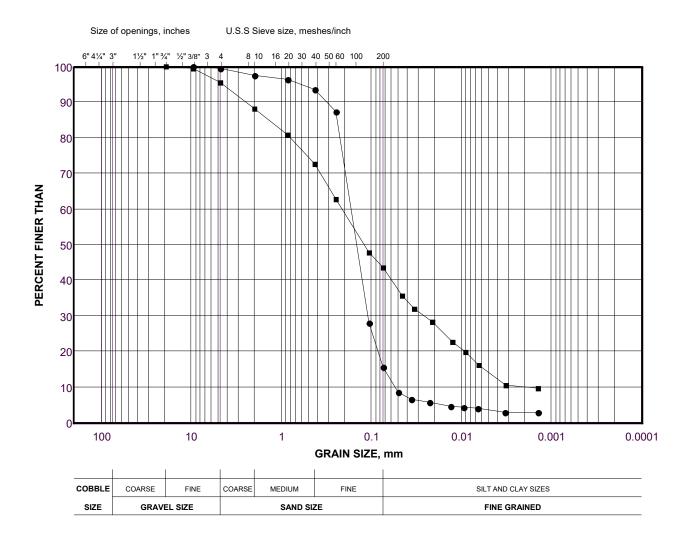
sandy SILTY CLAY (CL) - TILL

FIGURE B2



LEGEND

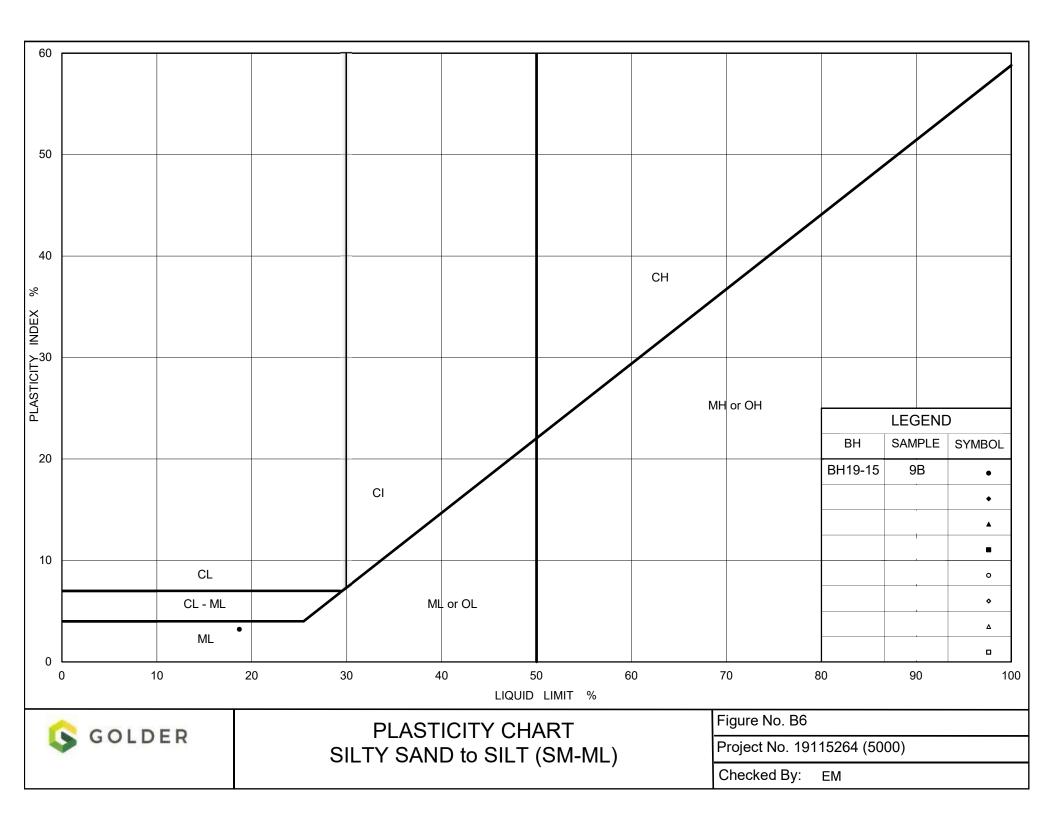
SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH 19-14	2	0.76 - 1.37
	BH 19-17	2B	1.13 - 1.37
•	BH/MW 19-04	4	2.29 - 2.90


Project Number: 19115264 (5000)

Checked By: Golder Associates Date: 21-Jun-19

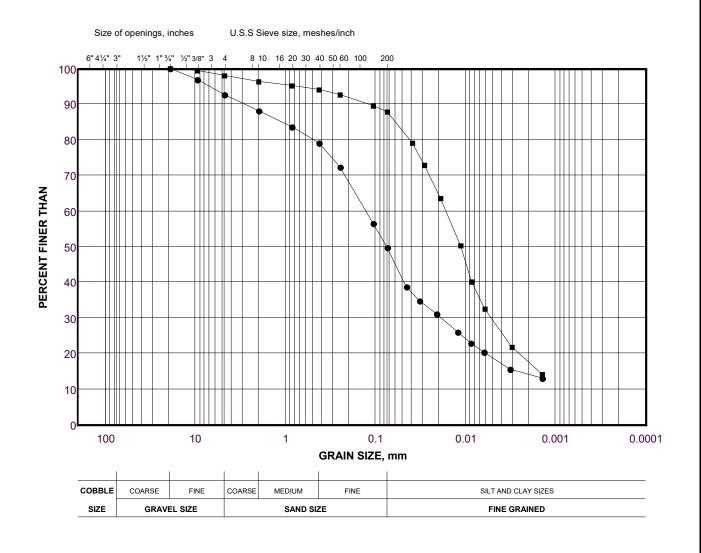
SILTY SAND to SILT (SM-ML)

FIGURE B5



LEGEND

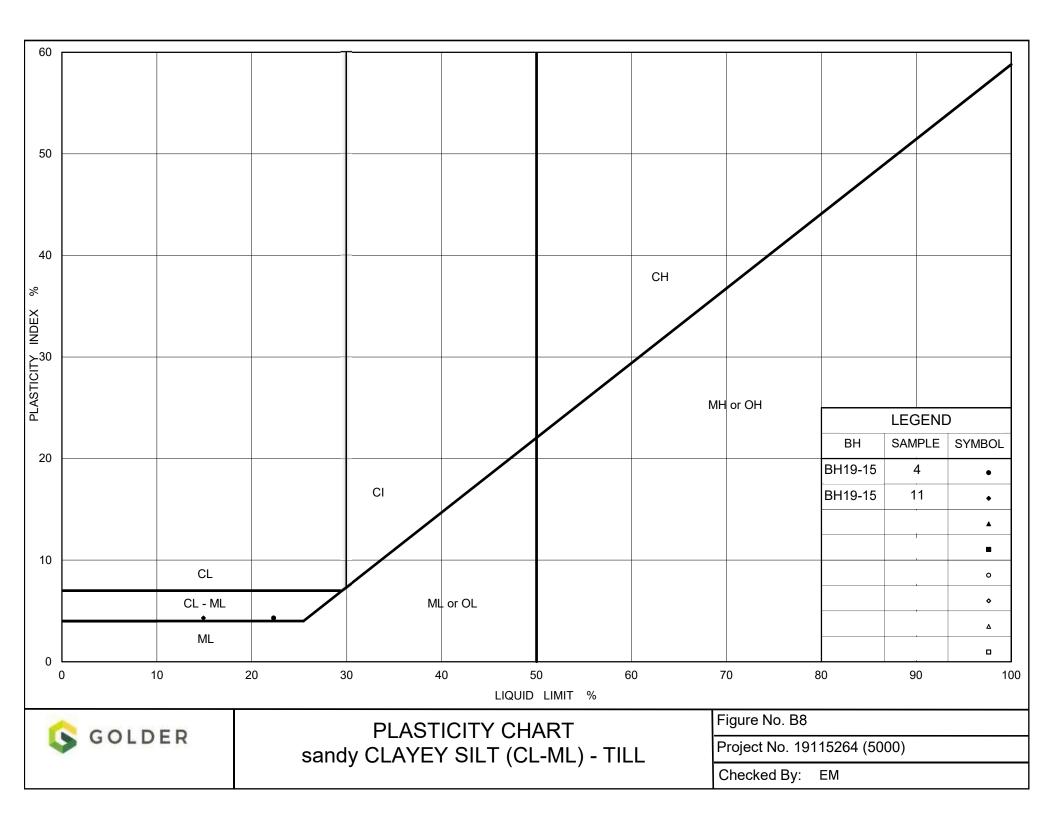
SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH 19-14	7	6.10 - 6.71
	BH 19-15	9B	9.69 - 9.75


Project Number: 19115264 (5000)

Checked By: EM Golder Associates Date: 12-Jun-19

sandy CLAYEY SILT (CL-ML) - TILL

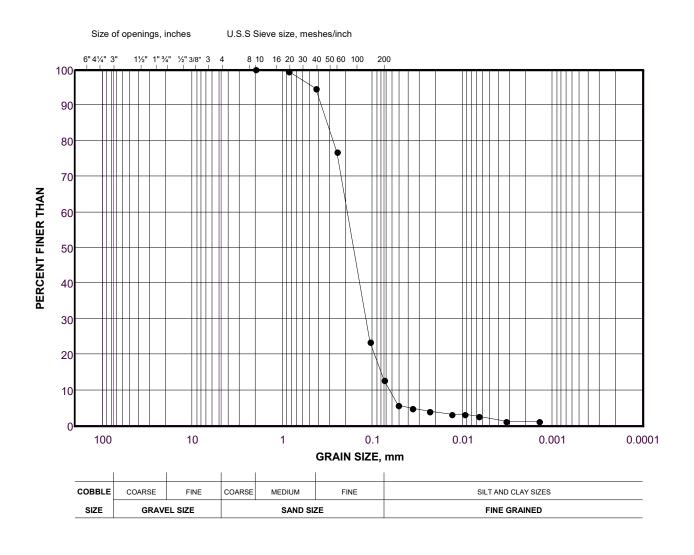
FIGURE B7



LEGEND

SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH 19-15	11	12.19 - 12.80
•	BH 19-15	4	2.29 - 2.90

Project Number: 19115264 (5000)


Checked By: EM Golder Associates Date: 21-Jun-19

GRAIN SIZE DISTRIBUTION

SAND (SP)

FIGURE B9

LEGEND

SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH/MW/ 19-04	14	15 24 - 15 85

Project Number: 19115264

APPENDIX C

Previous Geotechnical Borehole Logs

RECORD OF BOREHOLE: BH/MW19-03 PROJECT: 19115264-3000 SHEET 1 OF 2 LOCATION: Lat. 43.750098 Long. -79.814418 DATUM: Geodetic BORING DATE: April 4, 2019 (See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH OW. Wp I - w (m) GROUND SURFACE 266.88 TOPSOIL (350 mm) 0.00 SS 1A 266.53 (CL) SILTY CLAY, some sand, trace gravel, trace organics; brown with 0.35 1B SS oxidation staining; cohesive, w<PL, firm 2 SS 7 0 (CL) sandy SILTY CLAY, trace gravel, contains inferred cobbles; light brown with oxidation staining, (TILL); cohesive, w<PL, stiff to hard 1,37 ss 11 0 SS 24 Bentonite SS 5 30 b٠ мн G_CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC (ML) gravelly sandy SILT, with slight plasticity, contains inferred cobbles; light brown; non-cohesive, moist, very dense - Inferred cobbles/boulders from auger CME 75 Track Mount Power grindings at a depth of 2 m and 7.3 m SS 75 0 Sand 7 SS 100 259.88 7.00 (CL-ML) CLAYEY SILT, some to trace sand; grey, (TILL); cohesive, w<PL, hard 17/04/2019 Screen and Sand 8 SS 100 0 - Cobbles/boulders inferred from auger grinding at a depth of 8.4 m 9

GOLDER

0

9 SS 77

9.75

4/04/2019

GTA-BHS 001

END OF BOREHOLE.

CONTINUED NEXT PAGE

RECORD OF BOREHOLE:

BH/MW19-03

PROJECT: 19115264-3000 SHEET 2 OF 2 LOCATION: Lat. 43.750098 Long. -79.814418 DATUM: Geodetic BORING DATE: April 4, 2019 (See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0W Wp I -ı wı (m) --- CONTINUED FROM PREVIOUS PAGE ---10 Water level measured at 9.1 mbgs upon completion of drilling. 2. Water level measured in monitoring Date Depth Elev. (m) April 17, 2019 7.34 mbgs 259.54 m 11 12 13 14

GTA-BHS 001 G:\ CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\\ 12 GINT\\ 19115264-SNELLSHOLLOW BH LOGS\.GPJ GAL-MIS\.GDT 17\\ 6/19 JMC

15

16

17

18

19

20

GOLDER

RECORD OF BOREHOLE: PROJECT: 19115264-6000 LOCATION: Lat. 43.755372 Long. -79.802724

1:50

BH/MW19-07

BORING DATE: March 27, 2019

SHEET 1 OF 2 DATUM: Existing Ground

CHECKED: EM

(See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp I - w (m) GROUND SURFACE TOPSOIL (230 mm) 0.00 (CL) sandy CLAY, trace gravel, trace 0.23 19 organics; dark brown; cohesive, w<PL, very stiff 1B SS Φ (CL) SILTY CLAY, some sand to sandy, 0,61 trace gravel; light brown with oxidation staining, (TILL); cohesive, w<PL, very stiff to hard SS 0 2 11 3 ss 11 2 SS 24 - Becoming sandy at a depth of 3 m SS 5 45 G_CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC CME 75 Track Mount Power Auger SS 44 0 6 (SM/ML) sandy SILT to SILT, trace to some clay, slight plasticity; light brown; 5,90 Scre non-cohesive, wet, dense to very dense and Sand ss 36 17/04/2019 - Cobble/boulder inferred from auger 8 SS 100/ 2" 0 grinding at a depth of 7.3 m (SM) SILTY SAND, fine to medium grained, some to trace gravel; light 7.62 Bent-onite brown; non-cohesive, moist, dense to very dense 9 9 SS 131 CONTINUED NEXT PAGE GTA-BHS 001 DEPTH SCALE GOLDER LOGGED: JD

PROJECT: 19115264-6000

RECORD OF BOREHOLE: BH/MW19-07

(See Figure 1)

LOCATION: Lat. 43.755372 Long. -79.802724

BORING DATE: March 27, 2019

SHEET 2 OF 2

DATUM: Existing Ground Surface

			(See Figure 1)															Gundee
		O.	SOIL PROFILE			SAI	MPL	.ES	DYNAMIC PEN RESISTANCE,	NETRATIC)N	\ \	HYDRA	AULIC Co	ONDUCTI	VITY, T	(1)	
DEPTH SCALE	SES	BORING METHOD		-O1		α.		3m		40 6		o '	10			⁴ 10 ⁻³ ⊥	ADDITIONAL LAB. TESTING	PIEZOMETER OR
PTH	METF	ING N	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STREI Cu, kPa	NGTH n	at V. + em V. ⊕	Q - • U - O				PERCENT	DOITI B. TE	STANDPIPE INSTALLATION
		BOR		STRA	(m)	N	_	BLO		40 6			Wr 1	0 <u> </u>	 W 0 30	—— I WI 40	₹5	
-	10		CONTINUED FROM PREVIOUS PAGE (SM) SILTY SAND, fine to medium grained, some to trace gravel; light brown; non-cohesive, moist, dense to very dense			10	ss	94					0					
-	12	CME 75 Track Mount Power Auger 100 mm Solid Stem	- Contains wet sandy silt layer at a depth of 12.2 m			11	SS	40						0				Sand Screen and Sand
L-MIS.GDT 17/6/19 JMC	14		END OF BOREHOLE.		14.33	12	SS	38						0				Bentonite -
LOGS.GPJ GA	15		Notes: 1. Water level measured at 12.8 mbgs upon completion of drilling. 2. Water level measured in monitoring well as follows:															-
64-SNELLSHOLLOW BH	16		Deep Well Date April 17, 2019 Shallow Well Date Depth															
EDON/12 GINT/191152	17																	
DEVELOPMENTS/CAL	18																	
GTA-BHS 001 G:\(\) CLIENTSICLEARBROOKDEVELOPMENTSICALEDONN12_GINT\(\) 9115264-SNELLSHOLLOW BH LOGS. GPJ. GAL-MIS. GDT. 17/6/19. JMC	19																	
GTA-BHS 001 G:\	20 DE 1:		CALE						> G C	LD	EF							DGGED: JD ECKED: EM

RECORD OF BOREHOLE: BH/MW19-13 PROJECT: 19115264-1000/2000 SHEET 1 OF 2 LOCATION: Lat. 43.749709 Long. -79.812182 DATUM: Geodetic BORING DATE: April 4, 2019 (See Figure 1) DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH OW. Wp I - w (m) GROUND SURFACE 267.61 TOPSOIL (300 mm) 0.00 ss 267.31 (CL) SILTY CLAY, some sand, trace organics; dark brown; cohesive, w<PL, firm 1B ss 0 (CL) SILTY CLAY and SAND, trace gravel, inferred cobbles/boulders; 0.96 2 SS 17 \circ PP = 320 kPa mottled light brown/brown, (TILL); w<PL, very stiff to hard - Cobbles/boulders inferred from auger ss 19 grinding at 1.7 m

SS 22 PP = 340 kP 5 SS 33 Bentonite MH G:\CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\9115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 263.61 (SM) gravelly SILTY SAND 4.00 cobbles/boulders inferred from auger grinding; light brown; non-cohesive, dry CME 75 Track Mount Power Auger to moist, very dense 6 SS 154 0 н МН 8 - Heavy auger grinding below depth of 5.4 m ss Sand (ML) sandy SILT, with slight plasticity, trace gravel; light brown; moist, very 7.62 SS 138 Screen and Sand 9 <u>∑</u> 17/04/2019 9 SS 137 0 10 SS 146 CONTINUED NEXT PAGE GTA-BHS 001 DEPTH SCALE LOGGED: JD GOLDER 1:50

CHECKED: EM

RECORD OF BOREHOLE: PROJECT: 19115264-1000/2000

BH/MW19-13

SHEET 2 OF 2

DATUM: Geodetic

LOCATION: Lat. 43.749709 Long. -79.812182

BORING DATE: April 4, 2019

ا پ	НОР	SOIL PROFILE	1.		SA	MPLE		DYNAMIC PE RESISTANCE	NETRAT E, BLOW	ION S/0.3m	1		C COND			₽ [©]	PIEZOMETER
DEPIH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR STRE Cu, kPa	ENGTH	nat V. + rem V. €	80 - Q - • - U - ○	10 ⁻⁶ WATE Wp I — 10	10 ⁻⁵ R CONTI	ENT PERC	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
10		CONTINUED FROM PREVIOUS PAGE (ML) sandy SILT, with slight plasticity, trace gravel; light brown; moist, very dense			10	SS 1	146					Ф				МН	Screen and Sand
- 11		END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling.		257 <u>.09</u> 10.52													
		Water level measured in monitoring well as follows: Date Depth Elev. (m) April 17, 2019 9.45 mbgs 258.16 m															
12		PP= unconfined compressive strength measured with pocket penetrometer in the field.															
13																	
14																	
15																	
16																	
17																	
18																	
19																	
20																	

PROJECT: 19115264-6000

LOCATION: Lat. 43.753587 Long. -79.803241

RECORD OF BOREHOLE: BH19-18

BORING DATE: March 27, 2019

(See Figure 1)

SHEET 1 OF 1

DATUM: Existing Ground Surface

Ļ	ПОР	SOIL PROFILE			SAN	1PLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	일	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ 20 40 60 80	10° 10° 10° 10° 10° WATER CONTENT PERCENT WP W W W W W W W W W	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
. 0		GROUND SURFACE								
Ĭ		TOPSOIL (200 mm)		0.00	1A					
		(CL) sandy SILTY CLAY, trace to some gravel with cobbles/boulders inferred from auger grinding; brown to light brown with oxidation staining, (TILL); cohesive, w-PL, stiff to hard		0.20	1B	SS 11				
1					2	SS 22		0		
2					3	SS 38		0		
	er				4	SS 35		↓	мн	<u>∑</u> 27/03/2019
3	Power Aug Stem									27/03/2019
	CME 75 Track Mount Power Auger 100 mm Solid Stem				5	SS 35				
4	CME 7									
5					6	SS 52				
6		(CL/ML) CLAYEY SILT, trace sand; grey, (TILL); cohesive, w>PL, hard		6.10	7	SS 33				
7		END OF BOREHOLE Notes: 1. Water level measured at 2.7 mbgs upon completion of drilling.	P 19	6.71						
8										
9										
10										
DE	PTH S	SCALE		<u> </u>			GOLDER		LO	GGED: JD

PROJECT: 19115264-6000

RECORD OF BOREHOLE: BH19-19

(See Figure 1)

LOCATION: Lat. 43.754896 Long. -79.804943

BORING DATE: March 26, 2019

SHEET 1 OF 1

DATUM: Existing Ground Surface

, FE	HOF	SOIL PROFILE	1 -		SAME	_	DYNAMIC PENETRATESISTANCE, BLOW	٠,	k, cm/s	₹ 2 PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	60 80 nat V. + Q - ● rem V. ⊕ U - ○	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	PIEZOMETER OR STANDPIPE INSTALLATIO
		GROUND SURFACE	0			╫	20 40	60 80	10 20 30 40	
- 0		TOPSOIL (610 mm)	EEE	0.00						
					1 S	5 4			0	
- 1		(CL) sandy SILTY CLAY, some sand, trace gravel with cobbles/boulders inferred from auger grinding; brown with oxidation staining, (TILL); w <pl, hard<="" stiff="" td="" to="" very=""><td>**************************************</td><td>0,61</td><td>2 S</td><td>5 26</td><td></td><td></td><td>O F——I</td><td>мн</td></pl,>	**************************************	0,61	2 S	5 26			O F——I	мн
2					3 S	S 40				
	er Auger				4 S	49			d	
- 3	CME 75 Track Mount Power Auger 100 mm Solid Stem				5 S	5 54				
	ME 75 Track 100 mr									
4	٥				6 S	5 55			0	
5		- Increased sand content at a depth of 4.6 m		-	7 S	6 86				
		(SM) SILTY SAND, fine grained, inferred cobbles/boulders; light brown; non-cohesive, moist, very dense	9/2	5,18	8 S	S 95			0	
6										
		END OF BOREHOLE.		6.71	9 S	3 100			0	
- 7		Notes: 1. Borehole dry upon completion of drilling.		5.71						
8										
- 9										
10										
	этн с	CALE					GOL			LOGGED: JD

	E. P. ASS. 1 (44) 1	Kumar Jain BER Ma00			PROJECT NAME 3278 Mayfield Road PROJECT LOCATION Town of Caledon
ORILL ORILL	ING CON	TRACTOR _ HOD _Solid J.J.	Fadroy Enterprise Stem Augers		0/19/17 GROUND ELEVATION 270 m HOLE SIZE 150 mm GROUND WATER LEVELS: AT TIME OF DRILLING Dry E.W. AT END OF DRILLING Dry AFTER DRILLING
(m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC LOG	MATERIAL DESCRIPTION
-	ss 1	3-4-5-7 (9)	MC = 17%		TOPSOIL - ~200 mm thick. CLAYEY SILT - some sand, occasional gravel, brown, very moist, hard.
1 -	SS 2	5-6-10 (16)	PP = 400 kPa MC = 17%	6\$7-6\$1; 6\$7-6\$1; 6\$7-6\$1;	
2	SS 3	4-6-10 (16)	PP >450 kPa MC = 15%	1777777 17777777 17777777	
-	SS 4	6-10-14 (24)	PP >450 kPa MC = 14%	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
3	SS 5	5-10-12 (22)	PP >450 kPa MC = 11%		SAND TILL - trace clay, trace gravel, brown, very moist, compact.
4	SS 6	6-16-20 (36)	PP >450 kPa MC = 13%		-becoming dense below ~4.5 m depth
5		(00)			
6	SS 7	50-0-0/- 0.15	PP >450 kPa MC = 10%	0 6	-becoming very dense below ~6.0 m depth Bottom of hole at 6.15 m.

BH / TP / WELL 02995A-3278 MAYFIELD.GPJ GINT CANADA.GDT 1/4/02

E EDWARD W	ONG			BORING NUME PAGE	BER 4
CLIENT _ Dilip Kumar				PROJECT NAME 3278 Mayfield Road PROJECT LOCATION Town of Caledon	
DRILLING CONTRACT DRILLING METHOD _	FOR Fadroy Enterprise Solid Stem Augers CHEC			GROUND ELEVATION 270 m HOLE SIZE 150 mm GROUND WATER LEVELS: AT TIME OF DRILLING Dry AT END OF DRILLING Dry AFTER DRILLING Dry	
SAMPLE TYPE NUMBER BLOW COUNTS	TESTS	GRAPHIC LOG		MATERIAL DESCRIPTION	
SS 3-11-1 1 (24		0.20	FILL - ~ 1	~200 mm thick. m of brown sandy silt with rootlets, very moist over ~3,3 m of brown rootlets, organic inclusions, very moist.	269.8
1 SS 8-6 2 (12					
SS 4-4 3 (10					
SS 4-7-					
SS 4-7- 5 (14					
4		4.50			265.50
SS 8-14- 6 (34			CLAYEYS	ILT - some sand, trace gravel, brown, very moist, hard.	
6 SS 20-5 7 0/0.0	Tr -400 Kra	6.30 6.77-6-7-7-6-7-7-6-7-7-7-7-7-7-7-7-7-7-7			
0/0.0	MC = 8%	NN N 6.30		Bottom of hole at 6.30 m.	263.70

APPENDIX D

Important Information and Limitations of This Report

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

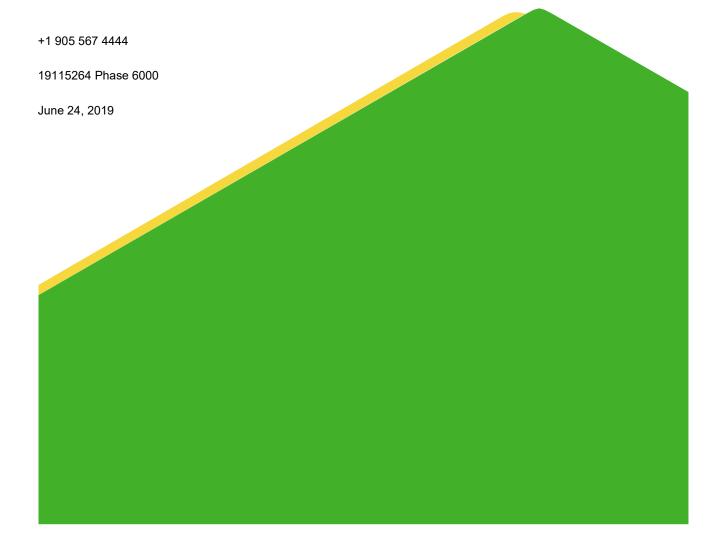
golder.com

REPORT

Preliminary Geotechnical Investigation, Coscorp HL Developments Inc.

Proposed Residential Development, Snell's Hollow Secondary Plan, Caledon, Ontario

Submitted to:


Coscorp HL Developments Inc.

Tom Basekerville Vice President Development 6625 Kitimat Road, #58 Mississauga, On

Submitted by:

Golder Associates Ltd.

6925 Century Avenue, Suite #100, Mississauga, Ontario, L5N 7K2, Canada

Distribution List

1 e-copy: Golder Associates Ltd.

1 e-copy: Coscorp HL Developments Inc.

1 e-copy: Snell's Hollow Developers Group

1 e-copy: Glen Schnarr & Associates Inc.

i

Table of Contents

1.0	INTR	ODUCTION	3
2.0	SITE	DESCRIPTION AND BACKGROUND	3
3.0	ADJ	ACENT GEOTECHNICAL SITE INFORMATION	3
4.0	REG	ONAL GEOLOGY	4
5.0	INVE	STIGATION PROCEDURE	4
6.0	SUB	SURFACE CONDITIONS	5
	6.1	Topsoil and Reworked/Disturbed Materials	5
	6.2	(CL) Silty Clay to sandy Silty Clay (Upper Glacial Till)	6
	6.3	(SM to SM/ML) Silty Sand to sandy Silt	6
	6.4	(CL/ML) Clayey Silt (Lower Glacial Till)	6
	6.5	Groundwater Conditions	7
TAB	BLES		
		proximate Topsoil Thickness	
Tabl	le 2: Gr	oundwater Level Measurements	7
Tahl	2 · Da	avement Design	12

FIGURES

Figure 1: Site and Borehole Location Plan

APPENDICES

APPENDIX A

Record of Boreholes

APPENDIX B

Geotechnical Laboratory Figures

APPENDIX C

Adjacent Properties Borehole Logs

APPENDIX D

Important Information and Limitations of This Report

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by Coscorp HL Developments Inc. (Coscorp) to provide preliminary geotechnical consulting services to support a draft plan approval for a future residential subdivision development located north east of Heart Lake Road and Mayfield Road in Caledon, Ontario (the Site), as shown in the Site and Borehole Location Plan, *Figure 1*.

The terms of reference for the geotechnical consulting services are included in Golder's proposal No. P19115264 Rev 1, dated March 8, 2019.

The purpose of the investigation is to obtain information on the general subsurface soil and shallow groundwater conditions at the site by means of a limited number of boreholes and geotechnical laboratory tests. Based on our interpretation of the factual information collected as part of the preliminary geotechnical investigation carried out at this site, a general description of the subsurface conditions across the site is presented herein. The interpreted subsurface conditions and available project details were used to develop preliminary engineering parameters and recommendations on the geotechnical design aspects of the project, including construction considerations which could influence design decisions.

This report provides the results of the preliminary geotechnical investigation and should be read in conjunction with the "Important Information and Limitations of This Report" Appendix D. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within twelve months of the date of the report, Golder should be given an opportunity to confirm that the recommendations in this report are still valid.

2.0 SITE DESCRIPTION AND BACKGROUND

The subject property is located north east of Heart Lake Road and Mayfield Road and is part of the Snell's Hollow Secondary Plan, which is a proposed residential development to be located in the southern part of the Town of Caledon. The site is bounded by Heart Lake Road to the west, Mayfield Road to the south and Highway 410 to the north and east as shown in *Figure 1*.

The site has a total area of approximately 6.3 hectares (15.6 acres) of predominantly flat land which slightly slopes at the property limit next to Highway 410. The site consists of agricultural land as noted by the presence of previous farming activities (crops). There is one residential dwelling located to the north of the site which has a municipal address of 12109 Heart Lake Road Caledon, Ontario.

Based on our understanding, the Site is to be developed into a residential development, with associated underground services and supporting roads. For the purposes of this report, we have assumed that the future residential houses will be constructed utilizing shallow strip/spread footings, with an interior slab-on-grade, and one-level of underground basement. We have also assumed cuts and/or fills required for site grading purposes will not exceed 2.0 m and that the invert of the site servicing will be no greater than 3.0 m below existing site grades.

3.0 ADJACENT GEOTECHNICAL SITE INFORMATION

An additional geotechnical investigation consisting of sixteen boreholes was also carried out as part of the Snell's Hollow Secondary Plan on the properties adjacent too and west side of Heart Lake Road. The following

is a summary of subsurface conditions obtained from boreholes located adjacent to the site (BH/MW19-05, BH/MW19-06, and BH19-17) as shown on the Site and Borehole Location Plan, *Figure 1*.

In general, the subsurface conditions encountered in Boreholes BH/MW19-05, BH/MW19-06, BH19-17 typically consist of a surficial topsoil ranging in thickness from about 280 mm to over 400 mm overlying a disturbed/reworked dark to light brown silty clay layer, which contains various amounts organics, underlain by glacial till composed of stiff to very stiff brown silty clay to a depth ranging from 0.3 m to 4.86 m below ground surface. A very stiff to hard grey clayey silt till was generally found below the brown silty clay till layer. These subsurface conditions were found to be similar to the subsurface conditions encountered in the boreholes located on Coscorp HL Developments Inc. site (discussed in detail in subsequent sections).

The record of borehole logs from these reports are enclosed in *Appendix C*. The approximate locations of the boreholes drilled at these sites are shown on the Site and Borehole Location Plan, *Figure 1*.

Groundwater was encountered in BH/MW19-06 and BH19-17 upon the completion of drilling and ranged from 2.5 m to 3.4 m below existing ground surface, whereas Borehole BH/MW19-05 was found to be dry upon the completion of drilling. Two 50 mm diameter monitoring wells were installed at Boreholes BH/MW19-05 and BH/MW19-06 to permit further monitoring of the groundwater levels. Shallow groundwater levels measured in the 50 mm diameter monitoring wells on April 17, 2019 ranged from 0.34 m (BH/MW19-06) to 8.32 m (BH/MW19-05) below existing ground surface.

4.0 REGIONAL GEOLOGY

The surficial geology aspects of the general site area were reviewed from the following publication:

■ Chapman, L.J., and Putnam, D.F., 2007, "The Physiography of Southern Ontario"; 4th Edition, Ontario Geological Survey.

Physiographic mapping in the area according to the above noted reference indicates that the site lies within the physiographic region of southern Ontario known as the South Slope. The South Slope region slopes gradually downward towards Lake Ontario. The overburden immediately below ground surface within the South Slope generally consists of clayey silt till and silty clay till and at depth consists of alternating deposits of dense lacustrine sands and silts and overconsolidated lacustrine clays and clay tills overlying the bedrock.

The subsurface conditions encountered during the investigation are generally consistent with the physiographic mapping.

5.0 INVESTIGATION PROCEDURE

The field work for the preliminary geotechnical investigation was carried out between March 26 and March 27, 2019, during which time three boreholes (designated as Boreholes BH19-18, BH19-19 and BH/MW19-07) were advanced at the site to depths between about 6.7 m and 14.4 m below existing ground surface at the approximate locations shown on the Site and Borehole Location Plan, *Figure 1*, attached. One additional borehole was advanced to about 7.0 m below existing ground surface adjacent to BH/MW19-07 for the purpose of installing a shallow monitoring well, adjacent to the deep monitoring well which was installed in the BH/MW19-07 borehole.

The boreholes were advanced using a track-mounted drill rig supplied and operated by a specialist drilling contractor, subcontracted to Golder. Standard Penetration Testing (SPT) and sampling was carried out at regular intervals of depth in the boreholes using conventional 35 mm internal diameter split spoon sampling

equipment advanced using an automatic hammer, in accordance with ASTM D1586 (99). Two, 50 mm diameter monitoring wells were installed at BH/MW19-07 to permit further monitoring of the groundwater levels. Groundwater level measurements were recorded immediately following drilling procedures for all boreholes and on the monitoring wells on April 17, 2019. The well installation and water level readings are presented on the Record of Borehole sheets in **Appendix A**.

The field work for this investigation was directed by members of our engineering staff who located the boreholes in the field, directed the sampling and in-situ testing operation, logged the boreholes and cared for the samples obtained. The samples were identified in the field, placed in appropriate containers, labelled and transported to Golder's Mississauga geotechnical laboratory for further examination and laboratory testing. Index and classification tests, consisting of water content determinations, Atterberg limits and grain size distribution, were carried out on selected soil samples. The results of the geotechnical laboratory tests are included in **Appendix B** and on the Record of Borehole sheets in **Appendix A**.

6.0 SUBSURFACE CONDITIONS

The subsurface soil and shallow groundwater conditions encountered in the boreholes and the results of the field and laboratory testing, are shown on the Record of Boreholes sheets, in **Appendix A**. Method of Soil Classification and Symbols and Terms Used on Records of Boreholes are provided to assist in the interpretation of the borehole logs. It should be noted that the boundaries between the strata have been inferred from drilling observations and non-continuous samples. They generally represent a transition from one soil type to another and should not be inferred to represent an exact plane of geological change. Further, conditions will vary between and beyond the boreholes. The following is a summary of the subsurface conditions of the boreholes advanced during this investigation followed by a more detailed description of the major soil strata and groundwater conditions.

In general, the subsurface conditions encountered at the boreholes advanced at the site typically consist of a surficial topsoil/silty clay layer underlain by native soil deposits of glacial till composed of silty clay to clayey silt containing varying amounts of sand and gravel, underlain by sandy silt to silty sand deposits.

Details of the observations of the groundwater conditions during and upon completion of drilling are included on the Record of Borehole sheets. Shallow ground water was encountered at depths ranging from 2.7 m to 12.8 m below existing ground surface upon the completion of drilling activities. Shallow groundwater levels measured in the 50 mm diameter monitoring wells installed at the site are also presented below.

6.1 Topsoil and (CL) sandy Silty Clay (possibly re-worked)

Topsoil materials were encountered in all the boreholes and extended to depths ranging from 0.20 m to 0.61 m. A summary of topsoil thickness in each of the boreholes is outlined in the table below.

Borehole No.

Approximate Topsoil
Thickness (m)

BH/MW19-07

0.23

BH19-18

0.20

BH19-19

0.61

Table 1: Approximate Topsoil Thickness

Materials identified as topsoil in this report were classified based on visual and textural evidence as no other testing for organic content or other nutrients was carried out. As such, the ability for these materials to support vegetation has not been assessed.

Reworked/disturbed sandy silty clay material was encountered in borehole BH/MW19-07 below the surficial topsoil. Reworked material thickness was observed from 0.23 m to 0.61 m below existing ground surface. The reworked material consisted of sandy silty clay with trace amounts of gravel. SPT 'N' values within cohesive the reworked material was found to be 19 blows per 0.3 m penetration indicating a very stiff consistency.

The natural water content of the reworked material was measured at 20 percent.

6.2 (CL) Silty Clay to sandy Silty Clay (Upper Glacial Till)

A glacial till deposit consisting of cohesive silty clay to sandy silty clay was generally encountered directly underneath the topsoil/reworked till deposits to depths about 6.10 m below existing ground surface. The till deposit is light brown to brown mottled with oxidation staining, about 4.5 m to 6.7 m in thickness, with various amounts of sand and gravel. The silty clay till increases in sand content in borehole BH/MW19-07 at a depth of 3 m below ground surface and in borehole BH19-19 at a depth of 4.6 m below ground surface. The till is believed to contain cobbles and/or possible boulders which have been inferred as a result of auger grinding observed in boreholes BH19-18 and BH19-19.

The SPT 'N' values measured in these till materials range from 11 blows per 0.3 m of penetration to 86 blows per 0.3 m of penetration, but typically greater than 22 blows per 0.3 m of penetration, indicating that the silty clay till is generally stiff to hard in consistency.

The results of grain size distribution tests carried out on selected samples from this deposit are presented in **Figure B1**. Atterberg limits tests that were carried out on the same samples from this deposit measured liquid limit values ranging from about 20 to 24 and plastic limit values ranging from about 13 to 15; yielding corresponding plasticity index values ranging from about 7 to 10. These results are plotted on the plasticity chart as shown in **Figure B2**.

The water content of selected samples ranged from about 9 percent to 17 percent.

6.3 (ML/SM to SM) sandy Silt to Silty Sand

A non-cohesive sandy silt to silty sand deposit was encountered underneath the cohesive silty clay till, in BH/MW19-07 and BH19-19. The sandy silt to silty sand deposit, is light brown, contains various amount of gravel, with cobbles/boulders being inferred from auger grinding. Both boreholes were terminated in the silty sand deposit.

The SPT 'N' values measured in this deposit ranged from 36 blows per 0.3 m to 131 blows per 0.3 m of penetration. These SPT 'N' values indicated a dense to very dense compactness.

The water content of selected samples ranged from about 3 percent and 20 percent.

6.4 (CL/ML) Clayey Silt (Lower Glacial Till)

A clayey silt till deposit was encountered directly underneath the sandy silty clay till in borehole BH19-18 from a depth of 6.10 m below existing ground surface. The borehole was terminated in this layer at a depth of 6.7 m below existing ground surface. The cohesive till deposit contains various amounts of sand and gravel and is grey in colour.

The SPT 'N' values of this till deposit was 33 blows per 0.3 m of penetration indicating hard consistency.

6.5 Groundwater Conditions

Groundwater level measurements were recorded immediately following drilling procedures. Monitoring wells were installed (one deep and one shallow) in borehole BH/MW19-07 to permit monitoring of the groundwater level at the site. Details of the monitoring well installation and the measured groundwater levels are shown on the Records of Borehole in *Appendix A*. The groundwater level measurements in the drilled boreholes and in the monitoring wells are summarized in Table 2, below.

Table 2: Groundwater Level Measurements

	Measurements Upor Drillin		Measurements in Monitoring Wells			
Borehole No.	Approximate Groundwater Depth (begs)*	Date	Approximate Groundwater Depth (begs)*	Date		
BH/MW19-07 (Shallow Well)	N/A		6.9 m			
BH/MW19-07 (Deep Well)	12.8 m	March 27, 2019	12.8 m	April 17, 2019		
BH19-18	2.7 m	March 27, 2019	No monitoring well	installed		
BH19-19	Dry	March 26, 2019	No monitoring well	installed		

^{*}begs- below existing ground surface.

It should be noted that the groundwater level in the area is subject to seasonal fluctuations and precipitation events and should be expected to be higher during wet periods of the year.

7.0 GEOTECHNICAL ENGINEERING DISCUSSION

This section of the report provides preliminary geotechnical engineering recommendations on the geotechnical aspects of the proposed development based on our interpretation of the limited borehole information and on our understanding of the project scope and requirements. The information in this portion of the report is provided for the guidance of the design engineers and professionals.

Based on the results of this investigation, the subsurface soil conditions encountered at the site are considered to be generally suitable for the proposed residential development.

As noted above, at the time of this report, proposed design grades (i.e., finished floor slab elevation, pavement subgrade and utility invert levels) were not available for the proposed development. The following engineering recommendations regarding the geotechnical design aspects of the project including underground services, pavements and building foundations should be considered as preliminary only, and should be reviewed when the final design grades and utility invert levels have been finalized.

Where comments are made on construction, they are provided only in order to highlight aspects of construction which could affect the design of the project. Contractors bidding on or undertaking any work at the site should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for

construction and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, equipment capabilities, costs, sequencing and the like.

This report addresses only the geotechnical (physical) aspects of the subsurface conditions at this site. The geo-environmental (chemical) aspects, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, are outside of the terms of reference for this report.

7.1 Site Preparation

7.1.1 Subgrade Preparation

The existing site vegetation, surficial topsoil/organics and other near-surface soils containing significant amounts of organic matter are not considered to be suitable for the subgrade support of engineered fill, building foundations, floor slabs, or other settlement sensitive structures. These materials should be completely stripped prior to placing any engineered fill or construction of foundations or interior or exterior slab-on-grade(s).

Disturbed/reworked materials containing excessive amounts of construction debris or organic material should be disposed of following appropriate environmental procedures. Furthermore; excessively-wet soils should be suitably dried before reuse as engineered fill.

Following the stripping of the surficial topsoil and soils containing significant amounts of organics and/or soft/disturbed surficial soils, the exposed subgrade should be heavily proof-rolled with suitable equipment, in conjunction with inspection by qualified geotechnical personnel to confirm that the exposed soils are competent and have been adequately stripped of ponded water and all disturbed, loosened, softened, organic and other deleterious material. Remedial work (i.e., further subexcavation and replacement) should be carried out on poorly-performing areas identified during the proof-rolling activities, as directed by Golder.

Any filling carried out at the site in conjunction with regrading should be carried out as under engineered fill procedures. Recommendations for the placement of engineered fill are outlined in Section 7.1.2 of this report.

7.1.2 Engineered Fill Requirements

As described above, the anticipated site grading activities may include both cutting and raising (filling) the original grade to meet the final design site grades. At the time of this report, the design cut and fill depths were not available for review. As such, for the purposes of this report, it has been assumed that cuts will not exceed 2 m and grade raises will not exceed more than 2 m.

In general, the existing native material is considered to be acceptable for reuse as engineered fill. Based on the laboratory test results, the water content of soils present at the site are considered to be generally near or above their optimum water contents for compaction, and therefore may require minor drying prior to placement, in general.

It should be noted that the native materials at the site are silty in nature, and as such are susceptible to overwetting and subsequent freezing during inclement weather. Therefore, it is recommended that site grading activities not be carried out during late fall, winter, early spring seasons or any periods of inclement weather conditions. All oversized cobbles (i.e., greater than 150 mm in size) and boulders, if present, should be removed from excavated material that will be used as engineered fill material.

If imported material is required for the engineered fill process, the material that is proposed for use as engineered fill should be approved by the geotechnical engineer at its source, prior to importing the material to the site. Suitable soils, free of topsoil, organic matter or other deleterious materials can be used as engineered fill provided that the water content of the soil at the time of placement does not vary by more than 2 percent

above or below its optimum water content for compaction. Otherwise, the soils may require treatment (i.e., drying or wetting) prior to placement.

Following the inspection and approval of the subgrade as described previously in this report, engineered fill materials should be placed in maximum 300 mm-thick loose lifts and uniformly compacted to 98 percent of the Standard Proctor maximum dry density (SPMDD). Filling should continue until the design elevations are achieved.

Full-time monitoring and in-situ density testing should be carried out by Golder during placement of engineered fill.

The final surface of the engineered fill should be protected as necessary from construction traffic and should be sloped to provide positive drainage for surface water during the construction period. If the engineered fill materials will be left exposed (i.e. uncovered) during periods of freezing weather, additional soil cover should be placed above final subgrade to provide some level of frost protection. Prior to placing the granular subbase and/or base courses within pavement areas, the surface of the engineered fill/subgrade should be inspected by Golder.

7.2 Installation of Underground Services

7.2.1 Temporary Excavations

Details of the underground servicing for the proposed development are unknown at the time of this investigation; as such, for the purpose of this report, the maximum depth of the underground services was assumed to be about 3 m below the existing ground surface. Once detailed design is completed, review of the underground services should be completed by this office for compliance with the recommendations contained herein.

The founding soils are anticipated to generally consist of the native sandy silty clay or engineered fill. These materials are considered to be suitable for supporting the underground services provided that the integrity of the base of the trench excavations is maintained during construction. Where softened or disturbed native soils or other deleterious materials are encountered at the base of excavations for settlement-sensitive services, these materials should be subexcavated and replaced with compacted fills approved by the geotechnical engineer.

Care should be taken to direct surface water away from any open excavations and all temporary excavations should be carried out in accordance with the Occupational Health and Safety Act (OHSA) and Regulations for Construction Projects.

In general, the groundwater level in the open boreholes, upon completion of drilling, was measured to be at depths ranging from 2.7 m to 12.8 m below existing ground surface. Whereas, the groundwater level in the monitoring wells, one month after drilling, was measured to be at depths ranging from 6.9 m to 12.8 m below existing ground surface. In general, groundwater in the excavations within the native deposits, are likely to be handled by collection via properly constructed and filtered sumps, located within the excavations, and then pumping and discharging the water to a suitable discharge point. However, should excavations deeper than 3 m below existing ground surface be required, some form of active dewatering, such as well points, may have to be implemented.

Excavations for the site servicing would generally extend through the native sandy silty clay deposit. Conventional excavation equipment should be suitable to excavate through these materials.

The hard stiff to very stiff native clayey till soils are classified as a "Type 2" soils under the OH&S Act. As such, all conventional temporary trench excavations should consist of open cuts with side slopes not steeper than 1 horizontal to 1 vertical in the overburden soils to within 1.2 m of the base of the excavation and then may be made vertical to the base. Where engineered fill is used or the native sandy silt/silty clay exhibits signs of water

seepage, the soil is classified as a "Type 3", as such all conventional temporary trench excavations should consist of gradient of 1 horizontal to 1 vertical. Where the side slopes of excavations are required to be steepened to limit the extent of the excavation, then some form of trench support may be required. Some trench excavations could be carried out using a vertically-excavated, unsupported excavation (using a properly-engineered trench liner box for protection, certified by an experienced engineer); or by a supported (sheeted) excavation if conditions warrant so; such as in wet areas and/or in close proximity to adjacent underground services

7.2.2 Pipe Bedding and Cover

The bedding for the sewers and watermains should be compatible with the size, type and class of pipe and the surrounding subsoil and the requirements of the City of Oshawa. If granular bedding is deemed to be acceptable, then Ontario Provincial Standard Specifications (OPSS) Granular A should be used from at least 150 mm below invert to springline. Clear stone should not be used as bedding material. From springline to 300 mm above the obvert of the pipe, sand cover could be used. All bedding and cover material should be placed in 150 mm loose lifts and uniformly compacted to at least 100 percent of SPMDD. Where variable fill materials, softened or disturbed native soils or other deleterious materials are encountered at the base of excavations for settlement-sensitive services, these materials should be subexcavated and replaced with compacted fills approved by the geotechnical engineer.

7.2.3 Trench Backfill

The excavated materials from the site will consist predominantly of silty clay till materials. Based on the measured water contents, in general, the native materials encountered at the site are estimated to be near or above their optimum water contents for compaction, and therefore, will probably require only minor drying prior to placement.

Care should be taken to maintain the water content of the soils close to/at the optimum water content for compaction during the construction operations, as difficulties with compaction and/or backfill performance would be anticipated with fine-grained soils where the water content is significantly above the optimum for compaction purposes. Soils that contain significant quantities of organics or debris are also not suitable for use as trench backfill within settlement-sensitive areas. In addition, all boulders and cobbles greater than 150 mm in size should be removed from the trench backfill materials. If there is a shortage of suitable in-situ material, an approved imported material such as Ontario Provincial Standard Specifications Select Subgrade Material should be used for trench backfill. Again, as noted above, the trench backfill materials are silty in nature and are very susceptible to wetting/freezing temperatures. Backfilling trenches during cold or wet weather is not recommended.

Trench backfill should be placed in maximum 300 mm loose lift thickness and uniformly compacted to at least 98 percent of the SPMDD of the material. Soil that is frozen should not be used as backfill.

Normal post-construction settlement of the compacted trench backfill should be anticipated with the majority of such settlement taking place within about 12 months following the completion of trench backfilling operations. If the trench backfill operations are completed during the winter months, post-construction settlements may increase beyond typical anticipated values. These settlements will be reflected at the ground surface. If the asphalt binder course is laid shortly following the completion of the trench backfilling operations, any settlement that may be reflected by subsidence of the surface of the binder asphalt should be compensated for by placing an additional thickness of binder asphalt or by padding. If possible, the surface course asphalt should not be placed over the binder course asphalt for about 12 months. Where scheduling requires that the surface course be placed over the binder course asphalt before this period, trench backfill settlement would be reflected by subsidence and possible cracking of the finished pavement surface in these areas which, depending upon the extent and magnitude, may require local repairs.

7.3 Building Foundations

As previously indicated, the existing site vegetation, surficial topsoil/organics and other near-surface soils containing significant amounts of organic matter are not considered to be suitable for the subgrade support of engineered fill, building foundations, floor slabs, or other settlement sensitive structures. These materials should be completely stripped prior to placing any engineered fill or construction of foundations or interior or exterior slab-on-grades.

Based on the subsurface conditions encountered in the boreholes, strip and spread footings that may be used, provided that the footings are founded on the native sandy silty clay deposit or on engineered fill (based on existing site soils) placed in accordance with the recommendation outlined in section 7.1, and maintained a minimum depth of soil embedment below finished adjacent ground surface and top of slab of 1.2 m.

For such strip and spread footings, a factored geotechnical resistance at Ultimate Limit States (ULS) of 225 kPa and a geotechnical reaction at Serviceability Limit States (SLS) of 150 kPa may be assumed for design purposes, provided that the strip footings dimensions of 0.45 m in width and 10 m in length or spread footings have a minimum width of 0.60 m and a maximum width of 1.2 m.

Where spread footings are constructed at different elevations, the difference in elevation between the individual footings should not be greater than one half the clear distance 650 mm between the footings. In addition, the lower footings should be constructed first so that if it is necessary to construct the lower footings at a greater depth than anticipated, the elevation of the upper footings can be adjusted accordingly. Stepped strip footings should be constructed in accordance with the Ontario Building Code (2012), Section 9.15.3.9.

The maximum total and differential settlements are expected to be less than 25 mm and 20 mm; respectively, for footings designed, constructed and inspected as outlined above.

All exterior footings, and interior footings in unheated areas, should be founded at a minimum depth of 1.2 m below finished grade level in order to provide adequate protection against frost penetration.

The native soils are susceptible to disturbance from construction activity, especially during wet or freezing weather. Care should be taken to preserve the integrity of the materials as bearing strata. It is essential that the founding surface for the footings be inspected by qualified geotechnical personnel prior to placing concrete. If the concrete for the footings cannot be placed immediately after excavation and inspection of the subgrade, it is recommended that a working mat of lean concrete be placed in the excavation to protect the integrity of the bearing stratum.

Resistance to lateral forces/sliding resistance between the concrete footings and the subgrade should be calculated in accordance with Section 6.7.5 of the CHBDC. The unfactored coefficient of friction, tan δ , for the interface between the cast-in-place concrete footing and the properly-prepared subgrade can be assumed to be 0.35.

7.3.1 Below Grade Walls

The exterior perimeter of all housing basement walls should be backfilled with an imported free draining, non-frost susceptible granular material approved by a geotechnical engineer, carefully placed and compacted in 200 mm thick loose lifts. The design of the foundation walls for the below-grade walls should take into account the horizontal soil loads as well as surcharge loads that may occur during or after construction and should be designed using a lateral (at-rest) earth pressure coefficient of 0.5 and a unit weight of backfill of 21 kN/m³.

The wall backfill layers should be compacted to at least 95 per cent of the materials' standard Proctor maximum dry density. Light compaction equipment should be used immediately adjacent to the foundation wall, otherwise compaction stresses on the wall may be greater than that imposed by the backfill material. With the exception

of the driveway area, the upper 0.3 m of backfill should consist of clayey material to provide a low permeability cap and the exterior grade should also be shaped to slope away from the building.

Provided that the excavations adjacent to foundation/basement walls are backfilled with free-draining granular materials and a drainage collection system is provided around the perimeter of the building, the design of below-grade walls does not need to take into account hydrostatic forces acting on the walls. However, it is recommended that the exterior of the below-grade walls be damp-proofed.

7.4 Pavement Design within the Proposed Development

Following site grading operations, as noted previously, the proposed pavement subgrade will generally consist of either re-compacted engineered fill or native silty clay till. These materials are considered to be frost susceptible, and as such, the pavement design provided in **Table 3** below has taken this condition into consideration.

Based on the proposed pavement usage, (i.e. residential development type traffic and loads/frequencies) frost susceptibility and strength of the subgrade soils, the following pavement component given are recommended for the proposed development of access roads and streets, however the Town of Caledon and Region of Peel design standards should be followed:

Table 3: Pavement Design

		Minimum Thickness of Pa	vement Components (mm)
Material		Local Road (7.9m Road Pavement Width)	9.5 m Neighbourhood Collector (8.9 m Road Pavement Width)
Asphaltic Concrete	HL 3 Surface Course	40	40
(OPSS 1150)	HL 8 Binder Course	65	90
Granular Materials	Granular A Base	150	150
(OPSS.MUNI 1010)	Granular B Type II Subbase	350	500
Total Pavement Thickn	ess (mm)	605	780
		Prepared and Approved Su	bgrade

As part of the subgrade preparation, proposed access roads should be stripped of topsoil and other obviously unsuitable fill or organic materials. Fill required to raise the grades to design elevations should conform to the engineered fill requirements outlined previously in the report. Soft or spongy trench backfill areas should be sub-excavated and properly replaced with suitable approved backfill compacted to 98 percent SPMDD. Prior to placing pavement subbase and/or base materials, the exposed soil subgrade should be heavily proof-rolled in conjunction with an inspection by Golder. The granular subbase and base materials should be placed in loose layers no thicker than 200 mm and uniformly compacted to 100 percent of their SPMDD. The binder course and surface course asphalt materials should be compacted to minimum at 92.0 of their Marshall Maximum Relative Density according to OPSS 310, as measured in the field using a nuclear density gauge.

Where new pavement abuts existing pavement (e.g. at the development limits), proper longitudinal lap joints should be constructed to key the new asphalt into the existing asphalt surface. The existing asphalt edges should be provided with a proper sawcut edge prior to keying-in the new asphalt. It should be ensured that any undermining or broken edges resulting from the construction activities are removed by the sawcut.

It should be noted that in some cases, even though the compaction requirements have been met, the subgrade strength may not be adequate to support heavy construction loading especially during wet weather or where backfill materials wet of optimum have been placed. In this regard, the design subbase thickness may not be sufficient for a construction haul road and additional subbase (in the order of 450 mm) may be required. In any event, the subgrade should be proofrolled and inspected by Golder prior to placing the subbase and any additional material, as required, consistent with the prevailing weather conditions and anticipated use by construction traffic.

7.4.1 Subgrade Drainage

In order to preserve the integrity of the pavement, continuous subdrains should be placed at the concrete curb lines along both sides of the proposed streets. The invert of the subdrains should be at least 300 mm below the bottom of the Granular "B" subbase and should be sloped to drain to catchbasins. The subdrains should consist of perforated pipe wrapped in a suitable geotextile and surrounded on all sides with a minimum thickness of 150 mm of OPSS.PROV 1002 Concrete Fine Aggregate (i.e. concrete sand).

8.0 SEISMIC SITE CLASSIFICATION

Seismic hazard is defined in the 2012 Ontario Building Code (OBC) by uniform hazard spectra (UHS) at spectral coordinates of 0.2 second, 0.5 second, 1.0 second and 2.0 seconds and a probability of exceedance of 2% in 50 years. The OBC method uses a site classification system defined by the average soil/bedrock properties (e.g. shear wave velocity, Standard Penetration Test (SPT) resistance, undrained soil shear strength, etc.) in the 30 m below the foundation level. There are six site classes from A to F, decreasing in ground stiffness from A, hard rock, to E, soft soil; with site class F used to denote problematic soils (e.g. sites underlain by thick peat deposits and/or liquefiable soils). The site class is then used to obtain acceleration and velocity-based site coefficients F_a and F_v ; respectively, used to modify the UHS to account for the effects of site-specific soil conditions in design.

Based on the results of the preliminary geotechnical investigation and assuming soils below the maximum depth investigated exhibit similar properties / strengths, a **Site Class D** is estimated for planning purposes. The Site Class will need to be verified, and adjusted as necessary, during detail design.

9.0 INSPECTION AND TESTING

During construction, full-time observation should be carried out during engineered fill and site servicing backfill placement, and sufficient foundation inspections, subgrade inspections and in-situ materials testing should be carried out to confirm that the conditions exposed are consistent with those encountered in the boreholes and to monitor conformance to the pertinent project specifications.

10.0 CLOSING

We trust that this preliminary report provides enough preliminary geotechnical engineering information to proceed with the detailed design of the proposed development. If you have any questions regarding the contents of this report or require additional information, please do not hesitate to contact this office.

Signature Page

Golder Associates Ltd.

Erti Mansaku, P.Eng. *Geotechnical Engineer*

Jeff Tolton, C.E.T.

Associate, Senior Geotechnical Technologist

JD/EM/JET/sm

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/102461/technical work/phase 6000 - coscorp hl developments inc/19115264 (6000) final georeport coscorp hl developments inc. (jet).docx

Approximate Borehole Location

Approximate Borehole and Monitoring Well Location

Approximate Geotechnical Borehole from Adjacent Properties (Golder 2018, Clearbrook)

Watercourse

Wetland

Site Boundary

Coscorp HL Developments Inc. Site Boundary

COSCORP HL DEVELOPMENTS INC.

CONSULTANT

	YYYY-MM-DD	2019-04-16	
	DESIGNED	MM	;
)	PREPARED	MM	
	REVIEWED	EM	Ī
	APPROVED	-	•

REFERENCE(S)

1. IMAGERY: ESRI, HERE, DELORME, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

© 2019 MICROSOFT CORPORATION © 2019 DIGITALGLOBE ©CNES (2019) DISTRIBUTION

AIRBUS DS

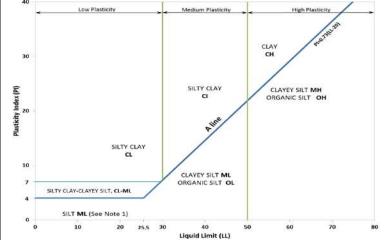
2. BASE DATA: LIO MNRF 2019

3. PROJECTION: TRANSVERSE MERCATOR NAD 1983 UTM ZONE 17N

PROJECT
PRELIMINARY GEOTECHNICAL INVESTIGATION, PROPOSED
RESIDENTIAL DEVELOPMENT, COSCORP HL DEVELOPMENTS INC.

SITE AND BOREHOLE LOCATION PLAN

-			
PROJECT NO.	CONTROL	REV.	FIGURE
19115264	6000	-	1


APPENDIX A

Method of Soil Classification
Abbreviations and Terms used on
Record of Borehole
List of Symbols
Record of Boreholes

METHOD OF SOIL CLASSIFICATION

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorgan		Soil Group	Type of Soil		Gradation or Plasticity	$Cu = \frac{D_{60}}{D_{10}}$			$Cc = \frac{(D_{30})^2}{D_{10}xD_{60}}$		Organic Content	USCS Group Symbol	Group Name
			of is	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	:3		GP	GRAVEL
by mass)		չ 75 mm)	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	fines (by mass) Gravels with >12%	Well Graded	≥4 1 to 3					GW	GRAVEL	
		SOILS an 0.07			Below A Line	n/a					GM	SILTY GRAVEL	
SANIC t <30%		AINED rger th	V 8 0	fines (by mass)	Above A Line	n/a					≤30%	GC	CLAYEY GRAVEL
INORGANIC (Organic Content ≤30% by mass)		COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with ≤12% fines (by mass)	Poorly Graded	<6 ≤1 or ≥3					250 70	SP	SAND
		COAR: by ma			Well Graded	≥6 1 to 3				SW		SAND	
<u>.</u>		%05<)	SAN (≥50% by coarse f	Sands with >12% fines (by mass)	Below A Line	n/a						SM	SILTY SAND
					Above A Line			n/a				SC	CLAYEY SAND
Organic		Soil	Type of Soil		Laboratory Tests	Field Indicators					Ounouio		Bulancas
or Inorgan	or Inorganic					Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Primary Name
	(Organic Content <30% by mass)	FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)	SILTS (Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT
						Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT
			SILTS ic or Pl	below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT
SANIC			n-Plast		Liquid Limit ≥50	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT
INORGANIC		-GRAII s is sm	Į Š			None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT
		FINE by mas	olot	above A-Line on Plasticity Chart below)	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0% to 30% (see Note 2)	CL	SILTY CLAY
		≥50% t	CLAYS		Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium		CI	SILTY CLAY
			(Pla		Liquid Limit ≥50	None	High	Shiny	<1 mm	High		СН	CLAY
, L≺ NIC	LS	= 30% ass)	Peat and mineral soil mixtures								30% to 75%		SILTY PEAT, SANDY PEAT
HIGHLY	SOI	Content >30% by mass)	may cont	antly peat, tain some il, fibrous or ous peat	_						75% to 100%	PT	PEAT

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/Cl, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (qt), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
TO	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

w	water content
PL, w _p	plastic limit
LL, WL	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
DR	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS

Consistency

Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

- SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure
- SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
_	3.1416	w w _l or LL	water content liquid limit
π In v			·
In x log ₁₀	natural logarithm of x x or log x, logarithm of x to base 10	w _p or PL I _p or PI	plastic limit plasticity index = $(w_l - w_p)$
•	acceleration due to gravity	NP	non-plastic
g t	time	Ws	shrinkage limit
	une	l _L	liquidity index = $(w - w_p) / I_p$
		Ic	consistency index = $(w - w_p) / I_p$
		e _{max}	void ratio in loosest state
		e _{min}	void ratio in densest state
		I _D	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN	_	(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
$\overset{\cdot}{\Delta}$	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
ε	linear strain	q	rate of flow
εν	volumetric strain	v	velocity of flow
η	coefficient of viscosity	İ	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress	,	
σ1, σ2, σ3	principal stress (major, intermediate,		
, - 2, - 0	minor)	(c)	Consolidation (one-dimensional)
	,	Cc	compression index
⊙ oct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_r	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	C_{α}	secondary compression index
G	shear modulus of deformation	m_{v}	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		T _v	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ′ _p	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρα(γα)	dry density (dry unit weight)	(d)	Shear Strength
ρα(γα) ρw(γw)	density (unit weight) of water	τ _p , τ _r	peak and residual shear strength
ρω(γω) ρs(γs)	density (unit weight) of solid particles		effective angle of internal friction
γ'	unit weight of submerged soil	φ΄ δ	angle of interface friction
1	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = $tan \delta$
D_R	relative density (specific gravity) of solid	c′	effective cohesion
- 11	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength (ϕ = 0 analysis)
е	void ratio	p	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
	~	q _u	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Dens	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	e $\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
	eration due to gravity)	_	(sompressive on ongul)/2
	3 ,,		

RECORD OF BOREHOLE: PROJECT: 19115264-6000 LOCATION: Lat. 43.755372 Long. -79.802724

(See Figure 1)

1:50

BH/MW19-07

BORING DATE: March 27, 2019

SHEET 1 OF 2 DATUM: Existing Ground

CHECKED: EM

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW Wp I - w (m) GROUND SURFACE TOPSOIL (230 mm) 0.00 (CL) sandy CLAY, trace gravel, trace 0.23 19 organics; dark brown; cohesive, w<PL, very stiff 1B SS Φ (CL) SILTY CLAY, some sand to sandy, 0,61 trace gravel; light brown with oxidation staining, (TILL); cohesive, w<PL, very stiff to hard SS 0 2 11 3 ss 11 2 SS 24 - Becoming sandy at a depth of 3 m SS 5 45 G_CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\12_GINT\19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC CME 75 Track Mount Power Auger SS 44 0 6 (SM/ML) sandy SILT to SILT, trace to some clay, slight plasticity; light brown; 5,90 Scre non-cohesive, wet, dense to very dense and Sand ss 36 17/04/2019 - Cobble/boulder inferred from auger 8 SS 100/ 2" 0 grinding at a depth of 7.3 m (SM) SILTY SAND, fine to medium grained, some to trace gravel; light 7.62 Bent-onite brown; non-cohesive, moist, dense to very dense 9 9 SS 131 CONTINUED NEXT PAGE GTA-BHS 001 DEPTH SCALE GOLDER LOGGED: JD

PROJECT: 19115264-6000

RECORD OF BOREHOLE: BH/MW19-07

(See Figure 1)

LOCATION: Lat. 43.755372 Long. -79.802724

BORING DATE: March 27, 2019

SHEET 2 OF 2

DATUM: Existing Ground Surface

\LE	НОБ	SOIL PROFILE	1.		SA	MPLE		DYNAMIC PENETRA RESISTANCE, BLOV	ATION \ WS/0.3m	HYDRAULIC CONDUCTIVITY k, cm/s	, T	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	rem V. ⊕ U - O	10 ⁻⁵ 10 ⁻⁵ 10 ⁻⁴ WATER CONTENT PER Wp	⊣wı ¤s	OR STANDPIPE INSTALLATION
		CONTINUED FROM PREVIOUS PAGE	100					20 40	60 80	10 20 30	40	
- 10		(SM) SILTY SAND, fine to medium grained, some to trace gravel; light brown; non-cohesive, moist, dense to very dense										
- 11	CME 75 Track Mount Power Auger 100 mm Solid Stem	- Contains wet sandy silt layer at a depth of 12.2 m				SS	94					Sand Screen and Sand 17/04/2019
- 14					12	ss	38			0		Bentonite
- 15		END OF BOREHOLE. Notes: 1. Water level measured at 12.8 mbgs upon completion of drilling. 2. Water level measured in monitoring well as follows:		14.33								
- 16		Deep Well Date Depth Elev. (m) April 17, 2019 12.8 mbgs N/A Shallow Well Date Depth Elev. (m) April 17, 2019 6.9 mbgs N/A										
· 17												
- 18												
- 19												
- 20 DE	PTH (SCALE						GOL	DED			LOGGED: JD

PROJECT: 19115264-6000

1:50

LOCATION: Lat. 43.753587 Long. -79.803241

RECORD OF BOREHOLE: BH19-18

BORING DATE: March 27, 2019

(See Figure 1)

SHEET 1 OF 1

DATUM: Existing Ground Surface

CHECKED: EM

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0W Wp I - w (m) GROUND SURFACE TOPSOIL (200 mm) 0.00 1A SS (CL) sandy SILTY CLAY, trace to some (CL) sandy SiLTY CLAY, trace to some gravel with cobbles/boulders inferred from auger grinding; brown to light brown with oxidation staining, (TILL); cohesive, w<PL, stiff to hard 1B SS 2 SS 22 3 SS 38 2 SS 35 МН ∑ 27/03/2019 CME 75 Track Mount Power 5 SS 35 G\(\) CLIENTS\(\)CLEATBROOKDEVELOPMENTS\(\)CALEDON\(\)12 GINT\(\)9115264-SNELLSHOLLOW BH LOGS\(\)GPJ GAL-MIS\(\)GDT 17\(\)6/19 JMC 6 SS 52 (CL/ML) CLAYEY SILT, trace sand; grey, (TILL); cohesive, w>PL, hard 6.10 ss 33 END OF BOREHOLE 6.71 Notes: 1. Water level measured at 2.7 mbgs upon completion of drilling. 9 10 GTA-BHS 001 DEPTH SCALE LOGGED: JD GOLDER

PROJECT: 19115264-6000

RECORD OF BOREHOLE: BH19-19

(See Figure 1)

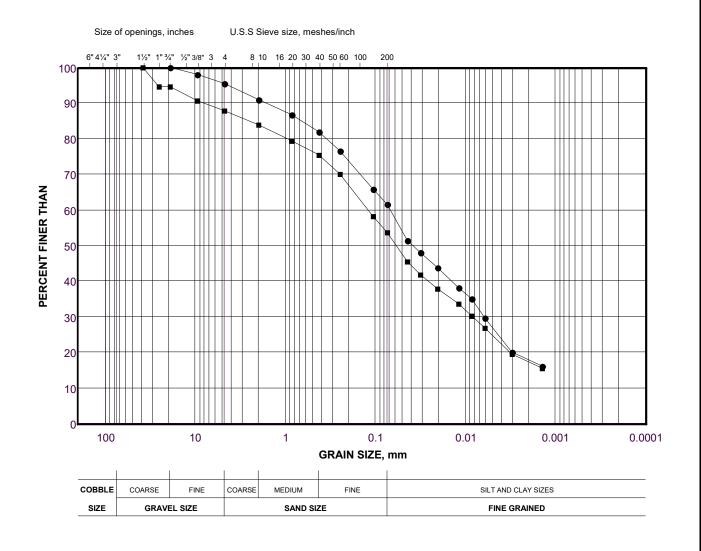
LOCATION: Lat. 43.754896 Long. -79.804943

BORING DATE: March 26, 2019

SHEET 1 OF 1

DATUM: Existing Ground Surface

—— ÿ	9	2	SOIL PROFILE			SAN	IPLES	DYNAMIC RESISTAN	PENETRAT CE, BLOW	[ION S/0.3m	\	HYDR	AULIC CON k, cm/s	NDUCTIVITY,	Ţ	ا وړ	PIEZOMETER
DEPTH SCALE METRES	CALCO	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	20 SHEAR ST Cu, kPa	40 RENGTH	nat V. + rem V. ⊕	Q - • U - O	v w		NTENT PERCE	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
. 0			GROUND SURFACE					20						30			
Ū			TOPSOIL (610 mm)		0.00	1	ss 4							0			
• 1		-	(CL) sandy SILTY CLAY, some sand, trace gravel with cobbles/boulders inferred from auger grinding; brown with oxidation staining, (TILL); w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>0.61</td><td>2</td><td>SS 2</td><td></td><td></td><td></td><td></td><td></td><td>01</td><td>-1</td><td></td><td>МН</td><td></td></pl,>		0.61	2	SS 2						01	-1		МН	
2						3	SS 4										
-						4	SS 4										
3	Power Auger	Stem										Ì					
	CME 75 Track Mount Power Auger	100 mm Solid Stem				5	SS 5										
4	CME					6	SS 5						0				
			- Increased sand content at a depth of 4.6 m			7	SS 8										
5		-	(SM) SILTY SAND, fine grained, inferred cobbles/boulders; light brown; non-cohesive, moist, very dense		5.18												
6			non-corresive, moist, very dense			8	SS 9					0					
						9	SS 10					0					
7			END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling.		6.71												
. 8																	
9																	
10																	
DE	PT	ΉS	CALE					G	OLI	DEF	2					LO	GGED: JD


APPENDIX B

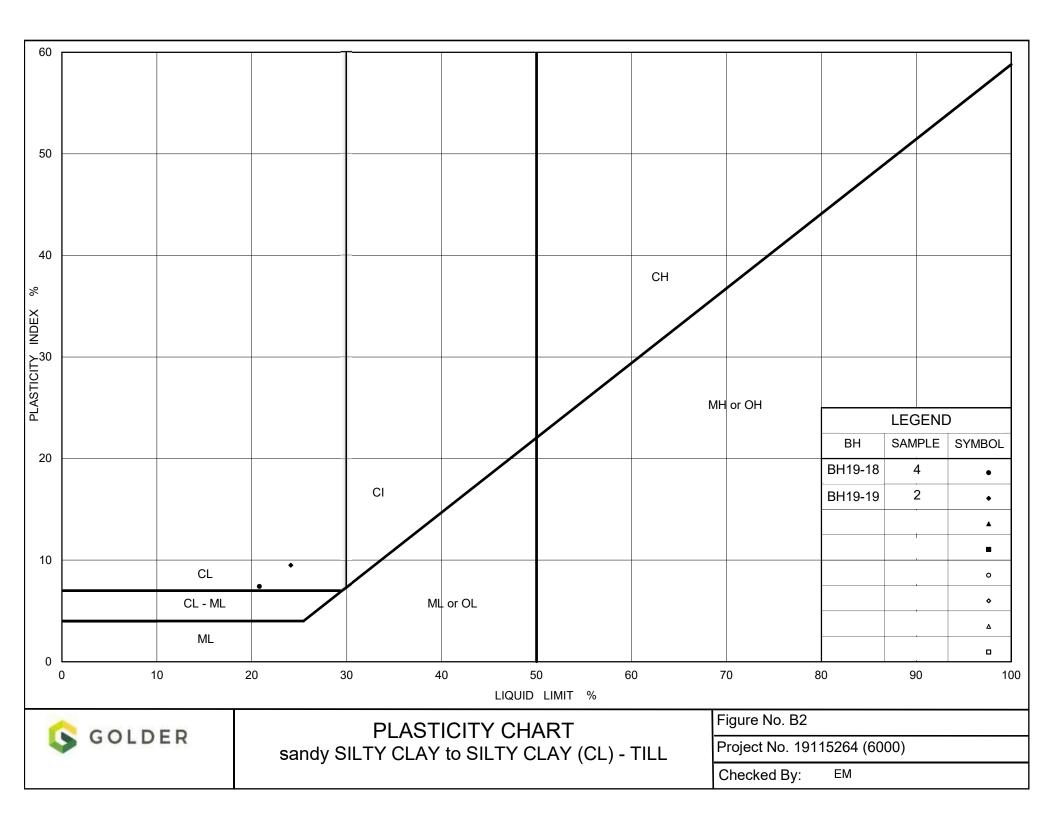
Geotechnical Laboratory Figures

GRAIN SIZE DISTRIBUTION

sandy SILTY CLAY to SILTY CLAY (CL) - TILL

FIGURE B1

LEGEND


SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH 19-19	2	0.76 - 1.37
•	BH 19-18	4	2.29 - 2.90

Project Number: 19115264

Checked By: _____

Golder Associates

Date: 30-May-19

APPENDIX C

Adjacent Properties Borehole Logs

PROJECT: 19115264-1000/5000

RECORD OF BOREHOLE: BH/MW19-05

SHEET 1 OF 2

LOCATION: Lat. 43.75409 Long. -79.807715

(See Figure 1)

BORING DATE: March 28, 2019

DATUM: Geodetic

DEPTH SCALE METRES	METHO	SOIL PROFILE	LOT			PLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m 20 40 60 80	HYDRAULIC CONDUCTIVITY, k, cm/s 10° 10° 10° 10° 10°	PIEZOMETE OR STANDRIDE
MET	BORING METHOD	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	BLOWS/0.3m	SHEAR STRENGTH nat V. + Q - C Cu, kPa rem V. ⊕ U - C	Wp I WI	PIEZOMETE OR STANDPIPE INSTALLATIO
		GROUND SURFACE	0	270.50		╫	20 40 60 80	10 20 30 40	
0		TOPSOIL (280 mm)	EEE	0.00	1A S	9			
		(CL) SILTY CLAY, trace gravel, trace		0.28		12			
		organics; dark to light brown; cohesive, w~PL, stiff		269.74	1B S	S		Φ	
1		(CL) SILTY CLAY, some sand, trace gravel; light brown with oxidation staining, (TILL); w <pl, stiff<="" td="" very=""><td></td><td>0.76</td><td>2 S</td><td>S 24</td><td></td><td>0</td><td></td></pl,>		0.76	2 S	S 24		0	
2					3 S	S 26			
					4 S	S 23			Bentonite
3					5 S	S 26			
4	Auger								
	Mount Power Solid Stem			265.64	6A S	S 44			Sand
5	CME 75 Track Mount Power Auger 100 mm Solid Stem	(CL-ML) CLAYEY SILT, trace sand to sandy, trace gravel; grey, (TILL); cohesive, w <pl, hard<="" td=""><td></td><td>4.86</td><td>6B S</td><td></td><td></td><td></td><td>Sand</td></pl,>		4.86	6B S				Sand
6		- Becoming sandy, with sand seams below a depth of 6.1 m							
7		·			7 S	s 77			Screen and Sand
		- Silty sand layer/stratum encountered at a depth of 7.6 m							
8					8 S	S 94		0	∑ 17/04/2019
9									Bentonite
				260.75	9 S	S 100			
		END OF BOREHOLE.		260.75 9.75	+				
10		CONTINUED NEXT PAGE	-	†	-+	1-		 	-

PROJECT: 19115264-1000/5000

RECORD OF BOREHOLE: BH/MW19-05

BORING DATE: March 28, 2019

LOCATION: Lat. 43.75409 Long. -79.807715 (See Figure 1)

SHEET 2 OF 2 DATUM: Geodetic

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 10⁻⁵ BLOWS/0.3m NUMBER STANDPIPE TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0W Wp **I**− -ı wı (m) --- CONTINUED FROM PREVIOUS PAGE ---10 1. Borehole dry upon completion of drilling. 2. Water level measured in monitoring well as follows:
 Date
 Depth
 Elev. (m)

 March 28, 2019
 Dry
 Dry

 April 17, 2019
 8.32 mbgs
 262.18 m
 11 12 13 GTA-BHS 001 G:\ CLIENTS\CLEARBROOKDEVELOPMENTS\CALEDON\\ 12 GINT\\ 19115264-SNELLSHOLLOW BH LOGS\.GPJ GAL-MIS\.GDT 17\\ 6/19 JMC 14 15 16 17 18 19 20 DEPTH SCALE

GOLDER

RECORD OF BOREHOLE: PROJECT: 19115264-1000/5000

BH/MW19-06

SHEET 1 OF 1

DATUM: Geodetic

(See Figure 1)

1:50

LOCATION: Lat. 43.752469 Long. -79.804999

BORING DATE: March 2, 2019

ן נְ	HOD	SOIL PROFILE		,	SAM	PLES	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	일 PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ 20 40 60 80	10° 10° 10⁴ 10° 1 WATER CONTENT PERCENT Wp I	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE		262.00			20 40 00 00	10 20 00 40	_
Ů		TOPSOIL (410 mm)		0.00	1A S	ss			
		(CL) SILTY CLAY, trace organics, some to trace sand, trace gravel; dark brown; cohesive, w>PL, firm		261.59 0.41	1B S	SS 9			17/04/2019
1		(CL) SILTY CLAY, some sand to sandy, trace gravel: light brown (TILL):		260.55 1.45	2 8	S 5			
2		trace gravel; light brown, (TILL); cohesive, w>PL, stiff to very stiff			3 8	S 14			Bentonite
3						S 28			28/03/2019
	er Auger	(CL-ML) CLAYEY SILT, trace sand and gravel; grey, (TILL); cohesive, w>PL, very stiff to hard		258.88 3.12	5A S				
5	CME 75 Track Mount Power Auger 100 mm Solid Stem				6 5	SS 15			Sand
6					7 8	SS 27			Screen and Sand
8				253.68	8 8	S 36			Bentonite
9		END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows: Date Depth Elev. (m) March 28, 2019 2.54 mbgs 259.46 m April 17, 2019 0.38 mbgs 261.62 m		8.32					
10									

₩ GOLDER

PROJECT: 19115264-1000/5000

RECORD OF BOREHOLE: BH19-17

(See Figure 1)

LOCATION: Lat. 43.753061 Long. -79.806846

BORING DATE: March 28, 2019

SHEET 1 OF 1

DATUM: Geodetic

	된	SOIL PROFILE	1 -	ı	SA	MPL		DYNAMIC PE RESISTANC			,		k, cm/s			_ [₹B	PIEZOMETER
	BORING METHOD	PECCEPITION	STRATA PLOT	ELEV.	BER	핊	BLOWS/0.3m	20 SHEAR STR	40 ENGTH	60 nat V.	80 + Q - •		1	IO ⁵ 1		10 ⁻³ ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
	ORIN	DESCRIPTION	.RAT	DEPTH (m)	NUMBER	TYPE	LOWS	SHEAR STR Cu, kPa	,.	rem V.	Đ Ŭ-Ō					WI	AB.	INSTALLATIO
+	m	CROLIND SUBFACE	ST				mí	20	40	60	80		10	20	30	40	\vdash	
∘├	_	GROUND SURFACE TOPSOIL (330 mm)	EER	269.50 0.00						+	+			-	-			
				269.17	1A	SS	12											
		(CL) SILTY CLAY and SAND to sandy SILTY CLAY, trace gravel; light brown with oxidation staining, (TILL); cohesive,		0.33	1B	ss	-											
		with oxidation staining, (TILL); cohesive, w <pl, stiff="" stiff<="" td="" to="" very=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		1														
1					2A	ss												
					2B	SS	18						a	4			мн	
					3	ss	29						0					
2																		
	<u>_</u>				4	ss	14											
<u>.</u>	er Aug			1														
3 4	CME 75 Track Mount Power Auger 100 mm Solid Stem			1														
	m Solic				5	ss	29											<u></u>
	100 mr																	28/03/2019
Į,	ME																	
4 '																		
		(CL-ML) CLAYEY SILT, some sand,		264.93 4.57														
		trace gravel; grey, (TILL); cohesive, w <pl, hard<="" td=""><td></td><td>1</td><td>6</td><td>ss</td><td>34</td><td></td><td></td><td></td><td></td><td></td><td>)</td><td></td><td></td><td></td><td></td><td></td></pl,>		1	6	ss	34)					
5				1														
				1														
				1														
				1														
6				1														
					7	ss	46											
				262.79														
		END OF BOREHOLE.	1	6.71														
7		Notes: 1. Water level measured at 3.4 mbgs																
		upon completion of drilling.																
8																		
9																		
0																		
-1													1				1 1	

1:50

CHECKED: EM

APPENDIX D

Important Information and Limitations of This Report

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

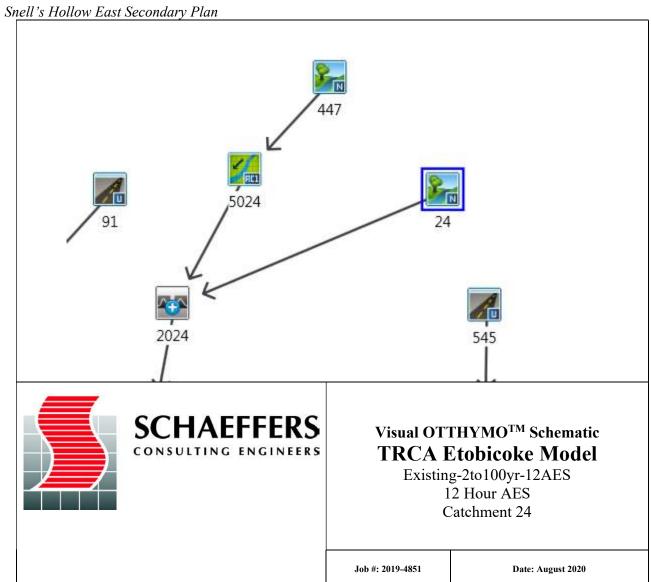
Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.



golder.com

APPENDIX B: PRE-DEVELOPMENT CALCULATIONS

VISUAL OTTHYMO OUTPUT: Snell's Hollow East Secondary Plan

```
0.54 | 4.25
                                                                                                         9.25 | 7.50
                                                                                                                      2.18 | 10.75
                                                                                            0.54 | 4.50 25.02 | 7.75
                                                                                                                      2.18 | 11.00
** SIMULATION:Run 31 **
                                                                                      1.50
                                                                                            0.54 | 4.75 25.02 | 8.00
                                                                                                                      2.18 | 11.25
                                                                                                                                    0.54
*******
                                                                                      1.75
                                                                                            0.54 | 5.00 25.02 | 8.25 2.18 | 11.50
                                                                                       2.00
                                                                                            0.54 | 5.25 25.02 | 8.50
                                                                                                                      1.09 | 11.75
                                                                                            0.54 | 5.50
                                                                                                        7.07 | 8.75 | 1.09 | 12.00
                  Filename: C:\Users\hmilukow\AppD
                                                                                            3.26 | 5.75 7.07 | 9.00 1.09 | 12.25
                                                                                            3.26 | 6.00 7.07 | 9.25 1.09 |
                           723ccf33-eb30-4ca4-a097-59bcd19a8e77\9bfc2c76
                                                                                      3.00 3.26 | 6.25 7.07 | 9.50 0.54 |
| Ptotal= 42.00 mm | Comments: 2yr/12hr
                                                                                      3.25 3.26 | 6.50 3.81 | 9.75 0.54 |
             TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
             hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
             0.25
                   0.00 I 3.50
                                7.14 I 6.75
                                             2.94 | 10.00
                                                          0.42
             0.50
                   0.42 | 3.75
                                7.14 | 7.00
                                             2.94 | 10.25
                                                          0.42
                                                                        | CALIB
                                                                       | NASHYD ( 0024)| Area (ha)= 140.14 Curve Number (CN)= 76.0
                   0.42 | 4.00
                                7.14 | 7.25
                                             2.94 | 10.50
                                                          0.42
                               7.14 | 7.50
                                                                       |ID= 1 DT=15.0 min | Ia (mm)= 8.10 # of Linear Res.(N)= 3.00
             1.00
                   0.42 | 4.25
                                             1.68 | 10.75
                                                          0.42
                   0.42 | 4.50 19.32 | 7.75
                                             1.68 | 11.00
             1.25
                                                          0.42
                   0.42 | 4.75 19.32 | 8.00
                                             1.68 | 11.25
             1.50
                                                          0.42
                  0.42 | 5.00 19.32 | 8.25
                                            1.68 | 11.50 0.42
                                                                          Unit Hyd Qpeak (cms) = 9.610
             1 75
             2 00
                  0.42 | 5.25 19.32 | 8.50
                                            0.84 | 11.75 0.42
             2.25
                  0.42 | 5.50
                               5.46 | 8.75
                                            0.84 | 12.00 0.42
                                                                           PEAK FLOW
                                                                                          (cms) = 2.691 (i)
                              5.46 | 9.00
                                                                           TIME TO PEAK (hrs) = 5.500
                  2.52 | 5.75
                                            0.84 | 12.25 0.42
                  2.52 | 6.00 5.46 | 9.25 0.84 |
                                                                           RUNOFF VOLUME (mm) = 16.890
                  2.52 | 6.25   5.46 | 9.50   0.42 |
                                                                          TOTAL RAINFALL (mm) = 54.380
                                                                          RUNOFF COEFFICIENT = 0.311
             3.25 2.52 | 6.50 2.94 | 9.75 0.42 |
                                                                           (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
I CALTB
| NASHYD ( 0024) | Area (ha) = 140.14 Curve Number (CN) = 76.0
                                                                         ** SIMULATION:Run 33 **
|ID= 1 DT=15.0 min | Ia (mm)= 8.10 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.56
                                                                         ********
   Unit Hyd Qpeak (cms) = 9.610
                                                                          READ STORM |
                                                                                            Filename: C:\Users\hmilukow\AppD
                                                                                            ata\Local\Temp\
                (cms) = 1.554 (i)
                                                                                                    723ccf33-eb30-4ca4-a097-59bcd19a8e77\84fa4c73
   PEAK FLOW
   TIME TO PEAK (hrs) = 5.500
                                                                        | Ptotal= 62.71 mm |
                                                                                            Comments: 10yr/12hr
   RUNOFF VOLUME (mm) = 10.045
   TOTAL RAINFALL (mm) = 42.000
                                                                                      TIME RAIN | TIME
                                                                                                        RAIN | TIME RAIN | TIME
   RUNOFF COEFFICIENT = 0.239
                                                                                       hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                                                                                            0.00 | 3.50 10.66 | 6.75 4.39 | 10.00
                                                                                           0.63 | 3.75 | 10.66 | 7.00 | 4.39 | 10.25
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                       0.50
                                                                                           0.63 | 4.00 10.66 | 7.25 4.39 | 10.50
                                                                                       0.75
                                                                                            0.63 | 4.25 | 10.66 | 7.50 | 2.51 | 10.75
                                                                                      1 00
                                                                                      1.25
                                                                                           0.63 | 4.50 28.84 | 7.75
                                                                                                                      2.51 | 11.00
** SIMULATION:Run 32 **
                                                                                      1.50
                                                                                            0.63 | 4.75 28.84 | 8.00
                                                                                                                      2.51 | 11.25
******
                                                                                      1.75
                                                                                            0.63 | 5.00 28.84 | 8.25
                                                                                                                       2.51 | 11.50
                                                                                                                                    0.63
                                                                                             0.63 | 5.25 28.84 | 8.50
                                                                                       2.00
                                                                                                                       1.25 | 11.75
                                                                                                                                    0.63
                                                                                       2 25
                                                                                             0.63 | 5.50
                                                                                                          8.15 | 8.75
                                                                                                                       1.25 | 12.00
                  Filename: C:\Users\hmilukow\AppD
                                                                                       2.50
                                                                                             3.76 | 5.75
                                                                                                         8.15 | 9.00
                                                                                                                       1.25 | 12.25
                                                                                                        8.15 | 9.25
     | ata\Local\Temp\
                                                                                      2.75
                                                                                             3.76 | 6.00
                                                                                                                       1 25 I
                                                                                            3.76 | 6.25 8.15 | 9.50
                          723ccf33-eb30-4ca4-a097-59bcd19a8e77\8b231e31
                                                                                      3.00
                                                                                                                      0.63 |
| Ptotal= 54.38 mm | Comments: 5yr/12hr
                                                                                      3.25 3.76 | 6.50 4.39 | 9.75
                                                                                                                      0.63 L
                               RAIN | TIME RAIN | TIME RAIN
                  RAIN | TIME
             hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                               9.25 | 6.75 3.81 | 10.00 0.54
                  0.00 | 3.50
                  0.54 | 3.75 | 9.25 | 7.00 | 3.81 | 10.25 | 0.54
             0.75  0.54  | 4.00  9.25  | 7.25  3.81  | 10.50  0.54
                                                                       | NASHYD ( 0024) | Area (ha) = 140.14 Curve Number (CN) = 76.0
```

Snell's Hollow East Secondary Plan

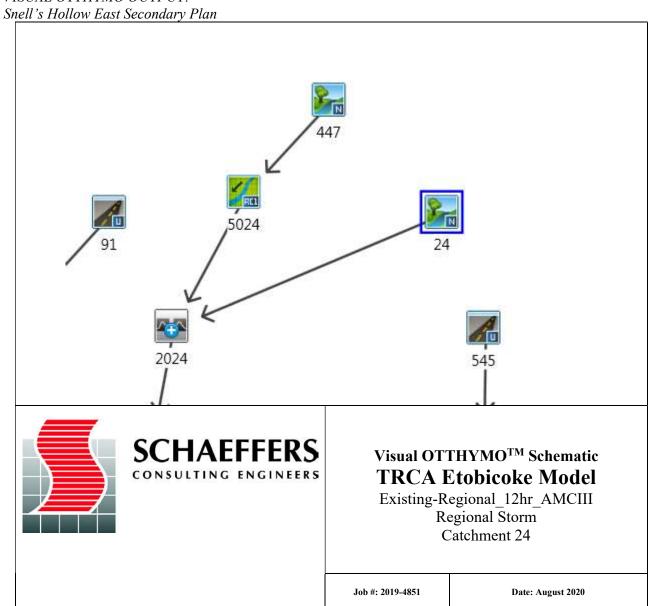
```
|ID= 1 DT=15.0 min | Ia
                         (mm) = 8.10 \# of Linear Res.(N) = 3.00
----- U.H. Tp(hrs) = 0.56
   Unit Hyd Qpeak (cms) = 9.610
   PEAK FLOW (cms) = 3.551 (i)
   TIME TO PEAK (hrs) = 5.500
   RUNOFF VOLUME (mm) = 22.064
   TOTAL RAINFALL (mm) = 62.710
   RUNOFF COEFFICIENT = 0.352
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
** SIMULATION:Run 34 **
*******
 READ STORM |
                  Filename: C:\Users\hmilukow\AppD
                  ata\Local\Temp\
                           723ccf33-eb30-4ca4-a097-59bcd19a8e77\eaee5477
| Ptotal= 73.10 mm | Comments: 25yr/12hr
            TIME RAIN | TIME RAIN | TIME RAIN | TAIN
             hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
             0.25 0.00 | 3.50 12.43 | 6.75 5.12 | 10.00 0.73
                  0.73 | 3.75 12.43 | 7.00
                                             5.12 | 10.25 0.73
                  0.73 | 4.00 12.43 | 7.25
             0.75
                                             5.12 | 10.50 0.73
                                             2.92 | 10.75 0.73
             1 00
                   0.73 | 4.25 | 12.43 | 7.50
                                             2.92 | 11.00 0.73
             1.25
                   0.73 | 4.50 33.63 | 7.75
                   0.73 | 4.75 | 33.63 | 8.00
                                             2.92 | 11.25
                                                          0.73
0.73
             1 50
                   0.73 | 5.00
                               33.63 | 8.25
                                             2.92 | 11.50
             1.75
                                                         0.73
             2.00
                   0.73 | 5.25 33.63 | 8.50
                                             1.46 | 11.75
                                             1.46 | 12.00 0.73
             2.25
                   0.73 | 5.50
                                9.50 I 8.75
                                             1.46 | 12.25 0.73
                   4.39 | 5.75
             2.50
                                9.50 | 9.00
                   4.39 | 6.00
                               9.50 | 9.25
                                             1.46 |
             2.75
             3.00
                  4.39 | 6.25 9.50 | 9.50
                                             0.73 |
             3.25 4.39 | 6.50 5.12 | 9.75 0.73 |
| NASHYD  ( 0024) | Area  (ha) = 140.14 Curve Number (CN) = 76.0
|ID= 1 DT=15.0 min | Ia (mm) = 8.10 # of Linear Res.(N) = 3.00
----- U.H. Tp(hrs) = 0.56
   Unit Hyd Qpeak (cms) = 9.610
   PEAK FLOW
                (cms) = 4.713 (i)
                (hrs) = 5.500
   TIME TO PEAK
                (mm) = 29.022
   RUNOFF VOLUME
   TOTAL RAINFALL (mm) = 73.100
   RUNOFF COEFFICIENT = 0.397
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
******
** SIMULATION:Run 35
```

DATE: August 2020

| READ STORM | Filename: C:\Users\hmilukow\AppD ata\Local\Temp\ 723ccf33-eb30-4ca4-a097-59bcd19a8e77\b05838de | Ptotal= 80.82 mm | Comments: 50yr/12hr TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.00 | 3.50 | 13.74 | 6.75 | 5.66 | 10.00 0 25 0.50 0.81 | 3.75 | 13.74 | 7.00 | 5.66 | 10.25 0.75 0.81 | 4.00 13.74 | 7.25 5.66 | 10.50 0.81 | 4.25 | 13.74 | 7.50 1.00 3.23 | 10.75 0.81 1.25 0.81 | 4.50 37.17 | 7.75 3.23 | 11.00 0.81 | 4.75 37.17 | 8.00 3.23 | 11.25 37.17 | 8.25 1.75 0.81 | 5.00 3.23 | 11.50 0.81 | 5.25 37.17 | 8.50 2.00 1.62 | 11.75 0.81 0.81 | 5.50 10.50 | 8.75 2.25 1.62 | 12.00 0.81 10.50 | 9.00 2.50 4.85 | 5.75 1.62 | 12.25 0.81 2.75 4.85 | 6.00 10.50 | 9.25 1.62 I 3.00 4.85 | 6.25 10.50 | 9.50 0.81 | 3.25 4.85 | 6.50 5.66 | 9.75 0.81 | | CALIB | | NASHYD (0024) | Area (ha) = 140.14 Curve Number (CN) = 76.0 ----- U.H. Tp(hrs) = 0.56 Unit Hyd Qpeak (cms) = 9.610 PEAK FLOW (cms) = 5.622 (i)TIME TO PEAK (hrs) = 5.500 RUNOFF VOLUME (mm) = 34.491 TOTAL RAINFALL (mm) = 80.820 RUNOFF COEFFICIENT = 0.427 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ******** ** SIMULATION:Run 36 ** ******* Filename: C:\Users\hmilukow\AppD | READ STORM | ata\Local\Temp\ 723ccf33-eb30-4ca4-a097-59bcd19a8e77\b4d34ed8 | Ptotal= 88.54 mm | Comments: 100yr/12hr RAIN | TIME RAIN | TIME RAIN | TIME mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0 25 0.00 | 3.50 15.05 | 6.75 6.20 | 10.00 0.50 0.89 | 3.75 | 15.05 | 7.00 6.20 | 10.25 0.89 0.75 0.89 | 4.00 | 15.05 | 7.25 | 6.20 | 10.50 0.89 1.00 0.89 | 4.25 | 15.05 | 7.50 | 3.54 | 10.75 0.89

0.89 | 4.75 | 40.71 | 8.00 | 3.54 | 11.25

Snell's Hollow East Secondary Plan


1.75	0.89	5.00	40.71	8.25	3.54 11.50	0.89
2.00	0.89	5.25	40.71	8.50	1.77 11.75	0.89
2.25	0.89	5.50	11.51	8.75	1.77 12.00	0.89
2.50	5.31	5.75	11.51	9.00	1.77 12.25	0.89
2.75	5.31	6.00	11.51	9.25	1.77	
3.00	5.31	6.25	11.51	9.50	0.89	
3.25	5.31	6.50	6.20	9.75	0.89	

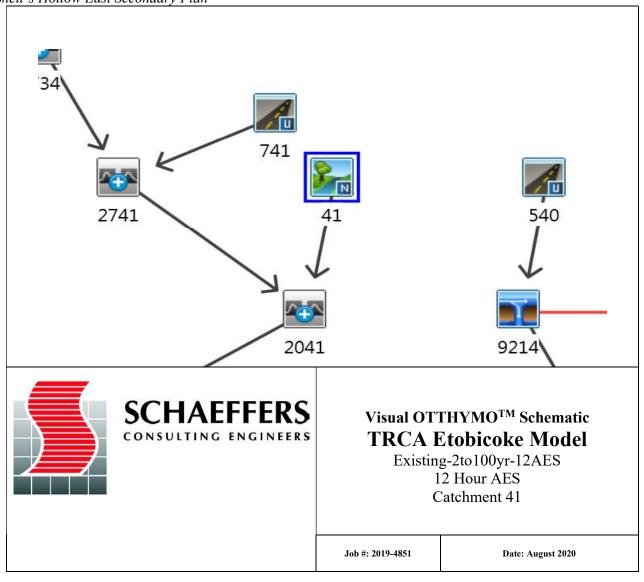
Area	(ha)=	= 140.14	Curve Number (CN) = 76.0
Ia	(mm) =	= 8.10	# of Linear Res.(N) = 3.00
U.H.	Tp(hrs)=	- 0.56	
(cms) =	9.610		
(cms) =	6.566	(i)	
(hrs) =	5.500		
(mm) =	40.175		
(mm) =	88.540		
ENT =	0.454		
	Ia U.H. (cms) = (cms) = (hrs) = (mm) = (mm) =	Ia (mm) = U.H. Tp(hrs) = (cms) = 9.610 (cms) = 6.566 (hrs) = 5.500 (mm) = 40.175	Ia (mm) = 8.10 U.H. Tp(hrs) = 0.56 (cms) = 9.610 (cms) = 6.566 (i) (hrs) = 5.500 (mm) = 40.175 (mm) = 88.540

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

VISUAL OTTHYMO OUTPUT: Snell's Hollow Fast Secondary Pla

Snell's Hollow East Secondary Plan

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.


TIME RAIN | TIME RAIN | ' TIME RAIN | TIME RAIN | TIME RAIN | ' TIME RAIN | ' TIME RAIN | ' TIME RAIN | ' TIME RAIN | TIME RAIN | ' TIME RAIN

Unit Hyd Qpeak (cms) = 9.610

PEAK FLOW (cms)= 17.050 (i)
TIME TO PEAK (hrs)= 10.250
RUNOFF VOLUME (mm)= 176.247
TOTAL RAINFALL (mm)= 212.000
RUNOFF COEFFICIENT = 0.831

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

VISUAL OTTHYMO OUTPUT: Snell's Hollow East Secondary Plan

```
9.25 | 7.50
                                                                                          0.54 | 4.25
                                                                                                                    2.18 | 10.75
                                                                                           0.54 | 4.50 25.02 | 7.75
                                                                                                                    2.18 | 11.00
** SIMULATION:Run 31 **
                                                                                     1.50
                                                                                          0.54 | 4.75 25.02 | 8.00
                                                                                                                    2.18 | 11.25
                                                                                                                                  0 54
*******
                                                                                     1.75
                                                                                          0.54 | 5.00 25.02 | 8.25 2.18 | 11.50
                                                                                     2.00
                                                                                          0.54 | 5.25 25.02 | 8.50 1.09 | 11.75
                                                                                          0.54 | 5.50
                                                                                                      7.07 | 8.75 1.09 | 12.00
                  Filename: C:\Users\hmilukow\AppD
                                                                                          3.26 | 5.75 7.07 | 9.00 1.09 | 12.25
                                                                                          3.26 | 6.00 7.07 | 9.25 1.09 |
                          723ccf33-eb30-4ca4-a097-59bcd19a8e77\9bfc2c76
                                                                                     3.00 3.26 | 6.25 7.07 | 9.50 0.54 |
| Ptotal= 42.00 mm | Comments: 2yr/12hr
                                                                                     3.25 3.26 | 6.50 3.81 | 9.75 0.54 |
             TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
             hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                                            2.94 | 10.00
             0.25
                  0.00 I 3.50
                               7.14 I 6.75
                                                         0.42
             0.50
                   0.42 | 3.75
                                7.14 | 7.00
                                            2.94 | 10.25
                                                         0.42
                                                                       | CALIB
                                                                     | NASHYD ( 0041) | Area (ha) = 263.00 Curve Number (CN) = 74.0 | ID = 1 DT = 15.0 min | Ia (mm) = 8.90 # of Linear Res.(N) = 3.00 | U.H. Tp(hrs) = 0.52
                   0.42 | 4.00
                                7.14 | 7.25
                                            2.94 | 10.50
                                                         0.42
                               7.14 | 7.50
             1.00
                  0.42 | 4.25
                                            1.68 | 10.75
                                                         0.42
                  0.42 | 4.50 19.32 | 7.75
                                            1.68 | 11.00
             1.25
                                                         0.42
                  0.42 | 4.75 19.32 | 8.00
                                            1.68 | 11.25 0.42
             1.50
                  0.42 | 5.00 19.32 | 8.25
                                            1.68 | 11.50 0.42
                                                                         Unit Hyd Qpeak (cms) = 19.468
             1 75
             2.00
                  0.42 | 5.25 19.32 | 8.50 0.84 | 11.75 0.42
             2.25
                  0.42 | 5.50
                              5.46 | 8.75
                                            0.84 | 12.00 0.42
                                                                          PEAK FLOW
                                                                                        (cms) = 4.694 (i)
                              5.46 | 9.00 0.84 | 12.25 0.42
                                                                         TIME TO PEAK (hrs) = 5.500
                  2.52 | 5.75
                  2.52 | 6.00 5.46 | 9.25 0.84 |
                                                                         RUNOFF VOLUME (mm) = 15.301
                 2.52 | 6.25   5.46 | 9.50   0.42 |
                                                                         TOTAL RAINFALL (mm) = 54.380
             3.25 2.52 | 6.50 2.94 | 9.75 0.42 |
                                                                         RUNOFF COEFFICIENT = 0.281
                                                                          (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
I CALTB
| NASHYD ( 0041) | Area (ha) = 263.00 Curve Number (CN) = 74.0
                                                                        ** SIMULATION:Run 33 **
**********
   Unit Hyd Qpeak (cms) = 19.468
                                                                         READ STORM |
                                                                                          Filename: C:\Users\hmilukow\AppD
                                                                                           ata\Local\Temp\
                                                                                                  723ccf33-eb30-4ca4-a097-59bcd19a8e77\84fa4c73
   PEAK FLOW
                (cms) = 2.660 (i)
   TIME TO PEAK (hrs) = 5.500
                                                                       | Ptotal= 62.71 mm | Comments: 10yr/12hr
   RUNOFF VOLUME (mm) = 8.925
   TOTAL RAINFALL (mm) = 42.000
                                                                                    TIME RAIN | TIME
                                                                                                      RAIN | TIME RAIN | TIME
   RUNOFF COEFFICIENT = 0.212
                                                                                     hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                                                                                          0.00 | 3.50 10.66 | 6.75 4.39 | 10.00
                                                                                          0.63 | 3.75 | 10.66 | 7.00 | 4.39 | 10.25
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                     0.50
                                                                                     0.63 | 4.25 | 10.66 | 7.50 | 2.51 | 10.75
                                                                                     1 00
                                                                                                                    2.51 | 11.00
                                                                                     1.25
                                                                                          0.63 | 4.50 28.84 | 7.75
** SIMULATION:Run 32 **
                                                                                     1.50
                                                                                           0.63 | 4.75 28.84 | 8.00
                                                                                                                    2.51 | 11.25
******
                                                                                     1.75
                                                                                           0.63 | 5.00 28.84 | 8.25
                                                                                                                     2.51 | 11.50
                                                                                                                                  0.63
                                                                                           0.63 | 5.25 28.84 | 8.50
                                                                                     2.00
                                                                                                                     1.25 | 11.75
                                                                                                                                  0.63
                                                                                     2 25
                                                                                           0.63 | 5.50
                                                                                                        8.15 | 8.75
                                                                                                                     1.25 | 12.00
                  Filename: C:\Users\hmilukow\AppD
                                                                                     2.50
                                                                                           3.76 | 5.75
                                                                                                       8.15 | 9.00
                                                                                                                     1.25 | 12.25
                                                                                                      8.15 | 9.25
     | ata\Local\Temp\
                                                                                          3.76 | 6.00
                                                                                     2.75
                                                                                                                     1 25 I
                                                                                          3.76 | 6.25 8.15 | 9.50
                          723ccf33-eb30-4ca4-a097-59bcd19a8e77\8b231e31
                                                                                     3.00
                                                                                                                     0.63 |
| Ptotal= 54.38 mm | Comments: 5yr/12hr
                                                                                     3.25 3.76 | 6.50 4.39 | 9.75
                                                                                                                    0.63 |
                              RAIN | TIME RAIN | TIME RAIN
                 RAIN | TIME
             hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                              9.25 | 6.75 3.81 | 10.00 0.54
                  0.00 | 3.50
                 0.54 | 3.75 | 9.25 | 7.00 | 3.81 | 10.25 | 0.54
                 0.54 | 4.00 9.25 | 7.25 3.81 | 10.50 0.54
                                                                      | NASHYD ( 0041) | Area (ha) = 263.00 Curve Number (CN) = 74.0
```

Snell's Hollow East Secondary Plan

```
|ID= 1 DT=15.0 min | Ia
                        (mm) = 8.90 \# of Linear Res.(N) = 3.00
----- U.H. Tp(hrs) = 0.52
   Unit Hyd Qpeak (cms) = 19.468
   PEAK FLOW
              (cms) = 6.247 (i)
   TIME TO PEAK (hrs) = 5.500
   RUNOFF VOLUME (mm) = 20.172
   TOTAL RAINFALL (mm) = 62.710
   RUNOFF COEFFICIENT = 0.322
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
********
** SIMULATION:Run 34 **
*******
| READ STORM | Filename: C:\Users\hmilukow\AppD
                  ata\Local\Temp\
                          723ccf33-eb30-4ca4-a097-59bcd19a8e77\eaee5477
| Ptotal= 73.10 mm | Comments: 25yr/12hr
            TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
             hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
            0.50 0.73 | 3.75 12.43 | 7.00 5.12 | 10.25 0.73
            1.00 0.73 | 4.25 12.43 | 7.50 2.92 | 10.75 0.73

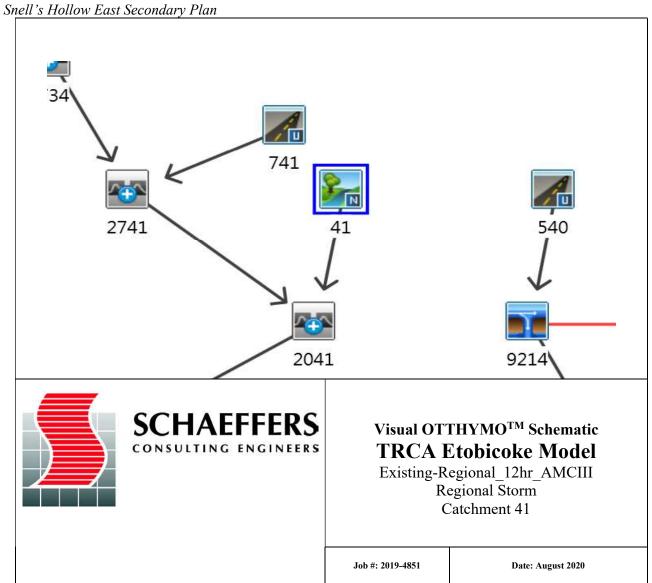
    1.25
    0.73 | 4.50
    33.63 | 7.75
    2.92 | 11.00

    1.50
    0.73 | 4.75
    33.63 | 8.00
    2.92 | 11.25

                                            2.92 | 11.25
                  0.73 | 5.00 33.63 | 8.25
0.73 | 5.25 33.63 | 8.50
             1.75
                                            2.92 | 11.50
1.46 | 11.75
             2.00
                  2.25
                                             1.46 | 12.00
                                                         0.73
             2.50
                                             1.46 | 12.25 0.73
             2.75 4.39 | 6.00 9.50 | 9.25
                                            1.46 |
             3.00 4.39 | 6.25 9.50 | 9.50 0.73 |
             3.25 4.39 | 6.50 5.12 | 9.75 0.73 |
| NASHYD ( 0041) | Area (ha) = 263.00 Curve Number (CN) = 74.0
|ID= 1 DT=15.0 min | Ia (mm) = 8.90 # of Linear Res.(N) = 3.00
----- U.H. Tp(hrs) = 0.52
   Unit Hyd Qpeak (cms) = 19.468
   PEAK FLOW
                (cms) = 8.356 (i)
   TIME TO PEAK (hrs) = 5.500
   RUNOFF VOLUME (mm) = 26.769
   TOTAL RAINFALL (mm) = 73.100
   RUNOFF COEFFICIENT = 0.366
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
*******
** SIMULATION:Run 35
```

					DAIL.	1ugusi 2020	
*****	****	*****					
READ STORM	 I	Filename	e: C:\Us	sers\hmi	lukow\App[)	
1	ļ			Local\Te			050001
 Ptotal= 80.82 m	m	Comments			0-4ca4-a05	97-59bcd19a8e77\k	005838de
	TIME	RAIN	TIME	RAIN	' TIME	RAIN TIME	RAIN
	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr hrs	mm/hr
	0.25	0.00	3.50	13.74	1 7 00	5.66 10.00 5.66 10.25 5.66 10.50 3.23 10.75 3.23 11.00	0.81
	0.75	0.81	4.00	13.74	7.25	5.66 10.50	0.81
	1.00	0.81	4.25	13.74	7.50	3.23 10.75	0.81
	1.25	0.81	4.50	37.17	7.75	3.23 11.00	0.81
	1.50	0.81	4.75 5.00	37.17	1 8 25	3.23 11.25 3.23 11.50 1.62 11.75 1.62 12.00 1.62 12.25	0.81
	2.00	0.81	5.25	37.17	8.50	1.62 11.75	0.81
	2.25	0.81	5.50	10.50	8.75	1.62 12.00	0.81
	2.50	4.85	5.75	10.50	9.00	1.62 12.25	0.81
	2.75	4.85 4.85	6.00	10.50	9.25 9.50 9.75	1.62	
	3.25	4.85	6.50	5.66	9.75	0.81	
CALIB NASHYD (004 ID= 1 DT=15.0 mi	1) .n	Area (Ia (U.H. Tp(h	(ha) = 26 (mm) = (rs) =	63.00 8.90 0.52	Curve Numk # of Linea	per (CN)= 74.0 ar Res.(N)= 3.00	
Unit Hyd Qpe		_					
PEAK FLOW TIME TO PEAK RUNOFF VOLUM TOTAL RAINFA RUNOFF COEFF	E (1 E LL	(mm) = 5. $(mm) = 31.$ $(mm) = 80.$	500 985 820				
(i) PEAK FLC	W DOES	NOT INCL	UDE BAS	SEFLOW I	F ANY.		

***********	*****	******					
READ STORM	 I	Filename	· C·/IIs	sers\hmi	lukow\AppI		
	i	11101101110		Local\Te			
	1				0-4ca4-a09	97-59bcd19a8e77\k	o4d34ed8
Ptotal= 88.54 m	ım	Comments	: 100yı	r/12hr			
						RAIN TIME mm/hr hrs	
	0.25	0.00	3.50	15.05	6.75	6.20 10.00	0.89
	0.50	0.89	3.75	15.05	7.00	6.20 10.25	0.89
	0.75	0.89	4.00	15.05	7.25	6.20 10.50	0.89
	1.25	0.89	4.50	40.71	7.75	6.20 10.00 6.20 10.25 6.20 10.50 3.54 10.75 3.54 11.00	0.89
	1.50	0.89	4.75	40.71	8.00	3.54 11.25	0.89


Snell's Hollow East Secondary Plan

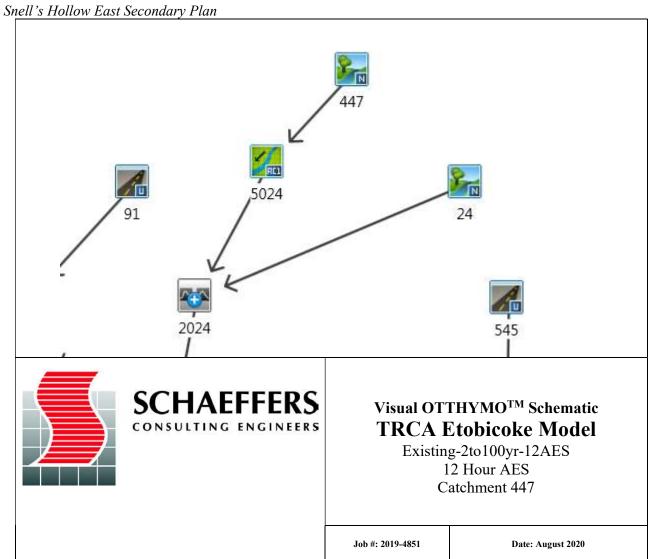
1.75	0.89	5.00	40.71	8.25	3.54 11.5	50 0.89
2.00	0.89	5.25	40.71	8.50	1.77 11.7	75 0.89
2.25	0.89	5.50	11.51	8.75	1.77 12.0	0.89
2.50	5.31	5.75	11.51	9.00	1.77 12.2	25 0.89
2.75	5.31	6.00	11.51	9.25	1.77	
3.00	5.31	6.25	11.51	9.50	0.89	
3.25	5.31	6.50	6.20	9.75	0.89	

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

VISUAL OTTHYMO OUTPUT: Snell's Hollow East Secondary Plan

DATE: August 2020

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.


	TRANSFORMED	HYETOGRAPH	
TIME RAIN	TIME RAIN '	TIME RAIN	TIME RAIN
hrs mm/hr	hrs mm/hr '	hrs mm/hr	hrs mm/hr
0.250 6.00	3.250 13.00	6.250 23.00	9.25 53.00
0.500 6.00	3.500 13.00	6.500 23.00	9.50 53.00
0.750 6.00	3.750 13.00	6.750 23.00	9.75 53.00
1.000 6.00	4.000 13.00	7.000 23.00	10.00 53.00
1.250 4.00	4.250 17.00	7.250 13.00	10.25 38.00
1.500 4.00	4.500 17.00	7.500 13.00	10.50 38.00
1.750 4.00	4.750 17.00	7.750 13.00	10.75 38.00
2.000 4.00	5.000 17.00	8.000 13.00	11.00 38.00
2.250 6.00	5.250 13.00	8.250 13.00	11.25 13.00
2.500 6.00	5.500 13.00	8.500 13.00	11.50 13.00
2.750 6.00	5.750 13.00	8.750 13.00	11.75 13.00
3.000 6.00	6.000 13.00	9.000 13.00	12.00 13.00

Unit Hyd Qpeak (cms) = 19.468

PEAK FLOW (cms)= 32.356 (i)
TIME TO PEAK (hrs)= 10.250
RUNOFF VOLUME (mm)= 172.918
TOTAL RAINFALL (mm)= 212.000
RUNOFF COEFFICIENT = 0.816

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

VISUAL OTTHYMO OUTPUT: Snell's Hollow East Secondary Plan

```
0.54 | 4.25
                                                                                                          9.25 | 7.50
                                                                                                                       2.18 | 10.75
                                                                                             0.54 | 4.50 25.02 | 7.75
                                                                                                                       2.18 | 11.00
** SIMULATION:Run 31 **
                                                                                       1.50
                                                                                             0.54 | 4.75 25.02 | 8.00
                                                                                                                       2.18 | 11.25
                                                                                                                                     0.54
*******
                                                                                       1.75
                                                                                             0.54 | 5.00 25.02 | 8.25 2.18 | 11.50
                                                                                       2.00
                                                                                             0.54 | 5.25 25.02 | 8.50
                                                                                                                       1.09 | 11.75
                                                                                             0.54 | 5.50
                                                                                                         7.07 | 8.75 | 1.09 | 12.00
                  Filename: C:\Users\hmilukow\AppD
                                                                                             3.26 | 5.75 7.07 | 9.00 1.09 | 12.25
                                                                                             3.26 | 6.00 7.07 | 9.25 1.09 |
                           723ccf33-eb30-4ca4-a097-59bcd19a8e77\9bfc2c76
                                                                                       3.00 3.26 | 6.25 7.07 | 9.50 0.54 |
| Ptotal= 42.00 mm | Comments: 2yr/12hr
                                                                                       3.25 3.26 | 6.50 3.81 | 9.75 0.54 |
             TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
              hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
             0.25
                   0.00 I 3.50
                                7.14 I 6.75
                                             2.94 | 10.00
                                                           0.42
             0.50
                   0.42 | 3.75
                                 7.14 | 7.00
                                             2.94 | 10.25
                                                           0.42
                                                                         | CALIB
                                                                       | NASHYD ( 0447)| Area (ha)= 106.74 Curve Number (CN)= 79.0
                   0.42 | 4.00
                                 7.14 | 7.25
                                              2.94 | 10.50
                                                           0.42
                                                                       |ID= 1 DT=15.0 min | Ia (mm)= 6.80 # of Linear Res.(N)= 3.00
------ U.H. Tp(hrs)= 0.58
                                7.14 | 7.50
             1.00
                   0.42 | 4.25
                                              1.68 | 10.75
                                                           0.42
                   0.42 | 4.50 19.32 | 7.75
                                             1.68 | 11.00
             1.25
                                                           0.42
                   0.42 | 4.75 19.32 | 8.00
                                             1.68 | 11.25
             1.50
                                                           0.42
                   0.42 | 5.00 19.32 | 8.25
                                             1.68 | 11.50 0.42
                                                                           Unit Hyd Qpeak (cms) = 6.969
             1 75
             2.00
                  0.42 | 5.25 19.32 | 8.50
                                             0.84 | 11.75 0.42
             2.25
                   0.42 I 5.50
                               5.46 | 8.75
                                             0.84 | 12.00 0.42
                                                                            PEAK FLOW
                                                                                           (cms) = 2.355 (i)
                               5.46 | 9.00
                                                                            TIME TO PEAK (hrs) = 5.500
                  2.52 | 5.75
                                             0.84 | 12.25 0.42
                  2.52 | 6.00 5.46 | 9.25 0.84 |
                                                                           RUNOFF VOLUME (mm) = 19.627
                  2.52 | 6.25   5.46 | 9.50   0.42 |
                                                                           TOTAL RAINFALL (mm) = 54.380
             3.25 2.52 | 6.50 2.94 | 9.75 0.42 |
                                                                           RUNOFF COEFFICIENT = 0.361
                                                                            (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
I CALTB
| NASHYD ( 0447) | Area (ha) = 106.74 Curve Number (CN) = 79.0
                                                                          ** SIMULATION:Run 33 **
|ID= 1 DT=15.0 min | Ia (mm)= 6.80 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= 0.58
                                                                          *********
   Unit Hyd Qpeak (cms) = 6.969
                                                                           READ STORM |
                                                                                             Filename: C:\Users\hmilukow\AppD
                                                                                             ata\Local\Temp\
                                                                                                     723ccf33-eb30-4ca4-a097-59bcd19a8e77\84fa4c73
   PEAK FLOW
                 (cms) = 1.410 (i)
   TIME TO PEAK (hrs) = 5.500
                                                                         | Ptotal= 62.71 mm |
                                                                                             Comments: 10yr/12hr
   RUNOFF VOLUME (mm) = 12.037
   TOTAL RAINFALL (mm) = 42.000
                                                                                       TIME RAIN | TIME
                                                                                                         RAIN | TIME RAIN | TIME
   RUNOFF COEFFICIENT = 0.287
                                                                                        hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                                                                                             0.00 | 3.50 10.66 | 6.75 4.39 | 10.00
                                                                                            0.63 | 3.75 | 10.66 | 7.00 | 4.39 | 10.25
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                       0.50
                                                                                            0.63 | 4.00 10.66 | 7.25 4.39 | 10.50
                                                                                       0.75
                                                                                             0.63 | 4.25 | 10.66 | 7.50 | 2.51 | 10.75
                                                                                       1 00
                                                                                       1.25
                                                                                             0.63 | 4.50 28.84 | 7.75
                                                                                                                        2.51 | 11.00
** SIMULATION:Run 32 **
                                                                                       1.50
                                                                                             0.63 | 4.75 28.84 | 8.00
                                                                                                                        2.51 | 11.25
******
                                                                                       1.75
                                                                                             0.63 | 5.00 28.84 | 8.25
                                                                                                                        2.51 | 11.50
                                                                                                                                     0.63
                                                                                              0.63 | 5.25 28.84 | 8.50
                                                                                       2.00
                                                                                                                        1.25 | 11.75
                                                                                                                                      0.63
                                                                                       2 25
                                                                                              0.63 | 5.50
                                                                                                           8.15 | 8.75
                                                                                                                        1.25 | 12.00
                  Filename: C:\Users\hmilukow\AppD
                                                                                       2.50
                                                                                              3.76 | 5.75
                                                                                                          8.15 | 9.00
                                                                                                                        1.25 | 12.25
                                                                                                         8.15 | 9.25
     ata\Local\Temp\
                                                                                       2.75
                                                                                              3.76 | 6.00
                                                                                                                        1 25 I
                                                                                             3.76 | 6.25 8.15 | 9.50
                           723ccf33-eb30-4ca4-a097-59bcd19a8e77\8b231e31
                                                                                       3.00
                                                                                                                        0.63 |
| Ptotal= 54.38 mm | Comments: 5yr/12hr
                                                                                       3.25 3.76 | 6.50 4.39 | 9.75
                                                                                                                        0.63 |
                               RAIN | TIME RAIN | TIME RAIN
                  RAIN | TIME
              hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                               9.25 | 6.75 3.81 | 10.00 0.54
                  0.00 | 3.50
                  0.54 | 3.75 | 9.25 | 7.00 | 3.81 | 10.25 | 0.54
             0.75  0.54  | 4.00  9.25  | 7.25  3.81  | 10.50  0.54
                                                                        | NASHYD ( 0447) | Area (ha) = 106.74 Curve Number (CN) = 79.0
```

Snell's Hollow East Secondary Plan

```
|ID= 1 DT=15.0 min | Ia
                         (mm) = 6.80 \# of Linear Res.(N) = 3.00
----- U.H. Tp(hrs) = 0.58
   Unit Hyd Qpeak (cms) = 6.969
   PEAK FLOW (cms) = 3.058 (i)
   TIME TO PEAK (hrs) = 5.500
   RUNOFF VOLUME (mm) = 25.273
   TOTAL RAINFALL (mm) = 62.710
   RUNOFF COEFFICIENT = 0.403
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
** SIMULATION:Run 34 **
*******
 READ STORM |
                  Filename: C:\Users\hmilukow\AppD
                  ata\Local\Temp\
                           723ccf33-eb30-4ca4-a097-59bcd19a8e77\eaee5477
| Ptotal= 73.10 mm | Comments: 25yr/12hr
             TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
             hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                  0.00 | 3.50 12.43 | 6.75 5.12 | 10.00 0.73
             0.25
                  0.73 | 3.75 12.43 | 7.00
                                             5.12 | 10.25 0.73
                  0.73 | 4.00 12.43 | 7.25
             0.75
                                             5.12 | 10.50 0.73
                                             2.92 | 10.75 0.73
             1 00
                   0.73 | 4.25 | 12.43 | 7.50
             1.25
                   0.73 | 4.50 33.63 | 7.75
                                             2.92 | 11.00
                                                          0.73
                   0.73 | 4.75
                                33.63 | 8.00
                                              2.92 | 11.25
             1 50
                                                          0.73
                                                          0.73
                   0.73 | 5.00
                                33.63 | 8.25
                                              2.92 | 11.50
             1.75
             2.00
                   0.73 | 5.25 33.63 | 8.50
                                             1.46 | 11.75
                                                          0.73
                                             1.46 | 12.00 0.73
             2.25
                   0.73 | 5.50
                                9.50 I 8.75
                   4.39 | 5.75
             2.50
                                9.50 | 9.00
                                             1.46 | 12.25 0.73
                   4.39 | 6.00
                               9.50 | 9.25
             2.75
                                             1.46 |
             3.00
                  4.39 | 6.25 9.50 | 9.50
                                             0.73 |
             3.25 4.39 | 6.50 5.12 | 9.75 0.73 |
| NASHYD  ( 0447) | Area  (ha) = 106.74 Curve Number (CN) = 79.0
|ID= 1 DT=15.0 min | Ia (mm) = 6.80 # of Linear Res.(N) = 3.00
----- U.H. Tp(hrs) = 0.58
   Unit Hyd Qpeak (cms) = 6.969
   PEAK FLOW
                (cms) = 3.997 (i)
   TIME TO PEAK
                (hrs) = 5.500
                (mm) = 32.779
   RUNOFF VOLUME
   TOTAL RAINFALL (mm) = 73.100
   RUNOFF COEFFICIENT = 0.448
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
******
** SIMULATION:Run 35
```

```
| READ STORM |
                   Filename: C:\Users\hmilukow\AppD
                         ata\Local\Temp\
                           723ccf33-eb30-4ca4-a097-59bcd19a8e77\b05838de
 | Ptotal= 80.82 mm | Comments: 50yr/12hr
              TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
              hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                   0.00 | 3.50 | 13.74 | 6.75 | 5.66 | 10.00
              0 25
              0.50
                    0.81 | 3.75 | 13.74 | 7.00
                                             5.66 | 10.25
              0.75
                    0.81 | 4.00 13.74 | 7.25
                                             5.66 | 10.50
                    0.81 | 4.25 | 13.74 | 7.50
              1.00
                                             3.23 | 10.75
                                                          0.81
              1.25
                     0.81 | 4.50
                                37.17 | 7.75
                                              3.23 | 11.00
                     0.81 | 4.75
                                37.17 | 8.00
                                              3.23 | 11.25
                                37.17 | 8.25
              1.75
                     0.81 | 5.00
                                              3.23 | 11.50
                    0.81 | 5.25 37.17 | 8.50
              2.00
                                             1.62 | 11.75
                                                          0.81
                                10.50 | 8.75
              2.25
                    0.81 | 5.50
                                             1.62 | 12.00
                                                          0.81
                    4.85 | 5.75 | 10.50 | 9.00
                                             1.62 | 12.25
              2.50
              2.75
                   4.85 | 6.00 10.50 | 9.25
                                             1.62 |
                   4.85 | 6.25 | 10.50 | 9.50 | 0.81 |
              3.00
             3.25 4.85 | 6.50 5.66 | 9.75 0.81 |
 | CALIB |
| NASHYD ( 0447) | Area (ha) = 106.74 Curve Number (CN) = 79.0
----- U.H. Tp(hrs) = 0.58
  Unit Hyd Qpeak (cms) = 6.969
   PEAK FLOW
                  (cms) = 4.726 (i)
    TIME TO PEAK (hrs) = 5.500
   RUNOFF VOLUME (mm) = 38.629
   TOTAL RAINFALL (mm) = 80.820
   RUNOFF COEFFICIENT = 0.478
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 ********
 ** SIMULATION:Run 36 **
 *******
                   Filename: C:\Users\hmilukow\AppD
 | READ STORM |
                   ata\Local\Temp\
                            723ccf33-eb30-4ca4-a097-59bcd19a8e77\b4d34ed8
 | Ptotal= 88.54 mm | Comments: 100yr/12hr
                   RAIN | TIME
                                RAIN | TIME RAIN | TIME
                    mm/hr | hrs mm/hr | hrs mm/hr | hrs
                                                          mm/hr
              0 25
                    0.00 | 3.50 15.05 | 6.75
                                             6.20 | 10.00
              0.50
                    0.89 | 3.75 | 15.05 | 7.00
                                             6.20 | 10.25
                                                          0.89
              0.75
                    0.89 | 4.00 | 15.05 | 7.25 | 6.20 | 10.50
                                                          0.89
              1.00
                    0.89 | 4.25 | 15.05 | 7.50 | 3.54 | 10.75
                                                          0.89
                   0.89 | 4.75 | 40.71 | 8.00 | 3.54 | 11.25
```

Snell's Hollow East Secondary Plan

```
    1.75
    0.89 | 5.00
    40.71 | 8.25
    3.54 | 11.50
    0.89

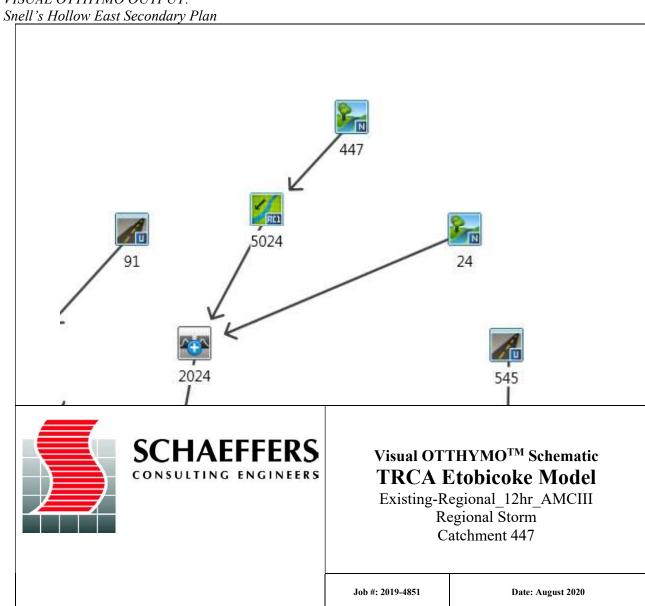
    2.00
    0.89 | 5.25
    40.71 | 8.50
    1.77 | 11.75
    0.89

    2.25
    0.89 | 5.50
    11.51 | 8.75
    1.77 | 12.00
    0.89

    2.50
    5.31 | 5.75
    11.51 | 9.00
    1.77 | 12.25
    0.89

    2.75
    5.31 | 6.00
    11.51 | 9.25
    1.77 |

    3.00
    5.31 | 6.25
    11.51 | 9.50
    0.89 |


    3.25
    5.31 | 6.50
    6.20 | 9.75
    0.89 |
```

CALIB					
NASHYD (0447)	Area	(ha)=	= 106.74	Curve Number	(CN) = 79.0
ID= 1 DT=15.0 min		. ,		# of Linear Res	(N) = 3.00
		Tp(hrs)=			,
	· · · · ·	15 (1110)	0.00		
Unit Hyd Opeak	(cms)=	6 969			
onio nya gpean	(01110)	0.303			
PEAK FLOW	(cms)=	5.478	(i)		
	(hrs)=		(-)		
RUNOFF VOLUME	(mm) =	44.670			
TOTAL RAINFALL	(mm) =	88.540			
RUNOFF COEFFICIE	ENT =	0.505			

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

VISUAL OTTHYMO OUTPUT: Snell's Hollow East Secondary Plan

Snell's Hollow East Secondary

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

TIME RAIN | TIME RAIN | ' TIME RAIN | TIME RAIN | TIME RAIN | ' TIME RAIN | ' TIME RAIN | ' TIME RAIN | ' TIME RAIN | TIME RAIN | ' TIME RAIN

Unit Hyd Qpeak (cms) = 6.969

PEAK FLOW (cms)= 12.958 (i)
TIME TO PEAK (hrs)= 10.250
RUNOFF VOLUME (mm)= 182.435
TOTAL RAINFALL (mm)= 212.000
RUNOFF COEFFICIENT = 0.861

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

DATE: August 2020

Project: 2019-4851

Existing TRCA Flows for catchments 41, 24 and 447 (12 hr AES)

Storm Event	TRCA Catchment ID 41	TRCA Catchment ID 24	TRCA Catchment ID 447
	263.00 ha	140.14 ha	106.74 ha
2-Year	2.66 cms	1.55 cms	1.41 cms
5-Year	4.69 cms	2.69 cms	2.36 cms
10-Year	6.25 cms	3.55 cms	3.06 cms
25-Year	8.36 cms	4.71 cms	4.00 cms
50-Year	10.01 cms	5.62 cms	4.73 cms
100-Year	11.74 cms	6.57 cms	5.48 cms
Regional Event	32.36 cms	17.05 cms	12.96 cms

Prorating the Flows to establish the existing flows from the Subject site using the Prorating Methodology (12 hr AES)

Storm Event	SCE Catchment ID 1	SCE Catchment ID 2	SCE Catchment ID 3
	46.20 ha	12.60 ha	2.90 ha
2-Year	0.72 cms	0.26 cms	0.09 cms
5-Year	1.27 cms	0.44 cms	0.16 cms
10-Year	1.70 cms	0.58 cms	0.20 cms
25-Year	2.27 cms	0.77 cms	0.27 cms
50-Year	2.72 cms	0.92 cms	0.32 cms
100-Year	3.19 cms	1.08 cms	0.37 cms
Regional Event	8.78 cms	2.80 cms	0.87 cms

7.0 Ontario Ministry of Transportation (MTO) Pro-rating Methodology

In some modelling situations, it may be applicable to pro-rate the flows from a large catchment to a smaller subcatchment with similar topography, watershed morphology and land cover. The accepted method for pro-rating flows is using a simplified version of the Modified Index Flood Method formula from the Ontario Ministry of Transportation section on non-hydrographic methods of flow rate calculation.

The Modified Index Flood Method referenced in the MTO Drainage Management Manual is the following formula:

$$Q_2 = Q_1(A_2/A_1)^{0.75}$$

where:

- A₁ references to the known larger area;
- · A2 references to the smaller area;
- . Q1 is the available flow available for the A1 area; and
- Q₂ is the unknown variable.

If catchment areas have significantly different hydrologic characteristics, another method for flow calculation should be applied.

Source: Ontario Ministry of Transportation, MTO Drainage Management Manual, (1997).

APPENDIX C: POST-DEVELOPMENT CALCULATIONS

APPENDIX C.1: POST-DEVELOPMENT CATCHMENTS PARAMETERS

VO Input Parameters

Area to Pond 1-Catchment 201	Area (ha)	С	TIMP	XIMP	Soil Type	CN	S	la
Low Density Area (Yellow)*	5.21	0.65	0.64	0.43	Oneida - D	87	37.95	5.7
Medium Density (Orange & Brown)*	0.88	0.75	0.79	0.79	Oneida - D	92	22.09	4.4
Road Area	4.29	0.65	0.64	0.65	Oneida - D	88	34.64	5.2
Park	1.31	0.25	0.07	0.07	Oneida - D	80	63.50	6.4
Heritage Home	0.10	0.55	0.50	0.50	Oneida - D	80	63.50	6.0
SWM Pond	1.60	0.55	0.50	0.50	Oneida - D	50	254.00	3.8
MTO Corridor	1.12	0.25	0.07	0.07	Oneida - D	80	63.50	6.4
total (weighted averages)	14.51	0.58	0.54	0.46		82.30		5.37

Area to Pond 202 and 204	Area (ha)	С	TIMP	XIMP	Soil Type	CN	S	la
Road Area and walkway	4.51	0.65	0.64	0.64	Oneida - D	88	34.64	5.2
Low Density Area (Yellow)*	4.71	0.65	0.64	0.43	Oneida - D	87	37.95	5.7
Medium Density (Orange & Brown)*	1.84	0.75	0.79	0.79	Oneida - D	92	22.09	4.4
High Density Residential (Red)	0.00	0.75	0.79	0.79	Oneida - D	92	22.09	4.4
SWM Pond	1.73	0.55	0.50	0.50	Oneida - D	50	254.00	3.8
MTO Corridor & open space	0.89	0.25	0.07	0.07	Oneida - D	80	63.50	6.4
Catchment 202 subtotal	13.68	0.62	0.61	0.53		82.87		5.15
Road Area (and road widening)	2.30	0.65	0.64	0.65	Oneida - D	88	34.64	5.2
Low Density Area (Yellow)*	0.37	0.65	0.64	0.43	Oneida - D	87	37.95	5.7
Medium Density (Orange & Brown)*	1.70	0.75	0.79	0.79	Oneida - D	92	22.09	4.4
High Density Residential (Red)*	1.27	0.75	0.79	0.79	Oneida - D	92	22.09	4.4
Park and servicing Block (not MTO setback)	0.39	0.25	0.07	0.07	Oneida - D	80	63.50	6.4
MTO Corridor	0.02	0.25	0.07	0.07	Oneida - D	80	63.50	6.4
Catchment 204 subtotal	6.05	0.67	0.67	0.66		89.36		4.92
Total to Pond 2(weighted averages)	19.73	0.64	0.63	0.57		85		5.1

Site Plan Area 1-Catchment 203	Area (ha)	С	TIMP	XIMP	Soil Type	CN	S	la
High Density Residential	1.25	0.75	0.79	0.79	Oneida - D	92	22.09	4.4
Commercial	1.47	0.90	1.00	1.00	Oneida - D	95	13.37	2.7
total (weighted averages)	2.72	0.83	0.90			94		3

Total Area

36.96

* Colors as per the draft plan

APPENDIX C.2: RELEASE RATES CALCULATIONS

Pond 1 and LID Target Release Rates

Pre-Development Parameters

Area 1 46.17 ha
Less Natural Feature Area-to remain in existing
Less Site Plan Area 1 -24.01 ha
-2.72 ha

Total Area 19.44 ha

Post Development Area to Pond 1

Area to Pond 1

14.51 ha

Target Rate Based on TRCA unit flow rates catchment #224

Storm Event	Unit Flow Rate (m³/s/ha)	Total Target Rate (m³/s)
Area (ha)		19.44
Runoff Coefficient C		-
AxC		-
2 Year	0.0075	0.146
5 Year	0.0133	0.259
10 Year	0.0187	0.364
25 Year	0.0270	0.525
50 Year	0.0352	0.684
100 Year	0.0421	0.819
Regional	0.1230	1.785

Unit flow rate based on the TRCA existing model

0.123

Pond 2 Release Rates

Pre-Development Param	neters	Post Developmen	t Area to Pond 2
Area 2	12.65 ha	Area to Pond 2	19.73 ha

Target Rate Based on TRCA unit flow rates catchment #224

Storm Event	Unit Flow Rate (m³/s/ha)	Total Target Rate (m³/s)
Area (ha)		12.645
Runoff Coefficient C		-
AxC		ı
2 Year	0.0075	0.095
5 Year	0.0133	0.168
10 Year	0.0187	0.236
25 Year	0.0270	0.341
50 Year	0.0352	0.445
100 Year	0.0421	0.532
Regional	0.122	1.538

South Site Plan Target Release Rates

Pre-Development Parameters	
Site Plan South Area 1	2.72 ha
Total Area	2.72 ha

Post Development Area

South Plan Area

2.72 ha

Target Rate Based on TRCA unit flow rates catchment #224

Storm Event	Unit Flow Rate (m³/s/ha)	Total Target Rate (m³/s)
Area (ha)		2.72
Runoff Coefficient C		-
AxC		
2 Year	0.0075	0.020
5 Year	0.0133	0.036
10 Year	0.0187	0.051
25 Year	0.0270	0.073
50 Year	0.0352	0.096
100 Year	0.0421	0.115
Regional	0.1230	0.335

Unit flow rate based on the TRCA existing model

APPENDIX C.3: EROSION CONTROL CALCULATIONS

Snell's Hollow SWM Pond 1

EROSION CONTROL CALCULATIONS-Pond 1

Ī	Run	NHYD	DT [hr]	AREA [ha]	PKFW [m³/s]	TP [hr]	RV [mm]	DWF [m³/s]
	19. Erosion (25mm)	656	0.25000	14.51000	0.39760	1.50000	14.80304	0.00000

Results of 4 hr 25 mm Design Storm

Input:

Area = 14.51 ha

R.V = 14.8 mm

Draw Down Time = 48 hrs

Calculations:

Storage = 2,147 m³

Average Outflow = $0.012 \text{ m}^3/\text{s}$

Peak Outflow = 0.019 m³/s

Snell's Hollow SWM Pond 2

EROSION CONTROL CALCULATIONS-Pond 2

Run: 19. Erosion (25mm)
Show All Runs

Run NHYD FlowType DT [hr] AREA [ha] PKFW [m³/s] TP [hr] RV [mm] DWF [m³/s] TSSC [mg/l] TPPC [mg/l] TSSL [Kg] TPPL [g]

19. Erosion (25mm) 645 Outflow 0.083 19.730 0.026 5.250 16.776 0.000 0.000 0.000 0.000 0.000 0.000

Results of 4 hr 25 mm Design Storm

Input:

Area = 19.73 ha

R.V = 16.776 mm

Draw Down Time = 48 hrs

Calculations:

Storage = $3,310 \text{ m}^3$ Average Outflow = $0.019 \text{ m}^3/\text{s}$

Peak Outflow = $0.029 \text{ m}^3/\text{s}$

Snell's Hollow Site Plan South

EROSION CONTROL CALCULATIONS-Site Plan South

un: 19. Erosion (25r	Show All	Runs									
Run	NHYD	FlowType	DT [hr]	AREA [ha]	PKFW [m³/s]	TP [hr]	RV [mm]	DWF [m³/s]	TSSC [mg/l]	TPPC [mg/l]	TSSL [
19. Erosion (25mm)	12	Outflow	0.083	2.720	0,269	1.500	22.692	0.000	0.000	0.000	0.0

Results of 4 hr 25 mm Design Storm

Input:

Area = 2.72 ha

R.V = 22.692 mm

Draw Down Time = 48 hrs

Calculations:

Storage = $617 ext{ m}^3$ Average Outflow = $0.004 ext{ m}^3/\text{s}$

Peak Outflow = $0.005 \text{ m}^3/\text{s}$

APPENDIX C.4: REQUIRED STORAGES

Theoretical Storages for Ponds- 2 to 100year events

Area to Pond 1

Area Draining to Pond 1

Storm Event	Target Rate Prorated by Area(m³/s)	6 hour AES Release Rate (m³/s)	6 hour AES Required Volume (m³)	12 hour AES Release Rate (m³/s)	12 hour AES Required Volume (m³)	3hr Chicago Release Rate (m³/s)	3hr Chicago Required Volume (m³)
Erosion	0.019						
2 Year	0.146	0.117	2304	0.146	2350	0.017	1873
5 Year	0.259	0.248	2486	0.259	2500	0.112	2295
10 Year	0.364	0.362	2594	0.355	2587	0.198	2419
25 Year	0.525	0.522	2723	0.519	2723	0.452	2665
50 Year	0.684	0.677	2789	0.673	2789	0.609	2761
100 Year	0.819	0.815	2863	0.783	2845	0.776	2842
Regional	1.785		2863				

Additional Regional Storage Required 3105

Total Regional Volume Required 5968

3900

Theoretical Storages for Ponds- 2 to 100year events

Area to Pond 2 New

Area Draining to Pond 2

Storm Event	Target Rate(m³/s)	6 hour AES Release Rate (m³/s)	6 hour AES Required Volume (m³)	12 hour AES Release Rate (m³/s)	12 hour AES Required Volume (m³)	3hr Chicago Release Rate (m³/s)	3hr Chicago Required Volume (m³)
2 Year	0.095	0.073	4174	0.095	4594	0.026	2970
5 Year	0.168	0.147	5390	0.168	5719	0.066	4040
10 Year	0.236	0.212	6156	0.236	6392	0.116	4918
25 Year	0.341	0.322	6972	0.341	7099	0.278	6676
50 Year	0.445	0.440	7466	0.445	7484	0.377	7240
100 Year	0.532	0.532	7925	0.528	7905	0.486	7694
Regional	1.538		14815				

Additional Regional Storage Required 4222

Total Regional Volume Required 19037

Theoretical Storages for Ponds- 2 to 100year events

South Site Plan Area

On-site Control

Storm Event	Target Rate Prorated by Area(m³/s)	6 hour AES Release Rate (m³/s)	6 hour AES Required Volume (m³)	12 hour AES Release Rate (m³/s)	12 hour AES Required Volume (m³)	3hr Chicago Release Rate (m³/s)	3hr Chicago Required Volume (m³)
Erosion							
2 Year	0.020	0.017	780	0.020	819	0.005	593
5 Year	0.036	0.035	986	0.036	1002	0.016	767
10 Year	0.051	0.050	1116	0.050	1117	0.027	905
25 Year	0.073	0.073	1265	0.069	1242	0.062	1192
50 Year	0.096	0.096	1376	0.088	1338	0.081	1304
100 Year	0.115	0.114	1486	0.107	1440	0.102	1418
Regional	0.335		1968				

Additional Regional Storage Required 582

Total Regional Volume Required 2550

3900

APPENDIX C.5: QUALITY CONTROL CALCULATIONS

Snell's Hollow SWM Pond 1

Water Quality Control Requirements

Table: Water Quality Storage Requirements Based on Receiving Waters

Protection Level 1	S	torage Vol	ume (m³/h	a) for Impe	rvious Lev	el
SWMP Type	0%	35%	55%	70%	85%	100%
Wetlands	36	80	105	120	140	160
Wet Pond	53	140	190	225	250	275

^{*} For wet ponds, all of the storage, except for 40 m³/ha represents the permanent pool volume. The 40 m³/ha represents extended detention storage.

Source: 2003 SWM Planning & Design Manual

SWM Pond 1

Input:					
Weighted Imperviousness =	54%				
Area =	14.51	ha			
Level of Protection:	1				
SWMP Type : \	Net Pon	d			
Calculation:					
Total Storage Volume =	187	m³/ha	\rightarrow	2,718	m^3
Permanent Pool Volume =	147	m³/ha	\rightarrow	2,137	m ³
Active Storage Volume =	40	m³/ha	\rightarrow	580	m^3

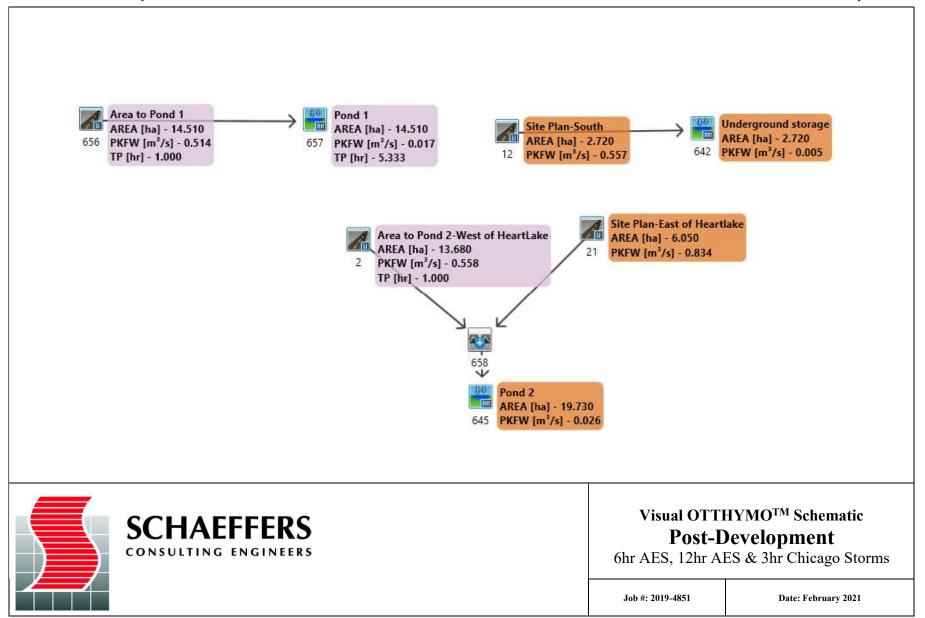
Snell's Hollow SWM Pond 2

Water Quality Control Requirements

Table: Water Quality Storage Requirements Based on Receiving Waters

Protection Level 1	S	torage Vol	ume (m³/h	a) for Impe	rvious Lev	el
SWMP Type	0%	35%	55%	70%	85%	100%
Wetlands	36	80	105	120	140	160
Wet Pond	53	140	190	225	250	275

^{*} For wet ponds, all of the storage, except for 40 m³/ha represents the permanent pool volume. The 40 m3/ha represents extended detention storage.


Source: 2003 SWM Planning & Design Manual

SWM Pond 2

Input:					
Weighted Imperviousness =	63%				
Area =	19.73	ha			
Level of Protection:	1				
SWMP Type : \	Wet Pon	d			
Calculation:					
Total Storage Volume =	208	m³/ha	\rightarrow	4,106	m^3
Permanent Pool Volume =	168	m³/ha	\rightarrow	3,317	m ³
Active Storage Volume =	40	m³/ha	\rightarrow	789	m^3

APPENDIX C.6: VO MODEL RESULTS

Snell's Hollow Secondary Plan Area

______ V V I SSSSS U U A L (v 6.1.2003) V V I SS U U A A L V V I SS U U AAAAA L V V I SS U U A A L I SSSSS UUUUU A A LLLLL OOO TTTTT TTTTT H H Y Y M M OOO $\hbox{\scriptsize O} \quad \hbox{\scriptsize O} \quad \hbox{\scriptsize T} \quad \hbox{\scriptsize T} \quad \hbox{\scriptsize H} \quad \hbox{\scriptsize H} \quad \hbox{\scriptsize Y} \; \hbox{\scriptsize Y} \quad \hbox{\scriptsize MM} \; \hbox{\scriptsize MM} \; \hbox{\scriptsize O} \quad \hbox{\scriptsize O}$ 0 0 T ${\tt T}$ H H Y M M O O Т T H H Y M M OOO Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\850b0d5c-ddb9-42f6-aaa1-ea189d349cde\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\850b0d5c-ddb9-42f6-aaa1-ea189d349cde\scen DATE: 02-09-2021 TIME: 01:20:05 USER: COMMENTS: ** SIMULATION : 1. Chicago 3hr 2yr ** READ STORM | Filename: C:\Users\sfanous\AppD ata\Local\Temp\ 8766663e-6d3f-4db9-a962-c49127701f86\c7ad88c2 | Ptotal= 25.36 mm | Comments: Chicago 5 Min Time Step - 3hr - 2yr RAIN | TIME RAIN | TIME RAIN | TIME mm/hr | hrs mm/hr | 'hrs mm/hr | hrs mm/hr 1.86 | 0.83 | 10.84 | 1.58 5.33 | 2.33 2 43 0.17 2.03 | 0.92 27.01 | 1.67 4.68 | 2.42 2.30 0.25 2.24 | 1.00 95.47 | 1.75 4.18 | 2.50 2.18 2.50 | 1.08 35.47 | 1.83 3.78 | 2.58 0.33 2.08 3.45 | 2.67 0.42 2.85 | 1.17 | 18.58 | 1.92 1.98 3.31 | 1.25 | 12.41 | 2.00 3.18 | 2.75 1.90 3.97 | 1.33 9.30 | 2.08 2.95 | 2.83

DATE: February 2021

0.67	5.00	1.42	7.43	2.17	2.75	2.92	1.75
0.75	6.81	1.50	6.20	2.25	2.58	3.00	1.68

CALIB	1							
STANDHYD	(0012)	Area	(ha)=	2.72				
ID= 1 DT=	5.0 min	Total	Imp(%)=	90.00	Dir.	Conn. (%	(s) = 90.00)
			IMPERVIO	US	PERVIOU	S (i)		
Surfa	ce Area	(ha) =	2.45		0.27			
Dep.	Storage	(mm) =	1.00		5.00			
Avera	ge Slope	(%)=	1.00		2.00			
Lengt	.h	(m) =	134.66		40.00			
Manni	ngs n	=	0.013		0.250			
Max.E	ff.Inten.(r	mm/hr)=	95.47		27.76			
	over	(min)	5.00		10.00			
Stora	ge Coeff.	(min) =	3.11	(ii)	6.10	(ii)		
Unit	Hyd. Tpeak	(min) =	5.00		10.00			
Unit	Hyd. peak	(cms) =	0.27		0.15			
							TOTALS	ŧ
PEAK	FLOW	(cms) =	0.55		0.01		0.557	(iii)
TIME	TO PEAK	(hrs) =	1.00		1.08		1.00	
RUNOF	F VOLUME	(mm) =	24.36		10.98		23.02	
TOTAL	RAINFALL	(mm) =	25.36		25.36		25.36	
	F COEFFICI	. ,			0.43		0.91	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 93.6$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR(0642)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE (cms) (ha.m.) | (cms) (ha.m.) 0.1120 0.0000 0.0000 | 0.0510 0.0050 0.0617 | 0.0730 0.1266 0.1376 0.0200 0.0820 | 0.0960 0.0360 0.1003 | 0.1150 0.1490 OPEAK (ha) (cms) (hrs) (mm) INFLOW : ID= 2 (0012) 2.720 0.557 23.02 1.00 OUTFLOW: ID= 1 (0642) 2 720 0 005 3 08 21 86 PEAK FLOW REDUCTION [Oout/Oin](%) = 0.86 (min) = 125.00TIME SHIFT OF PEAK FLOW MAXIMUM STORAGE USED (ha.m.) = 0.0593

Snell's Hollow Secondary Plan Area

STANDHYD (0002)	Area	(ha) =	13.68		
ID= 1 DT=15.0 min	Total	Imp(%)=	61.00	Dir. Conn.(%)=	53.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha) =	8.3	4	5.34	
Dep. Storage	(mm) =	1.0	0	5.00	
Average Slope	(%)=	1.0	0	2.30	
Length	(m) =	301.9	9	40.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

		TRA	ANSFORMED HYETOGRA	PH	
TIME	E RAIN	TIME	RAIN TIME	RAIN TIME	RAIN
hrs	s mm/hr	hrs	mm/hr ' hrs	mm/hr hrs	mm/hr
0.250	2.04	1.000	44.44 1.750	4.73 2.50	2.31
0.500	2.89	1.250	22.16 2.000	3.47 2.75	1.99
0.750	5.26	1.500	7.64 2.250	2.76 3.00	1.75
Max.Eff.Inten.(r	nm/hr)=	44.44	10.45		
over	(min)	15.00	45.00		
Storage Coeff.	(min) =	16.80	(ii) 97.80 (ii)		
Unit Hyd. Tpeak	(min) =	15.00	105.00		
Unit Hyd. peak	(cms) =	0.07	0.01		
				TOTALS	
PEAK FLOW	(cms) =	0.56	0.04	0.558 (iii)	
TIME TO PEAK	(hrs) =	1.00	2.75	1.00	
RUNOFF VOLUME	(mm) =	24.36	7.70	16.52	
TOTAL RAINFALL	(mm) =	25.36	25.36	25.36	
RUNOFF COEFFICIA	ENT =	0.96	0.30	0.65	

TRANCEORMER HVETTOCRARH

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- $CN^* = 85.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0021)| Area (ha) = 6.05|ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 66.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =4.05 2.00 Dep. Storage (mm) = 1.00 5.00 (%)= 1.00 Average Slope 2.00 Length (m) =200.83 40.00 Mannings n 0.013 0.250 Max.Eff.Inten.(mm/hr) = over (min) 5.00 20.00 Storage Coeff. (min) = 3.95 (ii) 18.84 (ii) Unit Hyd. Tpeak (min) = 5.00 20.00 Unit Hyd. peak (cms) = 0.24 0.06 *TOTALS* 0.834 (iii) PEAK FLOW 0.83 0.04 (cms) =TIME TO PEAK (hrs) =1.00 1.33 1.00 RUNOFF VOLUME (mm) =24.36 7.77 18.71

TOTAL RAINFALL	(mm) =	25.36	25.36	E: Febru	25.36
TOTAL RAINFALL RUNOFF COEFFICI	ENT =	0.96	0.31		0.74
***** WARNING: STORA	AGE COEFF. IS	SMALLER TH	AN TIME ST	TEP!	
(ii) TIME STEE	88.0 Ia = (DT) SHOULD STORAGE COEF DOES NOT IN	Dep. Stora BE SMALLER FICIENT. CLUDE BASEF	ge (Above OR EQUAL LOW IF ANY	e) 7.	
(0658) I	-				
1 + 2 = 3	ARE	A QPEAK	TPEAK	R.V.	
ID1= 1 (00	(ha (02): 13.6	(cms) (cms) 0.558	1.00	(mm) 16.52	
+ ID2= 2 (00	021): 6.0	5 0.834	1.00	18.71	
ID = 3 (06)	558): 19.7	3 1.392	1.00	17.20	
NOTE: PEAK FLO					
RESERVOIR(0645) IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW	STORAGE	OUTH	FLOW SI	TORAGE
	0.0000 0.0290 0.0950 0.1680	(ha.m.) 0.0000 0.3310 0.4595 0.5720	0.2	3410 1450 5320	0.6393 0.7100 0.7485 0.7925
	0.1680	0.5720	0.5	5320	0.7925
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>	0.1680	0.5720 AREA QP (ha) (ci	EAK TI	3320 PEAK nrs)	0.7925 R.V. (mm)
I M	0.1680 0658) 1 0645) 1 PEAK FLOW TIME SHIFT OF HAXIMUM STOR	0.5720 AREA QP: (ha) (c: 9.730 9.730 REDUCTION PEAK FLOW AGE USED	0.5 EAK TH ms) (1 1.392 0.026 [Qout/Qin] (r (ha	PEAK nrs) 1.00 4.33 (%) = 1.8 nin) = 200.0 mm.) = 0.2	0.7925 R.V. (mm) 17.20 17.05
CALIB	0.1680 0658) 1 0645) 1 PEAK FLOW TIME SHIFT OF TAXIMUM STOR Area (Total Imp	0.5720 AREA QP: (ha) (c: 9.730 9.730 REDUCTION PEAK FLOW AGE USED	0.5 EAK TH ms) (1 1.392 0.026 [Qout/Qin] (r (ha	PEAK nrs) 1.00 4.33 (%) = 1.8 nin) = 200.(m.) = 0.2	R.V. (mm) 17.20 17.05
CALIB STANDHYD (0656) ID= 1 DT=15.0 min	0.1680 0658) 1 0645) 1 PEAK FLOW I'ME SHIFT OF MAXIMUM STOR Area (Total Imp	0.5720 AREA QP: (ha) (c: 9.730 9.730 REDUCTION PEAK FLOW AGE USED ha)= 14.51 (%)= 54.00	0.5 EAK TH ms) (1 1.392 0.026 [Qout/Qin; (fa	DEAK DEAK	R.V. (mm) 17.20 17.05
CALIB STANDHYD (0656) ID= 1 DT=15.0 min	0.1680 0658) 1 0645) 1 PEAK FLOW I'ME SHIFT OF MAXIMUM STOR Area (Total Imp	0.5720 AREA QP: (ha) (c: 9.730 9.730 REDUCTION PEAK FLOW AGE USED ha)= 14.51 (%)= 54.00	EAK TH ms) (1 1.392 0.026 [Qout/Qin] (r (ha.) Dir. Co PERVIOUS 6.67 5.00	DEAK DEAK	R.V. (mm) 17.20 17.05
CALIB	0.1680 0658) 1 0645) 1 PEAK FLOW I'ME SHIFT OF MAXIMUM STOR Area (Total Imp	0.5720 AREA QP: (ha) (c: 9.730 9.730 REDUCTION PEAK FLOW AGE USED ha)= 14.51 (%)= 54.00	EAK TI mms) (1 1.392 0.026 [Qout/Qin] (r	DEAK DEAK	R.V. (mm) 17.20 17.05

---- TRANSFORMED HYETOGRAPH ----

RAIN | TIME

RAIN | TIME

Snell's Hollow Secondary Plan Area

hrs 0.250 0.500 0.750	2.04 1. 2.89 1.	000 44.4 250 22.1	nr ' hrs 44 1.750 16 2.000 54 2.250		mm/hr 2.31 1.99 1.75
Max.Eff.Inten.(mm	/hr) = 4	4.44	9.33		
over (min) 1	5.00	45.00		
Storage Coeff. (1	min) = 1	6.80 (ii)	97.80 (ii)		
Unit Hyd. Tpeak (min) = 1	5.00	105.00		
Unit Hyd. peak (cms)=	0.07	0.01		
				TOTALS	
PEAK FLOW (cms)=	0.51	0.05	0.514 (iii)
TIME TO PEAK (hrs)=	1.00	2.75	1.00	
RUNOFF VOLUME	(mm) = 2	4.36	7.14	15.06	
TOTAL RAINFALL	(mm) = 2	5.36	25.36	25.36	
RUNOFF COEFFICIEN	T =	0.96	0.28	0.59	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 84.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0657)) OVERF	LOW IS OFF				
IN= 2> OUT= 1	1					
DT= 5.0 min	OUTFL	OW STORA	GE	OUTFLOW	STORAGE	
	(cms) (ha.m	.)	(cms)	(ha.m.)	
	0.00	0.00	00	0.3640	0.2594	
	0.01	90 0.21	17	0.5250	0.2723	
	0.14	60 0.23	50	0.6840	0.2789	
	0.25	90 0.25	00	0.8190	0.2863	
		AREA)PEAK	TPEAK	R.V.	
		(ha)	(cms)	(hrs)	(mm)	
INFLOW : ID= 2	(0656)	14.510	0.514	1.00	15.06	
OUTFLOW: ID= 1	(0657)	14.510	0.017	5.33	14.86	
	PEAK FLOW	REDUCTION	√ [Qout	/Qin](%)=	3.22	
	TIME SHIFT	OF PEAK FLO	V	(min) = 26	0.00	
	MAXIMUM ST	ORAGE USE)	(ha.m.) =	0.1873	
==========		=======		=======		=======
	====					

V	V	I	SSSSS	U	U	1	A	L				(v	6.1.2003)
V	V	I	SS	U	U	A	A	L					
V	V	I	SS	U	U	AA	AAA	L					
V	V	I	SS	U	U	Α	A	L					
7	7V	I	SSSSS	UUU	JUU	Α	A	LLI	LLL				
00	00	TTTTT	TTTTT	H	Η	Y	Y	M	M	00	00	TM	
0	0	T	T	Н	Н	Y	Y	MM	MM	0	0		
0	0	T	T	Н	Н	1	Y	M	M	0	0		
00	00	T	T	H	Н	1	Y	M	M	00	00		
ned	and	Distri	huted h	sz Sr	nart	Cit	+ 17 TA	ate	r Tn	C			

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc

All rights reserved.

DATE: February 2021

***** DETAILED OUTPUT *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e $a930-3446e1ae5bfa\ffd53e9e-e0f5-4a8a-894a-2ad4d02d2bb7\scen$ Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\ffd53e9e-e0f5-4a8a-894a-2ad4d02d2bb7\scen

DATE: 02-09-2021 TIME: 01:20:06

USER:

COMMENTS:

** SIMULATION : 10. AES 6hr 25yr ***********

READ STORM |

ata\Local\Temp\ 8766663e-6d3f-4db9-a962-c49127701f86\a8b5c5a3 | Ptotal= 65.59 mm | Comments: 25yr/6hr TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 9.18 | 5.50 1.31 0.50 1.31 | 2.25 22.30 | 4.00 5.25 | 5.75 1.31 0.75 1.31 | 2.50 60.35 | 4.25 5.25 | 6.00 1.31 1.00 1.31 | 2.75 60.35 | 4.50 2.62 | 6.25 1.31 1.25 1.31 | 3.00 17.06 | 4.75 2.62 | 1.50 7.87 | 3.25 17.06 | 5.00 1.31 |

Filename: C:\Users\sfanous\AppD

1.75 7.87 | 3.50 9.18 | 5.25 1.31 |

CALIB STANDHYD (0012) ID= 1 DT= 5.0 min	Area Total	(ha) = 2.72 Imp(%) = 90.00	Dir. Conn.(%)=	90.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha) =	2.45	0.27	
Dep. Storage	(mm) =	1.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m) =	134.66	40.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

				DATE	: Febri	iary 2021	!
	MAXIMUM	STORAGE	USED	(ha.m	m.)= 0.	1265	
	·						
CALIB							
STANDHYD (000)2) Area	(ha) =	13.68				
ID= 1 DT=15.0 mi	.n Total	Imp(%)=	61.00	Dir. Cor	nn.(%)=	53.00	
		IMPERV:	IOUS	PERVIOUS	(i)		
Surface Area	(ha)=	8.3	34	5.34			
Dep. Storage	e (mm) =	1.0)()	5.00			
Average Slop	e (%)=	201 (10	2.30			
Surface Area Dep. Storage Average Slop Length Mannings n	(m) =	301.3	19	40.00			
rainiiings ii	_	0.0	LJ	0.230			
Max.Eff.Inte c Storage Coef Unit Hyd. Tp Unit Hyd. pe	en.(mm/hr)=	60.3	35	53.14			
C	over (min)	15.0	00	30.00			
Storage Coef	f. (min) =	16.8	30 (ii)	97.80 (i	ii)		
Unit Hyd. Tp	eak (min) =	15.0	00	105.00			
Unit Hyd. pe	eak (cms)=	0.0	7	0.01			
					T	OTALS	
PEAK FLOW	(cms)=	1.0)8	0.20		1.117 (ii	1)
TIME TO PEAK	(nrs)=	۷.	75	4.25		2.75 52.22	
PEAK FLOW TIME TO PEAK RUNOFF VOLUM TOTAL RAINFA RUNOFF COEFF	IE (IIIII) =	65	50	38.27 65.50		65.59	
DINOFF COFFE	TCTFNT =	00.0	38	05.59		0.80	
(i) CN PRC CN*	OCEDURE SELE = 85.0 STEP (DT) SH	CTED FOR Ia = Dep.	PERVIO	US LOSSES: ge (Above)			
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F	OCEDURE SELE = 85.0 STEP (DT) SH CHE STORAGE FLOW DOES NO	CTED FOR Ia = Dep. OULD BE S COEFFICIE T INCLUDE	PERVION Storac SMALLER ENT. E BASEF	US LOSSES: ge (Above) OR EQUAL			
(i) CN PRC CN* (ii) TIME S THAN T	DCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO	CCTED FOR Ia = Dep. IOULD BE { COEFFICIENT INCLUDENT	PERVIOU Storac SMALLER ENT. E BASEF	US LOSSES: ge (Above) OR EQUAL LOW IF ANY			
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi	OCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area n Total	CCTED FOR Ia = Dep. IOULD BE S COEFFICIE T INCLUDE (ha) = Imp(%) =	PERVIOUS	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor	nn.(%)=		
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi	OCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area n Total	CCTED FOR Ia = Dep. IOULD BE S COEFFICIE T INCLUDE (ha) = Imp(%) =	PERVIOUS	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor	nn.(%)=		
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi	OCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area n Total	CCTED FOR Ia = Dep. IOULD BE S COEFFICIE T INCLUDE (ha) = Imp(%) =	PERVIOUS	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor	nn.(%)=		
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi	OCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area n Total	CCTED FOR Ia = Dep. IOULD BE S COEFFICIE T INCLUDE (ha) = Imp(%) =	PERVIOUS	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor	nn.(%)=		
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi	OCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area n Total	CCTED FOR Ia = Dep. IOULD BE S COEFFICIE T INCLUDE (ha) = Imp(%) =	PERVIOUS	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor	nn.(%)=		
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F	OCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area n Total	CCTED FOR Ia = Dep. IOULD BE S COEFFICIE T INCLUDE (ha) = Imp(%) =	PERVIOUS	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor	nn.(%)=		
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi Surface Area Dep. Storage Average Slop Length Mannings n	OCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area n Total	CCTED FOR Ia = Dep. IOULD BE S COEFFICIT OF INCLUDE (ha) = Imp(%) = IMPERV: 4.(1.(200.8 0.03	PERVIOL Storage MALLER ENT. 6.05 67.00 EOUS 55 00 00 33 3 13	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor PERVIOUS 2.00 5.00 2.00 40.00 0.250)	66.00	
(i) CN PRC CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi Surface Area Dep. Storage Average Slop Length Mannings n	CCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area .n Total a (ha) = (mm) = (%) = (m) =	CCTED FOR Ia = Dep. IOULD BE S COEFFICIT OT INCLUDE (ha) = Imp(%) = IMPERV: 4.(1.(200.8 0.0)	PERVIOL. Storac SMALLER ENT. E BASEF: 6.05 67.00 IOUS 55 00 00 33 13	Dir. Cor PERVIOUS 2.00 5.00 40.00 0.250	 (i)	66.00 STEP.	
(i) CN PRO CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi Surface Area Dep. Storage Average Slop Length Mannings n NOTE: R	CCEDURE SELE = 85.0 STEP (DT) SH SHE STORAGE FLOW DOES NO 21) Area .n Total 22 (mm) = 23 (mm) = 24 (mm) = 25 (mm) = 26 (mm) = 27 (mm) =	CTED FOR Ia = Dep. IOULD BE S COEFFICIP INCLUDE (ha) = Imp(%) = IMPERV: 4.(200.8 0.00	PERVIOL Storage MALLER ENT. 6.05 67.00 EOUS 55 00 00 33 13 RMED TO FRANSFOL	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor PERVIOUS 2.00 5.00 2.00 40.00 0.250 5.0 MIN.)	66.00 STEP.	
(i) CN PRO CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi Surface Area Dep. Storage Average Slop Length Mannings n NOTE: R	CCEDURE SELE = 85.0 TTEP (DT) SH CHE STORAGE TLOW DOES NO 21) Area .n Total (ha) = (mm) = (m) = (m) = (m) = (m) = (TIME RAIL WAS)	CTED FOR Ia = Dep. IA = De	PERVIOUS Storage MALLER ENT. 6.05 67.00 COUS DO DO DO DO DO DO DO DO DO DO DO DO DO	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor PERVIOUS 2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG)	66.00 STEP.	R
(i) CN PRO CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi Surface Area Dep. Storage Average Slop Length Mannings n NOTE: R	CCEDURE SELE = 85.0 TTEP (DT) SH CHE STORAGE TLOW DOES NO 21) Area .n Total (ha) = (mm) = (m) = (m) = (m) = (m) = (TIME RAIL WAS)	CTED FOR Ia = Dep. IA = De	PERVIOUS Storage MALLER ENT. 6.05 67.00 COUS DO DO DO DO DO DO DO DO DO DO DO DO DO	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor PERVIOUS 2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG)	66.00 STEP.	F
(i) CN PRO CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi Surface Area Dep. Storage Average Slop Length Mannings n NOTE: R	CCEDURE SELE = 85.0 TTEP (DT) SH CHE STORAGE TLOW DOES NO 21) Area .n Total (ha) = (mm) = (m) = (m) = (m) = (m) = (TIME RAIL WAS)	CTED FOR Ia = Dep. IA = De	PERVIOUS Storage MALLER ENT. 6.05 67.00 COUS DO DO DO DO DO DO DO DO DO DO DO DO DO	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor PERVIOUS 2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG)	66.00 STEP.	R
(i) CN PRO CN* (ii) TIME S THAN T (iii) PEAK F CALIB STANDHYD (002 ID= 1 DT= 5.0 mi Surface Area Dep. Storage Average Slop Length Mannings n NOTE: R	CCEDURE SELE = 85.0 STEP (DT) SH CHE STORAGE FLOW DOES NO	CTED FOR Ia = Dep. IA = De	PERVIOUS Storage MALLER ENT. 6.05 67.00 COUS DO DO DO DO DO DO DO DO DO DO DO DO DO	US LOSSES: ge (Above) OR EQUAL LOW IF ANY. Dir. Cor PERVIOUS 2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG)	66.00 STEP.	R

1.31 | 2.000 22.30 | 3.583

1.31 | 2.083 | 22.30 | 3.667

22.30 | 3.750

22.30 | 3.833

1.31 | 2.167

1.31 | 2.250

9.18 | 5.17

9.18 | 5.25

9.18 | 5.33

5.25 | 5.42

1.31

1.31

1.31

1.31

0.417

0.500

0.583

		IRA	MAD I ORMI	ED HIETOGRA	MPH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	7.87	3.250	17.06	4.83	1.31
0.167	0.00	1.750	7.87	3.333	9.18	4.92	1.31
0.250				3.417		5.00	1.31
0.333	1.31	1.917	22.30	3.500	9.18	5.08	1.31
0.417		2.000	22.30	3.583	9.18	5.17	1.31
0.500		2.083	22.30	3.667	9.18	5.25	1.31
0.583	1.31	2.167	22.30	3.750	9.18	5.33	1.31
0.667	1.31	2.250	22.30	3.833	5.25	5.42	1.31
0.750	1.31	2.333	60.35	3.917	5.25	5.50	1.31
0.833				4.000		5.58	1.31
0.917	1.31	2.500	60.35	1 4.083	5.25	5.67	1.31
1.000	1.31	2.583	60.35	4.167	5.25	5.75	1.31
1.083	1.31	2.667	60.35	4.250	5.25	5.83	1.31
1.167	1.31	2.750	60.35	4.333	2.62	5.92	1.31
1.250		2.833	17.06	4.417	2.62	6.00	1.31
1.333	7.87	2.917	17.06	1 4.500	2.62	6.08	1.31
1.417	7.87	3.000	17.06	1 4.583			1.31
1.500	7.87	1 3.083	17.06	4.667	2.62 i	6.25	1.31
1.583	7.87	3.167	17.06	4.750	2.62 i		
Max.Eff.Inten.(m	m/hr)=	60.35		54.03			
	(min)						
Storage Coeff.							
Unit Hyd. Tpeak							
Unit Hyd. peak							
1 1 1 1	, ,				*TOTAL	S*	
PEAK FLOW	(cms) =	0.41		0.04		9 (iii)	
TIME TO PEAK	(hrs) =	2.75		2.75	2.7		
RUNOFF VOLUME							
TOTAL RAINFALL							
RUNOFF COEFFICIE	, ,						
						-	
*** WADNIENC. CHODAC	E COEFE	TC CMATTE	וא מווח מי	TIME CHEDI			

---- TRANSFORMED HYETOGRAPH ----

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 93.6 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0642) IN= 2> OUT= 1	OVERFLOW	IS OFF			
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE
	(cms)	(ha.m.)		(cms)	(ha.m.)
	0.0000	0.0000		0.0510	0.1120
	0.0050	0.0617		0.0730	0.1266
	0.0200	0.0820		0.0960	0.1376
	0.0360	0.1003		0.1150	0.1490
	AR	EA QPE	λK	TPEAK	R.V.
	(h	a) (cms	s)	(hrs)	(mm)
INFLOW : ID= 2 (0	0012) 2.	720 0.	449	2.75	62.84
OUTFLOW: ID= 1 (0	1642) 2.	720 0	073	3.50	61.68
PEA TIM	AK FLOW R			/Qin](%)= 1 (min)= 4	

Unit Hyd. peak (cms) =

TOTAL RAINFALL (mm) =

RUNOFF COEFFICIENT =

INFLOW : ID= 2 (0658)

OUTFLOW: ID= 1 (0645)

PEAK FLOW

TIME TO PEAK

RUNOFF VOLUME

Snell's Hollow Secondary Plan Area

0.750	1.31	2.333	60.35	3.917	5.25	5.50	1.31
0.833	1.31	2.417	60.35	4.000	5.25	5.58	1.31
0.917	1.31	2.500	60.35	4.083	5.25	5.67	1.31
1.000	1.31	2.583	60.35	4.167	5.25	5.75	1.31
1.083	1.31	2.667	60.35	4.250	5.25	5.83	1.31
1.167	1.31	2.750	60.35	4.333	2.62	5.92	1.31
1.250	1.31	2.833	17.06	4.417	2.62	6.00	1.31
1.333	7.87	2.917	17.06	4.500	2.62	6.08	1.31
1.417	7.87	3.000	17.06	4.583	2.62	6.17	1.31
1.500	7.87	3.083	17.06	4.667	2.62	6.25	1.31
1.583	7.87	3.167	17.06	4.750	2.62	I	
Max.Eff.Inten.(mr	n/hr)=	60.35		47.89			
over	(min)	5.00		15.00			
Storage Coeff.	(min) =	4.75	(ii)	14.23 (ii)			
Unit Hyd. Tpeak	(min) =	5.00		15.00			

0.67

2.75

64.59

65.59

0.98

0.08

0.20

2.83

39.10

65.59

0.60

TOTALS

55.92

65.59

0.85

0.866 (iii) 2.75

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(cms) =

(hrs) =

(mm) =

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 88.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1=1 (0002):	13.68	1.117	2.75	52.22
+ ID2= 2 (0021):	6.05	0.866	2.75	55.92
=============	======		======	
ID = 3 (0658):	19.73	1.983	2.75	53.35
NOTE: PEAK FLOWS DO	NOT INCLU	JDE BASEFL	OWS IF AN	NY.

RESERVOIR(0645)	OVERFLOW	IS OFF			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE
	(cms)	(ha.m.)		(cms)	(ha.m.)
	0.0000	0.0000		0.2360	0.6393
	0.0290	0.3310		0.3410	0.7100
	0.0950	0.4595		0.4450	0.7485
	0.1680	0.5720	- 1	0.5320	0.7925
	AR (h	~		TPEAK	R.V.

19.730

19.730

PEAK FLOW REDUCTION [Qout/Qin](%) = 16.23

1.983

0.322

2.75

4.58

53.35

53.20

DATE: February 2021

TIME	SHIFT	OF	PEAK	FLOW	(min) = 110.00
MAXII	MUM S'	rora	GE	USED	(ha.m.) = 0.6972

CALIB STANDHYD (0656) ID= 1 DT=15.0 min) = 46.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	7.84	6.67	
Dep. Storage	(mm) =	1.00	5.00	
Average Slope	(%)=	1.00	2.30	
Length	(m) =	311.02	40.00	
Mannings n	=	0.013	0.250	
Max.Eff.Inten.(n		60.35 15.00		
Storage Coeff.	(min) =	16.80 (ii)	97.80 (ii)	
Unit Hyd. Tpeak	(min) =	15.00	105.00	
Unit Hyd. peak	(cms) =	0.07	0.01	
				TOTALS
PEAK FLOW	(cms) =	0.99	0.23	1.037 (iii)
TIME TO PEAK	(hrs) =	2.75	4.25	2.75
RUNOFF VOLUME	(mm) =	64.59	36.68	49.52
TOTAL RAINFALL	(mm) =	65.59	65.59	65.59
RUNOFF COEFFICIE	ENT =	0.98	0.56	0.75

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 84.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0657)	OVERFLOW IS OF	F		
IN= 2> OUT= 1				
DT= 5.0 min	OUTFLOW STO	RAGE	OUTFLOW	STORAGE
	(cms) (ha	.m.)	(cms)	(ha.m.)
	0.0000 0.	0000	0.3640	0.2594
	0.0190 0.	2147	0.5250	0.2723
	0.1460 0.	2350	0.6840	0.2789
	0.2590 0.	2500	0.8190	0.2863
	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (06	56) 14.510	1.037	2.75	49.52
OUTFLOW: ID= 1 (06	57) 14.510	0.522	3.25	49.32
PEAK	FLOW REDUCT	ION [Qout	/Qin](%) = 5	0.37
TIME	SHIFT OF PEAK F	LOW	(min) = 3	0.00

(ha.m.) = 0.2723

MAXIMUM STORAGE USED

FINISH

Snell's Hollow Secondary Plan Area

_____ _____ V V I SSSSS U U A L (v 6.1.2003) V V I SS U U AA L V V I SS U U AAAAA L V V I SS U U A A L I SSSSS UUUUU A A LLLLL OOO TTTTT TTTTT H H Y Y M M OOO TM $\hbox{\scriptsize O} \quad \hbox{\scriptsize O} \quad \hbox{\scriptsize T} \quad \hbox{\scriptsize T} \quad \hbox{\scriptsize H} \quad \hbox{\scriptsize H} \quad \hbox{\scriptsize Y} \; \hbox{\scriptsize Y} \quad \hbox{\scriptsize MM} \; \hbox{\scriptsize MM} \; \hbox{\scriptsize O} \quad \hbox{\scriptsize O}$ $\hbox{\scriptsize O} \quad \hbox{\scriptsize O} \quad \hbox{\scriptsize T} \quad \hbox{\scriptsize T} \quad \hbox{\scriptsize H} \quad \hbox{\scriptsize H} \quad \hbox{\scriptsize Y} \quad \hbox{\scriptsize M} \quad \hbox{\scriptsize M} \quad \hbox{\scriptsize O} \quad \hbox{\scriptsize O}$ 000 T T H H Y M M OOO Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\189e6ca6-9823-4dd5-811c-ab3078eb04ea\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\189e6ca6-9823-4dd5-811c-ab3078eb04ea\scen DATE: 02-09-2021 TIME: 01:20:04 USER: ** SIMULATION : 11. AES 6hr 50vr ** ********** READ STORM | Filename: C:\Users\sfanous\AppD | ata\Local\Temp\ 8766663e-6d3f-4db9-a962-c49127701f86\71df3a36 | Ptotal= 73.00 mm | Comments: 50yr/6hr TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.50 1.00 1.46 | 2.75 67.16 | 4.50 2.92 | 6.25 1.46 1.25 1.46 | 3.00 18.98 | 4.75 2.92 | 1.50 8.76 | 3.25 18.98 | 5.00 1.46 | 1.75 8.76 | 3.50 10.22 | 5.25 1.46 |

				D111111.	r con man	<i>y</i> 2021	
CALIB STANDHYD (0012) ID= 1 DT= 5.0 min	Total Im	(ha) = up (%) = 9	2.72	Dir. Conn	. (%)= 9	0.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) =	2.45 1.00 1.00 134.66 0.013				Р.	
hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917	RAIN mm/hr 0.00 0.00 1.46 1	TIME hrs 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500	RAIN mm/hr 8.76 8.76 24.82 24.82 24.82 24.82 24.82 67.16 67.16	hrs 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083	RAIN mm/hr 18.98 10.22 10.22 10.22 10.22 10.22 15.84 5.84 5.84 5.84	TIME hrs 4.83 4.92 5.00 5.08 5.17 5.25 5.33 5.42 5.50 5.58 5.67 5.75	mm/hr 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE ***** WARNING: STORAG (i) CN PROCEDU	(cms) = (hrs) = (mm) = (mm) = NT = E COEFF. I	0.46 2.75 72.00 73.00 0.99	R THAN	0.04 2.75 54.17 73.00 0.74 TIME STEP	70. 2 70 73	ALS* 501 (iii) .75 .22 .00	
CN* = 9 (ii) TIME STEP THAN THE S (iii) PEAK FLOW	(DT) SHOUL TORAGE COE	D BE SMA FFICIENT	LLER OF	R EQUAL			

Snell's Hollow Secondary Plan Area

RESERVOIR(0642)	OVERFLOW IS OFF
IN= 2> OUT= 1 DT= 5.0 min	OVERFLOW IS OFF OUTFLOW STORAGE OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) 0.0000 0.0000 0.0510 0.1120 0.0050 0.0617 0.0730 0.1266 0.0200 0.0820 0.0960 0.1376 0.0360 0.1003 0.1150 0.1490
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>	AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) 0012) 2.720 0.501 2.75 70.22 0642) 2.720 0.096 3.33 69.06
-	PEAK FLOW REDUCTION [Qout/Qin](%) = 19.14 FIME SHIFT OF PEAK FLOW (min) = 35.00 4AXIMUM STORAGE USED (ha.m.) = 0.1376
CALIB STANDHYD (0002) ID= 1 DT=15.0 min	Area (ha) = 13.68 Total Imp(%) = 61.00 Dir. Conn.(%) = 53.00
	IMPERVIOUS PERVIOUS (i) (ha) = 8.34 5.34 (mm) = 1.00 5.00 (%) = 1.00 2.30 (m) = 301.99 40.00 = 0.013 0.250
Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeal	$\begin{array}{llllllllllllllllllllllllllllllllllll$
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC: (i) CN PROCEI CN* = (ii) TIME STEI THAN THE	(cms) = 1.20 0.24 1.247 (iii) (hrs) = 2.75 4.25 2.75 (mm) = 72.00 44.70 59.17 (mm) = 73.00 73.00 73.00 EINT = 0.99 0.61 0.81 DURE SELECTED FOR PERVIOUS LOSSES: 85.0 Ia = Dep. Storage (Above) POTO SHOULD BE SMALLER OR EQUAL STORAGE COEFFICIENT. NO DOES NOT INCLUDE BASEFLOW IF ANY.
(III) FEAR FLOW	V DOES NOT INCHODE BASEFEOW IF ANT.
	 Area (ha)= 6.05 Total Imp(%)= 67.00 Dir. Conn.(%)= 66.00
	IMPERVIOUS PERVIOUS (i) (ha) = 4.05 2.00 (mm) = 1.00 5.00 (%) = 1.00 2.00 (m) = 200.83 40.00

DATE: February 2021

Mannings n = 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORME	ED HYETOGRA	APH	
TIME	RAIN	TIME	RAIN	' TIME	RAIN TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr hrs	mm/hr
0.083	0.00	1.667	8.76	3.250	18.98 4.83	1.46
0.167	0.00	1.750	8.76	3.333	10.22 4.92	1.46
	0.00				10.22 5.00	1.46
0.333	1.46	1.917	24.82	3.500	10.22 5.08	1.46
0.417	1.46	2.000	24.82	3.583	10.22 5.17	1.46
0.500	1.46	2.083	24.82	3.667	10.22 5.25	1.46
0.583	1.46	2.167	24.82	3.750	10.22 5.33	1.46
					5.84 5.42	
					5.84 5.50	
					5.84 5.58	
0.917	1.46	2.500	67.16	4.083	5.84 5.67	
1.000	1.46	2.583	67.16	4.167	5.84 5.75	
1.083	1.46	2.667	67.16	4.250	5.84 5.83	
1.167	1.46	2.750	67.16	4.333	2.92 5.92	
1.250	1.46	2.833	18.98	4.333	2.92 6.00	
1.333	8.76	2.917	18.98	4.500	2.92 6.08	
					2.92 6.17	
					2.92 6.25	1.46
1.583	8.76	3.167	18.98	4.750	2.92	
Max.Eff.Inten.(m	nm/hr)=	67.16		55.21		
over	(min)	5.00		15.00		
Storage Coeff.	(min) =	4.55	(ii)	13.50 (ii)	1	
Unit Hyd. Tpeak	(min) =	5.00		15.00		
Unit Hyd. peak	(cms) =	0.23		0.08		
					TOTALS	
PEAK FLOW	(cms) =	0.74		0.24	0.979 (ii:	i)
TIME TO PEAK	(hrs) =	2.75		2.83	2.75	
RUNOFF VOLUME	(mm) =	72.00		45.63	63.03	
TOTAL RAINFALL	(mm) =	73.00		73.00	73.00	
RUNOFF COEFFICIE	INT =	0.99		0.63	0.86	
*** WARNING: STORAG	E COEFF.	IS SMALLE	R THAN	TIME STEP!	!	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- ${
 m CN^{\star}}$ = 88.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1=1 (0002):	13.68	1.247	2.75	59.17
+ ID2= 2 (0021):	6.05	0.979	2.75	63.03
=============				
ID = 3 (0658):	19.73	2.226	2.75	60.35

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area

	·		
RESERVOIR(0645) IN= 2> OUT= 1			
DT= 5.0 min		E OUTFLOW	STORAGE
	(cms) (ha.m.) (cms)	(ha.m.)
	0.0000 0.000	0 0.2360	0.6393
	0.0290 0.331	0 0.3410	0.7100
	0.0950 0.459 0.1680 0.572	0 0.5320	0.7925
	AREA Ç	PEAK TPEAK cms) (hrs)	R.V.
	(ha)	cms) (hrs)	(mm)
INFLOW: ID= 2 (0658) 19.730 0645) 19.730	2.226 2.75	60.35
OUIFLOW: ID- I (19.730	0.440 4.33	00.20
PI	CAK FLOW REDUCTION	[Qout/Qin](%)=	19.75
T	ME SHIFT OF PEAK FLOW	(min) =	95.00
MZ	XIMUM STORAGE USEI	(ha.m.)=	0.7466
CALIB			
STANDHYD (0656)	Area (ha) = 14.5 Total Imp(%) = 54.0	1 Dim C (0) = 46.00
)- 40.00
	IMPERVIOUS (ha) = 7.84 (mm) = 1.00 (%) = 1.00 (m) = 311.02 = 0.013	PERVIOUS (i)	
Surface Area	(ha) = 7.84	6.67	
Dep. Storage	(mm) = 1.00	5.00	
Average Slope	(%) = 1.00	2.30	
Length	(m) = 311.02	40.00	
Max.Eff.Inten.(r	mm/hr) = 67.16 (min) 15.00 (min) = 16.80 (ii (min) = 15.00 (cms) = 0.07	57.89	
over	(min) 15.00	30.00	
Storage Coeff.	(min) = 16.80 (ii)) 97.80 (ii)	
Unit Hyd. Tpeak	(min) = 15.00	105.00	
unit Hyd. peak	(CMS) = 0.07	0.01	*TOTALS*
PEAK FLOW	(cms) = 1.10	0.28	1 158 (iii)
TIME TO PEAK	(cms) = 1.10 (hrs) = 2.75	4.25	2.75
RUNOFF VOLUME	(mm) = 72.00	42.98	56.32
TOTAL RAINFALL	(hrs) = 2.75 (mm) = 72.00 (mm) = 73.00 ENT = 0.99	73.00	73.00
RUNOFF COEFFICIE	NT = 0.99	0.59	0.77
, ,	RE SELECTED FOR PERVI		
	34.0 Ia = Dep. Stor		
	(DT) SHOULD BE SMALLE	R OR EQUAL	
	TORAGE COEFFICIENT. DOES NOT INCLUDE BASE	FIOM TE ANV	
(TII) FEAR FLOW	DOES NOT INCHOUR DASE	THOW IT ANI.	
DECEDIATE (0657)	OMEDETON TO OFF		
RESERVOIR (0657) IN= 2> OUT= 1			
11, 2 / 001-1	OUTFLOW STORAG	E OUTFLOW	STORAGE
DT= 5.0 min	(cms) (ha m) (cms)	(ha.m.)
DT= 5.0 min	(СШЭ) (ПА.Ш.		the state of the s
DT= 5.0 min	0.0000 0.000	0 0.3640	0.2594
DT= 5.0 min	0.0000 0.000 0.0190 0.214	0 0.3640 7 0.5250	0.2594 0.2723
DT= 5.0 min	0.0000 0.000 0.0190 0.214 0.1460 0.235 0.2590 0.250	0 0.3640 7 0.5250 0 0.6840 0 0.8190	0.2594 0.2723 0.2789 0.2863

INFLOW: OUTFLOW:	ID= 1 (0657)	LOW F	na) .510 .510 REDUCTI PEAK FL	OW	2. 3. /Qin](%)	75 17 = 58.46 = 25.00		
		=====	======		======	======	======	======	=======
	V I ' I		U U U	A A AAAAA A A	L		(v 6.1	.2003)	
000 0 0 0 0 000 Developed an Copyright 20 All rights r	T T d Distr	T T ributed b 20 Smart	H H H H H H y Smart	Y Y Y Y t City	MM MM M M M M Water In	0 0 0 0 000	TM		
Input fi Output fi a930-3446ela Summary fi a930-3446ela	lename: e5bfa\7 lename:	C:\Prog C:\User 91534ba- C:\User	ram Fil s\sfanc 0671-45 s\sfanc	Les (x8 bus\App 52e-9de bus\App	6)\Visua Data\Loc 6-e5d066 Data\Loc	al\Civic fbb528\s al\Civic	0 6.1\V a\VH5\4 cen a\VH5\4	a4b2b43-2	9c0-4f4e-
DATE: 02-09-	2021				TIME:	01:20:0	5		
USER:									
COMMENTS:									
********* ** SIMULAT ********* READ ST	ION : 1	2. AES 6	hr 1005	/r *****		**			
 	.31 mm	 		ata\Lo	cal\Temp 3e-6d3f-	\	2-c4912	7701f86\5	8f83706

Snell's Hollow Secondary Plan Area

TIME	RAIN	TIME	RAIN	1'	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	1.	hrs	mm/hr	hrs	mm/hr
0.25	0.00	2.00	27.30		3.75	11.24	5.50	1.61
0.50	1.61	2.25	27.30		4.00	6.42	5.75	1.61
0.75	1.61	2.50	73.88	1	4.25	6.42	6.00	1.61
1.00	1.61	2.75	73.88	1	4.50	3.21	6.25	1.61
1.25	1.61	3.00	20.88	1	4.75	3.21		
1.50	9.64	3.25	20.88	1	5.00	1.61		
1.75	9.64	3.50	11.24	1	5.25	1.61		

| CALIB | STANDHYD (0012)| Area (ha)= 2.72 |ID= 1 DT= 5.0 min | Total Imp(%) = 90.00 Dir. Conn.(%) = 90.00-----IMPERVIOUS PERVIOUS (i) 2.45 0.27 Surface Area (ha) =(mm) = 1.00 5.00 Dep. Storage Average Slope (%)= 1.00 2.00 Length (m) =134.66 40.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORMED HYETOGE	RAPH	
TIME	RAIN		RAIN TIME		RAIN
hrs				mm/hr hrs	
				20.88 4.83	1.61
			9.64 3.333		
			27.30 3.417		
			27.30 3.500		1.61
			27.30 3.583		1.61
			27.30 3.667		1.61
0.583	1.61	2.167	27.30 3.750		
0.667		2.250		6.42 5.42	1.61
0.750	1.61	2.333	73.88 3.917		1.61
0.833	1.61	2.417	73.88 4.000	6.42 5.58	1.61
0.917	1.61	2.500	73.88 4.083	6.42 5.67	1.61
		2.583		6.42 5.75	
1.083	1.61	2.667		6.42 5.83	
		2.750		3.21 5.92	
		2.833		3.21 6.00	1.61
1.333	9.64	2.917	20.88 4.500	3.21 6.08	1.61
1.417	9.64	3.000	20.88 4.583	3.21 6.17	1.61
1.500	9.64	3.083	20.88 4.667	3.21 6.25	1.61
1.583	9.64	3.167	20.88 4.750	3.21	
Max.Eff.Inten.(mm	/hr)=	73.88	68.25		
			10.00		
Storage Coeff. (Ĺ)	
Unit Hyd. Tpeak (,	
Unit Hyd. peak (
	,			*TOTALS*	
PEAK FLOW (cms)=	0.50	0.05)
TIME TO PEAK (2.75	
RUNOFF VOLUME				77.50	
TOTAL RAINFALL				80.31	
RUNOFF COEFFICIEN					

DATE: February 2021

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 - $CN^* = 93.6$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

= 2> OUT= 1 = 5.0 min	01177				
	0011	LOW STO	RAGE	OUTFLOW	STORAGE
	(cm	ns) (ha	.m.)	(cms)	(ha.m.)
	0.0	0.0	0000	0.0510	0.1120
	0.0	0.0	0617	0.0730	0.1266
	0.0	200 0.0	0820	0.0960	0.1376
	0.0	(ha 0000 0.0050	1003	0.1150	0.1490
NFLOW: ID= 2 UTFLOW: ID= 1		AREA	QPEAK	TPEAK	R.V.
		(ha)	(cms)	(hrs)	(mm)
NFLOW : ID= 2	(0012)	2.720	0.552	2.75	77.50 76.34
UTFLOW: ID= 1	(0642)	2.720	0.114	3.33	76.34
		W REDUCT:			
	TIME SHIFT	OF PEAK F	LOW	(min) = 3	35.00
	MAXIMUM S	TORAGE U	SED	(ha.m.)=	0.1486
LIB					
ANDHYD (0002					
1 DT=15.0 min		Imp(%) = 6	1.00 Dir	. Conn. (%))= 53.00
		IMPERVIOUS	S PERVI	OUS (i)	
Surface Area Dep. Storage	(ha)=	8.34	5.	34	
Dep. Storage	(mm) =	1.00	5.	00	
Average Slope	(%)=	1.00	2.	30	
Average Slope Length	(m) =	301.99	40.	00	
Mannings n	=	0.013	0.2	.50	
Max.Eff.Inten	.(mm/hr)=	73.88	69.	93	
ov Storage Coeff	er (min)	15.00	30.	00	
Storage Coeff	\cdot (min) =	16.80	(ii) 97.	80 (ii)	
Unit Hyd. Tpe Unit Hyd. pea	ak (min)=	15.00	105.	00	
Unit Hyd. pea	k (cms)=	0.07	0.		
DEAR ELON	(1 20	^		*TOTALS*
PEAK FLOW TIME TO PEAK	(cms) =	1.32	0.	21	1.375 (iii)
TIME TO PEAK	(hrs)=	2.75	4.	ZD 17	2.75
RUNOFF VOLUME TOTAL RAINFAL	(mm) =	79.31	51.		66.08
				21	80.31
RUNOFF COEFFI	CIENT =	0.99	0.	04	0.82
(i) CN PROC					
CNT* -	85.0 I	-	_		
(ii) TIME ST				IUAL	
(ii) TIME ST	E STORAGE C	COEFFICIENT			

Snell's Hollow Secondary Plan Area

	IMPERVIOUS	PERVIOUS	(i)
(ha) =	4.05	2.00	
(mm) =	1.00	5.00	
(%)=	1.00	2.00	
(m) =	200.83	40.00	
=	0.013	0.250	
	(mm) = (%) = (m) =	(ha) = 4.05 (mm) = 1.00 (%) = 1.00 (m) = 200.83	(ha) = 4.05 2.00 (mm) = 1.00 5.00 (%) = 1.00 2.00 (m) = 200.83 40.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMED	HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	9.64	3.250	20.88	4.83	1.61
0.167	0.00	1.750	9.64	3.333	11.24	4.92	1.61
0.250	0.00	1.833	27.30	3.417	11.24	5.00	1.61
0.333	1.61	1.917	27.30	3.500	11.24	5.08	1.61
0.417	1.61	2.000	27.30 I	3.583	11.24	5.17	1.61
0.500	1.61	2.083	27.30	3.667	11.24	5.25	1.61
0.583	1.61	2.167	27.30	3.750	11.24	5.33	1.61
0.667	1.61	2.250	27.30	3.833	6.42	5.42	1.61
0.750	1.61	2.333	73.88	3.917	6.42	5.50	1.61
0.833	1.61	2.417	73.88	4.000	6.42	5.58	1.61
0.917	1.61	2.500	73.88	4.083	6.42	5.67	1.61
1.000	1.61	2.583	73.88	4.167	6.42	5.75	1.61
1.083	1.61	2.667	73.88	4.250	6.42	5.83	1.61
1.167	1.61	2.750	73.88	4.333	3.21	5.92	1.61
1.250	1.61	2.833	20.88	4.417	3.21	6.00	1.61
1.333	9.64	2.917	20.88	4.500	3.21	6.08	1.61
1.417	9.64	3.000	20.88	4.583	3.21	6.17	1.61
1.500	9.64	3.083	20.88	4.667	3.21	6.25	1.61
1.583	9.64	3.167	20.88	4.750	3.21		

over (min) 5.00 15.00	
Storage Coeff. (min) = 4.38 (ii) 12.90 (ii)	
Unit Hyd. Tpeak (min) = 5.00 15.00	
Unit Hyd. peak (cms) = 0.23 0.08	
TOTALS	
PEAK FLOW (cms) = 0.82 0.28 1.092 (lii)
TIME TO PEAK (hrs)= 2.75 2.83 2.75	
RUNOFF VOLUME $(mm) = 79.31$ 52.20 70.09	
TOTAL RAINFALL (mm) = 80.31 80.31 80.31	
RUNOFF COEFFICIENT = 0.99 0.65 0.87	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 88.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)					
ID1= 1 (0002) + ID2= 2 (0021)	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0002): 13.68	1.375	2.75	66.08	
+ ID2= 2 (0021): 6.05	1.092	2.75	70.09	
=======================================					
ID = 3 (0658)					
,	,				
NOTE: PEAK FLOWS	DO NOT INCI	LUDE BASEFL	OWS IF AN	JY.	
RESERVOIR(0645)	OVERFLOW	IS OFF			
IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW	STORAGE	OUTE	FLOW	STORAGE
	(cms)	(ha.m.)	l (cn	ns)	(ha.m.)
	0.0000	0.0000	i 0.2	2360	0.6393
	0.0290	0.3310	1 0.3	3410	0.7100
	0 0950	0 4595	1 0 4	1450	0 7485
	0.1680	0.5720	1 0 5	5320	0 7925
	AΓ	REA OPF	AK TE	PEAK	R.V.
	()	na) (cm	ns) (F	nrs)	(mm)
INFLOW: ID= 2 (0) OUTFLOW: ID= 1 (0)	658) 19	730 2	467	2 75	67 31
OUTELOW: ID= 1 (O	645) 19	730 2	1 532	4 25	67 16
OUITHOW: ID- I (O	043) 13.	. 730	.552	4.25	07.10
	K FLOW I	REDUCTION [Oout /Oin1	1 (%) = 21	56
		VEDOCITON [QOUL/QIII]	1 (%) - 21	
PEA	E CHIEM OF I	DEAK ELOM	/2	200 - 120	
PEAI TIM	E SHIFT OF I	PEAK FLOW	(n	nin) = 90	.00
PEAI TIMI MAX:	E SHIFT OF I	PEAK FLOW GE USED	(n (ha.	min) = 90 .m.) = 0	.00 .7925
PEAI TIM MAX:	E SHIFT OF I	PEAK FLOW GE USED	(n (ha.	nin) = 90 .m.) = 0	.00 .7925
TIM MAX:	E SHIFT OF I	PEAK FLOW GE USED	(n (ha.	nin) = 90 .m.) = 0	.00 .7925
TIM MAX:	E SHIFT OF I				
TIM MAX:	E SHIFT OF I				
TIM MAX:	E SHIFT OF I				
TIMMAX:	E SHIFT OF I				
TIMMAX: CALIB STANDHYD (0656) ID= 1 DT=15.0 min	E SHIFT OF I	a) = 14.51 %) = 54.00	Dir. Co	onn.(%)=	
CALIB STANDHYD (0656) ID= 1 DT=15.0 min	E SHIFT OF I	a) = 14.51 %) = 54.00	Dir. Co	onn.(%)=	
CALIB STANDHYD (0656) ID= 1 DT=15.0 min	E SHIFT OF I	a) = 14.51 %) = 54.00	Dir. Co	onn.(%)=	
CALIB STANDHYD (0656) ID= 1 DT=15.0 min	E SHIFT OF I	a) = 14.51 %) = 54.00	Dir. Co	onn.(%)=	
TIMMAX:	E SHIFT OF I	a) = 14.51 %) = 54.00	Dir. Co	onn.(%)=	
TIMMAX:	E SHIFT OF I	a) = 14.51 %) = 54.00	Dir. Co	onn.(%)=	
TIMMAX:	E SHIFT OF I	a) = 14.51 %) = 54.00	Dir. Co	onn.(%)=	
TIMM MAX: CALIB	Area (ha Total Imp(s IMPI (ha) = (m) = (s) = (c	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250	onn.(%)=	
TIMM MAX: CALIB	Area (ha Total Imp(s IMPI (ha) = (m) = (s) = (c	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250	onn.(%)=	
TIMM MAX: CALIB	Area (ha Total Imp(s IMPI (ha) = (m) = (s) = (c	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250	onn.(%)=	
TIMM MAX: CALIB	Area (ha Total Imp(s IMPI (ha) = (m) = (s) = (c	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250	onn.(%)=	
TIMM MAX: CALIB	Area (ha Total Imp(s IMPI (ha) = (m) = (s) = (c	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250	onn.(%)=	
CALIB STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area (ha Total Imp(s IMPI (ha) = (m) = (s) = (c	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250	onn.(%)=	
CALIB STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (I Storage Coeff. (I Unit Hyd. Tpeak (I Unit Hyd. peak (I	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01	onn.(%)= (i) (ii)	46.00
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (i Storage Coeff. (i Unit Hyd. peak (i	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01	onn.(%)= (i) (ii)	* 46.00 * TOTALS*
CALIB STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (I Storage Coeff. (I Unit Hyd. Tpeak (I Unit Hyd. peak (I	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01	onn.(%)= (i) (ii)	* 46.00 **TOTALS** 1.279 (iii)
CALIB STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (I Storage Coeff. (I Unit Hyd. Tpeak (I Unit Hyd. peak (I	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01	onn.(%)= (i) (ii)	** 46.00 **TOTALS** 1.279 (iii) 2.75
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (I Storage Coeff. (I Unit Hyd. peak (I	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01	onn.(%)= (i) (ii)	TOTALS* 1.279 (iii) 2.75 63.11
CALIB STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (I Storage Coeff. (I Unit Hyd. Tpeak (I Unit Hyd. peak (I	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01	onn.(%)= (i) (ii)	TOTALS* 1.279 (iii) 2.75 63.11 80.31
TIMM MAX: CALIB	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01	onn.(%)= (i) (ii)	TOTALS* 1.279 (iii) 2.75 63.11
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (I Storage Coeff. (I Unit Hyd. peak (I	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01	onn.(%)= (i) (ii)	TOTALS* 1.279 (iii) 2.75 63.11 80.31
CALIB STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. (mm. over (I Storage Coeff. (I Unit Hyd. Tpeak (I Unit Hyd. peak (I Unit Hyd. peak (I Unit To PEAK FLOW (I TIME TO PEAK (I RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIENT	E SHIFT OF I	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07 1.22 2.75 79.31 80.31 0.99	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01 0.32 4.25 49.32 80.31 0.61	onn.(%)= (i) (ii)	TOTALS* 1.279 (iii) 2.75 63.11 80.31
CALIB STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm. over (i Storage Coeff. (i Unit Hyd. Tpeak (i Unit Hyd. peak (i Unit Hyd. peak (i Unit Time To PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN(E SHIFT OF I IMUM STORAGE	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07 1.22 2.75 79.31 30.31 0.99	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01 0.32 4.25 49.32 80.31 0.61	onn.(%) = (i) *	TOTALS* 1.279 (iii) 2.75 63.11 80.31
CALIB STANDHYD (0656) STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (r. Storage Coeff. (r. Unit Hyd. Tpeak (r. Unit Hyd. peak SHIFT OF I IMUM STORAGE	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07 1.22 2.75 79.31 30.31 0.99 FOR PERVIOUS	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01 0.32 4.25 49.32 80.31 0.61	onn.(%) = (i) *	TOTALS* 1.279 (iii) 2.75 63.11 80.31	
CALIB CALIB STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (i Storage Coeff. (i Unit Hyd. Tpeak (i Unit Hyd. peak (i Unit Hyd. peak (i Unit Hyd. peak (i Unit Topeak (E SHIFT OF I IMUM STORAGE	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07 1.22 2.75 79.31 30.31 0.99 FOR PERVIOUS Dep. Storag BE SMALLER	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01 0.32 4.25 49.32 80.31 0.61	onn.(%) = (i) *	TOTALS* 1.279 (iii) 2.75 63.11 80.31
CALIB STANDHYD (0656) STANDHYD (0656) ID= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm, over (r. Storage Coeff. (r. Unit Hyd. Tpeak (r. Unit Hyd. peak SHIFT OF I IMUM STORAGE Area (ha Total Imp(s) IMPH (ha) = (mm) = (s) = (mn)	a) = 14.51 b) = 54.00 ERVIOUS 7.84 1.00 1.00 11.02 0.013 73.88 15.00 16.80 (ii) 15.00 0.07 1.22 2.75 79.31 30.31 0.99 FOR PERVIOUS Dep. Storag BE SMALLER ICIENT.	Dir. Co PERVIOUS 6.67 5.00 2.30 40.00 0.250 65.97 30.00 97.80 105.00 0.01 0.32 4.25 49.32 80.31 0.61 US LOSSES: Ge (Above OR EQUAL	(ii) (ii) * * :: :: :: :: :: :: :: :: :: :: ::	TOTALS* 1.279 (iii) 2.75 63.11 80.31	

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area | RESERVOIR(0657)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE (ha.m.) | (cms) (cms) 0.0000 0.0000 | 0.3640 0.0190 0.2147 | 0.5250 0.2723 0.1460 0.2350 | 0.6840 0.2789 0.2590 0.2500 | 0.8190 0.2863 AREA QPEAK TPEAK R.V. (cms) (hrs) (mm) (ha) 2.75 INFLOW: ID= 2 (0656) 14.510 1.279 63.11 OUTFLOW: ID= 1 (0657) 14.510 0.815 3.00 PEAK FLOW REDUCTION [Qout/Qin](%) = 63.76 TIME SHIFT OF PEAK FLOW (min) = 15.00 (ha.m.) = 0.2863MAXIMUM STORAGE USED V V I SSSSS U U A L (v 6.1.2003) V V I SS U U AA L V V I SS U U AAAAA L V V I SS U U A A L I SSSSS UUUUU A A LLLLL OOO TTTTT TTTTT H H Y Y M M OOO $\hbox{O} \quad \hbox{O} \quad \hbox{T} \quad \hbox{T} \quad \hbox{H} \quad \hbox{H} \quad \hbox{Y} \ \hbox{Y} \quad \hbox{MM} \ \hbox{MM} \quad \hbox{O} \quad \hbox{O}$ O O T OOO T T H H Y M M O O T H H Y M M OOO Developed and Distributed by Smart City Water Inc

Copyright 2007 - 2020 Smart City Water Inc All rights reserved.

***** DETAILED OUTPUT *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e $a930-3446e1ae5bfa\\f2f2422e-5afa-42ad-b7a1-6ec56d4ad7f8\\scen$ Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\f2f2422e-5afa-42ad-b7a1-6ec56d4ad7f8\scen DATE: 02-09-2021 TIME: 01:20:06 USER:

DATE: February 2021

** SIMULATION : 13. AES 12hr 2yr **

READ STORM Ptotal= 42.00	İ	Filename:	ata\L 87666	ocal\Temp 63e-6d3f-)\	2-c49127701f86\1	55f0ad1
	TIME hrs 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25	RAIN mm/hr 0.00 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 2.52 2.52 2.52 2.52	TIME hrs 3.50 3.75 4.00 4.25 4.50 5.25 5.75 6.00 6.25 6.50	RAIN 'mm/hr ' 7.14 7.14 7.14 7.14 19.32 19.32 19.32 19.32 5.46 5.46 5.46 2.94	hrs 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25	RAIN TIME mm/hr hrs 2.94 10.00 2.94 10.25 2.94 10.50 1.68 10.75 1.68 11.00 1.68 11.25 1.68 11.50 0.84 11.75 0.84 11.75 0.84 12.00 0.84 12.25 0.84 0.42	RAIN mm/hr 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

CALIB	Area Total	(ha) = Imp(%) =	2.72	Dir. (Conn.(%)=	90.
		1 ()				
		IMPERVI	OUS	PERVIOUS	S (i)	
Surface Area	(ha) =	2.4	5	0.27		
Dep. Storage	(mm) =	1.0	0	5.00		
Average Slope	(%)=	1.0	0	2.00		
Length	(m) =	134.6	6	40.00		
Mannings n	=	0.01	3	0 250		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	TRZ	ANSFORMED HYETOGRA	PH	
TIME	RAIN TIME	RAIN TIME	RAIN TIME	RAIN
hrs	mm/hr hrs	mm/hr hrs	mm/hr hrs	mm/hr
0.083	0.00 3.167	2.52 6.250	5.46 9.33	0.42
0.167	0.00 3.250	2.52 6.333	2.94 9.42	0.42
0.250	0.00 3.333	7.14 6.417	2.94 9.50	0.42
0.333	0.42 3.417	7.14 6.500	2.94 9.58	0.42
0.417	0.42 3.500	7.14 6.583	2.94 9.67	0.42
0.500	0.42 3.583	7.14 6.667	2.94 9.75	0.42
0.583	0.42 3.667	7.14 6.750	2.94 9.83	0.42
0.667	0.42 3.750	7.14 6.833	2.94 9.92	0.42
0.750	0.42 3.833	7.14 6.917	2.94 10.00	0.42
0.833	0.42 3.917	7.14 7.000	2.94 10.08	0.42
0.917	0.42 4.000	7.14 7.083	2.94 10.17	0.42
1.000	0.42 4.083	7.14 7.167	2.94 10.25	0.42
1.083	0.42 4.167	7.14 7.250	2.94 10.33	0.42
1.167	0.42 4.250	7.14 7.333	1.68 10.42	0.42

Snell's Hollow Secondary Plan Area

1.250 0.42 | 4.333 | 19.32 | 7.417 1.68 | 10.50 1.68 | 10.58 1.333 0.42 | 4.417 | 19.32 | 7.500 1.417 0.42 | 4.500 19.32 | 7.583 1.68 | 10.67 0.42 1.500 0.42 | 4.583 19.32 | 7.667 1.68 | 10.75 0.42 1.583 0.42 | 4.667 | 19.32 | 7.750 1.68 | 10.83 0.42 1.667 0.42 | 4.750 19.32 | 7.833 1.68 | 10.92 0.42 | 4.833 | 19.32 | 7.917 1.68 | 11.00 1.833 0.42 | 4.917 19.32 | 8.000 1.68 | 11.08 1.917 0.42 | 5.000 19.32 | 8.083 1.68 | 11.17 0.42 2.000 0.42 | 5.083 19.32 | 8.167 1.68 | 11.25 0.42 2.083 0.42 | 5.167 19.32 | 8.250 1.68 | 11.33 0.84 | 11.42 0.42 2.250 0.42 | 5.333 5.46 | 8.417 0.84 | 11.50 0.42 2.52 | 5.417 5.46 | 8.500 0.84 | 11.58 2.333 0.42 2.417 2.52 | 5.500 5.46 | 8.583 0.84 | 11.67 0.42 2.500 2.52 | 5.583 5.46 | 8.667 0.84 | 11.75 2.52 | 5.667 5.46 | 8.750 0.84 | 11.83 2.583 0.42 2.52 | 5.750 5.46 | 8.833 2.667 0.84 | 11.92 0.42 2.52 | 5.833 5.46 | 8.917 0.84 | 12.00 2.750 0.42 5.46 | 9.000 2.833 2.52 | 5.917 0.84 | 12.08 0.42 0.84 | 12.17 2.917 2.52 | 6.000 5.46 | 9.083 0.42 3.000 2.52 | 6.083 5.46 | 9.167 0.84 | 12.25 0.42 3.083 2.52 | 6.167 5.46 | 9.250 0.84 | Max.Eff.Inten.(mm/hr) = 19.32 15.62 over (min) 5.00 25.00 5.89 (ii) 20.73 (ii) Storage Coeff. (min) = 5.00 Unit Hyd. Tpeak (min) = 25.00 Unit Hyd. peak (cms) = 0.19 0.05 *TOTALS* 0.13 0.01 5.25 5.33 41.00 25.18 42.00 42.00 0.98 0.60 PEAK FLOW (cms) = 0.141 (iii)

5.25 39.41

42.00 0.94

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 93.6 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.

TIME TO PEAK (hrs) =

RUNOFF VOLUME (mm) =

TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR(0642)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE (ha.m.) (cms) (ha.m.) | (cms) 0.1120 0.0000 0.0000 | 0.0510 0.1266 0.0050 0.0617 | 0.0730 0.0200 0.0820 | 0.0960 0.1003 | 0.1150 0.0360 0.1490 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW : ID= 2 (0012) 2.720 0.141 5.25 39.41 7.25 OUTFLOW: ID= 1 (0642) 2.720 0.020 38.26 PEAK FLOW REDUCTION [Qout/Qin] (%) = 14.14 TIME SHIFT OF PEAK FLOW

	MAXIMUM	STORAGE	USED	(ha.m	n.)= 0	.0819	
CALIB							
STANDHYD (0002 ID= 1 DT=15.0 min) Area	(ha) =	13.68				
ID= 1 DT=15.0 min	Tota	1 Imp(%)=	61.00	Dir. Con	n.(%)=	53.00	
		IMPERV1	ous	PERVIOUS ((i)		
Surface Area	(ha)=	Ω :	2.4	5 3/			
Dep. Storage	(mm) =	1.0	00	5.00			
Average Slope	(%)=	1.0	00	2.30			
Dep. Storage Average Slope Length Mannings n	(m) =	301.9	39	40.00			
Max.Eff.Inten ov Storage Coeff Unit Hyd. Tpe Unit Hyd. pea	.(mm/hr) =	19.3	32	14.45			
OV	er (min)	15.0	00	45.00			
Storage Coeff	. (min) =	16.8	30 (ii)	97.80 (i	.i)		
Unit Hyd. Tpe	ak (min)=	15.0	7	105.00			
						TOTALS*	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFAL RUNOFF COEFFI	(cms) =	0.3	38	0.08		0.410 (iii)
TIME TO PEAK	(hrs) =	5.2	25	6.75		5.25	
RUNOFF VOLUME	(mm) =	41.0	00	19.09		30.70 42.00	
TOTAL RAINFAL	L (mm) =	42.0	00	42.00		42.00	
RUNOFF COEFF1	CIENT =	0.9	98	0.45		0.73	
CN* = (ii) TIME ST THAN TH	85.0 EP (DT) S E STORAGE	Ia = Dep. HOULD BE S COEFFICIE	Stora SMALLER ENT.				
CN* = (ii) TIME ST	85.0 EP (DT) S E STORAGE OW DOES N	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE	Stora SMALLER ENT. BASEF	ge (Above) OR EQUAL LOW IF ANY.			
CN* = (ii) TIME ST THAN TH (iii) PEAK FL	85.0 EP (DT) S. E STORAGE OW DOES NO	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE	Stora SMALLER ENT. E BASEF	ge (Above) OR EQUAL LOW IF ANY.			
CN* = (ii) TIME ST THAN TH (iii) PEAK FL	85.0 EP (DT) S. E STORAGE OW DOES NO	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE	Stora SMALLER ENT. E BASEF	ge (Above) OR EQUAL LOW IF ANY.			
CN* = (ii) TIME ST THAN TH (iii) PEAK FL	85.0 EP (DT) S E STORAGE OW DOES NO	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE	Stora SMALLER ENT. E BASEF	ge (Above) OR EQUAL LOW IF ANY.			
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE (ha) = 1 Imp(%) =	Stora SMALLER ENT. E BASEF 6.05 67.00	ge (Above) OR EQUAL LOW IF ANY. Dir. Con	n.(%)=		
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE (ha) = 1 Imp(%) =	Stora SMALLER ENT. E BASEF 6.05 67.00	ge (Above) OR EQUAL LOW IF ANY. Dir. Con	n.(%)=		
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE (ha) = 1 Imp(%) =	Stora SMALLER ENT. E BASEF 6.05 67.00	ge (Above) OR EQUAL LOW IF ANY. Dir. Con	n.(%)=		
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE (ha) = 1 Imp(%) =	Stora SMALLER ENT. E BASEF 6.05 67.00	ge (Above) OR EQUAL LOW IF ANY. Dir. Con	n.(%)=		
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE (ha) = 1 Imp(%) =	Stora SMALLER ENT. E BASEF 6.05 67.00	ge (Above) OR EQUAL LOW IF ANY. Dir. Con	n.(%)=		
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	85.0 EP (DT) S. E STORAGE OW DOES Note:) Area Tota	Ia = Dep. HOULD BE S COEFFICIE OT INCLUDE (ha) = 1 Imp(%) = IMPERVI 4.6 1.6 200.8 0.01	Stora MALLER ENT. E BASEF 6.05 67.00 COUS 55 00 00 83 3 3 3	ge (Above) OR EQUAL LOW IF ANY. Dir. Con	nn.(%)=	66.00	
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	85.0 EP (DT) S. E STORAGE OW DOES Note:) Area Tota	Ia = Dep. HOULD BE S COEFFICIF OT INCLUDE (ha) = 1 Imp(%) = IMPERVI 4.0 1.0 200.8 0.01 S TRANSFOR	Stora MALLER SNT. E BASEF 6.05 67.00 COUS 50 00 00 83 .3	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 5.00 2.00 40.00 0.250 5.0 MIN.	mn.(%)=	66.00 STEP.	
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RA	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE (ha) = 1 Imp(%) = IMPERVI 1.0 200.8 0.01 S TRANSFOR	Stora MALLER ENT. E BASEF 6.05 67.00 EOUS 55 00 00 83 3.3 RMED TO	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG	nn.(%)=	66.00 STEP.	
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RA	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE (ha) = 1 Imp(%) = IMPERVI 1.0 200.8 0.01 S TRANSFOR	Stora MALLER ENT. E BASEF 6.05 67.00 EOUS 55 00 00 83 3.3 RMED TO CRANSFO E RA	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG IN TIME	in.(%)= (i) TIME GRAPH -	66.00 STEP. IN TI	me rain
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RA	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE (ha) = 1 Imp(%) = IMPERVI 1.0 200.8 0.01 S TRANSFOR	Stora MALLER ENT. E BASEF 6.05 67.00 EOUS 55 00 00 83 3.3 RMED TO CRANSFO E RA	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG IN TIME	in.(%)= (i) TIME GRAPH -	66.00 STEP. IN TI	me rain
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RA	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE (ha) = 1 Imp(%) = IMPERVI 1.0 200.8 0.01 S TRANSFOR	Stora MALLER ENT. E BASEF 6.05 67.00 EOUS 55 00 00 83 3.3 RMED TO CRANSFO E RA	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG IN TIME	in.(%)= (i) TIME GRAPH -	66.00 STEP. IN TI	me rain
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RA	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE (ha) = 1 Imp(%) = IMPERVI 1.0 200.8 0.01 S TRANSFOR	Stora MALLER ENT. E BASEF 6.05 67.00 EOUS 55 00 00 83 3.3 RMED TO CRANSFO E RA	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG IN TIME	in.(%)= (i) TIME GRAPH -	66.00 STEP. IN TI	me rain
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RA	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE (ha) = 1 Imp(%) = IMPERVI 1.0 200.8 0.01 S TRANSFOR	Stora MALLER ENT. E BASEF 6.05 67.00 EOUS 55 00 00 83 3.3 RMED TO CRANSFO E RA	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG IN TIME	in.(%)= (i) TIME GRAPH -	66.00 STEP. IN TI	me rain
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RA	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE (ha) = 1 Imp(%) = IMPERVI 1.0 200.8 0.01 S TRANSFOR	Stora MALLER ENT. E BASEF 6.05 67.00 EOUS 55 00 00 83 3.3 RMED TO CRANSFO E RA	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 5.00 2.00 40.00 0.250 5.0 MIN. RMED HYETOG IN TIME	in.(%)= (i) TIME GRAPH -	66.00 STEP. IN TI	me rain
CN* = (ii) TIME ST THAN TH (iii) PEAK FL CALIB STANDHYD (0021 ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RA	85.0 EP (DT) S. E STORAGE OW DOES No	Ia = Dep. HOULD BE S COEFFICIE (ha) = 1 Imp(%) = IMPERVI 1.0 200.8 0.01 S TRANSFOR	Stora MALLER ENT. E BASEF 6.05 67.00 EOUS 55 00 00 83 3.3 RMED TO CRANSFO E RA	ge (Above) OR EQUAL LOW IF ANY. Dir. Con PERVIOUS (2.00 40.00 0.250 5.0 MIN. RMED HYETOG IN TIME	in.(%)= (i) TIME GRAPH -	66.00 STEP. IN TI	me rain

Snell's Hollow Secondary Plan Area

0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083	0.42 3.833 0.42 3.917 0.42 4.000 0.42 4.083 0.42 4.167 0.42 4.333 0.42 4.417 0.42 4.500 0.42 4.583 0.42 4.667 0.42 4.750 0.42 4.750 0.42 4.750 0.42 5.000 0.42 5.000 0.42 5.167 0.42 5.167 0.42 5.333 2.52 5.417 2.52 5.500 2.52 5.583 2.52 5.5667 2.52 5.583 2.52 5.750 2.52 5.750 2.52 5.750 2.52 5.750 2.52 5.750 2.52 5.750 2.52 5.833 2.52 5.917 2.52 5.917 2.52 6.000 2.52 6.083 2.52 6.083 2.52 6.083	7.14 6.917 7.14 7.000 7.14 7.083 7.14 7.167 7.14 7.250 7.14 7.333 19.32 7.417 19.32 7.500 19.32 7.583 19.32 7.567 19.32 7.750 19.32 7.750 19.32 7.750 19.32 7.833 19.32 7.917 19.32 8.083 19.32 8.167 19.32 8.250 19.32 8.417 5.46 8.500 5.46 8.417 5.46 8.500 5.46 8.750 5.46 8.833 5.46 8.917 5.46 9.083 5.46 9.083 5.46 9.083 5.46 9.083 5.46 9.083 5.46 9.250	2.94 10.00 2.94 10.08 2.94 10.17 2.94 10.25 2.94 10.33 1.68 10.42 1.68 10.50 1.68 10.58 1.68 10.67 1.68 10.75 1.68 10.75 1.68 11.00 1.68 11.00 1.68 11.00 1.68 11.17 1.68 11.25 1.68 11.50 0.84 11.50 0.84 11.50 0.84 11.50 0.84 11.75 0.84 11.75 0.84 11.92 0.84 11.92 0.84 11.92 0.84 11.93 0.84 11.93	0.42 0.42
---	---	---	--	--

Max.Eff.Inten.(r	nm/hr)=	19.32	12.54	
over	(min)	5.00	25.00	
Storage Coeff.	(min) =	7.49 (i	ii) 23.69 (ii)
Unit Hyd. Tpeak	(min) =	5.00	25.00	
Unit Hyd. peak	(cms) =	0.17	0.05	
				TOTALS
PEAK FLOW	(cms) =	0.21	0.05	0.266 (iii)
TIME TO PEAK	(hrs) =	5.25	5.42	5.25
RUNOFF VOLUME	(mm) =	41.00	19.50	33.69
TOTAL RAINFALL	(mm) =	42.00	42.00	42.00
RUNOFF COEFFICIE	ENT =	0.98	0.46	0.80

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 88.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (06	58)				
1 + 2 = 3		AREA	QPEAK	TPEAK	R.V.
		(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0002):	13.68	0.410	5.25	30.70
+ ID2= 2 (0021):	6.05	0.266	5.25	33.69
=======					
ID = 3 (0658):	19.73	0.675	5.25	31.62
NOTE: PEAK	FLOWS DO	NOT INCL	IDE BASEFI	OWS IF AN	JY.

		DA	IL. Febri	iury 2021
RESERVOIR(0645) IN= 2> OUT= 1				
IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW ST	ORAGE O	UTFLOW S	STORAGE
	(cms) (h	na.m.)	(cms)	(ha.m.)
	0.0000).0000 i	0.2360	0.6393
	0.0290).3310 i	0.3410	0.7100
	0.0950).4595 i	0.4450	0.7485
	0.1680 ().5720	0.5320	0.7925
INFLOW: ID= 2 (AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
INFLOW : ID= 2 (0658) 19.730	0.675	5.25	31.62
OUTFLOW: ID= 1 (0645) 19.730	0.095	8.50	31.46
D.		TT-01 10 1 /0		٥٢
P.I.	EAK FLOW REDUC	TION [Qout/Q	(min) = 14	.05
I.	IME SHIFT OF PEAK AXIMUM STORAGE	TLOW /	(mill) = 190.	4504
ĪvĪī	ANTHUM STORAGE	OSED (114.111.) - 0.	, tJ)t
CALIB				
STANDHYD (0656)	Area (ha)=	14.51		
ID= 1 DT=15.0 min	Total Imp(%)=	54.00 Dir.	Conn.(%)=	46.00
		NIA DEDILLA		
Curfage Area	/ha) = 7 0/	DUS PERVIO	US (1)	
Surface Area	(na) = 7.84	. 0.0	. /	
Dep. Storage	(mm) = 1.00	5.0	0	
Average Slope	(%) = 1.00	2.3	0	
Length	(ha) = 7.84 (mm) = 1.00 (%) = 1.00 (m) = 311.02 = 0.013	40.0	0	
mannings n	= 0.013	0.25	U	
Max.Eff.Inten.(mm/hr) = 19.32 (min) 15.00 (min) = 16.80 (min) = 15.00 (cms) = 0.00	12.5	8	
over	(min) 15.00	45.0	0	
Storage Coeff.	(min) = 16.80) (ii) 97.8	0 (ii)	
Unit Hyd Theak	(min) = 15.00	105.0	0 (11)	
Unit Hyd neak	(cms) = 0 07	7 0.0	1	
				TOTALS*
DEAK ELOM	(cms) = 0 35		19	0.383 (iii)
TIME TO PEAK	(hrs) = 5 25	6.7	5	5 25
RUNOFF VOLUME	(mm) = 41 00	18 0	4	28.60
TOTAL RAINFALL	(mm) = 42 00) 42 0	0	42.00
RINOFF COEFFICT	(cms) = 0.35 (hrs) = 5.25 (mm) = 41.00 (mm) = 42.00 ENT = 0.98	12.0	3	0.68
NONOFF COEFFICE		. 0.4	9	0.00
CN* = (ii) TIME STEP THAN THE (JRE SELECTED FOR I 34.0 Ia = Dep. (DT) SHOULD BE SN STORAGE COEFFICIEN DOES NOT INCLUDE	Storage (Ab MALLER OR EQU MT.	oove) JAL	
RESERVOIR(0657))FF		
IN= 2> OUT= 1				
DT= 5.0 min	OUTFLOW ST	ORAGE O	UTFLOW S	STORAGE
	(cms) (P 0.0000 (C 0.0190 (C 0.1460 (C	1a.m.)	(cms)	(ha.m.)
	0.0000	1.0000	0.3640	0.2594
	0 0100 0	1 21/17	0.5250	0 2723
	0.0190	7.214/	0.5250	0.2723

Snell's Hollow Secondary Plan Area

Shell's Hollow Secondary Flan Area	
0.2590 0.2500 0.8190 0.2863	
AREA QPEAK TPEAK R.V.	
(ha) (cms) (hrs) (mm)	
INFLOW: ID= 2 (0656) 14.510 0.383 5.25 28.60 OUTFLOW: ID= 1 (0657) 14.510 0.146 7.00 28.40	
001112011. 115 1 (0037) 11.010 0.110 7.00 20.10	
PEAK FLOW REDUCTION [Qout/Qin](%)= 38.10 TIME SHIFT OF PEAK FLOW (min)=105.00	
MAXIMUM STORAGE USED (ha.m.)= 0.2350	
	==
V V I SSSSS U U A L (v 6.1.2003)	
V V I SS U U A A L V V I SS U U AAAAA L	
V V I SS U U A A L	
VV I SSSSS UUUUU A A LLLLL	
OOO TTTTT TTTTT H H Y Y M M OOO TM	
$ \hbox{\tt O} \hbox{\tt O} \hbox{\tt T} \hbox{\tt H} \hbox{\tt H} \hbox{\tt Y} \; \hbox{\tt Y} \hbox{\tt MM} \; \hbox{\tt MM} \; \; \hbox{\tt O} \hbox{\tt O} $	
O O T T H H Y M M O O OOO T T H H Y M M OOO	
Developed and Distributed by Smart City Water Inc	
Copyright 2007 - 2020 Smart City Water Inc	
All rights reserved.	
***** DETAILED OUTPUT *****	
<pre>Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\V02\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-</pre>	
a930-3446e1ae5bfa\bff3f53e-29fd-43c8-b1a0-99b54fd426c3\scen	
Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-	
a930-3446e1ae5bfa\bff3f53e-29fd-43c8-b1a0-99b54fd426c3\scen	
DATE: 02-09-2021 TIME: 01:20:05	
USER:	
COMMENTS:	

** SIMULATION : 14. AES 12hr 5yr	

READ STORM Filename: C:\Users\sfanous\AppD	
READ STORM FITHHIMME: C:\USEIS\SIGHOUS\APPD ata\Local\Temp\	
8766663e-6d3f-4db9-a962-c49127701f86\31488919	
Ptotal= 54.38 mm Comments: 5yr/12hr	

				DATE: I	Februar _.	y 2021	
	mm/hr 0.00 0.54 0.54 0.54 0.54 0.54 0.54 0.54	hrs 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50	mm/hr 9.25 9.25 9.25 9.25 25.02 25.02 25.02 7.07 7.07 7.07 7.07 3.81	TIME hrs 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50	mm/hr 3.81 3.81 3.81 2.18 2.18 2.18 1.09 1.09 1.09 0.54 0.54	hrs 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25	mm/hr 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
CALIB STANDHYD (0012) ID= 1 DT= 5.0 min	Area Total In	(ha) = np (%) = 9	2.72 90.00	Dir. Conn.	. (%) = 90	0.00	
		TMDFD1/TOI	iig DE	RVIOUS (i)			
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) = =	2.45 1.00 1.00 134.66 0.013		0.27 5.00 2.00 40.00 0.250			
NOTE: RAINF	ALL WAS TE	RANSFORMI	ED TO	5.0 MIN. 1	TTME STEE	> .	
11012.				0.0 11111.		•	
		TR	ANSFORME	D HYETOGRA	APH		
	RAIN	TIME	RAIN	TIME	RAIN	TIME	
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	3.26	6.250 6.333 6.417	3.81	9.33	0.54
0.250	0.00	3.333	9.25	6.417	3.81	9.50	0.54
0.333	0.54	3.417	9.25	6.500	3.81	9.58	0.54
0.417	0.54	3.500	9.25	6.583	3.81	9.67	0.54
0.500	0.54	3.583	9.25	6.500 6.583 6.667 6.750 6.833	3.81	9.75	0.54
0.583 0.667	0.54	3.00/ 3.750	9.25	1 6 833	3 81	9.83	0.54
0.750	0.54	3.833	9.25	6.917	3.81	10.00	0.54
0.833	0.54	3.917	9.25	7.000	3.81	10.08	0.54
0.917	0.54	4.000	9.25	7.083	3.81	10.17	0.54
1.000	0.54	4.083	9.25	7.167	3.81	10.25	0.54
1.083	0.54	4.16/ 4.250	9.25	6.917 7.000 7.083 7.167 7.250 7.333	3.81 2 10	10.33	0.54
1.250	0.54	4.333	25.02	7.417	2.18	10.50	0.54
1.333	0.54	4.417	25.02	7.500	2.18	10.58	0.54
1.417	0.54	4.500	25.02	7.583	2.18	10.67	0.54
1.500	0.54	4.583	25.02	7.417 7.500 7.583 7.667 7.750	2.18	10.75	0.54
1.833	0.54	4.917	25.02	8.000	2.18	11.08	0.54
1.917	0.54	5.000	25.02	7.917 8.000 8.083 8.167	2.18	11.17	0.54
2.000	0.54	5.083	25.02	8.167	2.18	11.25	0.54

Snell's Hollow Secondary Plan Area

2.083	0.54	5.167	25.02	8.250	2.18 11.33	0.54
2.167	0.54	5.250	25.02	8.333	1.09 11.42	0.54
2.250	0.54	5.333	7.07	8.417	1.09 11.50	0.54
2.333	3.26	5.417	7.07	8.500	1.09 11.58	0.54
2.417	3.26	5.500	7.07	8.583	1.09 11.67	0.54
2.500	3.26	5.583	7.07	8.667	1.09 11.75	0.54
2.583	3.26	5.667	7.07	8.750	1.09 11.83	0.54
2.667	3.26	5.750	7.07	8.833	1.09 11.92	0.54
2.750	3.26	5.833	7.07	8.917	1.09 12.00	0.54
2.833	3.26	5.917	7.07	9.000	1.09 12.08	0.54
2.917	3.26	6.000	7.07	9.083	1.09 12.17	0.54
3.000	3.26	6.083	7.07	9.167	1.09 12.25	0.54
3.083	3.26	6.167	7.07	9.250	1.09	
Max.Eff.Inten.(m	m/hr)=	25.02		21.71		
	(min)					
Storage Coeff.	(min) =	5.32	(ii)	18.32 (ii)		
Unit Hyd. Tpeak	(min) =	5.00		20.00		
Unit Hyd. peak	(cms) =	0.21		0.06		
					TOTALS	
PEAK FLOW	(cms) =	0.17		0.01	0.185 (iii)	
TIME TO PEAK	(hrs) =	5.25		5.25	5.25	
RUNOFF VOLUME	(mm) =	53.38		36.53	51.69	
TOTAL RAINFALL	(mm) =	54.38		54.38	54.38	
RUNOFF COEFFICIE	NT =	0.98		0.67	0.95	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 93.6 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR(0642)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE (cms) (ha.m.) | (cms) (ha.m.) 0.0000 0.0000 0.0510 0.1120 0.1266 0.0050 0.0617 | 0.0730 0.0200 0.0820 | 0.0960 0.1376 0.0360 0.1003 | 0.1150 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW : ID= 2 (0012) 2.720 0.185 5.25 51.69 OUTFLOW: ID= 1 (0642) 2.720 0.036 6.42 PEAK FLOW REDUCTION [Qout/Qin](%) = 19.42 TIME SHIFT OF PEAK FLOW (min) = 70.00 MAXIMUM STORAGE USED (ha.m.) = 0.1002| STANDHYD (0002)| Area (ha) = 13.68 |ID= 1 DT=15.0 min | Total Imp(%)= 61.00 Dir. Conn.(%)= 53.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =

DATE: February 2021

66.00

Dep. Storage Average Slope Length Mannings n	(mm) = (%) = (m) = =	1.00 1.00 301.99 0.013		5.00 2.30 40.00 0.250			
Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) (min) = (min) =	25.02 15.00 16.80 15.00 0.07	(ii)	21.25 30.00 97.80 105.00 0.01	(ii)		
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICT	(cms) = (hrs) = (mm) = (mm) =	0.49 5.25 53.38 54.38 0.98		0.12 6.75 28.86 54.38 0.53		*TOTALS* 0.541 (iii) 5.25 41.85 54.38 0.77	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

STANDHYD (0021) ID= 1 DT= 5.0 min	Area Total	(ha) = 6 Imp(%) = 67	.05 .00 Dir. Conn.(%)=
		IMPERVIOUS	PERVIOUS (i)
Surface Area	(ha) =	4.05	2.00
Dep. Storage	(mm) =	1.00	5.00
Average Slope	(%)=	1.00	2.00
Length	(m) =	200.83	40.00
Mannings n	=	0.013	0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		- TRANSFORM	ED HYETOGR	ΔPH	
TIME	RAIN T	'IME RAIN	l' TIME	RAIN TIME	RAIN
hrs		hrs mm/hr	' hrs	mm/hr hrs	mm/hr
0.083	0.00 3.	167 3.26	6.250	7.07 9.33	0.54
0.167	0.00 3.	250 3.26	6.333	3.81 9.42	0.54
0.250	0.00 3.	333 9.25	6.417	3.81 9.50	0.54
0.333	0.54 3.	417 9.25	6.500	3.81 9.58	0.54
0.417	0.54 3.	500 9.25	6.583	3.81 9.67	0.54
0.500	0.54 3.	583 9.25	6.667	3.81 9.75	0.54
0.583	0.54 3.	667 9.25	6.750	3.81 9.83	0.54
0.667	0.54 3.	750 9.25	6.833	3.81 9.92	0.54
0.750	0.54 3.	833 9.25	6.917	3.81 10.00	0.54
0.833	0.54 3.	917 9.25	7.000	3.81 10.08	0.54
0.917	0.54 4.	000 9.25	7.083	3.81 10.17	0.54
1.000	0.54 4.	083 9.25	7.167	3.81 10.25	0.54
1.083	0.54 4.	167 9.25	7.250	3.81 10.33	0.54
1.167	0.54 4.	250 9.25	7.333	2.18 10.42	0.54
1.250	0.54 4.	333 25.02	7.417	2.18 10.50	0.54
1.333	0.54 4.	417 25.02	7.500	2.18 10.58	0.54
1.417	0.54 4.	500 25.02	7.583	2.18 10.67	0.54
1.500	0.54 4.	583 25.02	7.667	2.18 10.75	0.54

Snell's Hollow Secondary Plan Area

1.583 1.667 1.750 1.833 1.917 2.000 2.083	0.54 4.750 0.54 4.833 0.54 4.917 0.54 5.000	25.02 7.750 25.02 7.833 25.02 7.917 25.02 8.000 25.02 8.083 25.02 8.167 25.02 8.250	2.18 10.92 2.18 11.00 2.18 11.08 2.18 11.17 2.18 11.25	0.54 0.54 0.54 0.54 0.54 0.54
2.167	0.54 5.250	25.02 8.333	•	0.54
		7.07 8.417	•	
			•	0.54
2.333	3.26 5.417	7.07 8.500	1.09 11.58	0.54
2.417	3.26 5.500	7.07 8.583	1.09 11.67	0.54
2.500	3.26 5.583	7.07 8.667	1.09 11.75	0.54
2.583	3.26 5.667	7.07 8.750	1.09 11.83	0.54
2.667	3.26 5.750	7.07 8.833	1.09 11.92	0.54
2.750	3.26 5.833	7.07 8.917	1.09 12.00	0.54
2.833	3.26 5.917	7.07 9.000	1.09 12.08	0.54
2.917	3.26 6.000	7.07 9.083	1.09 12.17	0.54
3.000	3.26 6.083		•	0.54
3.083	3.26 6.167		•	
Max.Eff.Inten.(mm/h	nr) = 25.02	18.70		

Max.Eff.Inten.(mm/hr) = (min)	25.02 5.00	18.70 25.00		
Storage Coeff.		6.76		(ii)	
btorage coeff.	(111111) —	0.70	(11) 20.50	(± ±)	
Unit Hyd. Tpeak	(min) =	5.00	25.00		
Unit Hyd. peak	(cms) =	0.18	0.05		
				*TOTALS	k
PEAK FLOW	(cms) =	0.28	0.08	0.360	(iii)
TIME TO PEAK	(hrs) =	5.25	5.33	5.25	
RUNOFF VOLUME	(mm) =	53.38	29.50	45.26	
TOTAL RAINFALL	(mm) =	54.38	54.38	54.38	
RUNOFF COEFFICI	ENT =	0.98	0.54	0.83	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 88.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1=1 (0002):	13.68	0.541	5.25	41.85
+ ID2= 2 (0021):	6.05	0.360	5.25	45.26
=======================================				
ID = 3 (0658):	19.73	0.901	5.25	42.90

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0645)	OVERFLOW	IS OFF		
IN= 2> OUT= 1				
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
	(cms)	(ha.m.)	(cms)	(ha.m.)
	0.0000	0.0000	0.2360	0.6393
	0.0290	0.3310	0.3410	0.7100
	0.0950	0.4595	0.4450	0.7485
	0.1680	0.5720	0.5320	0.7925

DATE: February 2021

(ha.m.) = 0.2500

	0645) EAK FLOW IME SHIFT C AXIMUM STC	19.730 REDUCTI OF PEAK FL ORAGE US	0.168 ON [Qout/OW ED	8.08 Qin](%) = 1 (min) = 17 (ha.m.) =	42.73 3.65 0.00 0.5719	
CALIB	Area Total In					
		MPERVIOUS 7.84 1.00	6.	67		
Surface Area Dep. Storage Average Slope Length Mannings n	(%) = (m) = =	1.00 311.02 0.013	5. 2. 40. 0.2	30 00 50		
Max.Eff.Inten.(r	nm/hr) = (min)	25.02 15.00	19. 30.	85 00		
Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) = (min) = (cms) =	16.80 (15.00 0.07	105. 105.	80 (ii) 00 01	+momat c+	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI					*TOTALS* 0.508 (iii) 5.25 39.40 54.38 0.72	
(ii) TIME STEP	34.0 Ia (DT) SHOUI STORAGE COE	= Dep. St D BE SMAL EFFICIENT.	orage (Al LER OR EQ	bove) UAL		
RESERVOIR(0657)	OVERFI					
IN= 2> OUT= 1 DT= 5.0 min	OUTFLO	STOR (ha. 00 0.0 0.0 0.2 00 0.2 00 0.2	AGE 0 m.) 0000 147 350	OUTFLOW (cms) 0.3640 0.5250 0.6840 0.8190	STORAGE (ha.m.) 0.2594 0.2723 0.2789 0.2863	
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>	0656) 0657)	AREA (ha) 14.510 14.510	QPEAK (cms) 0.508 0.259	TPEAK (hrs) 5.25 6.33	R.V. (mm) 39.40 39.21	
T	EAK FLOW	F PEAK FL	OW		5.00	

MAXIMUM STORAGE USED

Snell's Hollow Secondary Plan Area

	======	_					
		_					
		SSSS U	U A			(v 6.1.2003)	
	I S	S U SS U	U A U AAA				
		SS U	U A	A L			
VV	I S	ssss uut	JUU A	A LLLI	L		
000 TT	TTT T	TTTT H	н ч	Y M	м ооо	TM	
	T T	T H	H Y			IM	
	T	T H	H Y		M O O		
	T	T H	H Y		M 000		
Developed and Di Copyright 2007 -					Inc		
All rights reser		Jillare Ort	oy water	1110			
	***	** DE 1	r a i t.	E D O	UTPUT	****	
				- 0			
T 613	2 '	D	m:1	0 () \ ***		40 C 1\1700\	J
						MO 6.1\VO2\voin.e ca\VH5\4a4b2b43-	
1930-3446e1ae5bf							2300 1210
						ca\VH5\4a4b2b43-	29c0-4f4e-
1930-3446e1ae5bf	a\4533	77f5-9ed8	3-4652-a	.685-cf06	3d8575f7\:	scen	
DATE: 02-09-2021				TIN	ME: 01:20:	05	
ISER ·							
ISER:							
JSER:							
USER:							
COMMENTS:		_	****	*****			
**************************************	****** : 15. 2	- ********* AES 12hr	10yr		**		
COMMENTS:	****** : 15. 2	- ********* AES 12hr	10yr		**		
**************************************	****** : 15. 2	- ********* AES 12hr	10yr		**		
**************************************	******	- ******** AES 12hr ******	10yr ******	*****	**		
**************************************	******	- ******** AES 12hr ******	10yr *******	******* sers\sfa	** **** unous\AppD		
**************************************	****** : 15. i	- ******** AES 12hr ******	10yr ******* ne: C:\U ata\	******* sers\sfa	** *** inous\AppD	62-c49127701f86\	
**************************************	****** : 15. i	**************************************	10yr ******* ne: C:\U ata\	******* sers\sfa Local\Te	** *** inous\AppD	62-c49127701f86\:	
*********** ** SIMULATION ************* READ STORM	****** : 15. 2 ******	********** AES 12hr ******** Filenan	10yr ******* ne: C:\U ata\ 8766 cs: 10yr	******** Ssers\sfa Local\Te 663e-6d3	** inous\AppD imp\ if-4db9-a9		
COMMENTS: ********** ** SIMULATION *********** READ STORM	****** : 15. 2 ****** mm TIME	********* AES 12hr ******* Filenan Comment	10yr ******* ne: C:\U ata\ 8766 cs: 10yr	******* Ssers\sfa Local\Te 663e-6d3 /12hr RAIN	** inous\AppD imp\ if-4db9-a9	RAIN TIME	RAIN
*********** ** SIMULATION ************* READ STORM	****** : 15. i ****** mm TIME hrs	********* AES 12hr ******* Filenam Comment RAIN mm/hr	10yr ******* ne: C:\U ata\ 8766 cs: 10yr TIME hrs	******** Ssers\sfa Local\Te 663e-6d3 /12hr RAIN mm/hr	** inous\AppD emp\ f-4db9-a9 ' TIME ' hrs	RAIN TIME mm/hr hrs	RAIN mm/hr
COMMENTS: ********** ** SIMULATION ************ READ STORM	****** : 15. 2 ****** mm TIME	********* AES 12hr ******* Filenam Comment RAIN mm/hr 0.00	10yr ******* ne: C:\U ata\ 8766 cs: 10yr	******** Ssers\sfa Local\Te 663e-6d3 /12hr RAIN mm/hr	** *** inous\AppD imp\ if-4db9-a9 ' TIME ' hrs 6.75	RAIN TIME	RAIN
COMMENTS: ********** ** SIMULATION *********** READ STORM	****** : 15. ; ******	********* AES 12hr ******* Filenam Comment RAIN mm/hr 0.00 0.63 0.63	10yr ****** ae: C:\U ata\ 8766 cs: 10yr TIME hrs 3.50 3.75 4.00	******** Ssers\sfa Local\Te 1663e-6d3 /12hr RAIN mm/hr 10.66 10.66 10.66	** *** inous\AppD imp\ if-4db9-a9 ' TIME ' hrs 6.75 7.00 7.25	RAIN TIME mm/hr hrs 4.39 10.00 4.39 10.25 4.39 10.50	RAIN mm/hr 0.63 0.63 0.63
COMMENTS: ********** ** SIMULATION *********** READ STORM	****** : 15. i ******	********* AES 12hr ******* Filenam Comment RAIN mm/hr 0.00 0.63 0.63 0.63	10yr ******* me: C:\U ata\ 8766 cs: 10yr TIME hrs 3.50 3.75 4.00 4.25	******** Ssers\sfa Local\Te 663e-6d: /12hr RAIN mm/hr 10.66 10.66 10.66	** **** inous\AppD imp\ if-4db9-a9 ' TIME ' hrs 6.75 7.00 7.25 7.50	RAIN TIME mm/hr hrs 4.39 10.00 4.39 10.25 4.39 10.50 2.51 10.75	RAIN mm/hr 0.63 0.63 0.63 0.63
*********** ** SIMULATION ************* READ STORM	****** : 15. ; ******	Filenam Comment RAIN mm/hr 0.63 0.63 0.63 0.63	10yr ****** ae: C:\U ata\ 8766 cs: 10yr TIME hrs 3.50 3.75 4.00	******** Ssers\sfa Local\Te 663e-6d3 /12hr RAIN mm/hr 10.66 10.66 10.66	** **** inous\AppD imp\ if-4db9-a9 ' TIME ' hrs 6.75 7.00 7.25 7.50 7.75	RAIN TIME mm/hr hrs 4.39 10.00 4.39 10.25 4.39 10.50	RAIN mm/hr 0.63 0.63 0.63

DATE: February 2021

2.00	0 63 1	5 25	28 84 I	8 50	1.25 11.75	0.63
2.25			8.15		1.25 12.00	0.63
2.50	3.76	5.75	8.15	9.00	1.25 12.25	0.63
2.75	3.76	6.00	8.15	9.25	1.25	
3.00	3.76	6.25	8.15	9.50	0.63	
3.25	3.76	6.50	4.39	9.75	0.63	

STANDHYD (0012) ID= 1 DT= 5.0 min	Area Total	(ha) = Imp(%) =		Dir. Conn.(%)=	90.00
		IMPERVI	DUS	PERVIOUS (i)	
Surface Area	(ha) =	2.4	5	0.27	
Dep. Storage	(mm) =	1.0)	5.00	
Average Slope	(%)=	1.0)	2.00	

Mannings n

Length (m) =

| CALIB

0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

134.66

---- TRANSFORMED HYETOGRAPH ----

40.00

0.250

TIME	RAIN	TIME	RAIN	' TIME	RAIN TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr hrs	mm/hr
0.083	0.00	3.167	3.76	6.250	8.15 9.33	0.63
0.167	0.00	3.250	3.76	6.333	4.39 9.42	0.63
0.250	0.00	3.333	10.66	6.417	4.39 9.50	0.63
0.333	0.63	3.417	10.66	6.500	4.39 9.58	0.63
0.417	0.63	3.500	10.66	6.583	4.39 9.67	0.63
0.500	0.63	3.583	10.66	6.667	4.39 9.75	0.63
0.583	0.63	3.667	10.66	6.750	4.39 9.83	0.63
0.667	0.63	3.750	10.66	6.833	4.39 9.92	0.63
0.750	0.63	3.833	10.66	6.917	4.39 10.00	0.63
0.833	0.63	3.917	10.66	7.000	4.39 10.08	0.63
0.917	0.63	4.000	10.66	7.083	4.39 10.17	0.63
1.000	0.63	4.083	10.66	7.167	4.39 10.25	0.63
1.083	0.63	4.167	10.66	7.250	4.39 10.33	0.63
1.167	0.63	4.250	10.66	7.333	2.51 10.42	0.63
1.250	0.63	4.333	28.84	7.417	2.51 10.50	0.63
1.333	0.63	4.417	28.84	7.500	2.51 10.58	0.63
1.417	0.63	4.500	28.84	7.583	2.51 10.67	0.63
1.500	0.63	4.583	28.84	7.667	2.51 10.75	0.63
1.583	0.63	4.667	28.84	7.750	2.51 10.83	0.63
1.667	0.63	4.750	28.84	7.833	2.51 10.92	0.63
1.750	0.63	4.833	28.84	7.917	2.51 11.00	0.63
1.833	0.63	4.917	28.84	8.000	2.51 11.08	0.63
1.917	0.63	5.000	28.84	8.083	2.51 11.17	0.63
2.000	0.63	5.083	28.84	8.167	2.51 11.25	0.63
2.083		5.167	28.84	8.250	2.51 11.33	0.63
2.167		5.250	28.84	8.333	1.25 11.42	0.63
2.250	0.63	5.333	8.15	8.417	1.25 11.50	0.63
2.333	3.76	5.417	8.15	8.500	1.25 11.58	0.63
2.417	3.76	5.500	8.15	8.583	1.25 11.67	0.63
2.500	3.76	5.583	8.15	8.667	1.25 11.75	0.63
2.583	3.76	5.667	8.15	8.750	1.25 11.83	0.63
2.667	3.76	5.750	8.15	8.833	1.25 11.92	0.63
2.750	3.76	5.833	8.15	8.917	1.25 12.00	0.63
2.833	3.76	5.917	8.15	9.000	1.25 12.08	0.63

Snell's Hollow Secondary Plan Area

2.917 3.000 3.083	3.76	6.000 6.083 6.167		1.25 12.17
Max.Eff.Inten.(nm/hr)=	28.84	25.90	
over	(min)	5.00	10.00	
Storage Coeff.	(min) =	5.02	(ii) 9.84 (ii)	
Unit Hyd. Tpeak	(min) =	5.00	10.00	
Unit Hyd. peak	(cms) =	0.21	0.11	
				TOTALS
PEAK FLOW	(cms) =	0.20	0.02	0.215 (iii)
TIME TO PEAK	(hrs) =	5.25	5.25	5.25
RUNOFF VOLUME	(mm) =	61.71	44.36	59.97
TOTAL RAINFALL	(mm) =	62.71	62.71	62.71
RUNOFF COEFFICIE	ENT =	0.98	0.71	0.96

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 93.6 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE :	STORAGE CO DOES NOT			F ANY.		
RESERVOIR(0642) IN= 2> OUT= 1						
DT= 5.0 min	(cms) (ha 00 0.	.m.)	(cms) 0.0510	STORAGE (ha.m.) 0.1120 0.1266 0.1376 0.1490	
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>	0012) 0642)	(ha)	(cms)	(hrs)	R.V. (mm) 5 59.97 3 58.82	
T	EAK FLOW IME SHIFT AXIMUM ST	OF PEAK F	LOW	(min) =	65.00	
CALIB	Area Total I	(ha) = 1 mp(%) = 6	3.68 1.00 Di	r. Conn.(§	\$)= 53.00	
		IMPERVIOU				
Surface Area Dep. Storage	(ha) = (mm) =	8.34	5 5	.34		
Average Slope	(mm) = (%) =					
Length Mannings n	(m) = =					
Max.Eff.Inten.(mm/hr)=	28.84	25	.95		
	(min)					
Storage Coeff. Unit Hyd. Tpeak						
Unit Hyd. peak	(cms) =	0.07	0	.01		

DATE: February 2021

				TOTALS
PEAK FLOW	(cms) =	0.57	0.15	0.630 (iii)
TIME TO PEAK	(hrs) =	5.25	6.75	5.25
RUNOFF VOLUME	(mm) =	61.71	35.81	49.53
TOTAL RAINFALL	(mm) =	62.71	62.71	62.71
RUNOFF COEFFICIE	ENT =	0.98	0.57	0.79

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 - CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB							
STANDHYD (0021)	Area	(ha) =	6.05				
ID= 1 DT= 5.0 min	Total	Imp(%)=	67.00	Dir. Co	nn.(%)=	66.00	
		IMPERVIO	US	PERVIOUS	(i)		
Surface Area	(ha) =	4.05		2.00			
Dep. Storage	(mm) =	1.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m) =	200.83		40.00			
Mannings n	=	0.013		0.250			

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR.	ANSFORMEI) HYETOGR	APH	
TIME	RAIN	TIME	RAIN	' TIME	RAIN TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr hrs	mm/hr
0.083	0.00	3.167	3.76	6.250	8.15 9.33	0.63
0.167	0.00	3.250	3.76	6.333	4.39 9.42	0.63
0.250	0.00	3.333	10.66	6.417	4.39 9.50	0.63
0.333	0.63	3.417	10.66	6.500	4.39 9.58	0.63
0.417	0.63	3.500	10.66	6.583	4.39 9.67	0.63
0.500	0.63	3.583	10.66	6.667	4.39 9.75	0.63
0.583	0.63	3.667	10.66	6.750	4.39 9.83	0.63
0.667		3.750	10.66		4.39 9.92	0.63
0.750	0.63	•	10.66			0.63
0.833	0.63	3.917	10.66	7.000	4.39 10.08	0.63
0.917	0.63	•	10.66		4.39 10.17	0.63
1.000	0.63	•	10.66			0.63
1.083	0.63	•	10.66		4.39 10.33	0.63
1.167	0.63	•	10.66		2.51 10.42	0.63
1.250	0.63	•	28.84			
1.333	0.63	•	28.84		2.51 10.58	0.63
1.417	0.63		28.84		2.51 10.67	0.63
1.500	0.63	•	28.84		2.51 10.75	0.63
1.583	0.63	•	28.84		2.51 10.83	0.63
1.667	0.63	•	28.84			0.63
1.750	0.63		28.84		2.51 11.00	0.63
1.833	0.63		28.84		2.51 11.08	0.63
1.917	0.63	•	28.84		2.51 11.17	0.63
2.000	0.63		28.84		2.51 11.25	0.63
2.083	0.63	•	28.84		2.51 11.33	0.63
2.167		5.250	28.84		1.25 11.42	0.63
2.250	0.63	5.333	8.15	8.417	1.25 11.50	0.63
2.333	3.76	5.417	8.15	8.500	1.25 11.58	0.63

MDANGEODMED HVEMOCDADH

Snell's Hollow Secondary Plan Area

2.500 2.583 2.667 2.750	3.76	5.583 5.667 5.750 5.833	8.15 8 8.15 8 8.15 8 8.15 8	3.667 3.750 3.833 3.917	1.25 11.67 1.25 11.75 1.25 11.83 1.25 11.92 1.25 12.00 1.25 12.08	0.63 0.63 0.63 0.63
2.917 3.000	3.76	6.000 6.083	8.15 9 8.15 9	0.083 0.167	1.25 12.17 1.25 12.25	0.6
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) (min) = (min) =	5.00 6.38 5.00	20. (ii) 19. 20.	.00 .14 (ii) .00	ATTOTAL 0.4	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	(hrs) = (mm) = (mm) =	5.25 61.71 62.71	5. 36.	.11 .33 .59 .71	*TOTALS* 0.427 (iii) 5.25 53.17 62.71 0.85	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 88.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0002):	13.68	0.630	5.25	49.53
+ ID2= 2 (0021):	6.05	0.427	5.25	53.17
=======================================				======
ID = 3 (0658):	19.73	1.057	5.25	50.65

ID = 3 (0658): 19	.73 1.05	57 5.	25 50.6	5	
NOTE: PEAK F	LOWS DO NOT	INCLUDE BA	ASEFLOWS	IF ANY.		
RESERVOIR (0645 IN= 2> OUT= 1		LOW IS OF	?			
DT= 5.0 min	OUTFL	OW STOR	RAGE	OUTFLOW	STORAGE	
	(cms) (ha	.m.)	(cms)	(ha.m.)	
	0.00	00 0.0	0000	0.2360	0.6393	
	0.02	90 0.3	3310 I	0.3410	0.7100	
				0.4450		
				0.5320		
		AREA	QPEAK	TPEAK	R.V.	
		(ha)	(cms)	(hrs)	(mm)	
INFLOW : ID= 2	(0658)	19.730	1.057	5.25	50.65	
OUTFLOW: ID= 1	(0645)	19.730	0.236	7.58	50.48	
	PEAK FLOW TIME SHIFT MAXIMUM ST	OF PEAK FI	LOW	(min) =1	40.00	

DATE: February 2021

					February 2021
CALIB					
STANDHYD (0656)					
D= 1 DT=15.0 min		Imp(%)=	54.00	Dir. Conn	. (%) = 46.00
		TMPERVIC	US	PERVIOUS (i)	1
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)=	7.84		6.67	
Dep. Storage	(mm) =	1.00		5.00	
Average Slope	(%)=	1.00		2.30	
Length	(m) =	311.02		2.30 40.00 0.250	
Mannings n	=	0.013		0.250	
Max.Eff.Inten.(I over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr)=	28.84		24.35	
over	(min)	15.00		30.00	
Storage Coeff.	(min) =	16.80	(ii)	97.80 (ii)	ı
Unit Hyd. Tpeak	(min) =	15.00		105.00	
Unit Hyd. peak	(cms) =	0.07		0.01	
					"IOIALS"
TEAK FLOW	(cms) =	U.53		U.1/ 6.75	0.593 (iii) 5.25
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL BAINFALL	(mm) =	61 71		34.28	46.89
RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(mm) =	62.71		62.71	62.71
RUNOFF COEFFICI:	ENT =	0.98		0.55	0.75
(ii) TIME STEP THAN THE : (iii) PEAK FLOW	STORAGE (DOES NOT	COEFFICIEN F INCLUDE	ALLER T. BASEF	LOW IF ANY.	
THAN THE : (iii) PEAK FLOW	STORAGE (DOES NOT	COEFFICIEN F INCLUDE	ALLER	OR EQUAL	
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) THAN THE :	STORAGE (DOES NOT	COEFFICIEN F INCLUDE RFLOW IS C	ALLER T. BASEF:	OR EQUAL	
THAN THE : (iii) PEAK FLOW	STORAGE O DOES NOT	COEFFICIEN F INCLUDE RFLOW IS O	TALLER T. BASEF:	OR EQUAL LOW IF ANY.	V STORAGE
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) IN= 2> OUT= 1 DT= 5.0 min	STORAGE O DOES NOT	COEFFICIEN F INCLUDE RFLOW IS O	TALLER T. BASEF:	OR EQUAL LOW IF ANY.	V STORAGE
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) IN= 2> OUT= 1 DT= 5.0 min	STORAGE O DOES NOT	COEFFICIEN F INCLUDE RFLOW IS O	TALLER T. BASEF:	OR EQUAL LOW IF ANY.	V STORAGE
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) IN= 2> OUT= 1 DT= 5.0 min	STORAGE (DOES NOT OVER OUTF (cn 0.0 0.0	COEFFICIEN T INCLUDE REFLOW IS C FLOW ST as) (h 0000 0 01190 0 4460 0	ALLER TT. BASEF FF CORAGE a.m.) .0000 .2147 .2350	OR EQUAL LOW IF ANY. OUTFLOT (cms) 0.364(0.525(0.684(STORAGE (ha.m.) 0.2594 0.2723 0.2789
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) IN= 2> OUT= 1 DT= 5.0 min	STORAGE (DOES NOT OVER OUTF (cn 0.0 0.0	COEFFICIEN T INCLUDE REFLOW IS C FLOW ST as) (h 0000 0 01190 0 4460 0	ALLER TT. BASEF FF CORAGE a.m.) .0000 .2147 .2350	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.3644	STORAGE (ha.m.) 0.2594 0.2723 0.2789
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) N= 2> OUT= 1 DT= 5.0 min	STORAGE C DOES NOT OVEF OUTF (cn 0.0 0.1	COEFFICIEN F INCLUDE	MALLER TT. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.3644 0.5256 0.6844 0.8196	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) N= 2> OUT= 1 DT= 5.0 min	STORAGE C DOES NOT OVEF OUTF (cn 0.0 0.1	COEFFICIEN F INCLUDE	MALLER TT. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.3644 0.5256 0.6844 0.8196	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) N= 2> OUT= 1 DT= 5.0 min	STORAGE C DOES NOT OVEF OUTF (cn 0.0 0.1	COEFFICIEN F INCLUDE	MALLER TT. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.3644 0.5256 0.6844 0.8196	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) IN= 2> OUT= 1 DT= 5.0 min	STORAGE C DOES NOT OVEF OUTF (cn 0.0 0.1	COEFFICIEN F INCLUDE	MALLER TT. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.3644 0.5256 0.6844 0.8196	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) N= 2> OUT= 1 T= 5.0 min INFLOW : ID= 2 (OUTFLOW: ID= 1 (OVEF OUTF (cn 0.0 0.1 0.2 0656) 0657) EAK FLC	COEFFICIEN F INCLUDE RFLOW IS C FLOW ST ns) (h 1000 0 1190 0 1460 0 2590 0 AREA (ha) 14.510 14.510 W REDUC	ALLER T. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500 QPI (cr	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.3640 0.5250 0.6840 0.8190 EAK TPEAM ms) (hrs: 0.593 5 0.355 5 [Qout/Qin](%)	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863 K R.V. (mm) 25 46.89 67 46.70
THAN THE : (iii) PEAK FLOW RESERVOIR (0657) IN= 2> OUT= 1 DT= 5.0 min INFLOW : ID= 2 (OUTFLOW: ID= 1 (OVEF OUTF (cm 0.0 0.1 0.2 0656) 0657) EAK FLC IME SHIFT	COEFFICIENT INCLUDE	ALLER T. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500 QPI (CI	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.364(0.819(EAK TPEAL ms) (hrs: 0.593 5 0.355 5 [Qout/Qin](%; (min)	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863 (R.V. (mm) .25 46.89 .67 46.70 = 59.90 = 25.00
THAN THE : (iii) PEAK FLOW RESERVOIR (0657) IN= 2> OUT= 1 DT= 5.0 min INFLOW : ID= 2 (OUTFLOW: ID= 1 (OVEF OUTF (cm 0.0 0.1 0.2 0656) 0657) EAK FLC IME SHIFT	COEFFICIENT INCLUDE	ALLER T. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500 QPI (CI	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.3640 0.5250 0.6840 0.8190 EAK TPEAM ms) (hrs: 0.593 5 0.355 5 [Qout/Qin](%)	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863 (R.V. (mm) .25 46.89 .67 46.70 = 59.90 = 25.00
THAN THE : (iii) PEAK FLOW RESERVOIR (0657) IN= 2> OUT= 1 DT= 5.0 min INFLOW : ID= 2 (OUTFLOW: ID= 1 (OVEF OUTF (cm 0.0 0.1 0.2 0656) 0657) EAK FLC IME SHIFT	COEFFICIENT INCLUDE	ALLER T. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500 QPI (CI	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.364(0.8190 EAK TPEAL ms) (hrs: 0.593 5 0.355 5 [Qout/Qin](%; (min)	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863 (R.V. (mm) .25 46.89 .67 46.70 = 59.90 = 25.00
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) N= 2> OUT= 1 DT= 5.0 min INFLOW : ID= 2 (OUTFLOW: ID= 1 (PI	OVEF OUTF (cn 0.0 0.1 0.2 0656) 0657) EAK FLC IME SHIFT AXIMUM S	COEFFICIENT INCLUDE FIOW ST AND IS CO COEFFICIENT INCLUDE CFLOW ST AND COEFFICIENT INCLUDE AREA (ha) 14.510 14.510 DW REDUCT FOF PEAK STORAGE	ALLER T. BASEF: ORAGE a.m.) .0000 .2147 .2350 .2500 QPI (CCI TION FLOW USED	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.364(0.525(0.6840(0.8190(EAK TPEAM ms) (hrs: 0.593 5 0.355 5 [Qout/Qin](% (min) (ha.m.)	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863 (R.V. (mm) .25 46.89 .67 46.70 = 59.90 = 25.00
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) N= 2> OUT= 1 DT= 5.0 min INFLOW: ID= 2 (OUTFLOW: ID= 1 (PI T. M.	OVEF OUTE (cn 0.0 0.1 0.2 0656) 0657) EAK FLC IME SHIFT AXIMUM S	COEFFICIENT INCLUDE REFLOW IS COEFFICIENT INCLUDE STION STION (house) AREA (ha) 14.510 14.510 DW REDUCT OF PEAK STORAGE	WALLER TT. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500 QPi (CI	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.364(0.525(0.684(0.819() EAK TPEAL ms) (hrs; 0.593 5 0.355 5 [Qout/Qin](% (min) (ha.m.)	V STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863 C R.V. (mm) 0.25 46.89 67 46.70 = 59.90 = 25.00 = 0.2587
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) N= 2> OUT= 1 DT= 5.0 min INFLOW: ID= 2 (OUTFLOW: ID= 1 (PI T. M.	OVEF OUTE (cn 0.0 0.1 0.2 0656) 0657) EAK FLC IME SHIFT AXIMUM S	COEFFICIENT INCLUDE REFLOW IS COEFFICIENT INCLUDE STION STION (house) AREA (ha) 14.510 14.510 DW REDUCT OF PEAK STORAGE	WALLER TT. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500 QPi (CI	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.364(0.525(0.684(0.819() EAK TPEAL ms) (hrs; 0.593 5 0.355 5 [Qout/Qin](% (min) (ha.m.)	N STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863 (R.V. (mm) 25 46.89 67 46.70 = 59.90 = 25.00 = 0.2587
THAN THE : (iii) PEAK FLOW RESERVOIR(0657) N= 2> OUT= 1 T= 5.0 min INFLOW: ID= 2 (OUTFLOW: ID= 1 (OVEF OUTE (cn 0.0 0.1 0.2 0656) 0657) EAK FLC IME SHIFT AXIMUM S	COEFFICIENT INCLUDE REFLOW IS COEFFICIENT INCLUDE STION STION (house) AREA (ha) 14.510 14.510 DW REDUCT OF PEAK STORAGE	WALLER TT. BASEF: FF ORAGE a.m.) .0000 .2147 .2350 .2500 QPi (CI	OR EQUAL LOW IF ANY. OUTFLOW (cms) 0.364(0.525(0.684(0.819() EAK TPEAL ms) (hrs; 0.593 5 0.355 5 [Qout/Qin](% (min) (ha.m.)	V STORAGE (ha.m.) 0 0.2594 0 0.2723 0 0.2789 0 0.2863 C R.V. (mm) 0.25 46.89 67 46.70 = 59.90 = 25.00 = 0.2587

I SSSSS UUUUU A A LLLLL

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area

OOO TTTTT TTTTT H H Y Y M M OOO TM O O T T H H Y Y MM MM O O O O T T H H Y M M O O 000 T T H H Y M M 000

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved.

***** DETAILED OUTPUT *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\V02\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\f2d0c5ba-35e8-42ef-b592-689325161f65\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-

a930-3446e1ae5bfa\f2d0c5ba-35e8-42ef-b592-689325161f65\scen

DATE: 02-09-2021	CIME:	01:	:20	:0	6
------------------	-------	-----	-----	----	---

USER:

** SIMULATION : 16. AES 12hr 25yr ** ************

READ STORM 	a 8)\	2-c49127701f86\4	b1e5c14
Ptotal= 73.10 mm	Comments: 2	5yr/12hr			
TIME	RAIN TI	ME RAIN '	TIME	RAIN TIME	RAIN
hrs	mm/hr h	rs mm/hr '	hrs	mm/hr hrs	mm/hr
0.25	0.00 3.	50 12.43	6.75	5.12 10.00	0.73
0.50	0.73 3.	75 12.43	7.00	5.12 10.25	0.73
0.75	0.73 4.	00 12.43	7.25	5.12 10.50	0.73
1.00	0.73 4.	25 12.43	7.50	2.92 10.75	0.73
1.25	0.73 4.	50 33.63	7.75	2.92 11.00	0.73
1.50	0.73 4.	75 33.63	8.00	2.92 11.25	0.73
1.75	0.73 5.	00 33.63	8.25	2.92 11.50	0.73
2.00	0.73 5.	25 33.63	8.50	1.46 11.75	0.73
2.25	0.73 5.	50 9.50	8.75	1.46 12.00	0.73
2.50	4.39 5.	75 9.50	9.00	1.46 12.25	0.73
2.75	4.39 6.	00 9.50	9.25	1.46	
3.00	4.39 6.	25 9.50	9.50	0.73	
3.25	4.39 6.	50 5.12	9.75	0.73	

				DATE: I	Februa	ry 2021	
CALIB STANDHYD (0012) ID= 1 DT= 5.0 min	Area Total In	(ha)= np(%)= 9	2.72	Dir. Conn.	. (%) = 9	90.00	
·		_					
Surface Area Dep. Storage Average Slope Length Mannings n	(ha) = (mm) = (%) = (m) =	2.45 1.00		RVIOUS (i) 0.27 5.00 2.00 40.00 0.250			
NOTE: RAINF	ALL WAS T	RANSFORME	D TO	5.0 MIN. 7	TIME ST	EP.	
		TRA	NSFORME	D HYETOGRA	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	3.167	4.39	6.250	9.50	9.33	0.73
0.167	0.00	3.250	4.39	6.333	5.12	9.42	0.73
0.250	0.00	3.333	12.43	6.417	5.12	9.50	0.73
0.333	0.73	3.41/	12.43	0.500	5.12	9.58	0.73
0.417	0.73	1 3.500	12.43	1 6 667	5 12	9.07	0.73
0.500	0.73	3 667	12.43	1 6 750	5 12	1 9.73	0.73
0.505	0.73	3.007	12.43	1 6 833	5 12	1 9 92	0.73
0.750	0.73	3.833	12.43	6.917	5.12	10.00	0.73
0.833	0.73	3.917	12.43	7.000	5.12	10.08	0.73
0.917	0.73	4.000	12.43	7.083	5.12	10.17	0.73
1.000	0.73	4.083	12.43	7.167	5.12	10.25	0.73
1.083	0.73	4.167	12.43	7.250	5.12	10.33	0.73
1.167	0.73	4.250	12.43	7.333	2.92	10.42	0.73
1.250	0.73	4.333	33.63	7.417	2.92	10.50	0.73
1.333	0.73	4.417	33.63	7.500	2.92	10.58	0.73
1.417	0.73	4.500	33.63	7.583	2.92	10.67	0.73
1.500	0.73	4.583	33.63	7.667	2.92	10.75	0.73
1.583	0.73	4.667	33.63	7.750	2.92	10.83	0.73
1.00/	0.73	1 4.750	33.63	1 7 017	2.92	1 11 00	0.73
1 833	0.73	1 4.055	33.63	1 8 000	2 92	1 11 08	0.73
1.917	0.73	5.000	33.63	1 8.083	2.92	1 11.17	0.73
2.000	0.73	5.083	33.63	8.167	2.92	11.25	0.73
2.083	0.73	5.167	33.63	8.250	2.92	11.33	0.73
2.167	0.73	5.250	33.63	8.333	1.46	11.42	0.73
2.250	0.73	5.333	9.50	8.417	1.46	11.50	0.73
2.333	4.39	5.417	9.50	8.500	1.46	11.58	0.73
2.417	4.39	5.500	9.50	8.583	1.46	11.67	0.73
2.500	4.39	5.583	9.50	8.667	1.46	11.75	0.73
2.583	4.39	5.66/ 5.750	9.50	1 8.750	1.46	11.83 11.00	0.73
2.007	4.39	1 5 833	9.50	1 8 917	1 46	1 12 00	0.73
2.730	4 39	5.917	9.50	1 9.000	1.46	1 12.08	0.73
2 917	4.39	6.000	9.50	1 9.083	1.46	12.17	0.73
3.000	4.39	6.083	9.50	9.167	1.46	12.25	0.73
3.083	4.39	6.167	9.50	TIME TIME	1.46		
Max.Eff.Inten.(m	m/hr)=	33.63		30.94			

Max.Eff.Inten.(mm/hr)=	33.63	30.94
over (min)	5.00	10.00
Storage Coeff. (min) =	4.72 (ii)	9.25 (ii)
Unit Hyd. Tpeak (min) =	5.00	10.00
Unit Hyd. peak (cms)=	0.22	0.12

TOTALS

Snell's Hollow Secondary Plan Area

PEAK FLOW	(cms) =	0.23	0.02	0.252 (iii)
TIME TO PEAK	(hrs) =	5.25	5.25	5.25
RUNOFF VOLUME	(mm) =	72.10	54.26	70.31
TOTAL RAINFALL	(mm) =	73.10	73.10	73.10
RUNOFF COEFFICI	ENT =	0.99	0.74	0.96

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

RESERVOIR(0642) IN= 2> OUT= 1							
DT= 5.0 min	OUTF	LOW STO	ORAGE	OUTF	LOW	STORAGE	
	(cms	s) (ha	a.m.)	(cm	ıs)	(ha.m.) 0.1120	
	0.00	000 0.	.0000	0.0	510	0.1120	
	0.00	050 0.	.0617	0.0	730	0.1266 0.1376	
	0.0	360 0.	.1003	0.1	150	0.1490	
		AREA	QPEAK	TP	EAK	R.V.	
		(ha)	(cms)	(h	rs)	(mm)	
INFLOW : ID= 2 (0012)	2.720	0.25	2	5.25	70.31	
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>	0642)	2.720	0.06	9	6.25	69.16	
	EAK FLOV IME SHIFT AXIMUM S'						
CALTB	Area	(ha) = 1	13.68				
CAT.TB I	Area Total I	(ha)= 1 Imp(%)= 6	13.68 61.00 D	ir. Co	nn.(%)= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min	Area Total)= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min	Area Total :	IMPERVIOU	JS PER	VIOUS)= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area	Area Total : (ha) = (mm) =	IMPERVIOU 8.34 1.00	JS PER	VIOUS 5.34)= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage	Area Total : (ha) = (mm) =	IMPERVIOU 8.34 1.00	JS PER	VIOUS 5.34)= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length	Area Total : (ha) = (mm) = (%) = (m) =	IMPERVIOU 8.34 1.00 1.00 301.99	JS PER	VIOUS 5.34 5.00 2.30)= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min	Area Total : (ha) = (mm) = (%) = (m) =	IMPERVIOU 8.34 1.00 1.00 301.99	JS PER	VIOUS 5.34 5.00 2.30)= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total : (ha) = (mm) = (%) = (m) = =	IMPERVIOU 8.34 1.00 1.00 301.99 0.013	JS PER	VIOUS 5.34 5.00 2.30 0.00	(i))= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total : (ha) = (mm) = (%) = (m) = =	IMPERVIOU 8.34 1.00 1.00 301.99 0.013	JS PER	VIOUS 5.34 5.00 2.30 0.00	(i))= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total : (ha) = (mm) = (%) = (m) = =	IMPERVIOU 8.34 1.00 1.00 301.99 0.013	JS PER	VIOUS 5.34 5.00 2.30 0.00	(i))= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total : (ha) = (mm) = (%) = (m) = =	IMPERVIOU 8.34 1.00 1.00 301.99 0.013	JS PER	VIOUS 5.34 5.00 2.30 0.00	(i))= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak	Area Total : (ha) = (mm) = (%) = (m) = (min)	IMPERVIOU 8.34 1.00 1.00 301.99 0.013 33.63 15.00 16.80 15.00	US PER 4 0 3 3 (ii) 9 10	VIOUS 5.34 5.00 2.30 0.00 .250 1.91 0.00 7.80 (5.00	(i))= 53.00	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(n over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	Area Total: (ha) = (mm) = (%) = (m) = = (min) + (min) = (min) = (cms)	IMPERVIOU 8.34 1.00 1.00 301.99 0.013 33.63 15.00 16.80 15.00 0.07	JS PER 4 0 3 3 3 (ii) 9 10	VIOUS 5.34 5.00 2.30 0.00 .250 1.91 0.00 7.80 (5.00 0.01	(i) ii)	*TOTAL \$*	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(n over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	Area Total: (ha) = (mm) = (%) = (m) = = (min) + (min) = (min) = (cms)	IMPERVIOU 8.34 1.00 1.00 301.99 0.013 33.63 15.00 16.80 15.00 0.07	JS PER 4 0 3 3 3 (ii) 9 10	VIOUS 5.34 5.00 2.30 0.00 .250 1.91 0.00 7.80 (5.00 0.01	(i) ii)	*TOTALS* 0.743 (ij	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(i over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK	Area Total: (ha) = (mm) = (%) = (m) = (min) = (min) = (min) = (cms) = (cms) = (hrs) =	IMPERVIOU 8.34 1.00 1.00 301.99 0.013 33.63 15.00 16.80 0.07 0.67 5.25	4 0 3 3 (ii) 9 10	VIOUS 5.34 5.00 2.30 0.00 .250 1.91 0.00 7.80 (5.00 0.01 0.19 6.75	(i) ii)	*TOTALS* 0.743 (ii 5.25	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(i over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK	Area Total: (ha) = (mm) = (%) = (m) = (min) = (min) = (min) = (cms) = (cms) = (hrs) =	IMPERVIOU 8.34 1.00 1.00 301.99 0.013 33.63 15.00 16.80 0.07 0.67 5.25	4 0 3 3 (ii) 9 10	VIOUS 5.34 5.00 2.30 0.00 .250 1.91 0.00 7.80 (5.00 0.01 0.19 6.75	(i) ii)	*TOTALS* 0.743 (ii 5.25 59.26	
CALIB STANDHYD (0002) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(n over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	Area Total : (ha) = (mm) = (%) = (m) = (min) = (min) = (min) = (cms) = (cms) = (hrs) = (mm)	IMPERVIOU 8.34 1.00 1.00 301.99 0.013 33.63 15.00 16.80 15.00 0.07 0.67 5.25 72.10 73.10	JS PER 4 0 3 3 3 (iii) 9 10	VIOUS 5.34 5.00 2.30 0.00 .250 1.91 0.00 7.80 0.01 0.19 6.75 4.79 3.10	(i) ii)	*TOTALS* 0.743 (ii 5.25 59.26 73.10	 ii)

DATE: February 2021

CN* = 85.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

(11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAI THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0021) | Area (ha) = 6.05 |ID= 1 DT= 5.0 min | Total Imp(%) = 67.00 Dir. Conn.(%) = 66.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 4.05 2.00 1.00 Dep. Storage (mm) = 5.00 Average Slope (%)= 1.00 2.00 Length (m) = 200.83 Mannings n = 0.013 40.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		- TRANSFORME	D HYETOG	RAPH		
TIME	RAIN TI	ME RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr h	nrs mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00 3.1	67 4.39	6.250	9.50	9.33	0.73
0.167	0.00 3.2		6.333	5.12	9.42	0.73
0.250	0.00 3.3	33 12.43	6.417	5.12	9.50	0.73
0.333	0.73 3.4	12.43	6.500	5.12	9.58	0.73
0.417	0.73 3.5	12.43	6.583	5.12	9.67	0.73
0.500	0.73 3.5	83 12.43	6.667	5.12	9.75	0.73
0.583	0.73 3.6	67 12.43	6.750	5.12	9.83	0.73
0.667	0.73 3.7	750 12.43	6.833	5.12	9.92	0.73
0.750	0.73 3.8	333 12.43	6.917	5.12	10.00	0.73
0.833	0.73 3.9	12.43	7.000	5.12	10.08	0.73
0.917	0.73 4.0	000 12.43	7.083	5.12	10.17	0.73
1.000	0.73 4.0	12.43	7.167	5.12	10.25	0.73
1.083	0.73 4.1		7.250	5.12	10.33	0.73
1.167	0.73 4.2	250 12.43	7.333	2.92		0.73
1.250	0.73 4.3		7.417	2.92		0.73
1.333	0.73 4.4			2.92		0.73
1.417	0.73 4.5		7.583	2.92		0.73
1.500	0.73 4.5	33.63	7.667	2.92		0.73
1.583	0.73 4.6			2.92		0.73
1.667	0.73 4.7			2.92		0.73
1.750	0.73 4.8			2.92		0.73
1.833	0.73 4.9			2.92		0.73
1.917	0.73 5.0		8.083	2.92		0.73
2.000	0.73 5.0		8.167	2.92		0.73
2.083	•	.67 33.63		2.92		0.73
2.167	0.73 5.2			1.46		0.73
2.250	0.73 5.3		8.417	1.46		0.73
2.333	4.39 5.4		8.500	1.46		0.73
2.417	4.39 5.5		8.583	1.46		0.73
2.500	4.39 5.5		8.667	1.46		0.73
2.583	4.39 5.6		8.750	1.46		0.73
2.667	4.39 5.7		8.833	1.46		0.73
2.750	4.39 5.8		8.917	1.46		0.73
2.833	4.39 5.9		9.000	1.46		0.73
2.917	4.39 6.0		9.083	1.46		0.73
3.000	4.39 6.0		9.167	1.46	12.25	0.73
3.083	4.39 6.1	.67 9.50	9.250	1.46		

Snell's Hollow Secondary Plan Area

Max.Eff.Inten.(r	nm/hr)=	33.63		27.93			
over	(min)	5.00		20.00			
Storage Coeff.	(min) =	6.00	(ii)	17.76	(ii)		
Unit Hyd. Tpeak	(min) =	5.00		20.00			
Unit Hyd. peak	(cms) =	0.19		0.06			
						*TOTALS	r
PEAK FLOW	(cms) =	0.37		0.14		0.509	(iii)
TIME TO PEAK	(hrs) =	5.25		5.25		5.25	
RUNOFF VOLUME	(mm) =	72.10		45.72		63.13	
TOTAL RAINFALL	(mm) =	73.10		73.10		73.10	
RUNOFF COEFFICIE	ENT =	0.99		0.63		0.86	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 88.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0002):	13.68	0.743	5.25	59.26
+ ID2= 2 (0021):	6.05	0.509	5.25	63.13
=======================================				
ID = 3 (0658):	19.73	1.252	5.25	60.45

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

	OVERFLOW	IS OFF				
IN= 2> OUT= 1						
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE	
	(cms)	(ha.m.)		(cms)	(ha.m.)	
	0.0000	0.0000		0.2360	0.6393	
	0.0290	0.3310		0.3410	0.7100	
	0.0950	0.4595		0.4450	0.7485	
	0.1680	0.5720	-	0.5320	0.7925	
	AR	EA QPEA	K	TPEAK	R.V.	
	(h	a) (cms)	(hrs)	(mm)	
INFLOW : ID= 2 (00	558) 19.	730 1.	252	5.25	60.45	
OUTFLOW: ID= 1 (00	545) 19.	730 0.	341	7.33	60.28	
PEA	K FLOW R	EDUCTION [Q	out	/Qin](%)= 2	7.20	
TT 147					F 00	

PEAK FLOW REDUCTION [Qout/Qin](%) = 27.20
TIME SHIFT OF PEAK FLOW (min)=125.00
MAXIMUM STORAGE USED (ha.m.) = 0.7099

CALIB					
STANDHYD (0656)	Area	(ha) =	14.51		
ID= 1 DT=15.0 min	Total	Imp(%)=	54.00	Dir. Conn.(%) =	46.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha) =	7.8	4	6.67	
Dep. Storage	(mm) =	1.0	0	5.00	

DATE: February 2021

Average Slope	(%)=	1.00	2.30			
Length	(m) =	311.02	40.00			
Mannings n	=	0.013	0.250			
M. BSS Taller (/1	22 62	20 10			
Max.Eff.Inten.(n	um/ mr) =	33.63	30.10			
over	(min)	15.00	30.00			
Storage Coeff.	(min) =	16.80	(ii) 97.80	(ii)		
Unit Hyd. Tpeak	(min) =	15.00	105.00			
Unit Hyd. peak	(cms) =	0.07	0.01			
				T(TALS	r
PEAK FLOW	(cms) =	0.61	0.22	(702	(iii)
TIME TO PEAK	(hrs) =	5.25	6.75		5.25	
RUNOFF VOLUME	(mm) =	72.10	43.06		56.42	
TOTAL RAINFALL	(mm) =	73.10	73.10	7	73.10	
RUNOFF COEFFICIE	ENT =	0.99	0.59		0.77	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 84.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

SERVOIR(0657)		ERF:	LOW :	IS OFF				
= 2> OUT= 1 = 5.0 min	,	. וקיד	OW	STOR	AGE		OUTFLOW	STORAGE
							(cms)	
								0.2594
								0.2723
								0.2789
								0.2863
							TPEAK	
			(h	a)	(cms)		(hrs)	(mm)
NFLOW : ID= 2 (0656)		14.	510	0.7	/02	5.25	56.42
UTFLOW: ID= 1 (0657)		14.	510	0.5	519	5.42	56.22
	TIME SHI	FT (OF P	EAK FL	ON [Qc	out,	/Qin](%)= (min)= (ha.m.)=	10.00
	TIME SHI	FT (OF P	EAK FL	ON [Qc	out,	(min) =	10.00
	TIME SHI MAXIMUM	FT (OF PI ORAGI	EAK FL E US	ON [Qc OW ED	out,	(min) = (ha.m.) =	10.00 0.2723
	TIME SHI MAXIMUM	FT (OF PI ORAGI	EAK FL E US	ON [Qc OW ED	out,	(min) = (ha.m.) =	10.00 0.2723
V V I	TIME SHI MAXIMUM ====== SSSSS	STO	OF PI ORAGI	EAK FL E US =====	ON [Qc OW ED 	out,	(min) = (ha.m.) =	10.00 0.2723
V V I	TIME SHI MAXIMUM = SSSSS SS	STO	OF PIORAGI	EAK FL E US ===== A A A	ON [Qc OW ED E=====	out,	(min) = (ha.m.) =	10.00 0.2723
V V I V V I V V I	TIME SHI MAXIMUM SSSSS SS SS	STO	OF PIORAGI	EAK FL E US A A AAAAA	ON [QCOW ED ====================================	out,	(min) = (ha.m.) =	10.00 0.2723
V V I V V I V V I	TIME SHI MAXIMUM ====== SSSSS	STO	OF PIORAGI	EAK FL E US A A AAAAA	ON [QCOW ED ====================================	out,	(min) = (ha.m.) =	10.00 0.2723
V V I V V I V V I	TIME SHI MAXIMUM SSSSS SS SS	STO STO	OF PIORAGI	EAK FL E US A A A A A A A A A A A A A A A A	ON [Qc OW ED	out,	(min) = (ha.m.) =	10.00 0.2723
V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V V I V	TIME SHI MAXIMUM SSSSS SS SS SS SS	U U U U U U U	OF PIORAGI	EAK FL E US A A A AAAAA A A	ON [Qc OW ED L L L L L L L L L L	out,	(min) = (ha.m.) =	10.00 0.2723
V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V V I V	TIME SHI MAXIMUM SSSSS SS SS SS SS SS SS SS STTTTT	TT (ST)	OF PIORAGI	EAK FL E US A A A A A A A A A A A A A A A A A A A	ON [Qcook of the c	L M	(min) = (ha.m.) =	10.00 0.2723 v 6.1.2003)
V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I V V V I V	TIME SHI MAXIMUM SSSSS SS SS SS SS SS SS SS STTTTT	TT (ST)	OF PIORAGI	EAK FL E US A A A A A A A A A A A A A A A A A A A	ON [Qcook of the c	L M	(min) = (ha.m.) =	10.00 0.2723 v 6.1.2003)

All rights reserved.

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area

***** DETAILED OUTPUT ****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\88947e14-a655-438e-8b03-2f4b16a6137e\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\88947e14-a655-438e-8b03-2f4b16a6137e\scen DATE: 02-09-2021 TIME: 01:20:05 USER: COMMENTS: ** SIMULATION : 17. AES 12hr 50yr READ STORM | Filename: C:\Users\sfanous\AppD ata\Local\Temp\ 8766663e-6d3f-4db9-a962-c49127701f86\b7dba7b0 | Ptotal= 80.82 mm | Comments: 50yr/12hr TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.25 0.00 | 3.50 13.74 | 6.75 5.66 | 10.00 0.81 | 3.75 | 13.74 | 7.00 0.50 5.66 | 10.25 0.81 0.81 | 4.00 | 13.74 | 7.25 5.66 | 10.50 0.75 0.81 1.00 0.81 | 4.25 | 13.74 | 7.50 3.23 | 10.75 1.25 0.81 | 4.50 37.17 | 7.75 3.23 | 11.00 1.50 0.81 | 4.75 37.17 | 8.00 3.23 | 11.25 0.81 1.75 0.81 | 5.00 37.17 | 8.25 2.00 0.81 | 5.25 37.17 | 8.50 2.50 4.85 | 5.75 10.50 | 9.00 1.62 | 12.25 0.81 2.75 4.85 | 6.00 10.50 | 9.25 1.62 | 3.00 4.85 | 6.25 10.50 | 9.50 0.81 | 3.25 4.85 | 6.50 5.66 | 9.75 0.81 | | STANDHYD (0012)| Area (ha) = 2.72 |ID= 1 DT= 5.0 min | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00 IMPERVIOUS PERVIOUS (i) 0.27 (ha) =2.45 Surface Area Dep. Storage (mm) =1.00 5.00 Average Slope (%)= 1.00 2.00 Length 134.66 40.00

DATE: February 2021

Mannings n 0.013

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME	DATM			ED HYETOGRA			RAIN
				TIME			
0.083	0 00	1 3 167	4 85	1 6 250	10 50 I	9 33	0.81
0.167	0.00	1 3 250	4 85	6.250 6.333 6.417	5 66 1	9 42	0.81
0.250	0.00	1 3.333	13.74	6.417	5.66	9.50	
0.333	0.81	3.417	13.74	6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583	5.66	9.58	0.81
0.417	0.81	3.500	13.74	6.583	5.66	9.67	0.81
0.500	0.81	3.583	13.74	6.667	5.66	9.75	0.81
0.583	0.81	3.667	13.74	6.750	5.66	9.83	0.81
0.667	0.81	3.750	13.74	6.833	5.66	9.92	0.81
0.750	0.81	3.833	13.74	6.917	5.66	10.00	0.81
0.833	0.81	3.917	13.74	7.000	5.66	10.08	0.81
0.917	0.81	4.000	13.74	7.083	5.66	10.17	0.81
1.000	0.81	4.083	13.74	7.167	5.66	10.25	0.81
1.083	0.81	4.167	13.74	7.250	5.66	10.33	0.81
1.167	0.81	4.250	13.74	7.333	3.23	10.42	0.81
1.250	0.81	4.333	37.17	7.417	3.23	10.50	0.81
1.333	0.81	4.417	37.17	7.500	3.23	10.58	0.81
1.417	0.81	4.500	37.17	7.583	3.23	10.67	0.81
1.500	0.81	1 4.583	37.17	7.583 7.667 7.750	3.23	10.58 10.67 10.75 10.83	0.81
1.583	0.81	4.66/	37.17	7.750	3.23	10.83	0.81
1.667 1.750	0.81	1 4.750	37.17	7.833 7.917 8.000	3.23	10.83 10.92 11.00 11.08	0.81
1.833	0.01	1 4.033	37.17	1 9 000	3 23 1	11.00	0.81
1.917	0.01	1 5 000	37.17	1 8 083	3 23 1	11.00	0.81
2.000	0.01	1 5 083	37.17	8.083 8.167 8.250	3 23 1	11.17 11.25	0.81
2.083	0.01	1 5 167	37 17	1 8 250	3 23 1	11.33	0.81
2.167	0.81	1 5.250	37.17	1 8.333	1.62		0.81
2.250	0.81	1 5.333	10.50	8.333 8.417 8.500 8.583 8.667 8.750	1.62	11.42 11.50	0.81
2.333	4.85	5.417	10.50	8.500	1.62	11.58	0.81
2.417	4.85	5.500	10.50	8.583	1.62	11.67	0.81
2.500	4.85	5.583	10.50	8.667	1.62	11.67 11.75	0.81
2.583	4.85	5.667	10.50	8.750	1.62	11.83	0.81
2.667	4.85	5.750	10.50	8.833	1.62	11.92 12.00 12.08	0.81
2.750	4.85	5.833	10.50	8.917	1.62	12.00	0.81
2.833	4.85	5.917	10.50	8.833 8.917 9.000	1.62	12.08	0.81
2.917	4.85	6.000	10.50	9.083	1.62	12.17	0.81
3.000	4.85	6.083	10.50	9.083 9.167 9.250	1.62	12.25	0.81
3.083	4.85	6.167	10.50	9.250	1.62		
Max.Eff.Inten.(m				34.64			
	(min)	5.00	1225	10.00			
Storage Coeff.		4.54	(11)	8.89 (ii)			
Jnit Hyd. Tpeak Jnit Hyd. peak	(min) =	5.00 0.23		10.00			
лит нуа. реак	(CMS)=	0.23		0.12	*TOT	ALS*	
PEAK FLOW	(cms) =	0.25		0.03		279 (iii)	
TIME TO PEAK	(hrs) =	5.25		5.25		.25	
RUNOFF VOLUME	(mm) =	79.82		61.69	78	.01	
TOTAL RAINFALL	(mm) =	80.82		80.82		.82	
RUNOFF COEFFICIE	NT =	0.99		0.76	0	.97	
WARNING: STORAG	E COEFF.	IS SMALLE	R THAN	TIME STEP!			

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

Snell's Hollow Secondary Plan Area

 ${\rm CN^{\star}}$ = 93.6 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0642) IN= 2> OUT= 1		LOW IS OFF				
TN= 2> OUT= 1 DT= 5.0 min	I OUTFLO	OW STORAG	E I	OUTFLOW	STORAGE	
	- (cms)	(ha.m.)	(cms)	(ha.m.)	
	0.000	0.000	0	0.0510	0.1120	
	0.005	0.061	.7	0.0730	0.1266	
	0.020	0.082	13 1	0.0960	0.1376	
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>		AREA (PEAK	TPEAK	R.V.	
		(ha)	cms)	(hrs)	(mm)	
INFLOW : ID= 2 (0012)	2.720	0.279	5.25	78.01 76.85	
OUTFLOW: ID= 1 (0642)	2.720	0.088	5.50	/6.85	
	PEAK FLOW	REDUCTION	[Qout	/Qin](%)=	31.56	
	TIME SHIFT (F PEAK FLOW	I	(min) =	15.00	
	MAXIMUM STO	RAGE USEI)	(ha.m.) =	0.1338	
	_					
CALIB		,, , , , , , , , , , , , , , , , , , , ,				
STANDHYD (0002) ID= 1 DT=15.0 min	Area	(ha) = 13.6	10 2:	r Conn /º) = E2 00	
I DT=15.0 min		ıħ(≈)= ρΙ·(10 D1:	r. COHH.(%	,- 53.00	
	-	MPERVIOUS	PERV:	IOUS (i)		
Surface Area	(ha)=	8.34	5			
Dep. Storage	(mm) =	1.00	5	.00		
Surface Area Dep. Storage Average Slope Length Mannings n	(%)=	1.00	2	.30		
Length Mannings r	(m) = =	301.99 0.013	40	.00		
Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	(mm/hr) =	37.17	36	.35		
ove	r (min)	15.00	30	.00		
Storage Coeff.	(min) =	16.80 (11	.) 97	.80 (11)		
Unit Hyd. Tpea	(CMS) =	0.07	102	.00		
					TOTALS	
PEAK FLOW	(cms) =	0.74	0	.22	0.828 (iii)	
TIME TO PEAK	(hrs) =	5.25	6	.50	5.25	
RUNOFF VOLUME	(mm) =	79.82	51	.63		
TOTAL RAINFALL	(mm) =	80.82	80	.82		
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(cms) = (hrs) = (mm) = (mm) = IENT =	0.74 5.25 79.82 80.82 0.99	0 6 51 80 0	.22 .50 .63 .82		
(i) CN PROCE CN* =	DURE SELECTE 85.0 Ia					
(ii) TIME STE						
THAN THE	STORAGE COR	EFFICIENT.				
(iii) PEAK FLO	W DOES NOT 1	NCLUDE BASE	FLOW I	F ANY.		
	 -					
CALIB	I					
STANDHYD (0021)		(1)	-			

DATE, Est 2021

				DATE: I	Februai	ry 2021	
1 DT= 5.0 min	Total 1	Imp(%)= 6	7.00	Dir. Conn.	(%) = 6	6.00	
		IMPERVIOU	IS PE	ERVIOUS (i)			
Surface Area	(ha)=	4 05		2.00			
Dep. Storage	(mm) =	1.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m) =	200.83		40 00			
Dep. Storage Average Slope Length Mannings n	=	0.013		0.250			
NOTE: RAINE	'ALL WAS '	TRANSFORME	D TO	5.0 MIN. 7	TIME STE	P.	
		TRA	NSFORME	ED HYETOGR <i>I</i>	APH		
TIME	RAIN	I TIME	RATN	I' TIME	RATN	I TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	l hrs	mm/hı
0.083	0.00	i 3.167	4.85	1 6.250	10.50 L	9.33	0.81
0.167	0.00	1 3.250	4.85	hrs 6.250 6.333 6.417 6.500	5.66	9.42	0.81
0.250	0.00	1 3.333	13.74	1 6.417	5.66	9.50	0.81
U 333	0.00	1 3 417	13 74	1 6 500	5 66 1	9 58	0 81
0.333	0.01	1 3 500	13 74	1 6 583	5 66 1	9 67	0 81
0.417	0.01	1 3 583	13 74	1 6 667	5 66 1	9 75	0.01
0.500 0.583	0.01	1 3 667	13 74	6.583 6.667 6.750 6.833 6.917	5 66 1	9 83	0.01
0.505	0.01	1 3 750	13 74	1 6 833	5 66 1	9 92	0.01
0.007	0.01	1 3 633	13 7/	1 6 917	5 66 1	10 00	0.01
0.730	0.01	1 3 917	13.74	7.000 7.083 7.167 7.250 7.333	5 66 1	10.00	0.01
0.033	0.01	1 4 000	13.74	1 7 083	5 66 1	10.00	0.01
1 000	0.01	1 4 083	13.74	1 7 167	5 66 1	10.17	0.01
1 083	0.01	1 4 167	13.74	1 7 250	5 66 1	10.23	0.01
1 167	0.01	1 4 250	13.74	1 7 333	3 23 1	10.33	0.01
1 250	0.01	1 4 333	37 17	1 7 417	3 23 1	10.42	0.81
1 223	0.01	1 4.333	37.17	7.417 7.500 7.583 7.667 7.750	3 23 1	10.50	0.81
1 /17	0.01	1 4 500	37.17	1 7 503	3 23 1	10.50	0.81
1 500	0.01	1 4.500	27 17	1 7 667	2 22 1	10.07	
1 500	0.01	1 4 667	37.17	1 7 750	3 23 1	10.75	0.81
1.505	0.01	1 4 750	37.17	1 7 933	3 23 1	10.03	0.01
1.007	0.01	1 4 0 2 2	27 17	7.033	2 22 1	10.92	0.01
1 033	0.01	1 4 017	37.17	1 9 000	3 23 1	11.00	0.01
1 017	0.01	1 5 000	37.17	7.833 7.917 8.000 8.083 8.167	3 23 1	11.00	0.01
2 000	0.01	1 5 000	37.17	1 9 167	3 23 1	11 25	0.01
2.000	0.01	1 5 167	37 17	1 8 250	3 23 1	11 33	0.81
2.003	0.01	1 5 250	37 17	1 8 333	1 62 1	11 //2	0.81
2 250	0.01	1 5 333	10 50	1 8 417	1 62 1	11 50	0.81
2 223	4 85	1 5 417	10.50	8.250 8.333 8.417 8.500 8.583	1 62 1	11 58	0.81
2.333	1 00	1 5 500	10.50	1 8 583	1 62 1	11 67	0.81
2.417	1 00	1 5 583	10.50	1 8 667	1 62 1	11 75	
2.300	1 25	1 5 667	10.50	8.667 8.750 8.833 8.917	1 62 1	11 23	0.81
2.303	, 4.0J	1 5 750	10.50	1 8 833	1 62 1	11 92	0.81
2.007	4.00	1 5 833	10.50	1 0.033	1 62 1	12 00	0.81
2./30	4.00	1 5 017	10.50	1 0 000	1 62 1	12.00	
2.033	4.83	1 2.31/	10.50	1 9.000	1 60 1	12.00	0.81
2.91/	4.85	1 6 000	10.50	1 9.083	1.62	12.1/	0.81
3.000	4.85	6.083	10.50	9.083 9.167 9.250	1.62	12.23	0.81
Max.Eff.Inten.(m				31.76			
nun.Ell.(II	(min)	5 00		20 00			
over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) =	5.00	(ii)	16 93 / 111			
Unit Hyd Treak	(min) =	5.77	(± ± /	20.00 (11)			
Unit Hud nook	(cme) =	0.00		0.06			
оптс пуш. реак	(CIUS) -	0.20		0.00	*TOT	710*	
PEAK FLOW	(cms) =	0.41		0 16			`
FEAK FLUW	(CINS)=	0.41		Ο.Ιο	υ.	570 (iii)

5.25

(hrs) =

5.25

5.25

TIME TO PEAK

OUTFLOW: ID= 1 (0645)

Snell's Hollow Secondary Plan Area

RUNOFF VOLUME	(mm) =	79.82	52.66	70.58
TOTAL RAINFALL	(mm) =	80.82	80.82	80.82
RUNOFF COEFFICT	ENT =	0.99	0.65	0.87

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 88.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

_													
1	ADD	H.	ZD	(0	65	8)						
	1	+	2	=	3		1	AREA		QPEAK	TPEAK		R.V.
-								(ha)		(cms)	(hrs)		(mm)
			ID:	1=	1	(0002):	13.68		0.828	5.25		66.56
		+	ID:	2=	2	(0021):	6.05		0.570	5.25		70.58
			==:	===	==	==	======	 	==		 	-==	
			ID	=	3	(0658):	19.73		1.397	5.25		67.80

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0645) IN= 2> OUT= 1	OVERFLOW	IS OFF			
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE
	(cms)	(ha.m.)	- 1	(cms)	(ha.m.)
	0.0000	0.0000		0.2360	0.6393
	0.0290	0.3310		0.3410	0.7100
	0.0950	0.4595		0.4450	0.7485
	0.1680	0.5720	- 1	0.5320	0.7925
	AR	EA QPEA	λK	TPEAK	R.V.
	(h	a) (cms	3)	(hrs)	(mm)
INFLOW : ID= 2 (06	58) 19.	730 1.	.397	5.25	67.80

19.730

PEAK FLOW REDUCTION [Qout/Qin](%) = 31.81 TIME SHIFT OF PEAK FLOW (min) = 90.00 MAXIMUM STORAGE USED (ha.m.) = 0.7484

0.445

6.75

67.63

	MAXIMOM	SIONAGE	OSED	(110	a.m.) – 0.	/404	
LCALTR							
CALIB	1 7	(1)-	1 / 51				
STANDHYD (0656							
ID= 1 DT=15.0 min	Total	Imp(%) =	54.00	Dir. 0	Conn.(%)=	46.00	
		IMPERVI	OUS	PERVIOUS	S (i)		
Surface Area	(ha) =	7.8	4	6.67			
Dep. Storage	(mm) =	1.0	0	5.00			
Average Slope	(%)=	1.0	0	2.30			
Length		311.0		40.00			
Mannings n		0.01	3	0.250			
Max.Eff.Inten	(mm/hr)=	37 1	7	34.40			
	er (min)						
Storage Coeff	\cdot (min) =	16.8	0 (ii)	97.80	(ii)		
Unit Hyd. Tpe	ak (min)=	15.0	0	105.00			
Unit Hyd. pea	k (cms)=	0.0	7	0.01			

DATE: February 2021

				TOTALS
PEAK FLOW	(cms) =	0.68	0.25	0.783 (iii)
TIME TO PEAK	(hrs) =	5.25	6.75	5.25
RUNOFF VOLUME	(mm) =	79.82	49.77	63.59
TOTAL RAINFALL	(mm) =	80.82	80.82	80.82
RUNOFF COEFFICI	ENT =	0.99	0.62	0.79

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 - $CN^* = 84.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

	 -				
RESERVOIR(0657) IN= 2> OUT= 1		IS OFF			
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE
	0.0000 0.0190	(ha.m.) 0.0000 0.2147 0.2350	İ	0.3640 0.5250	0.2594 0.2723
	0.2590	0.2500	İ	0.8190	0.2863
		EA QPEA			
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>	0656) 14.	510 0.	783	5.25	63.59
,	,	EDUCTION [Q	out,	/Qin](%)= 8 (min)=	5.92 5.00

V V V	V V	I I	SSSSS SS SS	U U	U U	A	A A AAA	L L L				(v	6.1.2003)
V	V	I	SS	U	U	A	A	L					
V	V	I	SSSSS	UUU	JUU	A	A	LL	LLL				
00	0	TTTTT	TTTTT	Н	Н	Y	Y	М	М	00	00	TM	
0	0	T	T	H	Η	Y	Y	MM	MM	0	0		
0	0	T	T	H	Η		Y	M	M	0	0		
00	0	T	T	H	Н		Y	Μ	M	00	00		

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved.

***** DETAILED OUTPUT *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\49eef634-74ce-475f-a8c9-71fc17a18461\scen $\label{local_Civica_VH5} Summary filename: C:\Users\sfanous\appData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-filename.$ $a930-3446e1ae5bfa\49eef634-74ce-475f-a8c9-71fc17a18461\scen$

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area

Snell's Hollow Secondary Plan Area	DATE: February 2021
DATE: 02-09-2021 TIME: 01:20:05	0.167
	0.417
USER:	0.500
	0.667 0.89 3.750 15.05 6.833 6.20 9.92 0.89
	0.750 0.89 3.833 15.05 6.917 6.20 10.00 0.89
COMMENTS:	0.833
	0.917
	1.083 0.89 4.167 15.05 7.250 6.20 10.33 0.89
	1.167
********	1.250 0.89 4.333 40.71 7.417 3.54 10.50 0.89
** SIMULATION : 18. AES 12hr 100yr	1.333
	1.500 0.89 4.583 40.71 7.667 3.54 10.75 0.89
	1.583 0.89 4.667 40.71 7.750 3.54 10.83 0.89
	1.667 0.89 4.750 40.71 7.833 3.54 10.92 0.89
READ STORM Filename: C:\Users\sfanous\AppD ata\Local\Temp\	1.750
8766663e-6d3f-4db9-a962-c49127701f86\eeb5780e	1.833 0.89 4.917 40.71 8.000 3.34 11.08 0.89
Ptotal= 88.54 mm Comments: 100yr/12hr	2.000 0.89 5.083 40.71 8.167 3.54 11.25 0.89
	2.083 0.89 5.167 40.71 8.250 3.54 11.33 0.89
TIME RAIN TIME RAIN TIME RAIN TIME RAIN	2.167 0.89 5.250 40.71 8.333 1.77 11.42 0.89
hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr 0.25	2.250
0.50 0.89 3.75 15.05 7.00 6.20 10.25 0.89	2.417 5.31 5.500 11.51 8.583 1.77 11.67 0.89
0.75	2.500 5.31 5.583 11.51 8.667 1.77 11.75 0.89
1.00 0.89 4.25 15.05 7.50 3.54 10.75 0.89	2.583 5.31 5.667 11.51 8.750 1.77 11.83 0.89
1.25	2.667 5.31 5.750 11.51 8.833 1.77 11.92 0.89 2.750 5.31 5.833 11.51 8.917 1.77 12.00 0.89
1.50	2.750 5.31 5.833 11.51 8.917 1.77 12.00 0.89 2.833 5.31 5.917 11.51 9.000 1.77 12.08 0.89
2.00 0.89 5.25 40.71 8.50 1.77 11.75 0.89	2.917 5.31 6.000 11.51 9.083 1.77 12.17 0.89
2.25 0.89 5.50 11.51 8.75 1.77 12.00 0.89	3.000 5.31 6.083 11.51 9.167 1.77 12.25 0.89
2.50 5.31 5.75 11.51 9.00 1.77 12.25 0.89	3.083 5.31 6.167 11.51 9.250 1.77
2.75	Max.Eff.Inten.(mm/hr) = 40.71 38.32
3.25 5.31 6.50 6.20 9.75 0.89	over (min) 5.00 10.00
	Storage Coeff. (min) = 4.38 (ii) 8.57 (ii)
	Unit Hyd. Tpeak (min) = 5.00 10.00
	Unit Hyd. peak (cms) = 0.23 0.12 *TOTALS*
CALIB	PEAK FLOW (cms)= 0.28 0.03 0.305 (iii)
STANDHYD (0012) Area (ha) = 2.72	TIME TO PEAK (hrs)= 5.17 5.25 5.25
ID= 1 DT= 5.0 min Total Imp($%$)= 90.00 Dir. Conn.($%$)= 90.00	RUNOFF VOLUME (mm) = 87.54 69.16 85.70
IMPERVIOUS PERVIOUS (i)	TOTAL RAINFALL (mm) = 88.54 88.54 88.54 RUNOFF COEFFICIENT = 0.99 0.78 0.97
Surface Area (ha) = 2.45 0.27	RUNOFF COEFFICIENT = 0.99 0.78 0.97
Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00	***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
Length $(m) = 134.66 40.00$	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
Mannings n = 0.013 0.250	CN* = 93.6 Ia = Dep. Storage (Above)
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
TRANSFORMED HYETOGRAPH	
TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	RESERVOIR(0642) OVERFLOW IS OFF
0.083 0.00 3.167 5.31 6.250 11.51 9.33 0.89	IN= 2> OUT= 1

Snell's Hollow Secondary Plan Area

Silett S Hotto II See	-			
DT= 5.0 min	OUTFL	OW STORAGE	OUTFLOW	STORAGE
	· (cms	(ha.m.)	(cms)	(ha.m.)
	0.00	0.0000	0.0510	0.1120
	0.00	50 0.0617	0.0730	0.1266
	0.02	0.0820	(cms) 0.0510 0.0730 0.0960 0.1150	0.1376 0.1490
	0.03	60 0.1003	0.1150	0.1490
		3DE3 OF	DDDAY	D 11
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>		AREA QE	PEAR TPEAR	R.V.
TNELOW - TD- 2 /	0010)	(114) (0	0 205 (1112)	(mm)
OUTFION: ID- 2 (0612)	2.720	0.303 3.2	5 85.70 0 84.55
OUITLOW: ID- I (0042)	2.720	0.107	04.55
F	PEAK FLOW	REDUCTION	[Qout/Qin](%)=	34.87
4	MUMIXA	ORAGE USED	(min) = (ha.m.) =	0.1440
	-			
CALIB				
STANDHYD (0002) ID= 1 DT=15.0 min	Area	(ha) = 13.68	3	
ID= 1 DT=15.0 min		mp(%) = 61.00	Dir. Conn.(*)= 53.00
		TMDEDVIOUS	PERVIOUS (i)	
Surface Area	(ha) =	0 31	2 3 V	
Surface Area Dep. Storage Average Slope Length Mannings n	(mm) =	1 00	5.00	
Average Slope	(%)=	1.00	2 30	
Length	(m) =	301 99	40 00	
Mannings n	=	0 013	0 250	
Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr)=	40.71	40.80	
over	(min)	15.00	30.00	
Storage Coeff.	(min) =	16.80 (ii)	97.80 (ii)	
Unit Hyd. Tpeak	(min) =	15.00	105.00	
Unit Hyd. peak	(cms) =	0.07	0.01	
				TOTALS
PEAK FLOW	(cms) =	0.81	0.25	0.913 (iii)
TIME TO PEAK	(hrs) =	5.25	6.50	5.25
RUNOFF VOLUME	(mm) =	87.54	58.57	73.92 88.54
TOTAL RAINFALL	(mm) =	88.54	88.54	88.54
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	ENT =	0.99	0.66	0.83
(i) ON PROCES	NIDE CELECE	IED EOD DEDIGE	NIG TOGGEG.	
		ED FOR PERVIO		
(ii) TIME STEE				
		EFFICIENT.	L OK EQUAL	
(iii) PEAK FLOW			TLOW IF ANY	
(111) 11111 11101	DOLD NOT	INCECED BROBE	1000 11 11011.	
CALIB				
STANDHYD (0021)	Area	(ha) = 6.05	5	
CALIB	Total I	mp(%) = 67.00	Dir. Conn.(§) = 66.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha)=	4.05	2.00	
Dep. Storage	(mm) =	1.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m) =	200.83	40.00	
Surface Area Dep. Storage Average Slope Length Mannings n	=	0.013	0.250	

DATE: February 2021

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	mp.	NA HODIN		D.,		
mine Da	IN TIME		ED HYETOGRA			RAIN
hre mm/	hr hrs	mm/hr	l' hre	mm/hr	l hre	mm/hr
0.083 0.	00 3.167	5.31	1 6.250	11.51	9.33	0.89
0.167 0.	00 3.250	5.31	6.333	6.20	9.42	0.89
0.250 0.	00 3.333	15.05	6.417	6.20	9.50	0.89
hrs mm/ 0.083 0. 0.167 0. 0.250 0. 0.333 0. 0.417 0. 0.500 0. 0.583 0. 0.667 0. 0.750 0. 0.833 0. 0.917 0. 1.000 0. 1.083 0. 1.167 0. 1.250 0. 1.333 0. 1.417 0.	89 3.417	15.05	6.500	6.20	9.58	0.89
0.417 0.	89 3.500	15.05	6.583	6.20	9.67	0.89
0.500 0.	89 3.583	15.05	6.667	6.20	9.75	0.89
0.583 0.	89 3.667	15.05	6.750	6.20	9.83	0.89
0.667 0.	89 3.750	15.05	6.833	6.20	9.92	0.89
0.750 0.	89 3.833	15.05	6.917	6.20	10.00	0.89
0.833 0.	89 3.917	15.05	7.000	6.20	10.08	0.89
1.000	89 4.000	15.05	7.083	6.20	10.17	0.89
1.000 0.	09 4.003	15.05	1 7 250	6 20	10.23	0.09
1.003 0.	89 4.107	15.05	1 7 333	3 54	10.33	0.09
1 250 0	89 4.230	40 71	1 7 417	3 54	10.42	0.09
1.333 0.	89 4.417	40.71	1 7.500	3.54	10.58	0.89
1.417 0.	89 4.500	40.71	1 7.583	3.54	10.67	0.89
1.500 0.	89 4.583	40.71	7.667	3.54	10.75	0.89
1.583 0.	89 4.667	40.71	7.750	3.54	10.83	0.89
1.667 0.	89 4.750	40.71	7.833	3.54	10.92	0.89
1.750 0.	89 4.833	40.71	7.917	3.54	11.00	0.89
1.833 0.	89 4.917	40.71	8.000	3.54	11.08	0.89
1.917 0.	89 5.000	40.71	8.083	3.54	11.17	0.89
2.000 0.	89 5.083	40.71	8.167	3.54	11.25	0.89
2.083 0.	89 5.167	40.71	8.250	3.54	11.33	0.89
2.167 0.	89 5.250	40.71	8.333	1.77	11.42	0.89
2.250 0.	89 5.333	11.51	8.417	1.//	11.50	0.89
2.333 5.	31 5.41/	11.51	1 0 503	1 77	11.58	0.89
2.417 5.	31 5.500	11.51	1 8 667	1 77	11.07	0.09
2 583 5	31 5.565	11 51	1 8 750	1 77	11.73	0.05
2.667 5.	31 5.750	11.51	1 8.833	1.77	11.92	0.89
2.750 5.	31 5.833	11.51	8.917	1.77	12.00	0.89
2.833 5.	31 5.917	11.51	9.000	1.77	12.08	0.89
2.917 5.	31 6.000	11.51	9.083	1.77	12.17	0.89
3.000 5.	31 6.083	11.51	9.167	1.77	12.25	0.89
1.417 0. 1.500 0. 1.583 0. 1.667 0. 1.750 0. 1.833 0. 1.917 0. 2.000 0. 2.083 0. 2.167 0. 2.250 0. 2.333 5. 2.417 5. 2.500 5. 2.583 5. 2.667 5. 2.750 5. 2.833 5. 2.917 5. 3.000 5. 3.083 5.	31 6.167	11.51	9.250	1.77		
Max.Eff.Inten.(mm/hr)=	40./1		35.59			
over (min)	5.00		20.00			
Storage Coeff. (min) =	5.56	(ii)	16.23 (ii)			
Unit Hyd. Tpeak (min) =	5.00		20.00			
over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	0.20		0.06			
DELY FLOW	0.45		0 10		TALS*	
PEAK FLOW (cms) = TIME TO PEAK (hrs) =	0.45 5.25		0.18 5.25		.630 (iii)	
RUNOFF VOLUME (mm) =	87.54		5.25		5.25 3.07	
	88.54				3.54	
TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =	0.99		88.54 0.67).88	
				`	· · · ·	
(i) CN PROCEDURE SEL	ECAEU EVD D	PUTATE	TOSSES.			
$CN^* = 88.0$						
(ii) TIME STEP (DT) S						
THAN THE STORAGE	COEFFICIENT	Γ.				

Snell's Hollow Secondary Plan Area

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 	 	 _

ADD H	YD (065	8)				
1 +	2 = 3	1	AREA	QPEAK	TPEAK	R.V.
			(ha)	(cms)	(hrs)	(mm)
	ID1 = 1 (0002):	13.68	0.913	5.25	73.92
+	ID2= 2 (0021):	6.05	0.630	5.25	78.07
	=======					
	ID = 3 (0658):	19.73	1.543	5.25	75.20

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0645) IN= 2> OUT= 1	OVERFLOW	I IS OFF			
DT= 5.0 min	OUTFLOW	STORAGE	- 1	OUTFLOW	STORAGE
	(cms)	(ha.m.)	- 1	(cms)	(ha.m.)
	0.0000	0.0000	- 1	0.2360	0.6393
	0.0290	0.3310	1	0.3410	0.7100
	0.0950	0.4595	- 1	0.4450	0.7485
	0.1680	0.5720	- 1	0.5320	0.7925
	P	REA QPE	EAK	TPEAK	R.V.
	((cm	ns)	(hrs)	(mm)
INFLOW : ID= 2 (0658) 19	.730 1	.543	5.25	75.20

OUTFLOW: ID= 1 (0645) 19.730 0.528 6.58 75.02

PEAK FLOW REDUCTION [Qout/Qin](%) = 34.22 TIME SHIFT OF PEAK FLOW (min) = 80.00 MAXIMUM STORAGE USED (ha.m.) = 0.7905

.....

CALIB	I				
STANDHYD (065	6) Area	(ha) = 14	.51		
ID= 1 DT=15.0 mi	n Total	Imp(%) = 54	.00 Dir. Co	onn.(%) = 46.00)
		IMPERVIOUS	PERVIOUS	(i)	
Surface Area	(ha)=	7.84	6.67		
Dep. Storage	(mm) =	1.00	5.00		
Average Slop	e (%)=	1.00	2.30		
Length	(m) =	311.02	40.00		
Mannings n	=	0.013	0.250		
_					
Max.Eff.Inte	n.(mm/hr)=	40.71	38.72		
0	ver (min)	15.00	30.00		
Storage Coef	f. (min) =	16.80 (ii) 97.80	(ii)	
Unit Hyd. Tp	eak (min)=	15.00	105.00		
Unit Hyd. pe	ak (cms)=	0.07	0.01		
				TOTALS	
PEAK FLOW	(cms) =	0.74	0.29	0.866	(iii)
TIME TO PEAK	(hrs) =	5.25	6.50	5.25	
RUNOFF VOLUM	E (mm) =	87.54	56.60	70.83	
				88.54	
RUNOFF COEFF	, ,				
1.11.011 00211		3.33	0.01	0.00	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

DATE: February 2021

 $CN^* = 84.0$ Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

DEGERATOR (0657)		DELOG I					
RESERVOIR(0657) IN= 2> OUT= 1		RF.TOM]	IS OFF				
DT= 5.0 min		FLOW			OUTFLOW		
		ms) 0000	(ha.m		(cms) 0.3640	(ha.m.) 0.2594	
		0190	0.00		0.5250	0.2723	
		1460			0.6840	0.2789	
	0.2	2590	0.25	00	0.8190	0.2863	
		ARI	EΑ	QPEAK	TPEAK	R.V.	
		(ha			(hrs)	(mm)	
INFLOW: ID= 2 (14.5	510	0.866	5.25		
OUTFLOW: ID= 1 (0657)	14.3	010	0.783	5.33	70.63	
					/Qin](%)= 9		
	'IME SHIF'	T OF PE	EAK FLO	W	(min) =		
	===						
V V I V V I V V I V V I	SSSSS TSS TSS TSS TSS TSS TSS TSS TSS T	u u	A A A AAAAA A A	L L L L			
V V I V V I	SSSSS TSS TSS TSS TSS TSS TSS TSS TSS T	 ====== U U U U	A A A AAAAA A A	L L L			
V V I V V I V V I V V I V V I V V I VV I OOO TTTTT	SSSSS T SS T SS T SS T SS T TTTTT I		A A A AAAAA A A A A	L L L L L LLLLL	(v	7 6.1.2003)	
V V I V V I V V I V V I V V I V V I VV I OOO TTTTT O O T	SSSSS TO SS TO SSSSS TO SS TO SSS TO SSS TO		A A A AAAAA A A A A Y Y	L L L L LLLLL M M MM MM	(1) (000 Th	7 6.1.2003)	
V V I V V I V V I V V I V V I V V I V V I V V I V V I V V I	SSSSS TSSS TSS TSS TSS TSSSS TTTTTT IS		A A A AAAAA A A A A Y Y Y Y	L L L L L LLLLL	(v	7 6.1.2003)	
V V I V V I V V I V V I V V I V V I OOO TTTTT O O T OOO T	SSSSS TSSSS TSSSSS TTTTTT IF	U U U U U U U U U U UUUUUU H H H H H H H	A A A AAAAA A A A A A Y Y Y Y Y Y Y City W	L L L L LLLLL M M MM MM M M M M M M	000 Th	7 6.1.2003)	
V V I V V I V V I V V I V V I V V I OOO TTTTT O O T OOO T veloped and Distri	SSSSS TSSSS TTTTT IF	U U U U U U U U U U UUUUUU H H H H H H H	A A A AAAAA A A A A A Y Y Y Y Y Y Y City W	L L L L LLLLL M M MM MM M M M M M M	000 Th	7 6.1.2003)	
V V I V V I V V I V V I V V I V V I OOO TTTTT O O T OOO T veloped and Distri	SSSSS TSSSS TTTTT IF	U U U U U U U U U U UUUUUU H H H H H H H	A A A AAAAA A A A A A Y Y Y Y Y Y Y City W	L L L L LLLLL M M MM MM M M M M M M	000 Th	7 6.1.2003)	
V V I V V I V V I V V I V V I V V I V T OOO TTTTT O O T OOO T veloped and Distripyright 2007 - 202 l rights reserved.	SSSSS TO SS TO SS TO SSS TO SSS TO S	U U U U U U U U U U UUUUU H H H H H H H	A AAAAA A A A A Y Y Y Y Y City W	L L L LLLLLL M M MM MM M M M M M M	000 Th	7 6.1.2003)	
V V I V V I V V I V V I V V I VV I OOO TTTTT O O T OOO T veloped and Distri pyright 2007 - 202 I rights reserved.	SSSSS TO SS TO SS TO SSS TO SSS TO S	U U U U U U U U U U UUUUU H H H H H H H	A AAAAA A A A A Y Y Y Y Y City W	L L L LLLLLL M M MM MM M M M M M M	000 Th	7 6.1.2003)	
V V I V V I V V I VV I VV I VV I OOO TTTTT O O T OOO T veloped and Distri pyright 2007 - 202 1 rights reserved.	SSSSS TO SS TO SS TO SS TO SSSS TO SSSS TO TTTTT IN TO SECOND TO S	U U U U U U UUUUUU H H H H H CITY Wa	A A A A AAAAA A A A Y Y Y Y Y City W ater In	L L L L L LLLLL M MM MM M M M M M M M M	000 Th 0 0 0 0 00 000 C	7 6.1.2003)	

DATE: 02-09-2021 TIME: 01:20:05

USER:

COMMENTS:

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area

	Unit Hyd. peak (cms) = 0.23 0.12
	TOTALS
	PEAK FLOW (cms) = 0.26 0.01 0.269 (iii)
	TIME TO PEAK (hrs)= 1.50 1.58 1.50
************	RUNOFF VOLUME (mm) = 24.02 10.72 22.69
** SIMULATION : 19. Erosion (25mm)	TOTAL RAINFALL (mm) = 25.02 25.02 25.02
************	RUNOFF COEFFICIENT = 0.96 0.43 0.91
	**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
READ STORM Filename: C:\Users\sfanous\AppD	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
ata\Local\Temp\	CN* = 93.6 Ia = Dep. Storage (Above)
8766663e-6d3f-4db9-a962-c49127701f86\fc8e445a	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
Ptotal= 25.02 mm Comments: 25mmchi	THAN THE STORAGE COEFFICIENT.
	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
TIME RAIN TIME RAIN TIME RAIN TIME RAIN	
hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr	
0.17 2.17 1.17 6.20 2.17 5.62 3.17 2.95	
0.33 2.38 1.33 12.18 2.33 4.80 3.33 2.76	RESERVOIR(0642) OVERFLOW IS OFF
0.50 2.66 1.50 41.67 2.50 4.21 3.50 2.62	IN= 2> OUT= 1
0.67 3.03 1.67 15.28 2.67 3.78 3.67 2.47	DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE
0.83 3.58 1.83 9.22 2.83 3.45 3.83 2.35	(cms) (ha.m.) (cms) (ha.m.)
1.00 4.47 2.00 6.88 3.00 3.18 4.00 2.23	0.0000 0.0000 0.0510 0.1120
	0.0050 0.0617 0.0730 0.1266
	0.0200 0.0820 0.0960 0.1376
	0.0360 0.1003 0.1150 0.1490
CALIB	AREA QPEAK TPEAK R.V.
STANDHYD (0012) Area (ha) = 2.72	(ha) (cms) (hrs) (mm)
ID= 1 DT= 5.0 min Total Imp(%) = 90.00 Dir. Conn.(%) = 90.00	INFLOW: ID= 2 (0012) 2.720 0.269 1.50 22.69
<u> </u>	OVERTICES TR. 1 (OCAO) 0.700 0.005 4.00 01.54
	OUTFLOW: ID= 1 (0642) 2.720 0.005 4.08 21.54
	OUTFLOW: ID= 1 (0642) 2.720 0.005 4.08 21.54
IMPERVIOUS PERVIOUS (i)	
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.45 0.27	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.45 0.27 Dep. Storage (mm) = 1.00 5.00	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.45 0.27 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.45 0.27 Dep. Storage (mm) = 1.00 5.00	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.45 0.27 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00 Length (m) = 134.66 40.00 Mannings n = 0.013 0.250	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min) = 155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.45 0.27 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00 Length (m) = 134.66 40.00	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min) = 155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min) = 155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB STANDHYD (0002) Area (ha) = 13.68
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.45 0.27 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00 Length (m) = 134.66 40.00 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.	PEAK FLOW REDUCTION [Qout/Qin] (%) = 1.74 TIME SHIFT OF PEAK FLOW (min) = 155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB STANDHYD (0002) Area (ha) = 13.68 ID= 1 DT=15.0 min Total Imp(%) = 61.00 Dir. Conn.(%) = 53.00
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min) = 155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 2.45 0.27 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00 Length (m) = 134.66 40.00 Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.083 2.17 1.083 6.20 2.083 5.62 3.08 2.95	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin] (%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin] (%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min)=155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74 TIME SHIFT OF PEAK FLOW (min) = 155.00 MAXIMUM STORAGE USED (ha.m.) = 0.0577 CALIB
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin] (%) = 1.74
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin] (%) = 1.74
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin] (%) = 1.74
IMPERVIOUS PERVIOUS (i)	PEAK FLOW REDUCTION [Qout/Qin](%) = 1.74

DATE: February 2021

DATE: February 2021

VISUAL OTTHYMO OUTPUT:

Snell's Hollow Secondary Plan Area

over	(min)	15.00		45.00			
Storage Coeff.	(min) =	16.80	(ii)	97.80	(ii)		
Unit Hyd. Tpeak	(min) =	15.00		105.00			
Unit Hyd. peak	(cms) =	0.07		0.01			
						TOTALS	
PEAK FLOW	(cms) =	0.43		0.03		0.432	(iii)
TIME TO PEAK	(hrs) =	1.50		3.75		1.50	
RUNOFF VOLUME	(mm) =	24.02		7.50		16.26	
TOTAL RAINFALL	(mm) =	25.02		25.02		25.02	
RUNOFF COEFFICIE	ENT =	0.96		0.30		0.65	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB					
STANDHYD (0021)	Area	(ha) =	6.05		
ID= 1 DT= 5.0 min	Total	Imp(%)=	67.00	Dir. Conn.(%) =	66.00
		IMPERVIO	US	PERVIOUS (i)	
Surface Area	(ha) =	4.05	;	2.00	
Dep. Storage	(mm) =	1.00)	5.00	
Average Slope	(%)=	1.00)	2.00	
Length	(m) =	200.83	3	40.00	
Mannings n	=	0.013	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORMED HYETOGRA	PH	
TIME	RAIN	TIME	RAIN TIME	RAIN TIME	RAIN
hrs	mm/hr	hrs	mm/hr ' hrs	mm/hr hrs	${\rm mm/hr}$
0.083	2.17	1.083	6.20 2.083		2.95
0.167	2.17	1.167	6.20 2.167	5.62 3.17	2.95
0.250	2.38	1.250	12.18 2.250	4.80 3.25	2.76
0.333		1.333	12.18 2.333		2.76
0.417		1.417	41.67 2.417		2.62
0.500		1.500	41.67 2.500		2.62
	3.03		15.28 2.583		2.47
	3.03		15.28 2.667		2.47
			9.22 2.750		2.35
			9.22 2.833		2.35
			6.88 2.917		2.23
1.000	4.47	2.000	6.88 3.000	3.18 4.00	2.23
Max.Eff.Inten.(m	m/hr)=	41.67	7.91		
•	(min)		25.00		
			(ii) 24.98 (ii)		
Unit Hyd. Tpeak			25.00		
Unit Hyd. peak			0.05		
				TOTALS	
PEAK FLOW	(cms) =	0.41	0.02	0.411 (iii)	
TIME TO PEAK	(hrs) =	1.50	2.00	1.50	
RUNOFF VOLUME	(mm) =	24.02	7.56	18.42	
TOTAL RAINFALL	(mm) =	25.02	25.02	25.02	
RUNOFF COEFFICIE	INT =	0.96	0.30	0.74	

(i)	CN PI	ROCED	URE S	SELECTED	FOR	PERVIOU	JS	LOSSES:
	CN*	=	88.0	Ia =	Dep	. Storaç	је	(Above)
(ii)	TIME	STEP	(DT)	SHOULD	BE S	SMALLER	OR	EQUAL
	THAN	THE	STORA	AGE COEFE	FICIE	ENT.		

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658) $1 + 2 = 3$	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (00	02): 13.68	0.432	1.50	16.26
+ ID2= 2 (00	21): 6.05	0.411	1.50	18.42
ID = 3 (06	58): 19.73	0 043	1.50	16.92

RESE	RVOIR(0645)	OVERFLOW	IS O	FF		

RESERVOIR(U045)	OVERFLOW	IS OFF				
IN= 2> OUT= 1						
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE	
	(cms)	(ha.m.)		(cms)	(ha.m.)	
	0.0000	0.0000	-	0.2360	0.6393	
	0.0290	0.3310	-	0.3410	0.7100	
	0.0950	0.4595	-	0.4450	0.7485	
	0.1680	0.5720		0.5320	0.7925	
	ΔR	EA OPEZ	λK	TPEAK	R V	

					111(1111	QI DIIII	I I DI III	10.0.
					(ha)	(cms)	(hrs)	(mm)
INFLOW :	ID=	2	(0658)	19.730	0.843	1.50	16.92
OUTFLOW:	ID=	1	(0645)	19.730	0.025	5.25	16.77

PEAK FLOW REDUCTION [Qout/Qin](%)= 3.02
TIME SHIFT OF PEAK FLOW (min)=225.00
MAXIMUM STORAGE USED (ha.m.)= 0.2901

CALIB	Area Total	(ha) = Imp(%) =		Dir. C	onn.(%)=	46.00
		IMPERVIO	US	PERVIOUS	(i)	
Surface Area	(ha) =	7.84		6.67		
Dep. Storage	(mm) =	1.00		5.00		
Average Slope	(%)=	1.00		2.30		
Length	(m) =	311.02		40.00		
Mannings n	=	0.013		0.250		

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

			ТІ	RANSFORME	ED	HYETOGE	RAPH		
TIME	RAIN		TIME	RAIN		' TIME	RAIN	TIME	RAIN
hrs	mm/hr		hrs	mm/hr		' hrs	mm/hr	hrs	mm/hr
0.250	2.24		1.250	8.19		2.250	5.35	3.25	2.89
0.500	2.57	-	1.500	31.84		2.500	4.41	3.50	2.67

Snell's Hollow Secondary Plan Area

1.000	4.17	2.000	7.66 3.000	3.27 4.0	0 2.27
Max.Eff.Inten.(r	nm/hr)=	31.84	6.42		
over	(min)	15.00	45.00		
Storage Coeff.	(min) =	16.80	(ii) 97.80 (ii)		
Unit Hyd. Tpeak	(min) =	15.00	105.00		
Unit Hyd. peak	(cms) =	0.07	0.01		
				TOTALS	
PEAK FLOW	(cms) =	0.40	0.04	0.398 (iii)
TIME TO PEAK	(hrs) =	1.50	3.75	1.50	
RUNOFF VOLUME	(mm) =	24.02	6.96	14.80	
TOTAL RAINFALL	(mm) =	25.02	25.02	25.02	
RUNOFF COEFFICIE	ENT =	0.96	0.28	0.59	

0.750 3.21 | 1.750 13.26 | 2.750 3.67 | 3.75 2.43

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 84.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(065 IN= 2> OUT=		VERFI	LOW	IS OFF					
DT= 5.0 min		יוחבוי.	W	STORA	GE	ı	OUTFLOW		STORAGE
							0.3640		
		0.019	90	0.21	47	i	0.5250		0.2723
		0.146	50	0.23	50	i	0.5250 0.6840		0.2789
		0.259	90	0.25	00	İ	0.8190		0.2863
			AR	EA	QPEAK		TPEAK		R.V.
			(h	a)	(cms)		(hrs)		(mm)
INFLOW : ID= 2									
OUTFLOW: ID= 1	(0657)		14.	510	0.0	16	6.1	L7	14.60
	TIME SH	HIFT C	F P	EAK FLC	W		(Qin](%)= (min)= (ha.m.)=	=280.	.00
	TIME SH	HIFT C)F P)RAG	EAK FLC E USE	DW D		(min) = (ha.m.) =	=280. = 0.	.00 .1828
	TIME SH	HIFT C)F P.)RAG: 	EAK FLC E USE	DW SD 		(min) = (ha.m.) =	= 280. = 0.	.00 .1828
V V I	TIME SH MAXIMUN	HIFT C	U U	EAK FLC E USE A A A A	DW SD SD SEE		(min) = (ha.m.) =	= 280. = 0.	.00 .1828
V V I V V I	TIME SH MAXIMUN SSSSS SS SS	HIFT C	U U U	EAK FLC E USE A A A A A A A A A A A A A A A A	DW GD :=====: L L L		(min) = (ha.m.) =	= 280. = 0.	.00 .1828
V V I V V I V V I	TIME SH MAXIMUN SSSSS SS SS SS SS	HIFT C	U U U U	EAK FLC E USE A A A A A A A A A A A A A A A A	DW CD L L L L L L		(min) = (ha.m.) =	= 280.	.00 .1828
V V I V V I V V I	TIME SH MAXIMUN SSSSS SS SS	HIFT C	U U U U	EAK FLC E USE A A A A A A A A A A A A A A A A	DW CD L L L L L L		(min) = (ha.m.) =	= 280.	.00 .1828
V V I V V I V V I V V I VV I	TIME SE MAXIMUN	HIFT CM STC	DF P: DRAG: U U U U U H	EAK FLC E USE A A A AAAAA A A A Y Y	L L L L L L LLLLL	 L	(min) = (ha.m.) =	= 280.	.00 .1828
V V I V V I V V I V V I VV I	TIME SE MAXIMUN	HIFT CM STC	DF P: DRAG: U U U U U H	EAK FLC E USE A A A AAAAA A A A Y Y	L L L L L L LLLLL	 L	(min) = (ha.m.) =	=280. = 0. =====	.00 .1828
V V I V V I V V I V V I VV I	TIME SH MAXIMUN SSSSS SS SS SS SSSSS	HIFT CM STC	DF P: DRAG: U U U U U H	EAK FLC E USE A A A AAAAA A A A Y Y	L L L L L L LLLLL	 L	(min) = (ha.m.) =	=280. = 0. =====	.00 .1828
V V I V V I V V I V V I VV I	TIME SH MAXIMUN SSSSS SS SS SS SSSSS TT TTTTT T	HIFT CA STO	DF PDRAG	EAK FLCE USE A A A A A A A A A A A A A A A A A A	L L L L L LLLL: M I MM MI M I	 L M M M M	(min) = (ha.m.) =	=280. = 0. =====	.00 .1828

DATE: February 2021

***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\e67c8224-0e01-4e52-90ee-f2fdb2a04b71\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e $a930-3446e1ae5bfa\e67c8224-0e01-4e52-90ee-f2fdb2a04b71\scen$ DATE: 02-09-2021 TIME: 01:20:06 USER: ** SIMULATION : 2. Chicago 3hr 5vr -----READ STORM | Filename: C:\Users\sfanous\AppD ata\Local\Temp\ 8766663e-6d3f-4db9-a962-c49127701f86\83c52d41 | Ptotal= 34.09 mm | Comments: Chicago 5 Min Time Step - 3hr - 5yr TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 2.50 | 0.83 14.57 | 1.58 7.16 | 2.33 0.08 3.27 2.73 | 0.92 36.31 | 1.67 0.17 6.29 | 2.42 3.09 0.25 3.01 | 1.00 128.34 | 1.75 5.61 | 2.50 2.94 0.33 3.36 | 1.08 47.68 | 1.83 5.07 | 2.58 2.79 0.42 3.82 | 1.17 24.98 | 1.92 4.64 | 2.67 2.67 0.50 4.45 | 1.25 16.69 | 2.00 4.27 | 2.75 2.55 0.58 5.34 | 1.33 12.50 | 2.08 3.96 | 2.83 2.45 0.67 6.72 | 1.42 9.99 | 2.17 3.70 | 2.92 2.35 0.75 9.15 | 1.50 8.34 | 2.25 3.47 | 3.00 2.26 | CALIB | | STANDHYD (0012) | Area (ha) = 2.72|ID= 1 DT= 5.0 min | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =2.45 0.27 5.00 Dep. Storage (mm) =1.00 Average Slope (%)= 1.00 2.00 (m) = 134.66Length 40.00 = 0.013 0.250 Mannings n Max.Eff.Inten.(mm/hr) = 128.3449.82

over (min)

Storage Coeff. (min) =

5.00

10.00

2.76 (ii) 5.42 (ii)

| CALIB |

Snell's Hollow Secondary Plan Area

Unit Hyd. Tp Unit Hyd. pe		5.00 0.28	10.00	
				TOTALS
PEAK FLOW	(cms) =	0.77	0.03	0.779 (iii)
TIME TO PEAK	(hrs)=	1.00	1.08	1.00
RUNOFF VOLUM	IE (mm) =	33.09	18.21	31.60
TOTAL RAINFA	LL (mm) =	34.09	34.09	34.09
RUNOFF COEFF	'ICIENT =	0.97	0.53	0.93

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 93.6 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0642)	OVERFLOW I	S OFF			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE
	(cms)	(ha.m.)		(cms)	(ha.m.)
	0.0000	0.0000		0.0510	0.1120
	0.0050	0.0617		0.0730	0.1266
	0.0200	0.0820		0.0960	0.1376
	0.0360	0.1003		0.1150	0.1490
	ARE	EA QPEAI	K	TPEAK	R.V.
	(ha	a) (cms))	(hrs)	(mm)
INFLOW : ID= 2 (00	12) 2.7	720 0.	779	1.00	31.60
OUTFLOW: $TD=1$ (0.6)	42) 2 7	720 0 (016	3 00	30 44

PEAK FLOW REDUCTION [Qout/Qin](%)= 2.06
TIME SHIFT OF PEAK FLOW (min)=120.00
MAXIMUM STORAGE USED (ha.m.)= 0.0767

STANDHYD (0002) ID= 1 DT=15.0 min	Area Total	(ha) = Imp(%) =		Dir. Conn.(%)=	53.00
		IMPERVIO	US	PERVIOUS (i)	
Surface Area	(ha) =	8.34		5.34	
Dep. Storage	(mm) =	1.00		5.00	
Average Slope	(%)=	1.00		2.30	
Length	(m) =	301.99		40.00	
Mannings n	=	0.013		0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

		TRA	NSFORMED HYET	OGRAPH		
TIME	RAIN	TIME	RAIN TI	ME RAIN	TIME RA	ΙN
hrs	mm/hr	hrs	mm/hr ' h	rs mm/hr	hrs mm/	hr
0.250	2.74	1.000	59.74 1.75	6.36	2.50 3.1	0
0.500	3.88	1.250	29.78 2.00	0 4.66	2.75 2.6	7
0.750	7.07	1.500	10.27 2.25	3.71	3.00 2.3	6
Max.Eff.Inten.(mm	/hr)=	59.74	19.48			

DATE: February 2021

over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) =	15.00 16.80 15.00 0.07	30.00 (ii) 97.80 105.00 0.01	(ii)	
				TOTALS	
PEAK FLOW	(cms) =	0.75	0.07	0.754	(iii)
TIME TO PEAK	(hrs) =	1.00	2.75	1.00	
RUNOFF VOLUME	(mm) =	33.09	13.35	23.81	
TOTAL RAINFALL	(mm) =	34.09	34.09	34.09	
RUNOFF COEFFICIE	ENT =	0.97	0.39	0.70	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB		. ,			Conn.(%)=	66.00)
		IMPERVIOU	JS	PERVIOUS	S (i)		
Surface Area	(ha) =	4.05		2.00			
Dep. Storage	(mm) =	1.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length							
Mannings n	=	0.013		0.250			
Max.Eff.Inten.(r	mm/hr)=	128.34		35.62			
over	(min)	5.00		10.00			
Storage Coeff.	(min) =	3.51	(ii)	8.35	(ii)		
Unit Hyd. Tpeak	(min) =	5.00		10.00			
Unit Hyd. peak	(cms) =	0.26		0.12			
					*	TOTALS'	ŧ
PEAK FLOW	(cms) =	1.16		0.12		1.214	(iii)
TIME TO PEAK	(hrs) =	1.00		1.08		1.00	
RUNOFF VOLUME	(mm) =	33.09		13.60		26.46	
TOTAL RAINFALL	(mm) =	34.09		34.09		34.09	
RUNOFF COEFFICIA	ENT =	0.97		0.40		0.78	

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 88.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD H	HYD (0658)				
1 -	+ 2 =	3	AREA	QPEAK	TPEAK	R.V.
			(ha)	(cms)	(hrs)	(mm)
	ID1= 1	1 (0002):	13.68	0.754	1.00	23.81
-	+ ID2= 2	2 (0021):	6.05	1.214	1.00	26.46
	=====			=======		
	TD = 3	3 (0658) •	19 73	1 968	1 00	24 62

Snell's Hollow Secondary Plan Area

THAN THE STORAGE COEFFICIENT. NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | RESERVOIR(0645)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | | RESERVOIR(0657)| OVERFLOW IS OFF | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE | IN= 2---> OUT= 1 | (cms) (ha.m.) | (cms) (ha.m.) | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE 0.0000 0.0000 | 0.2360 0.6393 (cms) (ha.m.) | (cms) 0.0290 0.3310 | 0.3410 0.7100 0.0000 0.0000 | 0.3640 0.0950 0.4595 | 0.4450 0.7485 0.0190 0.2147 | 0.5250 0.2723 0.1460 0.2350 | 0.6840 0.2789 0.1680 0.5720 | 0.5320 0.7925 0.2590 0.2500 | 0.8190 0.2863 R.V. AREA OPEAK TPEAK (mm) (cms) (hrs) (ha) AREA OPEAK TPEAK (cms) 19.730 1.968 1.00 24.62 19.730 0.066 3.67 24.47 (hrs) INFLOW : ID= 2 (0658) (ha) 1.00 OUTFLOW: ID= 1 (0645) INFLOW : ID= 2 (0656) 14.510 0.695 21.98 3.17 OUTFLOW: ID= 1 (0657) 14.510 0.112 21 78 PEAK FLOW REDUCTION [Qout/Qin](%)= 3.38 TIME SHIFT OF PEAK FLOW (min)=160.00 PEAK FLOW REDUCTION [Qout/Qin] (%) = 16.06 (ha.m.) = 0.4040MAXIMUM STORAGE USED TIME SHIFT OF PEAK FLOW (min)=130.00 MAXIMUM STORAGE USED (ha.m.) = 0.2295| STANDHYD (0656) | Area (ha) = 14.51|ID= 1 DT=15.0 min | Total Imp(%)= 54.00 Dir. Conn.(%)= 46.00 V V I SSSSS U U A L (v 6.1.2003) V V I SS U U AA L IMPERVIOUS PERVIOUS (i) V V I SS U U AAAAA L Surface Area (ha) = 7.84 6.67 1.00 5.00 V V I SS U U A A L VV I SSSS UUUUU A A LLLLL Dep. Storage (mm) = Average Slope (%)= 1.00 2.30 (m) = 311.02 Length 40.00 Mannings n 0.013 OOO TTTTT TTTTT H H Y Y M M OOO O O T T H H Y Y MM MM O O O O T T H H Y Y M M O O NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP. 000 T T H H Y M M 000 Developed and Distributed by Smart City Water Inc ---- TRANSFORMED HYETOGRAPH ----Copyright 2007 - 2020 Smart City Water Inc RAIN | TIME RAIN | TIME RAIN | TIME RAIN All rights reserved. hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.250 2.74 | 1.000 59.74 | 1.750 6.36 | 2.50 3.10 0.500 3.88 | 1.250 29.78 | 2.000 4.66 | 2.75 2.67 ***** DETAILED OUTPUT ***** 0.750 7.07 | 1.500 10.27 | 2.250 3.71 | 3.00 2.36 Max.Eff.Inten.(mm/hr) = 59.74 17.86 Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat 15.00 over (min) 45.00 Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-Storage Coeff. (min) = 16.80 (ii) 97.80 (ii) a930-3446e1ae5bfa\2e3c3dc5-4c64-49f4-9e53-6ff42cf556f4\scen Unit Hyd. Tpeak (min) = 15.00 105.00 Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-0.01 Unit Hyd. peak (cms) = 0.07 a930-3446e1ae5bfa\2e3c3dc5-4c64-49f4-9e53-6ff42cf556f4\scen *TOTALS* 0.695 (iii) PEAK FLOW 0.69 0.08 (cms) = 0.08 2.75 12.52 34.09 TIME TO PEAK (hrs) = 1.00 1.00 DATE: 02-09-2021 TIME: 01:20:05 RUNOFF VOLUME (mm) = 21.98 33.09 TOTAL RAINFALL (mm) = 34.09 34.09 USER: 0.97 RUNOFF COEFFICIENT = 0.37 0.64 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: COMMENTS: $CN^* = 84.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

DATE: February 2021

Snell's Hollow Secondary Plan Area

** SIMULATION : 3. Chicago 3hr 10yr ** ***********

| ata\Local\Temp\

READ STORM | Filename: C:\Users\sfanous\AppD

8766663e-6d3f-4db9-a962-c49127701f86\77778385

| Ptotal= 41.98 mm | Comments: Chicago 5 Min Time Step - 3hr - 10yr

RAIN	TIME	RAIN '	TIME	RAIN	TIME	RAIN
mm/hr	hrs	mm/hr '	hrs	mm/hr	hrs	mm/hr
3.08	0.83	17.95	1.58	8.82	2.33	4.03
3.36	0.92	44.72	1.67	7.75	2.42	3.81
3.71	1.00	158.07	1.75	6.91	2.50	3.62
4.14	1.08	58.73	1.83	6.25	2.58	3.44
4.71	1.17	30.77	1.92	5.71	2.67	3.29
5.48	1.25	20.55	2.00	5.26	2.75	3.14
6.57	1.33	15.39	2.08	4.88	2.83	3.02
8.27	1.42	12.31	2.17	4.55	2.92	2.90
11.27	1.50	10.27	2.25	4.27	3.00	2.79
	mm/hr 3.08 3.36 3.71 4.14 4.71 5.48 6.57 8.27	mm/hr hrs 3.08 0.83 3.36 0.92 3.71 1.00 4.14 1.08 4.71 1.17 5.48 1.25 6.57 1.33 8.27 1.42	mm/hr hrs mm/hr ' 3.08 0.83 17.95 3.36 0.92 44.72 3.71 1.00 158.07 4.14 1.08 58.73 4.71 1.17 30.77 5.48 1.25 20.55 6.57 1.33 15.39 8.27 1.42 12.31	mm/hr hrs mm/hr hrs 3.08 0.83 17.95 1.58 3.36 0.92 44.72 1.67 3.71 1.00 158.07 1.75 4.14 1.08 58.73 1.83 4.71 1.17 30.77 1.92 5.48 1.25 20.55 2.00 6.57 1.33 15.39 2.08 8.27 1.42 12.31 2.17	mm/hr hrs mm/hr hrs mm/hr 3.08 0.83 17.95 1.58 8.82 3.36 0.92 44.72 1.67 7.75 3.71 1.00 158.07 1.75 6.91 4.14 1.08 58.73 1.83 6.25 4.71 1.17 30.77 1.92 5.71 5.48 1.25 20.55 2.00 5.26 6.57 1.33 15.39 2.08 4.88 8.27 1.42 12.31 2.17 4.55	mm/hr hrs mm/hr hrs mm/hr hrs 3.08 0.83 17.95 1.58 8.82 2.33 3.36 0.92 44.72 1.67 7.75 2.42 3.71 1.00 158.07 1.75 6.91 2.50 4.14 1.08 58.73 1.83 6.25 2.58 4.71 1.17 30.77 1.92 5.71 2.67 5.48 1.25 20.55 2.00 5.26 2.75 6.57 1.33 15.39 2.08 4.88 2.83 8.27 1.42 12.31 2.17 4.55 2.92

CALIB	1
STANDHYD	(0012)
ID= 1 DT=	5.0 min

Area (ha) = 2.72

Total Imp(%) = 90.00 Dir. Conn.(%) = 90.00

		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha) =	2.45	0.27	
Dep. Storage	(mm) =	1.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m) =	134.66	40.00	
Mannings n	=	0.013	0.250	
Mar Eff Inton (n		150 07	70.80	
Max.Eff.Inten.(r				
over	(min)	5.00	5.00	
Storage Coeff.	(min) =	2.54 (ii) 4.98 (ii)	
Unit Hyd. Tpeak	(min) =	5.00	5.00	
Unit Hyd. peak	(cms) =	0.29	0.22	
				TOTALS
PEAK FLOW	(cms) =	0.96	0.05	1.011 (iii)
TIME TO PEAK	(hrs) =	1.00	1.00	1.00
RUNOFF VOLUME	(mm) =	40.98	25.17	39.40
TOTAL RAINFALL	(mm) =	41.98	41.98	41.98
RUNOFF COEFFICIE	ENT =	0.98	0.60	0.94

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 93.6$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

DATE: February 2021

			D_{III}	L. I COI	uary 2021	
RESERVOIR(0642) IN= 2> OUT= 1		IS OFF				
DT= 5.0 min	OUTFLOW	STORAGE	l OU'	TFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	0.0000	0.0000	0	.0510	0.1120	
		0.0617				
	0.0200	0.0820	0	.0960	0.1376	
	0.0360	0.1003	1 0	.1150	0.1490	
	A	REA QPI	EAK	TPEAK	R.V.	
	(ha) (cr	ns)	(hrs)	(mm)	
INFLOW : ID= 2 (
OUTFLOW: ID= 1 (0642) 2	.720	0.027	2.50	38.25	
	ME SHIFT OF					
CALIB				Conn (%)=	- 52 00	
	TOTAL IMP(a) - 01.00	DII.	COIIII. (%)-	- 53.00	
		ERVIOUS				
Surface Area	(ha)=	8.34	5.34			
Dep. Storage						
Average Slope						
Length	(m) = 3	01.99	40.00			
Mannings n	=	0.013	0.250			
NOTE: RAINE	'ALL WAS TRAN	SFORMED TO	15.0 M	IN. TIME	STEP.	

			01010100		
TIME	RAIN	TIME	RAIN TIME	RAIN TIME I	RAIN
hrs	mm/hr	hrs	mm/hr ' hrs	mm/hr hrs mr	m/hr
0.250	3.38	1.000	73.58 1.750	7.83 2.50 3	.82
0.500	4.78	1.250	36.68 2.000	5.74 2.75 3	.29
0.750	8.71	1.500	12.66 2.250	4.57 3.00 2	.90
Max.Eff.Inten.(m	m/hr)=	73.58	29.52		
over	(min)	15.00	30.00		
Storage Coeff.	(min) =	16.80	(ii) 97.80 (ii)		
Unit Hyd. Tpeak	(min) =	15.00	105.00		
Unit Hyd. peak	(cms) =	0.07	0.01		
				TOTALS	
PEAK FLOW	(cms) =	0.93	0.11	0.932 (iii)	
TIME TO PEAK	(hrs) =	1.00	2.75	1.00	
RUNOFF VOLUME	(mm) =	40.98	19.08	30.68	
TOTAL RAINFALL	(mm) =	41.98	41.98	41.98	
RUNOFF COEFFICIE	NT =	0.98	0.45	0.73	

---- TRANSFORMED HYETOGRAPH ----

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 85.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

Snell's Hollow Secondary Plan Area

CALIB STANDHYD (0021) ID= 1 DT= 5.0 min		0.05 0.00 Dir. Conn.(%)	= 66.00
Surface Area		PERVIOUS (i) 2.00 5.00 2.00 40.00 0.250	
	m/hr) = 158.07 (min) 5.00 (min) = 3.23 (min) = 5.00 (cms) = 0.27		*TOTALS*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	(cms) = 1.47 (hrs) = 1.00 (mm) = 40.98 (mm) = 41.98 NNT = 0.98	0.19 1.08 19.49 41.98 0.46	1.560 (iii) 1.00 33.67 41.98 0.80
***** WARNING: STORAG	E COEFF. IS SMALLEF FOR PEF		
CN* = 8 (ii) TIME STEP THAN THE S	18.0 Ia = Dep. St (DT) SHOULD BE SMAI TORAGE COEFFICIENT. DOES NOT INCLUDE BA	orage (Above) LER OR EQUAL	
ADD HYD (0658) 1 + 2 = 3	(ha) (cm (2): 13.68 0.93 (1): 6.05 1.56	AAK TPEAK R.V as) (hrs) (mm 12 1.00 30.68 10 1.00 33.67	.)
		2 1.00 31.60	
	S DO NOT INCLUDE BA		
RESERVOIR(0645) IN= 2> OUT= 1 DT= 5.0 min			STORAGE (ha.m.) 0.6393
	0.0950 0.4 0.1680 0.5	595 0.4450 720 0.5320	0.7485
INFLOW : ID= 2 (OUTFLOW: ID= 1 (AREA (ha) 0658) 19.730 0645) 19.730	QPEAK TPEAK (cms) (hrs) 2.492 1.00 0.116 3.33	R.V. (mm) 31.60 31.45
DI	ALL DESIGNATIONS	ON [Qout/Qin](%)=	

DATE: February 2021

	TIME SHIFT MAXIMUM ST						
CALIB STANDHYD (0656	 						
ID= 1 DT=15.0 min		mp(%) = 5	4.00 Di	r. Conn.	(%) = 46.	00	
		IMPERVIOUS	S PERV	/IOUS (i)			
Surface Area Dep. Storage	(ha)=	7.84	6	67			
Dep. Storage	(mm) =	1.00	5	5.00			
Average Slope Length	(%)=	1.00	2	2.30			
Length	(m) =	311.02	40	0.00			
Mannings n	=	0.013	0.	250			
NOTE: RA	INFALL WAS T	'RANSFORMEI	O TO 15.	0 MIN. T	IME STEP.		
		TRAI	NSFORMED	HYETOGRA	РН		
т	IME RAIN					TIME	RA
,	hrs mm/hr 250 3.38	hrs	mm/hr '	hrs	mm/hr	hrs	mm/
0.3	250 3.38	1.000	73.58	1.750	7.83	2.50	3.8
0.	500 4.78	1.250	36.68	2.000	5.74	2.75	3.2
0.	500 4.78 750 8.71	1.500	12.66	2.250	4.57	3.00	2.9
Max.Eff.Inten ov Storage Coeff Unit Hyd. Tpe	.(mm/hr)=	73.58	26	5.55			
OVe	er (min)	15.00	30	0.00			
Storage Coeff	\cdot (min) =	16.80	(ii) 97	7.80 (ii)			
Unit Hyd. Tpe	ak (min)=	15.00	105	5.00			
Unit Hyd. pea	k (cms)=	0.07	C	0.01			
			_		*TOTAL	S*	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME	(cms)=	0.85	().12	0.85	9 (iii)	
TIME TO PEAK	(hrs)=	1.00	2	2.75	1.0	0	
RUNOFF VOLUME	(mm) =	40.98	18	3.03	28.5	8	
TOTAL RAINFAL: RUNOFF COEFFI	L (mm) =	41.98	41	.98	41.9		
RUNOFF COEFF.1	CIENT =	0.98	(1.43	0.6	8	
(i) CN PROC	EDURE SELECT	ED FOR PE	RVIOUS LO	SSES:			
CN* =	84.0 Ia	= Dep. St	torage	(Above)			
(ii) TIME ST				QUAL			
	E STORAGE CO			- D DNIV			
(111) PEAK FILE	OW DOES NOT	INCTODE BY	APELTOM I	.r ANY.			

RESERVOIR(0657)	OVERFLOW	IS OFF				
IN= 2> OUT= 1						
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE	
	(cms)	(ha.m.)		(cms)	(ha.m.)	
	0.0000	0.0000		0.3640	0.2594	
	0.0190	0.2147		0.5250	0.2723	
	0.1460	0.2350		0.6840	0.2789	
	0.2590	0.2500		0.8190	0.2863	
	AR	EA QPE	AK	TPEAK	R.V.	
	(h	a) (cm:	s)	(hrs)	(mm)	
INFLOW : ID= 2 (0656) 14.	510 0	.859	1.00	28.58	
OUTFLOW: ID= 1 (0657) 14.	510 0	.198	2.75	28.39	

READ STORM |

V V I V V I V V I V V I VV I VV I OOO TTT O O T O O T OOO T Developed and Dis Copyright 2007 - All rights reserv	SSSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	U U U U U U U U U U U U U U U U U U U U	A A A AAAAA A A Y Y Y Y Y Y City Water Ir	L L L L LLLLL M M M M M M M M M M M M M	000	(v 6.1.2003)
V V I V V I V V I VV I OOO TTT O O T OOO T OOO T OOO T All rights reserv	SS SS SSSS TT TTTTT TTTTT T T T T T T T	U U U U U U U U U U U U U U U U U U U	A A AAAAA A A Y Y Y Y Y Y S T T T T T T T T T T T T T T T T	L L L LLLLL M M MM MM M M M M M M	000 0 0 0 0	
V V I V V I VV I OOO TTT O O T OOO T Developed and Dis Copyright 2007 - All rights reserv	SS SSSSS TT TTTTT T T T T T T T T T T T	U U UUUUUU H H H H H H H H C H T T T T T T T T T T T T T T T T T T	AAAAA A A A A Y Y Y Y Y Y t City Water Ir	L L LLLLL M MM MM M M M M M M M M M M	0 0 0 0	TM
VV I OOO TTT O O T OOO T OOO T Developed and Dis Copyright 2007 - All rights reserv	SSSSS TT TTTTT T T T T T T tributed by 2020 Smart	UUUUU H H H H H H H H y Smar City	A A Y Y Y Y Y Y Y Y S T Y T T T T T T T T T T T T	LLLLL M M MM MM M M M M M M Jater In	0 0 0 0	TM
VV I OOO TTT O O T OOO T OOO T Developed and Dis Copyright 2007 - All rights reserv	SSSSS TT TTTTT T T T T T T tributed by 2020 Smart	UUUUU H H H H H H H H y Smar City	A A Y Y Y Y Y Y Y Y S T Y T T T T T T T T T T T T	LLLLL M M MM MM M M M M M M Jater In	0 0 0 0	TM
O O T O O T OOO T OCCUPATION Developed and Dis Copyright 2007 - All rights reserv	T T T etributed by 2020 Smart	H H H H H H y Smar City	Y Y Y Y t City V Water Ir	MM MM M M M M Jater In	0 0 0 0	TM
O O T OOO T Developed and Dis Copyright 2007 - All rights reserv	T Tutributed by 2020 Smart red.	H H H H y Smar City	Y Y t City W Water Ir	M M M M Nater In	000	
Developed and Dis Copyright 2007 - All rights reserv	tributed by 2020 Smart red.	y Smar City	t City V Water Ir	Mater In		
Developed and Dis Copyright 2007 - All rights reserv	tributed by 2020 Smart red.	y Smar City	t City V Water Ir	Mater In		
a930-3446e1ae5bfa	ne: C:\Users \bec09bba-3 ne: C:\Users	s\sfan 3d18-4 s\sfan	ous\AppI f11-8ab1 ous\AppI	5)\Visua Data\Loc 5e97d2 Data\Loc	l OTTHYN al\Civic 4653ae\s	MO 6.1\VO2\voin.dat ca\VH5\4a4b2b43-29c0-4f4e- scen ca\VH5\4a4b2b43-29c0-4f4e-
DATE: 02-09-2021				TIME:	01:20:0	05
JSER:						
COMMENTS:						
*********		*****	******	*****	**	

DATE: February 2021

0.50 0.58 0.67	8.83 10.46 12.93	1.25 1.33 1.42	43.26 29.84 22.88 18.63 15.77	2.00 2.08 2.17	8.51 7.94 7.45	2.75 2.83 2.92	5.28 5.07 4.89
0.75	17.18	1.50	15.77	2.25	7.02	3.00	4.72

CALIB		. ,			Conn.(%)= 90.00	ı
		IMPERVIOU	US	PERVIOU	S (i)		
Surface Area	(ha) =	2.45		0.27			
Dep. Storage	(mm) =	1.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m) =	134.66		40.00			
Mannings n	=	0.013		0.250			
Max.Eff.Inten.(m	m/hr) =	198.74		106.65			
over	(min)	5.00		5.00			
Storage Coeff.	(min) =	2.32	(ii)	4.55	(ii)		
Unit Hyd. Tpeak	(min) =	5.00		5.00			
Unit Hyd. peak	(cms) =	0.30		0.23			
						TOTALS	:
PEAK FLOW	(cms) =	1.24		0.08		1.318	(iii)
TIME TO PEAK	(hrs) =	1.00		1.00		1.00	
RUNOFF VOLUME	(mm) =	58.41		41.24		56.69	
TOTAL RAINFALL	(mm) =	59.41		59.41		59.41	
RUNOFF COEFFICIE	NT =	0.98		0.69		0.95	

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 93.6$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR(0642)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | OUTFLOW STORAGE | OUTFLOW STORAGE | DT= 5.0 min | (cms) (ha.m.) | (cms) 0.0000 0.0000 | 0.0510 0.0050 0.0617 | 0.0730 0.1266 0.0200 0.0820 | 0.0960 0.1376 0.0360 0.1003 | 0.1150 0.1490 AREA QPEAK TPEAK (ha) (cms) (hrs) (mm) INFLOW : ID= 2 (0012) 2.720 1.318 1.00 56.69 OUTFLOW: ID= 1 (0642) 2.720 0.062 2.08 55.54 PEAK FLOW REDUCTION [Qout/Qin] (%) = 4.69 TIME SHIFT OF PEAK FLOW (min) = 65.00 MAXIMUM STORAGE USED (ha.m.) = 0.1192

8766663e-6d3f-4db9-a962-c49127701f86\79190208

Filename: C:\Users\sfanous\AppD ata\Local\Temp\

Snell's Hollow Secondary Plan Area

CALIB					
STANDHYD (0002)	Area	(ha)=	13.68		
ID= 1 DT=15.0 min	Total	Imp(%)=	61.00	Dir. Conn.(%)=	53.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha) =	8.3	4	5.34	
Dep. Storage	(mm) =	1.0	0	5.00	
Average Slope	(%)=	1.0	0	2.30	
Length	(m) =	301.9	9	40.00	
Mannings n	=	0.01	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

		TRA	ANSFORMED HYETOGRA	APH	
TIME	RAIN	TIME	RAIN TIME	RAIN TIME	RAIN
hrs	mm/hr	hrs	mm/hr ' hrs	mm/hr hrs	mm/hr
0.250	5.64	1.000	95.33 1.750	12.28 2.50	6.32
0.500	7.78	1.250	50.59 2.000	9.22 2.75	5.50
0.750	13.52	1.500	19.09 2.250	7.47 3.00	4.89
Max.Eff.Inten.(m	m/hr)=	95.33	52.08		
over	(min)	15.00	30.00		
Storage Coeff.	(min) =	16.80	(ii) 97.80 (ii)	
Unit Hyd. Tpeak	(min) =	15.00	105.00		
Unit Hyd. peak	(cms) =	0.07	0.01		
				TOTALS	
PEAK FLOW	(cms) =	1.22	0.18	1.228 (iii)	
TIME TO PEAK	(hrs) =	1.00	2.75	1.00	
RUNOFF VOLUME	(mm) =	58.41	33.03	46.48	
TOTAL RAINFALL	(mm) =	59.41	59.41	59.41	
RUNOFF COEFFICIE	NT =	0.98	0.56	0.78	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0021) | Area (ha) = 6.05 |ID= 1 DT= 5.0 min | Total Imp(%) = 67.00 Dir. Conn.(%) = 66.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =4.05 2.00 (mm) = Dep. Storage 1.00 5.00 (%)= Average Slope 1.00 2.00 Length (m) =200.83 40.00 Mannings n 0.013 0.250 Max.Eff.Inten.(mm/hr)= 198.74 85.59 over (min) 5.00 10.00 Storage Coeff. (min) = 7.01 (ii) 2.95 (ii) Unit Hyd. Tpeak (min) = 5.00 10.00 Unit Hyd. peak (cms) = 0.28 0.14 *TOTALS* PEAK FLOW (cms) =1.91 2.086 (iii)

DATE: February 2021

TIME TO PEAK	(hrs) =	1.00	1.08	1.00
RUNOFF VOLUME	(mm) =	58.41	33.76	50.03
TOTAL RAINFALL	(mm) =	59.41	59.41	59.41
RUNOFF COEFFICI	ENT =	0.98	0.57	0.84

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 88.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0002):	13.68	1.228	1.00	46.48
+ ID2= 2 (0021):	6.05	2.086	1.00	50.03
===========				
ID = 3 (0658):	19.73	3.314	1.00	47.56

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

OUTFLOW: ID= 1 (0645)

RESERVOIR(0645) IN= 2> OUT= 1	OVERFLOW	IS OFF				
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE	
	(cms)	(ha.m.)	-	(cms)	(ha.m.)	
	0.0000	0.0000	-	0.2360	0.6393	
	0.0290	0.3310	- 1	0.3410	0.7100	
	0.0950	0.4595	- 1	0.4450	0.7485	
	0.1680	0.5720	-	0.5320	0.7925	
	AR	EA QPEA	λK	TPEAK	R.V.	
	(h	a) (cms	3)	(hrs)	(mm)	
INFLOW : ID= 2 (0658) 19.	730 3.	314	1.00	47.56	

PEAK FLOW REDUCTION [Qout/Qin] (%) = 8.38 TIME SHIFT OF PEAK FLOW (min) = 125.00 MAXIMUM STORAGE USED (ha.m.) = 0.6676

0.278

3.08

47.42

CALIB						
STANDHYD (0656)	Area	(ha) =	14.51			
ID= 1 DT=15.0 min	Total	Imp(%)=	54.00	Dir. 0	Conn.(%)=	46.00
		IMPERVIO	DUS	PERVIOUS	S (i)	
Surface Area	(ha) =	7.84	1	6.67		
Dep. Storage	(mm) =	1.00)	5.00		
Average Slope	(%)=	1.00)	2.30		
Length	(m) =	311.02	2	40.00		
Mannings n	=	0.013	3	0.250		

19.730

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

0 0

H H

H H Y

T

Developed and Distributed by Smart City Water Inc

Y

M M O O

M M 000

Snell's Hollow Secondary Plan Area

shen s Honow secondary I ran Area	Dill. 1 Columy 2021
TRANSFORMED HYETOGRAPH	Copyright 2007 - 2020 Smart City Water Inc
TIME RAIN TIME RAIN TIME RAIN TIME RAIN	All rights reserved.
	AII lights reserved.
hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	
0.250 5.64 1.000 95.33 1.750 12.28 2.50 6.32	
0.500 7.78 1.250 50.59 2.000 9.22 2.75 5.50	***** DETAILED OUTPUT ****
0.750 13.52 1.500 19.09 2.250 7.47 3.00 4.89	
Max.Eff.Inten.(mm/hr) = 95.33 47.47	<pre>Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat</pre>
over (min) 15.00 30.00	Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-
Storage Coeff. (min) = 16.80 (ii) 97.80 (ii)	a930-3446e1ae5bfa\aa397637-0a47-4238-89ce-bdcb7e18b59a\scen
Unit Hyd. Tpeak (min) = 15.00 105.00	Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-
Unit Hyd. peak (cms) = 0.07 0.01	a930-3446e1ae5bfa\aa397637-0a47-4238-89ce-bdcb7e18b59a\scen
TOTALS	
PEAK FLOW (cms)= 1.12 0.21 1.133 (iii)	
TIME TO PEAK (hrs) = 1.00 2.75 1.00	DATE: 02-09-2021 TIME: 01:20:05
· ·	DATE: 02-09-2021 11ME: 01:20:03
RUNOFF VOLUME (mm) = 58.41 31.56 43.91	NOTE:
TOTAL RAINFALL (mm) = 59.41 59.41 59.41	USER:
RUNOFF COEFFICIENT = 0.98 0.53 0.74	
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	COMMENTS:
$CN^* = 84.0$ Ia = Dep. Storage (Above)	
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	
THAN THE STORAGE COEFFICIENT.	
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	

	** SIMULATION : 5. Chicago 3hr 50yr

RESERVOIR(0657) OVERFLOW IS OFF	
IN= 2> OUT= 1	
DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE	
(cms) (ha.m.) (cms) (ha.m.)	READ STORM Filename: C:\Users\sfanous\AppD
0.0000 0.0000 0.3640 0.2594	ata\Local\Temo\
·	
0.0190 0.2147 0.5250 0.2723	8766663e-6d3f-4db9-a962-c49127701f86\9ecc3658
0.1460 0.2350 0.6840 0.2789	Ptotal= 66.55 mm Comments: Chicago 5 Min Time Step - 3hr - 50yr
0.2590 0.2500 0.8190 0.2863	
	TIME RAIN TIME RAIN TIME RAIN TIME RAIN
AREA QPEAK TPEAK R.V.	hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr
(ha) (cms) (hrs) (mm)	0.08 5.80 0.83 29.62 1.58 15.42 2.33 7.46
INFLOW: ID= 2 (0656) 14.510 1.133 1.00 43.91	0.17 6.30 0.92 68.42 1.67 13.67 2.42 7.08
OUTFLOW: ID= 1 (0657) 14.510 0.452 1.83 43.71	0.25 6.90 1.00 220.93 1.75 12.31 2.50 6.74
	0.33 7.66 1.08 88.27 1.83 11.21 2.58 6.44
PEAK FLOW REDUCTION [Qout/Qin](%)= 39.90	0.42 8.63 1.17 48.66 1.92 10.31 2.67 6.17
TIME SHIFT OF PEAK FLOW (min) = 50.00	0.50 9.92 1.25 33.57 2.00 9.56 2.75 5.92
	·
MAXIMUM STORAGE USED (ha.m.)= 0.2665	·
	0.67 14.53 1.42 20.95 2.17 8.36 2.92 5.49
	0.75 19.32 1.50 17.73 2.25 7.88 3.00 5.29
=======================================	
V V I SSSSS U U A L (v 6.1.2003)	
V V I SS U U AA L	CALIB
V V I SS U U AAAAA L	STANDHYD (0012) Area (ha) = 2.72
V V I SS U U A A L	ID= 1 DT= 5.0 min Total Imp(%) = 90.00 Dir. Conn.(%) = 90.00
VV I SSSS UUUUU A A LLLLL	115-1 51- 3.0 Mill 10tal lmp(s)- 30.00 Ell. Colm. (s)- 30.00
1 55555 55555 11 11 1111111	IMPERVIOUS PERVIOUS (i)
OOO TTTTT TTTTT H H Y Y M M OOO TM	Surface Area (ha) = 2.45 0.27
O O T T H H Y Y MM MM O O	Dep. Storage (mm) = 1.00 5.00

DATE: February 2021

(%)=

(m) =

1.00

134.66

0.013

Average Slope

Mannings n

Length

2.00

40.00

0.250

Snell's Hollow Secondary Plan Area

Max.Eff.Inten.(mm/hr)=	220.93	123.80		
•	(min)	5.00	5.00		
Storage Coeff.	(min) =	2.22	(ii) 4.36	(ii)	
Unit Hyd. Tpeak	(min) =	5.00	5.00		
Unit Hyd. peak	(cms) =	0.30	0.23		
				*TOTALS	*
PEAK FLOW	(cms) =	1.39	0.09	1.484	(iii)
TIME TO PEAK	(hrs) =	1.00	1.00	1.00	
RUNOFF VOLUME	(mm) =	65.55	48.01	63.80	
TOTAL RAINFALL	(mm) =	66.55	66.55	66.55	
RUNOFF COEFFICI	ENT =	0.98	0.72	0.96	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- $CN^* = 93.6$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0642)	OVERELO	TS OFF				
IN= 2> OUT= 1		V IS OFF				
DT= 5.0 min		STORAGE	1	OUTFLOW	STORAGE	
	0.0000	0.0000	ĺ	0.0510	0.1120	
				0.0730		
	0.0200	0.0820		0.0960	0.1376	
	0.0360	0.1003	- 1	0.1150	0.1490	
	,	ADEA OD		TPEAK	D 11	
				(hrs)		
INFLOW : ID= 2 (0012)	2 720	1 / 8/	1 00	63 80	
OUTFLOW: ID= 1 (0642)	2 720	0 081	1 92	62 64	
COTTEON: ID I (0012)	2.720	0.001	1.52	02.01	
PE	CAK FLOW	REDUCTION	[Oout	/Oinl(%)=	5.45	
TI	ME SHIFT OF	PEAK FLOW		(min) = 5	5.00	
MA	XIMUM STOR	AGE USED		(ha.m.)=	0.1304	
LONITO						
CALIB STANDHYD (0002)	7200 ()	221- 13 69				
ID= 1 DT=15.0 min				r Conn (%)	= 53 00	
TD-	TOTAL IMP	(0)- 01.00	DI	1. COIIII.(8)	- 55.00	
	IMI	PERVIOUS	PERV	IOUS (i)		
Surface Area	(ha)=	8.34	5	.34		
Dep. Storage	(mm) =	1.00	5	.00		
Average Slope	(%)=	1.00	2	.30		
Length	(m) = 3	301.99	40	.00		
Mannings n	=	0.013	0.	250		
NOTE: RAINE	'ALL WAS TRAN	NSFORMED TO	15.	O MIN. TIME	STEP.	

		T	RANSFORMED HYETO	GRAPH	
TIME	RAIN	TIME	RAIN TIME	RAIN	TIME RAIN
hrs	mm/hr	hrs	mm/hr ' hrs	mm/hr	hrs mm/hr
0.250	6.33	1.000	106.32 1.750	13.80	2.50 7.09

DATE: February 2021

0.500	8.74	1.250	56.83 2.00	0 10.36 2.	75 6.18
0.750	15.20	1.500	21.47 2.25	0 8.39 3.	00 5.49
Max.Eff.Inten.(n	nm/hr)=	106.32	63.18		
over	(min)	15.00	30.00		
Storage Coeff.	(min) =	16.80	(ii) 97.80	(ii)	
Unit Hyd. Tpeak	(min) =	15.00	105.00		
Unit Hyd. peak	(cms) =	0.07	0.01		
				TOTALS	r
PEAK FLOW	(cms) =	1.36	0.22	1.372	(iii)
TIME TO PEAK	(hrs) =	1.00	2.75	1.00	
RUNOFF VOLUME	(mm) =	65.55	39.10	53.11	
TOTAL RAINFALL	(mm) =	66.55	66.55	66.55	
RUNOFF COEFFICIE	ENT =	0.98	0.59	0.80	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB		. ,			Conn (%)=	66 00)
	10041	11112 (0)	07.00	DII.	201111. (0)	00.00	
		IMPERVIO	US	PERVIOUS	S (i)		
Surface Area	(ha) =	4.05		2.00			
Dep. Storage	(mm) =	1.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m) =	200.83		40.00			
Mannings n	=	0.013		0.250			
Max.Eff.Inten.(n	nm/hr)=	220.93		101.72			
over	(min)	5.00		10.00			
Storage Coeff.	(min) =	2.83	(ii)	6.72	(ii)		
Unit Hyd. Tpeak							
Unit Hyd. peak	(cms) =	0.28		0.14			
					T	OTALS	r
PEAK FLOW	(cms) =	2.15		0.42		2.369	(iii)
TIME TO PEAK	(hrs) =	1.00		1.08		1.00	
RUNOFF VOLUME	(mm) =	65.55		39.94		56.84	
TOTAL RAINFALL	` '					66.55	
RUNOFF COEFFICIE	ENT =	0.98		0.60		0.85	

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 - CN* = 88.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

I	ADD	НҮ	D	(065	58)				
	1	+	2	=	3		AREA	QPEAK	TPEAK	R.V.
							(ha)	(cms)	(hrs)	(mm)

RUNOFF COEFFICIENT =

Snell's Hollow Secondary Plan Area

+		,	0002): 0021):	13.68 6.05	1.372 2.369	1.00	53.11 56.84
	=====						======
	ID = 3	3 (0658):	19.73	3.741	1.00	54.26

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0645)	OVERFLOW	IS OFF				
IN= 2> OUT= 1						
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE	
	(cms)	(ha.m.)		(cms)	(ha.m.)	
	0.0000	0.0000		0.2360	0.6393	
	0.0290	0.3310		0.3410	0.7100	
	0.0950	0.4595		0.4450	0.7485	
	0.1680	0.5720		0.5320	0.7925	
	ARI	EA QPEA	K	TPEAK	R.V.	
	(h	a) (cms	:)	(hrs)	(mm)	
INFLOW : ID= 2 (0658) 19.	730 3.	741	1.00	54.26	
OUTFLOW: ID= 1 (0645) 19.	730 0.	377	3.08	54.11	

PEAK FLOW REDUCTION [Qout/Qin](%) = 10.09 TIME SHIFT OF PEAK FLOW (min)=125.00 MAXIMUM STORAGE USED (ha.m.) = 0.7240

CALIB					
STANDHYD (0656)	Area	(ha)=	14.51		
ID= 1 DT=15.0 min	Total	Imp(%)=	54.00	Dir. Conn.(%)=	46.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha) =	7.8	4	6.67	
Dep. Storage	(mm) =	1.00)	5.00	
Average Slope	(%)=	1.00)	2.30	
Length	(m) =	311.02	2	40.00	
Mannings n	=	0.013	3	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hı
0.250	6.33	1.000	106.32	1.750	13.80 2	.50	7.09
0.500	8.74	1.250	56.83	2.000	10.36 2	.75	6.18
0.750	15.20	1.500	21.47	2.250	8.39 3	.00	5.49
Man Dee Tabaa (a	/ la)	106.32		57.84			
Max.Eff.Inten.(m							
over	(min)	15.00		30.00			
Storage Coeff.	(min) =	16.80	(ii)	97.80 (ii	.)		
Unit Hyd. Tpeak	(min) =	15.00	1	05.00			
Unit Hyd. peak	(cms) =	0.07		0.01			
					*TOTALS	*	
PEAK FLOW	(cms) =	1.25		0.25	1.266	(iii)	
TIME TO PEAK	(hrs) =	1.00		2.75	1.00		
RUNOFF VOLUME	(mm) =	65.55		37.49	50.39	,	
TOTAL RAINFALL	(mm) =	66 55		66 55	66 55		

0.98

---- TRANSFORMED HYETOGRAPH ----

0.56

0.76

DATE: February 2021

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 $CN^* = 84.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY

ESERVOIR(0			ERFI	JOW :	IS OFF				
DT= 5.0 min			TFLO	W	STOR	AGE	1	OUTFLOW	STORAGE
		(cms)		(ha.	m.)	ĺ	(cms)	(ha.m.)
								0.3640	
		C	.019	90	0.2	147	ĺ	0.5250	0.2723
								0.6840	
		C	.259	90	0.2	500	I	0.8190	0.2863
				ARI	EA	OPE <i>I</i>	λK	TPEAK	R.V.
								(hrs)	
INFLOW : ID=	2 (0656)							
OUTFLOW: ID=	: 1 (0657)		14.	510	0.	609	1.67	50.20
	Б	באני נ	T OM	DI	PDIICTT	ON FO	2011+	/Oinl(%)= 4	10 13
							-	(min) = 4	
								(ha.m.)=	
		1111111011	010	,14101	_ 00			(110.111.)	0.2701
			====						
		===							
v v	т	00000			70	т		(-	7 6.1.2003)
V V								(\	0.1.2003)

V	V	I	SSSSS	U	U	2	A	L				(v	6.1.2003)
V	V	I	SS	U	U	A	A	L					
V	V	I	SS	U	U	AA	AAA	L					
V	V	I	SS	U	U	A	A	L					
V	V	I	SSSSS	UUU	JUU	A	A	LLI	LLL				
00	00	TTTTT	TTTTT	Н	Η	Y	Y	M	M	00	00	TM	
0	0	T	T	Н	Н	Y	Y	MM	MM	0	0		
0	0	T	T	Н	Н	,	Y	M	M	0	0		
00	00	T	T	Н	Н	,	Y	M	M	00	00		
				~		~			-				

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved.

***** DETAILED OUTPUT *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4ea930-3446e1ae5bfa\4aa15be0-83b8-4b24-85a4-db5642493933\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-

a930-3446e1ae5bfa\4aa15be0-83b8-4b24-85a4-db5642493933\scen

DATE: 02-09-2021 TIME: 01:20:05

USER:

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area

shell s Hollow Secondary I lan Area

	-				

READ STORM	Filenam	e: C:\Users	\sfanous\Appl	D	
ĺ		ata\Loca			
		8766663e	-6d3f-4db9-a	962-c49127701f86	7eb7ce48
Ptotal= 74.17 mm	Comment	s: Chicago	5 Min Time S	tep - 3hr - 100y:	£
	RAIN	TIME R	AIN TIME	RAIN TIME	RAIN
hrs	mm/hr	hrs mm	/hr ' hrs	mm/hr hrs	mm/hr
0.08	6.49	0.83 33	.28 1.58	17.30 2.33 15.34 2.42	8.35
	7.05	0.92 76	.62 1.67	15.34 2.42	7.92
0.25	7.72	1.00 242	.53 I 1.75	13.80 L 2.50	7.55
0.33	8.57	1.08 98	.69 1.83	12.57 2.58 11.55 2.67 10.71 2.75 9.98 2.83	7.21
0.42	9.66	1.17 54	.64 1.92	11.55 2.67	6.90
0.50	11.12	1.25 37	.73 2.00	10.71 2.75	6.62
0.58	13.17	1.33 28	.91 2.08	9.98 2.83	6.37
0.67	16 3N I		53 2 17		6.13
	10.30	1.42 23	.55 2.17	9.36 2.92	0.13
				9.36 2.92 8.82 3.00	
	Area	(ha) = 2.7	2		
CALIB CTANDHYD (0012) DT= 5.0 min	Area	(ha) = 2.7	2		
CALIB TANDHYD (0012) = 1 DT= 5.0 min	Area Total Im	(ha) = 2.7 p(%) = 90.0 MPERVIOUS	2 0 Dir. Con	n.(%)= 90.00	
ALIB TANDHYD (0012) = 1 DT= 5.0 min Surface Area	Area Total Im	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45	2 0 Dir. Con PERVIOUS (: 0.27	n.(%)= 90.00	
ALIB TANDHYD (0012) = 1 DT= 5.0 min Surface Area	Area Total Im	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45	2 0 Dir. Coni PERVIOUS (0.27 5.00	n.(%)= 90.00	
ALIB TANDHYD (0012) = 1 DT= 5.0 min	Area Total Im	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45	2 0 Dir. Con PERVIOUS (: 0.27 5.00 2.00	n.(%)= 90.00	
ALIB TANDHYD (0012) = 1 DT= 5.0 min Surface Area	Area Total Im	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45	2 0 Dir. Con PERVIOUS (: 0.27 5.00 2.00 40.00	n.(%)= 90.00	
CALIB TANDHYD (0012) = 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total Im (ha) = (mm) = (%) = (m) = =	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013	2 0 Dir. Conn PERVIOUS (1 0.27 5.00 2.00 40.00 0.250	n.(%)= 90.00	
ALIB TANDHYD (0012) = 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total Im (ha) = (mm) = (%) = (m) = =	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013	2 0 Dir. Conn PERVIOUS (1 0.27 5.00 2.00 40.00 0.250	n.(%)= 90.00	
CALIB TANDHYD (0012) = 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total Im (ha) = (mm) = (%) = (m) = =	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013	2 0 Dir. Conn PERVIOUS (1 0.27 5.00 2.00 40.00 0.250	n.(%)= 90.00	
CALIB CTANDHYD (0012) = 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total Im (ha) = (mm) = (%) = (m) = =	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013	2 0 Dir. Conn PERVIOUS (1 0.27 5.00 2.00 40.00 0.250	n.(%)= 90.00	
CALIB TANDHYD (0012) = 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Area Total Im I (ha) = (mm) = (%) = (m) = = (min) = ((ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013 242.53 5.00 2.14 (iii	2 0 Dir. Cons PERVIOUS (: 0.27 5.00 2.00 40.00 0.250 141.27 5.00) 4.20 (i.	n.(%)= 90.00	
CALIB TANDHYD (0012) = 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total Im I (ha) = (mm) = (%) = (m) = = (min) = ((ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013	2 0 Dir. Conn PERVIOUS (1 0.27 5.00 2.00 40.00 0.250	n.(%)= 90.00 i)	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (Area Total Im (ha) = (mm) = (%) = (m) = = n/hr) = min) (min) = min) = (cms) =	(ha) = 2.7 xp(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013 242.53 5.00 2.14 (iii 5.00 0.31	2 0 Dir. Com PERVIOUS (: 0.27 5.00 2.00 40.00 0.250 141.27 5.00) 4.20 (i	n.(%)= 90.00 i) i) *TOTALS*	
SALIB STANDHYD (0012) = 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (Area Total Im (ha) = (mm) = (%) = (m) = = n/hr) = min) (min) = min) = (cms) =	(ha) = 2.7 xp(%) = 90.0 MPERVIOUS 2.45 1.00 1.34.66 0.013 242.53 5.00 2.14 (iii 5.00 0.31 1.54	2 0 Dir. Com PERVIOUS (1 0.27 5.00 2.00 40.00 0.250 141.27 5.00) 4.20 (i 5.00 0.24 0.11	n.(%)= 90.00 i) *TOTALS* 1.647 (ii.	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (PEAK FLOW TIME TO PEAK (RUNOFF VOLUME	Area Total Im I (ha) = (mm) = (%) = (m) = = (h/hr) = (min) (min) = (cms) = (hrs) = (hrs) =	(ha) = 2.7 pp(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013 242.53 5.00 2.14 (iii 5.00 0.31 1.54 1.00 73.17	2 0 Dir. Cons PERVIOUS (: 0.27 5.00 2.00 40.00 0.250 141.27 5.00 0.24 0.11 1.00	i) *TOTALS* 1.647 (ii.	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (PEAK FLOW TIME TO PEAK (RUNOFF VOLUME	Area Total Im I (ha) = (mm) = (%) = (m) = = (h/hr) = (min) (min) = (cms) = (hrs) = (hrs) =	(ha) = 2.7 pp(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013 242.53 5.00 2.14 (iii 5.00 0.31 1.54 1.00 73.17	2 0 Dir. Cons PERVIOUS (: 0.27 5.00 2.00 40.00 0.250 141.27 5.00 1.00 0.24 0.11 1.00 55.29	i) *TOTALS* 1.647 (ii. 1.00 71.38	
SALIB STANDHYD (0012) = 1 DT= 5.0 min = 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm	Area Total Im (ha) = (mm) = (%) = (m) = = (n/hr) = (min) (min) = (min) = (cms) = (cms) = (hrs) = (mm) = (mm) =	(ha) = 2.7 pp(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013 242.53 5.00 2.14 (ii 5.00 0.31 1.54 1.00 73.17 74.17	2 0 Dir. Com PERVIOUS (1 0.27 5.00 2.00 40.00 0.250 141.27 5.00) 4.20 (i 5.00 0.24 0.11 1.00 55.29 74.17	i) *TOTALS* 1.647 (ii.	
Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(mm over (Storage Coeff. (Unit Hyd. Tpeak (Unit Hyd. peak (PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	Area Total Im (ha) = (mm) = (%) = (m) = = n/hr) = min) (min) = (min) = (cms) = (hrs) = (hrs) = (mm) = (fr)	(ha) = 2.7 p(%) = 90.0 MPERVIOUS 2.45 1.00 1.00 134.66 0.013 242.53 5.00 2.14 (iii 5.00 0.31 1.54 1.00 73.17 74.17 0.99	2 0 Dir. Cons PERVIOUS (: 0.27 5.00 2.00 40.00 0.250 141.27 5.00 0.24 0.11 1.00 55.29 74.17 0.75	i) *TOTALS* 1.647 (ii. 1.00 71.38 74.17 0.96	

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

DATE: February 2021

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0642)						
IN= 2> OUT= 1 DT= 5.0 min	OUTET	OW STO	RAGE I	OUTFLOW	STORAGE	
	- (cms) (ha	.m.)	(cms)	(ha.m.)	
	0.00	00 0.	0000	0.0510	0.1120	
	0.00	50 0.	0617	0.0730	0.1266	
	0.02	60 0.	0820 1003	0.0960	0.1376	
	0.00	00	1000	0.1100	0.1130	
INFLOW: ID= 2 (OUTFLOW: ID= 1 (AREA	QPEAK	TPEAK	R.V.	
TNELOW - TD- 2 /	0010)	(ha)	(cms)	(hrs)	(mm)	
OUTFLOW: ID= 2 (0642)	2.720	0 103	1.00	71.38	
	PEAK FLOW	REDUCT	ION [Qout,	/Qin](%)=	6.25	
	TIME SHIFT MAXIMUM ST	OF PEAK F	LOW	(min) =	45.00	
	MAAIMUM SI	ORAGE U	SEU	(11a.m.)=	0.1418	
	_					
CALIB STANDHYD (0002)	 Area	(ha) = 1	3 68			
ID= 1 DT=15.0 min	Total I	mp (%) = 6	1.00 Di:	r. Conn.(%)= 53.00	
	-					
Surface Area	(ha) =	IMPERVIOU:	S PERV	IOUS (i)		
Surface Area Dep. Storage Average Slope Length	(mm) =	1.00	5	.00		
Average Slope	(%)=	1.00	2	.30		
Length	(m) =	301.99	40	.00		
Mannings n	=	0.013	0.2	250		
NOTE: RAI	NFALL WAS T	RANSFORME	D TO 15.0	O MIN. TIM	E STEP.	
	_				-	
		mpx	NGEODMED :	HYETOGRAPH		
		I TIME	RATN I	TIME	RATN I TIME	E RAI
тт	ME RAIN					
TI h	rs mm/hr	hrs	mm/hr '	hrs m	m/hr hrs	s mm/h
h 0.2	rs mm/hr 50 7.09	hrs	mm/hr ' 117.48 1	hrs m	m/hr hrs	s mm/h 7.94
h 0.2	rs mm/hr 50 7.09	hrs	mm/hr ' 117.48 1	hrs m 1.750 15 2.000 11	m/hr hrs .48 2.50 .61 2.75	mm/h 7.94 6.91
h 0.2 0.5 0.7	rs mm/hr 50 7.09 00 9.78 50 17.05	hrs 1.000 1.250 1.500	mm/hr ' 117.48 3 63.69 3 24.11 3	2.000 11 2.250 9	m/hr hrs .48 2.50 .61 2.75 .39 3.00	mm/h 7.94 6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten.	rs mm/hr 50 7.09 00 9.78 50 17.05	hrs 1.000 1.250 1.500	mm/hr ' 117.48 3 63.69 3 24.11 3	2.000 11 2.250 9	m/hr hrs .48 2.50 .61 2.75 .39 3.00	mm/h 7.94 6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten.	rs mm/hr 50 7.09 00 9.78 50 17.05	hrs 1.000 1.250 1.500	mm/hr ' 117.48 3 63.69 3 24.11 3	2.000 11 2.250 9	m/hr hrs .48 2.50 .61 2.75 .39 3.00	mm/h 7.94 6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten.	rs mm/hr 50 7.09 00 9.78 50 17.05	hrs 1.000 1.250 1.500	mm/hr ' 117.48 3 63.69 3 24.11 3	2.000 11 2.250 9	m/hr hrs .48 2.50 .61 2.75 .39 3.00	mm/h 7.94 6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten.	rs mm/hr 50 7.09 00 9.78 50 17.05	hrs 1.000 1.250 1.500	mm/hr ' 117.48 3 63.69 3 24.11 3	2.000 11 2.250 9	m/hr hrs .48 2.50 .61 2.75 .39 3.00	mm/h 7.94 6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	rs mm/hr 50 7.09 00 9.78 50 17.05 (mm/hr) = r (min) (min) = k (min) = (cms) =	hrs 1.000 1.250 1.500 1.500 15.00 16.80 15.00 0.07	mm/hr ' 117.48 163.69 24.11 3 75 30 (ii) 97 105	2.000 11 2.250 9 .05 .00 .80 (ii) .00	m/hr hrs .48 2.50 .61 2.75 .39 3.00	mm/h 7.94 6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	rs mm/hr 50 7.09 00 9.78 50 17.05 (mm/hr) = r (min) (min) = k (min) = (cms) =	hrs 1.000 1.250 1.500 1.500 15.00 16.80 15.00 0.07	mm/hr ' 117.48 163.69 24.11 3 75 30 (ii) 97 105	2.000 11 2.250 9 .05 .00 .80 (ii) .00	*TOTALS* 1.519 (i.e.	6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	rs mm/hr 50 7.09 00 9.78 50 17.05 (mm/hr) = r (min) (min) = k (min) = (cms) =	hrs 1.000 1.250 1.500 1.500 15.00 16.80 15.00 0.07	mm/hr ' 117.48 163.69 24.11 3 75 30 (ii) 97 105	2.000 11 2.250 9 .05 .00 .80 (ii) .00	*TOTALS* 1.519 (i.e.	6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	rs mm/hr 50 7.09 00 9.78 50 17.05 (mm/hr) = r (min) (min) = k (min) = (cms) =	hrs 1.000 1.250 1.500 1.500 15.00 16.80 15.00 0.07	mm/hr ' 117.48 163.69 24.11 3 75 30 (ii) 97 105	2.000 11 2.250 9 .05 .00 .80 (ii) .00	*TOTALS* 1.519 (i.e.	6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	rs mm/hr 50 7.09 00 9.78 50 17.05 (mm/hr) = r (min) (min) = k (min) = (cms) =	hrs 1.000 1.250 1.500 1.500 15.00 16.80 15.00 0.07	mm/hr ' 117.48 163.69 24.11 3 75 30 (ii) 97 105	2.000 11 2.250 9 .05 .00 .80 (ii) .00	*TOTALS* 1.519 (i.e.	6.91 6.14
h 0.2 0.5 0.7 Max.Eff.Inten.	rs mm/hr 50 7.09 00 9.78 50 17.05 (mm/hr) = r (min) (min) = k (min) = (cms) =	hrs 1.000 1.250 1.500 1.500 15.00 16.80 15.00 0.07	mm/hr ' 117.48 163.69 24.11 3 75 30 (ii) 97 105	2.000 11 2.250 9 .05 .00 .80 (ii) .00	*TOTALS* 1.519 (i:	6.91 6.14

Snell's Hollow Secondary Plan Area

THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

(111) 1311 1301 5030 101 1102032 210312301 11 11111	00112011 12 1 (0010) 131700 01100 01101
	PEAK FLOW REDUCTION [Qout/Qin](%) = 11.65
	TIME SHIFT OF PEAK FLOW (min)=120.00
CALIB	MAXIMUM STORAGE USED (ha.m.) = 0.7694
STANDHYD (0021) Area (ha)= 6.05	
ID= 1 DT= 5.0 min Total Imp(%)= 67.00 Dir. Conn.(%)= 66.00	
IMPERVIOUS PERVIOUS (i)	CALIB
Surface Area $(ha) = 4.05$ 2.00	STANDHYD (0656) Area (ha) = 14.51
Dep. Storage (mm) = 1.00 5.00	ID= 1 DT=15.0 min Total Imp(%)= 54.00 Dir. Conn.(%)= 46.00
Average Slope (%) = 1.00 2.00	
Length (m) = 200.83 40.00	IMPERVIOUS PERVIOUS (i)
Mannings n = 0.013 0.250	Surface Area (ha) = 7.84 6.67
naming	Dep. Storage $(mm) = 1.00$ 5.00
Max.Eff.Inten.(mm/hr) = 242.53 118.58	Average Slope (%) = 1.00 2.30
over (min) 5.00 10.00	Length $(m) = 311.02 40.00$
Storage Coeff. (min) = 2.72 (ii) 6.48 (ii)	
	Mannings n = 0.013 0.250
Unit Hyd. Tpeak (min) = 5.00 10.00	
Unit Hyd. peak (cms)= 0.29 0.14	NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.
TOTALS	
PEAK FLOW (cms)= 2.38 0.50 2.654 (iii)	
TIME TO PEAK (hrs) = 1.00 1.08 1.00	TRANSFORMED HYETOGRAPH
RUNOFF VOLUME (mm) = 73.17 46.68 64.16	TIME RAIN TIME RAIN TIME RAIN TIME RAIN
TOTAL RAINFALL (mm) = 74.17 74.17 74.17	hrs mm/hr hrs mm/hr ' hrs mm/hr hrs mm/hr
RUNOFF COEFFICIENT = 0.99 0.63 0.87	0.250 7.09 1.000 117.48 1.750 15.48 2.50 7.94
	0.500 9.78 1.250 63.69 2.000 11.61 2.75 6.91
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!	0.750 17.05 1.500 24.11 2.250 9.39 3.00 6.14
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	Max.Eff.Inten.(mm/hr) = 117.48 68.99
$CN^* = 88.0$ Ia = Dep. Storage (Above)	over (min) 15.00 30.00
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	Storage Coeff. (min) = 16.80 (ii) 97.80 (ii)
THAN THE STORAGE COEFFICIENT.	Unit Hyd. Tpeak (min) = 15.00 105.00
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	Unit Hyd. peak (mr) = 0.07 0.01
(III) FEAR FLOW DOES NOT INCHODE BASEFLOW IF ANT.	*TOTALS*
	PEAK FLOW (cms) = 1.38 0.30 1.402 (iii)
	TIME TO PEAK (hrs)= 1.00 2.75 1.00
	, ,
ADD HYD (0658)	TOTAL RAINFALL (mm) = 74.17 74.17 74.17
1 + 2 = 3 AREA QPEAK TPEAK R.V.	RUNOFF COEFFICIENT = 0.99 0.59 0.77
(ha) (cms) (hrs) (mm)	
ID1= 1 (0002): 13.68 1.519 1.00 60.27	
+ ID2= 2 (0021): 6.05 2.654 1.00 64.16	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
	$CN^* = 84.0$ Ia = Dep. Storage (Above)
ID = 3 (0658): 19.73 4.173 1.00 61.46	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
	THAN THE STORAGE COEFFICIENT.
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
RESERVOIR(0645) OVERFLOW IS OFF	
IN= 2> OUT= 1	RESERVOIR(0657) OVERFLOW IS OFF
DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE	IN= 2> OUT= 1
(cms) (ha.m.) (cms) (ha.m.)	DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE
0.0000 0.0000 0.2360 0.6393	(cms) (ha.m.) (cms) (ha.m.)
0.0290 0.3310 0.3410 0.7100	0.0000 0.3640 0.2594
0.0950 0.4595 0.4450 0.7485	0.0190 0.2147 0.5250 0.2723
0.1680 0.5720 0.5320 0.7925	0.1460 0.2350 0.6840 0.2789
0.1000 0.3720 0.3320 0.7923	·
AREA OPEAK TPEAK R.V.	0.2590 0.2500 0.8190 0.2863
To the state of th	ADEA OPEAU EDEAU D.V.
(ha) (cms) (hrs) (mm)	AREA QPEAK TPEAK R.V.

DATE: February 2021

61.46

61.31

1.00

3.00

4.173

0.486

19.730

19.730

INFLOW : ID= 2 (0658)

OUTFLOW: ID= 1 (0645)

Snall's Hollow Secondary Plan A

hrs

mm/hr | hrs

mm/hr |' hrs

mm/hr | hrs

mm/hr

nell's Hollow Secondary Plan Area	DATE: February 2021
(ha) (cms) (hrs) (mm) INFLOW: ID= 2 (0656) 14.510 1.402 1.00 57.40 OUTFLOW: ID= 1 (0657) 14.510 0.776 1.58 57.20 PEAK FLOW REDUCTION [Qout/Qin] (%) = 55.33 TIME SHIFT OF PEAK FLOW (min) = 35.00 MAXIMUM STORAGE USED (ha.m.) = 0.2842	0.25
	
V V I SSSSS U U A L (v 6.1.2003) V V I SS U U A A L V V I SS U U AAAAA L	CALIB
V V I SS U U A A L VV I SSSS UUUUU A A LLLLL	IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 2.45 0.27 Dep. Storage (mm)= 1.00 5.00
OOO TTTTT TTTTT H H Y Y M M OOO TM O O T T H H Y Y MM MM O O O O T T H H Y Y M M O O	Average Slope (%) = 1.00 2.00 Length (m) = 134.66 40.00 Mannings n = 0.013 0.250
OOO T T H H Y M M OOO veloped and Distributed by Smart City Water Inc pyright 2007 - 2020 Smart City Water Inc	NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
1 rights reserved.	TRANSFORMED HYETOGRAPH
***** DETAILED OUTPUT ****	TIME RAIN TIME RAIN TIME RAIN TIME IN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm hr
Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-	0.167
30-3446elae5bfa\f14a78eb-5ada-4479-821d-47d1091e03fe\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e- 30-3446elae5bfa\f14a78eb-5ada-4479-821d-47d1091e03fe\scen	0.417 0.72 2.000 12.24 3.583 5.04 5.17 0 0.500 0.72 2.083 12.24 3.667 5.04 5.25 0 0.583 0.72 2.167 12.24 3.750 5.04 5.33 0 0.667 0.72 2.250 12.24 3.833 2.88 5.42 0
TE: 02-09-2021 TIME: 01:20:06	0.750
ER:	1.000
MMENTS:	1.250 0.72 2.833 9.36 4.417 1.44 6.00 0 1.333 4.32 2.917 9.36 4.500 1.44 6.08 0 1.417 4.32 3.000 9.36 4.583 1.44 6.17 0 1.500 4.32 3.083 9.36 4.667 1.44 6.25 0 1.583 4.32 3.167 9.36 4.750 1.44
**************************************	Max.Eff.Inten.(mm/hr) = 33.12 24.99 over (min) 5.00 10.00 Storage Coeff. (min) = 4.75 (ii) 9.31 (ii) Unit Hyd. Tpeak (min) = 5.00 10.00 Unit Hyd. peak (cms) = 0.22 0.12
READ STORM Filename: C:\Users\sfanous\AppD ata\Local\Temp\ 8766663e-6d3f-4db9-a962-c49127701f86\77df6b23 Ptotal= 36.00 mm Comments: 2yr/6hr	*TOTALS* PEAK FLOW (cms)= 0.22 0.02 0.241 (iii) TIME TO PEAK (hrs)= 2.75 2.75 2.75 RUNOFF VOLUME (mm)= 35.00 19.87 33.49 TOTAL RAINFALL (mm)= 36.00 36.00 36.00

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

Max.Eff.Inten.(mm/hr) =

Storage Coeff. (min) =

Unit Hyd. Tpeak (min) =

Unit Hyd. peak (cms) =

TIME TO PEAK (hrs) =

RUNOFF VOLUME (mm) =

TOTAL RAINFALL (mm) =

RUNOFF COEFFICIENT =

PEAK FLOW

over (min)

(cms) =

Snell's Hollow Secondary Plan Area

- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0642) IN= 2> OUT= 1		IS OFF				
DT= 5.0 min		STORAGE	1	OUTFLOW	STORAGE	
				(cms)		
				0.0510		
				0.0730		
	0.0200	0.0820	i	0.0960	0.1376	
	0.0360	0.1003	i	0.1150	0.1490	
	AR	EA QPE	AK	TPEAK	R.V.	
	(h	a) (cm	ıs)	(hrs)	(mm)	
INFLOW : ID= 2 (0012) 2.	720 0	.241	2.75	33.49	
OUTFLOW: ID= 1 (0642) 2.	720 0	.017	4.33	32.33	
TI	AK FLOW R ME SHIFT OF P XIMUM STORAG	EAK FLOW	_	(min) = 9	5.00	
CALIB				r. Conn.(%)	= 53.00	
	IMPE	RVIOUS	PERV	IOUS (i)		
Surface Area				. ,		
Dep. Storage	(mm) =	1.00	5	.00		
Average Slope						
Length						
Mannings n	= 0	.013	0.	250		

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 85.0 Ia = Dep. Storage (Above)

33.12

0.07

0.59

2.75

35.00

36.00

0.97

15.00

21.19

0.01

0.08

4.25 14.69 36.00

0.41

TOTALS

2.75

25.45 36.00

0.71

0.604 (iii)

16.80 (ii) 97.80 (ii)

15.00 105.00

- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

			DATE: Fe	ebruary 2021	
CALIB STANDHYD (0021) ID= 1 DT= 5.0 min	Area (ha Total Imp(%	(a) = 6.05 (b) = 67.00	Dir. Conn.(%)= 66.00	
	TMDE	IDIZTOZIO F	EDUTOUS (:)		
Surface Area Dep. Storage Average Slope Length Mannings n	(m) = 20 = 0	1.00 1.00 00.83	2.00 40.00 0.250		
	ALL WAS TRANS			ME STEP.	
TIME	DATM I T	TME DATE	ED HYETOGRAP	DATE TIME	RAIN
hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583	mm/hr 0.00 1. 0.00 1. 0.00 1. 0.72 1. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 0.72 2. 4.32 3. 4.32 3.	hrs mm/hr 667 4.32 750 4.32 833 12.24 917 12.24 000 12.24 083 12.24 250 12.24 333 33.12 417 33.12 500 33.12 667 33.12 687 33.12 833 9.36 9.36 000 9.36 000 9.36 003 9.36	hrs 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750	Mark	mm/hr 0.72 0.72 0.72
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	(cms) = (hrs) = (mm) = 3 (mm) = 3		18.71 20.00 19.84 (ii) 20.00 0.06 0.07 2.92 14.98 36.00 0.42	*TOTALS* 0.420 (iii 2.75 28.19 36.00 0.78)
(i) CN PROCEDU CN* = 8 (ii) TIME STEP	RE SELECTED F 8.0 Ia = I (DT) SHOULD F TORAGE COEFFI	OR PERVIOUS Dep. Storage SE SMALLER C	LOSSES: (Above)		

QPEAK

| 1 + 2 = 3 |

Snell's Hollow Secondary Plan Area

ID1= 1 (0 + ID2= 2 (0	0002): 0021):	13.68	0.604	2.7	5 2	25.45		
ID = 3 (0						6.29		
NOTE: PEAK FL								
	-							
RESERVOIR(0645) IN= 2> OUT= 1	1							
T= 5.0 min	l OU	TFLOW	STORAG	E	OUTFLO	W	STORAGE	
	(.0000	(na.m. 0.000)	0.236	50	(na.m.) 0.6393	
	0	.0290	0.331	.0	0.341	.0	0.7100	
	0	.0950	0.459	95	0.445	50 20	0.7485	
	O							
		ARI (ha	EA Q	PEAK cms)	TPEA (hrs	ιΚ :)	R.V.	
INFLOW: ID= 2 (OUTFLOW: ID= 1 ((0658)	19.7	730	1.024	(111.5	.75	26.29	
OUTFLOW: ID= 1 (0645)	19.7	730	0.073	į	.92	26.14	
	PEAK F	LOW RE	EDUCTION	[Qout/	Qin](9	5) = 7	.16	
	TIME SHI MAXIMUM	FT OF PE	EAK FLOW	I	(mir	1)=190	.00	
	MAXIMUM	STORAGE	E USED)	(ha.m.) = 0	.4174	
	-							
CALIB	 							
CALIB STANDHYD (0656) D= 1 DT=15.0 min	 Area Tota							
CALIB STANDHYD (0656) D= 1 DT=15.0 min	 Area Tota	(ha) l Imp(%)	= 14.5 = 54.0	ol O Dir	. Conr	n.(%)=		
CALIB STANDHYD (0656) D= 1 DT=15.0 min	 Area Tota	(ha) l Imp(%)	= 14.5 = 54.0	ol O Dir	. Conr	n.(%)=		
CALIB STANDHYD (0656) D= 1 DT=15.0 min	 Area Tota	(ha) l Imp(%)	= 14.5 = 54.0	ol O Dir	. Conr	n.(%)=		
CALIB STANDHYD (0656) D= 1 DT=15.0 min	 Area Tota	(ha) l Imp(%)	= 14.5 = 54.0	ol O Dir	. Conr	n.(%)=		
CALIB STANDHYD (0656) D= 1 DT=15.0 min	 Area Tota	(ha) l Imp(%)	= 14.5 = 54.0	ol O Dir	. Conr	n.(%)=		
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Tota Tota (ha) = (mm) = (%) = (m) =	(ha) 1 Imp(%) IMPER 1 311	RVIOUS 7.84 1.00 1.00 1.02	PERVI 6. 5. 2. 40.	OUS (£ 67 00 30 00 50	1.(%)=		
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Tota Tota (ha) = (mm) = (%) = (m) =	(ha) 1 Imp(%) IMPER 1 311	RVIOUS 7.84 1.00 1.00 1.02	PERVI 6. 5. 2. 40.	OUS (£ 67 00 30 00 50	1.(%)=		
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Tota Tota (ha) = (mm) = (%) = (m) =	(ha) 1 Imp(%) IMPER 1 311	RVIOUS 7.84 1.00 1.00 1.02	PERVI 6. 5. 2. 40.	OUS (£ 67 00 30 00 50	1.(%)=		
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Tota Tota (ha) = (mm) = (%) = (m) =	(ha) 1 Imp(%) IMPER 1 311	RVIOUS 7.84 1.00 1.00 1.02	PERVI 6. 5. 2. 40.	OUS (£ 67 00 30 00 50	n.(%)=	46.00	
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	Area Tota Tota (ha) = (mm) = (%) = (m) = (m) = (m) = (mn/hr) = (mn/h	(ha) 1 Imp(%) 1 IMPER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 14.5 = 54.0 RVIOUS 7.84 .00 1.00 1.00 .013 3.12 5.00 5.80 (iii	PERVI 6. 5. 2. 40. 0.2 19. 30. .) 97.	OUS (± 67 00 30 00 50 40 00 80 (i ± 00 00 00 00 00 00 00 00 00 00 00 00 0	.) *	: 46.00	
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	Area Tota Tota (ha) = (mm) = (%) = (m) = (m) = (m) = (mn/hr) = (mn/h	(ha) 1 Imp(%) 1 IMPER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 14.5 = 54.0 RVIOUS 7.84 .00 1.00 1.00 .013 3.12 5.00 5.80 (iii	PERVI 6. 5. 2. 40. 0.2 19. 30. .) 97.	OUS (± 67 00 30 00 50 40 00 80 (i ± 00 00 00 00 00 00 00 00 00 00 00 00 0	.) *	: 46.00 TOTALS* 0.558 (iii)	
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	Area Tota Tota (ha) = (mm) = (%) = (m) = (m) = (m) = (mn/hr) = (mn/h	(ha) 1 Imp(%) 1 IMPER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 14.5 = 54.0 RVIOUS 7.84 .00 1.00 1.00 .013 3.12 5.00 5.80 (iii	PERVI 6. 5. 2. 40. 0.2 19. 30. .) 97.	OUS (± 67 00 30 00 50 40 00 80 (i ± 00 00 00 00 00 00 00 00 00 00 00 00 0	.) *	** 46.00 **TOTALS** 0.558 (iii)	
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak	Area Tota Tota (ha) = (mm) = (%) = (m) = (m) = (m) = (mn/hr) = (mn/h	(ha) 1 Imp(%) 1 IMPER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 14.5 = 54.0 RVIOUS 7.84 .00 1.00 1.00 .013 3.12 5.00 5.80 (iii	PERVI 6. 5. 2. 40. 0.2 19. 30. .) 97.	OUS (± 67 00 30 00 50 40 00 80 (i ± 00 00 00 00 00 00 00 00 00 00 00 00 0	.) *	*TOTALS* 0.558 (iii) 2.75 23.55 36.00	
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Tota Tota (ha) = (mm) = (%) = (m) = (m) = (m) = (mn/hr) = (mn/h	(ha) 1 Imp(%) 1 IMPER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 14.5 = 54.0 RVIOUS 7.84 .00 1.00 1.00 .013 3.12 5.00 5.80 (iii	PERVI 6. 5. 2. 40. 0.2 19. 30. .) 97.	OUS (± 67 00 30 00 50 40 00 80 (i ± 00 00 00 00 00 00 00 00 00 00 00 00 0	.) *	TOTALS* 0.558 (iii) 2.75 23.55	
CALIB STANDHYD (0656) = 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICE	(ha) = (mm) = (%) = (mm/hr) = (min) = (k (mi	(ha) 1 Imp(%) 1 Imp(%) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 14.5 = 54.0 RVIOUS 7.84 00 1.00 1.00 1.02 0.013 3.12 5.00 5.80 (ii 5.00 0.07	PERVI 6. 5. 2. 40. 0.2 19. 30. 0. 0. 0. 0. 0. 0. 0. 0. 0.	OUS (267 000 330 000 550 40 000 01 09 25 81 000 38	.) *	*TOTALS* 0.558 (iii) 2.75 23.55 36.00	
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. Tpea Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(ha) = (mm) = (min) = (cms) = (mm) = (cms) = (mm) = (cms) = (c	(ha) 1 Imp(%) 1 Imp(%) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 14.5 = 54.0 RVIOUS 7.84 1.00 1.02 01.3 3.12 5.00 0.07 0.54 2.75 5.00 0.97	PERVI 6. 5. 2. 40. 0.2 19. 30. 0. 105. 0. 4. 13. 36. 0.	OUS (:67 00 30 00 50 40 00 01 09 25 81 00 38 SES:	.) *	*TOTALS* 0.558 (iii) 2.75 23.55 36.00	
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. Tpea Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	(ha) = (mm) = (%) = (min) = (min) = (min) = (min) = (cms) = (cms) = (mm) = (cms) = (mm) = (cms	(ha) 1 Imp(%) IMPER 1 1 31: 0. 33: 15: (((2 35: 36: (ECTED FC Ia = De	= 14.5 = 54.0 RVIOUS 7.84 00 02 .013 3.12 00 07 00 00 07 00 00 0	PERVI 6. 5. 2. 40. 0.2 19. 30. 0. 105. 0. 4. 136. 36. 0.	OUS (:67 00 30 00 50 00 00 00 00 00 00 00 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 38 00 00 00 00 00 00 00 00 00 00 00 00 00	.) *	*TOTALS* 0.558 (iii) 2.75 23.55 36.00	
CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. ove Storage Coeff. Unit Hyd. Tpea Unit Hyd. Tpea Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC (i) CN PROCE CN* = (ii) TIME STE	(ha) = (mm) = (%) = (min) = (min) = (cms) = (hrs) = (mm) = (cms) = (mm) = (mm) = (cms) = (mm) = (cms) = (mm) = (cms) = (mm) = (cms) = (mm) = (cms) = (mm) = (cms) = (mm) = (cms) = (mm) = (cms	(ha) 1 Imp(%) 1 Imp(%) 1 Imp(%) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= 14.5 = 54.0 RVIOUS 7.84 .00 1.00 .02 013 3.12 5.00 5.80 (ii 5.00 0.07 0.54 2.75 5.00 0.97	PERVI 6. 5. 2. 40. 0.2 19. 30. 0. 0. 4. 13. 36. 0. COUS LOSS rage (ARR OR EQ	OUS (: 67 00 30 00 50 40 00 01 09 25 81 00 38 SES: bove) UAL	.) *	*TOTALS* 0.558 (iii) 2.75 23.55 36.00	

DATE: February 2021

RESERVOIR (0557) OVERFLOW IS OFF IN= 2> 0UT= 1 OUTFLOW STORAGE OUTFLOW STORAGE OUTFLOW (ha.m.)			L	711L. 1 CO	uury 2021	
DTE 5.0 min		OVERFLOW IS	OFF			
(ha) (cms) (hrs) (mm)	DT= 5.0 min	(cms) (0.0000 (0.0190 (0.1460)	ha.m.) 0.0000 0.2147 0.2350	(cms) 0.3640 0.5250 0.6840	(ha.m.) 0.2594 0.2723 0.2789	
TIME SHIFT OF PEAK FLOW (min)=115.00 MAXIMUM STORAGE USED (ha.m.)= 0.2304		(ha) 0656) 14.510	(cms) 0.558	(hrs) 2.75	(mm) 23.55	
V V I SS U U AA L V V I SS U U AAAAA L V V I SS U U AAAAAA L V V I SS U U AAAAAA L V V I SSSSS UUUU A A L VV I SSSSS UUUU A A LLLLL OOO TTTT TTTTT H H Y Y M M OOO TM O O T T H H Y Y M M OO OOO T T H H H Y M M OO Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\Vo2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-a930-3446elae5bfa\deel87a0-cfd3-4695-94f4-c29e544625fd\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-a930-3446elae5bfa\deel87a0-cfd3-4695-94f4-c29e544625fd\scen DATE: 02-09-2021 TIME: 01:20:06 USER: COMMENTS:	TI	ME SHIFT OF PEAK	FLOW	(min) = 11	5.00	
V V I SSSSS U U A A L						
O O T T H H Y Y MM MM O O O O T T H H H Y Y M M O O O OOO T T T H H Y M M O OO Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. ***** DETAILED OUTPUT ***** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\V02\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-a930-3446elae5bfa\dee187a0-cfd3-4695-94f4-c29e544625fd\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-a930-3446elae5bfa\dee187a0-cfd3-4695-94f4-c29e544625fd\scen DATE: 02-09-2021 TIME: 01:20:06 USER: COMMENTS:	V V I V V I V V V I	SSSSS U U SS U U A SS U U AA SS U U A	A L AAA L A L	(v	6.1.2003)	
Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\V02\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e- a930-3446elae5bfa\dee187a0-cfd3-4695-94f4-c29e544625fd\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e- a930-3446elae5bfa\dee187a0-cfd3-4695-94f4-c29e544625fd\scen DATE: 02-09-2021 TIME: 01:20:06 USER: COMMENTS:	O O T O O T OOO T Developed and Distrib Copyright 2007 - 2020	T H H Y T H H T H H uted by Smart Ci	Y MM MM Y M M Y M M ty Water In	0 0 0 0 000		
Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-a930-3446elae5bfa\dee187a0-cfd3-4695-94f4-c29e544625fd\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-a930-3446elae5bfa\dee187a0-cfd3-4695-94f4-c29e544625fd\scen DATE: 02-09-2021 TIME: 01:20:06 USER: COMMENTS:	**	*** DETAII	ED OU	T P U T ***	**	
USER: COMMENTS:	Output filename: Ca930-3446elae5bfa\dee Summary filename: C	:\Users\sfanous\ 187a0-cfd3-4695- :\Users\sfanous\	AppData\Loc 94f4-c29e54 AppData\Loc	al\Civica\V 4625fd\scen al\Civica\V	H5\4a4b2b43-29c	
COMMENTS:	DATE: 02-09-2021		TIME:	01:20:06		
	USER:					
	COMMENTS:					

Snell's Hollow Secondary Plan Area

	Unit Hyd. peak (mm) = 0.24 0.13
	TOTALS
READ STORM Filename: C:\Users\sfanous\AppD	PEAK FLOW (cms) = 0.30 0.03 0.324 (iii)
ata\Local\Temp\	TIME TO PEAK (hrs) = 2.75 2.75 2.75
8766663e-6d3f-4db9-a962-c49127701f86\e1d4db76	RUNOFF VOLUME $(mm) = 46.81 30.45 45.17$
Ptotal= 47.81 mm Comments: 5yr/6hr	TOTAL RAINFALL (mm) = 47.81 47.81 47.81
	RUNOFF COEFFICIENT = 0.98 0.64 0.94
TIME RAIN TIME RAIN TIME RAIN TIME RAIN	
hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
0.25 0.00 2.00 16.25 3.75 6.69 5.50 0.96	
0.50 0.96 2.25 16.25 4.00 3.82 5.75 0.96	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
0.75 0.96 2.50 43.98 4.25 3.82 6.00 0.96	$CN^* = 93.6$ Ia = Dep. Storage (Above)
1.00 0.96 2.75 43.98 4.50 1.91 6.25 0.96	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
1.25 0.96 3.00 12.43 4.75 1.91	THAN THE STORAGE COEFFICIENT.
1.50 5.74 3.25 12.43 5.00 0.96	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
1.75 5.74 3.50 6.69 5.25 0.96	(,
21.70 01.71 01.00 01.00 1	
	RESERVOIR(0642) OVERFLOW IS OFF
	IN= 2> OUT= 1
CALIB	DT= 5.0 min OUTFLOW STORAGE OUTFLOW STORAGE
STANDHYD (0012) Area (ha) = 2.72	(cms) (ha.m.) (cms) (ha.m.)
ID= 1 DT= 5.0 min Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00	0.0000 0.0000 0.0510 0.1120
	0.0050 0.0617 0.0730 0.1266
IMPERVIOUS PERVIOUS (i)	0.0200 0.0820 0.0960 0.1376
Surface Area (ha) = 2.45 0.27	0.0360 0.1003 0.1150 0.1490
Dep. Storage (mm) = 1.00 5.00	0.0300 0.1003 0.1130 0.1430
Average Slope (%)= 1.00 2.00	AREA QPEAK TPEAK R.V.
Length (m)= 134.66 40.00	(ha) (cms) (hrs) (mm)
Mannings n = 0.013 0.250	INFLOW: ID= 2 (0012) 2.720 0.324 2.75 45.17
- 0.015 0.250	OUTFLOW: ID= 1 (0642) 2.720 0.035 3.83 44.02
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.	001FL0W. 1D- 1 (0042) 2.720 0.033 3.03 44.02
NOTE. RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEF.	PEAK FLOW REDUCTION [Qout/Qin](%) = 10.64
	TIME SHIFT OF PEAK FLOW (min) = 65.00
TRANSFORMED HYETOGRAPH	MAXIMUM STORAGE USED (ha.m.)= 0.0986
TIME RAIN TIME RAIN TIME RAIN TIME RAIN	MAXIMOM STORAGE USED (Na.N.) - 0.0900
hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	
0.083 0.00 1.667 5.74 3.250 12.43 4.83 0.96	
0.167 0.00 1.750 5.74 3.230 12.43 4.83 0.96	CALIB
·	
	STANDHYD (0002) Area (ha) = 13.68 ID= 1 DT=15.0 min Total Imp(%) = 61.00 Dir. Conn.(%) = 53.00
0.333	ID= 1 DT=15.0 min Total Imp(%)= 61.00 Dir. Conn.(%)= 53.00
0.500	IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 8.34 5.34
0.667	Dep. Storage $(mm) = 1.00$ 5.00
0.750	Average Slope (%) = 1.00 2.30
0.833 0.96 2.417 43.98 4.000 3.82 5.58 0.96	Length $(m) = 301.99 40.00$
0.917	Mannings n = 0.013 0.250
1.000 0.96 2.583 43.98 4.167 3.82 5.75 0.96	
1.083 0.96 2.667 43.98 4.250 3.82 5.83 0.96	Max.Eff.Inten.(mm/hr) = 43.98 33.45
1.167 0.96 2.750 43.98 4.333 1.91 5.92 0.96	over (min) 15.00 30.00
1.250 0.96 2.833 12.43 4.417 1.91 6.00 0.96	Storage Coeff. (min)= 16.80 (ii) 97.80 (ii)
1.333 5.74 2.917 12.43 4.500 1.91 6.08 0.96	Unit Hyd. Tpeak (min) = 15.00 105.00
1.417 5.74 3.000 12.43 4.583 1.91 6.17 0.96	Unit Hyd. peak (cms)= 0.07 0.01
1.500 5.74 3.083 12.43 4.667 1.91 6.25 0.96	*TOTALS*
1.583 5.74 3.167 12.43 4.750 1.91	PEAK FLOW (cms)= 0.79 0.12 0.807 (iii)
	TIME TO PEAK (hrs)= 2.75 4.25 2.75
Max.Eff.Inten. $(mm/hr) = 43.98$ 36.63	RUNOFF VOLUME (mm) = 46.81 23.58 35.89
over (min) 5.00 10.00	TOTAL RAINFALL (mm) = 47.81 47.81 47.81
Storage Coeff. (min) = 4.24 (ii) 8.31 (ii)	RUNOFF COEFFICIENT = 0.98 0.49 0.75

DATE: February 2021

10.00

5.00

Unit Hyd. Tpeak (min) =

Snell's Hollow Secondary Plan Area

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- ${\rm CN^{\star}}$ = 85.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB				
STANDHYD (0021)	Area	(ha) = 6.05		
ID= 1 DT= 5.0 min	Total	Imp(%) = 67.00	Dir. Conn.(%)=	66.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha) =	4.05	2.00	
Dep. Storage	(mm) =	1.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m) =	200.83	40.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORM	ED HYETOGRA	PH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
				3.250			0.96
0.167	0.00	1.750	5.74	3.333	6.69	4.92	0.96
0.250				3.417			0.96
	0.96			3.500			0.96
0.417	0.96			3.583			0.96
0.500				3.667			0.96
				3.750			0.96
0.667				3.833		5.42	0.96
0.750				3.917			0.96
0.833		2.417			3.82		0.96
				4.083			0.96
1.000				4.167			0.96
				4.250			0.96
				4.333			0.96
				4.417			0.96
				4.500			0.96
1.417	5.74	3.000	12.43	4.583	1.91	6.17	0.96
1.500	5.74	3.083	12.43	1 4.667	1.91	6.25	0.96
1.583	5.74	3.167	12.43	1 4.750	1.91		
Max.Eff.Inten.(m							
	(min)						
Storage Coeff.	(min) =	5.39	(ii)	16.89 (ii)			
Unit Hyd. Tpeak	(min) =	5.00		20.00			
Unit Hyd. peak	(cms) =	0.21		0.06			
					TOTAI	LS	
PEAK FLOW						37 (iii)	
TIME TO PEAK				2.92	2.7		
RUNOFF VOLUME					39.0		
TOTAL RAINFALL				47.81			
RUNOFF COEFFICIE	ENT =	0.98		0.50	0.8	32	
(i) CN PROCEDU	IRE SELECTI	ED FOR PE	RVTOUS	LOSSES:			
(-,							

DATE: February 2021

 $CN^* = 88.0$ Ia = Dep. Storage (Above)

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)		3003	000011	mpn:		D 11	
1 + 2 = 3		AREA (ha)	(cms)	TPE:	AK 5)	(mm)	
ID1= 1 (00	02): 1	.3.68	0.807	2.7	5 35	.89	
+ ID2= 2 (00:							
ID = 3 (06)							
NOTE: PEAK FLO	WS DO NOT	INCLUD	E BASEFI	LOWS I	F ANY.		
RESERVOIR(0645)		RFLOW IS	OFF				
IN= 2> OUT= 1 OT= 5.0 min	OUTE	LOW	STORAGE	(OUTFLOW	STORAGE	Ξ
	(cn	ns)	(ha.m.)	1	(cms)	STORAGE (ha.m.)	
	0.0	,000	0.0000		0.2300	0.033	23
	0.0	1290	0.3310		0.3410	0.710	JU
	0.0	.680	0.4393		0.4450	0.710 0.748 0.792	25
<pre>INFLOW : ID= 2 (OUTFLOW: ID= 1 (</pre>		AREA	QPE	EAK	TPEAK	R.V.	•
	0.650)	(ha)	(cn	ns)	(hrs)	(mm)	
INFLOW: ID= 2 (0658)	19.73	0 1	1.394	2.	75 36.	. 87
Pl T	EAK FLO	W RED	UCTION K FLOW	[Qout/	Qin](%) (min)	= 10.51 =145.00	. 12
PI T Mi	EAK FLO IME SHIFT AXIMUM S	W RED OF PEA STORAGE	UCTION K FLOW USED	[Qout/	Qin](%) (min) (ha.m.)	= 10.51 =145.00 = 0.5390	
P! T: M:	EAK FLO	W RED OF PEA STORAGE	UCTION K FLOW USED	[Qout/	Qin](%) (min) (ha.m.)	= 10.51 =145.00	
PI T M.	EAK FLO IME SHIFT AXIMUM S	OW RED OF PEA STORAGE	UCTION K FLOW USED	[Qout/(Qin](%) (min) (ha.m.)	= 10.51 =145.00 = 0.5390	
PI T M.	EAK FLO IME SHIFT AXIMUM S	OW RED OF PEA STORAGE (ha)=	UCTION K FLOW USED	[Qout/(Qin](%) (min) (ha.m.)	= 10.51 =145.00 = 0.5390	
PH T M. CALIB STANDHYD (0656) = 1 DT=15.0 min	EAK FLC IME SHIFT AXIMUM S Area Total	OW RED OF PEA STORAGE (ha) = Imp (%) =	UCTION K FLOW USED 14.51 54.00 IOUS	[Qout/(Qin](%) (min) (ha.m.)	= 10.51 =145.00 = 0.5390	
PT T M. CALIB STANDHYD (0656) D= 1 DT=15.0 min	EAK FLC IME SHIFT AXIMUM S Area Total	OW RED OF PEA STORAGE (ha) = Imp (%) =	UCTION K FLOW USED 14.51 54.00 IOUS	Dir PERVIO	Qin](%) (min) (ha.m.) . Conn. DUS (i)	= 10.51 =145.00 = 0.5390	
PH T M. CALIB CTANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage	EAK FLC IME SHIFT AXIMUM S Area Total (ha) = (mm) =	OW RED COMPAGE (ha) = Imp(%) = IMPERV 7. 1.	UCTION K FLOW USED 14.51 54.00 IOUS 84	Dir PERVIC	Qin](%) (min) (ha.m.) Conn. DUS (i) 67	= 10.51 =145.00 = 0.5390	
PI T M. CALIB STANDHYD (0656) 1 DT=15.0 min Surface Area Dep. Storage Average Slope	EAK FLC IME SHIFT AXIMUM S Area Total (ha) = (mm) =	OW RED COMPAGE (ha) = Imp(%) = IMPERV 7. 1.	UCTION K FLOW USED 14.51 54.00 IOUS 84	Dir PERVI 6.0	Qin](%) (min) (ha.m.) Conn. Conn. 30 30	= 10.51 =145.00 = 0.5390	
PI T M. CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length	EAK FLC IME SHIFT AXIMUM S Area Total (ha) = (mm) =	OW RED COMPAGE (ha) = Imp(%) = IMPERV 7. 1.	UCTION K FLOW USED 14.51 54.00 IOUS 84	Dir PERVIC 6 5 2 400	Qin](%) (min) (ha.m.)	= 10.51 =145.00 = 0.5390	
PH TT M. CALIB STANDHYD (0656) D= 1 DT=15.0 min Surface Area Dep. Storage Average Slope	EAK FLC IME SHIFT AXIMUM S Area Total	OW RED C OF PEA STORAGE (ha) = Imp(%) = IMPERV 7. 1. 1. 311. 0.0	UCTION K FLOW USED 14.51 54.00 10US 84 00 00 02 13	Dir PERVIC 5 2 40 0.29	Qin](%) (min) (ha.m.) . Conn. DUS (i) 67 00 30 00 50	= 10.51 =145.00 = 0.5390 	
PH T M. CALIB STANDHYD (0656) PH 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(1	EAK FLC IME SHIFT AXIMUM S Area Total (ha) = (mm) = (%) = (m) = = mm/hr) =	OW RED C OF PEA STORAGE (ha) = Imp(%) = IMPERV 7. 1. 1. 311. 0.0	UCTION K FLOW USED 14.51 54.00 10US 84 00 00 02 13	Dir PERVIC 5 2 40 0.29	Qin](%) (min) (ha.m.) . Conn. DUS (i) 67 00 30 00 50	= 10.51 =145.00 = 0.5390 	
PH TT M. CALIB STANDHYD (0656) PH DT=15.0 min PH	EAK FLC IME SHIFT AXIMUM S Area Total (ha) = (mm) = (%) = (m) = = mm/hr) = (min)	OW RED C OF PEA STORAGE (ha) = Imp(%) = IMPERV 7. 1. 1. 311. 0.0	UCTION K FLOW USED 14.51 54.00 10US 84 00 00 02 13	Dir PERVIC 5 2 40 0.29	Qin](%) (min) (ha.m.) . Conn. DUS (i) 67 00 30 00 50	= 10.51 =145.00 = 0.5390 	
CALIB STANDHYD (0656) ETAND	Area Total (ha) = (mm) = (%) = (min) = (min) (min) =	OW RED C OF PEA STORAGE (ha) = Imp(%) = IMPERV 7. 1. 311. 0.0	UCTION K FLOW USED 14.51 54.00 IOUS 84 00 00 02 13 98 00 80 (ii)	Dir PERVIC 5 2 40 30 30 97	Qin](%) (min) (ha.m.) Conn. DUS (i) 67 00 30 00 50 98 00 80 (ii)	= 10.51 =145.00 = 0.5390 	
CALIB STANDHYD (0656) ETAND	Area Total (ha) = (mm) = (%) = (min) = (min) (min) =	OW RED C OF PEA STORAGE (ha) = Imp(%) = IMPERV 7. 1. 311. 0.0	UCTION K FLOW USED 14.51 54.00 IOUS 84 00 00 02 13 98 00 80 (ii)	Dir PERVIC 5 2 40 30 30 97	Qin](%) (min) (ha.m.) Conn. DUS (i) 67 00 30 00 50 98 00 80 (ii)	= 10.51 =145.00 = 0.5390 	
PH TT M. CALIB STANDHYD (0656) PH DT=15.0 min PH	Area Total (ha) = (mm) = (%) = (min) = (min) (min) =	OW RED COF PEA STORAGE (ha) = IMp(%) = IMPERV 7. 1. 311. 0.0	UCTION K FLOW USED 14.51 54.00 IOUS 84 00 00 02 13 98 00 80 (ii) 00 07 14.51 15.51	Dir PERVIC 6.0 5.0 2.3 40.0 30.0 97.0 105.0	Qin](%) (min) (ha.m.) Conn. DUS (i) 67 00 30 00 50 98 00 98 00 01	= 10.51 =145.00 = 0.5390)
CALIB To M. CALIB STANDHYD (0656) Description To Min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW	Area Total (ha) = (mm) = (m) = (min) = (min) = (min) = (min) = (cms) =	OW RED C OF PEA STORAGE (ha) = Imp(%) = IMPERV 7. 1. 311. 0.0 43. 15. 16. 15. 0.	UCTION K FLOW USED 14.51 54.00 IOUS 84 00 00 02 13 98 00 80 (ii) 00 07 14.51 15.51	Dir PERVIC 6.0 5.0 2.3 40.0 30.0 97.0 105.0	Qin](%) (min) (ha.m.) Conn. DUS (i) 67 00 30 00 50 98 00 98 00 01	= 10.51 =145.00 = 0.5390)
CALIB STANDHYD (0656) D= 1 DT=15.0 min DT=15.0 min	Area Total (ha) = (mm) = (m) = (min) = (min) = (min) = (min) = (cms) =	OW RED C OF PEA STORAGE (ha) = IMP(%) = IMPERV 7. 1. 311. 0.0 43. 15. 16. 16.	UCTION K FLOW USED 14.51 54.00 10US 84 00 00 02 13 98 00 80 (ii) 00 07 72 75 75	Dir PERVIC 6.0 5.0 2.3 40.0 30.0 97.0 105.0	Qin](%) (min) (ha.m.) Conn. DUS (i) 67 00 30 00 50 98 00 98 00 01	= 10.51 =145.00 = 0.5390)
CALIB To M. CALIB STANDHYD (0656) De 1 DT=15.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(In over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	Area Total (ha) = (mm) = (%) = (min) = (min) = (min) = (cms) = (cms) = (mm) =	OW RED C OF PEA STORAGE (ha) = Imp(%) = IMPERV 7. 1. 311. 0.0 43. 15. 16. 10.	UCTION K FLOW USED 14.51 54.00 10US 84 00 00 02 13 98 00 80 (ii) 00 07 72 75 81 10 10 10 10 10 10 10	Dir PERVIC 5 2 40 30 30 97	Qin](%) (min) (ha.m.) . Conn. DUS (i) 67 00 30 00 50 80 (ii) 00 01 14 25 38	= 10.51 =145.00 = 0.5390)

Snell's Hollow Secondary Plan Area

DATE: February 2021

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 84.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	
RESERVOIR(0657) OVERFLOW IS OFF IN= 2> OUT= 1 OUTFLOW STORAGE OUTFLOW S	
AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW: ID= 2 (0656) 14.510 0.748 2.75 33.61 OUTFLOW: ID= 1 (0657) 14.510 0.248 3.92 33.41 PEAK FLOW REDUCTION [Qout/Qin](%)= 33.23 TIME SHIFT OF PEAK FLOW (min)= 70.00 MAXIMUM STORAGE USED (ha.m.)= 0.2486	
V V I SSSSS U U A L (v 6.1.2003) V V I SS U U A A L V V I SS U U AAAAA L	=

V	V	I	SSSSS	U	U	A		L				(v	6.1.2003)	
V	V	I	SS	U	U	A Z	A	L						
V	V	I	SS	U	U	AAA	AΑ	L						
V	V	I	SS	U	U	A	Α	L						
,	VV	I	SSSSS	U	UUUU	A	Α	LLI	LL					
0	00	TTTTT	TTTTT	Η	H	Y	Y	M	M	00	OC	MT		
0	0	T	T	Н	H	Y	Y	MM	MM	0	0			
0	0	T	T	Н	H	Y		M	Μ	0	0			
00	00	T	T	Н	H	Y		M	Μ	00	OC			
oped	and	Distri	buted	by :	Smart	Cit	y W	ater	In	C				

Copyright 2007 - 2020 Smart City Water Inc All rights reserved.

***** DETAILED OUTPUT *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e $a930-3446e1ae5bfa\\ \ \ 335bbde2-1ad2-40c0-b9b7-1b5ffa8a121d\\ \ \ scen$ Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e $a930-3446e1ae5bfa\\ \ \ 335bbde2-1ad2-40c0-b9b7-1b5ffa8a121d\\ \ \ scen$

DATE: 02-09-2021 TIME: 01:20:05

USER:

** SIMULATION : 9. AES 6hr 10yr ************ | READ STORM | Filename: C:\Users\sfanous\AppD ata\Local\Temp\ 8766663e-6d3f-4db9-a962-c49127701f86\ce5cfdff | Ptotal= 55.69 mm | Comments: 10yr/6hr TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.00 | 2.00 18.94 | 3.75 0.25 7.80 | 5.50 1 11 1.11 | 2.25 18.94 | 4.00 4.46 | 5.75 0.50 1.11 1.11 | 2.50 51.24 | 4.25 0.75 4.46 | 6.00 1.11 1.11 | 2.75 51.24 | 4.50 1.00 2.23 | 6.25 1.11 | 3.00 14.48 | 4.75 1.25 2.23 | 1.50 6.68 | 3.25 | 14.48 | 5.00 | 1.11 | 1.75 6.68 | 3.50 7.80 | 5.25 1.11 | | CALIB | | STANDHYD (0012)| Area (ha)= 2.72 |ID= 1 DT= 5.0 min | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =2.45 0.27 1.00 5.00 Dep. Storage (mm) =(%)= 1.00 2.00 Average Slope Length (m) = 134.6640 00 Mannings n 0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 0.083 0.00 | 1.667 | 6.68 | 3.250 | 14.48 | 4.83 1.11 6.68 | 3.333 0.167 0.00 | 1.750 7.80 | 4.92 1.11 0.250 0.00 | 1.833 | 18.94 | 3.417 7.80 | 5.00 1.11 0.333 1.11 | 1.917 18.94 | 3.500 7.80 | 5.08 0.417 1.11 | 2.000 18.94 | 3.583 7.80 | 5.17 7.80 | 5.25 0.500 1.11 | 2.083 | 18.94 | 3.667 1 11 0.583 1.11 | 2.167 18.94 | 3.750 7.80 | 5.33 1.11 0.667 1.11 | 2.250 18.94 | 3.833 4.46 | 5.42 1.11 0.750 1.11 | 2.333 51.24 | 3.917 4.46 | 5.50 1.11 0.833 1.11 | 2.417 51.24 | 4.000 4.46 | 5.58 1.11 0.917 1.11 | 2.500 51.24 | 4.083 4.46 | 5.67 1.11 1.000 1.11 | 2.583 51.24 | 4.167 4.46 | 5.75 1.11

1.11 | 2.667 51.24 | 4.250

4.46 | 5.83

1.11

Snell's Hollow Secondary Plan Area

1.167 1.250 1.333 1.417 1.500	1.11 6.68 6.68 6.68	2.750 2.833 2.917 3.000 3.083 3.167	14.48 14.48 14.48 14.48	4.333 4.417 4.500 4.583 4.667 4.750	2.23 5.92 2.23 6.00 2.23 6.08 2.23 6.17 2.23 6.25 2.23	1.11 1.11 1.11 1.11 1.11
Max.Eff.Inten.(m	mm/hr)= (min)			44.37 10.00		
Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) = (min) =	3.99	(ii)	7.82 (ii) 10.00 0.13		
					TOTALS	
TIME TO PEAK RUNOFF VOLUME	(mm) = (mm) =	0.35 2.75 54.69 55.69 0.98		0.03 2.75 37.75 55.69 0.68	0.380 (iii) 2.75 53.00 55.69 0.95	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 93.6$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

RESERVOIR(0642)	OVERFLOW	IS OFF			
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE		OUTFLOW	STORAGE
				0.0510	
				0.0730	
				0.0960	
	0.0360	0.1003	I	0.1150	0.1490
	AR	EA QPE	AK	TPEAK	R.V.
	(h	a) (cm	s)	(hrs)	(mm)
INFLOW : ID= 2 (
OUTFLOW: ID= 1 (0642) 2.	720 0	.050	3.75	51.84
	IME SHIFT OF P AXIMUM STORAG				
CALIB STANDHYD (0002)	Amon (bo	12 60			
ID= 1 DT=15.0 min				Conn (%):	= 53 00
TD= 1 D1=13.0 MIII	iocai imp(s	,- 01.00	DII		- 33.00
	IMPE	RVIOUS	PERV1	IOUS (i)	
Surface Area	(ha)=	8.34	5.	.34	
Dep. Storage	(mm) =	1.00	5.	.00	
Average Slope	(%) =	1.00	2.	. 30	
Length	(m) = 30	1.99	40.	.00	
Length Mannings n	= 0	.013	0.2	250	
Max.Eff.Inten.(r					

DATE: February 2021

over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) =	15.00 16.80 (i 15.00 0.07	30.00 97.80 105.00 0.01	(ii)
				TOTALS
PEAK FLOW	(cms) =	0.92	0.16	0.944 (iii)
TIME TO PEAK	(hrs) =	2.75	4.25	2.75
RUNOFF VOLUME	(mm) =	54.69	29.94	43.05
TOTAL RAINFALL	(mm) =	55.69	55.69	55.69
RUNOFF COEFFICIE	ENT =	0.98	0.54	0.77

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 85.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB | STANDHYD (0021)| Area (ha) = 6.05 |ID= 1 DT= 5.0 min | Total Imp(%)= 67.00 Dir. Conn.(%)= 66.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) =4.05 1.00 5.00 Dep. Storage (mm) = (%)= 1.00 2.00 Average Slope 200.83 40.00 Length (m) = Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	1.667	6.68	3.250	14.48	4.83	1.11	
0.167	0.00	1.750	6.68	3.333	7.80	4.92	1.11	
0.250	0.00	1.833	18.94	3.417	7.80	5.00	1.11	
0.333	1.11	1.917	18.94	3.500	7.80	5.08	1.11	
0.417	1.11	2.000	18.94	3.583	7.80	5.17	1.11	
0.500	1.11	2.083	18.94	3.667	7.80	5.25	1.11	
0.583	1.11	2.167	18.94	3.750	7.80	5.33	1.11	
0.667	1.11	2.250	18.94	3.833	4.46	5.42	1.11	
0.750	1.11	2.333	51.24	3.917	4.46	5.50	1.11	
0.833	1.11	2.417	51.24	4.000	4.46	5.58	1.11	
0.917	1.11	2.500	51.24	4.083	4.46	5.67	1.11	
1.000	1.11	2.583	51.24	4.167	4.46	5.75	1.11	
1.083	1.11	2.667	51.24	4.250	4.46	5.83	1.11	
1.167	1.11	2.750	51.24	4.333	2.23	5.92	1.11	
1.250	1.11	2.833	14.48	4.417	2.23	6.00	1.11	
1.333	6.68	2.917	14.48	4.500	2.23	6.08	1.11	
1.417	6.68	3.000	14.48	4.583	2.23	6.17	1.11	
1.500	6.68	3.083	14.48	4.667	2.23	6.25	1.11	
1.583	6.68	3.167	14.48	4.750	2.23			
Max.Eff.Inten.(mm/	hr)=	51.24		37.05				
over (m	nin)	5.00		20.00				
Storage Coeff. (m	nin)=	5.07	(ii)	15.57 (ii))			
Unit Hyd. Tpeak (m	nin)=	5.00		20.00				

Snell's Hollow Secondary Plan Area

Unit Hyd. peak	(cms) =	0.21	0.07	
				TOTALS
PEAK FLOW	(cms) =	0.57	0.15	0.702 (iii)
TIME TO PEAK	(hrs) =	2.75	2.92	2.75
RUNOFF VOLUME	(mm) =	54.69	30.60	46.50
TOTAL RAINFALL	(mm) =	55.69	55.69	55.69
RUNOFF COEFFICI	ENT =	0.98	0.55	0.83

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 88.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0658)								
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.				
	(ha)	(cms)	(hrs)	(mm)				
ID1= 1 (0002):	13.68	0.944	2.75	43.05				
+ ID2= 2 (0021):	6.05	0.702	2.75	46.50				
=============								
ID = 3 (0658):	19.73	1.646	2.75	44.11				

RESERVOIR(0645)	OVERFLOW	IS OFF			
IN= 2> OUT= 1 DT= 5.0 min	OUTFLOW	STORAGE	1	OUTFLOW	STORAGE
			i	(cms)	(ha.m.)
	0.0000	0.0000	İ	0.2360	0.6393
	0.0290	0.3310	İ	0.3410	0.7100
	0.0950	0.4595	i	0.4450	0.7485
	0.1680	0.5720	İ	0.5320	0.7925
	AR	EA OPE	AK	TPEAK	R.V.
		~		(hrs)	
INFLOW : ID= 2 (0	•	,	,	, ,	
OUTFLOW: ID= 1 (0	645) 19.	730 0	.212	4.92	43.96

PEAK FLOW REDUCTION [Qout/Qin](%) = 12.88 TIME SHIFT OF PEAK FLOW (min)=130.00 MAXIMUM STORAGE USED (ha.m.) = 0.6156

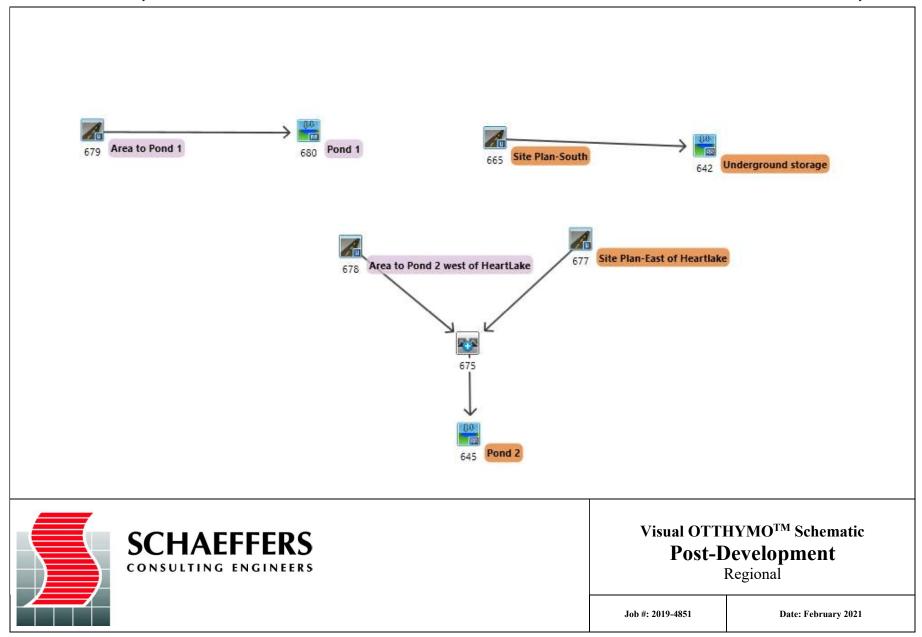
CALIB					
STANDHYD (0656)	Area	(ha) =	14.51		
ID= 1 DT=15.0 min	Total	Imp(%)=	54.00	Dir. Conn.(%) =	46.00
		IMPERVI	OUS	PERVIOUS (i)	
Surface Area	(ha) =	7.8	4	6.67	
Dep. Storage	(mm) =	1.0	0	5.00	
Average Slope	(%)=	1.0	0	2.30	
Length	(m) =	311.0	2	40.00	
Mannings n	=	0.01	3	0.250	
-					
Max.Eff.Inten.(m	m/hr)=	51.2	4	39.18	

DATE: February 2021

(ha.m.) = 0.2594

over	(min)	15.00	30.00		
Storage Coeff.	(min) =	16.80	(ii) 97.80	(ii)	
Unit Hyd. Tpeak	(min) =	15.00	105.00		
Unit Hyd. peak	(cms) =	0.07	0.01		
				TOTALS	
PEAK FLOW	(cms) =	0.84	0.18	0.876	(iii)
TIME TO PEAK	(hrs) =	2.75	4.25	2.75	
RUNOFF VOLUME	(mm) =	54.69	28.55	40.57	
TOTAL RAINFALL	(mm) =	55.69	55.69	55.69	
RUNOFF COEFFICIE	ENT =	0.98	0.51	0.73	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 84.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.


MAXIMUM STORAGE USED

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR(0657)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE (cms) (ha.m.) | (cms) (ha.m.) 0.0000 0.0000 | 0.3640 0.2594 0.0190 0.2147 | 0.5250 0.2723 0.1460 0.2350 | 0.6840 0.2789 0.2590 0.2500 | 0.8190 0.2863 AREA QPEAK TPEAK R.V.
 (ha)
 (cms)
 (hrs)
 (mm)

 INFLOW:
 ID=
 2 (0656)
 14.510
 0.876
 2.75
 40.57

 OUTFLOW:
 ID=
 1 (0657)
 14.510
 0.362
 3.50
 40.37
 PEAK FLOW REDUCTION [Qout/Qin](%) = 41.34 TIME SHIFT OF PEAK FLOW (min) = 45.00

VISUAL OTTHYMO OUTPUT:

Snell's Hollow Secondary Plan Area

Snell's Hollow Secondary Plan Area	DATE: February 2021 ID= 1 DT=15.0 min Total Imp(%) = 54.00
V V I SSSSS U U A L (v 6.1.2003) V V I SS U U A A L V V I SS U U AAAAA L V V I SS U U A A L VV I SSSSS UUUUU A A LLLLL	IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 7.84 6.67 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.30 Length (m) = 311.02 40.00 Mannings n = 0.013 0.250
OOO TTTTT TTTTT H H Y Y M M OOO TM O O T T H H Y Y MM MM O O O O T T H H Y M M O O	NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.
OOO T T H H Y M M OOO Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved.	TRANSFORMED HYETOGRAPH TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.250 6.00 3.250 13.00 6.250 23.00 9.25 53.00 0.500 6.00 3.500 13.00 6.500 23.00 9.50 53.00
***** DETAILED OUTPUT ****	0.750
<pre>Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e- a930-3446elae5bfa\bcb80c80-1592-44f4-8f20-039a9462c807\scen Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e- a930-3446elae5bfa\bcb80c80-1592-44f4-8f20-039a9462c807\scen</pre>	1.750
DATE: 02-09-2021 TIME: 01:53:18 USER:	Max.Eff.Inten.(mm/hr) = 53.00 61.44 over (min) 15.00 30.00 Storage Coeff. (min) = 16.80 (ii) 97.80 (ii) Unit Hyd. Tpeak (min) = 15.00 105.00 Unit Hyd. peak (cms) = 0.07 0.01
COMMENTS:	*TOTALS* PEAK FLOW (cms) = 0.96 0.70 1.378 (iii) TIME TO PEAK (hrs) = 10.00 11.50 10.00 RUNOFF VOLUME (mm) = 211.00 190.49 199.92 TOTAL RAINFALL (mm) = 212.00 212.00 212.00
******************	RUNOFF COEFFICIENT = 1.00 0.90 0.94
** SIMULATION : Run 62	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 92.0
bd9e8b95-ead9-4ba2-b13c-50e102ab6333\3fdc4478 Ptotal=212.00 mm	
TIME RAIN TIME R	RESERVOIR(0680)
CALIB	AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)

VISUAL OTTHYMO OUTPUT:

Snell's Hollow Secondary Plan Area

INFLOW : ID	= 2	(0679)	14.510	1.378	10.00	199.92
OUTFLOW: ID	= 1	(0680)	14.510	1.470	10.00	199.72

PEAK FLOW REDUCTION [Qout/Qin](%)=106.64

TIME SHIFT OF PEAK FLOW (min)= 0.00

MAXIMUM STORAGE USED (ha.m.)= 0.2850

**** WARNING : HYDROGRAPH PEAK WAS NOT REDUCED.

CHECK OUTFLOW/STORAGE TABLE OR REDUCE DT.

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORMED	HYETOGR	RAPH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	6.00	3.083	13.00	6.083	23.00	9.08	53.00
0.167	6.00	3.167	13.00	6.167	23.00	9.17	53.00
0.250	6.00	3.250	13.00	6.250	23.00	9.25	53.00
0.333	6.00	3.333	13.00	6.333	23.00	9.33	53.00
0.417	6.00	3.417	13.00	6.417	23.00	9.42	53.00
0.500	6.00	3.500	13.00	6.500	23.00	9.50	53.00
0.583	6.00	3.583	13.00	6.583	23.00	9.58	53.00
0.667	6.00	3.667	13.00	6.667	23.00	9.67	53.00
0.750	6.00	3.750	13.00	6.750	23.00	9.75	53.00
0.833	6.00	3.833	13.00	6.833	23.00	9.83	53.00
0.917	6.00	3.917		6.917	23.00		53.00
1.000	6.00	4.000	13.00	7.000	23.00	10.00	53.00
1.083		4.083	17.00	7.083	13.00		38.00
1.167		4.167	17.00	7.167	13.00		38.00
1.250	4.00	4.250	17.00	7.250	13.00		38.00
1.333	4.00	4.333	17.00	7.333	13.00	10.33	38.00
1.417	4.00	4.417	17.00	7.417	13.00	10.42	38.00
1.500	4.00	4.500	17.00	7.500	13.00		38.00
1.583		4.583	17.00	7.583			38.00
1.667	4.00			7.667			38.00
1.750	4.00	4.750	17.00	7.750	13.00	10.75	38.00
1.833	4.00	4.833	17.00	7.833	13.00	10.83	38.00
1.917		4.917	17.00	7.917	13.00		38.00
2.000		5.000	17.00		13.00		38.00
2.083		5.083	13.00		13.00		13.00
2.167		5.167	13.00		13.00		13.00
2.250		5.250	13.00		13.00		13.00
2.333		5.333	13.00		13.00		13.00
2.417		5.417	13.00		13.00		13.00
2.500	6.00	5.500	13.00		13.00		13.00
2.583	6.00	5.583	13.00	8.583	13.00		13.00
2.667	6.00	5.667	13.00	8.667	13.00	11.67	13.00
2.750	6.00	5.750	13.00	8.750	13.00	11.75	13.00

DATE: February 2021

2.833 2.917 3.000	6.00	5.833 5.917 6.000	13.00 8.83 13.00 8.91 13.00 9.00	7 13.00 11.	92 13.00
Max.Eff.Inten.(m	. ,	53.00	54.12		
over	(min)	5.00	15.00		
Storage Coeff.	(min) =	5.00	(ii) 14.03	(ii)	
Unit Hyd. Tpeak	(min) =	5.00	15.00		
Unit Hyd. peak	(cms) =	0.21	0.08		
				TOTALS	
PEAK FLOW	(cms) =	0.59	0.29	0.883	(iii)
TIME TO PEAK	(hrs) =	10.00	10.00	10.00	
RUNOFF VOLUME	(mm) =	211.00	192.52	204.72	
TOTAL RAINFALL	(mm) =	212.00	212.00	212.00	
RUNOFF COEFFICIE	ENT =	1.00	0.91	0.97	

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 94.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

		IMPERVIOUS	PERVIOUS	(1)
Surface Area	(ha) =	8.34	5.34	
Dep. Storage	(mm) =	1.00	5.00	
Average Slope	(%)=	1.00	2.30	
Length	(m) =	301.99	40.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

		TRA	ANSFORMED HY	ETOGRAPH		
TIME	RAIN	TIME	RAIN '	TIME RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr '	hrs mm/hr	hrs	mm/hr
0.250	6.00	3.250	13.00 6.	250 23.00	9.25	53.00
0.500	6.00	3.500	13.00 6.	500 23.00	9.50	53.00
0.750	6.00	3.750	13.00 6.	750 23.00	9.75	53.00
1.000	6.00	4.000	13.00 7.	000 23.00	10.00	53.00
1.250	4.00	4.250	17.00 7.	250 13.00	10.25	38.00
1.500	4.00	4.500	17.00 7.	500 13.00	10.50	38.00
1.750	4.00	4.750	17.00 7.	750 13.00	10.75	38.00
2.000	4.00	5.000	17.00 8.	000 13.00	11.00	38.00
2.250	6.00	5.250	13.00 8.	250 13.00	11.25	13.00
2.500	6.00	5.500	13.00 8.	500 13.00	11.50	13.00
2.750	6.00	5.750	13.00 8.	750 13.00	11.75	13.00
3.000	6.00	6.000	13.00 9.	000 13.00	12.00	13.00
Max.Eff.Inten.(mm/	hr) =	53.00	63.2	9		
over (m	in)	15.00	30.0	0		
Storage Coeff. (m	in)=	16.80	(ii) 97.8	0 (ii)		

0.01

TOTALS

15.00 105.00

0.07

Unit Hyd. Tpeak (min) =

Unit Hyd. peak (cms) =

VISUAL OTTHYMO OUTPUT:

Snell's Hollow Secondary Plan Area

PEAK FLOW	(cms) =	1.04	0.58	1.390 (iii)
TIME TO PEAK	(hrs) =	10.00	11.50	10.00
RUNOFF VOLUME	(mm) =	211.00	193.11	202.59
TOTAL RAINFALL	(mm) =	212.00	212.00	212.00
RUNOFF COEFFICI	ENT =	1.00	0.91	0.96

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 93.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADI	O HYD (0675)				
1	L + 2 =	3	AREA	QPEAK	TPEAK	R.V.
			(ha)	(cms)	(hrs)	(mm)
	ID1=	1 (0677)	: 6.05	0.883	10.00	204.72
	+ ID2=	2 (0678)	: 13.68	1.390	10.00	202.59
	=====					
	TD =	3 (0675)	. 19 73	2 272	10 00	203 24

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0645) IN= 2> OUT= 1	OVERFLOW	IS OFF				
DT= 5.0 min	OUTFLOW	STORAGE	1	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	Ī	(cms)	(ha.m.)	
	0.0000	0.0000		0.3410	0.7100	
	0.0290	0.3310		0.4450	0.7485	
	0.0950	0.4595		0.5320	0.7925	
	0.1680	0.5720		1.5380	1.4815	
	0.2360	0.6393		0.0000	0.0000	
	AR	~		TPEAK	R.V.	
	(h 0675) 19. 0645) 19.		272 537	(hrs) 10.00 11.17	(mm) 203.24 203.04	

PEAK FLOW REDUCTION [Qout/Qin](%) = 67.65 TIME SHIFT OF PEAK FLOW (min) = 70.00 MAXIMUM STORAGE USED (ha.m.) = 1.4815

CALIB					
STANDHYD (0665)	Area	(ha)=	2.72		
ID= 1 DT= 5.0 min	Total	Imp(%)=	90.00	Dir. Conn.(%)=	90.00
		IMPERVI(OUS	PERVIOUS (i)	
Surface Area	(ha) =	2.4	5	0.27	
Dep. Storage	(mm) =	1.0	0	5.00	
Average Slope	(%)=	1.0	0	2.00	
Length	(m) =	134.6	6	40.00	
Mannings n	=	0.01	3	0.250	
-					

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

DATE: February 2021

		TRA	ANSFORME	D HYETOGR	APH	-	
TIME	RAIN		RAIN		RAIN		RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083		3.083	13.00	6.083	23.00	9.08	53.00
0.167	6.00	3.167	13.00	6.167	23.00	9.17	53.00
0.250		3.250		6.250	23.00	9.25	53.00
0.333		3.333		6.333	23.00	9.33	53.00
0.417		3.417		6.417	23.00	9.42	53.00
0.500		3.500		6.500	23.00		53.00
0.583		3.583			23.00		53.00
0.667		3.667		6.667	23.00		53.00
0.750		3.750		6.750		9.75	53.00
0.833		3.833		6.833		9.83	53.00
0.917		3.917		6.917		9.92	53.00
1.000		4.000			23.00		53.00
1.083		4.083		7.083		10.08	38.00
1.167		4.167 4.250		7.167 7.250		10.17 10.25	38.00 38.00
1.250 1.333		4.230		7.230		10.25	38.00
1.417		4.333		7.417		10.33	38.00
1.500		4.500		7.500		10.42	38.00
1.583		4.583		7.583		10.58	38.00
1.667		1 4.667		7.667		10.67	38.00
1.750		1 4.750		7.750		10.75	38.00
1.833		1 4.833		7.833		10.83	38.00
1.917		4.917		7.917		10.92	38.00
2.000		5.000		8.000	13.00		38.00
2.083		5.083		8.083	13.00	11.08	13.00
2.167	6.00	5.167	13.00	8.167	13.00	11.17	13.00
2.250	6.00	5.250	13.00	8.250	13.00	11.25	13.00
2.333	6.00	5.333	13.00	8.333	13.00	11.33	13.00
2.417	6.00	5.417	13.00	8.417	13.00		13.00
2.500	6.00	5.500	13.00	8.500		11.50	13.00
2.583	6.00	5.583	13.00	8.583	13.00	11.58	13.00
2.667		5.667		8.667		11.67	13.00
2.750		5.750		8.750		11.75	13.00
2.833		5.833		8.833		11.83	13.00
2.917		5.917	13.00	8.917	13.00	11.92	13.00
3.000	6.00	6.000	13.00	9.000	13.00	12.00	13.00
Max.Eff.Inten.(n		53.00		52.87			
	(min)	5.00		10.00			
Storage Coeff.	(min) =	3.94	(ii)	7.72 (ii)		
Unit Hyd. Tpeak		5.00		10.00			
Unit Hyd. peak	(cms) =	0.24		0.13	* T! ∩ !!	TALS*	
PEAK FLOW	(cms) =	0.36		0.04		.400 (iii)
TIME TO PEAK	(hrs)=	10.00		10.00		0.00	,
RUNOFF VOLUME	(mm) =	211.00	1	99.43		9.84	
TOTAL RAINFALL	(mm) =	212.00		12.00		2.00	
RUNOFF COEFFICIE	. ,	1.00		0.94		0.99	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 97.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area

,

RESERVOIR(0642)	OVERFLOW I	S OFF				
IN= 2> OUT= 1						
DT= 5.0 min	OUTFLOW	STORAGE	- 1	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	- 1	(cms)	(ha.m.)	
	0.0000	0.0000		0.0730	0.1266	
	0.0050	0.0617		0.0960	0.1376	
	0.0200	0.0820		0.1150	0.1490	
	0.0360	0.1003	- 1	0.3350	0.1968	
	0.0510	0.1120	- 1	0.0000	0.0000	
	ARE	A QPI	EAK	TPEAK	R.V.	
	(ha) (cr	ns)	(hrs)	(mm)	
INFLOW : ID= 2 (0	665) 2.7	20 (.400	10.00	209.84	
OUTFLOW: ID= 1 (0	642) 2.7	20 (.334	10.08	208.69	
	K FLOW RE					
	E SHIFT OF PE					
MAX	IMUM STORAGE	USED		(ha.m.) =	0.1968	

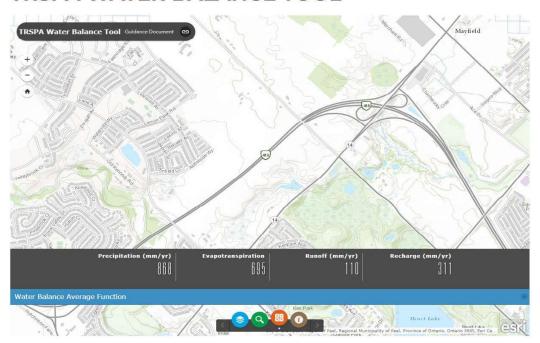
FINISH

5

DATE: February 2021

APPENDIX D: WATER BALANCE CALCULATIONS

Table 3.1: Hydrologic Cycle Component Values


9	Water Holding Capacity mm	Hydrologic Soil Group	Precipitation mm	Evapo- transpiration mm	Runoff mm	Infiltration mm
Urban Lawns/Sh	allow Rooted Cro	ops (spinach, b	oeans, beets, car	rots)		
Fine Sand	50	A	940	515	149	276
Fine Sandy Loam	75	В	940	525	187	228
Silt Loam	125	С	940	536	222	182
Clay Loam	100	CD	940	531	245	164
Clay	75	D	940	525	270	145
Moderately Root	ted Crops (corn a	nd cereal grai	ns)			272
Fine Sand	75	A	940	525	125	291
Fine Sandy Loam	150	В	940	539	160	241
Silt Loam	200	С	940	543	199	199
Clay Loam	200	CD	940	543	218	179
Clay	150	D	940	539	241	160
Pasture and Shru	abs		-			
Fine Sand	100	A	940	531	102	307
Fine Sandy Loam	150	В	940	539	140	261
Silt Loam	250	C	940	546	177	217
Clay Loam	250	CD	940	546	197	197
Clay	200	D	940	543	218	179
Mature Forests						
Fine Sand	250	A	940	546	79	315
Fine Sandy Loam	300	В	940	548	118	274
Silt Loam	400	С	940	550	156	234
Clay Loam	400	CD	940	550	176	215
Clay	350	D	940	549	196	196

Notes: Hydrologic Soil Group A represents soils with low runoff potential and Soil Group D represents soils with high runoff potential. The evapotranspiration values are for mature vegetation. Streamflow is composed of baseflow and runoff.

^{*}This is the total infiltration of which some discharges back to the stream as base flow. The infiltration factor is determined by summing a factor for topography, soils and cover.

Topography	Flat Land, average slope < 0.6 m/km	0.3	
	Rolling Land, average slope 2.8 m to 3.8 m/km	0.2	
	Hilly Land, average slope 28 m to 47 m/km	0.1	
Soils	Tight impervious clay	0.1	
	Medium combinations of clay and loam	0.2	
	Open Sandy Ioam	0.4	
Cover	Cultivated Land	0.1	
	Woodland	0.2	

TRSPA WATER BALANCE TOOL

	mm/year	%
Input:		
Precip	868	100%
Output:		
Evavp	695	62%
Runoff	110	10%
Recharge	311	28%
Total Output	1116	100%

	mm/year	%
Input:		
Precip	868	100%
Output:		
Evavp	541	62%
Runoff	86	10%
Recharge	242	28%
Total Output	868	100%

TABLE 1: WATER BUDGET - PRE DEVELOPMENT WATER BALANCE/WATER BUDGET ASSESSMENT

		Drainage Area 1		Drainage Area 2 Drainage Area 3		
Catchment Designation	Natural Feature Area	Imperviousness	Agricultural and Meadow	Agricultural and Meadow	Agricultural and Meadow	Total
Area (m²)	241000	1980	219020	126000	29000	617000
Pervious Area (m²)	241000	0	219020	126000	29000	615020
Impervious Area (m²)	0	1980	0	0	0	1980
Infiltration Factors						
Topography Infiltration Factor (Rolling Land)	0.2	N/A	0.2	0.2	0.2	
Soil Infiltration Factor (Soil Type D)	0.1	N/A	0.1	0.1	0.1	
Land Cover Infiltration Factor	0.2	N/A	0.1	0.1	0.1	
MOE Infiltration Factor	0.5	N/A	0.4	0.4	0.4	
Inputs (per unit area)						
Precipitation (mm/year	868	868	868	868	868	868
Total Inputs (mm/year)	868	868	868	868	868	868
Outputs (per unit area)						
Precipitation Surplus (mm/year)	418	781	418	418	418	419
Net Surplus (mm/year)	418	781	418	418	418	419
Downspout Disconnection Retention*	0	0	0	0	0	0
Evapotranpiration (mm/year)	450	87	450	450	450	449
Roof Evapotranspiration (mm/year)**	0	0	0	0	0	0
Rooftop Runoff Lawn Evaporation (mm/year)	0	0	0	0	0	0
Total Evapotranspiration (mm/yr)	450	87	450	450	450	449
Infiltration (mm/year)	209	0	167	167	167	183
Rooftop Infiltration (mm/year)**	0	0	0	0	0	0
Total Infiltration (mm/year)	209	0	167	167	167	183
Runoff Pervious Area (mm/year)	209	781	251	251	251	236
Runoff Impervious Area (mm/year)	0	0	0	0	0	0
Total Runoff (mm/year)	209	781	251	251	251	236
Total Outputs (mm/year)	868	868	868	868	868	868
Difference (Inputs - Outputs)	0	0	0	0	0	0
Input Volumes	222.122	17.1	100100		22122	l
Precipitation (m³/year)	209188	1719	190109	109368	25172	535556
Total Inputs (m³/year)	209188	1719	190109	109368	25172	535556
Outputs (Volumes)						
Precipitation Surplus (m³/year)	100738	1547	91550	52668	12122	258625
Net Surplus (m³/year)	100738	1547	91550	52668	12122	258625
Downspout Disconnection Retention* (m³/year)	0	0	0	0	0	0
Evapotranpiration (m³/year)	108450	172	98559	56700	13050	276931
Roof Evapotranspiration (m³/year)	0	0	0	0	0	0
Rooftop Runoff Lawn Evaporation (m³/year)	0	0	0	0	0	0
					-	
Total Evapotranspiration (m³/year)	108450	172	98559	56700	13050	276931
Infiltration (m³/year)	50369	0	36620	21067	4849	112905
Rooftop Infiltration (m³/year)	0	0	0	0	0	0
Total Infiltration (m³/year)	50369	0	36620	21067	4849	112905
Runoff Pervious Area (m³/year)	50369	1547	54930	31601	7273	145720
Runoff Impervious Area (m³/year)	0	0	0	0	0	0
Total Runoff (m³/year)	50369	1547	54930	31601	7273	145720
Total Outputs (m³/year)	209188	1719	190109	109368	25172	535556
Difference (Inputs - Outputs)	0	0	0	0	0	0

TABLE 2: WATER BUDGET - POST DEVELOPMENT WATER BALANCE/WATER BUDGET ASSESSMENT

		Area drainii	ng to Pond 1	Area draining to pond 2		Southern Area		Eastern Area Draining to Pond 2		
Catchment Designation	Natural Feature Area	Pervious Area	Impervious Area	Pervious Area	Impervious Area	Pervious Area	Impervious Area	Pervious Area	Impervious Area	Total
Area (m²)	247400	66864	78237	53783	83017	2680	24520	19702	40798	617000
Pervious Area (m ²)	247400	66863.5	0	53782.86	0	2680	0	19702	0	390428
Impervious Area (m²)	0	0	78236.5	0	83017.14	0	24520	0	40798	226572
Infiltration Factors										
Topography Infiltration Factor (Rolling Land)	0.2	0.2	N/A	0.2	N/A	0.2	N/A	0.2	N/A	
Soil Infiltration Factor (Soil Type D)	0.1	0.1	N/A	0.1	N/A	0.1	N/A	0.1	N/A	
Land Cover Infiltration Factor	0.2	0.1	N/A	0.1	N/A	0.1	N/A	0.1	N/A	
MOE Infiltration Factor	0.5	0.4	N/A	0.4	N/A	0.4	N/A	0.4	N/A	
Inputs (per unit area)										
Precipitation (mm/year	868	868	868	868	868	868	868	868	868	868
Total Inputs (mm/year)	868	868	868	868	868	868	868	868	868	868
Outputs (per unit area)						112		112		
Precipitation Surplus (mm/year)	418	418	781	418	781	418	781	418	781	551
Net Surplus (mm/year)	418 0	418 0	781 0	418 0	781 0	418 0	781 0	418 0	781 0	551 0
Downspout Disconnection Retention* Evapotranpiration (mm/year)	450	450	0 87	450	87	450	87	450	87	317
Roof Evapotranspiration (mm/year)**	0	0	0	0	0	0	0	0	0	0
Rooftop Runoff Lawn Evaporation (mm/year)	0	0	0	0	0	0	0	0	0	0
Total Evapotranspiration (mm/yr)	450	450	87	450	87	450	87	450	87	317
Infiltration (mm/year)	209	167	0	167	0	167	0	167	0	123
Rooftop Infiltration (mm/year)**	0	0	0	0	0	0	0	0	0	0
Total Infiltration (mm/year)	209	167	0	167	0	167	0	167	0	123
Runoff Pervious Area (mm/year)	209	251	0	251	0	251	0	251	0	142
Runoff Impervious Area (mm/year)	0	0	781	0	781	0	781	0	781	287
Total Runoff (mm/year)	209	251	781	251	781	251	781	251	781	429
Total Outputs (mm/year)	868	868	868	868	868	868	868	868	868	868
Difference (Inputs - Outputs)	0	0	0	0	0	0	0	0	0	0
Input Volumes										4
Precipitation (m³/year)	214743	58038	67909	46684	72059	2326	21283	17101	35413	535556
Total Inputs (m³/year)	214743	58038	67909	46684	72059	2326	21283	17101	35413	535556
Outputs (Volumes)										
Precipitation Surplus (m³/year)	103413	27949	61118	22481	64853	1120	19155	8235	31871	340197
Net Surplus (m³/year)	103413	27949	61118	22481	64853	1120	19155	8235	31871	340197
Downspout Disconnection Retention* (m³/year)	0	0	0	0	0	0	0	0	0	0
Evapotranpiration (m³/year)	111330	30089	6791	24202	7206	1206	2128	8866	3541	195359
Roof Evapotranspiration (m³/year)	0	0	0	0	0	0	0	0	0	0
Rooftop Runoff Lawn Evaporation (m³/year)	0	0	0	0	0	0	0	0	0	0
Total Evapotranspiration (m³/year)	111330	30089	6791	24202	7206	1206	2128	8866	3541	195359
Infiltration (m³/year)	51707	11180	0	8992	0	448	0	3294	0	75621
Rooftop Infiltration (m ³ /year)	0	0	0	0	0	0	0	0	0	0
Total Infiltration (m³/year)	51707	11180	0	8992	0	448	0	3294	0	75621
Runoff Pervious Area (m³/year)	51707	16769	0	13489	0	672	0	4941	0	87578
Runoff Impervious Area (m ³ /year)	0	0	61118	0	64853	0	19155	0	31871	176998
Total Runoff (m³/year)	51707	16769	61118	13489	64853	672	19155	4941	31871	264576
Total Outputs (m³/year)	214743	58038	67909	46684	72059	2326	21283	17101	35413	535556
										-1
Difference (Inputs - Outputs)	0	0	0	0	0	0	0	0	0	0

Water Balance Mitigation Calculations - OPTION 1

Pre Development Infintration =	112,905 m³/y
Post Development Infiltration =	75,621 m³/y
Post to Pre Deficit =	37.284 m ³ /v

				4 .
/ N/Arall	$\mathbf{D} \wedge \mathbf{c}$	uurad	mitiai	ation.
Overall	NEU	ıuıreu	HILLIUG	211011

m³/year 36.96 ha x Annual Precipitation Depth = 37,284

Required Annual Precpitation Depth to meet deficit = 101 mm/yr

990.53 m³/event Based on this analysis, it is concluded that precipitation events of depth less than or equal to 2.68 mm

will produce an annual amount of precipitation equal to 101 mm/yr

OPTION 1 Catchment 203 will provide own site plan controls to achieve post to pre infiltration (5mm) Infiltration trenches proposed on Low density development west of Heart lake Road Infiltration trenches at park area

Mitigation Measures

Catchment 203 on-site controls 5,200 m³/y $0 \text{ m}^3/\text{y}$ Topsoil Amendment = Infiltration Trenches= 29,620 m³/y Mitgation Voulme Provided =

34,820 m³/y

2,464 m³/y 98% Deficit =

Site Plan Mitigation

2.72 ha x Annual Precipitation Depth = 5,200 m³/year

Required Annual Precpitation Depth to meet deficit = 191 mm/yr

Based on this analysis, it is concluded that precipitation events of depth less than or equal to 136.00 m³/event 5.00 mm

will produce an annual amount of precipitation equal to 191 mm/yr

Infiltration Trenches=

Considering half the roof area

will produce an annual amount of precipitation equal to

2.23 ha x Annual Precipitation Depth = 17,380	m³/year				8.9
Required Annual Precpitation Depth to meet deficit =	781 mm/yr			Roof	4.45
Based on this analysis, it is concluded that precipitation events	s of depth less than or equal to	27.35 mm	608.54 m³/event	Backyards	3.56
will produce an annual amount of precipitation equal to	781 mm/yr			Front	0.89

Backyards

3.56 ha x Annual Precipitation Depth =	8,950	m³/year				
Required Annual Precpitation Depth to meet defi	icit =	251	mm/yr			
Based on this analysis, it is concluded that precip	pitation even	s of depth less	s than or equal to	6.60 mm	234.96 m ³ /event	making runoff 0
will produce an annual amount of precipitation ed	qual to	251	mm/yr			

251 mm/yr

In the park area

1.31 ha x Annual Precipitation Depth =	3,290	m³/year				
Required Annual Precpitation Depth to meet def	icit =	251	mm/yr			
Based on this analysis, it is concluded that preci	pitation event	s of depth les	ss than or equal to	6.60 mm	86.46 m³/event	making runoff 0

Infiltration Sizing Calcula	ations for backvards - C	Option 1
		, p

Required Infiltration System Footprint Area				
	Infiltration Volume	843.50	m^3	
	drawdown time	48	hours	(Based on Hydro-Geologic report- hydraulic conductivity = 10 ⁻⁶)
	infiltration rate	15	mm/h	
	Safety Factor	2.5		
	Design Infiltration Rate	6	mm/h	MOE Eqn 4.3
	Required Footprint Area	7322	m^2	

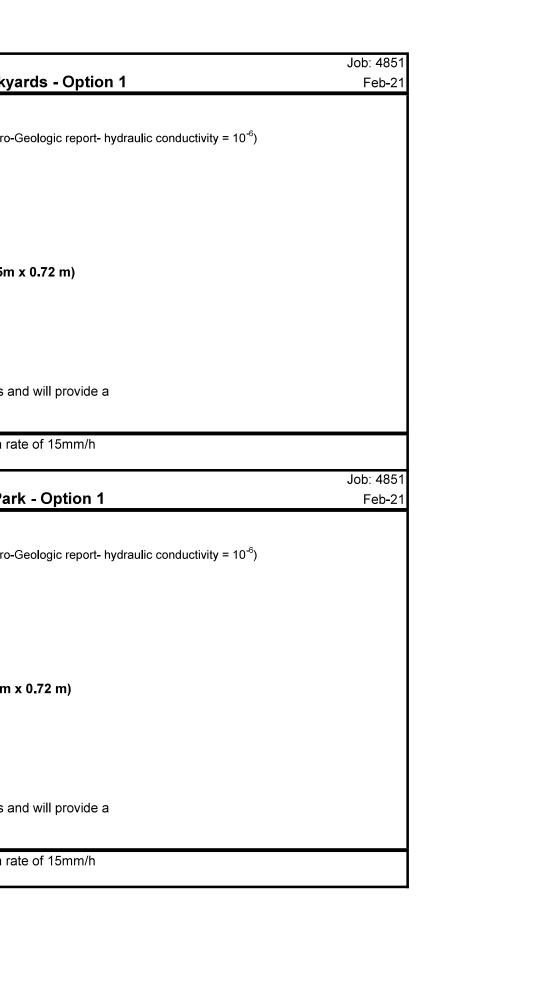
Proposed Infiltration Details - Trenches

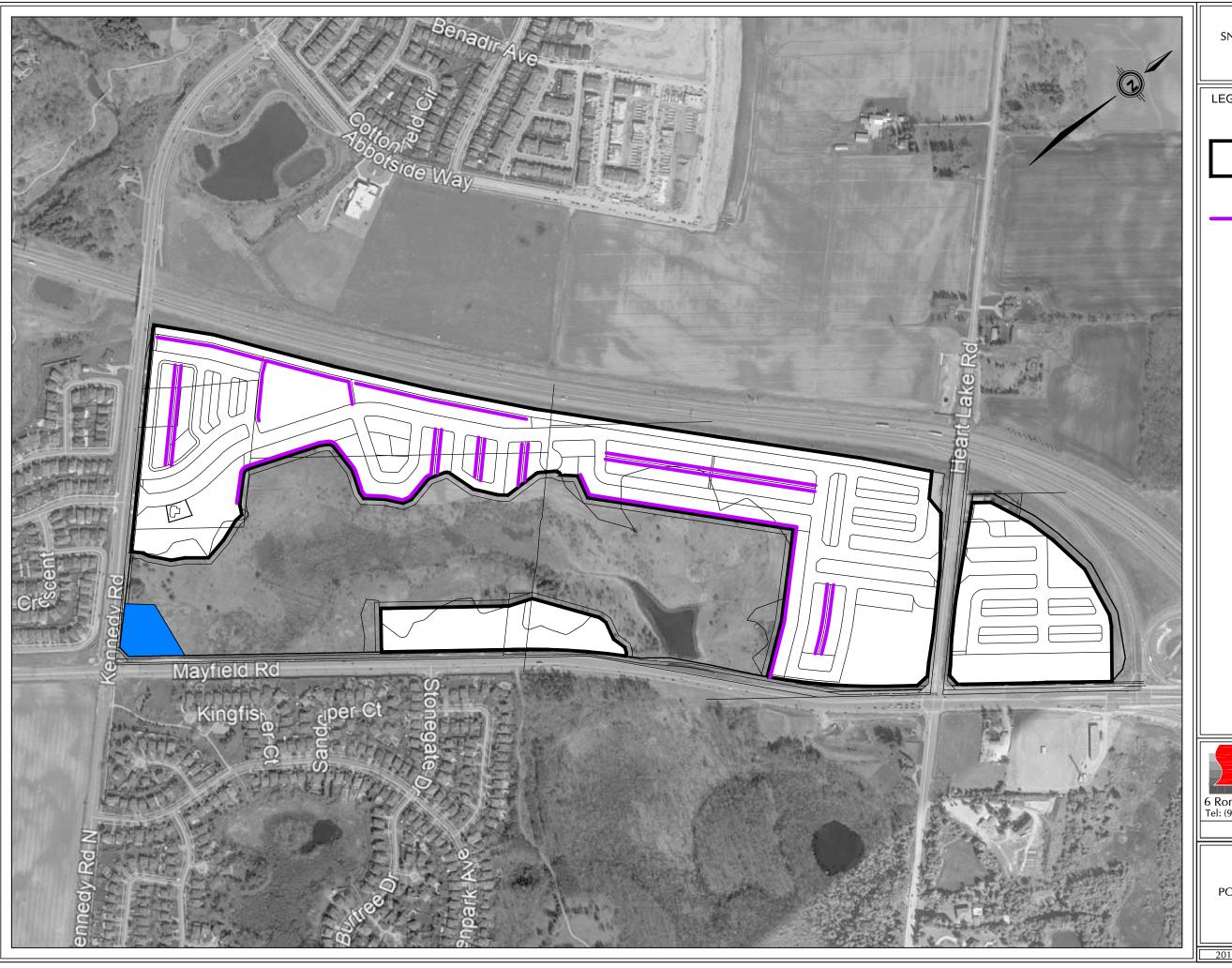
	•		
Length=	2000	m	
Width=	1.5	m	(2000m x 1.5m x 0.72 m)
Trench Volume Provided=	864.00	m^3	
Required Storage Depth =	0.72	m	
Drawdown time=	48.00	hours	
Volume retained per site =	864.00	m^3	

Therefore the proposed system has the required footprint area to drain within 48 hours and will provide a retention volume that exceeds the required volume for mitigation

* Soils with Satutrated Hydraulic Conductivity = 1(10⁻⁶) cm/s correlates to an infiltration rate of 15mm/h Low Impact Development Design Manual (TRCA and CVC, 2010)

Infiltration Sizing Calculations for Park - Option 1


Required Infiltration Syster			
Infiltration Volume	86.46	m^3	
drawdown time	48	hours	(Based on Hydro
infiltration rate	15	mm/h	
Safety Factor	2.5		
Design Infiltration Rate	6	mm/h	MOE Eqn 4.3
Required Footprint Area	751	m^2	


Proposed	Infiltration	Details -	Trenches
----------	--------------	-----------	----------

	Proposeu illillia	ation Details	s = Trenches
Length=	201	m	
Width=	1.5	m	(201m x 1.5m x 0.72 m)
Trench Volume Provided=	86.83	m^{3}	
Required Storage Depth =	0.72	m	
Drawdown time=	48.00	hours	
Volume retained per site =	86.83	m^3	

Therefore the proposed system has the required footprint area to drain within 48 hours and will provide a retention volume that exceeds the required volume for mitigation

^{*} Soils with Satutrated Hydraulic Conductivity = 1(10⁻⁶) cm/s correlates to an infiltration rate of 15mm/h Low Impact Development Design Manual (TRCA and CVC, 2010)

SNELL'S HOLLOW SECONDARY PLAN TOWN OF CALEDON

LEGEND

DEVELOPMENT BOUNDARY

POTENTIAL INFILTRATION TRENCH LOCATIONS

6 Ronrose Drive, Concord, Ontario L4K 4R3 Tel: (905) 738-6100 Email: general@schaeffers.com

FIGURE A5.1 POTENTIAL INFILTRATION LOCATION **MEASURES**

2019-4851 APRIL 2021 SCALE: N.T.S.

Water Balance Mitigation Calculations - OPTION 2

Pre Development Infintration = 112,905 m³/y Post Development Infiltration = 75,621 m³/y Post to Pre Deficit = 37,284 m³/y

()Vorall	Paguirad	mitiaati	n
Overall	Required	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	911

m³/year 36.96 ha x Annual Precipitation Depth = 37,284

Required Annual Precpitation Depth to meet deficit = 101 mm/yr

2.68 mm 990.53 m³/event Based on this analysis, it is concluded that precipitation events of depth less than or equal to

will produce an annual amount of precipitation equal to

OPTION 2 Catchment 203 will provide own site plan controls to achieve post to pre infiltration

Infiltration trenches proposed on Low density development west of Heart lake Road (only for areas draining to SWM Pond 2)

Infiltration facility proposed at the park facility

Mitigation Measures

Catchment 203 on-site controls 5,200 m³/y 22,150 m³/y Infiltration Facility Infiltration Trenches= 12,590 m³/y Mitgation Voulme Provided = 39,940 m³/y

> $-2,656 \text{ m}^3/\text{y}$ 102% Deficit =

Site Plan Mitigation

2.72 ha x Annual Precipitation Depth = m³/year 5,200

Required Annual Precpitation Depth to meet deficit = 191 mm/yr

136.00 m³/event Based on this analysis, it is concluded that precipitation events of depth less than or equal to 5.00 mm

will produce an annual amount of precipitation equal to 191 mm/yr

Infiltration facility at the proposed park on the west

			Roof	2.835
2.84 ha x Annual Precipitation Depth = 22,150 m³/year			Backyards	2,268
Required Annual Precpitation Depth to meet deficit = 781 mm/yr			Front	0.567
Based on this analysis, it is concluded that precipitation events of depth less than or equal to	27.35 mm	775.37 m³/event		
will produce an annual amount of precipitation equal to 781 mm/yr				

Infiltration Trenches=

For areas draining to SWM Pond 2

Considering half the roof area

1.06 ha x Annual Precipitation Depth =	8,320	m³/year				4.2596
Required Annual Precpitation Depth to meet de	ficit =	781 mm/yr			Roof	2.1298
Based on this analysis, it is concluded that pred	ipitation even	its of depth less than or equal to	27.35 mm	291.25 m ³ /event	Backyards	1.70384
will produce an annual amount of precipitation e	equal to	781 mm/yr			Front	0.42596

Backayds

1.70 ha x Annual Precipitation Depth =	4,270	mˇ/year	
Poquired Annual Prospitation Donth to most do	ficit -	251	mm/vr

Required Annual Precpitation Depth to meet deficit = 251 mm/yr

112.45 m³/event Based on this analysis, it is concluded that precipitation events of depth less than or equal to 6.60 mm

will produce an annual amount of precipitation equal to 251 mm/yr making runoff 0

5.67

				Job: 4851
	Infiltrat	ion Sizing Cal	culations for backyards - Option 2	Feb-21
Required Infiltration System	ո Footprint A	rea	·	
Infiltration Volume	403.70	m^3		
Number of Lots	1			
Inillftration Volume Per lot	403.70	m^3		
drawdown time	48	hours	(Based on Hydro-Geologic report- hydraulic conductivity = 10 ⁻⁶)	
infiltration rate	15	mm/h		
Safety Factor	2.5			
Design Infiltration Rate	6	mm/h	MOE Eqn 4.3	
Required Footprint Area	3504	m ²		
Pro	oposed Infiltr	ation Details - Tr	enches	
Length=	935	m		
Width=	1.5	m	(935m x 1.5m x 0.72 m)	
Trench Volume Provided=	403.92	m^3		
Required Storage Depth =	0.72	m		
Drawdown time=	48.00	hours		
Volume retained per site =	403.92	m^3		

Therefore the proposed system has the required footprint area to drain within 48 hours and will provide a retention volume that exceeds the required volume for mitigation

* Soils with Satutrated Hydraulic Conductivity = 1(10⁻⁶) cm/s correlates to an infiltration rate of 15mm/h Low Impact Development Design Manual (TRCA and CVC, 2010)

Job: 4851

Required Infiltration System	-			
Infiltration Volume	775.37	m ³		
drawdown time	48	hours	(Based on Hydro-Geologic report- hydraulic conductivity = 10 ⁻⁶)	
infiltration rate	15	mm/h		
Safety Factor	2.5			
Design Infiltration Rate	6	mm/h	MOE Eqn 4.3	
Required Footprint Area	6731	m ²		
Pr	roposed Infiltr	ration Details - Tr	renches	
Area	3000	m2		
French Volume Provided=	864.00	m^3		
Required Storage Depth =	0.72	m		
Drawdown time=	48.00	hours		
/olume retained per site =	864.00	m^3		

* Soils with Satutrated Hydraulic Conductivity = 1(10⁻⁶) cm/s correlates to an infiltration rate of 15mm/h Low Impact Development Design Manual (TRCA and CVC, 2010)

retention volume that exceeds the required volume for mitigation

Water Balance Mitigation Calculations - OPTION 3

Pre Development Infintration =	
Post Development Infiltration =	75,621 m³/y
Post to Pre Deficit =	37,284 m ³ /y

				4 -
/ N/AFAII	$\Box \land \land$	uuurad	mitia	atian
Overall	REU	unea	HIIIII	auon

36.96 ha x Annual Precipitation Depth = 37,284 m³/year

Required Annual Precipitation Depth to meet deficit = 101 mm/yr

Based on this analysis, it is concluded that precipitation events of depth less than or equal to 2.68 mm 990.53 m³/event

OPTION 2 Catchment 203 will provide own site plan controls to achieve post to pre infiltration Perforated CWC'S (ONLY ROOF AREAS)

Mitigation Measures Catchment 203 on-site controls

Catchment 203 on-site controls 5,200 m³/y

Perforated CWC 32,084 m³/y

Mitgation Voulme Provided = 37,284 m³/y

Deficit = 0 m³/y 100%

101 mm/yr

Site Plan Mitigation

2.72 ha x Annual Precipitation Depth = 5,200 m³/year

Required Annual Precpitation Depth to meet deficit = 191 mm/yr

Based on this analysis, it is concluded that precipitation events of depth less than or equal to 5.00 mm 136.00 m³/event

508 mm/yr

will produce an annual amount of precipitation equal to 191 mm/yr

Perforated CWC's (Only roofs) west of Heartlake road

will produce an annual amount of precipitation equal to

will produce an annual amount of precipitation equal to

			ROOT	6.32
6.32 ha x Annual Precipitation Depth = 32,084 m³/year			Backyards	5.056
Required Annual Precpitation Depth to meet deficit = 508 mm/yr			Front	1.264
Based on this analysis, it is concluded that precipitation events of depth less than or equal to	14.62 mm	923.98 m³/event		

12.64

Job: 485					
Feb-2		NC - Option 3	alculations for C\	tion Sizing Ca	Infiltra
		•	Area	stem Footprint A	Required Infiltration Sys
			m^3	923.98	Infiltration Volume
			hours	48	drawdown time
			mm/h	15	infiltration rate
				2.5	Safety Factor
		MOE Eqn 4.3	mm/h	6	Design Infiltration Rate
			m^2	8021	Required Footprint Area
		renches	nfiltration Details - T	Proposed I	
			mm	300	Dia=
			m	1950	Length=
		(1950m x 1.5m x 0.72m)	m	1.5	Width=
		,	%	40	Porosity=
			m^3	925	Total Trench Volume Provided =
	0.72	Approx Depth of Infiltration Sy	m	0.72	Minimum Required Storage Depth =
		, ,	hours	48.00	Drawdown time=
			m^3	925	Total Volume retained =

Therefore the proposed system has the required footprint area to drain within 48 hours and will provide a retention volume that exceeds the required volume for mitigation

^{*} Soils with Satutrated Hydraulic Conductivity = 1(10⁻⁶) cm/s correlates to an infiltration rate of 15mm/h Low Impact Development Design Manual (TRCA and CVC, 2010)

TABLE 6: WATER BUDGET -SUMMARY TABLE

		Site						
Characteristics	Total Pre- development	Post-development	Percent Change (Pre to Post)	Post-development with mitigation (OPTION 1)	Change (pre to post with mitigation (OPTION1)			
Inputs (Volumes)								
Precipitation (m³/year)	535,556	535,556	0%	535556	0%			
Total Inputs (m³/year)	535,556	535,556	0%	535556	0%			
Outputs (Volumes	5)							
Precipitation surplus (m³/year)	258,625	340,197	24%	340197	24%			
Net Surplus (m³/year	258,625	340,197	24%	340197	24%			
Total Evapotranspiration (m ³ /year)	276,931	195,359	- 42%	195359	-42%			
Total Infiltration (m³/year)	112,905	75,621	-49%	110441	-2%			
Total Runoff (m³/year)	145,720	264,576	45%	229756	37%			
Total Outputs (m³/year)	535,556	535,556	0%	535556	0%			

Infiltration Deficit (Without	
mitigation)	37284 m ³ /year
Infiltration Deficit	
(Withmitigation)	2464 m³/year

TABLE 7: WATER BUDGET -PRE SUMMARY TABLE

				Site
Characteristics	Pre-Development Drainage Area 1	Pre-Development Drainage Area 2	Pre-Development Drainage Area 3	Total Pre- development
	Inputs	(Volumes)		
Precipitation (m³/year)	401,016	109,368	25,172	535,556
Total Inputs (m³/year)	401,016	109,368	25,172	535,556
	Output	s (Volumes)		
Precipitation surplus (m³/year)	193,835	52,668	12,122	258,625
Net Surplus (m³/year	193,835	52,668	12,122	258,625
Total Evapotranspiration (m³/year)	207,181	56,700	13,050	276,931
Total Infiltration (m³/year)	86,989	21,067	4,849	112,905
Total Runoff (m³/year)	106,846	31,601	7,273	145,720
Total Outputs (m³/year)	401,016	109,368	25,172	535,556

Sarah Fanous

Subject:

FW: Snell's Hollow - Site-wide Water Balance RESULTS

From: Travis Mikel [mailto:Travis.Mikel@rjburnside.com]

Sent: May 13, 2021 5:03 PM

To: Sarah Fanous <sfanous@schaeffers.com>

Cc: Koryun Shahbikian <kshahbikian@schaeffers.com>; Hannah Maciver <Hannah.Maciver@rjburnside.com>; Yashaswy

Gollamudi <ygollamudi@schaeffers.com>; Sadh Katukurunde <skatukurunde@schaeffers.com>

Subject: RE: Snell's Hollow - Site-wide Water Balance RESULTS

Hi Sarah,

I decided to update the water balance calcs to include the infiltration of the 5 mm storm event from Area 203 as per your notes.

Text highlighted in blue below are the edits.

Regards,

Travis

Travis Mikel, P.Geo. Senior Hydrogeologist

R.J. Burnside & Associates Limited | www.rjburnside.com Office: +1 800-265-9662 Direct: +1 905-821-5944

From: Travis Mikel

Sent: Friday, May 07, 2021 3:33 PM

To: Sarah Fanous <sfanous@schaeffers.com>

Cc: Koryun Shahbikian < <u>kshahbikian@schaeffers.com</u>>; Hannah Maciver < <u>Hannah.Maciver@rjburnside.com</u>>; Yashaswy

Gollamudi <ygollamudi@schaeffers.com>; Sadh Katukurunde <skatukurunde@schaeffers.com>

Subject: RE: Snell's Hollow - Site-wide Water Balance RESULTS

Thanks Sarah.

The results of our water balance calculations are presented below. It is noted that we used the climate normals (1981-2010) from The Toronto Lester B. Pearson International Airport. The data suggests an annual average precipitation volume of 786 mm and an annual average rain volume of 682 mm.

The pre-development infiltration volume is about 42,100 m³/year.

The post-development infiltration volume without mitigation is about 28,700 m³/year.

This suggests an infiltration target of about 13,400 m³/year.

The proposed mitigation strategy is presented below:

Proposed Mitigation Strategy

additional 300 mm of topsoil will be added across the developable area which reduces runoff and increases
infiltration.

Catchment 201

- 1.14 ha of rear roof areas from the Detached/Semi-detached/St. Townhouses are directed to pervious areas (rear/side yards). Our calcs assume 25% of runoff volume infiltrates based on the estimation presented in the LID SWM Planning and Design Guide (CVC & TRCA, 2010) for hydrologic groups C & D
- Remaining rear roof runoff from above directed to rear yard trenches designed to accommodate the 27 mm storm event. The 27 mm storm event accounts for approximately 95% of all rain (i.e., 82% of all precipitation).
- Runoff from 1.82 ha of rear yards is directed to rear yard trenches designed to accommodate the 7 mm storm event. The 7 mm storm event accounts for approximately 58% of all rain (i.e., 50% of all precipitation).
- Runoff from 1.31 ha of park directed to infiltration trenches designed to accommodate the 7 mm storm event. The 7 mm storm event accounts for approximately 58% of all rain (i.e., 50% of all precipitation).

Catchment 202

- 1.09 ha of rear roof areas from the Detached/Semi-detached/St. Townhouses are directed to pervious areas (rear/side yards). Our calcs assume 25% of runoff volume infiltrates based on the estimation presented in the LID SWM Planning and Design Guide (CVC & TRCA, 2010) for hydrologic groups C & D
- Remaining rear roof runoff from above directed to rear yard trenches designed to accommodate the 27 mm storm event. The 27 mm storm event accounts for approximately 95% of all rain (i.e., 82% of all precipitation).
- Runoff from 1.74 ha of rear yards is directed to rear yard trenches designed to accommodate the 7 mm storm event. The 7 mm storm event accounts for approximately 58% of all rain (i.e., 50% of all precipitation).

Catchment 203

- On-site measures to infiltrate 5mm storm event from impervious surfaces. The 5 mm storm event accounts for approximately 48% of all rain (i.e., 43% of all precipitation).

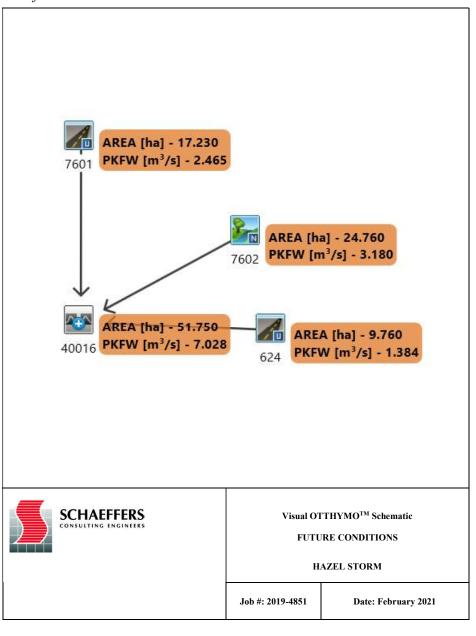
Implementing the above noted strategy suggests that the post-development infiltration volume with mitigation (with LIDs) is about 52,900 m³/year. This is an increase of about 26% over existing conditions (~10,900 m³/year).

If you have any questions, comments or require clarification, in please let me know	==== (===============================	• , , ca. ,.
If you have any questions, comments or require clarificationplease let me know.		
If you have any questions, comments or require clarification, in please let me know		
If you have any questions, comments or require clarification. In please let me know		
	If you have any questions, comments or require clarification — please let me know	

Regards,

Travis

APPENDIX E: FLOODPLAIN ANALYSIS


Area Breakdown for Future Drainage Conditions

	Area	TIMP	XIMP	A x TIMP
Mayfield Pond	9.76	0.45	0.45	4.39
Subdivision	17.23	0.60	0.53	10.28
Open Area	24.76	0.07	0.07	1.73
	51.75	0.32	0.32	16.41

	Area	TIMP	XIMP	A x TIMP	A x XIMP
Subdivision Residential	14.51	0.54	0.46	7.84	6.67
Subdivision Commercial	2.72	0.90	0.90	2.45	2.45
Total Subdivision	17.23	0.60	0.53	10.28	9.12

VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area Town of Caledon


```
V V I SSSSS U U A L
                                                              (v 6.1.2003)
       V V I SS U U AA L
        V V I SS U U AAAAA L
        V V I
                     SS U U A A L
                      SSSSS UUUUU A A LLLLL
        OOO TTTTT TTTTT H H Y Y M M OOO
        \hbox{\scriptsize O} \quad \hbox{\scriptsize O} \quad \hbox{\scriptsize T} \quad \hbox{\scriptsize T} \quad \hbox{\scriptsize H} \quad \hbox{\scriptsize H} \quad \hbox{\scriptsize Y} \; \hbox{\scriptsize Y} \quad \hbox{\scriptsize MM} \; \hbox{\scriptsize MM} \quad \hbox{\scriptsize O} \quad \hbox{\scriptsize O} 
                             \mathsf{H} \quad \mathsf{H} \quad \mathsf{Y} \quad \mathsf{M} \quad \mathsf{M} \quad \mathsf{O} \quad \mathsf{O}
                T
                        T
                            H H Y M M OOO
Developed and Distributed by Smart City Water Inc
Copyright 2007 - 2020 Smart City Water Inc
All rights reserved.
                     **** DETAILED OUTPUT ****
 Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.1\VO2\voin.dat
 Output filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-
a930-3446e1ae5bfa\a2e50908-c03d-44ce-b170-a5734344bb03\scen
 Summary filename: C:\Users\sfanous\AppData\Local\Civica\VH5\4a4b2b43-29c0-4f4e-
a930-3446e1ae5bfa\a2e50908-c03d-44ce-b170-a5734344bb03\scen
DATE: 02-12-2021
                                              TIME: 03:04:27
USER:
  **********
  ** SIMULATION : Run 01
     READ STORM |
                         Filename: C:\Users\sfanous\AppD
                         ata\Local\Temp\
                                    1e295dad-7e03-4676-aa3a-084fecfb41c1\ef422a33
| Ptotal=212.00 mm |
                         Comments: * Regional Storm
                          RAIN | TIME
                                           RAIN | TIME
                                                             RAIN | TIME
                                           mm/hr | hrs mm/hr | hrs
                         mm/hr |
                                   hrs
                                                                               mm/hr
                                           13.00 | 7.00 23.00 | 10.00
                  1.00
                         6.00 | 4.00
                                                                              53.00
                  2.00
                         4.00 | 5.00 17.00 | 8.00 13.00 | 11.00
                                                                              38.00
                  3.00
                        6.00 | 6.00 | 13.00 | 9.00 | 13.00 | 12.00 | 13.00
```

NOTE: RAINFALL WAS TRANSFORMED TO 15.0 MIN. TIME STEP.

		TF	RANSFORMED	HYETOGE	RAPH	
TIME	RAIN	TIME	RAIN	' TIME	RAIN TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr hrs	mm/hr
0.250	6.00	3.250	13.00	6.250	23.00 9.25	53.00
0.500	6.00	3.500	13.00	6.500	23.00 9.50	53.00
0.750	6.00	3.750	13.00	6.750	23.00 9.75	53.00
1.000	6.00	4.000	13.00	7.000	23.00 10.00	53.00
1.250	4.00	4.250	17.00	7.250	13.00 10.25	38.00
1.500	4.00	4.500	17.00	7.500	13.00 10.50	38.00
1.750	4.00	4.750	17.00	7.750	13.00 10.75	38.00
2.000	4.00	5.000	17.00	8.000	13.00 11.00	38.00
2.250	6.00	5.250	13.00	8.250	13.00 11.25	13.00
2.500	6.00	5.500	13.00	8.500	13.00 11.50	13.00
2.750	6.00	5.750	13.00	8.750	13.00 11.75	13.00
3.000	6.00	6.000	13.00	9.000	13.00 12.00	13.00

Unit Hyd Qpeak (cms) = 2.199

PEAK FLOW (cms)= 3.180 (i)
TIME TO PEAK (hrs)= 10.000
RUNOFF VOLUME (mm)= 172.321
TOTAL RAINFALL (mm)= 212.000
RUNOFF COEFFICIENT = 0.813

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area	(ha) = Imp(%) =		Dir. Conn.(%)=	53 00	
ID- I DI- J.O MIII	IULAI	TIIID (-0) -	00.00	DII. COIII. (%)-	55.00	
		IMPERVI	OUS	PERVIOUS (i)		
Surface Area	(ha) =	10.3	4	6.89		
Dep. Storage	(mm) =	1.0	0	5.00		
Average Slope	(%)=	1.0	0	2.00		
Length	(m) =	338.9	2	40.00		
Mannings n	=	0.01	3	0.250		

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		-	TF	RANSFORME	D	HYETOGE	RAPH		
TIME	RAIN		TIME	RAIN	1	' TIME	RAIN	TIME	RAIN
hrs	mm/hr		hrs	mm/hr	1	' hrs	mm/hr	hrs	mm/hr
0.083	6.00		3.083	13.00		6.083	23.00	9.08	53.00
0.167	6.00		3.167	13.00		6.167	23.00	9.17	53.00
0.250	6.00		3.250	13.00		6.250	23.00	9.25	53.00
0.333	6.00		3.333	13.00		6.333	23.00	9.33	53.00
0.417	6.00		3.417	13.00	1	6.417	23.00	9.42	53.00
0.500	6.00		3.500	13.00		6.500	23.00	9.50	53.00
0.583	6.00		3.583	13.00		6.583	23.00	9.58	53.00
0.667	6.00		3.667	13.00		6.667	23.00	9.67	53.00

	6.00 6.00	4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 5.083 5.167 5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.583 5.667 5.750 5.833 5.917	13.00 6.750 13.00 6.833 13.00 6.917 13.00 7.000 17.00 7.083 17.00 7.417 17.00 7.500 17.00 7.500 17.00 7.750 17.00 7.750 17.00 7.833 17.00 7.750 17.00 7.833 17.00 8.083 13.00 8.167 13.00 8.250 13.00 8.333 13.00 8.417 13.00 8.583 13.00 8.583 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.750 13.00 8.833 13.00 8.750 13.00 8.833	13.00 10.17 38.00 13.00 10.25 38.00 13.00 10.42 38.00 13.00 10.50 38.00 13.00 10.58 38.00 13.00 10.67 38.00 13.00 10.67 38.00 13.00 10.67 38.00 13.00 10.83 38.00 13.00 10.92 38.00 13.00 11.08 13.00 13.00 11.08 13.00 13.00 11.17 13.00 13.00 11.25 13.00 13.00 11.25 13.00 13.00 11.42 13.00 13.00 11.50 13.00 13.00 11.50 13.00 13.00 11.50 13.00 13.00 11.50 13.00 13.00 11.57 13.00 13.00 11.67 13.00 13.00 11.67 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00 13.00 11.83 13.00
	(min) (min) = (min) =	5.00	60.64 20.00 (ii) 15.47 (ii 20.00 0.07)
PEAK FLOW TIME TO PEAK	(cms) = (hrs) = (mm) = (mm) =	1.34 10.00 211.00 212.00	1.12 10.00 181.93 212.00 0.86	*TOTALS* 2.465 (iii) 10.00 197.34 212.00 0.93

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- ${
 m CN^{\star}}=88.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB	Area Total	(ha) = 9.76 Imp(%) = 45.00	Dir. Conn.(%)=	45.00
		IMPERVIOUS	PERVIOUS (i)	
Surface Area	(ha) =	4.39	5.37	
Dep. Storage	(mm) =	1.00	5.00	
Average Slope	(%)=	1.00	2.00	
Length	(m) =	255.08	40.00	
Mannings n	=	0.013	0.250	

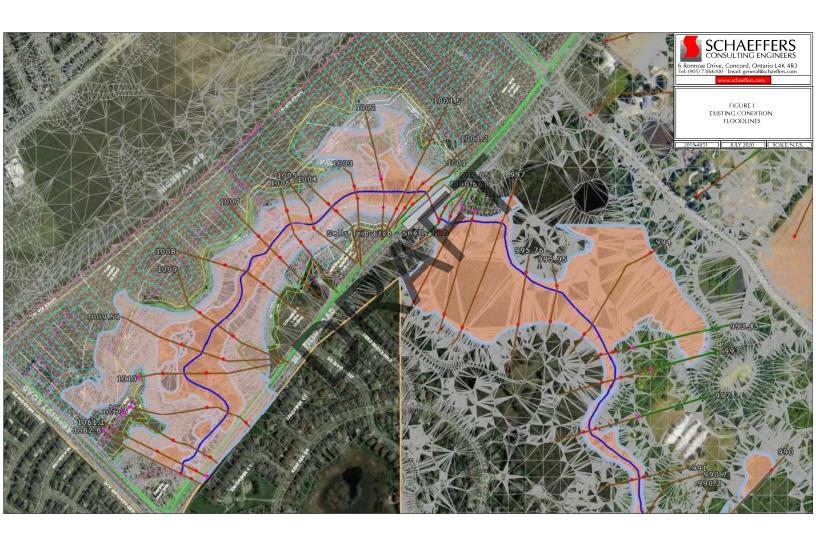
VISUAL OTTHYMO OUTPUT: Snell's Hollow Secondary Plan Area Town of Caledon

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

⁽i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

ADD HYD (40016) 1 + 2 = 3 ID1= 1 (0624): + ID2= 2 (7601):	(ha) 9.76 17.23	(cms) 1.384 2.465	(hrs) 10.00 10.00	(mm) 192.48 197.34
ID = 3 (40016):				
NOTE: PEAK FLOWS DO	NOT INCLU	JDE BASEFI	LOWS IF A	NY.
ADD HYD (40016) 3 + 2 = 1	(ha) 26.99 24.76	(cms) 3.849 3.180	(hrs) 10.00 10.00	(mm) 195.58 172.32
	51 75	7.028	10.00	184.45
ID = 1 (40016):	01.70			
ID = 1 (40016): NOTE: PEAK FLOWS DO			LOWS IF A	NY.

 $[{]m CN^{\star}}=88.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.


⁽iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

HEC-RAS PI	an: Existing Flo	odplain River: Sells T	rib-Etob Reacl	n: Snells Trib Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Snells Trib	1082.8	100 Year 6hr AES	5.30	257.03	263.31	256.29	263.31	0.000000	0.01	1062.43	201.73	0.00
Snells Trib	1082.8	Regional	12.87	257.03	263.43	256.41	263.43	0.000000	0.02	1086.88	203.66	0.00
Snells Trib	1061.1	100 Year 6hr AES	5.30	256.09	263.31	256.39	263.31	0.000000	0.01	1089.12	195.27	0.00
Snells Trib	1061.1	Regional	12.87	256.09	263.43	256.51	263.43	0.000000	0.01	1112.73	196.73	0.00
Snells Trib	1012	100 Year 6hr AES	5.30	256.13	263.31	256.76	263.31	0.000000	0.01	761.28	146.60	0.00
Snells Trib	1012	Regional	12.87	256.13	263.43	256.95	263.43	0.000000	0.02	779.82	157.44	0.00
Snells Trib	1011	100 Year 6hr AES	5.30	256.03	263.31	256.26	263.31	0.000000	0.01	1103.19	255.01	0.00
Snells Trib	1011	Regional	12.87	256.03	263.43	256.39	263.43	0.000000	0.02	1134.00	255.71	0.00
Coalla Trib	1010	100 Veer Chr AEC	F 20	050.04	000.01	256.35	000.01	0.000000	0.01	1434.40	000.00	0.00
Snells Trib Snells Trib	1010	100 Year 6hr AES Regional	5.30 12.87	256.24 256.24	263.31 263.43	256.43	263.31 263.43	0.000000	0.01	1468.64	282.89 284.63	0.00
Silells IIID	1010	rtegioriai	12.07	230.24	200.40	230.43	200.40	0.000000	0.01	1400.04	204.03	0.00
Snells Trib	1009	100 Year 6hr AES	5.30	256.06	263.31		263.31	0.000000	0.01	770.23	197.44	0.00
Snells Trib	1009	Regional	12.87	256.06	263.43		263.43	0.000000	0.02	794.19	199.71	0.00
Snells Trib	1008	100 Year 6hr AES	5.30	256.06	263.31		263.31	0.000000	0.01	783.29	164.06	0.00
Snells Trib	1008	Regional	12.87	256.06	263.43		263.43	0.000000	0.02	803.16	165.46	0.00
Snells Trib	1007	100 Year 6hr AES	5.30	256.06	263.31		263.31	0.000000	0.01	571.06	107.26	0.00
Snells Trib	1007	Regional	12.87	256.06	263.43		263.43	0.000000	0.03	584.09	108.95	0.00
							_300		5.50	-550		5.00
Snells Trib	1006	100 Year 6hr AES	5.30	255.93	263.31		263.31	0.000000	0.01	646.85	118.85	0.00
Snells Trib	1006	Regional	12.87	255.93	263.43		263.43	0.000000	0.02	661.26	120.16	0.00
Snells Trib	1005	100 Year 6hr AES	5.30	255.93	263.31		263.31	0.000000	0.02	511.46	117.63	0.00
Snells Trib	1005	Regional	12.87	255.93	263.43		263.43	0.000000	0.04	525.74	119.41	0.00
									•			
Snells Trib Snells Trib	1004 1004	100 Year 6hr AES Regional	5.30 12.87	255.90 255.90	263.31 263.43		263,31 263,43	0.000000 0.000001	0.02	355.48 365.20	78.98 82.15	0.00 0.01
Snells Trib	1003	100 Year 6hr AES	5.30	255.58	263.31		263.31	0.0000000	0.02	424.92	80.04	0.00
Snells Trib	1003	Regional	12.87	255.58	263.43		263,43	0.000000	0.04	434.62	80.94	0.00
On all a Talls	1000	100)/ 0 150	F 00	055.50	200.0	055.70	200.04	0.000000	0.04	4077.40	100.00	0.00
Snells Trib Snells Trib	1002	100 Year 6hr AES Regional	5.30 12.87	255.58 255.58	263.31 263.43	255.70 255.80	263.31 263.43	0.000000	0.01	1077.19 1100.89	196.23 197.19	0.00
Silelis IIID	1002	riegional	12.07	200.00_	200.40	2,0.00	200,93	0.000000	0.02	1100.03	197.19	0.00
Snells Trib	1001.5	100 Year 6hr AES	5.30	255,15	263.31		263.31	0.000000	0.01	801.53	131.78	0.00
Snells Trib	1001.5	Regional	12.87	255.15	263.43		263.43	0.000000	0.02	817.46	132.60	0.00
Snells Trib	1001.2	100 Year 6hr AES	5.30	255.45	263.31		263.31	0.000000	0.01	744.48	133.92	0.00
Snells Trib	1001.2	Regional	12.87	255.45	263.43		263.43	0.000000	0.02	760.88	137.47	0.00
O	1001	100 1/ 01 150	F 700	255.40	200.04	050.04	000.04	0.000000	0.00	000.05	44044	0.00
Snells Trib Snells Trib	1001	100 Year 6hr AES Regional	5.30 12.87	255.48 255.48	263.31 263.43	256.21 256.59	263.31 263.43	0.000000	0.03	329.65 338.24	146.11 147.52	0.00
Sileiis IIID	1001	riegional	12.01	233.40	200.40	230.33	200.40	0.000001	0.00	330.24	147.52	0.01
Snells Trib	1000.6		Culvert									
Snells Trib	1000	100 Year 6hr AES	5.30	254.35	255.19	255.19	255.37	0.140352	1.90	2.79	52.54	1.01
Snells Trib	1000	Regional	12.87	254.35	255.48	255.48	255.81	0.113133	2.54	5.06	63.50	1.00
Snells Trib	999.46	100 Year 6hr AES	5.30	253.49	254.05	253.76	254.07	0.007301	0.48	11.03	26.10	0.24
Snells Trib	999.46	Regional	12.87	253.49	254.59	253.91	254.60	0.007301	0.45	29.18	49.81	0.24
		L							3.10			
Snells Trib	999.05	100 Year 6hr AES	13.34	253.05	254.05	253.22	254.05	0.000082	0.08	175.31	229.59	0.03
Snells Trib	999.05	Regional	32.36	253.05	254.59	253.32	254.59	0.000083	0.11	299.41	233.21	0.03
Snells Trib	998	100 Year 6hr AES	13.34	253.05	254.05	253.12	254.05	0.000033	0.06	237.71	248.01	0.02
Snells Trib	998	Regional	32.36	253.05	254.59	253.18	254.59	0.000045	0.09	372.86	256.97	0.02
Castle Trib	007	100 Year 6hr AES	10.04	050.05	054.05		054.05	0.000000	0.04	010.40	224.00	0.01
Snells Trib Snells Trib	997 997	Regional	13.34 32.36	253.05 253.05	254.05 254.58		254.05 254.58	0.000020 0.000026	0.04 0.07	310.40 492.03	334.69 345.01	0.01
Criona IIID	337	riogional	32.30	200.00	۵۰۰.۵۵		204.00	0.000020	0.07	492.03	343.01	0.02
Snells Trib	995.76	100 Year 6hr AES	13.34	253.05	254.04		254.04	0.000123	0.11	123.69	132.74	0.04
Snells Trib	995.76	Regional	32.36	253.05	254.57		254.57	0.000165	0.17	196.44	140.85	0.04
Snells Trib	995.05	100 Year 6hr AES	13.34	253.05	254.03		254.03	0.000233	0.15	92.80	105.49	0.05
Snells Trib	995.05	Regional	32.36	253.05	254.55		254.56	0.000299	0.23	150.92	113.78	0.06
Cool T	004	100 Va - 01- 150	700	050 75	051.00		05:0-	0.00000		00= ==	050.0	
Snells Trib Snells Trib	994	100 Year 6hr AES	13.34	252.72 252.72	254.02		254.02	0.000024 0.000036	0.05	267.07	258.34	0.02
OTTERS TITE	334	Regional	32.36	202.12	254.54		254.54	0.000036	0.08	403.50	262.53	0.02
Snells Trib	993.45	100 Year 6hr AES	13.34	253.02	253.99	253.37	254.00	0.003906	0.57	23.66	28.52	0.19
Snells Trib	993.45	Regional	32.36	253.02	254.47	253.63	254.51	0.005055	0.87	38.41	32.09	0.10
Snells Trib	993	100 Year 6hr AES	13.34	252.90	253.68	253.27	253.70	0.006257	0.56	24.01	40.71	0.23
Snells Trib	993	Regional	32.36	252.90	254.14	253.48	254.17	0.005447	0.73	44.29	46.49	0.23

HEC-RAS Plan: Existing Floodplain River: Sells Trib-Etob Reach: Snells Trib (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Snells Trib	992	100 Year 6hr AES	13.34	251.66	252.93	252.33	252.94	0.004976	0.60	22.60	31.99	0.22
Snells Trib	992	Regional	32.36	251.66	253.55	252.63	253.58	0.003641	0.76	46.76	50.50	0.20
Snells Trib	991	100 Year 6hr AES	13.34	250.79	252.62		252.63	0.002648	0.51	26.57	29.09	0.16
Snells Trib	991	Regional	32.36	250.79	253.28		253.30	0.002595	0.69	49.23	38.20	0.17
Snells Trib	990.7	100 Year 6hr AES	13.34	250.71	252.42		252.43	0.001964	0.55	29.38	34.16	0.15
Snells Trib	990.7	Regional	32.36	250.71	253.07		253.09	0.002147	0.74	55.98	46.49	0.17
Snells Trib	990.2	100 Year 6hr AES	13.34	250.38	251.43	251.42	251.70	0.094368	2.34	6.05	11.28	0.91
Snells Trib	990.2	Regional	32.36	250.38	251.90	251.90	252.31	0.077224	3.00	12.35	15.86	0.90
Snells Trib	990	100 Year 6hr AES	13.34	249.72	250.25	250.02	250.26	0.008794	0.41	32.90	116.99	0.24
Snells Trib	990	Regional	32.36	249.72	250.59	250.14	250.60	0.003333	0.34	95.17	211.48	0.16

APPENDIX F: ADDITIONAL BACKGROUND INFORMATION

See Attached CD for the following Reports:

- Kennedy Pond-Stormwater Management Facility Retrofit, Mayfield Road and Kennedy Road, dated May 2017, by GHD
- Snell's Hollow East Secondary Plan Baseline Conditions Report-2019, dated August 2020, by RJ Burnside

APPENDIX G: ENGINEERING DRAWINGS

