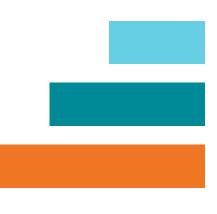


Hydrogeological Assessment & Water Balance Snell's Hollow Secondary Plan Area

Snell's Hollow Developers Group Caledon, Ontario



Hydrogeological Assessment & Water Balance Snell's Hollow Secondary Plan Area

Snell's Hollow Developers Group Caledon, Ontario

R.J. Burnside & Associates Limited 6990 Creditview Road, Unit 2 Mississauga ON L5N 8R9 CANADA

May 2021 300043952.0000

Distribution List

No. of Hard Copies	PDF	Email	Organization Name
-	Yes	Yes	Snell's Hollow Developers Group
-	Yes	Yes	Jason Afonso – GSAI
-	Yes	Yes	Koryun Shahbikian, Yashaswy Gollamudi – Schaeffers
			Consulting Engineers

Record of Revisions

Revision	Date	Description
-	May 19, 2021	Initial Submission

R.J. Burnside & Associates Limited

Report Prepared By:

Stephanie Charity, P.Geo.

Hydrogeologist SC:cl

Report Reviewed By:

Travis Mikel, P.Geo. Senior Hydrogeologist TM:cl

i

Table of Contents

1.0	Intro 1.1	oduction Scope of Work	
2.0	Phy	sical Setting	3
	2.1	Physiography and Topography	
	2.2	Drainage	
	2.3	Geology	5
		2.3.1 Surficial Geology	
		2.3.2 Bedrock Geology	5
		2.3.3 Stratigraphy	5
		2.3.4 Soil Hydraulic Conductivity	
3.0	Hyd	rogeology	7
	3.1	Local Groundwater Use	7
	3.2	Groundwater Levels	8
		3.2.1 TRCA Monitoring Wells	10
	3.3	Groundwater Flow Conditions	10
	3.4	Recharge and Discharge Conditions	10
	3.5	Aquifer Vulnerability	11
	3.6	Water Quality	11
		3.6.1 Groundwater Quality	11
		3.6.2 Surface Water Quality	12
4.0	Wat	er Balance	13
	4.1	Water Balance Components	14
	4.2	Existing Conditions	15
	4.3	Potential Urban Development Impacts to Water Balance	16
	4.4	Post-Development with No LID Measures	17
	4.5	Water Balance Mitigation Strategies	17
	4.6	Post-Development with LID Measures in Place	19
5.0	Con	struction Considerations	20
	5.1	Dewatering Requirements	20
	5.2	Construction Below Water Table	
	5.3	Well Decommissioning	20
6.0	Refe	erences	22
Table	s		
Table	1: Su	ummary of Hydraulic Conductivity	7
Table	2: W	ater Balance Component Values	16

Figures

- Figure 1: Site Location
- Figure 2: Monitoring Network
- Figure 3: Topography and Drainage
- Figure 4: Surficial Geology
- Figure 5: Borehole, Well and Cross-Section Locations
- Figure 6: Interpreted Geological Cross-Section A-A'
- Figure 7: Interpreted Geological Cross-Section B-B'
- Figure 8: Interpreted Geological Cross-Section C-C' and D-D'
- Figure 9: Interpreted Shallow Groundwater Flow
- Figure 10: Significant Recharge Areas
- Figure 11: Aquifer Vulnerability

Appendices

- Appendix A Borehole Logs
- Appendix B MECP Well Records
- Appendix C Grainsize Analysis
- Appendix D Single Well Response Tests
- Appendix E Groundwater Elevations
- Appendix E-2 TRCA Groundwater Data
- Appendix F Surface Water
- Appendix G Water Quality
- Appendix H Water Balance

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1.0 Introduction

R.J. Burnside & Associates Limited (Burnside) was retained by Snell's Hollow Developers Group to complete a hydrogeological assessment & water balance to support the Snell's Hollow East Secondary Plan for lands located at the northeast corner of Kennedy Road and Mayfield Road in the Town of Caledon and Region of Peel (subject lands). The subject lands are approximately 61.7 ha in size and are bounded by Highway 410 to the north, Heart Lake Road to the east, Mayfield Road to the south and Kennedy Road to the west (Figure 1). The subject lands contain portions of the Heart Lake Provincially Significant Wetland (PSW) complex. Current land use of the subject lands is primarily agricultural with rural residential in the uplands and meadows on the valley slopes adjacent to the PSW unit (Figure 2). The subject lands are located within the jurisdiction of the Toronto and Region Conservation Authority (TRCA).

1.1 Scope of Work

The scope of work for the hydrogeological assessment included completion of the following tasks:

- 1. Review of published geological and hydrogeological information: A review of existing regional mapping for the area was completed, including physiography, topography (Figure 3), surficial geology (Figure 4) and bedrock geology.
- 2. Review of soils data: Boreholes from previous geotechnical investigations on the subject lands were reviewed. In 2019, a study conducted by Golder Associates Ltd. included 19 boreholes across the subject lands and the installation of 13 monitoring wells at 10 locations. In 2017, a study completed by Edward Wong & Associates Inc. included 6 boreholes of which 3 were completed as monitoring wells. The locations of these boreholes and monitoring wells are shown on Figure 5. The borehole logs (Appendix A) were reviewed to characterize the surficial sediments and stratigraphy.
- 3. Review of the Ministry of the Environment, Conservation and Parks (MECP) well records: The MECP maintains a database that provides geological records of water supply wells drilled in the province. A list of the historical records for local wells is provided in Appendix B and the well locations are shown on Figure 5. It is noted that the well locations listed in the MECP records are approximations only of where they were and may not be representative of the precise well locations in the field.
- 4. Installation of drive-point piezometers and staff gauges: Twelve piezometers (six nests of two piezometers installed at different depths and one single piezometer) and five staff gauges were installed to monitor groundwater and

surface water interactions in the wetland. The locations of the piezometers and staff gauges are shown on Figure 2.

- 5. Review of grainsize analyses: Grainsize analyses completed as part of geotechnical studies on the subject lands were reviewed to characterize the surficial sediments and estimate the hydraulic conductivity of the soils encountered. Copies of the soil grainsize analyses are provided in Appendix C.
- 6. Hydraulic conductivity testing: Single well response tests were completed in five groundwater monitoring wells to assess the in situ hydraulic conductivity of the shallow soils on the subject lands. The hydraulic conductivity field testing results are provided in Appendix D.
- 7. Monitoring of groundwater levels: Monitoring has been completed to characterize the seasonal water table and the horizontal and vertical groundwater flow conditions. Groundwater level measurements were obtained in monitoring wells and drive-point piezometers since April 2019. Automatic water level recorders (dataloggers) were installed in six of the monitoring wells and four drive-point piezometers in order to record continuous water level fluctuations. The groundwater monitoring data collected to date and hydrographs are provided in Appendix E.
- 8. Monitoring of surface water levels: Monitoring has been completed to measure the surface water elevation along the watercourse and wetlands adjacent to the drive-point piezometers since April 2019. The surface water data are provided in Appendix F.
- 9. Water quality testing: Two groundwater samples (MW19-01 and MW19-04d) and one surface water sample (SW4) were collected to characterize the baseline water quality. The water samples were submitted to a qualified laboratory for analysis of general quality indicators (e.g., pH, hardness, and conductivity), basic ions (including chloride and nitrate) and selected metals. The testing results are provided in Appendix G.
- 10. Water balance calculations: Pre-development water balance calculations (based on existing land use conditions) and post-development water balance calculations (based on the proposed development concept) were completed to assess the potential impacts of land development on the local groundwater recharge conditions. The local climate data and detailed water balance calculations are provided in Appendix H.

2.0 Physical Setting

2.1 Physiography and Topography

The subject lands are located in the physiographic region known as the South Slope of the Oak Ridges Moraine (Chapman and Putnam, 1984). The South Slope physiographic region is characterized by rolling till plains sloping down from the Oak Ridges Moraine (Chapman and Putnam, 1984).

The topography of the subject lands is shown on Figure 3. The subject lands have an undulating topography, with a maximum relief of 16 m. The highest elevation of 272 metres above sea level (masl) is found along the north east property boundary and the lowest elevations occur in central to southern portion along the wetland where the ground elevation is approximately 256 to 257 masl.

2.2 Drainage

The subject lands are within the Spring Creek subwatershed of the Etobicoke Creek watershed, within the jurisdiction of the TRCA. An unnamed tributary of Spring Creek flows through the subject lands from west to east and enters a ponded area at the eastern boundary of the subject lands. There are three catchment areas located on the subject lands (Figure 3): Catchment Area 1 (~46.2 ha) is located in the western and central portions of the subject lands and generally drains towards the watercourse and wetland areas, flowing south beneath Mayfield Road towards Heart Lake (Figure 3); Catchment Area 2 (~12.6 ha) consists of lands on both the west and east sides of Heart Lake Road and drains south beneath Mayfield Road to an existing stormwater management pond located on the southeast corner of the Mayfield Rd and Heart Lake Road intersection (Figure 3); and Catchment Area 3 (~2.9 ha) is the eastern most portion of the subject lands and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located and drains to an existing stormwater management pond located adjacent to Highway 410 (Figure 3).

The subject lands contain portions of the Heart Lake Wetland Complex which is designated as a Provincially Significant Wetland (PSW). Monitoring of the wetland was completed to understand the function and source of water to the feature. The monitoring consisted of monthly water level measurements in 12 drive-point piezometers installed as six 'nests' (i.e., adjacent locations with different depths) and five staff gauges (Figure 2).

The results of the monitoring show the following:

 At PZ1s/d, located at the head of the tributary of Spring Creek, groundwater levels in the shallow piezometer were generally higher than the deep piezometer indicating a downward gradient (Figure E-14, Appendix E). The early monitoring data at PZ1d shows a slow stabilization of groundwater levels indicating low hydraulic conductivity soils, and the groundwater levels are slow to respond to precipitation events and seasonal water inputs. During a dry period in the summer of 2020 the groundwater levels in the shallow piezometer are slightly lower than the deep piezometer showing an upward gradient.

- PZ2s/d located along the Spring Creek tributary on the northern limits of the wetland show groundwater levels 0.2 mbgs to 1.6 mbgs. Upward gradients are observed during high water table conditions (December to May) and a downward gradient was recorded in September and November 2019 and September 2020 (low water table). The surface water level at SG2 was generally above groundwater levels (Figure E-15, Appendix E).
- The groundwater levels at PZ3s/d were found to be approximately 0.02 mbgs to 1.4 mbgs. A downward hydraulic gradient between PZ3s and PZ3d, is observed indicating recharge conditions, with the exception of October to December 2019 where a slight upward gradient is observed (Figure E-16, Appendix E). The surface water level at the staff gauge (SG3) was found to be approximately the same as the groundwater level in the deep piezometer (PZ3d).
- The groundwater levels in PZ4s/d have been recorded from above ground surface to about 0.8 mbgs. The surface water level at SG4 was generally found to be higher than groundwater levels in the shallow piezometer (Figure E-17, Appendix E). A slow stabilization of groundwater levels in both piezometers and little response to precipitation events suggests low hydraulic conductivity soils. The groundwater levels showed a consistent downward gradient with the exception of late summer 2019 where an upward gradient is observed.
- At PZ5s/d groundwater levels were recorded from 0.2 mbgs to 1.2 mbgs. The groundwater levels show a consistent downward gradient (Figure E-18, Appendix E). Groundwater levels in PZ5s were observed dry during the fall of 2019 and 2020.
- The groundwater levels in PZ6s/d have been recorded from 0.2 mbgs to about 0.5 mbgs, and the surface water level at SG6 was found to be similar to the groundwater level in the shallow piezometer (PZ6s; Figure E-19, Appendix E). The early monitoring data for PZ6d shows a slow stabilization of water levels indicating low hydraulic conductivity soils. The groundwater levels show a downward gradient but reverse temporarily in late summer 2019 and September 2020 during low water table conditions.

The groundwater levels measured in the piezometer nests show a downward gradient between the shallow and deep piezometers suggesting the wetland recharges the shallow soils and creates a shallow perch beneath the wetland. Seasonal upward gradients are observed; however, this apparent reversal in gradient is interpreted to be the result of increased evapotranspiration and a quicker response of the shallower piezometer to drier conditions than the deeper piezometer. These conditions suggest that the primary sources of water to the wetland are direct precipitation and surface water runoff.

2.3 Geology

2.3.1 Surficial Geology

Surficial geology mapping published by the Ontario Geological Survey (2003) shows that the subject lands is covered by glaciolacustrine-derived silty to clayey till (Figure 4). Organic deposits are mapped along the watercourse and the wetland complex.

A geotechnical investigation completed by Edward Wong (2017) included the drilling of 6 boreholes across the subject lands in October 2017 (BH1 to BH6, Figure 5). Another geotechnical investigation was completed by Golder (2019) which included the drilling of 19 boreholes across the subject lands (BH19-01 to BH19-19) (Figure 5). Copies of the borehole logs from these drilling investigations are provided in Appendix A.

The boreholes on the subject lands ranged in depth from 6.2 m below ground surface (mbgs) and 14.3 mbgs. The results of the drilling investigations are generally consistent with the published mapping, with silty clay till or silty clay encountered at surface (or beneath fill materials). The boreholes indicate that the subject lands are underlain by silty clay and silty clay till. Silty sand and sand were encountered beneath the till at depths of 7.6 mbgs to 10 mbgs.

2.3.2 Bedrock Geology

Bedrock beneath the subject lands consists of shale of the Queenston Formation (OGS, 2011). MECP well records in vicinity of the subject lands indicate depth to bedrock ranges from about 29 mbgs to 64 mbgs (Appendix B).

2.3.3 Stratigraphy

The local MECP well records (Appendix B) provide geology data that have been used along with the site-specific geological information obtained from the geotechnical boreholes and groundwater monitoring wells drilled on the subject lands (Appendix A) to assess the local stratigraphy.

To illustrate the local geological conditions, four schematic cross-sections through the subject lands have been prepared. The cross-section locations are shown on Figure 5 and the cross-sections are shown on Figures 6, 7 and 8. The cross-sections show a layer of silt and clay till soils at surface ranging in thickness of about 5 m to 20 m across the subject lands. These fine-grained deposits are underlain by a sand layer which is

approximately 5 m to 12 m in thickness (encountered at an elevation of approximately 240 masl to 255 masl) below the subject lands (Figures 6, 7 and 8).

Regional hydrogeological mapping and modeling of the area by the TRCA as part of the Etobicoke and Mimico Creeks Watershed Technical Update Report (2010) has identified the major overburden aquifer systems in the area (in order of increasing depth) as the Oak Ridges Aquifer Complex (ORAC) and the Thorncliffe Aquifer. The general elevation ranges for these aquifers are as follows:

- Oak Ridges Aquifer (or equivalent) Complex: 225 masl 250 masl
- Thorncliffe Aquifer: 220 masl

Based on these elevation ranges, it is concluded that the sandy layer found underlying the subject lands between elevations of about 240 masl and 255 masl likely represents the ORAC in this area (Figures 6, 7 and 8).

2.3.4 Soil Hydraulic Conductivity

There are various methods that can be used to assess soil hydraulic conductivity, i.e., the ability of the soil to transmit groundwater. Grainsize data and soil characteristics can be used to provide a general estimate of hydraulic conductivity. Single well bail-down or falling head tests are used in groundwater monitoring wells to assess in situ hydraulic conductivity. These methods have been used to estimate the hydraulic conductivity of the soils encountered in the subject lands as discussed below.

During geotechnical investigations conducted across the subject lands, representative soil samples collected by Golder (17 samples) and Edward Wong (4 samples) were analysed for grainsize distribution (Appendix C). The grainsize analyses were conducted on various soil types found across the subject lands. A summary of the hydraulic conductivity estimated from the grainsize analyses using the Hazen approximation method is provided below in Table 1. The Hazen method is designed to approximate the hydraulic conductivity of more permeable sediments; however, it is still considered useful in finer grained sediments to provide a general indication of the low range of the hydraulic conductivity values.

To assess the in situ hydraulic conductivity of the shallow soils, bail-down tests were completed at monitoring wells MW19-02s, MW19-03, MW19-04s, MW19-04d and MW19-08 and BH5 (refer to Figure 2 for monitoring well locations and Appendix A for borehole logs). The results of these tests are provided in Appendix D and show the following:

 MW19-02s, MW19-03 and MW19-04s are screened in a sandy silty clay till. The results of the bail-down tests completed at these locations suggest moderately high hydraulic conductivities of 1.5 x 10⁻³ cm/sec to 3.9 x 10⁻⁴ cm/sec. This is higher than would generally be expected for a silty clay till and may reflect the presence of sand layers, cobbles and fracturing within the till.

- MW19-08 is screened across silty clay and clayey silt. The results of the bail-down test completed at this location suggest a moderately low hydraulic conductivity of 2.6 x 10⁻⁵ cm/sec.
- MW19-04d is screened across sand. The hydraulic conductivity test completed at this location suggests a moderately high hydraulic conductivity of 4.4 x 10⁻³ cm/sec.
- BH5 is screened in fill and silty clay. The hydraulic conductivity test completed by Edward Wong (2017) at this location suggests a low hydraulic conductivity of 7.8 x 10⁻⁷ cm/sec.

The calculated hydraulic conductivity values from the bail test data (Appendix D) are summarized in Table 1 below.

Soil Type	Hydraulic Conductivity (cm/sec) Hazen Estimation	Hydraulic Conductivity (cm/sec) In Situ Bail Test
Sandy Clayey Silt	<1.0 x 10 ⁻⁶	2.6 x 10 ⁻⁵ to 7.8 x 10 ⁻⁷
Silty Clay/Clayey Silt to Silty Clay and Sand – Till	<1.0 x 10 ⁻⁶	1.5 x 10 ⁻³ to 3.9 x 10 ⁻⁴
Silt and Sand to Sandy Clayey Silt	1.0 x 10 ⁻⁴ to <1.0 x 10 ⁻⁶	-
Silty Sand/Sand	4.2 x 10 ⁻³ to 2.3 x 10 ⁻⁴	4.4 x 10 ⁻³
Sand Till, some silt, some gravel	9.0 x 10 ⁻⁴	-

Table 1: Summary of Hydraulic Conductivity

3.0 Hydrogeology

3.1 Local Groundwater Use

The lands surrounding the subject lands includes residential subdivisions that are municipally serviced as well as some rural properties which may still rely on private well supplies. The Town of Caledon provides water from a combination of groundwater wells and Lake Ontario. The subdivisions north and west of the subject lands are serviced by water from Lake Ontario. South of the subject lands, residential subdivisions in the City of Brampton are also supplied with water from Lake Ontario. The proposed development will be municipally serviced and there is no proposed on-site groundwater use for the development.

A review of MECP well records within 500 m of the subject lands identified 81 well records. Of the 81 well records, 30 were water supply wells, 16 were test wells, 12 were monitoring wells, 1 was a dewatering well and 22 were abandonment records. Of the listed water supply well records, the majority are screened in the overburden materials, with only five wells screened in the bedrock. The overburden wells are screened at various depths ranging from 6.4 mbgs to 61 mbgs, but generally target the Thorncliffe Aquifer; however, some shallower wells which are completed in the ORAC are also present. It is noted that the well records do not indicate the current status of the well, i.e., whether or not the well is in use, and many of the wells listed within the developed areas surrounding the subject lands are assumed to be decommissioned.

Well Head Protection Areas (WHPAs) are zones around municipal water supply wells where land uses must be carefully planned and restricted to protect the quality of the water supply. Based on our review of WHPA mapping available from the Region of Peel, the subject lands are not located within a WHPA, and as such, the development is not considered to pose a significant threat to municipal drinking water supplies.

3.2 Groundwater Levels

Groundwater levels have been monitored in monitoring wells and drive-point piezometers across the subject lands since April 2019 and the data are summarized in Table E-1 in Appendix E. Hydrographs for each monitoring location are also provided as Figures E-1 through E-13 (Appendix E) to illustrate the groundwater level fluctuations. In addition to the manual groundwater level measurements recorded at each location, automatic water level recorders (dataloggers) were installed in selected locations.

The groundwater monitoring data show the following (refer to Figure 2 for the monitoring locations and the data tables and hydrographs in Appendix E):

- MW19-01, MW19-02s, MW19-03, MW19-04s, MW19-06, MW19-08, BH2, BH3 and BH5 were installed in the shallow silty clay till soils. Groundwater in the till had seasonal variations ranging from about 2 m to 5 m. Groundwater in the silty clay till soils is interpreted to be a shallow perched water table in deposits of low hydraulic conductivity till encountered above the ORAC.
- Groundwater at MW19-01 and MW19-03, located along the higher lands along the northern boundary of the subject lands ranged in depths from 2.6 mbgs to 9.2 mbgs (Figures E-1 and E-3, Appendix E).
- At MW19-05, the 8.4 m deep well screened in silty clay and clayey silt till was found to be dry or have less than 8 centimetres of groundwater during all monitoring rounds (Figure E-5, Appendix E). The lack of a perched groundwater table may be due to sand seams/layers encountered within the till (see Borehole in Appendix B).

- MW19-02s, MW19-04s, MW19-08, BH2, BH3 and BH5 were installed in vicinity of the wetland in silty clay sediments. Seasonal high groundwater within the perched water table near the wetlands was within 2 m of ground surface (Figures E-2, E-4, E-8, E-11, E-12 and E-13, Appendix E).
- MW19-06 is located on the tablelands within the low lying area east of the PSW. The well is screened in silty clay till from 4.0 mbgs to 6.9 mbgs and the groundwater levels range from 1.6 mbgs to 0.44 m above ground surface (mags). The convergence of shallow groundwater towards the low lying area is expected and results in groundwater pressures measured above ground surface; however, any discharge would be interpreted to be very low because the surrounding low hydraulic conductivity silts and clays. Groundwater has not been observed to discharge in the area.
- MW19-02d, MW19-04d, MW19-07d, MW19-09 and MW19-13 are installed in sand and silty sand interpreted to be the ORAC. The groundwater elevation in the sand was generally found to be between 250 masl and 252 masl. Seasonal variation in these wells ranged from 0.3 m to 0.5 m.
- MW19-13 was installed at an elevation 257.24 masl at the top of the ORAC (see Figure 6). Groundwater levels at MW19-13 were measured with up to 0.42 m of water in the screen but were generally found to be dry (Figure E-10, Appendix E). This data indicates the ORAC is not fully saturated, with the upper 2 m to 4 m of the aquifer found to be unsaturated.
- Continuous groundwater level data shows a response to individual precipitation events at MW19-04s and MW19-08 (Figures E-4 and E-8, Appendix E). On January 11, 2020, 59 mm of rain resulted in an increase in water table of 1.5 m at MW19-04s and 1.2 m at MW19-08. The rapid response to precipitation events would support the presence of fractures and layering within the till and the moderate hydraulic conductivity values discussed in Section 2.4. There was no response to individual precipitation events observed in the wells screened in the ORAC (MW19-04d, MW19-07d) (Figures E-4 and E-7, Appendix E).
- Monitoring well nests (e.g., wells located adjacent to each other but completed at different depths) were installed in MW19-02s/d, MW19-04s/d and MW19-07s/d. The groundwater levels in shallow wells MW19-02s and MW19-04s were consistently higher than the deeper wells MW19-02d and MW19-04d, showing a strong downward hydraulic gradient and recharge conditions (Figures E-2 and E-4, Appendix E). At MW19-07s/d, the shallow well MW19-07s is screened just above the sand aquifer and was mostly dry while water levels at MW19-07d screened in the ORAC were 12.3 mbgs to 12.9 mbgs showing recharge conditions (Figure E-7, Appendix E).

3.2.1 TRCA Monitoring Wells

Three monitoring wells owned by the TRCA (TRCA Mayfield MW-1 through MW-3) are located in the Heart Lake Conservation Area located just southeast of the subject lands (see Figure 2). In addition, one well nest is located adjacent to Etobicoke Creek southwest of the subject lands (TRCA Mayfield MW-4s/d). Monitoring data for these wells was provided by the TRCA for our review and is included in Appendix E. The monitoring wells ranged in depth from 6 mbgs to 14 mbgs. Groundwater levels at MW-1 through MW-3 ranged in elevations from ~246 masl to 254 masl. At monitoring well nest MW-4s/d, the shallow groundwater levels at MW-4s ranged from about 265 masl to 266 masl and the deep groundwater levels at MW-4d ranged from about 266.5 masl to 267 masl. The groundwater levels in the deep well (screened in sand) are higher than groundwater levels in the shallow well (screened in sandy silt) indicating upward gradients at this location.

3.3 Groundwater Flow Conditions

It is interpreted that the shallow perched water table in the surficial till deposits reflects the general surface topography and, where present, the shallow groundwater flow patterns in the till will mimic the surface water flow patterns, with flow generally moving from higher elevations towards lower elevations (Figure 10).

Review of regional groundwater mapping completed by TRCA as part of the Etobicoke and Mimico Creeks Watersheds Technical Update Memo (2010) shows the groundwater in the ORAC in the vicinity of the subject lands generally flows from northwest to southeast. This is consistent with interpreted groundwater flow from groundwater levels measured in the ORAC on the subject lands.

3.4 Recharge and Discharge Conditions

Site-specific findings for the subject lands show a downward gradient between the shallow till soils and underlying sand layer (refer to Section 2.4.2), indicating that the subject lands are in a recharge area. Monitoring at piezometers and staff gauges in the PSW shows a downward hydraulic gradient in this feature (refer to Section 2.2), suggesting this feature provides recharge to the underlying soils. It is interpreted that this feature is primarily supported by surface water runoff as noted in Section 2.2.

Significant Groundwater Recharge Areas (SGRAs) have been mapped by TRCA and reproduced for this study as Figure 10. Review of this mapping shows that the south, and central portions of the subject lands are located within a SGRA. Although the results of the groundwater monitoring on the subject lands show that this is a recharge area, the results of the drilling investigations show that the subject lands is covered by a layer of relatively low hydraulic conductivity silty clay till (refer to Sections 2.3.1 and 2.3.3). As such, the actual amount of water that infiltrates and moves through the

subsurface over most of the area is expected to be limited by the relatively low hydraulic conductivity of the surficial silt and clay sediments. Regardless, as discussed below in Sections 4.5 and 4.6, low impact development (LID) measures to promote post-development infiltration will be implemented to maintain the pre-development recharge volumes.

3.5 Aquifer Vulnerability

The aquifer vulnerability was mapped by CTC for the Approved Updated Assessment Report: Toronto Region Source Protection Area (2015). The aquifer vulnerability designation for the subject lands, as mapped by CTC, is provided on Figure 11. Aquifer vulnerability refers to the susceptibility of the aquifer to potential contamination. Some degree of protection for groundwater quality from natural and human impacts is provided by the soil above the water table. The degree of protection is dependent upon the depth to the water table (for unconfined aquifers) or to the depth of the aquifer (for confined aquifers) and the type of soil above the water table or aquifer. As these two properties vary over any given area, the degree of protection or vulnerability of the groundwater to contamination also varies.

CTC developed the aquifer vulnerability map shown on Figure 11 using the MECP water well records for the area to determine the soil types and depths to aquifer to develop an Aquifer Vulnerability Index (AVI). Areas within the subject lands along the valley of the Spring Creek are identified as having "high groundwater vulnerability". It is noted in the CTC report that this is a very regional scale map and also, due to the uncertainty in the water well records, the mapping should only be used as a guide, and not for site specific planning decisions. The block like pattern is an indication of the grid that was used to assess aquifer vulnerability and reflects the uncertainty of the assessment.

Areas within the subject lands identified as having "high groundwater vulnerability" are located near the valley of the Spring Creek. These areas have likely been identified as a result of the change in topography along the creek resulting in an interpreted decrease in the thickness of the overburden sediments overlying the ORAC. Cross-sections B-B' and C-C' (Figures 7 and 8, respectively) show that there is a decrease in the silty clay till overlying the ORAC at the incised valley. Impacts to the aquifer from the proposed development are not anticipated since the valley lands will remain undeveloped.

3.6 Water Quality

3.6.1 Groundwater Quality

Groundwater samples were collected from two monitoring wells on the subject lands on April 20, 2020 to assess the groundwater quality in the shallow till soils and the underlying ORAC (MW19-01 and MW19-04d, respectively). The samples were submitted to SGS Canada Inc. for analysis of general quality indicators (e.g., pH,

hardness, and conductivity), basic ions (including chloride and nitrate) and selected metals. The results of the analyses were compared to the Ontario Drinking Water Quality Standards (ODWQS) and are provided in Table G-1 in Appendix G. The groundwater testing results from the analytical laboratory show the following:

- The groundwater is hard with reported hardness 613 mg/L at MW1 and 405 mg/L at MW19-04d. Groundwater from overburden sediments is commonly hard and it is likely that many of the local residents that rely on groundwater will have water softeners in their homes. For comparison, the operational guideline for hardness in municipal water systems is in the 80 to 100 mg/L range.
- The groundwater samples also had high turbidity (>4,000 NTU and 583 NTU for MW19-01 and MW19-04d, respectively), compared to the ODWQS of 5 NTU. The turbidity in monitoring well samples may be related to suspended sediments.
- Chloride and sodium concentrations were reported at MW19-01 to be 55 mg/L and 10.9 mg/L, respectively. The chloride and sodium concentrations reported for MW19-04d were 6 mg/L and 18.5 mg/L, respectively. The data suggests that road salt usage on adjacent streets have not impacted the groundwater (ORAC).
- Elevated nitrate was detected in MW19-01 at a concentration of 38.6 mg/L. This is well above the ODWQS for nitrate of 10 mg/L. Nitrate in shallow groundwater is typically associated with areas where agricultural land use results in elevated nitrates in groundwater. Current land use on the subject lands is agricultural and is interpreted to be the cause of the elevated nitrates. There was no nitrate detected in the deep well MW19-04d screened in the ORAC.
- The reported metal concentrations were generally low and below the ODWQS.

3.6.2 Surface Water Quality

Surface water was sampled from the watercourse near PZ4s/d (Sample ID SW4) in April 2020 to characterize the surface water quality. The surface water sample was analysed for pH, conductivity, basic ions and selected metals and the laboratory results are summarized in Table G-2 in Appendix G.

The surface water quality data show the following:

 SW4 had reported chloride concentrations of 370 mg/L and sodium concentrations of 199 mg/L. These concentrations are considered elevated as compared to rainwater and local groundwater concentrations and are interpreted to indicate road salt effects on the surface water runoff quality.

- The total reactive phosphorus concentration was reported below the Provincial Water Quality Objective (PWQO) for phosphorus of 0.03 mg/L.
- Aluminum was reported at a concentration of 0.499 mg/L which exceeds the PWQO of 0.075 mg/L.
- SW4 had elevated iron with a concentration of 3.95 mg/L which is well above the PWQO of 0.3 mg/L. Elevated iron was not observed in the groundwater samples collected.

4.0 Water Balance

A water balance is an accounting of the water resources within a given area. As a concept, the water balance is relatively simple and has been estimated herein using a spreadsheet model based on the following equation:

	Р	=	S + ET +R + I
where:	Р	=	precipitation
	S	=	change in groundwater storage
	ET	=	evapotranspiration/evaporation
	R	=	surface water runoff
	I	=	infiltration

The components of the water balance vary in space and time and depend on climatic conditions as well as the soil and land cover conditions (i.e., rainfall intensity, land slope, soil hydraulic conductivity and vegetation). Runoff, for example, occurs particularly during periods of snowmelt when the ground is frozen, or during intense rainfall events. Precise measurement of the water balance components is difficult and as such, approximations and simplifications are made to characterize the water balance of a study area. Field observations of the drainage conditions, land cover and soil types, groundwater levels and local climatic records are important considerations for the water balance calculations.

Water balance calculations have been completed for the subject lands using a spreadsheet model and monthly soil-moisture balance approach, which assumes that soils do not release water as potential recharge while a soil moisture deficit exists. During wetter periods, any excess of precipitation over evapotranspiration first goes to restore soil moisture. Once the soil moisture deficit is overcome, any further excess water can then pass through the soil as infiltration.

The SWM Planning and Design Manual (2003) methodology for calculating total infiltration based on topography, soil type and land cover was used, and a corresponding runoff component was calculated for the soil moisture storage conditions. It is very

important to note that the infiltration and runoff components are estimates. Single values are used for the water balance calculations; however, the infiltration rates are dependent upon the hydraulic conductivity of the surficial soils which may vary over several orders of magnitude. As such, the margins of error for the calculated infiltration and runoff component values are potentially quite large. These margins of error are recognized; however, for the purposes of this assessment, the numbers used in the water balance calculations are considered reasonable estimates based on the site-specific conditions and provide a useful for comparison of pre- to post-development conditions.

The water balance components for the subject lands are discussed below.

4.1 Water Balance Components

Precipitation (P)

The long-term average annual precipitation for the area is 786 mm based on data from the Environment Canada Toronto Lester B. Pearson International Airport climate station (Station 6158733 - 43°40'38.000" N, 79°37'50.000" W, elevation 173.40 masl) for the period between 1981 and 2010. Average monthly records of precipitation and temperature from this station have been used for the water balance component calculations in this study (Table H-1, Appendix H).

Storage (S)

Although there are groundwater storage gains and losses on a short-term basis, the net change in groundwater storage on a long-term basis is assumed to be zero so this term is dropped from the equation.

Evapotranspiration (ET)/Evaporation (E)

Evapotranspiration and evaporation components vary based on the characteristics of the land surface cover (i.e., type of vegetation, soil moisture conditions, perviousness of surfaces, etc.). Potential evapotranspiration (PET) refers to the water loss from a vegetated surface to the atmosphere under conditions of an unlimited water supply. The actual rate of evapotranspiration (AET) is often less than the PET under dry conditions (i.e., during the summer when there is a soil moisture deficit). In this report, the monthly PET and AET have been calculated using a soil-moisture balance approach, using average temperature data and climate information adjusted to the local latitude (refer to Table H-1, Appendix H).

Water Surplus (R + I)

The difference between the mean annual P and the mean annual ET is referred to as the water surplus. Part of the water surplus travels across the surface of the soil as surface or overland runoff and the remainder infiltrates the surficial soil.

The infiltration is comprised of two end member components: One component that moves vertically downward to the groundwater table (typically referred to as percolation, deep infiltration or net recharge) and a second component that moves laterally through the shallow soils as interflow that re-emerges locally to surface (i.e., as runoff) at some short time following cessation of precipitation. As opposed to the "direct" component of surface runoff that occurs overland during precipitation or snowmelt events, shallow interflow becomes an "indirect" component of runoff. The interflow component of surface water runoff is not accounted for in the water balance equation cited above since it is often difficult to distinguish between interflow and direct (overland) runoff, but both interflow and direct runoff contribute to the overall surface water runoff component in the spreadsheet calculations.

4.2 Existing Conditions

Representative soil moisture storage capacity values were selected for the silty to clayey till soils that reflect the various vegetation types and topography identified across the subject lands. The values are summarized as follow:

- 200 mm was selected for the existing agricultural vegetation across the majority of the subject lands on hilly to rolling topography (Table H-1; Appendix H).
- 250 mm was selected for the wetland vegetation on rolling to flat topography (Table H-2; Appendix H).
- 250 mm was selected for the dry-moist old field meadow on hilly land (Table H-3; Appendix H).
- 400 mm was selected for forested lands on hilly to rolling topography (Table H-4; Appendix H).
- 100 mm was selected for urban lawns on hilly to rolling topography areas (Table H-5; Appendix H).

Tables H-1 through H-5 in Appendix H detail the monthly potential evapotranspiration calculations accounting for latitude and climate, and then calculate the actual evapotranspiration and water surplus components of the water balance based on the monthly precipitation and soil moisture conditions.

The monthly water balance calculations show that a water surplus is generally available from January to April (Tables H-1 through H-4) for the majority of the vegetation found across the subject lands and from December to April (Table H-5) for the urban lawns. Infiltration occurs during periods when there is sufficient water available to overcome the soil moisture storage requirements. In winter climates, frozen conditions may affect when the actual infiltration will occur, however, the monthly balance calculations show

the potential volumes available for this water balance component. The monthly calculations are summed to provide estimates of the annual water balance component values (Tables H-1 through H-5). A summary of these values is provided in Table 2.

Water Balance Component	Agricultural Lands (mm/year)	Wetland (mm/year)	Dry-Moist Old Field Meadow (mm/year)	Wooded Area (mm/year)	Urban Lawns (mm/year)
Average	786	786	786	786	786
Precipitation					
Actual	617	617	617	617	560
Evapotranspiration					
Water Surplus	169	169	169	169	226
Infiltration	68	85	59	85	90
Runoff	102	85	110	85	135

 Table 2: Water Balance Component Values

The pre-development infiltration volume for the subject lands as calculated in Table H-7 (Appendix H) is about 42,100 m³/year. It is important to recognize that this infiltration volume is an estimate provided for the purposes of this assessment.

4.3 Potential Urban Development Impacts to Water Balance

Development of an area affects the natural water balance. The most significant difference is the addition of impervious surfaces as a type of surface cover (i.e., roads, parking lots, driveways, and rooftops). Impervious surfaces prevent infiltration of water into the soils and the removal of the vegetation removes the evapotranspiration component of the natural water balance. The evaporation component from impervious surfaces is relatively minor (estimated to be 10% to 20% of precipitation) compared to the evapotranspiration component that occurs with vegetation (71% to 78% of precipitation in the study area). So, the net effect of the construction of impervious surfaces is that most of the precipitation that falls onto impervious surfaces becomes surplus water and direct runoff, and the infiltration is reduced.

A calculation of the potential water surplus for impervious areas is shown at the bottom of Table H-1 (Appendix H). For the purposes of the calculations in this study, the evaporation from impervious surfaces has been estimated to be 15% of precipitation. The remaining 85% of the precipitation that falls on impervious surfaces is assumed to become runoff. Therefore, assuming an evaporation/loss from impervious surfaces of 15% of the precipitation, there would be a potential water surplus from impervious areas of 668 mm/year.

It is noted that the proposed development will be serviced by municipal water supply and wastewater services. Therefore, there will be no impact on the water balance and local groundwater or surface water quantity and quality conditions related to any on-site groundwater supply pumping or disposal of septic effluent.

4.4 Post-Development with No LID Measures

In order to assess the potential development impact on infiltration volumes, the post-development infiltration volumes have been calculated for the subject lands in Table H-7 (Appendix H). The calculations provided in Table H-7 assume no low impact development (LID) measures to promote infiltration are in place.

The total areas for the proposed land uses have been estimated based on the proposed development concept and the infiltration and runoff components for the postdevelopment land uses have been calculated using the SWM Planning and Design Manual (2003) methodology based on topography, soil type and land cover as shown on Table H-6 (Appendix H). The total calculated post-development infiltration volume (without mitigation) is about 28,700 m³/year.

Comparison of the pre-development and post-development infiltration volumes from the water balance calculations shows that development has the potential to reduce the natural infiltration on the subject lands by 32%. Again, it is noted that with the assumptive nature of the input values and the wide margins of error associated with this type of analysis, the estimated infiltration deficit volume is simply considered as a reasonable estimate and may not reflect the actual volume of water that may infiltrate on the subject lands.

4.5 Water Balance Mitigation Strategies

The basic premise for low impact development is to try to manage stormwater to minimize the runoff of rainfall and increase the potential for infiltration. As outlined in the SWM Planning and Design Manual (2003) and Low Impact Development Stormwater Management Planning and Design Guide (2010), there are a wide variety of mitigation techniques that can be used to try to reduce the increases in direct runoff that occur with land development and increase the potential for post-development infiltration.

Techniques to maximize the water availability in pervious areas such as designing grades to direct roof runoff towards lawns, side and rear yard swales, and other pervious areas throughout the development where possible can considerably increase the volume of infiltration in developed areas. These types of surface LID techniques promote natural infiltration simply by providing additional water volumes in the pervious areas (i.e., these areas would receive precipitation as well as extra water from roof runoff). This may be particularly effective in the summer months, when natural infiltration would

not generally occur because the additional water overcomes the natural soil moisture deficit.

Other mitigation techniques that can be considered to mitigate increases in runoff and reductions in infiltration include such measures as: permeable pavements, rain gardens, rain barrels, bioswales, subsurface infiltration trenches, galleries and pervious pipe systems. Subsurface methods should only be considered in areas where there is sufficient depth to water table to accommodate the systems within the unsaturated zone and sufficient soil hydraulic conductivity to function effectively. The 2003 SWM manual recommends that subsurface galleries or trenches should generally be about 1 m above the seasonally high water table.

As presented in the Stormwater Management Report prepared by Schaeffers Consulting Engineers (May 2021), the proposed SWM strategy includes the following LID measures:

• Increased topsoil depth across all lots. The intention with increased topsoil depth is to aid retention of runoff through increased soil storage and promote more infiltration in these areas. Typically, topsoil is increased to about 300 mm.

Area 201

- ~11,400 m² of rear roof areas from all Detached/Semi-Detached/St. Townhouses will be discharged to pre-cast splash pads and directed to rear/side pervious areas. The TRCA and CVC Stormwater Management Criteria (2010) indicates that a conservative estimate for the reduction in runoff due to roof leader disconnection is 25% for silt to clayey soils.
- Excess runoff from ~11,400 m² of rear roof areas from all Detached/Semi-Detached/St. Townhouses and ~18,200 m² of rear yards directed to infiltration trenches designed to accommodate the 27 mm storm event for rear roofs and 7 mm storm event from rear yards.
- Runoff from ~13,100 m² of Park area directed to infiltration trenches designed to accommodate the 7 mm storm event.

Area 202

 ~10,900 m² of rear roof areas from all Detached/Semi-Detached/St. Townhouses will be discharged to pre-cast splash pads and directed to rear/side pervious areas. The TRCA and CVC Stormwater Management Criteria (2010) indicates that a conservative estimate for the reduction in runoff due to roof leader disconnection is 25% for silt to clayey soils. Excess runoff from ~10,900 m² of rear roof areas from all Detached/Semi-Detached/St. Townhouses and ~17,400 m² of rear yards directed to infiltration trenches designed to accommodate the 27 mm storm event for rear roofs and 7 mm storm event from rear yards.

Area 203

• On-site measures to infiltrate the 5 mm storm event.

Based on the existing information, proposed grades and elevations of the bottom of the infiltration measures, it is anticipated that there is generally sufficient depth to groundwater for effective performance of the proposed infiltration measures across the Area 201 and Area 202 lands. The proposed grading suggests that groundwater levels in Area 203 may rise within 1 m of the base of the infiltration facilities during seasonally high groundwater conditions, however, this would be a temporary and short term condition that would not be expected to affect the overall infiltration function of the facilities during the remainder of the year.

4.6 Post-Development with LID Measures in Place

Quantification of these surficial LID techniques is challenging and there are no widely accepted quantification standards. To assess the potential effectiveness of the recommended LID measures for groundwater infiltration and runoff reduction for the subject lands, the water balance component values were recalculated. In the residential areas where select roofs areas are directed to pervious areas (rear/side yards), it has been assumed in the calculations that 25% of the roof runoff will infiltrate, as per the estimation provided in the Low Impact Development Stormwater Management Planning and Design Guide (CVC and TRCA, 2010).

To calculate the annual infiltration volumes in the proposed infiltration trenches, the Toronto Wet Weather Flow Management Guidelines (City of Toronto, 2006) were used to correlate the storm event size these facilities are designed to infiltrate to a percentage of the average annual rainfall depth, which was then applied to the roof area directed to these trenches to calculate an infiltration volume, as shown in Table H-9 (Appendix G). It is reported in these Guidelines, based on the review of rainfall data from 16 rainfall stations across Toronto, the 27 mm storm accounts for approximately 95% of the annual rainfall volume (82% of annual precipitation), the 7 mm storm accounts for approximately 58% of the annual rainfall volume (50% of annual precipitation) and the 5 mm storm accounts for approximately 48% of the annual rainfall volume (43% of annual precipitation).

Recalculation of the water balance for the subject lands with these LID measures in place demonstrates that there would be a 26% increase in infiltration compared to

pre-development volumes (Table H-9, Appendix H). This shows the significant benefit of the proposed LID strategy in increasing recharge volumes in the developed area.

5.0 Construction Considerations

5.1 Dewatering Requirements

The construction dewatering requirements will vary significantly depending on the local soils, the climate conditions, the construction season and the depth and size of the excavations. The perched water table in the till ranges in depth from at ground surface to greater than 8 mbgs. Groundwater within the underlying sand aquifer ranges in depth from 6 m to 14 m. There is the potential for groundwater to be encountered during excavation for services and building foundations depending on the location and depth of excavations. Due to the relatively low hydraulic conductivity of these sediments they would not be expected to produce much water. Minor seepage into excavations within the clayey soils at the site can likely be handled, as required, by pumping from sumps within the trench excavations. Active dewatering may be required if excavations intersect saturated sand, silty sand and sandy silt soils.

Dewatering and/or depressurization requirements and anticipated water flow volumes will be confirmed by geotechnical investigations completed in support of detailed servicing design. The MECP regulates water takings above 50,000 L/day. Dewatering associated to construction with volumes less than 400,000 L/day are permitted under the Environmental Activity and Sector Registry (EASR) process. Volumes greater than 400,000 L/day require a Permit to Take Water (PTTW). Based on our knowledge of the regulations, the dewatering will either be allowed by a Category 3 PTTW or under the EASR process depending on the expected volume of water taking.

5.2 Construction Below Water Table

The construction of buried services below the water table has the potential to capture and redirect groundwater flow through more permeable fill materials typically placed in the base of excavated trenches. Over the long-term, these impacts can lower the local groundwater table. To mitigate this effect, services to be installed below the water table should be constructed to prevent redirection of groundwater flow. This will involve the use of anti-seepage collars or clay plugs surrounding the pipes to provide barriers to flow and prevent groundwater flow along granular bedding material and erosion of the backfill materials.

5.3 Well Decommissioning

Prior to or during construction, it is necessary to ensure that all inactive wells within the development footprint have been located and properly decommissioned by a licensed water well contractor according to Ontario Regulation 903. This regulation applies to the

Snell's Hollow Developers Group

Hydrogeological Assessment & Water Balance May 2021

groundwater monitoring wells installed for this study unless they are maintained throughout the construction for monitoring purposes.

6.0 References

Chapman, L.J. and D.F. Putnam, 1984. The Physiography of Southern Ontario, Third Edition; Ontario Geological Survey, Special Volume 2, 270p. Accompanied by Map 2715.

City of Toronto, November 2006. Toronto Wet Weather Flow Management Guidelines.

Credit Valley Conservation and Toronto and Region Conservation Authority, 2010. Low Impact Development Stormwater Management Planning and Design Guide.

Edward Wong, 2017. Geotechnical Investigation Proposed Residential Development 3278 Mayfield Road, Caledon, Ontario. Edward Wong & Associates Inc., October 28, 2017.

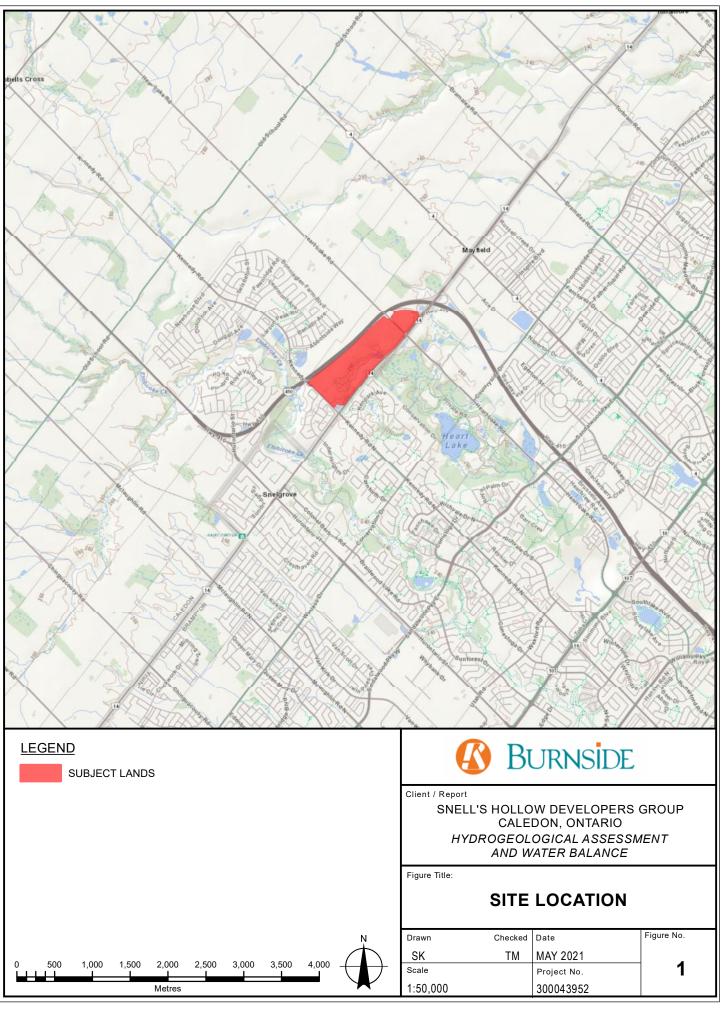
Environment Canada, Canadian Climate Normals 1981-2010, Toronto Lester B. Pearson International Airport Climate Station, Ontario.

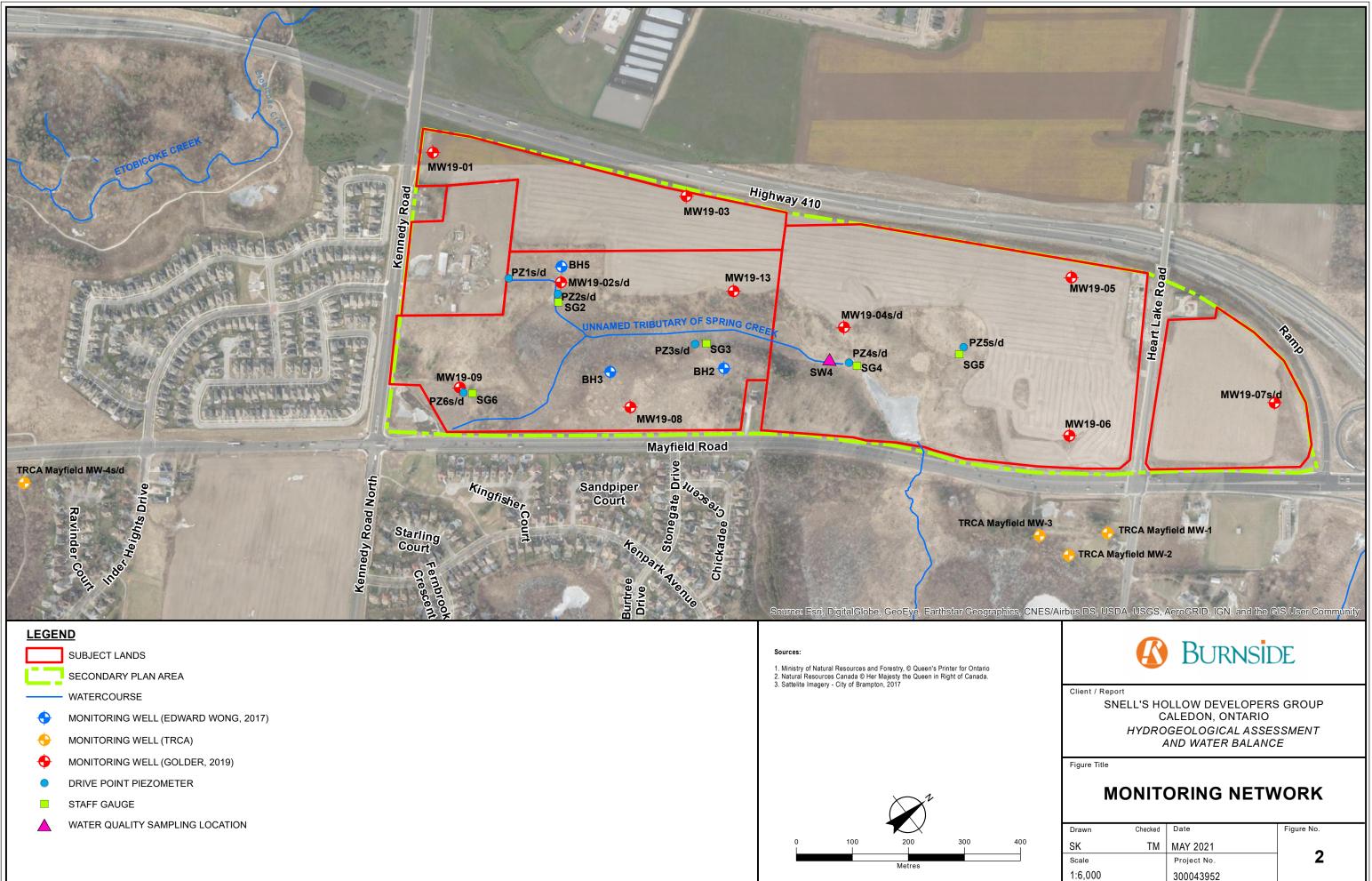
Golder, 2019. Technical Memorandum: Monitoring Well Installation Within 2528061 Inc., Golder Associates Ltd., June 25, 2019.

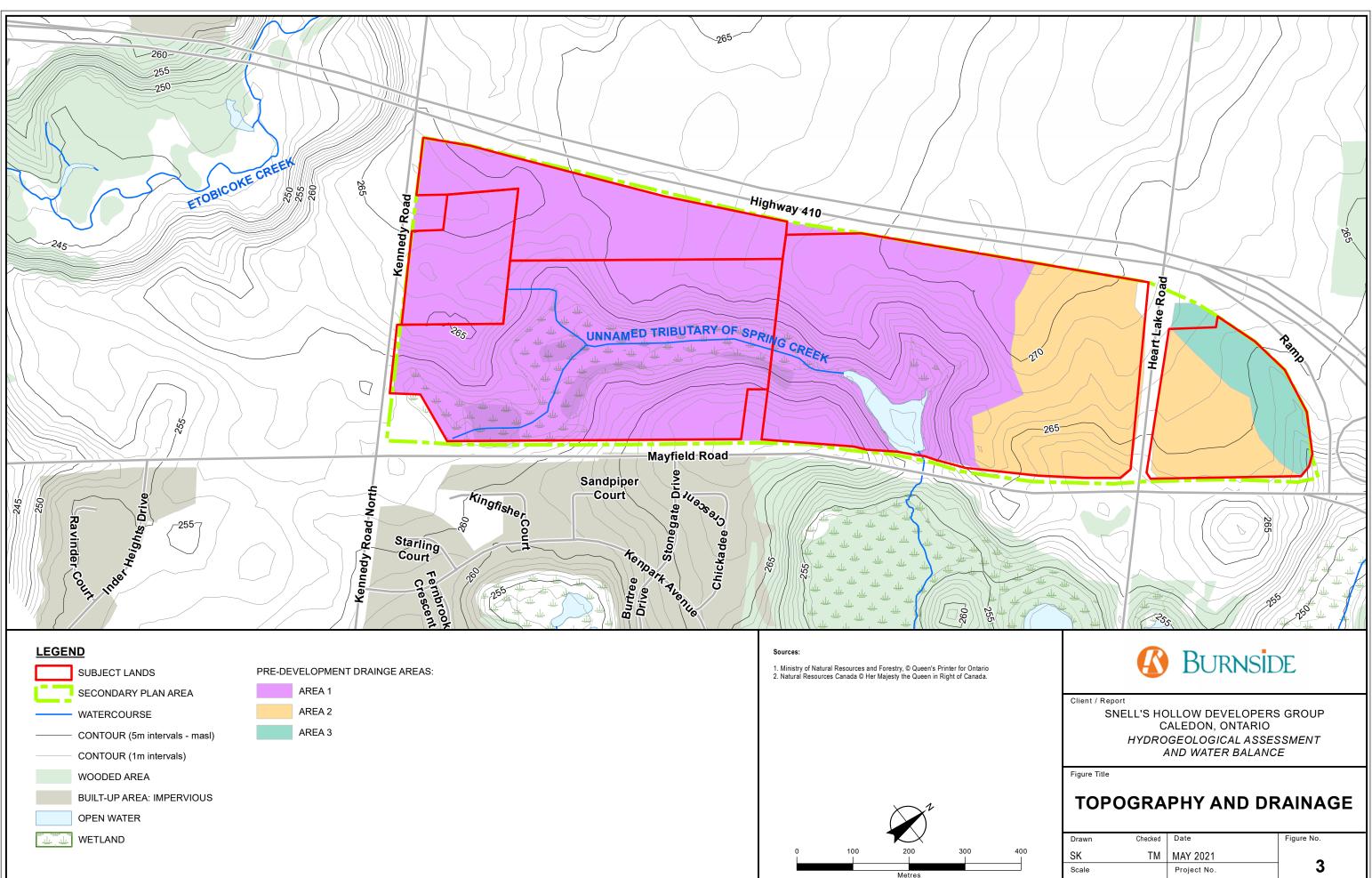
Ontario Geological Survey, 2011. 1:250 000 scale bedrock geology of Ontario; Ontario Geological Survey, Miscellaneous Release – Data 126 – Revision 1.

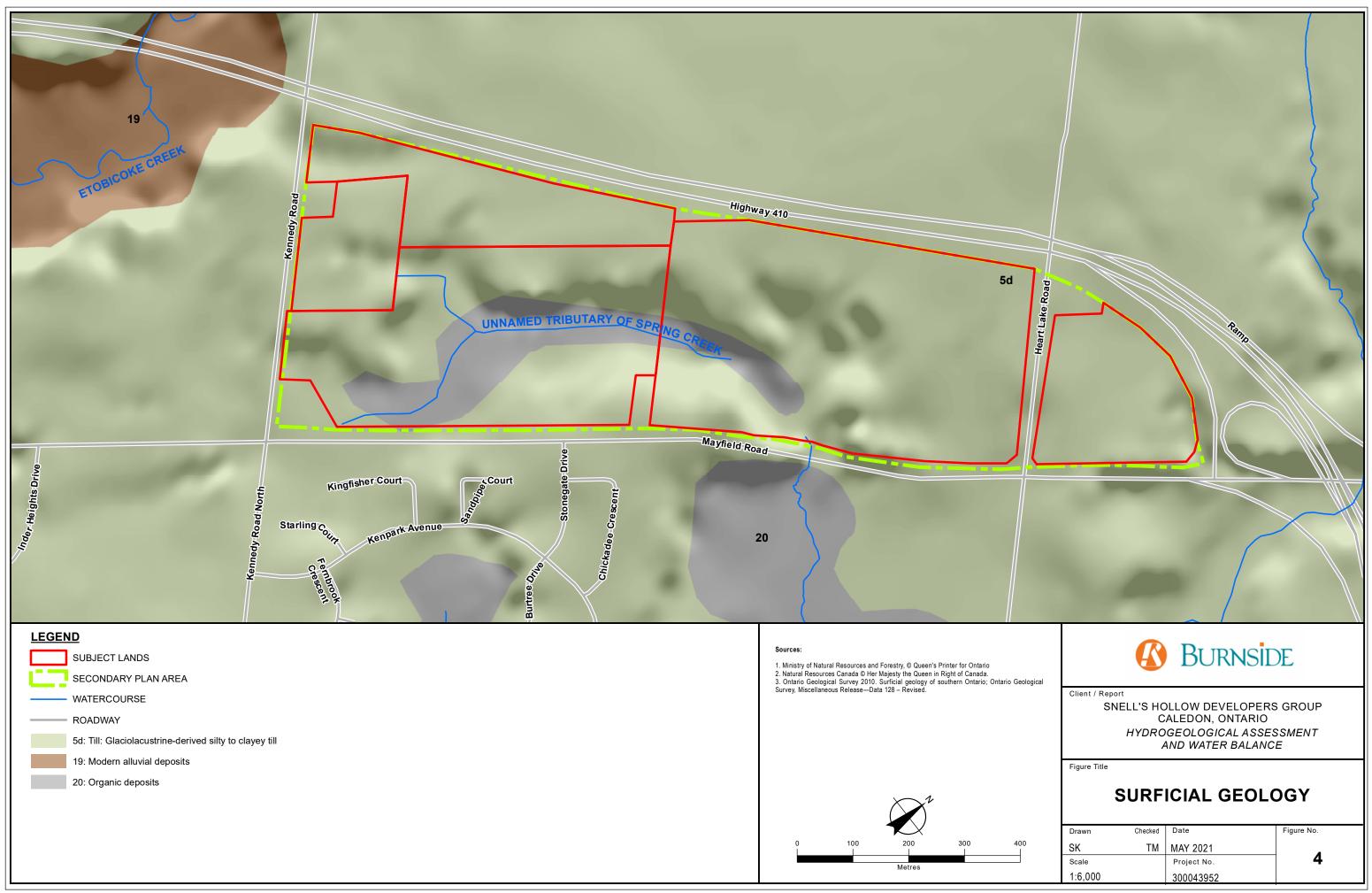
Ontario Geological Survey, 2003. Surficial Geology of Southern Ontario; Miscellaneous Release – Data 128.

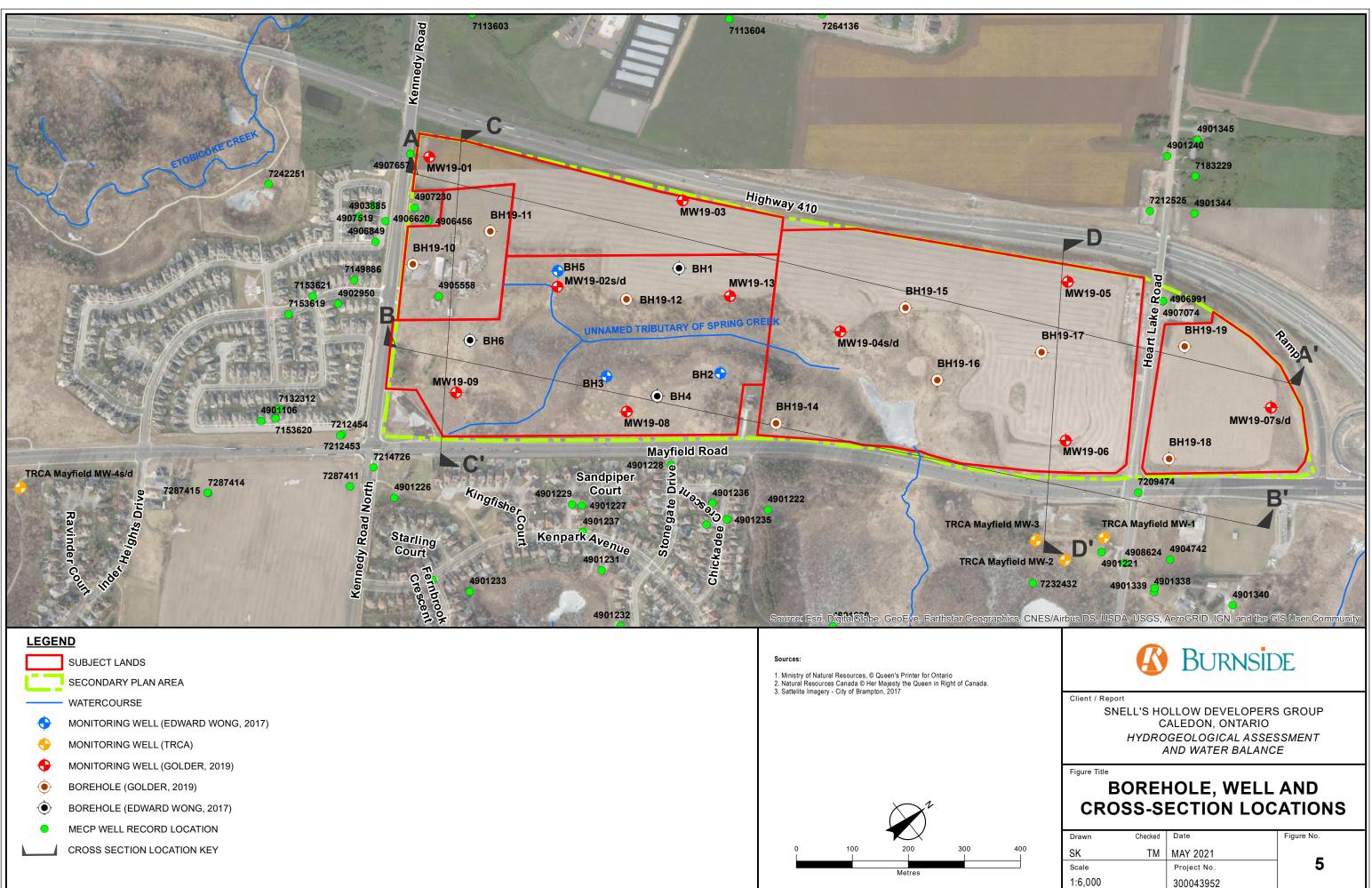
Ontario Ministry of the Environment, Storm Water Management Planning and Design Manual, March 2003.

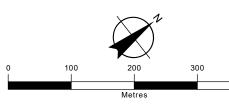

Ontario Ministry of the Environment, Conservation and Parks, Water Well Records.

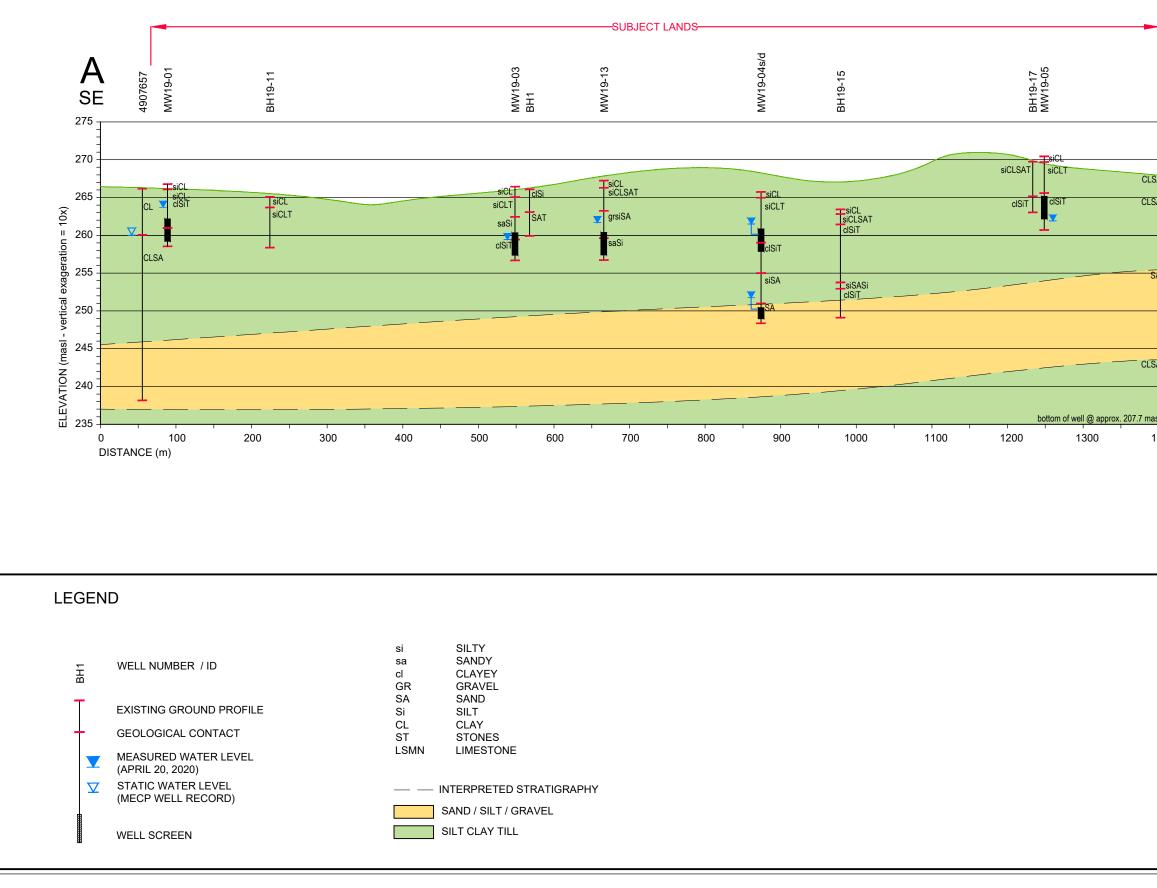

Toronto and Region Conservation Authority, July 27, 2015. Approved Updated Assessment Report: Toronto and Region Source Protection Area.

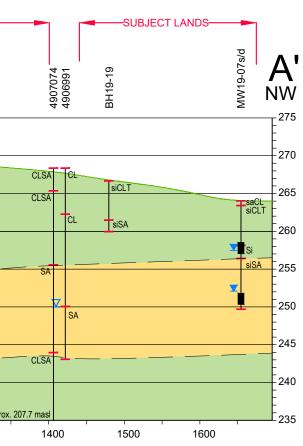

Toronto and Region Conservation Authority, 2010. Etobicoke and Mimico Creeks Watersheds Technical Update Report.


Figures

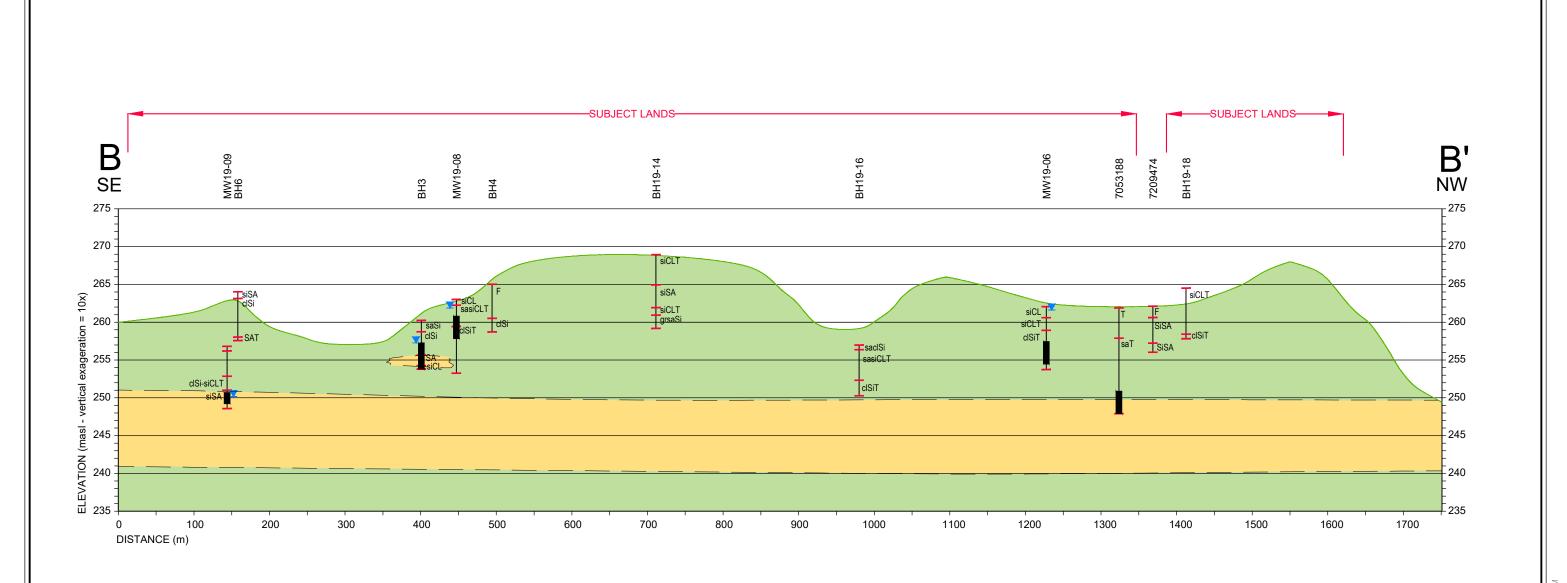


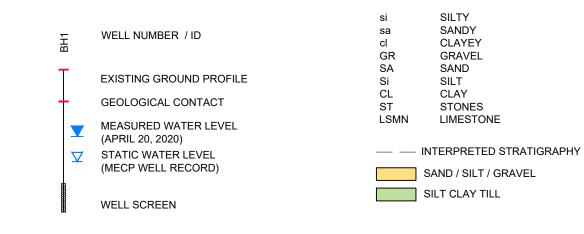



Drawn	Checked	Date	Figure No.
SK	ТМ	MAY 2021	2
Scale		Project No.	3
1:6,000		300043952	

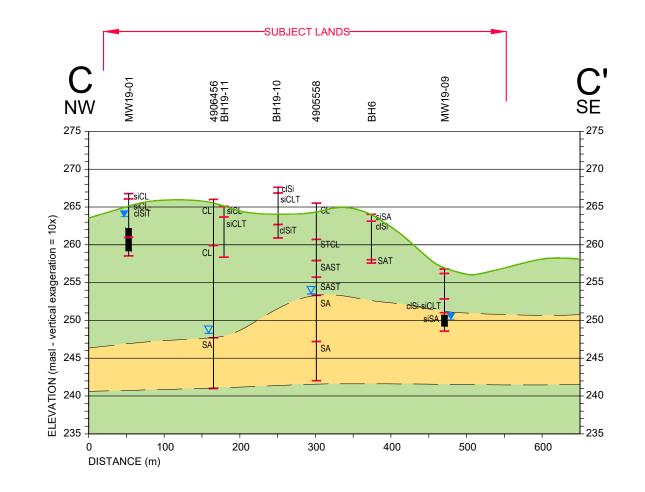


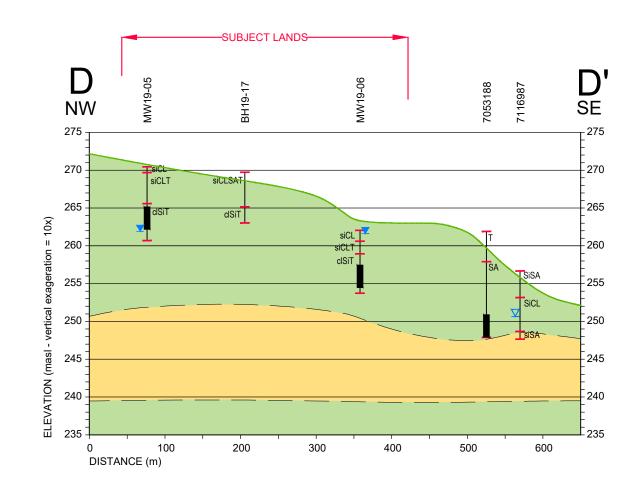
	Drawn	Checked	Date	Figure No.
100 	SK	ТМ	MAY 2021	
]	Scale		Project No.	4
	1:6,000		300043952	



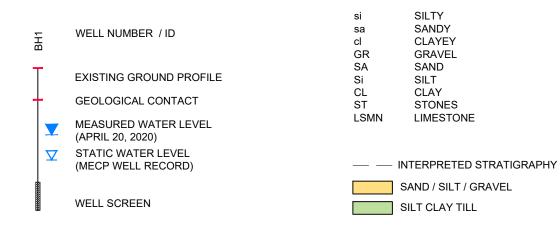


		BURNSIDE	
Client / Report SNELL'S HOLLOW DEVELOPERS GROUP CALEDON, ONTARIO HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE			
Figure Title INTERPRETED GEOLOGICAL CROSS-SECTION A-A'			
Drawn SK	Checked TM	Date MAY 2021	Figure No.
Scale 1:5,000		Project No. 300043952	6

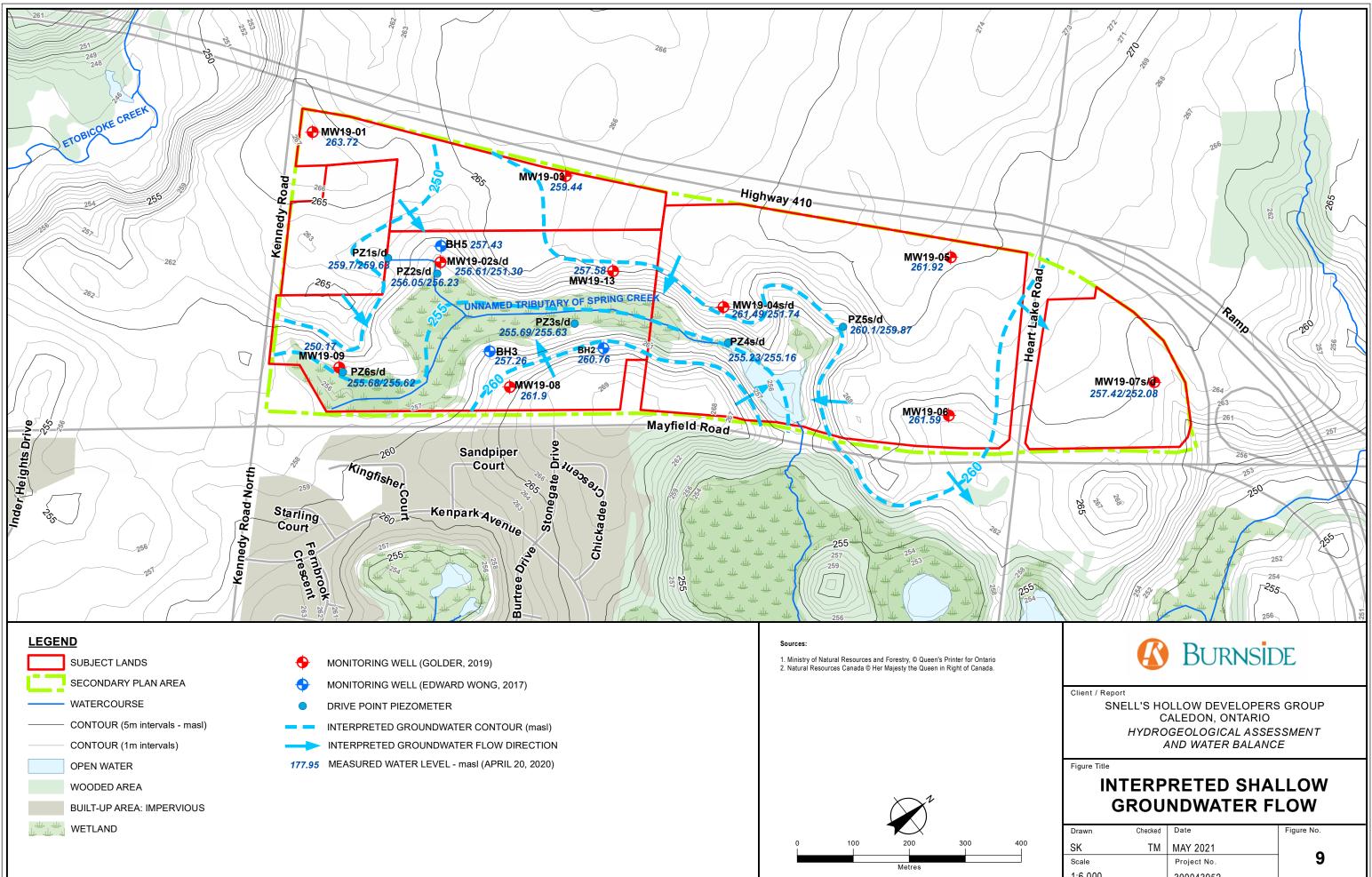

:: A:\043952 Snell's Hollow\043592 HG Study Drawing Set.dwg Date Plotted: May 14, 2021 - 1:39

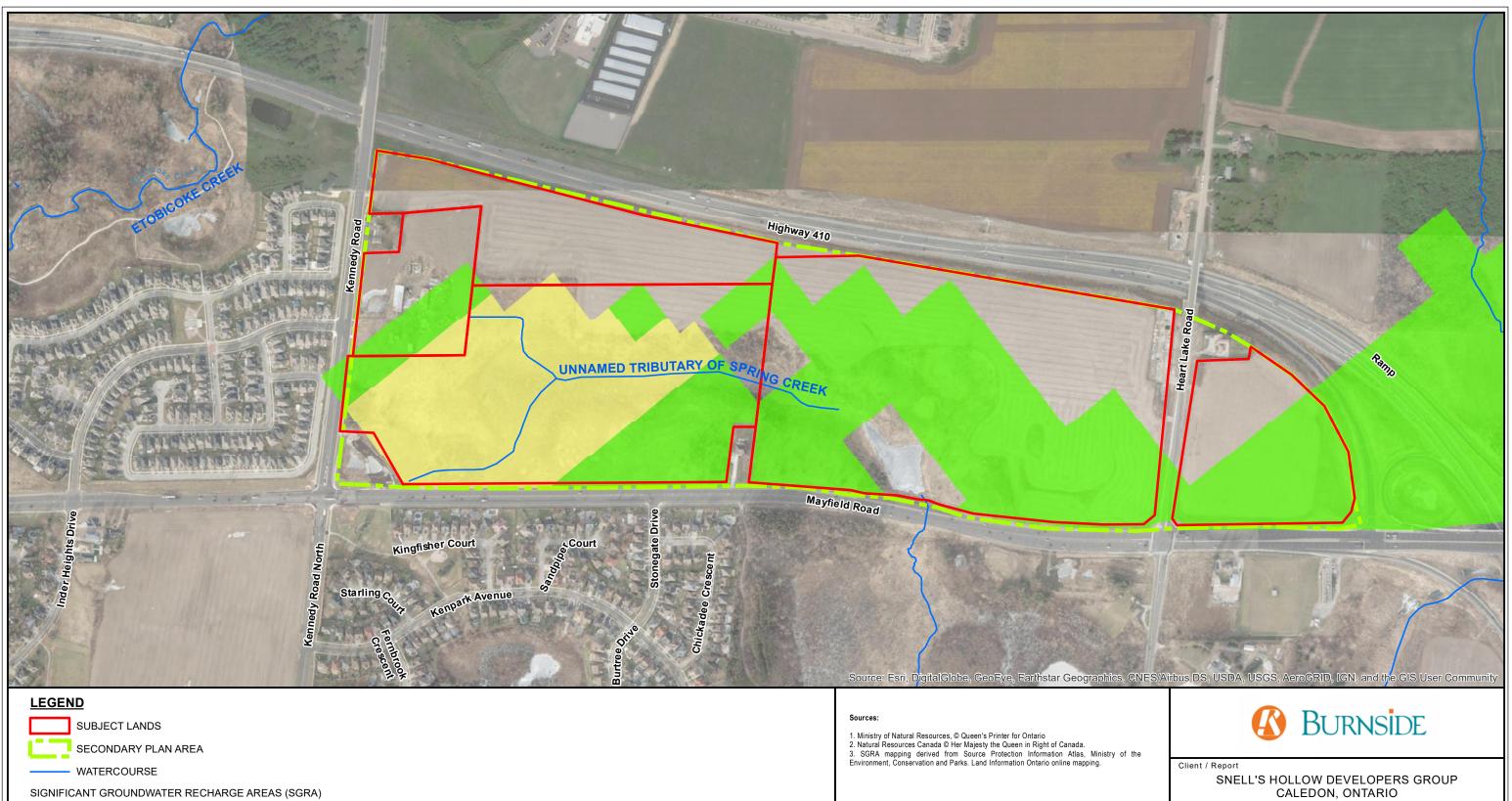


LEGEND



		Burns	DE
H	Client / Report SNELL'S HOLLOW DEVELOPERS GROUP CALEDON, ONTARIO HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE		
Figure Title		RETED GEO SS-SECTIO	
Drawn SK	Checked TM	Date MAY 2021	Figure No.
Scale 1:5,000		Project No. 300043952	7




LEGEND

		Burnsi	DE
Figure Title	CA HYDROGE ANI	LLOW DEVELOF LEDON, ONTAI COLOGICAL ASS DWATER BALA RETED GEOL SS-SECTION	RIO SESSMENT NCE
Drawn SK	Checked TM	Date MAY 2021	Figure No.
Scale		Project No.	8

	Drawn	Checked	Date	Figure No.
)	SK	ТМ	MAY 2021	•
	Scale		Project No.	9
	1:6,000		300043952	

SIGNIFICANT GROUNDWATER RECHARGE AREAS (SGRA)

HIGH

MEDIUM

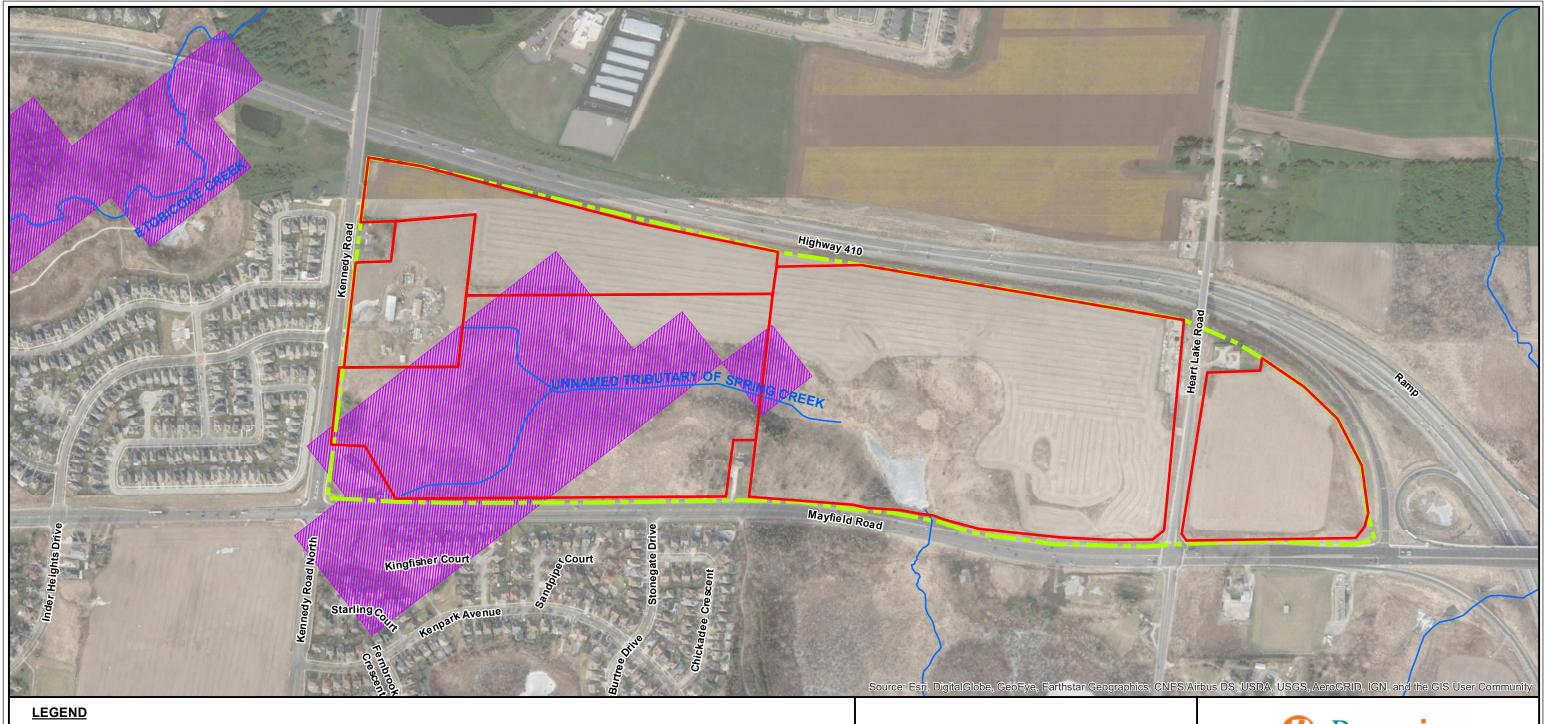

HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE

Figure Title

SIGNIFICANT **RECHARGE AREAS**

100		
+		

		_	_
Drawn	Checked	Date	Figure No.
SK	ТМ	MAY 2021	
Scale		Project No.	10
1:6,000		300043952	

- SUBJECT LANDS
- SECONDARY PLAN
- WATERCOURSE

HIGHLY VULNERABLE AQUIFER

Sources:

Ministry of Natural Resources, © Queen's Printer for Ontario
 Natural Resources Canada © Her Majesty the Queen in Right of Canada.
 HVA mapping derived from Source Protection Information Atlas, Ministry of the Environment, Conservation and Parks. Land Information Ontario online mapping.

BURNSIDE

Client / Report SNELL'S HOLLOW DEVELOPERS GROUP CALEDON, ONTARIO HYDROGEOLOGICAL ASSESSMENT AND WATER BALANCE

Figure Title

AQUIFER VULNERABILITY

	Drawn	Checked	Date	Figure No.
400 I	SK	ТМ	MAY 2021	
	Scale		Project No.	11
	1:6,000		300043952	

Appendix A

Borehole Logs

RECORD OF BOREHOLE: BH/MW19-01

LOCATION: Lat. 43.747371 Long. -79.818742 (See Figure 1)

BORING DATE: April 4, 2019

SHEET 1 OF 1 DATUM: Geodetic

SALE	тнор	SOIL PROFILE	⊢ ⊢		SA	MPLE		DYNAMIC PENETRATION	HYDRAULIC CONDUCTIVITY, k, cm/s	ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH Cu, kPa nat V. + Q. • • 20 40 60 80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		266.80							
0		TOPSOIL (250 mm)		0.00 266.55	1A	SS					
		(CL) SILTY CLAY, trace sand, trace gravel, trace organics; brown; cohesive, w~PL, stiff		0.25 266.10	1B	ss	10				
1		(CL) sandy SILTY CLAY, trace gravel; light brown with oxidation staining, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>0.70</td><td>2</td><td>SS</td><td>16</td><td></td><td>0</td><td>мн</td><td></td></pl,>		0.70	2	SS	16		0	мн	
2		- Some to trace sand below depth of 1.6 m			3	SS	21		0		Bentonite
					4	SS	23				
3											
	lger				5	SS	32		0		
4	CME 75 Track Mount Power Auger 100 mm Solid Stem	- Silty sand layers/seams encountered below depth of 4.9 m			6	SS	21				\
6		(CI/CL-ML) SILTY CLAY to CLAYEY SILT, trace to some sand, trace gravel, with inferred cobbles; grey, (TILL); cohesive, w~PL to w>PL, stiff to hard		<u>261.01</u> 5.79	7	SS	12				Screen and Sand
7		- Sand layer, approximately 70 mm thick, encountered at a depth of 8.1 m			8	SS	48		0		Bentonite
9		END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling. 2. Water level measured in monitoring well as follows:		8.23							
10		Date Depth Elev. (m) April 17, 2019 3.95 mbgs 262.85 m									
DEI		CALE	1					GOLDER) DGGED: JD ECKED: EM

RECORD OF BOREHOLE: BH/MW19-02

LOCATION: Lat. 43.747664 Long. -79.814643 (See Figure 1)

BORING DATE: April 2, 2019

SHEET 1 OF 2 DATUM: Geodetic

SALE	THOD	SOIL PROFILE	F			MPLES	RESISTANCE		1	HYDRAULIC CONDUCTIVITY k, cm/s		'ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BI OWS/0 3m	20 SHEAR STRE Cu, kPa		at V. + Q - ● em V. ⊕ U - ○		- WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	·	GROUND SURFACE	0	257.20			20	40 6	080	10 20 30	40		
0 -		TOPSOIL (610 mm)		0.00	1	ss 4						17/04	 /2019
1		(CL)SILTY CLAY, some to trace sand, trace gravel, trace organics; brown/dark brown with oxidation staining; w>PL, firm, (CL) sandy SILTY CLAY, trace gravel; light brown with oxidation staining, (TILL); cohesive, w~PL, firm to stiff		0.61 256.35 0.85	2A 2B					0	59.7	2	Bent- onite
2		- Silt/sand seams/layers below 1.7 m			3	SS 8				0			Sand 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
					4	SS 1	8						Screen
3													Sand
					5	SS 9				0			전·전 전·전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전
4	Auger	(CL-ML) CLAYEY SILT, some to trace sand, trace gravel; grey, (TILL); cohesive, w>PL, very stiff to stiff to hard		253.24 3.96									
5	CME 75 Track Mount Power Auger 100 mm Solid Stem		A A A A A A A A A A A A A A A A A A A		6	SS 1	5			0			Bentonite
6	CMI		X Y X Y X Y X Y X Y Y Y Y Y Y Y Y Y Y Y		7	SS 1	5			0			<u>∑</u> 17/04/2019
7													
8					8	SS 1							
9		- Becoming sandy at 9.1 m											
		- Auger grinding at a depth of 9.5 m to 11 m			9	SS 5				o l			
10			_1¥14	1				<u> </u>		+	-+		
DEF	PTH S	CALE					S GC		ER			L	DGGED: JD

RECORD OF BOREHOLE: BH/MW19-02

LOCATION: Lat. 43.747664 Long. -79.814643 (See Figure 1)

BORING DATE: April 2, 2019

SHEET 2 OF 2

S	ТНОВ	SOIL PROFILE		1	-	MPLI		DYNAMIC PEN RESISTANCE,			~		cm/s			I	ual TING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)		TYPE	BLOWS/0.3m	20 4 SHEAR STREN Cu, kPa	IGTH r	at V. + em V.⊕	U - O	Wp H	10 ⁻⁵	⊖W	PERCE	WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		CONTINUED FROM PREVIOUS PAGE						20 4	06	08	0	10	20	30) 2	40		
— 10 - - - - - - - - - - - - - - - - - - -	CME 75 Track Mount Power Auger	(SW-SM) SAND to SILTY SAND, medium grained, contains inferred cobbles/boulders; light brown; non-cohesive, wet, compact to very dense		24 <u>7.6</u> 4		SS	26											Bentonite Sand
- - - - - - - - - -	CME 75 Track	- Cobbles/boulders inferred from auger grinding at a depth of 12 m		244.40		SS	52											Screen and Sand
- - 13 - -		END OF BOREHOLE. Notes: 1. Water level measured in monitoring well as follows:		12.80														
- 14 - 15 - 15 - 16 - 17 - 18 - 18 - 19 - 19 - 19 - 19 - 19 - 20 DEI		Deep Well Date Depth Elev. (m) April 2, 2019 12.67 mbgs 244.53 m April 17, 2019 6.27 mbgs 250.93 m Shallow Well Date Depth Elev. (m) April 17, 2019 0.25 mbgs 256.95 m																
- - - - - - - -																		
- - - - - - -																		
- - - 18 - - -																		
- - - - - - - - - - -																		
- - - 20																		
DEI 1: {		SCALE		,	•			GO	LC	EF	२							DGGED: JD ECKED: EM

RECORD OF BOREHOLE: BH/MW19-03

LOCATION: Lat. 43.750098 Long. -79.814418 (See Figure 1)

BORING DATE: April 4, 2019

SHEET 1 OF 2

LL A	ПОР	SOIL PROFILE			SAI	MPLE	RESISTAN	PENETRA CE, BLOW	S/0.3m	Ì,	k, cr			RG AL	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	20 SHEAR STI Cu, kPa	40 RENGTH		Q - • U - O	10 ⁻⁶ WATER Wp	10 ⁻⁵ 10 ⁻⁴ CONTENT PI	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	ВО		STR	(m)	z	ā	20	40	<u>60 8</u>	0	10	20 30	40	<u> </u>	
0		GROUND SURFACE TOPSOIL (350 mm)	237	266.88											
				266.53	1A	ss									
1		(CL) SILTY CLAY, some sand, trace gravel, trace organics; brown with oxidation staining; cohesive, w <pl, firm<="" td=""><td></td><td>0.35</td><td></td><td>SS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		0.35		SS									
		(CL) sandy SILTY CLAY, trace gravel, contains inferred cobbles; light brown with oxidation staining, (TILL); cohesive,		265.51 1.37		SS						0			
2		w <pl, hard<="" stiff="" td="" to=""><td></td><td></td><td>3</td><td>SS 1</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></pl,>			3	SS 1					0				
3					4	SS 2	1								Bentonite
					5	ss a					ο⊢			мн	
4	CME 75 Track Mount Power Auger 100 mm Solid Stern	(ML) gravelly sandy SILT, with slight plasticity, contains inferred cobbles; light brown; non-cohesive, moist, very dense - Inferred cobbles/boulders from auger grindings at a depth of 2 m and 7.3 m		262.89 3.99	6	SS 7					0				
5	CME 75 Track M 100 mm 5														Sand
6					7	SS 1	0				0				
7		(CL-ML) CLAYEY SILT, some to trace sand; grey, (TILL); cohesive, w <pl, hard<="" td=""><td>X X X X X X X X X X X X X X X X X X X</td><td>259.88</td><td>8</td><td>SS 1</td><td>0</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></pl,>	X X X X X X X X X X X X X X X X X X X	259.88	8	SS 1	0				0				
8		- Cobbles/boulders inferred from auger grinding at a depth of 8.4 m													
9		END OF BOREHOLE.		257.13	9	SS 7	,				0				√ 4/04/2019
10				+	$\lfloor - \rfloor$		-		+			- + -	+	-	
		CONTINUED NEXT PAGE													

RECORD OF BOREHOLE: BH/MW19-03

LOCATION: Lat. 43.750098 Long. -79.814418 (See Figure 1)

BORING DATE: April 4, 2019

SHEET 2 OF 2

	ш	g	SOIL PROFILE			SAM	/PLE		MIC PEN STANCE,		DN /0.3m	\ \	HYDRA	ULIC CO	ONDUCT	IVITY,	Т	(1)	
	DEPTH SCALE METRES	BORING METHOD		-0T		~	1					0	10			0-4 1	o-₃ ⊥	ADDITIONAL LAB. TESTING	PIEZOMETER OR
	PTH (NG N	DESCRIPTION	TA PL	ELEV.	NUMBER	TYPE	SHEA	R STREM Pa				w	ATER CO	ONTENT	PERCE		3. TES	STANDPIPE
	DE	BORI		STRATA PLOT	DEPTH (m)	Ĩ	TYPE								W		WI	AC	
		† ·	CONTINUED FROM PREVIOUS PAGE	0		\vdash	+		20 4	10 E	8 0	0	1	<u>u 2</u>	0 3	60 4	10		
	— 10 -		Notes: 1. Water level measured at 9.1 mbgs						1										
	-		upon completion of drilling.																-
	-		2. Water level measured in monitoring well as follows:																-
	-		Date Depth Elev. (m)																-
	- 11		April 17, 2019 7.34 mbgs 259.54 m																
	-																		-
	-																		-
	-																		-
	12																		
	-																		
	-																		-
	-																		-
	— 13 _																		
ųç	-																		
5264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC	-																		-
17/6/	-																		-
GDT	- 14 -																		
-MIS.	_																		-
GAL-	-																		-
GPJ	-																		-
OGS.	— 15 -																		
BHL	-																		-
LOW	-																		-
SHOL	-																		-
IELLS	- 16 -																		
34-SN	-																		-
11526	-																		-
VT/19	-																		-
GIN	- 17 -																		
ON/12	-																		-
ALED	-																		-
TS/C/	-																		-
MEN	- 18 - -																		
LOP	-																		-
DEVE	-																		-
SOOK	- - 19																		-
ARBR	- 19																		
CLE	-																		
ENTS	_																		-
CLIE	- - - 20																		
GTA-BHS 001 G: CLIENTS/CLEARBROOKDEVELOPMENTS/CALEDON/12_GINT/1911	20																		
1S 00	-			•		•													
TA-BF	DE		SCALE				Ì	\$	GC) E F	2							DGGED: JD
ы	1:	ວປ						**										CH	ECKED: EM

RECORD OF BOREHOLE: BH/MW19-04

LOCATION: Lat. 43.750748 Long. -79.810026 (See Figure 1)

BORING DATE: March 28, 2019

SHEET 1 OF 2 DATUM: Geodetic

HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 40 60 80 10⁻⁶ 10⁻⁵ 10-4 10⁻³ OR BLOWS/0.3m 20 NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -OW WpH - wi (m) 40 60 80 10 20 30 40 GROUND SURFACE 266.50 0 0.00 266.30 0.20 TOPSOIL (200 mm) 1A SS (CL) SILTY CLAY, some sand, trace 8 organics; dark brown; cohesive, w<PL, 1B SS b firm 265.74 (CL) gravelly sandy SILTY CLAY; light brown with oxidation staining, (TILL); X 0.76 0 SS 16 cohesive, w<PL, stiff to very stiff 2 PP = 50 kP PP = 245 kP 3 SS 12 0 2 SS 12 **a** MH PP = 290 kP 4 -Bentonite 3 SS GTA-BHS 001 GY_CLIENTS/CLEARBROOKDEVELOPMENTS/CALEDON/12_GINT/19115264-SNELLSHOLLOW BH LOGS.GPJ_GAL-MIS.GDT_17/6/19_JMC 5 19 0 PP = 45 kP $\overline{\Delta}$ 17/04/2019 4 CME 75 Track Mount Power Auger Sand SS 28 0 Solid 6 PP = 90 kPa 5 m 0 6 Cobble/boulders inferred from auger grinding at a depth of 6 m - Silty sand seam at a depth of 6.2 m Scree and Sand 7 SS 30 0 259.79 (CL-ML) sandy CLAYEY SILT, trace gravel; grey, (TILL); cohesive, w>PL, stiff to hard 6.71 7 PP = 40 kP SS 13 0 8 PP = 40 kP 9 SS 37 0 8 9 Bentonite 0 10 SS 79 10 CONTINUED NEXT PAGE \diamond DEPTH SCALE GOLDER LOGGED: JD 1:50 CHECKED: EM

RECORD OF BOREHOLE: BH/MW19-04

LOCATION: Lat. 43.750748 Long. -79.810026 (See Figure 1)

BORING DATE: March 28, 2019

SHEET 2 OF 2 DATUM: Geodetic

ц.	ДОН	SOIL PROFILE	1.		s	AMPI	1	DYNA RESIS	MIC PI	ENETRA E, BLOV	TION VS/0.3m	~	HYDR	AULIC k, cm	CONDU(s	CTIVITY,	Ţ	, Q	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV	L L L		BLOWS/0.3m		20	40	60	80					10 ⁻³	ADDITIONAL LAB. TESTING	OR
E M	RING	DESCRIPTION	ATA F	DEPT	_ ≃	TYPE)/S/(SHEA Cu, kF	R STR Pa	RENGTH	nat V. rem V.	+ Q-● ⊕ U-O				IT PERC		AB. TI	INSTALLATION
ב	BOF		STR/	(m)	Ĭ		BLC		20	40	60	80		р —— 10	` 20	30	40	1	
10		CONTINUED FROM PREVIOUS PAGE																	
10		(CL-ML) sandy CLAYEY SILT, trace gravel; grey, (TILL); cohesive, w>PL, stiff																	
		to hard		2															
				1															
		(SW/SM) gravelly SILTY SAND, coarse	- 117	255.7	^{'6} 11/ ^{'4} 11F	≩ ss ₃ ss	120/ 6"											PP = 150 kPa	
11		to fine; light brown to brown; non-cohesive, dry to wet, compact to			-	-	6"												
		very dense																	
12																			
				1	_	_													
				1	12	ss	62						0						
				1		35	02						ľ						
]	\vdash														
13	Auger																		
	ower,																		
	ount F olid St																		
	CME 75 Track Mount Power Auger 100 mm Solid Stem																		
14	100 100				13	SS	19						0						
	CME																		
																			$\overline{\Sigma}$
		(SP) SAND, some silt, trace clay; light		251.7	'5 '5														17/04/2019
15		grey; wet, compact to dense																	Sand
					\vdash	_													
					14	ss	31							C	,			мн	
16				1		1													Screen and Sand
					_	_													
					15	ss	22												
17					\vdash	-													
		END OF BOREHOLE.	- <u></u>	249.1	3	+												+	
		Notes: 1. Water level measured in monitoring																	
18		well as follows:																	
		Deep Well Date Depth Elev. (m)																	
		March 29, 2019 14.8 mbgs 251.7 m April 17, 2019 14.55 mbgs 251.95 m																	
		Shallow Well																	
19		Date Depth Elev. (m) April 17, 2019 3.75 mbgs 262.75 m																	
		2. PP = unconfined compressive																	
		strength measured using pocket penetrometer on sample in the field.																	
20																			
DEI	PTH 9	SCALE								<u>.</u>		n –						L	OGGED: JD
1:									G		DE	к							ECKED: EM

RECORD OF BOREHOLE: BH/MW19-05

LOCATION: Lat. 43.75409 Long. -79.807715 (See Figure 1)

BORING DATE: March 28, 2019

SHEET 1 OF 2

» ALE	BORING METHOD	SOIL PROFILE			SA	MPLES		IC PENE TANCE, B			Ľ,	k, crr	ı/s	CTIVITY		- NG	PIEZOMETER
DEPTH SUALE METRES	3 MET		STRATA PLOT	ELEV.	ЯËR	TYPE	2				30		10 ⁻⁵			ADDITIONAL LAB. TESTING	OR STANDPIPE
. WE	RING	DESCRIPTION	RATA	DEPTH	NUMBER	TYPE	SHEAF	R STRENG a	n n	atv.+ emV.⊕	Q - • U - O			NT PERO		ADDI AB. T	INSTALLATION
,	BO		STF	(m)			2	0 40	6	0 8	30	10	20	30	40		
0		GROUND SURFACE	2221	270.50											_		
		TOPSOIL (280 mm)		270.22	1A	SS											
		(CL) SILTY CLAY, trace gravel, trace organics; dark to light brown; cohesive,		0.28	1B	SS 1	2						6				
		w~PL, stiff		269.74													
1		(CL) SILTY CLAY, some sand, trace gravel; light brown with oxidation staining, (TILL); w <pl, stiff<="" td="" very=""><td></td><td>0.76</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		0.76													
		staining, (TILL); w <pl, stiff<="" td="" very=""><td></td><td></td><td>2</td><td>SS 2</td><td>1</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></pl,>			2	SS 2	1					0					
					3	SS 2											
2																	
-																	Pontonito
					4	SS 2	3					0					Bentonite
3																	
-																	
					5	SS 2	õ					0					
					\vdash												
4																	
	ger																
	ver Au	=															
	unt Pov			265.64	6A	ss											
5	CME 75 Track Mount Power Auger	(CL-ML) CLAYEY SILT, trace sand to	14	4.86	6B	4 SS	1					(5				Sand
	75 Tra	sandy, trace gravel; grey, (TILL); cohesive, w <pl, hard<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>															
	CME																
6		- Becoming sandy with sand seams															
		- Becoming sandy, with sand seams below a depth of 6.1 m															
					7	SS 7	ĺ										
																	Screen and Sand
7																	
		- Silty sand layer/stratum encountered at															
		a depth of 7.6 m			8	SS 9	1					0					
8					ľ							Ĩ					
																	 17/04/2019
9																	Bentonite
					9	SS 10	0										
				260.75	ľ												
10		END OF BOREHOLE.		9.75								 					
-		CONTINUED NEXT PAGE															
DE	РТН	SCALE						$\sim \sim$								L	OGGED: JD
1:								90	LL	בו	ĸ						ECKED: EM

RECORD OF BOREHOLE: BH/MW19-05

LOCATION: Lat. 43.75409 Long. -79.807715 (See Figure 1)

BORING DATE: March 28, 2019

SHEET 2 OF 2

ľ	ш	DO	SOIL PROFILE			SA	MPL	ES	DYNAMIC PEN RESISTANCE,	ETRA ⁻ BLOW	TION /S/0.3m	ì	HYDR/	AULIC Co k, cm/s	ONDUCT	IVITY,	Т	.0	
	DEPTH SCALE METRES	BORING METHOD		LOT		æ		Зm		40		0	10		0 ⁻⁵ 10) ⁻⁴ 1(p³ ⊥	ADDITIONAL LAB. TESTING	PIEZOMETER OR
	PTH (N DN	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m	SHEAR STREI Cu, kPa	IGTH	nat V. +	Q - •			ONTENT		NT	B. TE	STANDPIPE INSTALLATION
	DEI	BORI		STRA	DEPTH (m)	R	Т	BLOV							W		WI	LAI	
			CONTINUED FROM PREVIOUS PAGE	0)					20 4	10	60 8	0	1	0 2	0 30	0 4	0		
	- 10		Notes: 1. Borehole dry upon completion of																
-			drilling.																-
			 Water level measured in monitoring well as follows: 																-
ł			Date Depth Elev. (m)																-
	- 11		March 28, 2019 Dry Dry April 17, 2019 8.32 mbgs 262.18 m																-
			April 17, 2019 0.52 mbgs 202.10 m																-
																			-
																			-
	- 12																		-
																			-
																			-
ŀ																			-
ŀ	- 13																		
																			-
JML (-
7/6/19																			-
11	- 14																		-
S.GD																			-
AL-MI																			-
Э С																			-
SS.GF	15																		-
FOG																			-
N BH																			-
DLLO																			-
LSHO	16																		-
SNEL	-																		-
264-																			-
9115																			-
INT/1	17																		-
12 G																			-
NOC																			-
ALEL																			-
UTS/C	— 18																		-
MEN																			-
ELO																			-
<pre>CDE/</pre>																			-
Ó Ó	19																		
ARBI	-																		-
CLE																			-
ENTS																			-
CLE	- - 20																		-
- G:/																			
GTA-BHS 001 GY_CLIENTS/CLEARBROOKDEVELOPMENTS/CALEDON/12_GINT/19115264-SNELLSHOLLOW BH LOGS GPJ_GAL-MIS_GDT_17/6/19_JMC				. 1									•						
ſA-Bŀ	DE 1	PTH S	CALE						👂 G C) L	DEF	2							DGGED: JD
ΰ	1:	30							vr.									СH	ECKED: EM

RECORD OF BOREHOLE: BH/MW19-06

LOCATION: Lat. 43.752469 Long. -79.804999 (See Figure 1)

BORING DATE: March 2, 2019

SHEET 1 OF 1

L L	ДОН	SOIL PROFILE	1.	1	SA	MPLE	s	DYNAMIC PENETRAT RESISTANCE, BLOW	TION S/0.3m	HYDRAULIC CON k, cm/s		- NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	20 40 I I SHEAR STRENGTH Cu, kPa	60 80 nat V. + Q - ● rem V. ⊕ U - ○		10 ⁻⁴ 10 ⁻³ [⊥] NTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	BO		STF	(m)			Ē	20 40	60 80	10 20			
0		GROUND SURFACE TOPSOIL (410 mm)	====	262.00									
		(CL) SILTY CLAY, trace organics, some to trace sand, trace gravel; dark brown; cohesive, w>PL, firm		261.59 0.41	1A	ss ss	9						 17/04/2019
• 1		(CL) SILTY CLAY, some sand to sandy, trace gravel; light brown, (TILL); cohesive, w>PL, stiff to very stiff		260.55 1.45			5						
2						33	14						Bentonite
					4	SS	28						<u>∑</u> 28/03/2019
- 3	- Auger	(CL-ML) CLAYEY SILT, trace sand and gravel; grey, (TILL); cohesive, w>PL, very stiff to hard		258.88 3.12	5A 5B		39						
	CME 75 Track Mount Power Auger 100 mm Solid Stem				6	SS	15						Sand
5 6 7					7	SS	27						Screen and Sand
8		END OF BOREHOLE.	A PARA PARA	253.68 8.32	8	SS	36						Bentonite
9		Notes: 1. Water level measured in monitoring well as follows: Date Depth Elev. (m) March 28, 2019 2.54 mbgs 259.46 m April 17, 2019 0.38 mbgs 261.62 m		0.02									
10													
DE 1:		SCALE	_					GOLI	DER	· · · ·			DGGED: JD ECKED: EM

RECORD OF BOREHOLE: BH/MW19-07

LOCATION: Lat. 43.755372 Long. -79.802724 (See Figure 1)

BORING DATE: March 27, 2019

SHEET 1 OF 2

DATUM: Existing Ground Surface

ا _% ۲	THOL	SOIL PROFILE			SAN	/IPLE:	<u> </u>	DYNAMIC PENETRA RESISTANCE, BLOW	/S/0.3m	Ľ,	HYDRAULIC k, cr	ı/s		Ţ	NG	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELEV.	ËR	шļ	BLOWS/0.3m	20 40	60 8		10-6	10 ⁻⁵		10 ⁻³ ⊥	ADDITIONAL LAB. TESTING	OR STANDPIPE
Ξ	RING	DESCRIPTION	ATA	DEPTH	NUMBER	TYPE	/SM	SHEAR STRENGTH Cu, kPa	nat V. + rem V.⊕	Q - ● U - ○					B. T	INSTALLATION
i	BOF		STR/	(m)	ž		BLC	20 40	60 8		Wp — 10	20		WI 40		
		GROUND SURFACE						20 40	00 8	0	10		30	40		
0		TOPSOIL (230 mm)	EEE	0.00	1A	ss										
		(CL) sandy CLAY, trace gravel, trace	1	0.23		1	19								1	
		organics; dark brown; cohesive, w <pl, stiff<="" td="" very=""><td></td><td></td><td>1B</td><td>ss</td><td></td><td></td><td></td><td></td><td></td><td>þ</td><td></td><td></td><td>1</td><td></td></pl,>			1B	ss						þ			1	
		(CL) SILTY CLAY, some sand to sandy.		0.61											1	
		trace gravel; light brown with oxidation staining, (TILL); cohesive, w <pl, td="" very<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>														
1		stiff to hard			2	SS 1	11				(
2					3	SS 1	11				o					
-					\square											
																Bent-
					4	ss 2	24									onite
3		- Becoming sandy at a depth of 3 m														
					5	SS 4	45									
4																
	Jer															
	CME 75 Track Mount Power Auger 100 mm Solid Stem															
	t Pow															
5	5 Track Mount Pow 100 mm Solid Stem				6	SS 4	14)				
	7 mm															Sand Sand
	E 75 1															
	CM															
		(014141)														서부성
6		(SM/ML) sandy SILT to SILT, trace to some clay, slight plasticity; light brown;		5.90												Screen
		non-cohesive, wet, dense to very dense		1												Screen And Sand
			推		7	SS 3	36					Ψ				
7															17/04	/2019
'																
		- Cobble/boulder inferred from auger grinding at a depth of 7.3 m			8	SS 1	00/ 2"				0					
				7.62			-									
		(SM) SILTY SAND, fine to medium grained, some to trace gravel; light		7.62												Bent-
8		brown; non-cohesive, moist, dense to very dense		1												onite
9																
					9	SS 1	31									
10		L	_110		-+		_		+			+	_	+	.	
		CONTINUED NEXT PAGE														
		20415						_		_						
DEI	- TH S	SCALE					Ĩ	GOL	DEF	2					L	DGGED: JD

PROJECT:	19115264-6000

RECORD OF BOREHOLE: BH/MW19-07

LOCATION: Lat. 43.755372 Long. -79.802724 (See Figure 1)

BORING DATE: March 27, 2019

SHEET 2 OF 2

DATUM: Existing Ground Surface

SSLE	THOD	SOIL PROFILE	1			MPL		DYNAMIC PEI RESISTANCE	, BLOWS	/0.3m	, , ,	HYDR/	k, cm/s			10-3	NAL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRE Cu, kPa	NGTH	⊥ nat V. + rem V. ∉	• U- O	W. Wr	ATER C			I INT WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	8	CONTINUED FROM PREVIOUS PAGE	S	(,			В	20	40 (50 8	80	1	0 2	20 3	30 4	40		
- 10		(SM) SILTY SAND, fine to medium grained, some to trace gravel; light brown; non-cohesive, moist, dense to very dense																
- 11 - 12 - 13	CME 75 Track Mount Power Auger 100 mm Solid Stem	- Contains wet sandy silt layer at a depth of 12.2 m			10	SS SS	94					0	0					Sand Screen and Sand 17/04/2019
- 14					12	SS	38						0					Bentonite
- 15		END OF BOREHOLE. Notes: 1. Water level measured at 12.8 mbgs upon completion of drilling. 2. Water level measured in monitoring well as follows: Deep Well		14.33														
- 16		DateDepthElev. (m)April 17, 201912.8 mbgsN/AShallow WellDateDepthElev. (m)DateDepthElev. (m)April 17, 20196.9 mbgsN/A																
- 17																		
- 18																		
- 19																		
- 20																		
DE		CALE						GC		E	R							OGGED: JD IECKED: EM

RECORD OF BOREHOLE: BH/MW19-08

LOCATION: Lat. 43.747266 Long. -79.811592 (See Figure 1)

BORING DATE: April 5, 2019

SHEET 1 OF 2

	ДQ	SOIL PROFILE	<u> </u>	•	SA	MPLE	s	DYNAMIC PENETRATION	HYDRAULIC CONDUCTIVITY, k, cm/s	ō	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - ○ 20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE		263.00							
Ŭ		TOPSOIL (350 mm)		0.00	1A	ss					
1		(CL) SILTY CLAY, trace sand and gravel, trace organics; dark brown; cohesive, w~PL, very soft to soft (CL) sandy SILTY CLAY, trace gravel; light brown, (TILL); cohesive, w <pl, very<br="">stiff</pl,>		262.65 0.35 262.24 0.76		ss ss	2		0	PP = 25 kPa PP = 370 kPa	Bentonite ▽
2			A A A A A A A A A A A A A A A A A A A		3	SS	26		0	PP = 320 kPa	17/04/2019 Sand
3					4	ss	24			PP = 320 kPa	
					5A	ss	30		0	PP =	
4		(CI-ML) CLAYEY SILT, trace to some sand and gravel, contains inferred cobbles/boulders; grey, (TILL); cohesive, w>PL to w~PL, very stiff to hard		259.43 3.57	5B	SS			•	420 kPa PP = 390 kPa	Screen and Sand
5	UME 75 ITack Mount Power Auger 100 mm Solid Stem	- Cobbles/boulders inferred from auger grinding at a depth of 5 m			6	SS	16		•	PP = 295 kPa	
6 7					7	SS	19			PP = 320 kPa	
8					8	SS	50		C	PP = 440 kPa	
9		END OF BOREHOLE.	A A A A A A A A A A A A A A A A A A A	<u>253.25</u> 9.75	9	SS	30		•	PP = 440 kPa	
10		— — — — — — — — — — — — — — — — — — —	1	+		- –	-	+			
DEF 1:5		CALE	<u> </u>	I		[GOLDER			DGGED: JD ECKED: EM

RECORD OF BOREHOLE: BH/MW19-08

LOCATION: Lat. 43.747266 Long. -79.811592 (See Figure 1)

BORING DATE: April 5, 2019

SHEET 2 OF 2 DATUM: Geodetic

ŀ		g	SOIL PROFILE		SA	MPLES	DYNA	MIC PENE STANCE, E			HYDR/	AULIC COND k, cm/s	UCTIVITY,	Т	(1)	
	DEPTH SCALE METRES	BORING METHOD		PLOT	н			20 40	60	80	10	D ⁻⁶ 10 ⁻⁵	10 ⁻⁴ 10	₽-3 ⊥	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
	DEPTH	RING	DESCRIPTION	CTRATA PLOT DEbL (w)		TYPE BLOWS/0.3m	SHEA Cu, kF	R STRENO Pa	GTH na re	nt V. + Q - m V. ⊕ U - 0	• W			NT	ADDIT AB. TE	INSTALLATION
		BO		СЩ (m)	2	ā	3	20 40) 60	80		0 20		0		
ŀ	— 10		CONTINUED FROM PREVIOUS PAGE Notes:													
	-		1. Water level measured in monitoring well as follows:													
			Date Depth Elev. (m) April 5, 2019 3.96 mbgs 259.04 m April 17, 2019 1.24 mbgs 261.76 m													-
	- 11 - 11		 PP= unconfined compressive strength measured with pocket penetrometer in the field. 													-
																-
																-
	-															
																-
	- 13															- - -
IMC																-
7/6/19 、	-															-
GDT 1	- 14 -															-
AL-MIS.																-
GPJ G/	- - -															-
LOGS.	— 15 -															
OW BH	- - -															-
SHOLL	. 16															-
-SNELL	-															-
115264																-
SINT/19	- - 17															-
N/12_0																-
CALEDC																-
ENTS/C	- - 18 -															-
ELOPM	-															-
JKDEVI	- -															-
RBROC	- - 19 -															
S/CLEA	-															-
CLIENT	- - -															-
1 G:/ 0	- 20															_
GTA-BHS 001 GY_CLIENTS/CLEARBROOKDEVELOPMENTS/CALEDON/12_GINT/19115264-SNELLSHOLLOW BH LOGS GPJ_GAL-MIS_GDT_17/6/19_JMC	DE 1 :		SCALE	•			\$	GO	LD	ER	•					DGGED: JD ECKED: EM

BORING METHOD

DEPTH SCALE METRES

C

2

3

5

6

7

8

9

10

GTA-

RECORD OF BOREHOLE:

LOCATION: Lat. 43.745322 Long. -79.814288 (See Figure 1)

GROUND SURFACE

TOPSOIL (430 mm)

SOIL PROFILE

DESCRIPTION

(CL) sandy SILTY CLAY, trace organics,

(CL) saidy shi 1 CLAT, take organics, trace gravel; light brown mottled with oxidation staining; cohesive, w<PL, soft (CL) SILTY CLAY, some sand, trace gravel, inferred cobbles; brown mottled

with oxidation staining, (TILL); cohesive, w<PL, very stiff

- SAND and silty clay encountered at a

- Cobbles/boulders inferred from auger grinding at a depth of 3 m

depth of 2.3 m to 5.5 m

STRATA PLOT

BH/MW19-09 SHEET 1 OF 2 DATUM: Geodetic BORING DATE: April 3, 2019 DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SAMPLES ADDITIONAL AB. TESTING PIEZOMETER 60 80 10⁻⁶ 10⁻⁵ 10-4 10⁻³ OR BLOWS/0.3m 20 40 NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○ WATER CONTENT PERCENT INSTALLATION DEPTH 0W Wp H - WI (m) 40 60 80 10 20 30 40 256.95 0.00 SS 1A 3 256.5 0.43 256.34 1B SS PP : 25 kP 0.61 SS 17 2 PP = 40 kP PP = 40 kP 3 SS 22 0 SS 23 0 4 20 kP Bentonite 5 SS 23 PP = 45 kP 252.99 3.96 6 SS 9 PP = 25 kP 251.16 5.79 Sand SS 27 0 7 ∇ 17/04/2019

CLIENTS/CLEARBROOKDEVELOPMENTS/CALEDON/12_GINT/19115264-SNELLSHOLLOW BH LOGS.GPJ_GAL-MIS.GDT_17/6/19_JMC ۔ ن -BHS 001

CME 75 Track Mount Power Auge Policy (CL-ML/CL) CLAYEY SILT to SILTY CLAY, trace sand, trace gravel; grey, (TILL); cohesive, w~PL, stiff 200 18 (SM-SW) SILTY SAND to sand, medium grained, some silt, trace gravel; light brown; non-cohesive, wet, compact Screen and Sand 8 SS 16 Bentonite 248.72 END OF BOREHOLE. 8.23 Notes: 1. Water level measured at 6.57 mbgs upon completion of drilling. 2. Water level measured in monitoring well as follows: Date Depth Elev. (m) April 17, 2019 6.54 mbgs 250.41 m 3. PP= unconfined compressive strength measured with pocket penetrometer in CONTINUED NEXT PAGE \Diamond DEPTH SCALE GOLDER LOGGED: JD 1 : 50 CHECKED: EM

		CT: 19115264-1000/2000 ION: Lat. 43.745322 Long79.814288	RE	COR			BOF				3H/N	IW19	9-09				IEET 2 OF 2 ATUM: Geodetic
		(See Figure 1)				DOIN		і с . др	11 0, 201	5							
S	тнор	SOIL PROFILE	⊢	:	SAMPI	-	RESIS	TANCE,	ETRATIC BLOWS/	0.3m	``,		AULIC CO k, cm/s		. [JAL ING	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION		ELEV. DEPTH (m)	TYPE	BLOWS/0.3m	2 SHEAF Cu, kP	R STREN	O 6 IGTH n re	at V. + em V.⊕	Q - ● U - ○	W	• I	PERCE	NT WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10)	CONTINUED FROM PREVIOUS PAGE the field.															
-																	-
-																	
- - 1' -																	-
-																	- - -
-																	
- 12 - -	2																-
Ē																	
- - - 1:																	-
-																	
≷ 14																	
- - - - - - - -	5																-
																	-
																	-
Е- 0 16 	5																-
17 2 - 17 2 -	,																- -
18 NU - NU -	3																
19 - - - - - - - - - - - - - - - - - - -																	- - -
	,																-
ł	EPTH : 50	SCALE						GO	LD	EF	R						DGGED: JD ECKED: EM

RECORD OF BOREHOLE: BH19-10

LOCATION: Lat. 43.74607 Long. -79.817117 (See Figure 1)

BORING DATE: April 3, 2019

SHEET 1 OF 1

л Л	DOH-		SOIL PROFILE	1 -		SAM	MPLES	RES	IAMIC PEI	NETRAT	'ION S/0.3m	Ì,		k, cm/s		TIVITY,	T	AL NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	SHE Cu,	AR STRE kPa	40 NGTH 40	60 nat V rem V. 6	80 ⊢ Q - ● ₱ U - ○ 80	w w	ATER C		T PERCE	10 ⁻³ ENT I WI 40	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		+	GROUND SURFACE	0,	267.80					40	00	00	'		20	30	40		
• 0			TOPSOIL (230 mm)	EEE	0.00	1A	SS												
			(CL-ML) CLAYEY SILT, some sand, trace gravel; dark brown to brown, mottled; cohesive, w~PL, firm		267.04	1B		;							0				
1			(CL) sandy SILTY CLAY, some sand, trace gravel, contains inferred cobbles/boulders; light brown with oxidation staining, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>0.76</td><td>2</td><td>SS 1</td><td>В</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></pl,>		0.76	2	SS 1	В							0				
2						3	SS 2	9						∘⊢	-1			мн	
	_					4	SS 3	5											
3	it Power Auge	1 Stem	- Auger grinding on inferred cobbles at a depth of 3 m																
	CME 75 Track Mount Power Auger	100 mm Solid Sterr				5	SS 3	1						0					
4	CME																		∑ 2/04/2019
5			(CL-ML) CLAYEY SILT, some sand, some gravel; grey, (TILL); cohesive, w~PL to w>PL, stiff to very stiff		262.86 4.94	6A 6B	ss 2 ss	5						o					
				A A A A A A		7A 7B	SS 1	D											
6				AL AN ANA			SS 2	2						0					
		+	END OF BOREHOLE.		261.09 6.71														
7			Notes: 1. Water level measured at 4.1 mbgs upon completion of drilling.																
8																			
9																			
10																			
DEI	PTH	150	CALE						GC		DE	R	•			1		LC	OGGED: JD

RECORD OF BOREHOLE: BH19-11

LOCATION: Lat. 43.74736 Long. -79.816608 (See Figure 1)

BORING DATE: April 3, 2019

SHEET 1 OF 1

ъ н Г	ПОВ	SOIL PROFILE		1	SAN	IPLES	DYNAMIC PENE RESISTANCE, E	TRATION BLOWS/0.3	m \	HYDRAULIC CONDUC k, cm/s	AL NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 40 SHEAR STREN Cu, kPa 20 40	GTH nat \ rem	80		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0	_	GROUND SURFACE		265.00								
		TOPSOIL (230 mm)		0.00	1A							
		(CL) sandy SILTY CLAY, trace gravel; brown, mottled brown/light brown; cohesive, w <pl, firm="" stiff<br="" to="">- Cobbles/boulders inferred from auger grinding at 6 m</pl,>	r	0.23	1B	SS 10				Φ		
1		giniung at 6 m			2	SS 4				0	мн	
2		(CL) sandy SILTY CLAY, trace gravel; mottled light brown to brown, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>263.60 1.40</td><td>3</td><td>SS 10</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		263.60 1.40	3	SS 10						
3	wer Auger	E			4	SS 28				0		
	CME 75 Track Mount Power Auger	100 mm Solid Stem			5	SS 29				0		
4	CME 75 T	ē										
5					6	SS 33				0		
6				258.29	7	SS 30						
7		END OF BOREHOLE. Notes: 1. Borehole dry upon completion of drilling.		6.71								
8												
9												
10												
DEI 1:{		1 SCALE					S CO	LDI	ER			GGED: JD CKED: EM

RECORD OF BOREHOLE: BH19-12

LOCATION: Lat. 43.748408 Long. -79.813559 (See Figure 1)

BORING DATE: April 4, 2019

SHEET 1 OF 2 DATUM: Geodetic

LE	дон	SOIL PROFILE	1		SA	MPLE		YNAMIC PENETRATION ESISTANCE, BLOWS/0.3	im <	HYDRAULIC CONDUCTIVITY k, cm/s		PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 40 60 HEAR STRENGTH nat V u, kPa rem	80 V. + Q - ● V. ⊕ U - ○	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ WATER CONTENT PERG Wp I────────────────────────────────────		PIEZOMETER OR STANDPIPE INSTALLATION
	à		ST	. ,			<u></u>	20 40 60	80	10 20 30	40	
0		GROUND SURFACE TOPSOIL (380 mm)	EEE	266.33 0.00	\vdash	_	+				+	
				265.95	1A		5					
		(CL) sandy SILTY CLAY, trace gravel, trace organics; brown with oxidation	Ĩ		1B	ss				0	F	PP =
		staining; w <pl, firm<="" td=""><td></td><td>265.57</td><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td><td>5 kPa</td></pl,>		265.57							25	5 kPa
		(CL) sandy SILTY CLAY, trace gravel; brown with oxidation staining, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to=""><td></td><td>0.76</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		0.76								
. 1		cohesive, w <pl, hard<="" stiff="" td="" to=""><td></td><td></td><td>2</td><td>SS</td><td>10</td><td></td><td></td><td></td><td>22</td><td>PP = 0 kPa</td></pl,>			2	SS	10				22	PP = 0 kPa
												MH
					3	ss	9			0	_F	PP =
2											22	0 kPa
					4	SS	30			0	F 44	PP = 0 kPa
3		- Cobbles inferred from auger grinding at 3 m										
					5	ss	33			o	F	PP = 5 kPa
											64	
4				262.23								
	5	(SM) gravelly SILTY SAND, trace clay nodules, slight plasticity; light brown; non-cohesive, moist, dense to very		4.10								
	r Auge	non-cohesive, moist, dense to very dense		1								
	Powe				6A	SS						
5	Solid 5				6B	SS 1	13			0		мн
-	CME 75 Track Mount Power Auger 100 mm Solid Stem											
	E 75 1 10(- Cobbles/boulders inferred from auger grinding at 5.3 m										
	CM											
6		Poppming silty cond come										
		 Becoming silty sand, some gravel below a depth of 6.2 m 			7	SS 1	50			0		мн
					<i>'</i>	33 1	50					
				1								
7				1								
8			猒		8	ss	32			0		
ö												
9												
		- Contains lavers of fine cand and cilt		1								
		- Contains layers of fine sand and silt, some clay below depth of 9.2 m		1	9	ss	47			0		мн
· 10	_L				<u>1</u> 0	<u>ss</u>	42	_+		┟── ──┼── ──	-+ -	
		CONTINUED INEXT PAGE										
DE	PTH S	CALE				Í	Î	GOLDI	ER			LOGGED: JD
1:	50					ļ	Ì	,				CHECKED: EM

RECORD OF BOREHOLE: BH19-12

LOCATION: Lat. 43.748408 Long. -79.813559 (See Figure 1)

BORING DATE: April 4, 2019

SHEET 2 OF 2 DATUM: Geodetic

┟	щ	Q	SOIL PROFILE		S	AMPL	ES	DYNAMIC PEN RESISTANCE,	ETRATION BLOWS/0.3r	m <	HYDRAU	ULIC CON k, cm/s	IDUCTIVITY	, _Τ	٦ö	
	DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	EV. H	щ	/0.3m	20 4	0 60	80	10	6 10 ⁻⁵			ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
	DEPT	ORING	DESCRIPTION	IRATA	.EV. PTH m)	TYPE	BLOWS/0.3m	SHEAR STREN Cu, kPa	rem v	V. + Q - ● V. ⊕ U - O	WA Wp				ADDI LAB. 7	INSTALLATION
$\left \right $		8	CONTINUED FROM PREVIOUS PAGE	S ("		m	20 4	0 60	80	10		30	40		
E	- 10		(SM) gravelly SILTY SAND, trace clay								0					
-			nodules, slight plasticity; light brown; non-cohesive, moist, dense to very dense	2	10 55.81	SS	42									
E			END OF BOREHOLE.		10.52											-
-	- 11		Notes: 1. Borehole dry upon completion of drilling.													
-			2. PP= unconfined compressive strength measured with pocket penetrometer in the field.													-
-	- 12															-
E																-
Ē																-
E	- 13															-
	.0															-
DML 6																
17/6/1																
GDT	- 14															
AL-MIS																-
PJ G/																-
DGS.G	- 15															-
BHLO																-
																-
TSHC	- 16															
t-SNEI																-
115264																-
NT/19	- 17															-
12 GI																-
EDON																-
S\CAL																-
MENT	- 18															
/ELOP																-
XDE/																-
ZBROC	- 19															
CLEAF																-
ENTS																-
	- 20															
001																
GTA-BHS 001 G:/ CLIENTSICLEARBROOKDEVELOPMENTSICALEDON/12_GINT/19115264-SNEILSHOLLOW BH LOGS.GPJ_GAL-MIS.GDT_17/6/19_JMC			SCALE					🔰 G O	LDE	ER						DGGED: JD
Ъ	1:	50													CH	ECKED: EM

RECORD OF BOREHOLE: BH/MW19-13

LOCATION: Lat. 43.749709 Long. -79.812182 (See Figure 1)

BORING DATE: April 4, 2019

SHEET 1 OF 2 DATUM: Geodetic

DATU

s	THOD	SOIL PROFILE	F		SAN	MPLE				HYDRAULIC CONDUCTIVITY, k, cm/s		PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	ELEV.	BER	щ	BLOWS/0.3m	20 40 60 80 HEAR STRENGTH nat V. + Q		10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
B	DRING	DESCRIPTION	RATA	DEPTH (m)	NUMBER	TYPE	SWO	Cu, kPa rem V. ⊕ U	- 0		ADD.	INSTALLATION
	ñ		ST	(11)			ā	20 40 60 80		10 20 30 40		
0	_	GROUND SURFACE TOPSOIL (300 mm)	EEE	267.61 0.00		_						
				267.31	1A	ss						
		(CL) SILTY CLAY, some sand, trace organics; dark brown; cohesive, w <pl, firm</pl, 		0.30	1B	SS	5			0		
1		(CL) SILTY CLAY and SAND, trace gravel, inferred cobbles/boulders; mottled light brown/brown, (TILL); w <pl, very stiff to hard</pl, 		266.65 0.96	2	SS	17			0	PP = 320 kP	a
2		- Cobbles/boulders inferred from auger grinding at 1.7 m			3	SS	19			0	PP = 320 kP	
-					4	SS	22			0	PP = 340 kP	
3											340 KP	a
					5	SS	33				PP = 440 kP MH	a Bentonite
4	wer Auger m	(SM) gravelly SILTY SAND, cobbles/boulders inferred from auger grinding; light brown; non-cohesive, dry to moist, very dense		<u>263.61</u> 4.00								
5	CME 75 Track Mount Power Auger 100 mm Solid Stem				6	SS -	154			ОН	мн	
6	CME	- Heavy auger grinding below depth of 5.4 m										
					7	ss	115			C		
7												Sand
8		(ML) sandy SILT, with slight plasticity, trace gravel; light brown; moist, very dense		259.99 7.62	8	ss [,]	138			0	мн	
9												Screen and Sand
					9	SS -	137			0		<u>√</u> 17/04/2019
10	_L			+	10	<u>ss</u> '	1 <u>46</u>	-+			_	. ≦=
		CONTINUED NEXT PAGE										
חבי	יידכ											
UEF	-1113	SCALE					Ú	GOLDER				.OGGED: JD HECKED: EM

RECORD OF BOREHOLE: BH/MW19-13

LOCATION: Lat. 43.749709 Long. -79.812182 (See Figure 1)

BORING DATE: April 4, 2019

SHEET 2 OF 2 DATUM: Geodetic

ł				SOIL PROFILE			SA	MPL	.ES	DYNAMIC PE RESISTANC		ON	>	HYDR	AULIC C	ONDUCT	TVITY,	Т		
	DEPTH SCALE METRES		BORING METHOD		ŌŢ				-	20			30	1	k, cm/s 0 ⁻⁶ 1		0 ⁻⁴ 1	o-₃ ⊥	ADDITIONAL LAB. TESTING	PIEZOMETER OR
	PTH S		≥ UC	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR STR Cu, kPa					ATER C	ONTENT	PERCE	1	3. TES	STANDPIPE
	DEF		BORI		TRA	DEPTH (m)	Ĩ	⊢ ا	BLOV					vv		W		WI	LAE	
		+	+	CONTINUED FROM PREVIOUS PAGE	S		\vdash		-	20	40	60 E	30		0 2	:0 3	60 4	0		
	- 10 - -			(ML) sandy SILT, with slight plasticity, trace gravel; light brown; moist, very dense			10	ss	146						ФI				мн	Screen and Sand
	-	\vdash		END OF BOREHOLE.		257.09	-													<u></u>
	- - - - 11			Notes: 1. Borehole dry upon completion of drilling.																
	-			2. Water level measured in monitoring well as follows:																
	-			Date Depth Elev. (m) April 17, 2019 9.45 mbgs 258.16 m																
	- 12 - -			3. PP= unconfined compressive strength measured with pocket penetrometer in the field.																
	-																			
	- - 13 -																			-
19 JMC	-																			-
DT 17/6/	- - - 14 -																			
AL-MIS.G	-																			-
5264-SNELLSHOLLOW BHLOGS.GPJ GAL-MIS.GDT 17/6/19 JMC	- - - - 15																			
BH LOG	-																			
HOLLOW	-																			-
SNELLSI	— 16 - -																			
9115264	-																			-
2 GINT/1	- - 17 -																			
EDON/1	-																			-
ENTS/CAI	- - - - 18 -																			
ELOPME	-																			
OOKDEV	-																			
EARBR	— 19 - -																			
NTS/CL	-																			
CLIE	- - - 20																			-
1 G:\	20																			
GTA-BHS 001 GN_CLIENTS/CLEARBROOKDEVELOPMENTS/CALEDON/12_GINT/1911	DE 1 :			CALE						G		DEF	2							DGGED: JD ECKED: EM
Ċ																			0.1	

RECORD OF BOREHOLE: BH19-14

LOCATION: Lat. 43.749015 Long. -79.809338 (See Figure 1)

BORING DATE: April 5, 2019

SHEET 1 OF 2

L S S	тнор	SOIL PROFILE	5	1		PLES	RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q. ● Cu, kPa rem V. ⊕ U - ○ 20 40 60 80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PIEZOMETER OR ELET STANDPIPE INSTALLATION
0	_	GROUND SURFACE		269.00			20 40 60 80	10 20 30 40	
Ŭ		TOPSOIL (300 mm)		0.00 268.70	1A \$	s			
		(CL) sandy SILTY CLAY, trace to some gravel; brown with oxidation staining, (TILL); cohesive, w <pl, firm="" hard<="" td="" to=""><td></td><td>0.30</td><td>1B \$</td><td>SS 6</td><td></td><td></td><td></td></pl,>		0.30	1B \$	SS 6			
1					2 5	SS 19		011	PP = 320 kPa MH
2					3 5	SS 21		0	PP = 320 kPa
		- Cobbles/boulders inferred from auger grinding at 2.3 m			4 5	SS 23			PP =
3									245 kPa
					5 \$	SS 36		0	РР = 340 кРа
4	/er Auger	(SM) SILTY SAND, trace gravel; light brown; moist, compact to dense		265.00 4.00					
5	CME 75 Track Mount Power Auger 100 mm Solid Stem				6 5	SS 24		0	
6					7 5	SS 32		0	МН
7		(CL) sandy SILTY CLAY, trace gravel; brown, (TILL); cohesive, w~PL, hard		261.99 7.01					
8		(ML/SM) gravelly sandy SILT to gravelly SILTY SAND, fine grained, trace clay, slight plasticity, trace cobbles inferred from auger grinding; light brown;		261.00 8.00	8A \$ 8B \$	3S 94		0	PP = 440 kPa
9		from auger grinding; light brown; non-cohesive, moist, very dense							
		END OF BOREHOLE.		259.25 9.75	9 5	SS 96		0	
10				+	\vdash	1-	++++		
DEF	PTH S	SCALE					GOLDER		LOGGED: JD

RECORD OF BOREHOLE: BH19-14

LOCATION: Lat. 43.749015 Long. -79.809338 (See Figure 1)

BORING DATE: April 5, 2019

SHEET 2 OF 2 DATUM: Geodetic

	ш	G	SOIL PROFILE			SAN	IPLES	DYNA	MIC PEN	IETRATIO BLOWS	DN /0.3m	ì	HYDRA	AULIC C	ONDUCT	FIVITY,	Т	. (7)	
	DEPTH SCALE METRES	BORING METHOD		гот		ы	ä		20 4	10 E	i0 8	i0 `	1(0 ⁻³ ⊥	ADDITIONAL LAB. TESTING	PIEZOMETER
	METI	SING I	DESCRIPTION		ELEV. DEPTH	NUMBER	TYPE BI OWS/0 3m	SHEA Cu, kF	R STREM	NGTH r	iat V. + em V. ⊕	Q - ● U - O	W	ATER C	ONTENT	PERCE		AB. TE	STANDPIPE INSTALLATION
	B	BOF		STR/	(m)	Ĩ	a					0	Wr 1		₩ 0 3		WI O	۲ ×	
	- 10		CONTINUED FROM PREVIOUS PAGE																
	-		Notes: 1. Borehole dry upon completion of drilling																-
	-		drilling.																-
	-		 PP= unconfined compressive strength measured with pocket penetrometer in the field. 																-
	- - 11																		-
	-																		-
	-																		-
	-																		-
	- 12																		
	-																		-
	-																		-
	-																		-
	— 13 -																		
MC	-																		-
/19 J	-																		-
17/6	- - 14																		-
GDT.	- 14																		-
L-MIS	-																		
N GA	-																		-
SS.GP	- - 15																		-
15264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/6/19 JMC	-																		-
W BI	-																		-
IOLLO	-																		-
ELLSF	- - 16 -																		-
4-SNE	-																		
1526	-																		-
TV191	-																		-
GIN	- 17 -																		
ON/12	-																		-
ALED	-																		-
ITS/C/	- - 18																		-
MEN	-																		-
/ELOI	-																		-
KDE/	-																		-
BROC	- - 19																		-
EAR	-																		-
TS/CI	-																		
CLIEN	-																		
0 ::/	- 20																		_
GTA-BHS 001 G: CLIENTS/CLEARBROOKDEVELOPMENTS/CALEDON/12_GINT/1911									1										
A-BH(DE		SCALE					\$	GO) E F	2							OGGED: JD
С,	1:	50																CH	ECKED: EM

RECORD OF BOREHOLE: BH19-15

LOCATION: Lat. 43.751797 Long. -79.80950 (See Figure 1)

BORING DATE: April 1, 2019

SHEET 1 OF 2

"FE	THOD	SOIL PROFILE	1 - 1		SAN	IPLES	DYNAMIC PENETRA RESISTANCE, BLOW		.	HYDRAULIC CONDUCTIVITY, k, cm/s	Ţ	ຊີ2ຶ PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa	rem V. 🕀 U -		10 ⁶ 10 ⁵ 10 ⁴ 10 WATER CONTENT PERCEN		PIEZOMETER OR STANDPIPE STANDPIPE INSTALLATION
	ш	GROUND SURFACE	0 N	263.50	+		20 40	60 80	+		0	
0		TOPSOIL (300 mm)		0.00	1A	ss			\uparrow			
		(CL) SILTY CLAY, trace organics, trace		263.20 0.30	40	7						
		gravel; brown; cohesive, w>PL, firm (CL) SILTY CLAY and SAND, trace		262.89 0.61	1B	55						
		gravel; mottled light brown to brown, (TILL); cohesive, w <pl, firm="" stiff<="" td="" to=""><td></td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		0.01								
1					2	SS 7				0		
				-								
				F								
				261.52	3A	SS 13				0	2	PP = 50 kPa
2		(CL-ML) CLAYEY SILT, some sand to sandy, trace gravel; grey, (TILL);		1.98	3B	ss				0		
		cohesive, w <pl, hard<="" stiff="" td="" to=""><td></td><td>ŀ</td><td>\neg</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		ŀ	\neg							
					4	SS 14				a-i	R	PP = 45 kPa
				ļ							ſ	MH
3				ŀ	\neg							
					5	SS 15				p	D!	PP = 50 kPa
				ŀ							ſ	
4												
	Nuger											
	ower /			F								
5	5 Track Mount Pow 100 mm Solid Stem				6	SS 31				0	в	PP = 00 kPa
Ű	nack N			-	_							
	CME 75 Track Mount Power Auger 100 mm Solid Stem											
	5											
6												
					7	SS 15				0		PP = 20 kPa
				ŀ	_							
7												
		- Contains sand layers at 7.8 m										
8		Somerno sana layors at 7.0 m			8	SS 17				о 	32	PP = 20 kPa
				ŀ	\neg							
9				ļ								
					9A :	ss				0		PP =
				253.84		21					32	20 kPa
		(SM) SILTY SAND to SILT, trace to some clay; grey; wet, compact		9.66	30	55						MH
10	_ L	CONTINUED NEXT PAGE	_:1.1.4		-+	1-	+	-+	-†		-	
	יידח	, 2041 F									1	
υE	PIH	SCALE				Ì	GOL	DER				LOGGED: JD

BORING METHOD DEPTH SCALE METRES

10

11

CME 75 Track Mount Power Auger 12 Solid 5 E 100

13

14

15

16

17

18

19

20

RECORD OF BOREHOLE: BH19-15

LOCATION: Lat. 43.751797 Long. -79.80950 (See Figure 1)

BORING DATE: April 1, 2019

SHEET 2 OF 2 DATUM: Geodetic

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 40 60 80 10⁻⁶ 10-5 10-4 10⁻³ OR BLOWS/0.3m 20 NUMBER STANDPIPE ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH OW - WI WpH (m) 20 40 60 80 10 20 30 40 --- CONTINUED FROM PREVIOUS PAGE ---(SM) SILTY SAND to SILT, trace to some clay; grey; wet, compact 253.01 10.49 (CL-ML) CLAYEY SILT, some sand to sandy, trace gravel; grey, (TILL); cohesive, w<PL, hard ss 45 0 10 PP = 40 kPa SS \circ \square PP = 40 kP MH 11 41 - Increased sand content below 12.5 m depth PP = 20 kP 12 SS 31 0 249.17 14.33 END OF BOREHOLE. Notes: 1. Water level measured at 6.0 mbgs upon completion of drilling. 2. PP= unconfined compressive strength measured with pocket penetrometer in the field.

GTA-BHS 001 Gi_CLIENTSICLEARBROOKDEVELOPMENTSICALEDON12_GINT19115264-SNELLSHOLLOW BH LOGS.GPJ GAL-MIS.GDT 17/8/19 JMC DEPTH SCALE 1:50

 \Diamond

GOLDER

CHECKED: EM

RECORD OF BOREHOLE: BH19-16

LOCATION: Lat. 43.751797 Long. -79.80950 (See Figure 1)

BORING DATE: March 26, 2019

SHEET 1 OF 1

ALE	HOD	2	SOIL PROFILE		1	SAN	IPLES	RESISTANCE, BLO	TION VS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	NG T	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa 20 40	60 80 nat V. + Q - ● rem V. ⊕ U - ○ 60 80	WATER CONTENT PERC	ADDITIONAL T NG T NG	OR STANDPIPE INSTALLATION
			GROUND SURFACE		257.00		+	20 40			40	
• 0			TOPSOIL (330 mm)		0.00	1A 5	29					
			(CL-ML) sandy CLAYEY SILT, trace to some gravel, trace organics; brown to grey; cohesive, w>PL, soft		256.67 0.33 256.39 0.61	1B \$	4			I −10	мн	
1			(CL) sandy SILTY CLAY, trace sand, trace gravel; light brown, (TILL); cohesive, w <pl, stiff="" stiff<="" td="" to="" very=""><td></td><td>0.01</td><td>2 5</td><td>SS 12</td><td></td><td></td><td>0</td><td></td><td></td></pl,>		0.01	2 5	SS 12			0		
												∑ 26/03/2019
2						3 \$	SS 25			0		
	uger					4 5	5S 21			0		
3	Nount Power A	100 mm Solid Stem				5 5	SS 17			0		
4	CME 75 Track Mount Power Auger	100 mm (
		-	(CL-ML) CLAYEY SILT, trace gravel; grey, (TILL); cohesive, w <pl, stiff="" td="" to="" very<=""><td></td><td>252.35 4.65</td><td></td><td>5S 14</td><td></td><td></td><td></td><td></td><td></td></pl,>		252.35 4.65		5S 14					
5			stiff - Silt/sand layer at a depth of 4.9 m									
6			- Silty sand/sandy silt layer at a depth of 6 m - 6.2 m			7B \$	5S 5S 27			c		
		_	END OF BOREHOLE		250.29	7C \$	ss					
7			Notes: 1. Water level measured at 1.4 mbgs upon completion of drilling.		0.1.1							
8												
9												
10												
DE	PTH	-15	CALE	1	1			G OL	DER		L	OGGED: JD

RECORD OF BOREHOLE: BH19-17

LOCATION: Lat. 43.753061 Long. -79.806846 (See Figure 1)

BORING DATE: March 28, 2019

SHEET 1 OF 1

S	THOD	SOIL PROFILE	Ŀ	1		PLES	DYNAMIC PENETRA RESISTANCE, BLO		HYDRAULIC CONDUCTIVITY, k, cm/s		PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa 20 40	60 80 nat V. + Q - ● rem V. ⊕ U - C 60 80	WATER CONTENT PERCE		OR STANDPIPE INSTALLATION
		GROUND SURFACE		269.50						Ĭ	
• 0		TOPSOIL (330 mm)		0.00	1A S	s					
		(CL) SILTY CLAY and SAND to sandy		269.17		12					
		SILTY CLAY, trace gravel; light brown with oxidation staining, (TILL); cohesive, w <pl, stiff="" stiff<="" td="" to="" very=""><td></td><td>0.00</td><td>1B S</td><td>s</td><td></td><td></td><td>O</td><td></td><td></td></pl,>		0.00	1B S	s			O		
1					2A S	SS 18					
					2B S	s				MH	
					3 S	SS 29			0		
2											
	e				4 S	SS 14					
3	CME 75 Track Mount Power Auger	La contra c									
	ick Mount F				5 S	S 29					<u>∑</u> 28/03/2019
- 4	CME 75	(CL-ML) CLAYEY SILT, some sand, trace gravel; grey, (TILL); cohesive,		264.93 4.57							
5		w <pl, hard<="" td=""><td></td><td></td><td>6 S</td><td>S 34</td><td></td><td></td><td>O I I I I I I I I I I I I I I I I I I I</td><td></td><td></td></pl,>			6 S	S 34			O I I I I I I I I I I I I I I I I I I I		
					7 S	S 46					
		END OF BOREHOLE.		262.79 6.71							
7		Notes: 1. Water level measured at 3.4 mbgs upon completion of drilling.									
8											
9											
10											
DE	РТН	SCALE					GOL	DER		·	LOGGED: JD

RECORD OF BOREHOLE: BH19-18

LOCATION: Lat. 43.753587 Long. -79.803241 (See Figure 1)

BORING DATE: March 27, 2019

SHEET 1 OF 1

DATUM: Existing Ground Surface

ÅLE	DOH		SOIL PROFILE		1	SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	AL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - € Cu, kPa rem V. ⊕ U - C	Wp I → O ^W I WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	_	-	GROUND SURFACE	0				-	20 40 60 80	10 20 30 40		
- 0		+	TOPSOIL (200 mm)		0.00	1A	SS					
			(CL) sandy SILTY CLAY, trace to some gravel with cobbles/boulders inferred from auger grinding; brown to light brown with oxidation staining, (TILL); cohesive, w <pl, hard<="" stiff="" td="" to=""><td></td><td>0.20</td><td>1B</td><td>SS</td><td>11</td><td></td><td></td><td></td><td></td></pl,>		0.20	1B	SS	11				
1						2	ss	22		o		
2						3	SS	38		0		
	r Auger					4	SS	35		o ⊢—i	мн	∑ 27/03/2019
3	CME 75 Track Mount Power Auger	100 mm Solid Stem				5	ss	35				
4	CME 75	-										
5						6	SS	52				
6			(CL/ML) CLAYEY SILT, trace sand; grey, (TILL); cohesive, w>PL, hard		6.10	7	ss	33				
7			END OF BOREHOLE Notes: 1. Water level measured at 2.7 mbgs upon completion of drilling.		6.71							
8												
9												
10												
DE 1:			CALE						GOLDER			DGGED: JD ECKED: EM

RECORD OF BOREHOLE: BH19-19

LOCATION: Lat. 43.754896 Long. -79.804943 (See Figure 1)

BORING DATE: March 26, 2019

SHEET 1 OF 1

DATUM: Existing Ground Surface

ш "Ч	DOH.	SOIL PROFILE				SA	MPL		DYNAMIC RESISTAN		ATIO	N).3m	Ì,		AULIC (k, cm/	S			AL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD			STRATA PLOT	ELEV.	ER	ш	BLOWS/0.3m	20	40	60		30					10 ⁻³	ADDITIONAL LAB. TESTING	OR
Ϋ́́	RING	DESCRIPTION		ATA	DEPTH	NUMBER	TYPE	/S//	SHEAR ST Cu, kPa	RENGTH	H na re	atV. + mV.⊕	Q - ● U - O		/ATER (p I		IT PERC V		AB. T	INSTALLATION
Ċ	BOF			STR.	(m)	ž		BLC	20	40	60		30			⊖* 20	30	40	 [▲] →	
		GROUND SURFACE											-		Ī	Ī	1			
0		TOPSOIL (610 mm)	uuu	EE.	0.00															
			uu			1	ss	4												
		(CL) sandy SILTY CLAY, some san trace gravel with cobbles/boulders	ıd,		0.61															
1		inferred from auger grinding; brown oxidation staining, (TILL); w <pl, td="" ve<=""><td>with</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	with																	
'		oxidation staining, (TILL); w <pl, ve<br="">stiff to hard</pl,>	ry y			2	SS	26							он	+-1			MH	
			X																	
						3	SS	40												
2						3	33	40												
						4	SS	49						0						
	Auge		X																	
3	ower	шa																		
	CME 75 Track Mount Power Auger	2 IO																		
	ы M	δ E				5	SS	54												
	5 Tra	1001																		
	ME 7																			
4	0					6	SS	55							0					
															- 					
		- Increased sand content at a depth	of 2																	
		4.6 m																		
5						7	SS	86												
J			X																	
		(SM) SILTY SAND, fine grained, inf cobbles/boulders; light brown;	erred		5.18															
		non-cohesive, moist, very dense				8	SS	05						0						
						0	33	90												
6																				
						9	SS	100						0						
		END OF BOREHOLE.			6.71															
7		Notes: 1. Borehole dry upon completion of																		
		drilling.																		
,																				
8																				
9																				
10																				
		ISCALE							G		_									
D-		I SCALE								\sim 1									LC	DGGED: JD

CLIENTDilip Kumar Jain	PAGE 1 OF 1
DATE STARTED _10/19/17 COMPLETED _10/19/17 GROUND ELEVATION _270 m HOLE SIZE DRILLING CONTRACTOR _Fadroy Enterprise GROUND WATER LEVELS: DRILLING METHOD _Solid Stem Augers CHECKED BY _E.W. AT TIME OF DRILLING _Dry LOGGED BY _J.J CHECKED BY _E.W. AT END OF DRILLING _Dry NOTES AFTER DRILLING H_(w)	
DRILLING CONTRACTOR Fadroy Enterprise GROUND WATER LEVELS: DRILLING METHOD Solid Stem Augers AT TIME OF DRILLING Dry LOGGED BY J.J. CHECKED BY E.W. AT END OF DRILLING Dry NOTES AT END OF DRILLING H MATER DRILLING H MATER DRILLING H MATER DRILLING H MATERIAL DESCRIPTION	
DRILLING METHOD _Solid Stem Augers AT TIME OF DRILLING _Dry LOGGED BY _J.J. CHECKED BY _E.W. NOTES AT END OF DRILLING _Dry H_(w) AFTER DRILLING MATERIAL DESCRIPTION	150 mm
LOGGED BY J.J. CHECKED BY E.W. AT END OF DRILLING Dry NOTES	
HLdgg BROWLE LAB NUMBER MATERIAL DESCRIPTION MATERIAL DESCRIPTION	
HLd S S G TESTS TESTS TOPSOIL = ~200 mm thick	
TOPSOIL - ~200 mm thick	
SS 3-4-5-7 MC = 17% CLAYEY SILT - some sand, occasional gravel, brown, very moist, ha	269.8
	ard.
- <u>1</u> SS 5-6-10 PP = 400 kPa 2 (16) MC = 17%	
$\begin{array}{c} & \\ SS & 4-6-10 \\ 3 & (16) \end{array} \qquad PP > 450 \text{ kPa} \\ MC = 15\% \end{array}$	
SS 6-10-14 4 (24) PP >450 kPa MC = 14%	
3 3 SS 5-10-12 5 (22) MC = 11% SAND TILL - trace clay, trace gravel, brown, very moist, compact. SO	267.00
MC = 13% $MC = 13%$	
6 SS 50-0-0/- PP >450 kPa 7 0.15 MC = 10% -becoming very dense below ~6.0 m depth	263.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

E EDWARD WON	IG			WE	PAGE 1 OF				
CLIENT _Dilip Kumar Jai			PROJECT NAME 3278 Mayfield I PROJECT LOCATION Town of Ca						
DRILLING CONTRACTOR DRILLING METHOD <u>Sol</u> LOGGED BY <u>J.J.</u> NOTES	id Stem Augers CHECKE	DBY _E.W.	GROUND ELEVATION 270 m HOLE SIZE 150 mm GROUND WATER LEVELS: AT TIME OF DRILLING Dry AT END OF DRILLING Dry AFTER DRILLING						
DEPTH (m) (m) (m) m) m) m) m) m) m) m) m) m) m) m) m) m	TESTS	GR	MATERIAL DESCRIPTION		WELL DIAGRAM				
SS 3-7-10-7 (17)	MC = 15%	SILTY SAI loose.	- ~200 mm thick. ND - scattered clay seams, brown, moist,	269.80	Pontonito				
1 SS 2-2-3 2 (5)	MC = 5%		g loose below ~0.75 m depth		Bentonite				
SS 2-4-5 2 - - - - - - - - - - - - -	MC = 20%	2.25	g wet below ~1.5 m depth	267.75	50 mm dia.				
SS 8-11-14 (25) 	PP >450 kPa MC = 14% 		SILT - trace sand, brown, very moist, hard.		PVC Riser Pipe, Filter Sand				
SS 5-10-15 5 (25) 	MC = 14%			265.50					
SS 5-10-11 6 (21)	PP = 400 kPa MC = 14%	SILTY CL4 hard.	Y - mottled brown and grey, very moist,	200.00	50 mm dia. PVC Slotted Pipe, Filter Sand				
6 - SS 4-8-11 7 (19)	PP = 300 kPa MC = 12%	-becoming	grey and stiff below ~6.0 m depth Bottom of hole at 6.30 m.	263.55					

1

æ	EDWA	RD WONG)			WELL	NUMBER 3 PAGE 1 OF 1
		Kumar Jain IBER <u>Ma00</u>			PROJECT NAME 3278 Mayfield PROJECT LOCATION Town of C		
DRILL DRILL LOGG	ING CON ING MET ED BY _ S	TRACTOR _	Fadroy Enterprise Stem Augers CHECK			/ Elev 264.75 m	
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC LOG	MATERIAL DESCRIPTION	w	ELL DIAGRAM
	SS 1	3-6-8-11 (14)	MC = 14%	0.20	OPSOIL - ~200 mm thick. ANDY SILT - rootlets, brown, very moist, compac	<u>269.80</u> t.	
	SS 2	6-12-27 (39)	MC = 11%	-b	ecoming dense below ~0.75 m depth		Bentonite
	SS 3	10-15-17 (32)	PP >450 kPa MC = 9%		LAYEY SILT- some sand, trace gravel, oxidized, rown, very moist, hard.	268.50	
	SS 4	13-17-22 (39)	PP >450 kPa MC = 13%	ナートナイトトコ ナートナイトトコ ナートナイートラコ			50 mm dia. PVC Riser, Filter Sand
3	SS 5	11-16-22 (38)	PP >450 kPa MC = 13%	8 4-1-1-4-1-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1			
5	SS 6	19-28-25 (53)	MC = 9%		NE TO MEDIUM SAND - some silt, trace clay, own, wet, very dense.	265.40	50 mm dia. PVC Slotted Pipe, Filter Sand
6	SS 7	12-23-30 (53)	PP = 400 kPa MC = 10%	SI SI	ILTY CLAY - scattered wet sand seams, grey, we ard. Bottom of hole at 6.45 m.		

E EDW	RD WONG							BORIN	G NUME PAGE	BER 4		
CLIENT Dilip)2995a				PROJECT NAME 3278 Mayfield Road PROJECT LOCATION Town of Caledon						
DRILLING COU DRILLING ME LOGGED BY NOTES	NTRACTOR _ THOD _Solid J.J.	Fadroy Enterprise	ED BY	E.W.		AT END OF DRILLING Dry						
DEPTH (m) SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC LOG			MATERIAL DES	CRIPTION					
	3-11-13-12 (24)	MC = 8%		0.20	FILL - ~ 1	~200 mm thick. m of brown sandy silt with rootl rootlets, organic inclusions, ve	ets, very mo ry moist.	vist over ~3,3	m of brown	269.8		
1 SS 2	8-6-6 (12)	MC = 11%										
ss 2	4-4-6 (10)	MC = 11%										
SS 4	4-7-8 (15)	MC = 14%										
3 SS 5 	4-7-7 (14)	MC = 17%										
	8-14-20 (34)	PP >450 kPa MC = 10%		4.50	CLAYEY S	LT - some sand, trace gravel,	brown, very	moist, hard.		265.50		
			トナナトトナートナフ トナイトトナイトトフ トナイートナイートフ									
SS 7	20-50- 0/0.00	PP >450 kPa MC = 8%	6 1777 1777	3.30		Bottom of ho	ole at 6.30 m	۱.		263.70		
5 5 6 5 7												

æ	EDWA	RD WONG					WELL	PAGE 1 OF 1
		Kumar Jain BER _ Ma00	2995a			PROJECT NAME 3278 Mayfield PROJECT LOCATION Town of C		
DRILI DRILI LOGO	LING CON LING MET GED BY _ ES	TRACTOR _ HOD _Solid : J.J.	Fadroy Enterprise Stem Augers	ED BY	E.W.	GROUND ELEVATION <u>265 m</u> GROUND WATER LEVELS: AT TIME OF DRILLING <u>Dry</u> AT END OF DRILLING <u>2.85 m / El</u>	n / Elev 262.15 m	
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC LOG		MATERIAL DESCRIPTION	WE	LL DIAGRAM
-	SS 1	1-3-3-3 (6)	MC = 23%	11 12 1	0.60	~600 mm thick.	264.40	
	SS 2	3-4-5 (9)	MC = 16%		FILL - clay brown and	ey silt, rootlets, topsoil inclusions, dark brown, very moist.		Bentonite
2	SS 3	2-4-5 (9)	MC = 22%					50 mm dia.
	SS 4	4-7-10 (17)	MC = 19%		¥			PVC Riser, Filter Sand
	SS 5	2-5-9 (14)	MC = 21%		4.50		260.50	
5	SS 6	3-6-8 (14)	PP = 400 kPa MC = 16%		SILTY CLA	.Y - trace gravel, grey, very moist, hard.		50 mm dia. PVC Slotted Pipe, Filter Sand
	SS 7	4-6-8 (14)	PP = 250 kPa MC = 16%		-becoming	very stiff below ~6.0 m depth Bottom of hole at 6.45 m.	258.55	

E EDW	ARD WON	9				BORING NUMBE	
	ip Kumar Jain						
PROJECT NU	JMBER Ma0	02995a			PROJECT LOCATION Town of (Caledon	
DRILLING CO	ONTRACTOR						
NOTES					AFTER DRILLING		
DEPTH (m) SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	GRAPHIC LOG		MATERIAL DESCRIPTIC		
SS 1		MC = 17%	<u></u>		~200 mm thick. D - scattered clay seams, brown, loose		259.80
		PP >450 kPa MC = 14%	77773	0.90 CLAYEY SI	LT - some sand, trace gravel, oxidized	brown, very moist, hard.	259.10
ss 2		PP >450 kPa MC = 13%	<u> </u>				
		PP >450 kPa MC = 14%	さくートナイートナ ナイートナイートナ ナイートナイートナ				
SS 5	6-11-21 (32)	PP >450 kPa MC = 15%	<u>1-++++-++</u> 1-++++-++ 1-++++++++				
4	3 7-24-15	PP >450 kPa	ートトイートトイートト ートトイートトイートト ートトイートトイートト				
5 5 5	(39)	MC = 13%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
6 SS 7	10-20-33	PP >450 kPa	111 Jay		- brown, very moist, very dense.		254.00
	(53)	MC = 12%	Paripi	6.45	Bottom of hole at 6.4	5 m.	253.55

Appendix B

MECP Well Records

Water Well Records Wednesday, March 10, 2021											
						9:37:41	AM				
TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION		
BRAMPTON CITY	17 596375 4844940 W	2008/10 6607	2.31	FR 0020		DE		7116987 (M03959) A078526	BRWN SILT SAND LOAM 0000 BRWN SILT SAND CLAY 0011 GREY SILT CLAY SAND 0026 GREY SAND SLTY 0030		
BRAMPTON CITY	17 596297 4844987 W	2008/01 7238			///:			7101931 (Z75197) A			
BRAMPTON CITY	17 596386 4845019 W	2007/11 7238	2.00				0036 10	7053188 (Z72692) A045333	BRWN TILL DNSE 0013 GREY TILL SAND DNSE 0046		
BRAMPTON CITY (CHING	17 595484 4844068 W	2013/12 7238						7214726 (Z178723) A			
BRAMPTON CITY (CHING	17 596372 4844869 W	7341						7317249 (Z280513) A161274 A			
BRAMPTON CITY (CHING	17 596834 4845546 W	2005/04 6607	2.00	0021			0044 5	4909799 (Z27785) A026564	BRWN LOAM 0000 BRWN CLAY HARD 0015 BRWN SILT SAND 0025 BRWN SAND WBRG 0050		
BRAMPTON CITY (CHING	17 596360 4845117 W	2013/09 7201	2			MO	0015 5	7209474 (Z167937) A088481	BRWN FILL SAND PCKD 0005 GREY SILT SAND HARD 0016 GREY SILT SAND WBRG 0020		
BRAMPTON CITY (CHING	17 596864 4844951 W	2004/10 7230	1.97			NU	0005 10	4909676 (Z25166) A019982	BRWN SILT LOAM CLAY 0008 GREY SILT CLAY DNSE 0012 GREY SAND GRVL DNSE 0015		
BRAMPTON CITY (CHING	17 596372 4844869 W	2014/05 7360						7232432 (C25987) A161274 P			
BRAMPTON CITY (CHING	17 596581 4845283 W	2014/09 7472						7232910 (Z197043) A			
BRAMPTON CITY (CHING	17 595485 4844014 W	2017/04 7472	2			мо	0010 10	7287411 (Z259492) A222955	BRWN LOAM LOOS 0001 BRWN CLAY SILT GRVL 0010 GREY TILL GRVL PCKD 0020		
BRAMPTON CITY (CHING	17 595338 4843807 W	2017/04 7472	2			MO	0010 10	7287414 (Z259489) A222978	BRWN LOAM LOOS 0001 BRWN CLAY SILT GRVL 0015 BRWN SAND SILT GRVL 0020		
BRAMPTON CITY (CHING	17 595337 4843807 W	2017/04 7472	2			МО	0032 10	7287415 (Z259488) A227330	BRWN LOAM LOOS 0001 BRWN CLAY SILT PCKD 0015 BRWN SAND SILT GRVL 0030 GREY SAND SILT GRVL 0042		
BRAMPTON CITY (CHING	17 595353 4843730 W	2017/10 7383	2			TH MO	0017 5	7300013 (Z269793) A238990	TILL CLAY SLTY 0022		

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BRAMPTON CITY (CHING	17 595319 4843745 W	2017/11 7383	2			ТН МО	0015 5	7300014 (Z269813) A238885	BRWN SAND GRVL 0020
BRAMPTON CITY (CHING	17 595386 4843688 W	2017/11 7383	3			тн мо	0018 5	7300015 (Z269812) A238884	BRWN SAND GRVL 0023
BRAMPTON CITY (CHING HS E 01 018	17 595154 4843733 W	1969/10 5420	5	FR 0105	88/118/6/5:0	DO	0124 4	4903391 ()	FILL 0002 BLUE CLAY MSND 0065 BLUE CLAY SILT 0085 GREY FSND 0105 GREY CSND 0128
BRAMPTON CITY (CHING HS E 02 016	17 595764 4843844 W	1962/07 3512	7	FR 0079	36/38/10/11:30	DO	0079 4	4901213 ()	LOAM 0001 YLLW CLAY 0038 BLUE CLAY 0044 BLUE CLAY MSND 0049 BLUE CLAY GRVL 0062 GRVL MSND 0071 GRVL 0083
BRAMPTON CITY (CHING HS E 02 016	17 595766 4843839 W	1964/08 1307	30	FR 0021	10//2/:	DO		4901214 ()	BRWN LOAM 0005 RED SHLE 0021
BRAMPTON CITY (CHING HS E 02 017	17 595978 4844577 W	1958/11 2801	5			NU		4901222 ()	CLAY 0002 BLCK MUCK 0006 MSND GRVL 0036 BLUE CLAY GRVL 0096 LMSN 0097
BRAMPTON CITY (CHING HS E 02 017	17 595908 4844506 W	1964/07 2801	5			NU		4901236 ()	BRWN CLAY GRVL 0008 BLUE CLAY GRVL 0026 GRVL MSND CLAY 0043 MSND GRVL SILT 0063 FSND SILT 0085 FSND CLAY GRVL 0127 MSND GRVL SILT 0141 MSND SILT 0143 MSND GRVL 0148 SHLE 0160
BRAMPTON CITY (CHING HS E 02 017	17 596404 4845000 W	1953/08 4623	5	FR 0127	45/100/10/48:0	DO		4901221 ()	BRWN CLAY 0010 BRWN CLAY GRVL 0070 HPAN 0120 MSND GRVL 0127
BRAMPTON CITY (CHING HS E 02 017	17 596184 4844274 W	1960/12 1307	30	FR 0053	53//1/2:0	PS		4901224 ()	BRWN LOAM MSND 0053 BRWN MSND 0060 GREY MSND 0067
BRAMPTON CITY (CHING HS E 02 017	17 596294 4844495 W	1960/07 3512	4	SA 0300	60/300/1/0:30	NU		4901223 () A	YLLW CLAY 0090 FSND CLAY 0140 FSND 0142 BLUE CLAY MSND 0210 BLUE SHLE 0312
BRAMPTON CITY (CHING HS E 02 017	17 595708 4844028 W	1964/01 2801	2	FR 0136	60///:	NU	0136 11	4901225 ()	BRWN CLAY 0016 BRWN CLAY GRVL 0029 GRVL MSND 0032 MSND GRVL 0043 FSND SILT 0116 GRVL MSND 0119 CLAY MSND GRVL 0145 SHLE 0160
BRAMPTON CITY (CHING HS E 02 017	17 595550 4844064 W	1964/01 2801	5			NU		4901226 ()	BLCK MUCK 0002 BLUE CLAY 0019 MSND GRVL 0021 FSND SILT 0044 BLUE CLAY 0045 SILT FSND 0082 RED CLAY GRVL MSND 0112 FSND SILT GRVL 0128 BLUE SHLE 0140
BRAMPTON CITY (CHING HS E 02 017	17 595766 4844320 W	1964/01 2801	2	FR 0112	32/49/20/6:0	NU	0118 22	4901227 ()	LOAM 0001 CLAY GRVL 0020 MSND CLAY 0037 SILT 0063 SILT CLAY FSND 0112 GRVL FSND 0121 GRVL MSND CLAY 0125 MSND GRVL 0140 CLAY GRVL 0151 SHLE 0161
BRAMPTON CITY (CHING HS E 02 017	17 595808 4844490 W	1964/01 2801	2	FR 0133	66///:	NU	0145 11	4901228 ()	BRWN CLAY GRVL 0027 BLUE CLAY 0048 FSND SILT 0117 FSND SILT CSND 0130 FSND SILT 0133 FSND SILT CSND 0148 GRVL MSND BLDR 0155 BLUE CLAY MSND GRVL 0181 SHLE 0182
BRAMPTON CITY (CHING HS E 02 017	17 595804 4844292 W	1964/07 2801	5			NU		4901237 ()	BRWN CLAY GRVL 0010 BLUE CLAY GRVL 0021 MSND GRVL 0035 CLAY SILT MSND 0109 GRVL FSND 0115 GRVL FSND CLAY 0118 CLAY MSND GRVL 0140 STNS SHLE 0160

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BRAMPTON CITY (CHING HS E 02 017	17 595946 4844509 W	1964/07 2801	2	FR 0148	68///:	NU	0148 11	4901235 ()	BRWN CLAY GRVL 0037 BLUE CLAY 0045 BRWN MSND GRVL 0053 BLUE CLAY SILT 0058 FSND SILT CLAY 0110 MSND FSND GRVL 0136 GRVL MSND SILT 0159 GREY CLAY MSND 0167 SHLE 0188
BRAMPTON CITY (CHING HS E 02 017	17 595930 4844474 W	1964/07 2801	5			NU		4901234 ()	BRWN CLAY GRVL 0006 BRWN GRVL MSND 0010 BRWN CLAY MSND GRVL 0028 FSND SILT 0109 MSND FSND GRVL 0131 CLAY MSND GRVL 0171 LMSN 0179
BRAMPTON CITY (CHING HS E 02 017	17 595764 4844067 W	1964/07 2801	2	FR 0046	26///:	NU		4901233 ()	BRWN CLAY 0010 BLUE CLAY MSND GRVL 0028 BRWN MSND GRVL 0031 BLUE CLAY MSND GRVL 0046 FSND SILT GRVL 0059 SILT 0085 FSND GRVL BLDR 0095 RED CLAY MSND 0097 BLUE CLAY 0106 RED CLAY MSND 0110 BLUE SHLE 0118
BRAMPTON CITY (CHING HS E 02 017	17 595978 4844242 W	1964/07 2801	2	FR 0031	37///:	NU		4901232 ()	BRWN CLAY GRVL 0027 BLUE CLAY 0031 FSND SILT CLAY 0107 GRVL MSND CLAY 0129 LMSN SHLE 0139
BRAMPTON CITY (CHING HS E 02 017	17 595880 4844276 W	1964/06 2801	2			NU		4901231 ()	BRWN CLAY 0006 MSND GRVL BLDR 0021 BLUE CLAY MSND GRVL 0063 FSND CLAY 0105 MSND FSND GRVL 0112 GREY CLAY GRVL MSND 0137 SHLE 0144
BRAMPTON CITY (CHING HS E 02 017	17 595754 4844307 W	1964/02 2801	5			NU		4901229 ()	LOAM 0001 CLAY MSND 0015 MSND GRVL CLAY 0032 CLAY SILT GRVL 0092 MSND GRVL SILT 0097 CLAY SILT 0117 MSND GRVL CLAY 0132 CLAY GRVL 0153 CLAY GRVL SHLE 0157
BRAMPTON CITY (CHING HS E 02 017	17 596445 4845021 W	2000/09 6409	6	FR 0080	45/72/7/1:30	DO	0093 4	4908624 (219860)	BLCK LOAM 0001 BRWN CLAY SAND LOAM 0023 BRWN SAND CLAY 0045 BLUE CLAY 0050 GREY SAND CLAY 0080 GREY SAND CLN 0097
BRAMPTON CITY (CHING HS E 02 017	17 596212 4844540 W	1964/02 2801	5			NU		4901230 ()	LOAM 0001 CLAY MSND GRVL 0034 CLAY SILT 0055 SILT CLAY 0120 GRVL SILT CLAY 0131 CLAY GRVL 0149 CLAY SHLE 0159
BRAMPTON CITY (CHING HS E 03 017	17 596720 4844871 W	1964/12 5203	5	FR 0069	69/150/4/72:0	DO	0162 8	4901343 ()	PRDG 0047 MSND CLAY 0158 MSND GRVL 0166 BLUE SHLE 0170
BRAMPTON CITY (CHING HS E 03 017	17 596758 4844952 W	1957/02 3514	4	FR 0080	39/69/6/4:0	DO		4901337 ()	PRDG 0048 BLUE CLAY 0080 FSND 0150 GRVL 0165
BRAMPTON CITY (CHING HS E 03 017	17 596518 4845030 W	1958/09 2801	5	FR 0114	25/28/30/1:0	NU		4901338 ()	LOAM 0001 CLAY GRVL BLDR 0114 MSND BLDR 0129 MSND 0132 GRVL 0140 CLAY GRVL 0142 LMSN 0143
BRAMPTON CITY (CHING HS E 03 017	17 596512 4845035 W	1958/10 2801	5	FR 0095	28/36/90/6:0	NU		4901339 ()	LOAM 0001 CLAY MSND 0010 CLAY GRVL 0050 CLAY MSND GRVL 0063 MSND SILT 0095 MSND 0121 GRVL 0138 CLAY GRVL 0139
BRAMPTON CITY (CHING HS E 03 017	17 596622 4845126 W	1958/10 2801	5	FR 0053	25/36/120/8:0	NU	0136 13	4901340 ()	LOAM 0001 CLAY MSND BLDR 0053 FSND 0067 GRVL 0110 CLAY GRVL 0149
BRAMPTON CITY (CHING HS E 03 017	17 596760 4844826 W	1962/10 4813	4	FR 0078	50/71/3/3:0	DO	0083 4	4901341 ()	BLCK LOAM 0001 BRWN CLAY 0026 BLUE CLAY 0067 QSND 0078 MSND 0087
BRAMPTON CITY (CHING HS E 03 017	17 596806 4845639 W	2002/03 1663				NU		4908962 (240034) A	
BRAMPTON CITY (CHING HS E 03 017	17 596824 4845628 W	1963/08 1325	30	FR 0032	2/20/5/1:0	DO		4901342 ()	BRWN CLAY MSND 0006 BLUE CLAY MSND 0032 BLUE CLAY 0033

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BRAMPTON CITY (CHING HS E 03 017	17 596992 4845439 L	2003/11 6865				NU		4909279 (266867) A	
BRAMPTON CITY (CHING HS E 03 017	17 596490 4845088 W	1975/07 4320	5	FR 0103	65/71/5/3:0	DO	0103 3	4904742 ()	BRWN CLAY 0030 BLUE CLAY 0103 BLUE SAND 0106 BLUE CLAY GRVL SHLE 0155
CALEDON TOWN (ALBION	17 595244 4845062 W	2008/07 6875				МО		7113604 (Z87823) A	
CALEDON TOWN (ALBION	17 594955 4844706 W	2008/07 6875				МО		7113603 (Z87824) A	
CALEDON TOWN (ALBION	17 594892 4844697 W	2008/07 6875				МО		7113602 (Z87825) A	
CALEDON TOWN (ALBION	17 594781 4844912 W	2008/10 6875	1.97					7113601 (Z87868) A	
CALEDON TOWN (CHINGU	17 595340 4845198 W	2016/05 7148						7264136 (Z218595) A	
CALEDON TOWN (CHINGU	17 595467 4844139 W	2013/11 7238						7213014 (Z178703) A	
CALEDON TOWN (CHINGU	17 594880 4844685 W	2008/10 6875	35.4			NU		7120410 (Z87862) A	
CALEDON TOWN (CHINGU 01 018	17 595168 4844319 W	1988/01 4919	30 30	UK 0050	50/70//1:0	DO		4906849 (25712)	BRWN LOAM HARD 0001 BRWN CLAY HARD 0020 GREY CLAY HARD 0050 GREY SAND LOOS 0075
CALEDON TOWN (CHINGU HS E 01 018	17 595294 4843961 W	1964/02 1325	18	FR 0047	44/52/1/1:0	DO		4901106 ()	PRDG 0047 BRWN FSND 0054 BLUE CLAY 0055
CALEDON TOWN (CHINGU HS E 01 018	17 595298 4843999 W	2009/10 7219	29		37///:	NU		7132312 (Z098404) A085720 A	
CALEDON TOWN (CHINGU HS E 01 018	17 595199 4844247 W	2010/05 7219	30		45///:	NU		7149886 (Z111913) A097062 A	
CALEDON TOWN (CHINGU HS E 01 018	17 595175 4844117 W	2010/08 3349				NU		7153619 (Z121403) A	
CALEDON TOWN (CHINGU HS E 01 018	17 595307 4843984 W	2010/08 3349						7153620 (Z121404) A	
CALEDON TOWN (CHINGU HS E 01 018	17 595176 4844171 W	2010/08 3349						7153621 (Z121405) A	
CALEDON TOWN (CHINGU HS E 01 018	17 595214 4844198 W	1968/04 1308	30	FR 0059	59/65/1/0:30	ST DO		4902950 ()	LOAM 0001 BRWN CLAY 0005 GRVL CLAY 0007 BRWN CLAY 0023 HPAN 0047 BRWN MSND 0069
CALEDON TOWN (CHINGU HS E 01 018	17 594970 4844232 W	2015/05 7147	70.8	FR 0003				7242251 (Z203295) A	
CALEDON TOWN (CHINGU HS E 01 018	17 595114 4844323 W	1972/10 3413	30	FR 0056	56/62/3/4:0	DO		4903885 ()	BRWN CLAY 0048 CSND 0056 BLUE SILT 0067

Page 4 of 6

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
CALEDON TOWN (CHINGU HS E 01 019	17 594864 4844623 W	1980/07 1663	5	FR 0120	55/125/25/1:0	DO	0132 3	4905788 ()	BLCK LOAM 0001 YLLW CLAY 0016 BLUE CLAY GRVL SILT 0051 GREY GRVL CLAY 0054 BLUE CLAY GRVL 0082 GREY SAND GRVL DRTY 0087 BLUE CLAY GRVL 0105 GREY FSND SILT 0118 GREY MSND CGRD 0142
CALEDON TOWN (CHINGU HS E 01 019	17 594632 4844724 W	1959/01 1325	30	FR 0028	20///:	ST		4901110 ()	BRWN HPAN 0028 MSND 0032
CALEDON TOWN (CHINGU HS E 01 019	17 594702 4844653 W	2014/10 7147	1.97	FR 0008		MO	0003 10	7231012 (Z192028) A160985	BRWN SILT SAND 0027
CALEDON TOWN (CHINGU HS E 01 019	17 594624 4844799 W	1967/11 3413	30	FR 0015	15/22/5/24:0	DO		4901114 ()	BRWN CLAY 0002 MSND 0015 CSND 0026
CALEDON TOWN (CHINGU HS E 02 018	17 595314 4844348 W	1979/11 3637	30 32	FR 0060	59//14/3:0	ST DO		4905558 ()	BLCK LOAM 0002 BRWN CLAY 0016 BRWN STNS CLAY PCKD 0025 BRWN SAND STNS PCKD 0032 BRWN CSND STNS LOOS 0040 BRWN FSND 0060 GREY FSND MUCK 0077
CALEDON TOWN (CHINGU HS E 02 018	17 595150 4844356 W	1986/12 4919	30	UK 0042	42/58//1:0	DO		4906620 (NA)	BRWN LOAM HARD 0001 BRWN SAND PCKD 0062
CALEDON TOWN (CHINGU HS E 02 018	17 595678 4844817 L	2003/09 3108				NU		4909283 (262185) A	
CALEDON TOWN (CHINGU HS E 02 018	17 595196 4844416 W	1985/09 4919	30 30	UK 0060	58/75//:30	DO		4906456 ()	BRWN LOAM HARD 0001 BRWN CLAY HARD 0020 GREY CLAY HARD 0060 GREY SAND LOOS 0082
CALEDON TOWN (CHINGU HS E 02 019	17 594860 4844766 W	1961/09 1325	30	FR 0025	20///:	ST		4901238 ()	BRWN CLAY 0011 BLUE CLAY MSND BLDR 0025 GRVL BLDR 0028
CALEDON TOWN (CHINGU HS E 02 019	17 595918 4845528 W	1966/05 4813	5	FR 0163	77/109/10/4:0	DO	0173 4	4901240 ()	BRWN CLAY 0016 BLUE CLAY 0037 MSND CLAY 0163 MSND 0177
CALEDON TOWN (CHINGU HS E 02 020	17 595116 4844355 W	1991/06 4005	6 6	UK 0192	52//0/3:0	DO		4907519 (76473)	BRWN CLAY SAND LOOS 0015 BRWN CLAY GRVL LOOS 0035 BRWN SAND GRVL LOOS 0040 GREY CLAY SAND LOOS 0105 GREY GRVL SAND LOOS 0108 GREY CLAY 0130 GREY GRVL SAND 0135 GREY CLAY 0155 GREY SHLE LYRD 0415
CALEDON TOWN (CHINGU HS E 02 020	17 595083 4844465 W	1992/05 4919	30	UK 0089	20/40/10/1:0	DO		4907657 (110916)	BRWN LOAM HARD 0001 BRWN CLAY HARD 0020 GREY CLAY SAND PCKD 0092
CALEDON TOWN (CHINGU HS E 03 018	17 596030 4845503 W	1964/11 4813	4	FR 0145	110/155/3/:	DO	0160 4	4901344 ()	BLCK LOAM 0001 MSND CLAY 0145 SILT LMSN 0164
CALEDON TOWN (CHINGU HS E 03 018	17 596118 4845362 W	1988/11 4919	30	UK 0060	60/80/5/1:0	DO		4906991 (35163)	BRWN LOAM HARD 0001 BRWN CLAY HARD 0020 GREY CLAY HARD 0060 GREY SAND LOOS 0083
CALEDON TOWN (CHINGU HS E 03 018	17 596118 4845362 W	1989/03 4005	6	UK 0200	65/160/7/8:30	DO		4907074 (42474)	BRWN CLAY SAND LOOS 0010 GREY CLAY SAND PCKD 0042 GREY SAND PCKD 0080 GREY CLAY SAND LOOS 0135 GREY CLAY LOOS 0180 GREY SAND FGVL PCKD 0181 GREY CLAY GRVL PCKD 0199 GREY GRVL FSND PCKD 0200
CALEDON TOWN (CHINGU HS E 03 019	17 595928 4845588 W	1959/05 1325	30	FR 0065	55///:	DO		4901345 ()	HPAN 0025 MSND 0055 BLUE HPAN 0065

٦	FOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	CALEDON TOWN (CHINGU HS E 03 019	17 595164 4844412 W	1989/11 3132	6 6	FR 0169	58//12/2:30	DO	0165 4	4907230 (65768)	BRWN CLAY STNS DNSE 0022 BLUE CLAY STNS DNSE 0036 BLUE CLAY GRVL DNSE 0047 BLUE SILT SOFT 0161 BLUE SAND STNS LOOS 0172 BLUE CLAY DNSE 0175
	CALEDON TOWN (CHINGU HS E 03 019	17 595978 4845545 W	2012/04 2576				NU		7183229 (Z149233) A	

Notes:

UTM: UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number

CASING DIA: .Casing diameter in inches

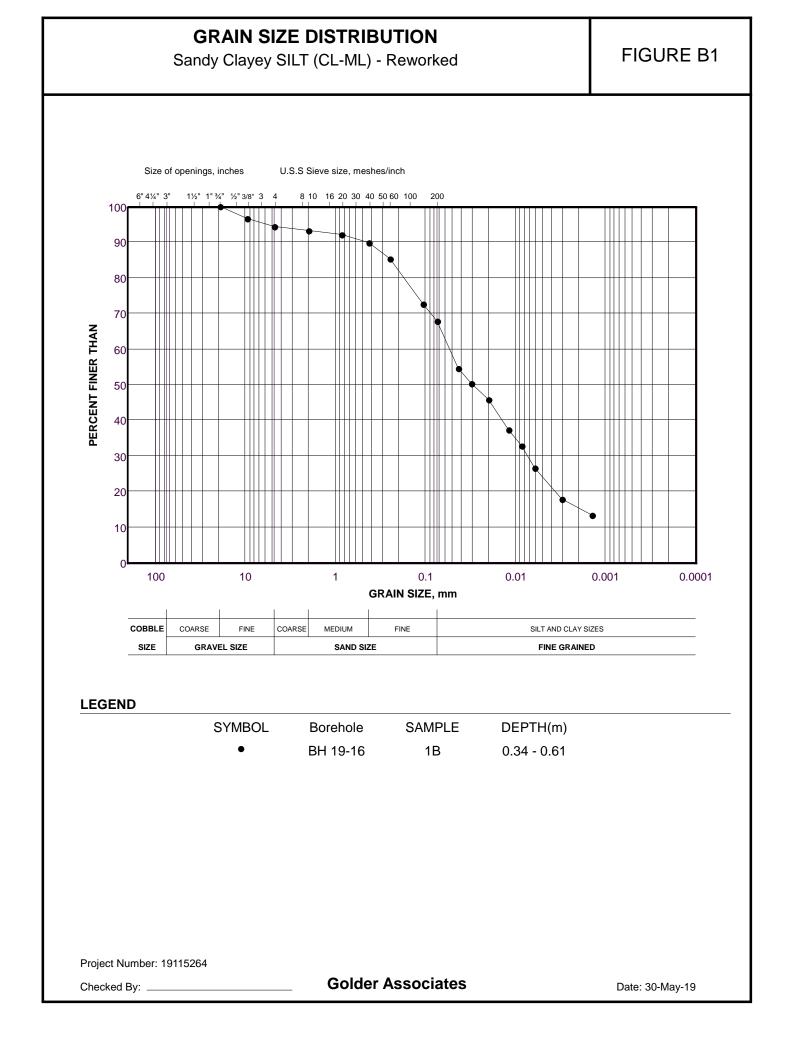
WATER: Unit of Depth in Fee. See Table 4 for Meaning of Code

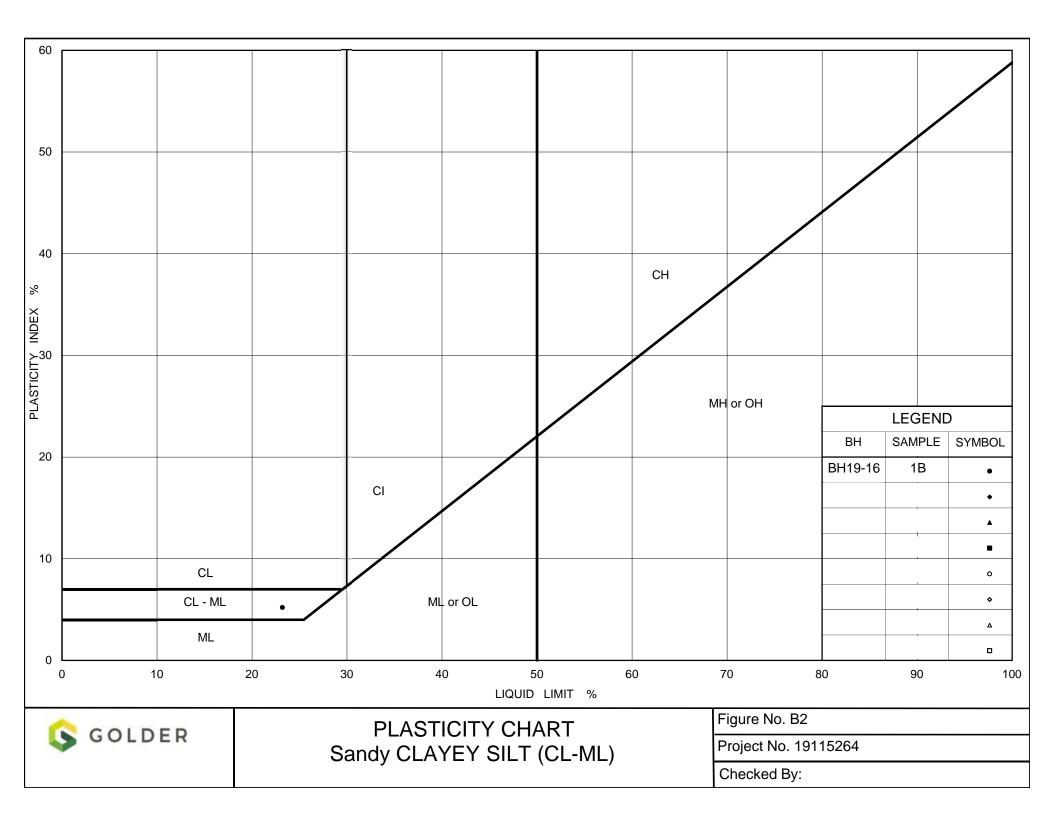
1. Core Material and Descriptive terms

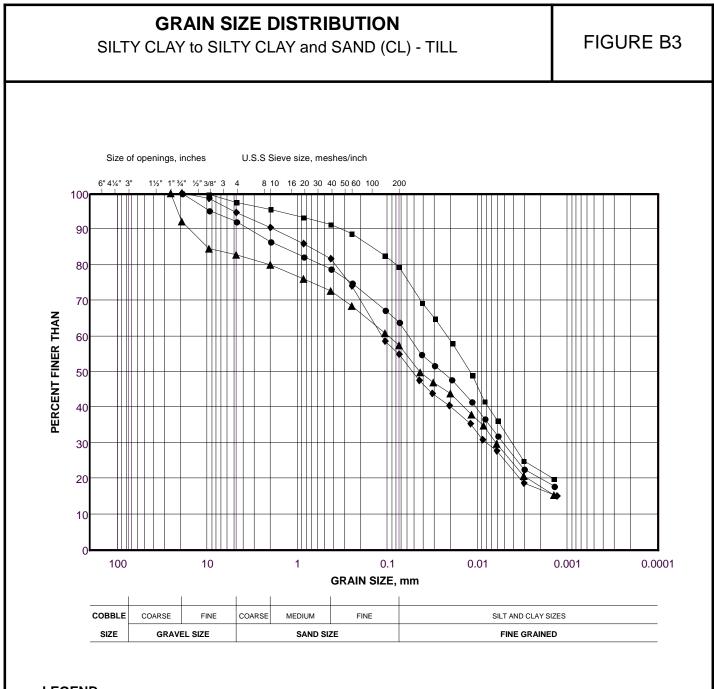
PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour : Minutes WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet WELL: WEL (AUDIT #) Well Tag . A: Abandonment; P: Partial Data Entry Only FORMATION: See Table 1 and 2 for Meaning of Code

Code	Description	Code	Description	Code	Description	Code	Description	Code	Description
BLDR	BOULDERS	FCRD	FRACTURED	IRFM	IRON FORMATION	PORS	POROUS	SOFT	SOFT
BSLT	BASALT	FGRD	FINE-GRAINED	LIMY	LIMY	PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE
CGRD	COARSE-GRAINED	FGVL	FINE GRAVEL	LMSN	LIMESTONE	PRDR	PREV. DRILLED	STKY	STICKY
CGVL	COARSE GRAVEL	FILL	FILL	LOAM	TOPSOIL	QRTZ	QUARTZITE	STNS	STONES
CHRT	CHERT	FLDS	FELDSPAR	LOOS	LOOSE	QSND	QUICKSAND	STNY	STONEY
CLAY	CLAY	FLNT	FLINT	LTCL	LIGHT-COLOURED	QTZ	QUARTZ	THIK	THICK
CLN (CLEAN	FOSS	FOSILIFEROUS	LYRD	LAYERED	ROCK	ROCK	THIN	THIN
CLYY	CLAYEY	FSND	FINE SAND	MARL	MARL	SAND	SAND	TILL	TILL
CMTD	CEMENTED	GNIS	GNEISS	MGRD	MEDIUM-GRAINED	SHLE	SHALE	UNKN	UNKNOWN TYPE
CONG	CONGLOMERATE	GRNT	GRANITE	MGVL	MEDIUM GRAVEL	SHLY	SHALY	VERY	VERY
CRYS	CRYSTALLINE	GRSN	GREENSTONE	MRBL	MARBLE	SHRP	SHARP	WBRG	WATER-BEARING
CSND	COARSE SAND	GRVL	GRAVEL	MSND	MEDIUM SAND	SHST	SCHIST	WDFR	WOOD FRAGMENTS
DKCL	DARK-COLOURED	GRWK	GREYWACKE	MUCK	MUCK	SILT	SILT	WTHD	WEATHERED
DLMT	DOLOMITE	GVLY	GRAVELLY	OBDN	OVERBURDEN	SLTE	SLATE		
DNSE	DENSE	GYPS	GYPSUM	PCKD	PACKED	SLTY	SILTY		
DRTY	DIRTY	HARD	HARD	PEAT	PEAT	SNDS	SANDSTONE		
DRY	DRY	HPAN	HARDPAN	PGVL	PEA GRAVEL	SNDY	SANDYOAPSTONE		

2. Core Color	3. Well Use
Code Description WHIT WHITE GREY GREY BLUE BLUE GREN GREEN YLLW YELLOW BRWN BROWN RED RED BLCK BLACK BLGY BLUE-GREY	Code Description Code Description DO Domestic OT Other ST Livestock TH Test Hole IR Irrigation DE Dewatering IN Industrial MO Monitoring CO Commercial MT Monitoring TestHole MN Municipal PS Public AC Cooling And A/C NU Not Used

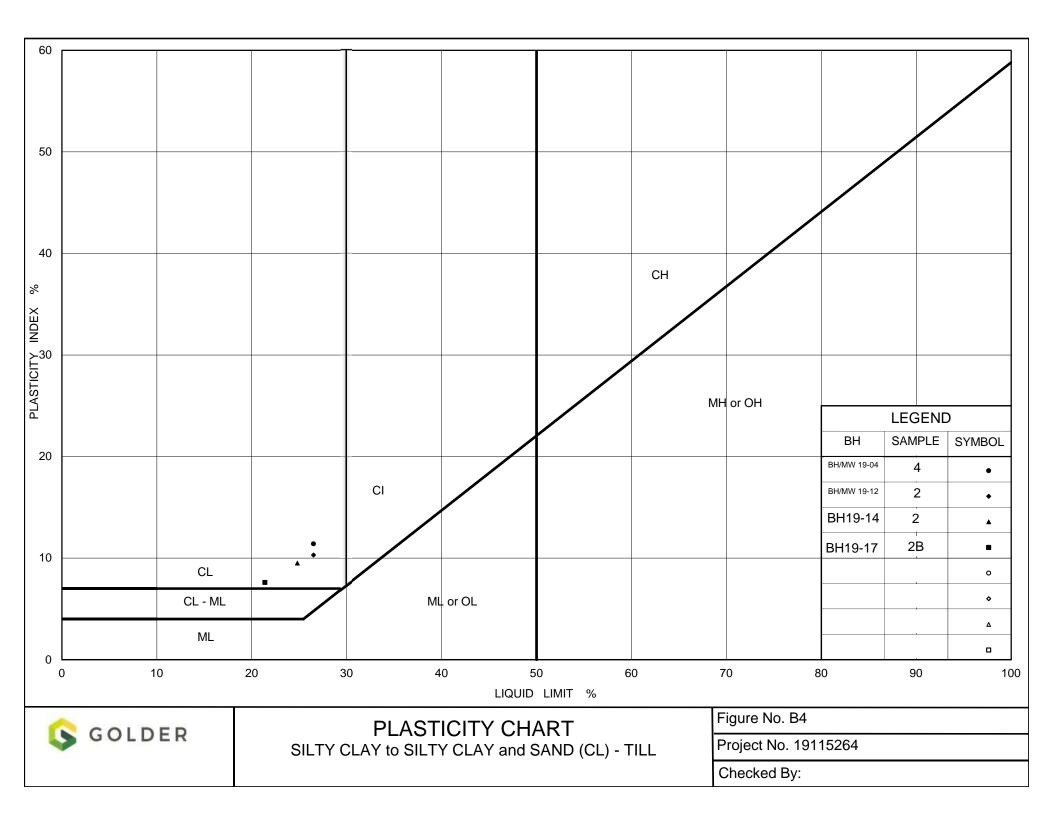

4. Water Detail

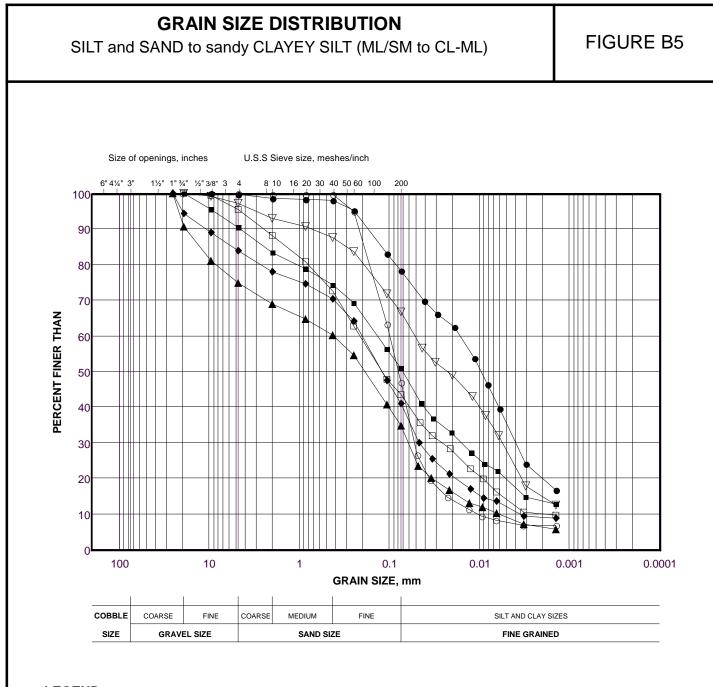

CodeDescriptionCodeDescriptionFRFreshGSGas SA SU MN Mineral UK Unknown



Appendix C

Grainsize Analysis

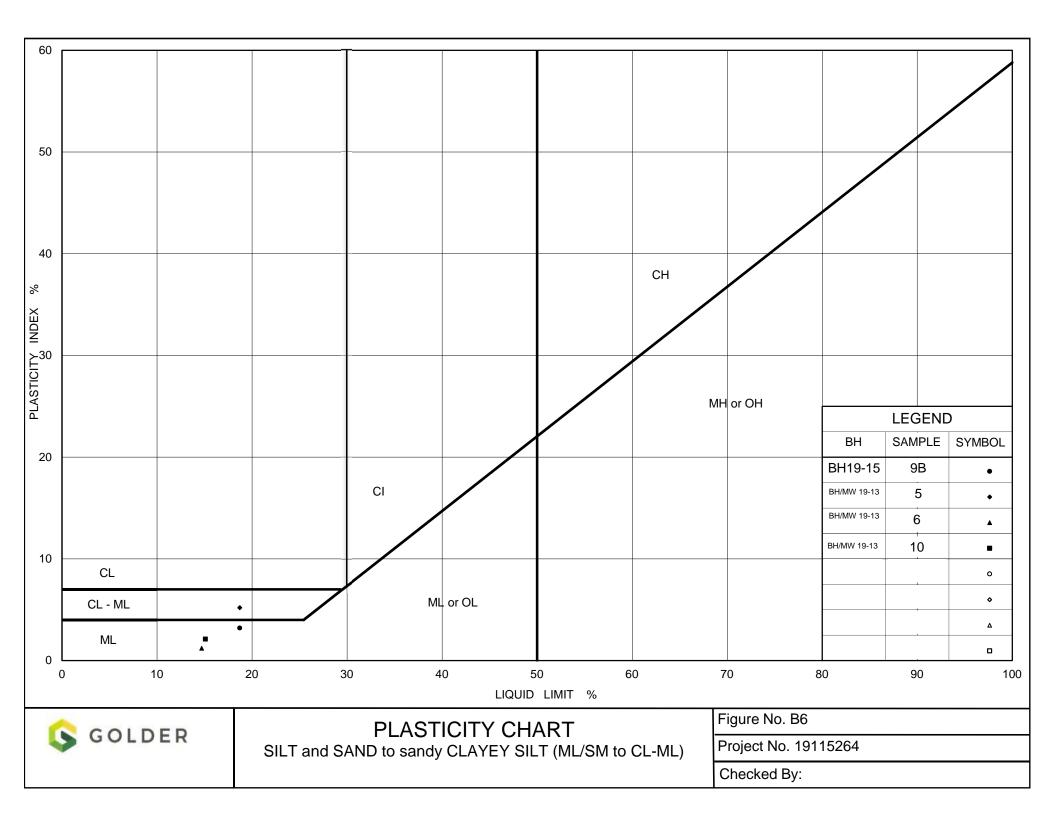

LEGEND

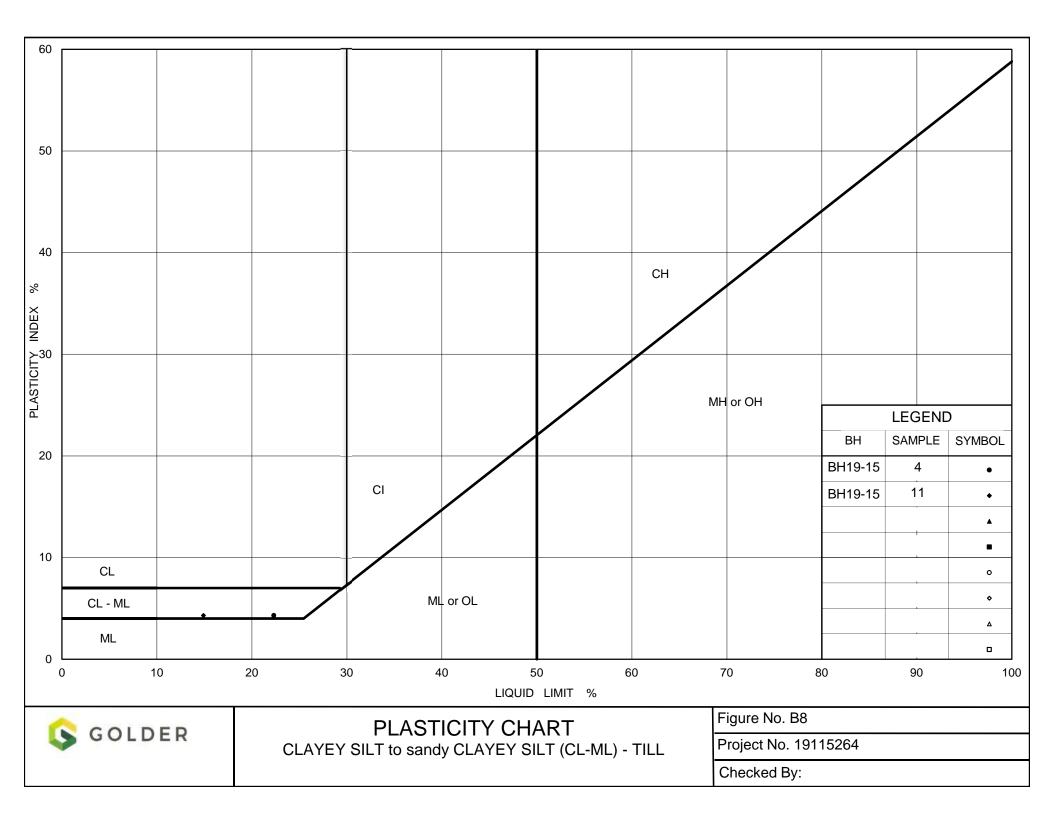

SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH 19-14	2	0.76 - 1.37
•	BH/MW 19-12	2	0.76 - 1.37
♦	BH 19-17	2B	1.13 - 1.37
	BH/MW 19-04	4	2.29 - 2.90

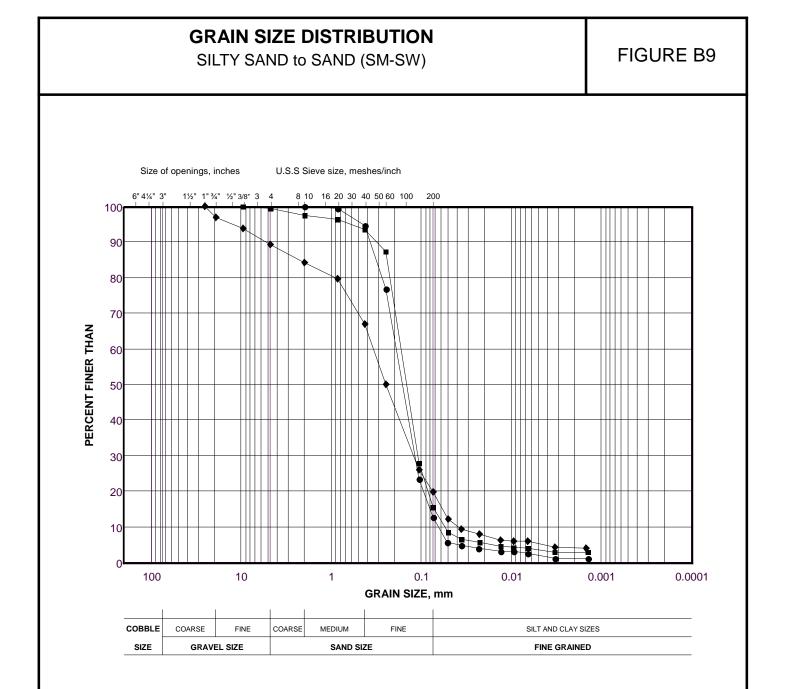
Project Number: 19115264

Checked By: _

Golder Associates

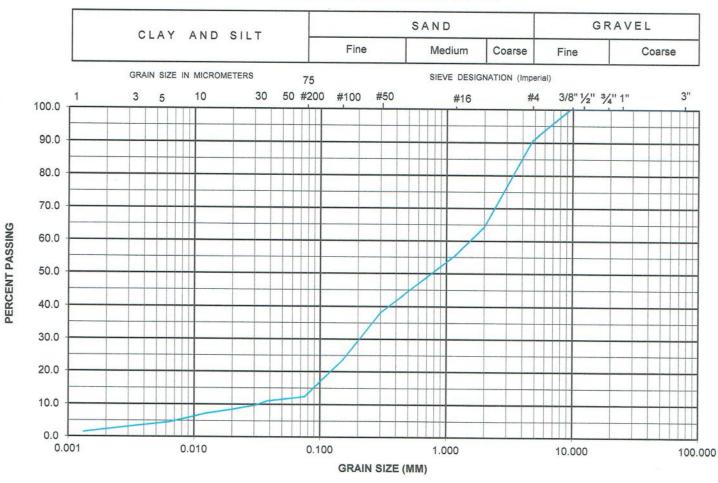



LEGEND

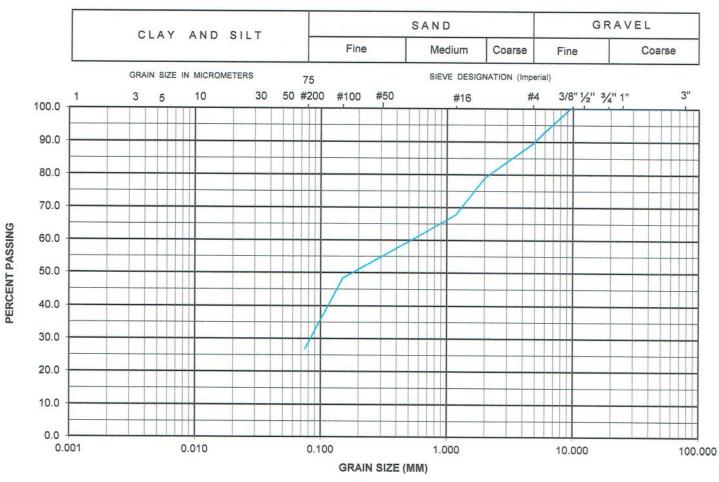

	SYMBOL	Borehole	SAMPLE	DEPTH(m)	
	•	BH/MW 19-13	10	10.67 - 11.28	
	-	BH/MW 19-13	5	3.05 - 3.66	
	•	BH/MW 19-13	6	4.57 - 5.18	
		BH/MW 19-12	6B	3.05 - 3.66	
	\bigtriangledown	BH 19-13	8	7.62 - 8.23	
	О	BH/MW 19-12	9	9.14 - 9.75	
		BH 19-15	9B	9.69 - 9.75	
Project Number: 19115264	Ļ				

Golder Associates

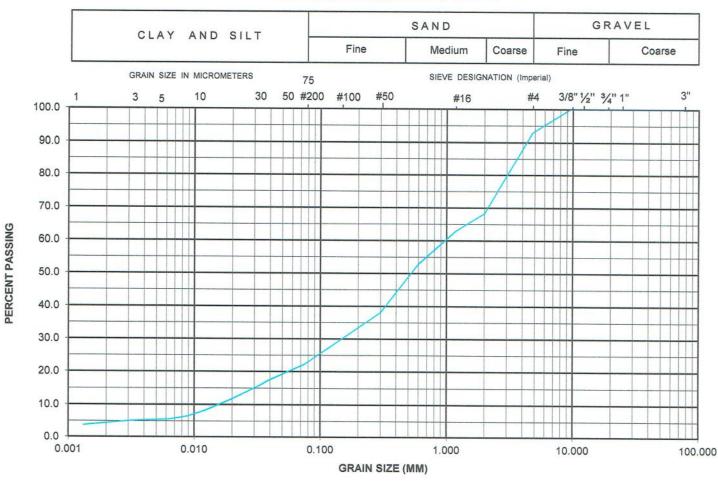
LEGEND

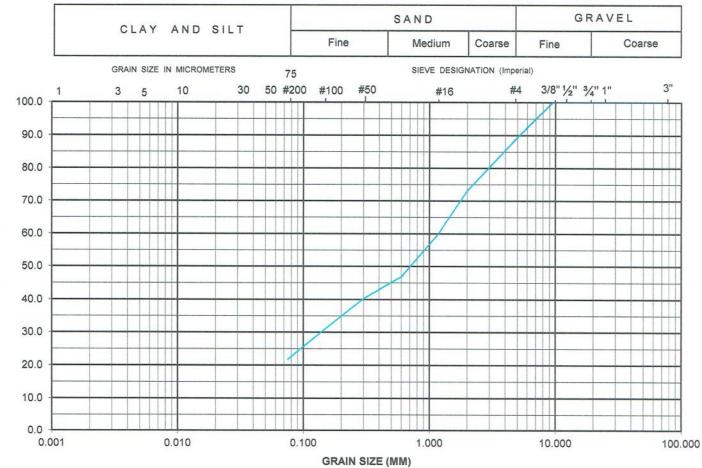

SYMBOL	Borehole	SAMPLE	DEPTH(m)
•	BH/MW 19-04	14	15.24 - 15.85
•	BH 19-14	7	6.10 - 6.71
•	BH/MW 19-12	7	6.10 - 6.71

Project Number: 19115264


Checked By: _

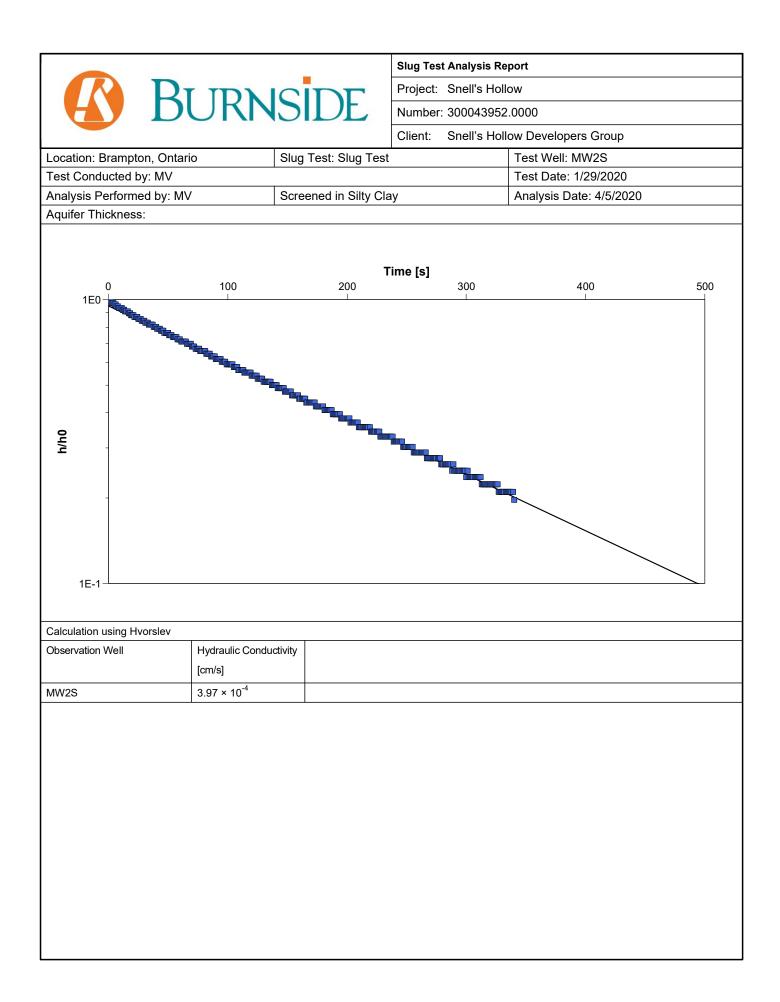
Golder Associates

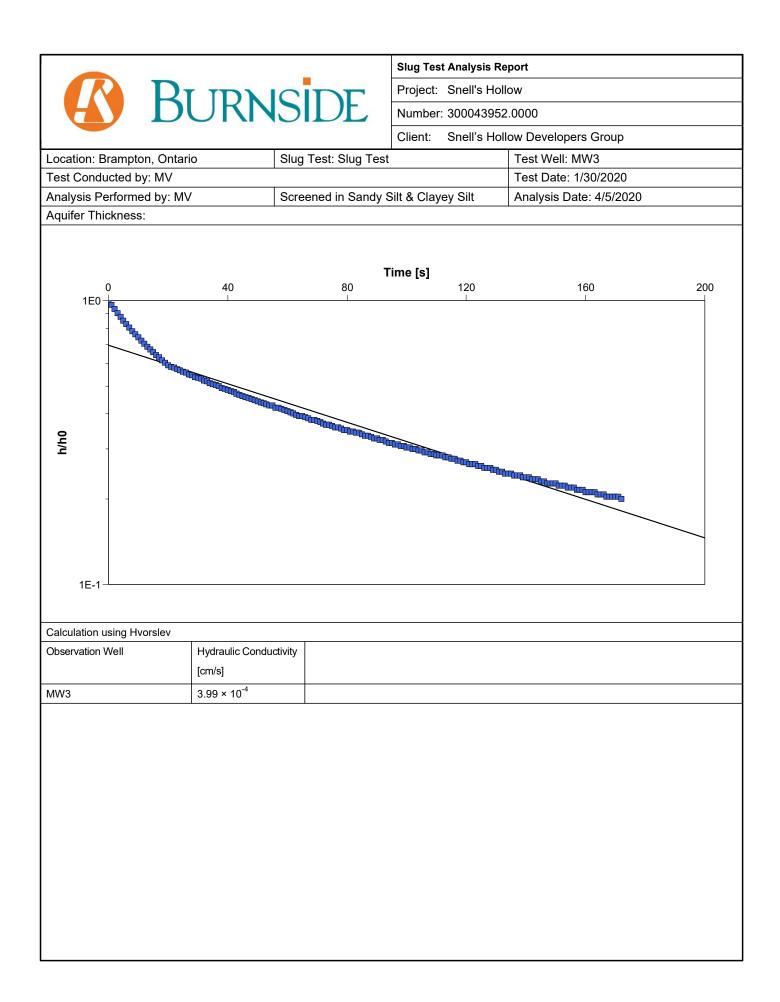

E EDWARD WONG		ard Wong & Associates Inc. 441 Esna Park Drive, Unit 19 Markham, Ontario L3R-1H7 Telephone: (416) 903-4288 Fax: (416) 221-0795	Hvdrometer Test					
Sample Test No.:	02995c-1	Report No.:	1	Date	e Reported:	27/10/2017		
Project No.: Project Name:	8	ad, Town of Caledon	Grain Size (mm)	% Passing	Grain Size (mm)	% Passing		
Grain Size Proportion (%	6)		75.00	100.0	0.009	5.9		
Gravel (> 4.75mm):	9.5		26.50	100.0	0.006	4.6		
Sand (> 75µm, < 4.75m	m): 78.1		19.00	100.0	0.003	3.3		
Silt (> 2μm), < 75μm):	10.1		13.25	100.0	0.001	1.5		
Clay (< 2μm):	2.3		9.50	100.0				
			4.75	90.5				
Sample Information			2.00	64.3				
Sample Location:	1		1.180	55.6				
Sample No.:	6		0.600	46.9				
Sample Method:	SPT		0.300	38.1				
Depth (m):	4.5 - 4.95		0.150	23.5				
Sample Description:	Brown Sand Till		0.075	12.4				
	some silt, some gi	ravel, trace clay	0.038	11.1				
Sampled By:	S.R.		0.031	9.8				
Sampling Date:	19/10/2017		0.020	8.5				
Client Sample ID: Comments:		-	0.012	7.2				

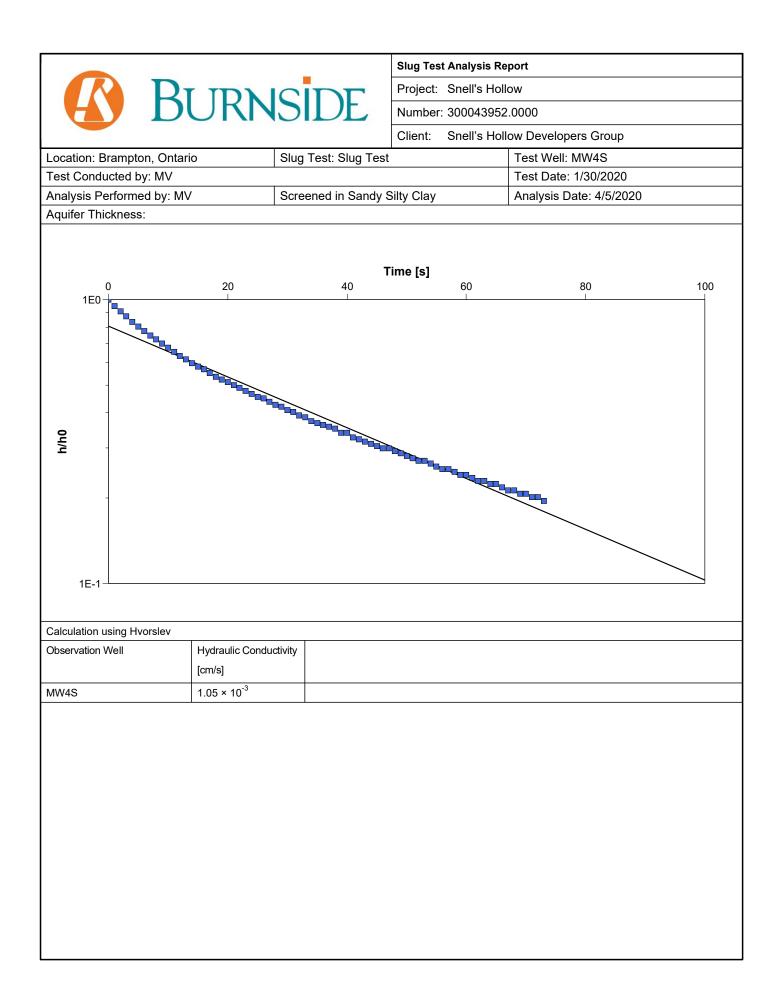

E EDWARD WON	G 4	rd Wong & Associates Inc. 41 Esna Park Drive, Unit 19 Markham, Ontario L3R 1H7 Telephone: (416) 903-4288 Fax: (416) 221-0795		in Size / Hydrom		
Sample Test No.:	02995c-2	Report No.:	2	Date	e Reported:	27/10/2017
Project No.: Project Name:	Ma002995c	d Town of Colliders	Grain Size		Orain Olar	
riojoot nume.	3728 Mayneid Roa	id, Town of Caledon	(mm)	% Passing	Grain Size (mm)	% Passing
Grain Size Proportion (<u>%)</u>	1	75.00	100.0		
Gravel (> 4.75mm):	10.7		26.50	100.0		
Sand (> 75µm, < 4.75m	im): 62.4		19.00	100.0		
Silt (> 2μm), < 75μm):	26.9		13.25	100.0		
Clay (< 2μm):			9.50	100.0		
			4.75	89.3		
Sample Information			2.00	79.0		
Sample Location:	2		1.180	67.8		
Sample No.:	3		0.600	61.3		
Sample Method:	SPT		0.300	54.8		
Depth (m):	1.5-1.95		0.150	48.3		
Sample Description:	Brown Silty Sand some gravel	-	0.075	26.9		
Sampled By:	S.R.					
Sampling Date:	18/10/2017					
Client Sample ID:						
Comments:						

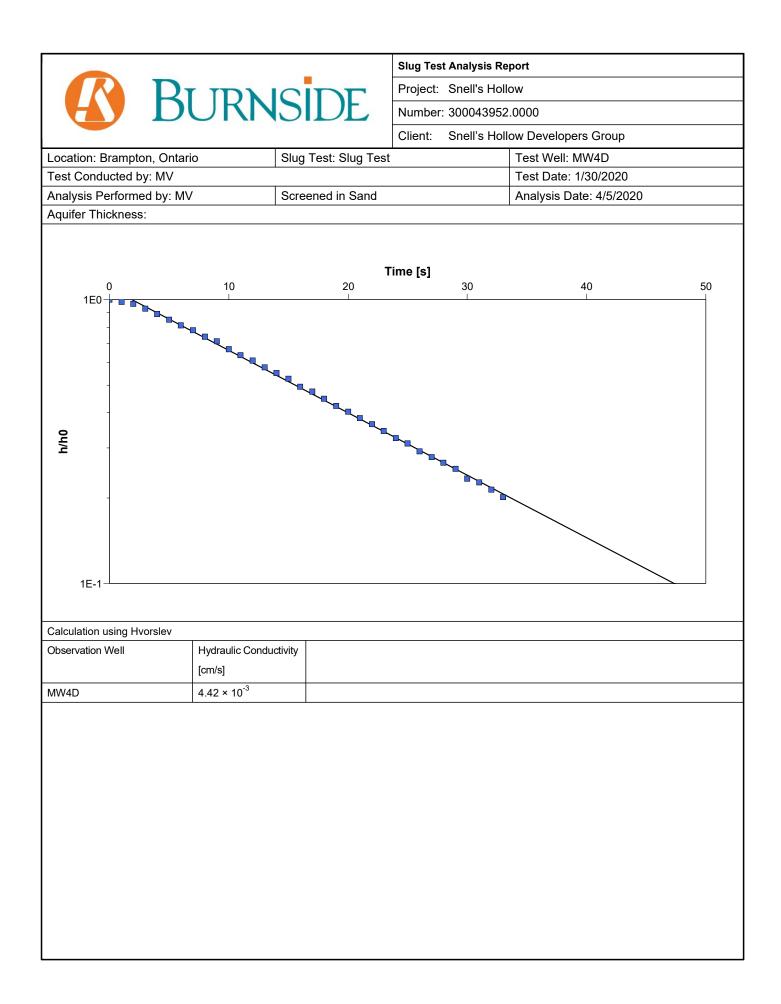
E EDWARD WON	Edward Wong & Associates Inc. 441 Esna Park Drive, Unit 19 Markham, Ontario L3R 1H7 Telephone: (416) 903-4288 Fax: (416) 221-0795		in Size <i>I</i> Hydrom		
Sample Test No.:	02995c-3 Report No.:	3	Date	e Reported:	27/10/2017
Project No.:	Ma002995c				
Project Name:	3728 Mayfield Road, Town of Caledon	Grain Size (mm)	% Passing	Grain Size (mm)	% Passing
Grain Size Proportion	(%)	75.00	100.0	0.009	6.5
Gravel (> 4.75mm):	7.2	26.50	100.0	0.006	5.6
Sand (> 75µm, < 4.75n	1010	19.00	100.0	0.003	5.1
Silt (> 2μm), < 75μm):	17.8	13.25	100.0	0.001	3.8
Clay (< 2µm):	4.5	9.50	100.0		
		4.75	92.8		
Sample Information		2.00	68.3		
Sample Location:	3	1.180	62.9		
Sample No.:	6	0.600	52.9		
Sample Method:	SPT	0.300	38.1		
Depth (m):	4.5 - 4.95	0.150	30.2		
Sample Description:	Brown Fine to Medium Sand some silt	0.075	22.3		
	trace gravel, trace clay	0.038	17.3		
Sampled By:	S.R.	0.031	15.3		
Sampling Date:	19/10/2017	0.020	11.8		
Client Sample ID:		0.012	8.8		
Comments:					

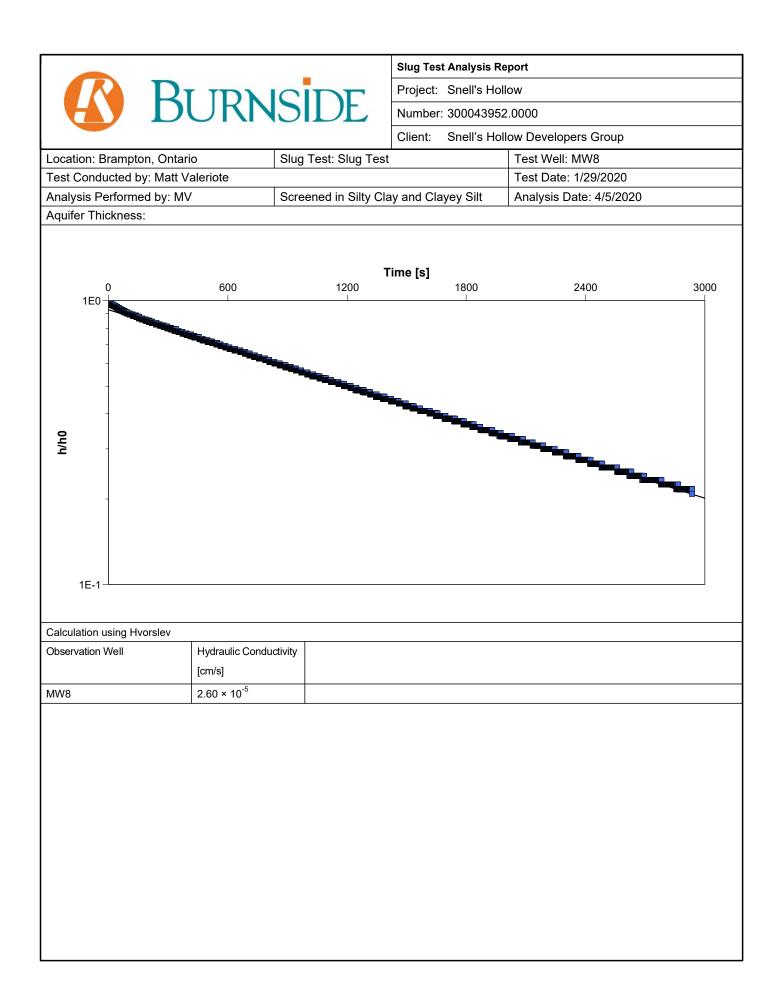
E EDWARD WONG		ward Wong & Associates Inc. 441 Esna Park Drive, Unit 19 Markham, Ontario L3R 1H7 Telephone: (416) 903-4288 Fax: (416) 221-0795		in Size A Hydrom	-	
Sample Test No.:	02995c-4	Report No.:	4	Date	e Reported:	27/10/2017
Project No.:	Ma002995c					
Project Name:	3728 Mayfield F	Road, Town of Caledon	Grain Size (mm)	% Passing	Grain Size (mm)	% Passing
Grain Size Proportion (%	2		75.00	100.0		
Gravel (> 4.75mm):	11	1.5	26.50	100.0		
Sand (> 75µm, < 4.75mm	n): 66	5.7	19.00	100.0		
Silt (> 2μm), < 75μm):	21	.8	13.25	100.0		
Clay (< 2μm):			9.50	100.0		
			4.75	88.5		
Sample Information			2.00	73.1		
Sample Location:	6		1.180	60.0		
Sample No.:	6 2		0.600	46.8		
Sample Method:	SPT		0.300	40.3		
Depth (m):	0.75 - 1.2		0.150	31.1		
Sample Description:	Brown Silty Sar some gravel	nd	0.075	21.8		
Sampled By:	S.R.					
Sampling Date:	18/10/2017					
Client Sample ID:						
Comments:						




PERCENT PASSING




Appendix D


Single Well Response Tests

Edward Wong & Associates In	nc.	Slug Test Analysis Report					
441 Esna Park Drive, Unit 19		Project: 3728 Mayfield Road					
Markham, Ontario		Number: Ma002995c					
L3R 1H7		Client: Mr. Dilip Kun	nar Jain				
Location: Town of Caledon	Slug Test: Slug Test 1		Test Well: Borehole 5				
Test conducted by: Sofel Rana			Test date: 10/26/2017				
Analysis performed by: Sofel Rana	New analysis 1		Analysis date: 10/26/2017				
Aquifer Thickness:			,				
0 4 1E0	Tin 0 80	ne [min] 120	160	200			
9 1E-1							
Calculation after Hvorslev							
Observation well Hydrauli	c Conductivity						
[m/s]							
Borehole 5 7.80 × 1	0-9						

Appendix E

Groundwater Elevations

Table E-1 Groundwater Elevations-Wells and Piezometers

			Ground	April 1	7, 2019	2-Ma	y-2019	22-Ma	iy-2019	19-Ju	n-2019	24-Ju	I-2019
Instrument	Well Depth (mbgs)	Stick-up (m)	Surface Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)								
MW19-01	7.69	0.84	266.55	3.80	262.75	3.18	263.37	3.37	263.18	3.50	263.05	4.12	262.43
MW19-02s	3.57	0.84	256.99	0.24	256.75	-	-	0.36	256.63	0.71	256.28	1.29	255.70
MW19-02d	12.86	0.74	257.02	6.33	250.69	-	-	6.23	250.79	6.11	250.91	6.11	250.91
MW19-03	9.30	0.82	266.41	7.34	259.07	-	-	6.71	259.70	7.15	259.26	8.30	258.11
MW19-04s	7.92	0.79	265.68	3.49	262.19	2.23	263.45	3.22	262.46	4.73	260.95	5.10	260.58
MW19-04d	16.39	0.81	265.86	14.57	251.29	14.49	251.37	14.40	251.46	14.24	251.62	14.24	251.62
MW19-05	8.42	0.84	270.24	8.40	261.84	8.40	261.85	8.38	261.86	8.37	261.87	8.37	261.87
MW19-06	6.90	0.86	261.50	-0.43	261.93	-	-	-0.29	261.79	0.12	261.38	0.79	260.71
MW19-07s	6.91	0.67	264.28	6.84	257.44	6.84	257.44	6.84	257.44	6.84	257.44	6.84	257.44
MW19-07d	13.60	0.86	264.40	12.79	251.61	12.64	251.76	12.51	251.89	12.43	251.97	12.51	251.89
MW19-08	5.23	0.98	262.75	1.29	261.46	0.41	262.34	0.56	262.19	1.82	260.93	2.64	260.11
MW19-09	7.60	0.88	256.39	6.53	249.86	-	-	6.37	250.02	6.27	250.12	6.29	250.10
MW19-13	9.74	0.79	266.98	9.57	257.41	-	-	9.57	257.41	9.64	257.34	9.56	257.42
BH2	5.93	0.80	263.11	-	-	-	-	-	-	-	-	-	-
BH3	5.76	0.99	260.05	3.00	257.05	-	-	2.53	257.52	3.12	256.93	3.91	256.14
BH5	4.56	0.61	257.98	-	-	-	-	-	-	-	-	-	-
PZ1s	0.76	1.16	259.88	-	-	Dry	Dry	-0.01	259.89	0.02	259.86	0.06	259.82
PZ1d	1.55	1.30	259.94	-	-	Dry	Dry	1.14	258.80	0.92	259.02	0.73	259.21
PZ2s	1.32	0.60	256.44	-	-	Dry	Dry	0.86	255.58	0.61	255.83	-	-
PZ2d	1.91	0.94	256.46	-	-	Dry	Dry	0.84	255.62	0.45	256.01	-	-
PZ3s	1.34	0.57	255.78	-	-	0.91	254.87	0.04	255.74	0.09	255.69	0.22	255.56
PZ3d	1.86	0.99	255.72	-	-	1.39	254.33	0.02	255.70	0.09	255.63	0.23	255.49
PZ4s	1.30	0.62	255.24	-	-	1.25	253.99	0.51	254.73	0.20	255.04	0.11	255.13
PZ4d	1.59	1.00	255.24	-	-	Dry	Dry	0.79	254.45	0.27	254.97	0.18	255.06
PZ5s	1.23	0.69	260.39	-	-	Dry	Dry	0.34	260.05	0.60	259.79	0.84	259.55
PZ5d	1.78	1.04	260.40	-	-	Dry	Dry	0.73	259.67	0.61	259.79	0.94	259.46
PZ6s	1.27	0.65	255.87	-	-	Dry	Dry	0.23	255.64	0.17	255.70	0.32	255.55
PZ6d	1.79	1.06	255.86	-	-	1.50	254.36	1.04	254.82	0.60	255.26	0.46	255.40

'-' denotes data unavailable

mbgs- metres below ground level

masl-metres above sea level

			Ground	27-Au	g-2019	25-Se	р-2019	1-No	v-2019	26-No	v-2019	20-De	c-2019
Instrument	Well Depth (mbgs)	Stick-up (m)	Surface Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)								
MW19-01	7.69	0.84	266.55	5.34	261.21	6.87	259.68	7.61	258.94	6.70	259.85	4.29	262.26
MW19-02s	3.57	0.84	256.99	1.69	255.30	1.98	255.01	1.42	255.57	0.77	256.22	0.63	256.36
MW19-02d	12.86	0.74	257.02	6.10	250.92	6.13	250.89	6.25	250.77	6.24	250.78	6.32	250.70
MW19-03	9.30	0.82	266.41	9.20	257.21	9.21	257.20	9.23	257.18	9.23	257.18	9.21	257.20
MW19-04s	7.92	0.79	265.68	5.33	260.35	5.47	260.21	5.59	260.09	5.60	260.08	5.48	260.20
MW19-04d	16.39	0.81	265.86	14.23	251.63	14.27	251.59	14.42	251.44	14.40	251.46	14.52	251.34
MW19-05	8.42	0.84	270.24	8.36	261.88	8.35	261.89	8.33	261.91	8.33	261.91	8.34	261.90
MW19-06	6.90	0.86	261.50	1.11	260.39	1.43	260.07	1.60	259.90	0.64	260.86	0.45	261.05
MW19-07s	6.91	0.67	264.28	6.85	257.43	6.85	257.43	6.84	257.44	6.84	257.44	6.85	257.43
MW19-07d	13.60	0.86	264.40	12.54	251.86	12.60	251.80	12.52	251.88	12.67	251.73	12.71	251.69
MW19-08	5.23	0.98	262.75	3.34	259.41	3.98	258.77	4.35	258.40	4.72	258.03	3.46	259.29
MW19-09	7.60	0.88	256.39	6.31	250.08	6.35	250.04	6.46	249.93	6.47	249.92	6.52	249.87
MW19-13	9.74	0.79	266.98	9.66	257.32	9.68	257.30	9.38	257.60	Dry	Dry	9.57	257.41
BH2	5.93	0.80	263.11	-	-	-	-	-	-	-	-	-	-
BH3	5.76	0.99	260.05	4.41	255.64	4.76	255.29	5.17	254.88	5.35	254.70	5.22	254.83
BH5	4.56	0.61	257.98	-	-	-	-	-	-	-	-	-	-
PZ1s	0.76	1.16	259.88	0.24	259.64	0.16	259.72	0.10	259.78	0.07	259.81	0.10	259.78
PZ1d	1.55	1.30	259.94	0.63	259.31	0.58	259.36	0.52	259.42	0.47	259.47	0.49	259.45
PZ2s	1.32	0.60	256.44	0.87	255.57	1.19	255.25	1.19	255.25	0.94	255.50	0.82	255.62
PZ2d	1.91	0.94	256.46	0.88	255.58	1.26	255.20	1.57	254.89	1.02	255.44	0.70	255.76
PZ3s	1.34	0.57	255.78	0.44	255.34	0.53	255.25	0.55	255.23	0.33	255.45	0.22	255.56
PZ3d	1.86	0.99	255.72	0.53	255.19	0.63	255.09	0.44	255.28	0.24	255.48	0.16	255.56
PZ4s	1.30	0.62	255.24	0.48	254.76	0.71	254.53	0.82	254.42	0.44	254.80	0.23	255.01
PZ4d	1.59	1.00	255.24	0.34	254.90	0.57	254.67	0.77	254.47	0.60	254.64	0.45	254.79
PZ5s	1.23	0.69	260.39	1.10	259.29	1.21	259.18	Dry	Dry	Dry	Dry	1.03	259.36
PZ5d	1.78	1.04	260.40	1.29	259.11	1.43	258.97	Dry	Dry	Dry	Dry	1.53	258.87
PZ6s	1.27	0.65	255.87	0.53	255.34	0.55	255.32	0.42	255.45	0.31	255.56	0.26	255.61
PZ6d	1.79	1.06	255.86	0.48	255.38	0.52	255.34	0.49	255.37	0.41	255.45	0.38	255.48

'-' denotes data unavailable

mbgs- metres below ground level

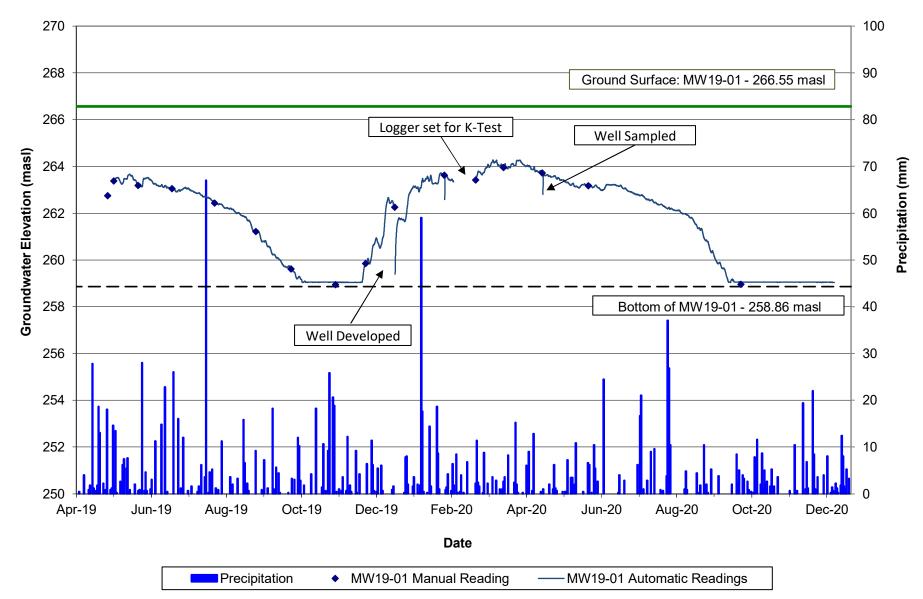
masl-metres above sea level

			Ground	30-Ja	n-2020	22-Fe	b-2020	19-Ma	ar-2020	20-Ap	or-2020	28-May-2020		
Instrument	Well Depth (mbgs)	Stick-up (m)	Surface Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)									
MW19-01	7.69	0.84	266.55	2.93	263.62	3.13	263.42	2.60	263.95	2.83	263.72	3.38	263.17	
MW19-02s	3.57	0.84	256.99	0.15	256.84	0.30	256.69	0.23	256.76	0.38	256.61	0.58	256.41	
MW19-02d	12.86	0.74	257.02	6.24	250.78	6.14	250.88	6.09	250.93	5.99	251.03	5.95	251.07	
MW19-03	9.30	0.82	266.41	7.79	258.62	7.23	259.18	6.73	259.68	6.97	259.44	8.13	258.28	
MW19-04s	7.92	0.79	265.68	3.04	262.64	4.39	261.29	2.89	262.79	4.19	261.49	5.08	260.60	
MW19-04d	16.39	0.81	265.86	14.41	251.45	14.29	251.57	14.24	251.62	14.12	251.74	14.09	251.77	
MW19-05	8.42	0.84	270.24	8.34	261.90	8.34	261.90	8.34	261.90	8.32	261.92	8.34	261.90	
MW19-06	6.90	0.86	261.50	Frozen	Frozen	-0.44	261.94	-0.33	261.83	-0.09	261.59	0.42	261.08	
MW19-07s	6.91	0.67	264.28	6.95	257.33	6.87	257.41	6.86	257.42	6.86	257.42	6.86	257.42	
MW19-07d	13.60	0.86	264.40	12.58	251.82	12.52	251.88	12.43	251.97	12.32	252.08	12.37	252.03	
MW19-08	5.23	0.98	262.75	0.29	262.46	1.25	261.50	0.48	262.27	0.85	261.90	2.09	260.66	
MW19-09	7.60	0.88	256.39	6.41	249.98	6.35	250.04	6.31	250.08	6.22	250.17	6.22	250.17	
MW19-13	9.74	0.79	266.98	9.62	257.36	9.67	257.31	9.32	257.66	9.40	257.58	9.65	257.33	
BH2	5.93	0.80	263.11	-	-	2.61	260.50	1.89	261.22	2.35	260.76	3.09	260.02	
BH3	5.76	0.99	260.05	1.82	258.23	2.94	257.11	2.55	257.50	2.79	257.26	3.56	256.49	
BH5	4.56	0.61	257.98	-	-	0.58	257.40	0.21	257.77	0.55	257.43	1.19	256.79	
PZ1s	0.76	1.16	259.88	0.07	259.81	0.12	259.76	0.14	259.74	0.18	259.70	0.24	259.64	
PZ1d	1.55	1.30	259.94	0.38	259.56	0.36	259.58	0.34	259.60	0.31	259.63	0.28	259.66	
PZ2s	1.32	0.60	256.44	0.61	255.83	0.53	255.91	0.46	255.98	0.39	256.05	0.45	255.99	
PZ2d	1.91	0.94	256.46	0.36	256.10	0.30	256.16	0.23	256.23	0.23	256.23	0.39	256.07	
PZ3s	1.34	0.57	255.78	0.11	255.67	0.13	255.65	0.06	255.72	0.09	255.69	0.13	255.65	
PZ3d	1.86	0.99	255.72	Frozen	Frozen	0.13	255.59	0.10	255.62	0.09	255.63	0.13	255.59	
PZ4s	1.30	0.62	255.24	0.09	255.15	0.08	255.16	0.03	255.21	0.01	255.23	-0.04	255.28	
PZ4d	1.59	1.00	255.24	0.22	255.02	0.15	255.09	0.06	255.18	0.08	255.16	0.02	255.22	
PZ5s	1.23	0.69	260.39	0.29	260.10	0.34	260.05	0.25	260.14	0.29	260.10	0.58	259.81	
PZ5d	1.78	1.04	260.40	0.88	259.52	0.73	259.67	0.63	259.77	0.53	259.87	0.59	259.81	
PZ6s	1.27	0.65	255.87	0.19	255.68	0.19	255.68	0.17	255.70	0.19	255.68	0.23	255.64	
PZ6d	1.79	1.06	255.86	0.31	255.55	0.27	255.59	0.25	255.61	0.24	255.62	0.24	255.62	

'-' denotes data unavailable

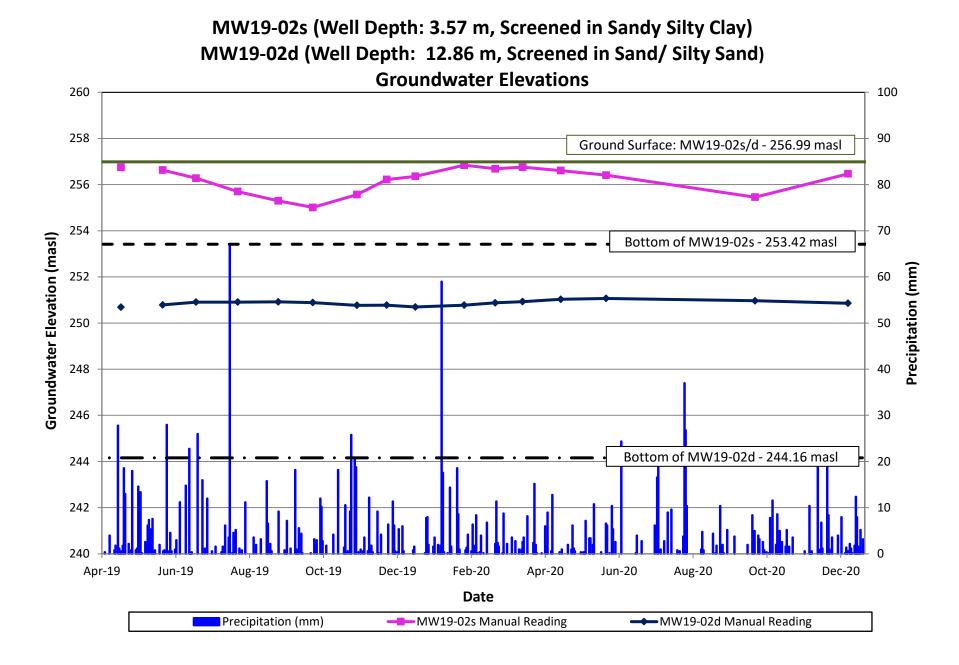
mbgs- metres below ground level

masl-metres above sea level

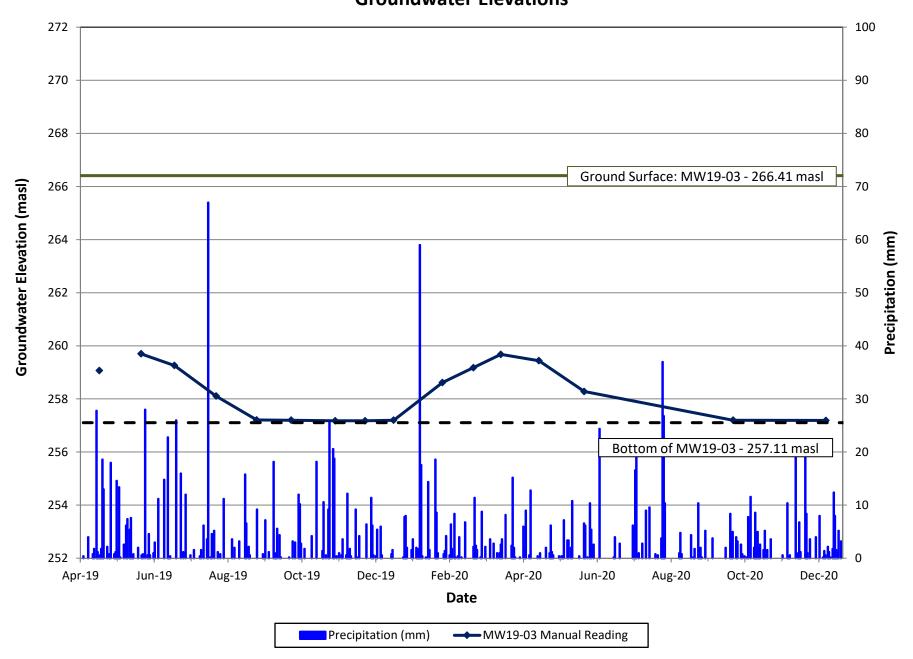

Table E-1 Groundwater Elevations-Wells and Piezometers

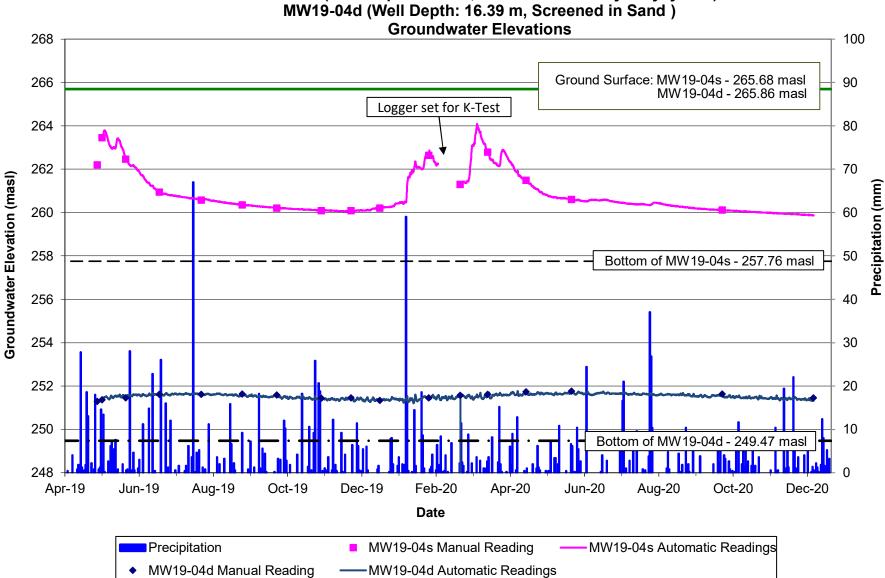
			Ground	30-Se	p-2020	16-Dec-2020			
Instrument	Well Depth (mbgs)	Stick-up (m)	Surface Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)		
MW19-01	7.69	0.84	266.55	7.60	258.95	Dry	Dry		
MW19-02s	3.57	0.84	256.99	1.53	255.46	0.52	256.47		
MW19-02d	12.86	0.74	257.02	6.05	250.97	6.16	250.86		
MW19-03	9.30	0.82	266.41	9.21	257.20	9.22	257.19		
MW19-04s	7.92	0.79	265.68	5.57	260.11	-	-		
MW19-04d	16.39	0.81	265.86	14.23	251.63	14.41	251.45		
MW19-05	8.42	0.84	270.24	8.34	261.90	8.34	261.90		
MW19-06	6.90	0.86	261.50	1.50	260.00	Frozen	Frozen		
MW19-07s	6.91	0.67	264.28	6.85	257.43	6.87	257.41		
MW19-07d	13.60	0.86	264.40	12.59	251.81	12.73	251.67		
MW19-08	5.23	0.98	262.75	4.38	258.37	5.20	257.55		
MW19-09	7.60	0.88	256.39	6.37	250.02	6.50	249.89		
MW19-13	9.74	0.79	266.98	9.69	257.29	9.64	257.34		
BH2	5.93	0.80	263.11	4.45	258.66	5.04	258.07		
BH3	5.76	0.99	260.05	4.99	255.06	5.66	254.39		
BH5	4.56	0.61	257.98	2.41	255.57	2.14	255.84		
PZ1s	0.76	1.16	259.88	0.30	259.58	0.19	259.69		
PZ1d	1.55	1.30	259.94	0.43	259.51	0.49	259.45		
PZ2s	1.32	0.60	256.44	0.86	255.58	0.95	255.49		
PZ2d	1.91	0.94	256.46	1.06	255.40	0.92	255.54		
PZ3s	1.34	0.57	255.78	0.40	255.38	0.30	255.48		
PZ3d	1.86	0.99	255.72	0.46	255.26	0.22	255.50		
PZ4s	1.30	0.62	255.24	0.27	254.97	0.33	254.91		
PZ4d	1.59	1.00	255.24	0.43	254.81	0.35	254.89		
PZ5s	1.23	0.69	260.39	1.18	259.21	Dry	Dry		
PZ5d	1.78	1.04	260.40	1.23	259.17	1.68	258.72		
PZ6s	1.27	0.65	255.87	0.51	255.36	0.32	255.55		
PZ6d	1.79	1.06	255.86	0.32	255.54	0.42	255.44		

'-' denotes data unavailable


mbgs- metres below ground level

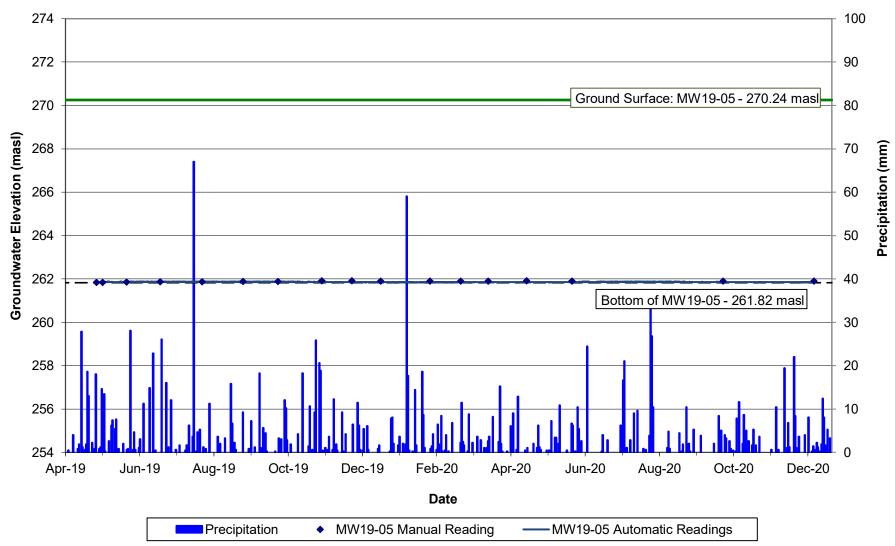
masl-metres above sea level

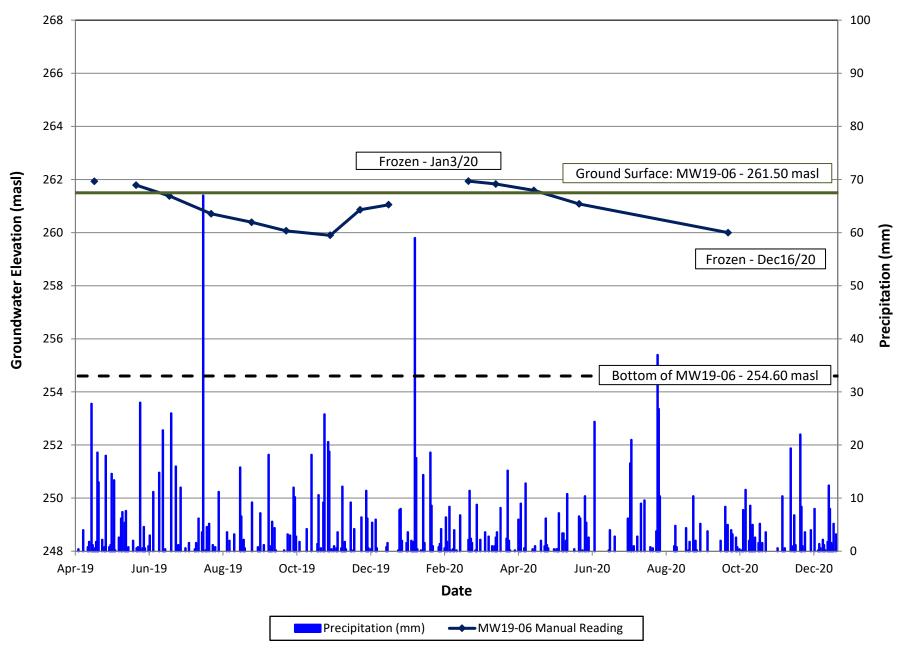



MW19-01 (Well Depth: 7.69 m, Screened in Silty Clay/ Clayey Silt) Groundwater Elevations

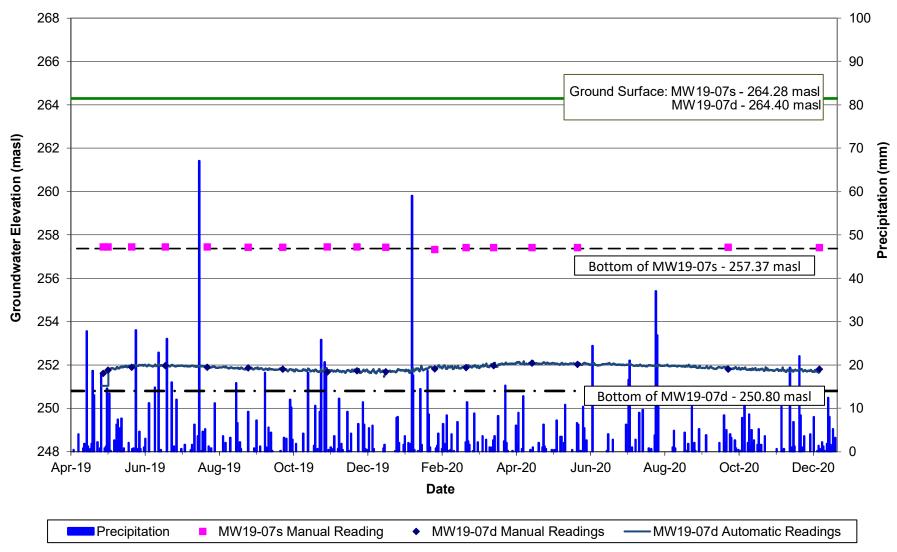
R.J. Burnside & Associates Limited 300043952

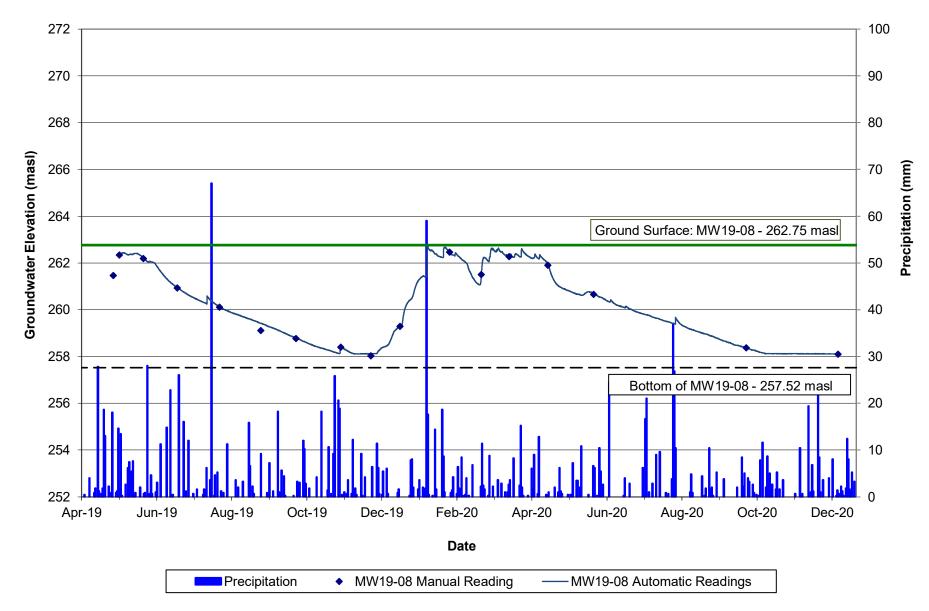
MW19-03 (Well Depth: 9.30 m, Screened Clayey Silt) Groundwater Elevations




MW19-04s (Well Depth: 7.92 m, Screened in Sandy Clayey Silt)

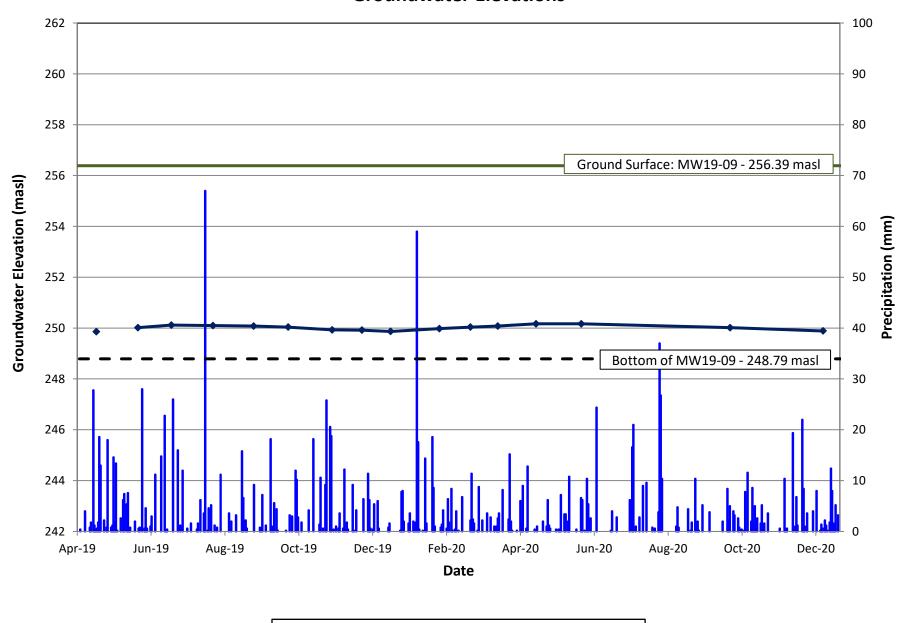
R.J Burnside & Associates Limited 300043952

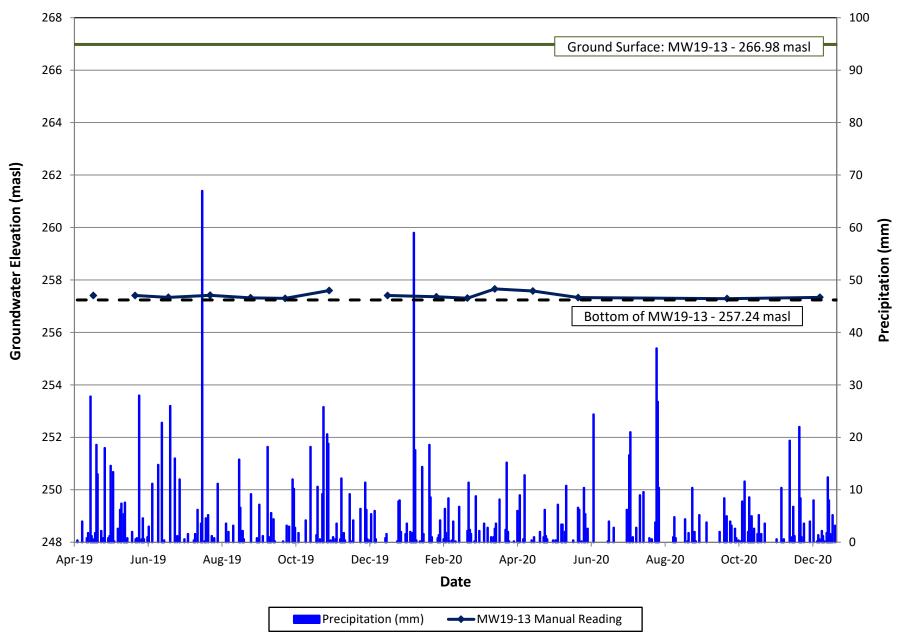

MW19-05 (Well Depth: 8.42 m, Screened in Clayey Silt) Groundwater Elevations

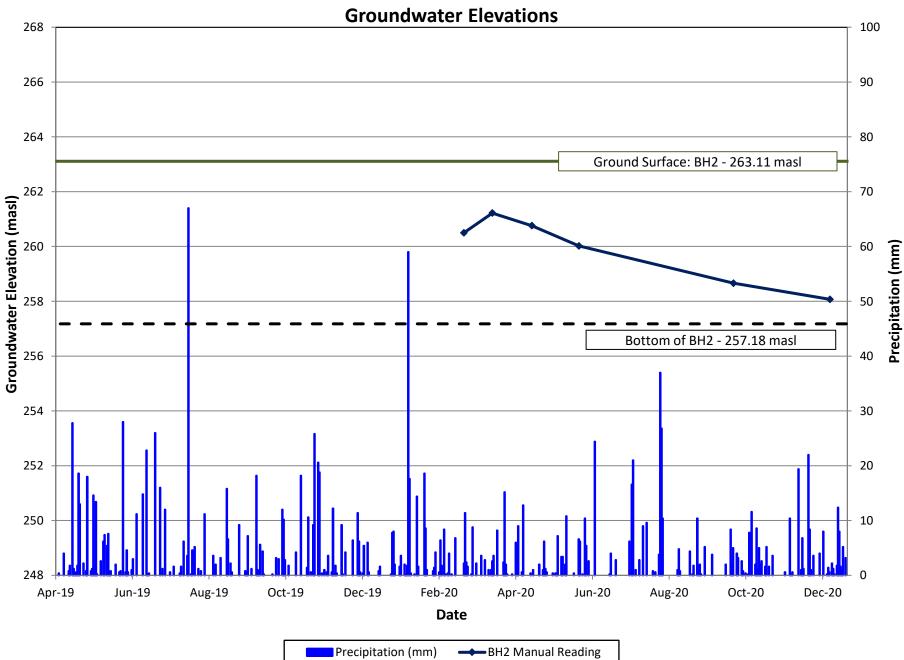


MW19-06 (Well Depth: 6.90 m, Screened in Silty Sand Clayey Silt) Groundwater Elevations

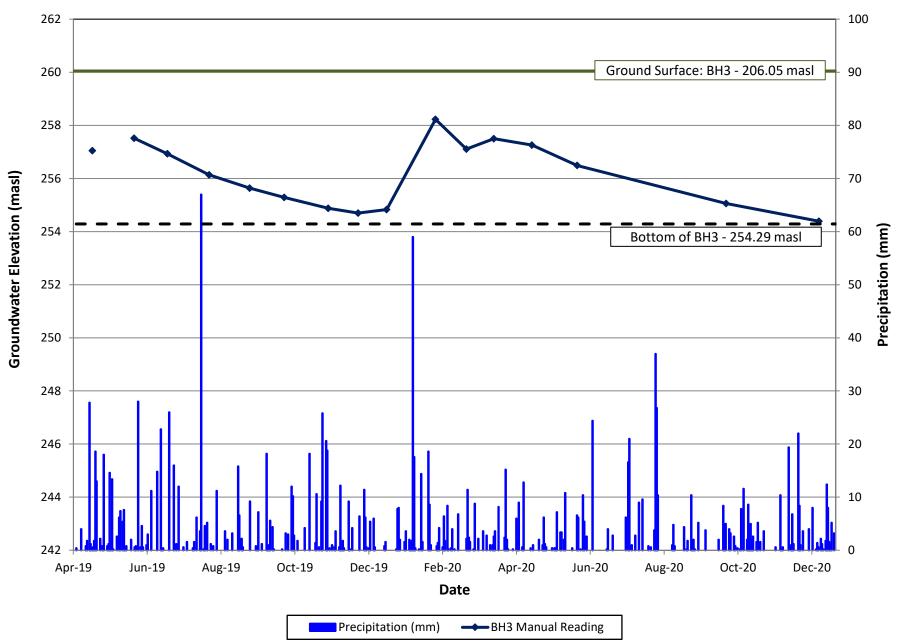
MW19-07s (Well Depth: 6.91 m, Screened in Silty Clay/Sandy Silt) MW19-07d (Well Depth: 13.60 m, Screened in Silty Sand) Groundwater Elevations

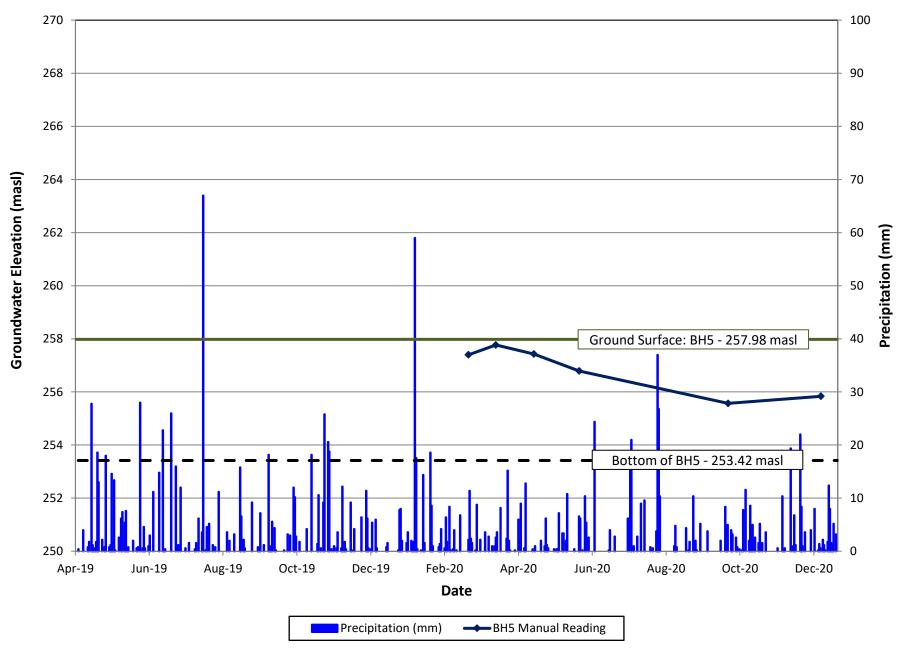



MW19-08 (Well Depth: 5.23 m, Screened in Silty Clay/ Clayey Silt) Groundwater Elevations

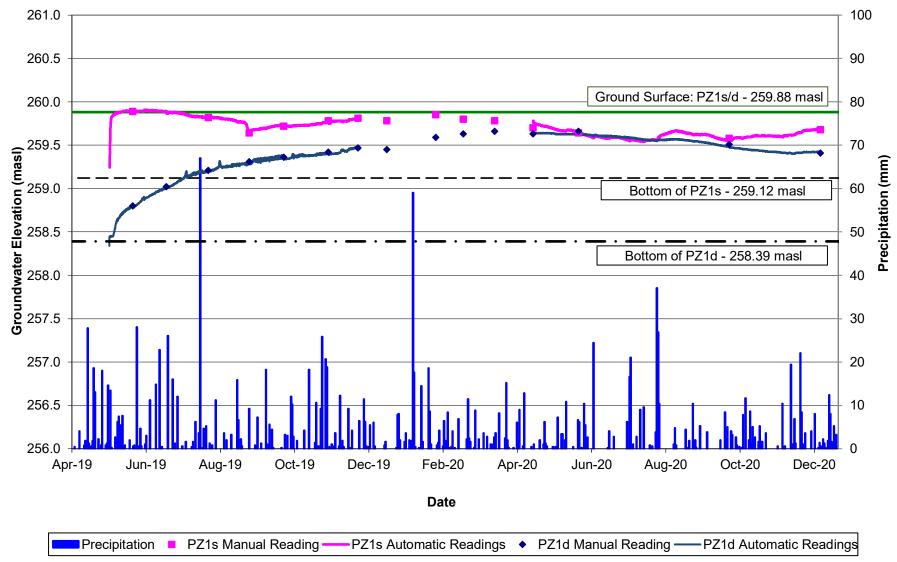

R.J. Burnside & Associates Limited 300043952

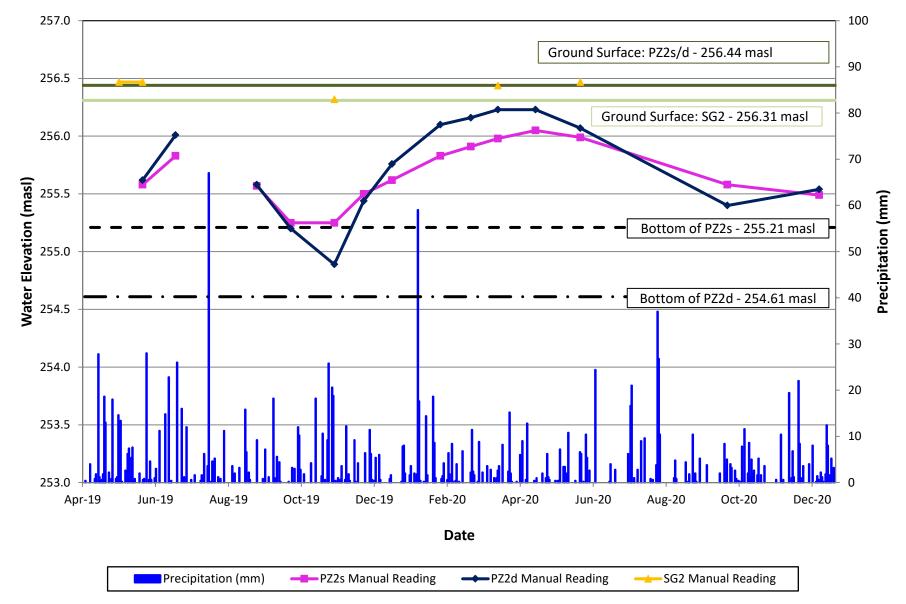
MW19-09 (Well Depth: 7.6 m, Screened in Silty Sand) Groundwater Elevations

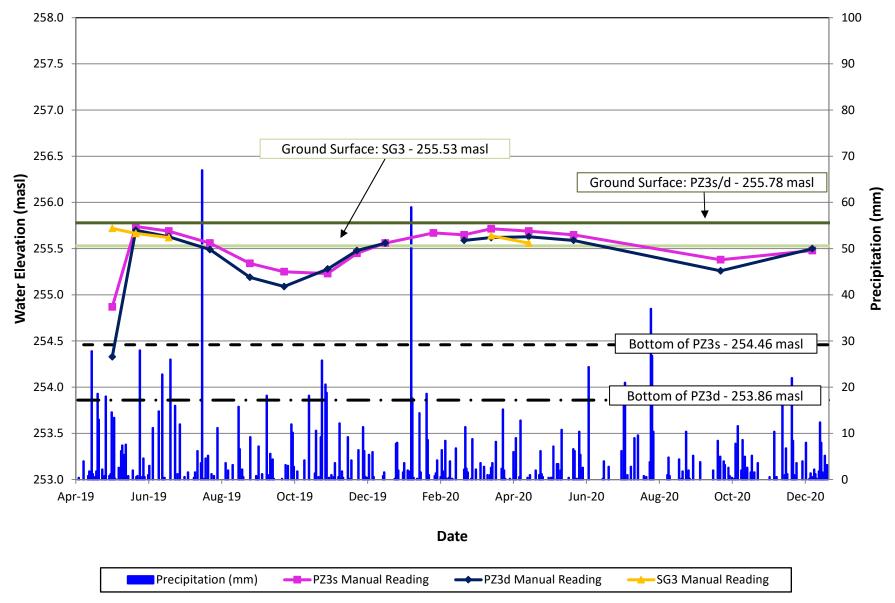

MW19-13 (Well Depth: 9.74 m, Screened in Gravelly Silt Sand) Groundwater Elevations

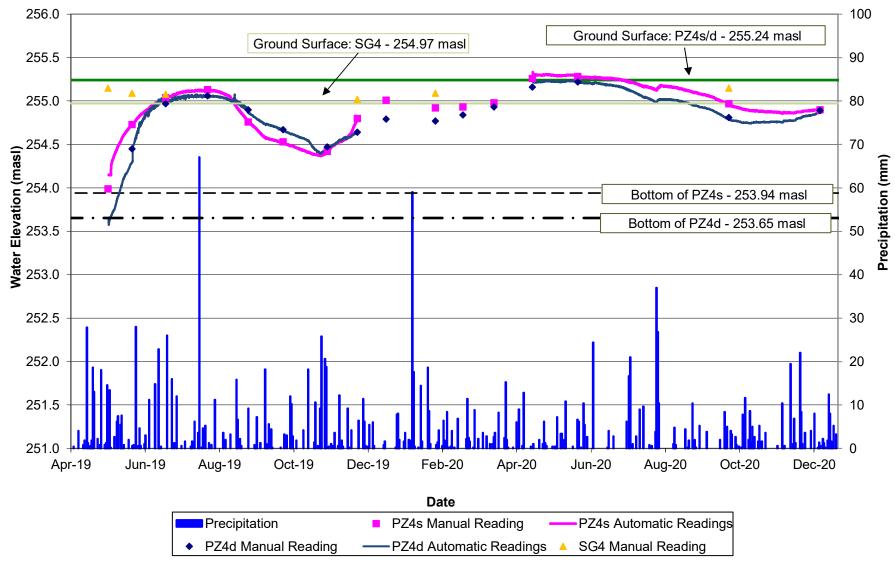


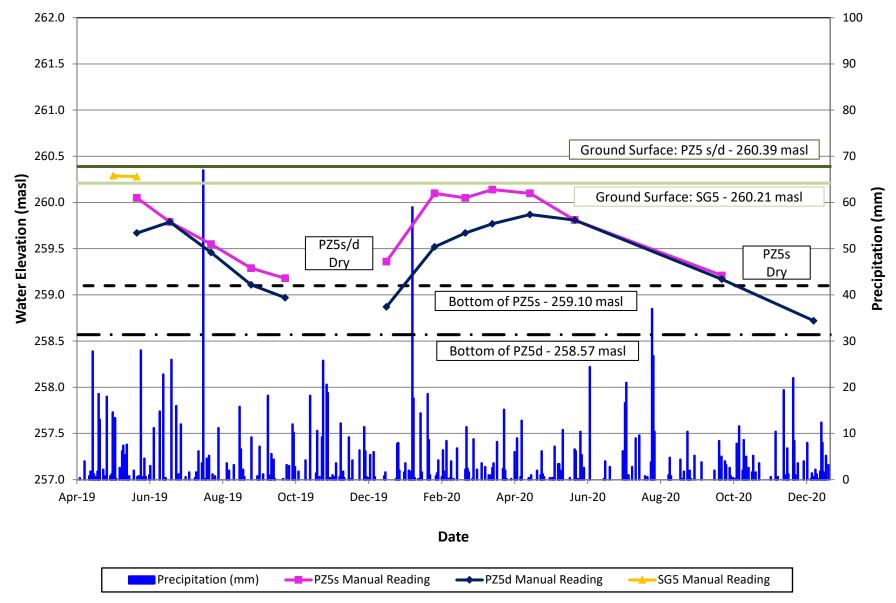
BH2 (Well Depth: 5.93 m, Screened in Clayey Silt/ Silty Clay)

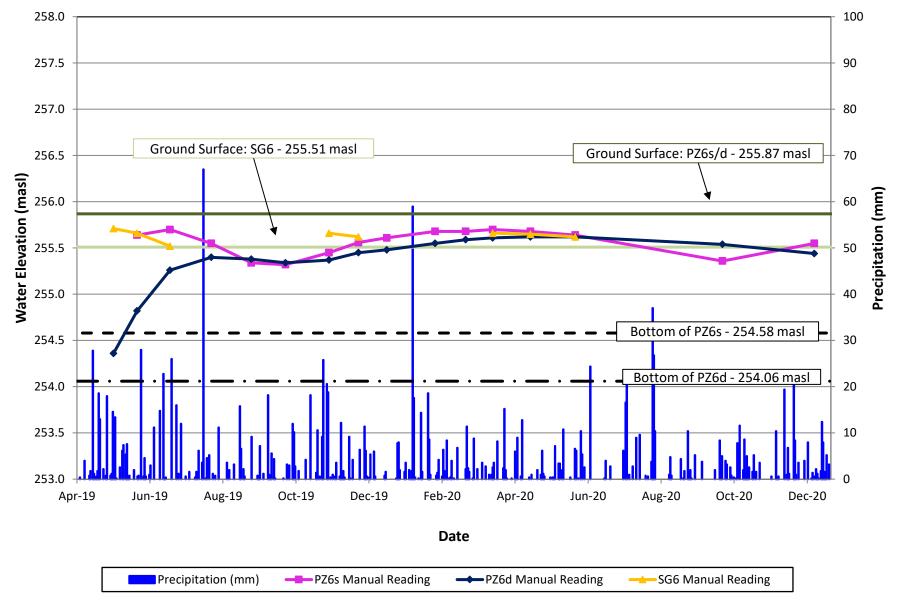

BH3 (Well Depth: 5.76 m, Screened in Clayey Silt/ Sand/ Silty Clay) Groundwater Elevations


BH5 (Well Depth: 4.56 m, Screened in Fill/ Silty Clay) Groundwater Elevations


PZ1s/d Groundwater Elevations


PZ2s/d and SG2 Water Elevations


PZ3s/d and SG3 Water Elevations



PZ5s/d and SG5 Water Elevations

PZ6s/d and SG6 Water Elevations

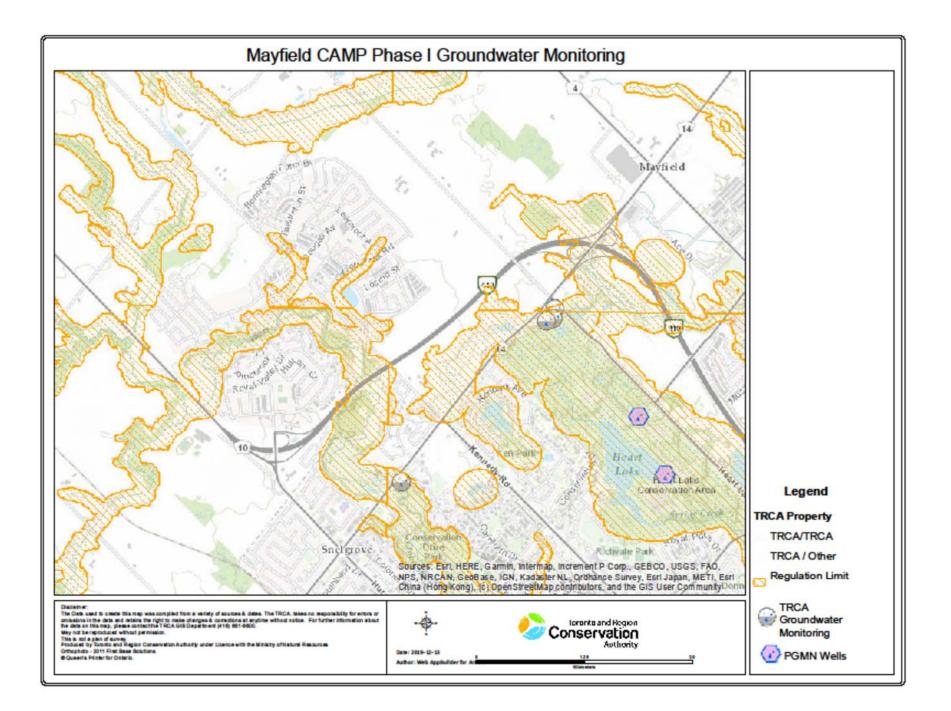
Appendix E-2

TRCA Groundwater Data

Appendix A

Water Levels

	Alternate Name	MECP Well Tag No.	Interval ID	Northing	Easting	Ground Elevation (masl)	Stickup (m)	Screen Top (masl)	Screen Bottom (masl)	Logger Serial Number	Logger Type	Cable Length
TRCA Mayfield MW-1	TRCA Teapot MW-1	A045333	55823960	4845019	596386	262.53	0.75	251.53	248.53	1037747		11.5 ¹
TRCA Mayfield MW-2	TRCA Teapot MW-2	A078526	55835988	4844940	596375	251.45	0.71	246.88	243.83	2040136		6.73
TRCA Mayfield MW-3	TRCA Teapot MW-3		480000015	4844920	596318	254.4	0.675	248.3	245.26	2040132		5.5
TRCA Mayfield MW-4S	TRCA Etobicoke Creek Trail MW1S	A213521	- 827483639	4042547	505405	260 55	0.81	265.11	263.59	2069875		6.47
TRCA Mayfield MW-4D	TRCA Etobicoke Creek Trail MW1D	A213521	- 827483638	4843547	595125	269.55	0.835	259.62	258.10	2068686		6.961


¹On May 13, 2016 the cable was shortened from 12.5 to 11.5 mbtc to deal with sedimentation issue.

	Date Time	Stati C Wate r Level (mbt c)	Date Time	Stati C Wate r Level (mbt C)	Date Time	Stati C Wate r Level (mbt c)	Date Time	Stati c Wate r Level (mbt c)	Date Time	Stati C Wate r Level (mbt c)	Date Time	Stati C Wate r Level (mbt c)	Date Time	Stati C Wate r Level (mbt c)	Date Time	Stati C Wate r Level (mbt c)	Date Time	Stati c Wate r Level (mbt c)	Date Time	Stati C Wate r Level (mbt c)	Date Time	Stati c Wate r Level (mbt c)	Date Time	Stati c Wate r Level (mbt c)
TRCA Mayfie Id MW-1	11/20/20 15 <mark>12:00</mark>	11.88	5/13/20 16 11:15	10.62	9/28/20 16 12:11	10.85	2/1/20 17 11:30	10.73	4/19/20 17 <mark>12:00</mark>	9.96	9/28/20 17 11:18 ¹	10.34	6/11/20 18 <mark>12:00</mark>	9.57	11/14/20 18 9:55	10.67	7/3/20 19 9:50	9.99					10/28/20 19 9:44	10.62
TRCA Mayfie Id MW-2	11/20/20 15 <mark>12:00</mark>	5.31	5/13/20 16 11:55	4.44	9/28/20 16 12:38	5.71	2/1/20 17 10:30	5.73	4/19/20 17 <mark>12:00</mark>	4.15	9/28/20 19 11:25 ¹	5.28	6/11/20 18 <mark>12:00</mark>	4.5	11/14/20 18 11:33	5.4	7/3/20 19 10:06	4.48					10/28/20 19 9:55	5.42
TRCA Mayfie Id MW-3	11/18/20 15 <mark>12:00</mark>	4.52	5/13/20 16 12:20	3.24	9/28/20 16 12:52	4.43	2/1/20 17 11:00	4.82	4/19/20 17 <mark>12:00</mark>	2.95	9/28/20 17 11:34 ¹	4.06	6/11/20 18 <mark>12:00</mark>	3.37	11/14/20 18 13:05	4.55	7/3/20 19 10:32	3.14	08/09/20 19 13:28 ¹	3.73 ¹	08/12/20 19 10:44 ¹	3.66 ¹	10/28/20 19 11:01	4.35
TRCA Mayfie Id MW- 4S	-	-	-	-	-	-	-	-	-	-		-	6/11/20 18 <mark>12:00</mark>	5.12	10/10/20 18 11:06	5.26	7/3/20 19 11:19	4.89					10/28/20 19 10:12	5.15
TRCA Mayfie Id MW- 4D	-	-	-	-	-	-	-	-	-		-	-	6/11/20 18 <mark>12:00</mark>	3.86	10/11/20 18 9:58	3.80	7/3/20 19 11:31 ²	3.69					10/28/20 19	3.77

¹Manuals to be entered into Sitefx ²Manual time to be corrected in Sitefx

Appendix B

Location Plan

Appendix C

Hydrographs

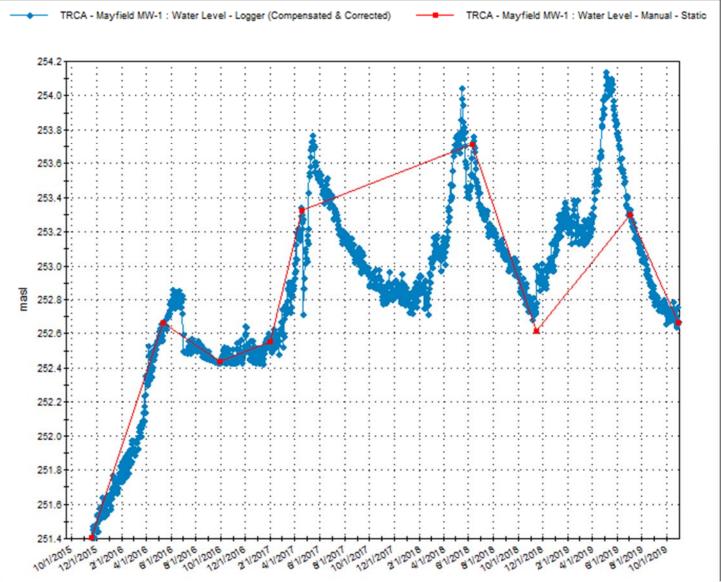


Figure 1 TRCA Mayfield MW1 Hydrograph

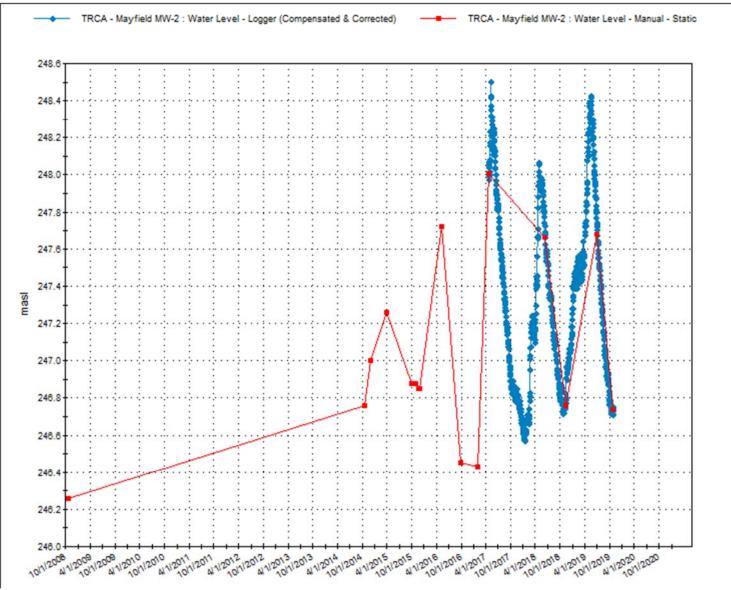


Figure 2 TRCA Mayfield MW2 Hydrograph

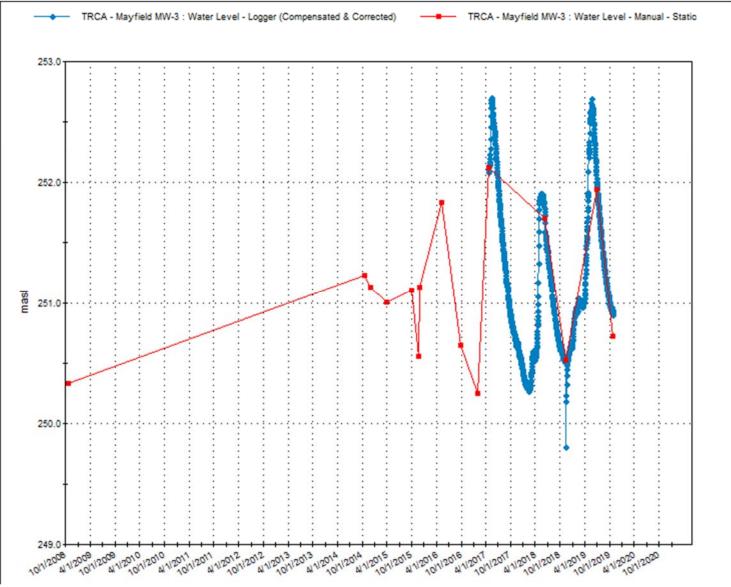


Figure 3 TRCA Mayfield MW3 Hydrograph

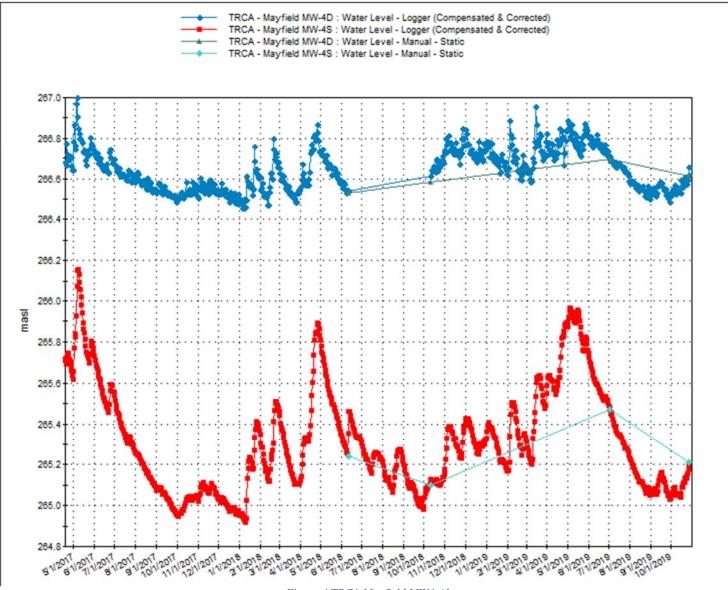
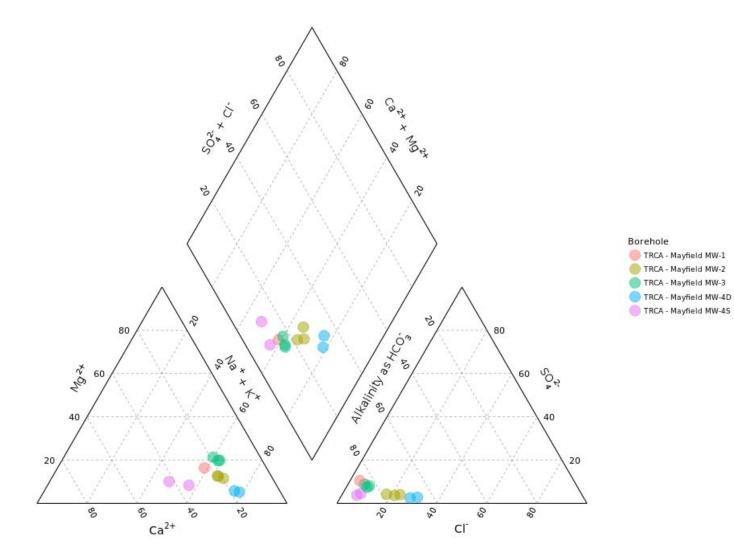



Figure 4 TRCA Mayfield MW4s/d

Appendix D

Chemistry

Appendix E Well Logs

🕲 Ontario	Ministry of We the Environment	ell Yag Kumber	A (460378	Hogulation 50	W)	ell Record Per Resources Act
 All Sections must be a Questions regarding or 	e of Ontario only. This de empisted in full to avoid a emplising this application	lalaya in processing. ban be directed to t	Further instructions an	nd expracelitions are av	ailable coulles	book of this form
Please print clearly in th Well Owner's Informatio Figt Name	n and Location of Wel	Liniormation	a Arkirass (Streat Nurat	Ministry its		: LOI
Lamine Multiple Providence Provid	D CV	<u>estatoria (h.</u> Vilova Viliage Johis IIV, euso	Province Pos Ontario IV		рболе Хиргэс -// 6 06	i jindude arca sole!
Address of Well Loration (Cour R5-26trest Nymber/Name	τ	Towns	Town-V-Baga	- Site/Comp	arlinendel Bin-tel	ELECTION
CIPS Pasiding NAD 2	<u>ake Read x Mi</u> 777 5912386:	484.5019 Un	<u>Brainpton</u> ItMakeMadel		Minimization ore vizion, specifi	L. Avereged
Log of Overburden and I General Court Must commo		e instructions) Ier Materials	Gene	zi Cescration		opih Melosa
Brown Till Grand Till	5~3		Dense Very de	14 S #		0 . <u>4</u> 1
<u> </u>				// » C		·
			·····	· · · · · · · · · · · · · · · · · · ·		
:						
Hole Diameter Com Mores Diameter		Construction Record	Desin Meres	Punping test method	t of Well Yiel Craw Down	
Tran to sentimetre	sigur Marcihi cantralias	fricknees centimettes	Fre Iu	Pumpin:ake cells: -	Time Mator Lo. πin Martas Natis	
······	[]ີສາມີ[]ມະຫ	Casing •gters		(maines) Pumping (tals - (iti ws/min)	L2V2	1
Water Record	S, i Gabanza	0.00	0 1	Uuration of pumpun;		²
al Gaussian / Concol Waren 				Find water law' end at pumping	_3	3
i ⊂ Oihaniresh ∐ Sulphu		-		Recommended pump type Gaster Deep	4	
Cose Cashy ∏Marc Cohen Los Encot ⊡auton	Gation zed	Screen		Recommended pump dapih. rigs ee Recommended pump	5	<u>3</u> 10
Gas Saty United		ngiass Skot No		nite. [lotes/hin] [liftowing years.com	15 20	11
Alter test of well yield, water waz Clear and extra the Clear and extra the Clear and extra the	6, 4: Cakebal	- (D	11 : 14	(ites/itin) If pumping disptelin- tiali giza practo	25 30	25 33
Chorinates Trias The	[]0,er Ma	No Casing or Screen			40 50 30	
Plugging and S Deptree, al-MSUS Machairan	ealing Record 147	Annuerscate [] Atant		Locasion (e show distance; of well fo	of Weil	
0 195	Britonite Pelle		ndene rent b	4057W Hece	f Lake.	Ra
10,5 14	#2 Vells	<u>erd</u>		BAR		
				The states	Fr Tey,	
	Method of Construction		לי <u>סר</u> וע, י' כיינו	50~	S Rubbis	
George (necessional) ☐ A r pe ☐ Forany (necessar) ☐ B y = 0 B y = 0	ntescr בי בי איזער האיזים בי איזער איזער איזער איזער איז			I	Pile	
[]] Switestie]iod w □ StockCom	lifa Pucalio neroital Disci u			¢		
∐ mgallen}Murr; 	Final Status of Well	ig & ar conditioning	Audi, Ne. Z	164.99	e Wel - Somplete e Dallwa e I	Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Υ
9 Upservebon well - Aliando ve Healt ols - Abaorina	: Inau%dem supp)) ☐92wa 1, protiquelly [] i Ropia	icemant wel	2uskage ce tran			······································
And re veric Dri	atactorifectulition infor Hing Ince	mallon Wel Contractors Dien : 77-38	Dott Seurc		niractor	
Husmuss: Address (simpliname, nus	E-101 05	7. NIA IE	9 Desa Dese Vec	2007		~~ u r JJ
Hame of Wall Schridten (128 Aaro	nanarsy i i	Well Technician's Lings 305 Dele Submitted	N STP.	. We	il Rocard Numbe	CT
X C		<u>266711</u> ®inistra	a rycióň 1 - Joh	Cstle f	ormula eel disj	xonible en hanyais

Figure 5: TRCA Mayfield MW1

8	Ontaric	A 0785	g No. for M	aster Wel	Place S		Part Below	Master Well Record for Cluster Well Construction Regulation 903 Ontario Water Resources Act
	1		- m	01	0-	= 0		Page of
Master W First Name		Land Owner's Infor	mation Name				E-mail Ad	Idress
-	DRONTO LOO	non Consciution	Adventy.	(TRC	64			
Meiling Add	inesa (Strae: Numt	Ser!Namo. HR)	Municipality		3	Provi		Postal Coda Telephone No (in: area code)
	and Construct	Ion of the Master We		ENEL	~		1.1.	NSMISH PUP 661/16600
	Vial Location (Sch	ant Numberthiuma 29)	Trawin	shp				Loc Concession
South	West Co	man Hay fueld		hole	-	1.10		
County/Dis	Inct'Mun o polity	A Paro P	CRy/I	low VV II ag	0	107.1	Rona	Ontario Postal Code
	ineles Zone Es		GPO Un	it Make	Model	320	Mode of C	
NAD	8 31 17 56	916375484	141911P Gau	your			Differen	nliated specify
		ick Materials (see inst			(Adedantis)	Death	(Metred	Hole Details Diamotor
General Colour	Most Common Meterial	Other Materiate	General Description	Fram	To	From	To	(Ceatimstree)
Que.	GARS.	1 10	ril	4	045	0	9-1	zicm
REVEN	303 Jon	111-14	1:00	de			1.	
Brenn	-self	Bandlahay	- LUU	643	3.5			
Grey	Sell	chay sai	e sind fill	3.5	8-0			
Au	Sardy	Sille		8-0	90			
1				-			-	Water Use
					_	P.bic		ndustria 🔲 Nct used 🔛 Other, apooly
					-	Dome		Commercial 💽 Dewelening Municipal 🔲 Monitoring
				_		arigat		Fest Hale Cooling & Air Cand Boning
						9-0-0		Method of Construction
						Cable		Air Parcussion Digging ana0 Ciamond IX Boring
							y (Conventio y (Roverse)	
				-		[] Rolar	y (Air)	Criving
				-				Status of Wall
						- Test	loie coment Wel	Abandaned, Insufficient Supply Abandaned, Poor Water Guality
							lering Well	Dise specify
						Aller a	iton (Consta	uctive) [] Abandroved, other, specify
				-				Screen Used Static Water Level Tost
						Open Hel	Yes 18	Sto 6+0 Meroc
Inside Dias	unitar	Construction De Mareca	italle Wol	Jorth	(Micercio)	1		Screen
(Centime!	test (steel, slas	lic, libreglass, concrete g	interized, Thick yes	E From	10	Gaka		Steel Planglass Concrete XIP astk
5.0	2	Mastre	P-36	s P	50	Outside 3	Grander (C	erstmetrest Slat No 10
			1.1				01	Water Details
				-		Water fo	und at Dep	
				-			Metres	
-				4		Water to	und at Dep Met es	and an an an and an and an and an and an an and an an and an and an and an and an and an an an and an an an an
Decth Set		lar SpaceiAbandonme Turon of Sealant	nt Sealing Record	Malan	e Lised	Water fo	unc at Dec	C. Carrier and C.
From	To	Type of Realant (Material and Ty	pe)		Matras,			Gab Fresh Solty Sulphur Minersia
ø		nereta		-	-	Disit for the	ed TTYEE	Ho If no, provide resson: Dare Martin Well Competent
8.6	58 B	Serviting		-	-	1000		177/ Sunity 1/22
	20 12					Cluster	Informatio	on (Please also fill out the additional Cluster Well
							etion for We ets in Cluss	ell Construction for each parcel of land and cluster.) ler Hoose indicate Number of Cluster Wol
							7	Information Log Sheets Submitted
						Total We	els on this l	Brandy ON
-							1	Location of Well Cluster
								he provided as an attachment no larger than legal size.
						(6.5° x 1	4"). Skertin is how to co	es are not a lowed. ntim detailed map is provided as per Section 11.1 (3)
								additional information concerning the cluster to
-							ctor upon r	
						1		
B isiness N	Well Co acres of Well Conto	ntractor and Well Tec		t dynamista	++++++			
(9	oc-inh	non montal	61	60	T			
Busines A	ddrass (Straet No.)	Name number, RR)	Municipality	Incha	10			
Howfice	Heata I	iodo , Subinesa E-m		ner	r 1	Audit No.	-	OOCO Wel Costrador No.
CVT	T 1191	JA4	and a state state	-		r and real	MO	3959
Bus Telecho	the big first what p		ian (Last Name, First)	Name)	-	Data Ba	nived invest	formit/c Date of Inspection (yygramit/d)
76512	an a Lipence hp.		himney t	ibgrittell ox	and an excel	DEC	232	.000
The receive	- A CARDERON IN	ionature of Technician	204	6/10	JZZ	Pro-elizable		
992 (11/2000	6)	6	(2/	Anistry	's Copy		@ Queen's Patroar for Ontare, 220
					1			

Figure 6: TRCA Mayfield MW2

8	Ontaric	A 0785	g No. for M	aster Wel	Place S		Part Below	Master Well Record for Cluster Well Construction Regulation 903 Ontario Water Resources Act
	1			01	0-	= 0		Page of
Master W First Name		Land Owner's Infor	mation Name				E-mail Ad	Idress
-	DRONTO LOO	non Consciution	Adventy.	(TRC	64			
Meiling Add	inesa (Strae: Numt	Ser!Namo. HR)	Municipality		3	Provi		Postal Coda Telephone No (in: area code)
	and Construct	Ion of the Master We		ENEL	~		1.1.	N3MISH PUP 661/16600
	Vial Location (Sch	ant Numberthiuma 29)	Trawre	shp				Loc Concession
South	West Co	man Hay fueld		hale	-	1.10		
County/Dis	Inct'Mun o polity	A Paro P	CRy/I	lown/V llag	0	107.1	Rona	Ontario Postal Code
	ineles Zone Es		GPO Un	it Make	Model	320	Mode of C	
NAD	8 31 17 56	916375484	141911P Gau	your			Differen	nliated specify
		ick Materials (see inst			(Adedantis)	Death	(Metred	Hole Details Diamotor
General Colour	Most Common Meterial	Other Materista	General Description	Fram	To	From	To	(Centimetres)
Que.	GARK.	1 10	ril	4	045	0	9-1	zicm
REVEN	303 Jon	111-14	1:00	de			1.	
Brenn	-self	Bandlag	- LUU	643	3.5			
Grey	Sell	chay sai	e sind fill	3.5	8-0			
Au	Sardy	Sille		8-0	90			
1				-			-	Water Use
					_	P.bic		ndustria 🔲 Nct used 🔛 Other, apooly
						Dome		Commercial 💽 Dewelening Municipal 🔲 Monitoring
				_		arigat		Fest Hale Cooling & Air Cand Boning
						9-0-0		Method of Construction
						Cable		Air Parcussion Digging ana0 Ciamond IX Boring
							y (Conventio y (Roverse)	
				-		[] Rolar	y (Air)	Criving
				-				Status of Wall
						- Test	loie coment Wel	Abandaned, Insufficient Supply Abandaned, Poor Water Guality
							lering Well	Dise specify
						Aller a	store (Consta	uctive) [] Abandroved, other, specify
				-				Screen Used Static Water Level Tost
						Open Hel	Yes 18	Sto 6+0 Meroc
Inside Dias	unitar	Construction De Mareca	italle Wol	Jorth	(Micercio)	1		Screen
(Centime!	test (steel, slas	lic, libreglass, concrete g	interized, Thick yes	a From	10	Gaka		Steel Planglass Concrete XIP astk
5.0	2	Mastre	P-36	s P	50	Outside 3	Grander (C	erstmetrest Slat No 10
			1.1				01	Water Details
				-		Water fo	und at Dep	
				-			Metres	
-				4		Water to	und at Dep Met es	and a second as the second as
Decth Set		lar SpaceiAbandonme Turon of Sealant	nt Sealing Record	Malan	e Lised	Water fo	unc at Dec	C. Carrier and C.
From	To	Type of Realant (Material and Ty	pe)		Matras,			Gab Fresh Solty Sulphur Minersia
ø		nereta		-	-	Disit for the	ed TTYEE	Ho If no, provide resson: Dere Medie Well Crangement
8.6	58 B	Serviting		-	-	1000		177/ Sunity 1/22
	20 12					Cluster	Informatio	on (Please also fill out the additional Cluster Well
							etion for We ets in Cluss	ell Construction for each parcel of land and cluster.) ler Hoose indicate Number of Cluster Wol
							7	Information Log Sheets Submitted
						Total We	els on this l	Brandy ON
-							1	Location of Well Cluster
								he provided as an attachment no larger than legal size.
						(6.5° x 1	4"). Skertin is how to co	es are not a lowed. ntim detailed map is provided as per Section 11.1 (3)
								additional information concerning the cluster to
-							ctor upon r	
						1		
B isiness N	Well Co acres of Well Conto	ntractor and Well Tec		t dynamista	++++++			
(9	oc-inh	non montal	(2)	60	T			
Busines A	ddrass (Straet No.)	Name number, RR)	Municipality	Incha	10			
Howfice	Heata I	iodo , Subinesa E-m		ner	r 1	Audit No.	-	OOCO Wel Costrador No.
CVT	T 1191	JA4	and a state state	-		1 10	MO	3959
Bus Telecho	the big first what p		ian (Last Name, First)	Name)	-	Data Ba	nived invest	formit/c Date of Inspection (yygramit/d)
76512	an a Lipence hp.		himney t	ibgrittell ox	and an excel	DEC	232	.000
The receive	- A CARGE AGE IN	ionature of Technician	204	6/10	JZZ	Pro-elizable		
992 (11/2000	6)	6	(2/	Anistry	's Copy		@ Queen's Patroar for Ontare, 220

Figure 7: TRCA Mayfield MW3

12/11/2019

- CAMCCore

ID: -82	27483	641		Well / BH N	ame: Ti	RCA - Mayfield MW-	Original Name: 7278783
Drillin Water Water	Fill Fill Silt Silt Silt Silt Silt Silt		n Auger	4 Northing: 4 Primary Pur WL Start Da WQ Start Da Rec Pumpin	pose: E ite: 04/1 ate: 10/	ngineering 19/2017 11/2018	Date Completed: 12/15/2016 Secondary Purpose: Monitoring / Observation Well WL End Date: 10/28/2019 WQ End Date: 10/12/2018
Elev. (masl)	Mat 1		Mat 2		Mat 3		Description
		Fill		Sand			brown dry fine sand fill
		Fill		Sand	\top		brown dry mediums sand fill
		Silt		Sand	+		brown damp sandy silt
		Silt		Sand	+		brown wet sandy silt
		Silt		Sand	+		brown wet sandy silt
		Silt		Sand	+		brown wet sandy silt
264.		Silt		Sand			brown wet sandy silt
		Silt		Sand			brown wet sandy silt
		Silt		Sand			brown wet sandy silt
259.		Sand		Silt			first 6' fracture with iron staining, followe by grey brown fine s
		Sand		Cobbles			grey coarse sand with cobbles

© 2018 - OMGP

Figure 8: TRCA Mayfield MW4S/D

Appendix F

Surface Water

Table F-1
Surface Water Levels at Staff Gauges

Staff Gauge No.	SG2	SG3	SG4	SG5	SG6
Ground Elevation (masl)	256.31	255.53	254.97	260.21	255.51
Date	Water Elevation				
Date	(masl)	(masl)	(masl)	(masl)	(masl)
2-May-19	256.47	255.72	255.15	260.29	255.71
22-May-19	256.47	255.665	255.09	260.28	255.66
19-Jun-19	Dry	255.62	255.08	Dry	255.52
24-Jul-19	-	Dry	Dry	Dry	Dry
27-Aug-19	Dry	Dry	Dry	Dry	Dry
25-Sep-19	Dry	Dry	Dry	Dry	Dry
1-Nov-19	256.32	Dry	Dry	Dry	255.66
26-Nov-19	Dry	Dry	255.02	Dry	255.62
20-Dec-19	Frozen	Dry	Frozen	Frozen	Frozen
30-Jan-20	Frozen	Frozen	Frozen	Frozen	Frozen
25-Feb-20	Dry	Frozen	Dry	Dry	Frozen
19-Mar-20	256.44	255.64	255.15	Dry	255.66
20-Apr-20	Dry	255.56	Dry	Dry	255.65
28-May-20	256.47	Dry	255.09	Dry	255.62
30-Sep-20	Dry	Dry	Dry	Dry	Dry
16-Dec-20	Frozen	Dry	Dry	Dry	Dry

Notes: masl - meters above sea level

'-' denotes data unavailable

Appendix G

Water Quality

Table G-1 **Groundwater Chemistry**

			MW19-01	MW19-04d	
		S	20-Apr-20	20-Apr-20	
Parameter	Units	ODWQS	Type of Standard		
Conductivity (calculated)	uS/cm			1432	923
Conductivity	uS/cm		00	1090	742
pH Langeliers Index 4° C	pH units	6.5-8.5	OG	7.80	8.02
Langeliers Index 4°C				0.83 1.15	0.60
Saturation pH 4°C	pH units			6.97	7.42
Saturation pH 20° C	pH units		1	6.65	7.10
Total Dissolved Solids	mg/L	500	AO	709	411
Total Dissolved Solids (calculated)	mg/L			769	467
Total Hardness (as CaCO3)	mg/L	80-100	OG	613	405
Alkalinity (as CaCO3)	mg/L	30-500	OG	592	393
Bicarbonate (as CaCO3)	mg/L			592	393
Carbonate (as CaCO3)	mg/L			< 2	< 2
Hydroxide (as CaCO3)	mg/L			< 2	< 2
Colour	TCU			17	15
Reactive Silica Turbidity	mg/L NTU	 5	AO	15.4 > 4000	11.2 583
Total Organic Carbon	mg/L		70	>4000 1	
Chloride	mg/L	250	AO	55	6
Fluoride	mg/L	1.5	MAC	0.12	0.13
Ammonia+Ammonium (as N)	mg/L			< 0.04	< 0.04
Sulphate	mg/L	500	AO	93	68
Bromide	mg/L			< 0.3	< 0.3
Nitrite (as N)	mg/L	1	MAC	< 0.03	< 0.03
Nitrate (as N)	mg/L	10	MAC	34.8	0.75
Phosphorus (total)	mg/L			2.87	0.68
Phosphorus (total reactive)	mg/L	0.001		0.04	< 0.03
Mercury (dissolved) Aluminum (dissolved)	mg/L	0.001	MAC OG	< 0.00001 0.020	< 0.00001 < 0.001
Antimony (dissolved)	mg/L mg/L	0.006	IMAC	< 0.0009	< 0.0009
Arsenic (dissolved)	mg/L	0.000	IMAC	< 0.0003	< 0.0003
Barium (dissolved)	mg/L	1	MAC	0.0844	0.0718
Beryllium (dissolved)	mg/L			< 0.000007	< 0.000007
Boron (dissolved)	mg/L	5	IMAC	0.021	0.039
Cadmium (dissolved)	mg/L	0.005	MAC	0.000006	0.000011
Calcium (dissolved)	mg/L			176	90.1
Chromium (dissolved)	mg/L	0.05	MAC	0.00026	0.00011
Cobalt (dissolved)	mg/L		10	0.000102	0.000089
Copper (dissolved)	mg/L	1	AO	0.0011	0.0003
Iron (dissolved) Lead (dissolved)	mg/L mg/L	0.3	AO MAC	0.018 0.00001	< 0.007 < 0.00001
Magnesium (dissolved)	mg/L		IVIAC	42.1	43.7
Manganese (dissolved)	mg/L	0.05	AO	0.00751	0.0291
Molybdenum (dissolved)	mg/L		,	0.00026	0.00939
Nickel (dissolved)	mg/L			0.0004	0.0005
Phosphorus (dissolved)	mg/L			< 0.003	< 0.003
Potassium (dissolved)	mg/L			1.41	3.97
Selenium (dissolved)	mg/L	0.05	MAC	0.00038	0.00060
Silicon (dissolved)	mg/L		↓	7.82	6.41
Silver (dissolved)	mg/L			< 0.00005	< 0.00005
Sodium (dissolved) Strontium (dissolved)	mg/L	200	AO	10.9 0.379	<u>18.5</u> 0.351
Thallium (dissolved)	mg/L mg/L			< 0.000005	0.000048
Tin (dissolved)	mg/L			< 0.000005	< 0.000048
Titanium (dissolved)	mg/L			0.00050	0.00005
Uranium (dissolved)	mg/L	0.02	MAC	0.00174	0.00478
Vanadium (dissolved)	mg/L		-	0.00020	0.00012
Tungsten (dissolved)	mg/L			< 0.00002	< 0.00002
Zinc (dissolved)	mg/L	5	AO	< 0.002	< 0.002
Zirconium (dissolved)	mg/L			< 0.002	< 0.002
Cation sum	meq/L			12.8	9.01
Anion Sum	meq/L			15.9	9.45
Anion-Cation Balance	% difference			-10.84	-2.39

ODWQS- Ontario Drinking Water Quality Standard AO- Aesthetic Objective OG- Operational Guideline MAC-Maximum Allowable Concentration IMAC- Interim Maximum Acceptable Concentration **Bold-** Exceeds ODWQS

Table G-2 **Surface Water Chemistry**

Conductivity uS/cm 1390 Conductivity (calculated) uS/cm 1325 pH no unit 6.5-8.5 8.01 Langeliers Index @ 4° C 8.03 Total Suspended Solids mg/L 8.03 Total Dissolved Solids (calculated) mg/L 746 Alkalinity (as CaCO3) mg/L 138 Ecarbonate (as CaCO3) mg/L 4.2 Total Dissolved Solids mg/L 4.2 Alkalinity (as CaCO3) mg/L 138 Carbonate (as CaCO3) mg/L 77 Reactive Silica mg/L 0.12 Turbidity NTU 15 Bromide mg/L 4.5 Nitrate (as N) mg/L <0.03 Nitrate (as N) mg/L <0.01 Nitrate (as N) mg/L <0.03			Sample ID	SW4
Conductivity uS/cm 1390 Conductivity (calculated) uS/cm 1325 pH no unit 6.5-8.5 8.01 Langeliers Index @ 4° C 8.03 Total Suspended Solids mg/L 8.03 Total Dissolved Solids (calculated) mg/L 746 Alkalinity (as CaCO3) mg/L 138 Ecarbonate (as CaCO3) mg/L 4.2 Total Dissolved Solids mg/L 4.2 Alkalinity (as CaCO3) mg/L 138 Carbonate (as CaCO3) mg/L 77 Reactive Silica mg/L 0.12 Turbidity NTU 15 Bromide mg/L 4.5 Nitrate (as N) mg/L <0.03 Nitrate (as N) mg/L <0.01 Nitrate (as N) mg/L <0.03			Sample Date	20-Apr-20
Conductivity (calculated) us/cm 1325 pH no unit 6.5-8.5 8.01 Langeliers Index @ 4* C - 8.03 Saturation pH @ 4* C - 8.03 Total Dissolved Solids mg/L 726 Total Dissolved Solids (calculated) mg/L 746 Atkalinity (as CaCO3) mg/L 4.2 Earbonate (as CaCO3) mg/L 2.2 Hydroxide (as CaCO3) mg/L 2.01 Colour TCU 0.95 Fluoride mg/L 0.12 Turbidity NTU 3.31 Choinde mg/L 0.3 Suphate mg/L 4.0.3 Suphate mg/L 4.0.3 Mitrite (as N) mg/L 4.0.3 Mitrite (as N) mg/L 4.0.3 Nitrite (as N)	Parameter	Units	PWQO	
pH no unit 65-8.5 8.01 Langeliers Index (@) 4° C - 0.02 Saturation pH (@) 4° C - 8.03 Total Dissolved Solids mg/L 746 Malalinty (as CaCO3) mg/L 138 Bicarbonate (as CaCO3) mg/L 4.2 Hydroxide (as CaCO3) mg/L 4.2 Total Dissolved Solids mg/L 4.2 Hydroxide (as CaCO3) mg/L 4.2 Colour TCU 4.2 Total Hardness (as CaCO3) mg/L 0.12 Turbidity NTU 33.1 Choirde mg/L 0.3 Silphate mg/L 4.0.03 Nitrate (as N) mg/L 4.0.002 Ammonia+Ammonium (as N) mg/L 4.0.002 Ammonia+Ammonium (as N) mg/L 4.0.11	Conductivity	uS/cm		1390
Langelers Index @ 4° C - -0.02 Saturation pH @ 4° C - 8.03 Total Suspended Solids mg/L 726 Total Dissolved Solids (calculated) mg/L 726 Total Dissolved Solids (calculated) mg/L 746 Alkalinity (as CaCO3) mg/L 138 Carbonate (as CaCO3) mg/L <2	Conductivity (calculated)	uS/cm		1325
Saturation pH @ 4°C - - 8.03 Total Suspended Solids mg/L 323 Total Dissolved Solids (calculated) mg/L 726 Total Dissolved Solids (calculated) mg/L 726 Total Dissolved Solids (calculated) mg/L 726 Makalinity (as CaCO3) mg/L 746 Atsainty (as CaCO3) mg/L <2	рН	no unit	6.5-8.5	8.01
Total Dissolved Solids mg/L 723 Total Dissolved Solids (calculated) mg/L 746 Alkalinity (as CaCO3) mg/L 138 Bicarbonate (as CaCO3) mg/L 138 Carbonate (as CaCO3) mg/L <2		-		
Total Dissolved Solids (calculated) mg/L 726 Total Dissolved Solids (calculated) mg/L 746 Atkalinity (as CaCO3) mg/L 138 Bicarbonate (as CaCO3) mg/L 138 Carbonate (as CaCO3) mg/L <2		-		
Total Dissolved Solids (calculated) mg/L 746 Alkalinity (as CaCO3) mg/L 138 Bicarbonate (as CaCO3) mg/L 138 Carbonate (as CaCO3) mg/L 128 Mydroxide (as CaCO3) mg/L 201 Colour TGU 77 Reactive Silica mg/L 0.95 Fluoride mg/L 0.71 Sulphate mg/L 0.71 Sulphate mg/L 0.73 Sulphate mg/L 0.03 Nitrate (as N) mg/L <0.03	Total Suspended Solids	mg/L		
Alkalinity (as CaC03) mg/L 138 Bicarbonate (as CaC03) mg/L 138 Carbonate (as CaC03) mg/L 138 Carbonate (as CaC03) mg/L <2				
Bicarbonate (as CaCO3) mg/L 138 Carbonate (as CaCO3) mg/L < 2	(/	0		
Carbonate (as CaCO3) mg/L < 2 Hydroxide (as CaCO3) mg/L < 2		<u> </u>		
Hydroxide (as CaCO3) mg/L < 2 Total Hardness (as CaCO3) mg/L 201 Colour TCU 77 Reactive Silica mg/L 0.95 Fluoride mg/L 0.12 Turbidity NTU 33.1 Chloride mg/L 370 Sulphate mg/L <0.3	1 /	5		
Total Hardness (as CaCO3) mg/L 201 Colour TCU 77 Reactive Silica mg/L 0.95 Fluoride mg/L 0.12 Turbidity NTU 33.1 Chloride mg/L 15 Bromide mg/L <0.03				
Colour TCU 77 Reactive Silica mg/L 0.95 Fluoride mg/L 0.12 Turbidity NTU 33.1 Chloride mg/L 370 Sulphate mg/L <0.3				
Reactive Silica mg/L 0.95 Fluoride mg/L 0.12 Turbidity NTU 33.1 Chloride mg/L 370 Sulphate mg/L 15 Bromide mg/L <0.03	· · · · · ·			
Fluoride mg/L 0.12 Turbidity NTU 33.1 Chloride mg/L 370 Sulphate mg/L 15 Bronide mg/L <0.3				
Turbidity NTU 33.1 Chloride mg/L 370 Stulphate mg/L 15 Bromide mg/L <0.3 Nitrite (as N) mg/L <0.03 Nitrate (as N) mg/L <0.06 Unionized Ammonia (as N) mg/L <0.02 Ammonia+Ammonium (as N) mg/L <0.002 Ammonia (clastreactive) mg/L <0.002 Total Organic Carbon mg/L <0.03 Total Organic Carbon mg/L 0.0001 <0.00005 Aluminum mg/L 0.0001 <0.00005 Aluminum mg/L 0.005 0.0007 Barium mg/L 1.1 0.000022 Calcium mg/L 0.2 0.022 Calcium mg/L 0.2 0.0221 Calcium mg/L 0.0005 0.00012 Cobat			I	
Chloride mg/L 370 Sulphate mg/L 15 Bromide mg/L <0.3				
Sulphate mg/L 15 Bromide mg/L < 0.3				
Bromide mg/L < 0.3 Nitrite (as N) mg/L < 0.03				
Nitrite (as N) mg/L < 0.03 Nitrate (as N) mg/L < 0.06				-
Nitrate (as N) mg/L < 0.06 Unionized Ammonia (as N) mg/L < 0.02			_	
Unionized Ammonia (as N) mg/L <0.002	· · ·			
Ammonia+Ammonium (as N) mg/L < 0.1 Phosphorus (total reactive) mg/L < 0.03		ě.		
Phosphorus (total reactive) mg/L < 0.03 Total Organic Carbon mg/L 11 Mercury mg/L 11 Mercury mg/L 0.0001 < 0.00001		ě.	+ +	
Total Organic Carbon mg/L 11 Mercury mg/L < 0.00001				÷
Mercury mg/L < 0.0001 Silver mg/L 0.001 < 0.0001	· · · · · · · ·	<u> </u>		
Silver mg/L 0.0001 < 0.0005 Aluminum mg/L 0.0780 Aluminum mg/L 0.075 0.499 Arsenic mg/L 0.005 0.0007 Barium mg/L $$ 0.0404 Beryllium mg/L $$ 0.0404 Beryllium mg/L $$ 0.00028 Boron mg/L 0.2 0.022 Calcium mg/L 0.0005 0.000012 Cobalt mg/L 0.0009 0.000436 Chromium mg/L 0.005 0.00021 Iron mg/L 0.3 3.95 Potassium mg/L $$ 8.09 Manganese mg/L $$ 8.09 Malobdenum mg/L $$ 1.99 Nickel mg/L 0.025 0.0009 Sodium mg/L 0.025 0.00067 Antimony mg/L		ě.		
Aluminum mg/L 0.0780 Aluminum mg/L 0.075 0.499 Arsenic mg/L 0.0007 Barium mg/L 0.0007 Beryllium mg/L 1.1 0.000028 Boron mg/L 0.2 0.022 Calcium mg/L 0.0005 0.000012 Cadmium mg/L 0.0005 0.00012 Cobalt mg/L 0.0005 0.00012 Cobalt mg/L 0.005 0.00012 Cobalt mg/L 0.005 0.00015 Copper mg/L 0.005 0.00021 Solon mg/L 3.45 Magnesium mg/L 199 Molybdenum mg/L 199 Nickel mg/L 199 Nickel mg/L 0.022 0.00009 Phosphorus mg/L 0.02 0.000067 Antimony		5		
Aluminum mg/L 0.075 0.499 Arsenic mg/L 0.005 0.0007 Barium mg/L $$ 0.0404 Beryllium mg/L 1.1 0.000028 Boron mg/L 0.2 0.022 Calcium mg/L 0.2 0.022 Calcium mg/L 0.0005 0.000012 Cobalt mg/L 0.0009 0.000436 Chromium mg/L 0.005 0.0021 Copper mg/L 0.03 3.95 Potassium mg/L $$ 0.1035 Magnese mg/L $$ 0.138 Molybdenum mg/L $$ 0.495 Sodium mg/L $$ 0.495 Lead mg/L 0.02 0.0009 Phosphorus mg/L $$ 0.495 Lead mg/L 0.02 0.00009 Strontium mg/L $$ <			0.0001	
Arsenic mg/L 0.005 0.0007 Barium mg/L 0.0404 Beryllium mg/L 1.1 0.00028 Boron mg/L 0.2 0.022 Calcium mg/L 67.1 Cadmium mg/L 0.0005 0.000012 Cobalt mg/L 0.005 0.00012 Cobalt mg/L 0.005 0.00012 Cobalt mg/L 0.005 0.00012 Cobalt mg/L 0.03 3.95 Potassium mg/L 3.45 Magnesium mg/L 8.09 Marganese mg/L 199 Nickel mg/L 0.04 0.00021 Sodium mg/L 0.025 0.0009 Phosphorus mg/L 0.495 Lead mg/L 0.02 0.00067 Antimony mg/L 0.01 0.00001 Silicon <td></td> <td></td> <td>0.075</td> <td></td>			0.075	
Barium mg/L 0.0404 Beryllium mg/L 1.1 0.000028 Boron mg/L 0.2 0.022 Calcium mg/L 67.1 Cadmium mg/L 0.0005 0.000012 Cobalt mg/L 0.0009 0.000436 Chromium mg/L 0.005 0.0021 Iron mg/L 0.03 3.95 Potassium mg/L $$ 3.45 Magnesium mg/L $$ 0.138 Molybdenum mg/L 0.04 0.0021 Sodium mg/L 0.04 0.0021 Sodium mg/L 0.025 0.0009 Nickel mg/L 0.025 0.0009 Phosphorus mg/L 0.02 0.000067 Antimony mg/L 0.02 0.00001 Silicon mg/L $$ 0.215 Tin <td< td=""><td></td><td>ě.</td><td></td><td></td></td<>		ě.		
Beryllium mg/L 1.1 0.000028 Boron mg/L 0.2 0.022 Calcium mg/L 0.0005 0.000012 Cadmium mg/L 0.0009 0.000436 Chromium mg/L 0.005 0.0021 Cobalt mg/L 0.005 0.0021 Chromium mg/L 0.3 3.95 Cobassium mg/L 0.3 3.95 Potassium mg/L 8.09 Magnesium mg/L 8.09 Magnese mg/L 0.04 0.00021 Sodium mg/L 0.025 0.0009 Nickel mg/L 0.02 0.00067 Antimony mg/L 0.02 0				
Boron mg/L 0.2 0.022 Calcium mg/L 67.1 Cadmium mg/L 0.0005 0.00012 Cobalt mg/L 0.0009 0.000436 Chromium mg/L 0.005 0.0021 Copper mg/L 0.03 3.95 Potassium mg/L 3.45 Magnesium mg/L 8.09 Manganese mg/L 0.138 Molybdenum mg/L 0.04 0.00021 Sodium mg/L 0.025 0.0009 Nickel mg/L 0.025 0.0009 Phosphorus mg/L 0.025 0.0009 Lead mg/L 0.02 0.00009 Selenium mg/L 0.1 0.0001 Silicon mg/L $$ 0.201 Titanium mg/L $$ 0.201 Titanium mg/L 0.0003			1.1	
Calcium mg/L 67.1 Cadmium mg/L 0.0005 0.000012 Cobalt mg/L 0.0009 0.000436 Chromium mg/L 0.0009 0.000436 Copper mg/L 0.005 0.0021 Iron mg/L 0.3 3.95 Potassium mg/L $$ 8.09 Magnesium mg/L $$ 0.138 Molybdenum mg/L $$ 0.138 Molybdenum mg/L 0.04 0.00021 Sodium mg/L 0.04 0.00021 Sodium mg/L 0.025 0.0009 Phosphorus mg/L 0.025 0.0009 Lead mg/L 0.02 0.00005 Antimony mg/L 0.02 0.00009 Selenium mg/L 0.02 0.00009 Strontium mg/L 0.02 0.00009 St	<i>i</i>	U		
Cadmium mg/L 0.0005 0.000012 Cobalt mg/L 0.0009 0.000436 Chromium mg/L 0.00105 Copper mg/L 0.005 0.0021 Iron mg/L 0.03 3.95 Potassium mg/L 8.09 Magnesium mg/L 0.138 Molybdenum mg/L 0.138 Molybdenum mg/L 199 Nickel mg/L 0.495 Lead mg/L 0.025 0.0009 Phosphorus mg/L 0.02 < 0.0009				
Cobalt mg/L 0.0009 0.000436 Chromium mg/L 0.00105 Copper mg/L 0.005 0.0021 Iron mg/L 0.3 3.95 Potassium mg/L 8.09 Magnesium mg/L 8.09 Magnese mg/L 0.138 Molybdenum mg/L 0.04 0.00021 Sodium mg/L 0.04 0.00021 Sodium mg/L 0.04 0.00021 Sodium mg/L 0.04 0.00021 Sodium mg/L 0.025 0.0009 Phosphorus mg/L 0.025 0.000067 Antimony mg/L 0.02 < 0.000067 Antimony mg/L 0.02 < 0.00008 Sticon mg/L $$ 0.201 Silicon mg/L $$ 0.00008 Strontium	Cadmium		0.0005	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cobalt		0.0009	0.000436
Copper mg/L 0.005 0.0021 Iron mg/L 0.3 3.95 Potassium mg/L 3.45 Magnesium mg/L 8.09 Manganese mg/L 0.138 Molybdenum mg/L 0.138 Molybdenum mg/L 0.04 0.00021 Sodium mg/L 0.025 0.0009 Nickel mg/L 0.025 0.0009 Phosphorus mg/L 0.025 0.00067 Antimony mg/L 0.02 < 0.00007	Chromium	ě.		0.00105
Iron mg/L 0.3 3.95 Potassium mg/L 3.45 Magnesium mg/L 8.09 Manganese mg/L 0.138 Molybdenum mg/L 0.04 0.00021 Sodium mg/L 0.04 0.00021 Sodium mg/L 0.025 0.0009 Nickel mg/L 0.025 0.0009 Phosphorus mg/L 0.02 < 0.00067	Copper		0.005	0.0021
Potassium mg/L 3.45 Magnesium mg/L 8.09 Manganese mg/L 8.09 Molybdenum mg/L 0.138 Molybdenum mg/L 0.04 0.00021 Sodium mg/L 199 Nickel mg/L 0.025 0.0009 Phosphorus mg/L 0.025 0.0009 Lead mg/L 0.02 < 0.00067 Antimony mg/L 0.02 < 0.00007 Steinium mg/L 0.1 0.0001 Silicon mg/L $$ 2.15 Tin mg/L $$ 0.201 Strontium mg/L $$ 0.00008 Strontium mg/L $$ 0.0124 Thallium mg/L 0.0005 0.000052 Uranium mg/L 0.006 0.00126 Tungsten	Iron	U	0.3	3.95
Magnesium mg/L 8.09 Manganese mg/L 0.138 Molybdenum mg/L 0.04 0.00021 Sodium mg/L 0.04 0.00021 Sodium mg/L 0.025 0.0009 Phosphorus mg/L 0.025 0.00067 Lead mg/L 0.02 < 0.00009 Selenium mg/L 0.02 < 0.00067 Antimony mg/L 0.02 < 0.0009 Selenium mg/L 0.02 < 0.00009 Silicon mg/L 0.02 < 0.00001 Silicon mg/L $$ 0.201 Titanium mg/L $$ 0.0124 Thallium mg/L 0.0005 0.000229 Vanadium	Potassium			3.45
Molybdenum mg/L 0.04 0.00021 Sodium mg/L 199 Nickel mg/L 199 Nickel mg/L 0.025 0.0009 Phosphorus mg/L 0.025 0.00067 Lead mg/L 0.02 < 0.00009 Selenium mg/L 0.1 0.0001 Silicon mg/L $$ 2.15 Tin mg/L 0.201 Strontium mg/L 0.00008 Strontium mg/L 0.201 Titanium mg/L 0.0124 Thallium mg/L 0.005 0.000229 Vanadium mg/L 0.006 0.00126 Tungsten mg/L 0.00003 Zirconium mg/L 0.0022 Anion Sum mg/L 13.0	Magnesium			8.09
Sodium mg/L 199 Nickel mg/L 0.025 0.0009 Phosphorus mg/L 0.495 Lead mg/L 0.005 0.00067 Antimony mg/L 0.02 < 0.00009	Manganese	mg/L		0.138
Nickel mg/L 0.025 0.0009 Phosphorus mg/L 0.495 Lead mg/L 0.005 0.00067 Antimony mg/L 0.02 < 0.00009 Selenium mg/L 0.1 0.0001 Silicon mg/L 0.1 0.0001 Silicon mg/L $$ 2.15 Tin mg/L $$ 0.201 Strontium mg/L $$ 0.201 Titanium mg/L $$ 0.0008 Strontium mg/L $$ 0.0124 Thallium mg/L 0.0003 < 0.00005 Uranium mg/L 0.005 0.000229 Vanadium mg/L $$ 0.00003 Zinco mg/L $$ 0.00003 Zirconium mg/L $$ 0.0005 Zirconium mg/L $$ 0.002 Anion Sum	Molybdenum	mg/L	0.04	0.00021
Phosphorus mg/L 0.495 Lead mg/L 0.005 0.00067 Antimony mg/L 0.02 < 0.0009	Sodium			199
Phosphorus mg/L 0.495 Lead mg/L 0.005 0.00067 Antimony mg/L 0.02 < 0.0009		mg/L	0.025	
Antimony mg/L 0.02 < 0.00009 Selenium mg/L 0.1 0.0001 Silicon mg/L 2.15 Tin mg/L 0.00008 Strontium mg/L 0.201 Titanium mg/L 0.201 Titanium mg/L 0.0124 Thallium mg/L 0.0003 < 0.000005	Phosphorus			
Selenium mg/L 0.1 0.0001 Silicon mg/L 2.15 Tin mg/L 0.00008 Strontium mg/L 0.201 Titanium mg/L 0.0124 Thallium mg/L 0.0003 < 0.000005				
Silicon mg/L 2.15 Tin mg/L 0.00008 Strontium mg/L 0.201 Titanium mg/L 0.201 Titanium mg/L 0.0124 Thallium mg/L 0.0003 < 0.000005		u		
Tin mg/L 0.00008 Strontium mg/L 0.201 Titanium mg/L 0.0124 Thallium mg/L 0.0003 < 0.000005		ě.	0.1	
Strontium mg/L 0.201 Titanium mg/L 0.0124 Thallium mg/L 0.0003 < 0.000005		mg/L		
Titanium mg/L 0.0124 Thallium mg/L 0.0003 < 0.000005				
mg/L 0.0003 < 0.00005 Uranium mg/L 0.005 0.000229 Vanadium mg/L 0.006 0.00126 Tungsten mg/L 0.00003 Zinc mg/L 0.00003 Zirconium mg/L 0.00003 Anion Sum meq/L <0.002		ě.		
Uranium mg/L 0.005 0.000229 Vanadium mg/L 0.006 0.00126 Tungsten mg/L 0.000003 Zinc mg/L 0.02 0.005 Zirconium mg/L <0.002		mg/L		
Vanadium mg/L 0.006 0.00126 Tungsten mg/L 0.00003 Zinc mg/L 0.02 0.005 Zirconium mg/L < 0.002				
Tungsten mg/L 0.00003 Zinc mg/L 0.02 0.005 Zirconium mg/L < 0.002				
Zinc mg/L 0.02 0.005 Zirconium mg/L < 0.002				
mg/L < 0.002 Anion Sum meq/L 13.5 Cation sum meq/L 13.0		ě.		
Anion Sum meq/L 13.5 Cation sum meq/L 13.0			0.02	
Cation sum meq/L 13.0				
Anion-Cation Balance % difference1.98				

PWQO- Provincial Water Quality Objectives Bold- Exceeds PWQO

Appendix H

Water Balance

Town of Caledon, Ontario

PROJECT No.300043952.0000

TABLE H-1

Pre- Development Monthly Water Balance Components	
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 200 mm (moderately rooted vegetation in silt and clay till soils)	
Precipitation data from Toronto Lester B. Pearson International Airport Climate Station (1981 - 2010)	

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Average Temperature (Degree C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2	8.2
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.70	4.30	7.31	9.10	8.53	5.93	2.64	0.63	0.00	40.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.25	30.43	60.72	90.16	106.17	101.17	77.16	42.26	14.59	0.00	523
Adjusting Factor for U (Latitude 43° 40' N)	0.81	0.82	1.02	1.12	1.26	1.28	1.29	1.2	1.04	0.95	0.81	0.77	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	34	77	115	137	121	80	40	12	0	617
COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	52	48	50	69	74	72	76	78	75	61	75	58	786
Potential Evapotranspiration (PET)	0	0	0	34	77	115	137	121	80	40	12	0	617
P - PET	52	48	50	34	-2	-44	-61	-43	-6	21	63	58	169
Change in Soil Moisture Storage	14	0	0	0	-2	-44	-61	-43	-6	21	63	58	0
Soil Moisture Storage max 200 mm	200	200	200	200	198	154	93	49	44	65	128	186	
Actual Evapotranspiration (AET)	0	0	0	34	77	115	137	121	80	40	12	0	617
Soil Moisture Deficit max 200 mm	0	0	0	0	2	46	107	151	156	135	72	14	
Water Surplus - available for infiltration or runoff	38	48	50	34	0	0	0	0	0	0	0	0	169
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	15	19	20	14	0	0	0	0	0	0	0	0	68
Potential Direct Surface Water Runoff (independent of temperature)	23	29	30	21	0	0	0	0	0	0	0	0	102
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	786	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	118	mm/year											
P-PE (surplus available for runoff from impervious areas)	668	mm/year											

Assume January storage is 100% of Soil Moisture Storage

Latitude of site (or climate station)	43 ^o N.
Infiltration factor	0.4
cover - agricultural lands	0.1
soils - silty and clayey till	0.15
topography - hilly to rolling land	0.15
*MOE SWM infiltration calculations	
Soil Moisture Storage	200 mm

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003 <-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Town of Caledon, Ontario

PROJECT No.300043952.0000

TABLE H-2

Pre- Development Monthly Water Balance Components
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 250 mm (wetland in silt and clay till soils)
Precipitation data from Toronto Lester B. Pearson International Airport Climate Station (1981 - 2010)

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Average Temperature (Degree C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2	8.2
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.70	4.30	7.31	9.10	8.53	5.93	2.64	0.63	0.00	40.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.25	30.43	60.72	90.16	106.17	101.17	77.16	42.26	14.59	0.00	523
Adjusting Factor for U (Latitude 43° 40' N)	0.81	0.82	1.02	1.12	1.26	1.28	1.29	1.2	1.04	0.95	0.81	0.77	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	34	77	115	137	121	80	40	12	0	617
COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	52	48	50	69	74	72	76	78	75	61	75	58	786
Potential Evapotranspiration (PET)	0	0	0	34	77	115	137	121	80	40	12	0	617
P - PET	52	48	50	34	-2	-44	-61	-43	-6	21	63	58	169
Change in Soil Moisture Storage	14	0	0	0	-2	-44	-61	-43	-6	21	63	58	0
Soil Moisture Storage max 250 mm	250	250	250	250	248	204	143	99	94	115	178	236	
Actual Evapotranspiration (AET)	0	0	0	34	77	115	137	121	80	40	12	0	617
Soil Moisture Deficit max 250 mm	0	0	0	0	2	46	107	151	156	135	72	14	
Water Surplus - available for infiltration or runoff	38	48	50	34	0	0	0	0	0	0	0	0	169
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	19	24	25	17	0	0	0	0	0	0	0	0	85
Potential Direct Surface Water Runoff (independent of temperature)	19	24	25	17	0	0	0	0	0	0	0	0	85
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	786	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	118	mm/year											
P-PE (surplus available for runoff from impervious areas)	668	mm/year											

Assume January storage is 100% of Soil Moisture Storage

Soil Moisture Storage	250 mm
*MOE SWM infiltration calculations	
topography - rolling to flat land	0.25
soils - silty and clayey till	0.15
cover - wetland (pasture & shrubs)	0.1
Infiltration factor	0.5
Latitude of site (or climate station)	43 ⁰ N.

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003 <-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Town of Caledon, Ontario

PROJECT No.300043952.0000

TABLE H-3

Pre- Development Monthly Water Balance Components
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 250 mm (dry-moist old field meadow in silt and clay till soils)
Precipitation data from Toronto Lester B. Pearson International Airport Climate Station (1981 - 2010)

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Average Temperature (Degree C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2	8.2
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.70	4.30	7.31	9.10	8.53	5.93	2.64	0.63	0.00	40.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.25	30.43	60.72	90.16	106.17	101.17	77.16	42.26	14.59	0.00	523
Adjusting Factor for U (Latitude 43° 40' N)	0.81	0.82	1.02	1.12	1.26	1.28	1.29	1.2	1.04	0.95	0.81	0.77	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	34	77	115	137	121	80	40	12	0	617
COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	52	48	50	69	74	72	76	78	75	61	75	58	786
Potential Evapotranspiration (PET)	0	0	0	34	77	115	137	121	80	40	12	0	617
P - PET	52	48	50	34	-2	-44	-61	-43	-6	21	63	58	169
Change in Soil Moisture Storage	14	0	0	0	-2	-44	-61	-43	-6	21	63	58	0
Soil Moisture Storage max 250 mm	250	250	250	250	248	204	143	99	94	115	178	236	
Actual Evapotranspiration (AET)	0	0	0	34	77	115	137	121	80	40	12	0	617
Soil Moisture Deficit max 250 mm	0	0	0	0	2	46	107	151	156	135	72	14	
Water Surplus - available for infiltration or runoff	38	48	50	34	0	0	0	0	0	0	0	0	169
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	13	17	17	12	0	0	0	0	0	0	0	0	59
Potential Direct Surface Water Runoff (independent of temperature)	24	31	32	22	0	0	0	0	0	0	0	0	110
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	786	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	118	mm/year											
P-PE (surplus available for runoff from impervious areas)	668	mm/year											

Assume January storage is 100% of Soil Moisture Storage Soil Moisture Storage

Latitude of site (or climate station)	43 ⁰ N
Infiltration factor	0.35
cover - dry-moist old field meadow (pasture and shrubs)	0.1
soils - silty and clayey till	0.15
topography - hilly land	0.1
*MOE SWM infiltration calculations	
Soil Moisture Storage	250 mm

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003 <-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Town of Caledon, Ontario

PROJECT No.300043952.0000

TABLE H-4

Pre- Development Monthly Water Balance Components
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 400 mm (forested lands in silt and clay till soils)
Precipitation data from Toronto Lester B. Pearson International Airport Climate Station (1981 - 2010)

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Average Temperature (Degree C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2	8.2
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.70	4.30	7.31	9.10	8.53	5.93	2.64	0.63	0.00	40.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.25	30.43	60.72	90.16	106.17	101.17	77.16	42.26	14.59	0.00	523
Adjusting Factor for U (Latitude 43° 40' N)	0.81	0.82	1.02	1.12	1.26	1.28	1.29	1.2	1.04	0.95	0.81	0.77	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	34	77	115	137	121	80	40	12	0	617
COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	52	48	50	69	74	72	76	78	75	61	75	58	786
Potential Evapotranspiration (PET)	0	0	0	34	77	115	137	121	80	40	12	0	617
P - PET	52	48	50	34	-2	-44	-61	-43	-6	21	63	58	169
Change in Soil Moisture Storage	14	0	0	0	-2	-44	-61	-43	-6	21	63	58	0
Soil Moisture Storage max 400 mm	400	400	400	400	398	354	293	249	244	265	328	386	
Actual Evapotranspiration (AET)	0	0	0	34	77	115	137	121	80	40	12	0	617
Soil Moisture Deficit max 400 mm	0	0	0	0	2	46	107	151	156	135	72	14	
Water Surplus - available for infiltration or runoff	38	48	50	34	0	0	0	0	0	0	0	0	169
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	19	24	25	17	0	0	0	0	0	0	0	0	85
Potential Direct Surface Water Runoff (independent of temperature)	19	24	25	17	0	0	0	0	0	0	0	0	85
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	786	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	118	mm/year											
P-PE (surplus available for runoff from impervious areas)	668	mm/year											

Assume January storage is 100% of Soil Moisture Storage

Soil Moisture Storage	400 mm
*MOE SWM infiltration calculations	
topography - hilly to rolling land	0.15
soils - silty and clayey till	0.15
cover - forested lands	0.2
Infiltration factor	0.5
Latitude of site (or climate station)	43 ⁰ N.

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003 <-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Town of Caledon, Ontario

PROJECT No.300043952.0000

TABLE H-5

Pre- Development Monthly Water Balance Components
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 100 mm (urban lawns in silt and clay till soils)
Precipitation data from Toronto Lester B. Pearson International Airport Climate Station (1981 - 2010)

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Average Temperature (Degree C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2	8.2
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.70	4.30	7.31	9.10	8.53	5.93	2.64	0.63	0.00	40.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.25	30.43	60.72	90.16	106.17	101.17	77.16	42.26	14.59	0.00	523
Adjusting Factor for U (Latitude 43° 40' N)	0.81	0.82	1.02	1.12	1.26	1.28	1.29	1.2	1.04	0.95	0.81	0.77	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	34	77	115	137	121	80	40	12	0	617
COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	52	48	50	69	74	72	76	78	75	61	75	58	786
Potential Evapotranspiration (PET)	0	0	0	34	77	115	137	121	80	40	12	0	617
P - PET	52	48	50	34	-2	-44	-61	-43	-6	21	63	58	169
Change in Soil Moisture Storage	0	0	0	0	-2	-44	-54	0	0	21	63	16	0
Soil Moisture Storage max 100 mm	100	100	100	100	98	54	0	0	0	21	84	100	
Actual Evapotranspiration (AET)	0	0	0	34	77	115	130	78	75	40	12	0	560
Soil Moisture Deficit max 100 mm	0	0	0	0	2	46	100	100	100	79	16	0	
Water Surplus - available for infiltration or runoff	52	48	50	34	0	0	0	0	0	0	0	42	226
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	21	19	20	14	0	0	0	0	0	0	0	17	90
Potential Direct Surface Water Runoff (independent of temperature)	31	29	30	21	0	0	0	0	0	0	0	25	135
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	786	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	118	mm/year											
P-PE (surplus available for runoff from impervious areas)	668	mm/year											

Assume January storage is 100% of Soil Moisture Storage

Latitude of site (or climate station)	43 ⁰ N.
Infiltration factor	0.4
cover - urban lawns	0.1
soils - silty and clayey till	0.15
topography - hilly to rolling land	0.15
*MOE SWM infiltration calculations	
Soil Moisture Storage	100 mm
Assume sandary storage is 100 % of Son Moisture Storage	

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003 <-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Town of Caledon, Ontario

PROJECT No.300043952.0000

TABLE H-6

Pre- Development Monthly Water Balance Components
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 100 mm (urban lawns in silt and clay till soils) - graded
Precipitation data from Toronto Lester B. Pearson International Airport Climate Station (1981 - 2010)

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Average Temperature (Degree C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2	8.2
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.70	4.30	7.31	9.10	8.53	5.93	2.64	0.63	0.00	40.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.25	30.43	60.72	90.16	106.17	101.17	77.16	42.26	14.59	0.00	523
Adjusting Factor for U (Latitude 43° 40' N)	0.81	0.82	1.02	1.12	1.26	1.28	1.29	1.2	1.04	0.95	0.81	0.77	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	34	77	115	137	121	80	40	12	0	617
COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	52	48	50	69	74	72	76	78	75	61	75	58	786
Potential Evapotranspiration (PET)	0	0	0	34	77	115	137	121	80	40	12	0	617
P - PET	52	48	50	34	-2	-44	-61	-43	-6	21	63	58	169
Change in Soil Moisture Storage	0	0	0	0	-2	-44	-54	0	0	21	63	16	0
Soil Moisture Storage max 100 mm	100	100	100	100	98	54	0	0	0	21	84	100	
Actual Evapotranspiration (AET)	0	0	0	34	77	115	130	78	75	40	12	0	560
Soil Moisture Deficit max 100 mm	0	0	0	0	2	46	100	100	100	79	16	0	
Water Surplus - available for infiltration or runoff	52	48	50	34	0	0	0	0	0	0	0	42	226
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	23	21	22	15	0	0	0	0	0	0	0	19	102
Potential Direct Surface Water Runoff (independent of temperature)	28	26	27	19	0	0	0	0	0	0	0	23	124
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	786	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	118	mm/year											
P-PE (surplus available for runoff from impervious areas)	668	mm/year											

Assume January storage is 100% of Soil Moisture Storage oil Moiet

Latitude of site (or climate station)	43 ⁰ N
Infiltration factor	0.45
cover - urban lawns	0.1
soils - silty and clayey till	0.15
topography - hilly to rolling land - graded	0.2
*MOE SWM infiltration calculations	
Soil Moisture Storage	100 mm

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003 <-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

WATER BALANCE CALCULATIONS Snell's Hollow Town of Caledon, Ontario

PROJECT No.300043952.0000

ſ

٦

TABLE H-7

	Land Use	Approx. Land Area** (m ²)	Estimated Impervious Fraction for Land Use**		Runoff from Impervious Area* (m/a)	Runoff Volume from Impervious Area (m³/a)	Estimated Pervious Area (m ²)	Runoff from Pervious Area* (m/a)	Runoff Volume from Pervious Area (m ³ /a)	Infiltration from Pervious Area* (m/a)	Infiltration Volume from Pervious Area (m³/a)	Total Runoff Volume (m³/a)	Total Infiltration Volume (m ³ /a
Existing L	and Use									l			
	Agricultural Lands	183,850	0.00	0	0.668	0	183,850	0.102	18,662	0.068	12,441	18,662	12.441
	Rural Property & Agricultural Buildings	29,700	0.08	2,471	0.668	1,651	27,229	0.135	3,686	0.090	2,457	5,336	2,457
	NHS - Dry-Moist Old Field Meadow	166,300	0.00	0	0.668	0	166,300	0.110	18,287	0.059	9,847	18,287	9,847
Area 1	NHS - Mixed Forest & Hedge Row	8,200	0.00	0	0.668	0	8,200	0.085	694	0.085	694	694	694
	NHS - Wetland Area	73,600	0.00	0	0.668	0	73,600	0.085	6,226	0.085	6,226	6,226	6,226
	Sub-Total	461,650		2,471		1,651	459,179		47,553		31,664	49,204	31,664
	Agricultural Lands	111,000	0.00	0	0.668	0	111,000	0.102	11,267	0.068	7,511	11,267	7,511
Area 2	Rural Property	3,750	0.00	0	0.668	0	3,750	0.135	508	0.090	338	508	338
70002	NHS - Dry-Moist Old Field Meadow	10,600	0.00	0	0.668	0	10,600	0.110	1,166	0.059	628	1,166	628
	Sub-Total	125,350		0		0	125,350		12,940		8,477	12,940	8,477
	Agricultural Lands	17,700	0.00	0	0.668	0	17,700	0.102	1,797	0.068	1,198	1,797	1,198
Area 3	Rural Property & Agricultural Buildings	3,100	0.10	295	0.668	197	2,806	0.135	380	0.090	253	576	253
	NHS - Dry-Moist Old Field Meadow Sub-Total	8,000 28,800	0.00	0 295	0.668	0 197	8,000 28,506	0.110	880 3,056	0.059	474 1,925	880 3,253	474 1,925
TOTAL PR	E-DEVELOPMENT	615,800		2,766		1,848	613,034		63,549		42,066	65,397	42,066
Deat Dave	elopment Land Use	-		-			-					-	
	-	r			r	r			1	r			
	Detached/Semi-detached/St. Townhouses	53,350	0.64	34,144	0.668	22,812	19,206	0.124	2,383	0.102	1,950	25,195	1,950
	Dual Frontage	4,600	0.79	3,634	0.668	2,428	966	0.124	120	0.102	98	2,548	98
	Back-to-Back Townhouses	4,200	0.79	3,318	0.668	2,217	882	0.124	109	0.102	90	2,326	90
	SWM Pond	15,950	0.50	7,975	0.668	5,328	7,975	0.124	989	0.102	810	6,318	810
	Park	13,100	0.00	0 42,000	0.668	0 28,060	13,100	0.124	1,625 0	0.102	1,330 0	1,625 28,060	1,330 0
Area 201	Roads Buffer	42,000 20,800	1.00	42,000	0.668	28,060	0 20,800	0.124	2,581	0.102	2,112	28,060	2,112
	NHS - Mixed Forest & Hedge Row	3,700	0.00	0	0.668	0	3,700	0.124	313	0.085	313	313	313
	NHS - Dry-Moist Old Field Meadow	140,400	0.00	0	0.668	0	140,400	0.005	15,439	0.059	8,313	15,439	8,313
	NHS - Wetland Area	72,750	0.00	0	0.668	0	72,750	0.085	6,154	0.085	6,154	6,154	6,154
	Sub-Total	370,850		91.071		60,845	279,779		29,713		21,168	90,558	21,168
	Detached/Semi-detached/St. Townhouses	47,200	0.64	30,208	0.668	20,182	16,992	0.124	2,108	0.102	1,725	22,290	1,725
	Dual Frontage	9,400	0.79	7,426	0.668	4,961	1,974	0.124	245	0.102	200	5,206	200
	Back-to-Back Townhouses	9,050	0.79	7,150	0.668	4,777	1,901	0.124	236	0.102	193	5,012	193
Area 202	SWM Pond	17,300	0.50	8,650	0.668	5,779	8,650	0.124	1,073	0.102	878	6,852	878
	Roads	44,250	1.00	44,250	0.668	29,563	0	0.124	0	0.102	0	29,563	0
	Buffer	20,800	0.00	0	0.668	0	20,800	0.124	2,581	0.102	2,112	2,581	2,112
	Sub-Total	148,000		97,684		65,262	50,317		6,243		5,108	71,505	5,108
	Medium-High Density Residential	12,500	0.79	9,875	0.668	6,597	2,625	0.124	326	0.102	266	6,923	266
Area 203	Commercial	14,700	1.00	14,700	0.668	9,821	0	0.124	0	0.102	0	9,821	0
	Buffer	3,500	0.00	0	0.668	0	3,500	0.124	434	0.102	355	434	355
	30250 Sub-Total	30,700	0.01	24,575	0.600	16,419	6,125	0.404	760	0.400	622	17,179	622
	Detached/Semi-detached/St. Townhouses	3,700 7,800	0.64	2,368	0.668	1,582	1,332	0.124	165 203	0.102	135 166	1,747 4,320	135 166
	Dual Frontage	9,200	0.79	6,162 7,268	0.668	4,117 4,856	1,638	0.124	203	0.102	166	4,320 5,095	166 196
	Back-to-Back Townhouses Medium-High Density Residential	9,200	0.79	10,073	0.668	4,856	2,678	0.124	332	0.102	272	5,095	272
Area 204	Park	3,800	0.00	0	0.668	0,725	3,800	0.124	471	0.102	386	471	386
	Roads	22,600	1.00	22,600	0.668	15,099	0	0.124	0	0.102	0	15,099	0
	Buffer	6,400	0.00	0	0.668	0	6,400	0.124	794	0.102	650	794	650
	Sub-Total	66,250		48,471		32,383	17,780		2,206		1,805	34,589	1,805
OTAL PO	ST-DEVELOPMENT	615,800		261,800		174,909	354,000		38,922		28,703	213,831	28,703
									•	% Change f	rom Pre to Post	327	32
% Change from Pre to F Effect of development (with no mitiga										327 3.3 times increase	32 ir		

* figures from Tables H-1 through H-6

** data provided by Schaeffers

To balance pre- to post-, the infiltration target (m³/a)= **13,363**

Town of Caledon, Ontario

PROJECT No.300043952.0000

TABLE H-8

Pre- Development Monthly Water Balance Components
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 100 mm (urban lawns in silt and clay till soils) - graded + additional topsoil
Precipitation data from Toronto Lester B. Pearson International Airport Climate Station (1981 - 2010)

Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Average Temperature (Degree C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2	8.2
Heat index: i = (t/5) ^{1.514}	0.00	0.00	0.00	1.70	4.30	7.31	9.10	8.53	5.93	2.64	0.63	0.00	40.1
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.25	30.43	60.72	90.16	106.17	101.17	77.16	42.26	14.59	0.00	523
Adjusting Factor for U (Latitude 43° 40' N)	0.81	0.82	1.02	1.12	1.26	1.28	1.29	1.2	1.04	0.95	0.81	0.77	
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	34	77	115	137	121	80	40	12	0	617
COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
Precipitation (P)	52	48	50	69	74	72	76	78	75	61	75	58	786
Potential Evapotranspiration (PET)	0	0	0	34	77	115	137	121	80	40	12	0	617
P - PET	52	48	50	34	-2	-44	-61	-43	-6	21	63	58	169
Change in Soil Moisture Storage	0	0	0	0	-2	-44	-54	0	0	21	63	16	0
Soil Moisture Storage max 100 mm	100	100	100	100	98	54	0	0	0	21	84	100	
Actual Evapotranspiration (AET)	0	0	0	34	77	115	130	78	75	40	12	0	560
Soil Moisture Deficit max 100 mm	0	0	0	0	2	46	100	100	100	79	16	0	
Water Surplus - available for infiltration or runoff	52	48	50	34	0	0	0	0	0	0	0	42	226
Potential Infiltration (based on MOE metholodogy*; independent of temperature)	26	24	25	17	0	0	0	0	0	0	0	21	113
Potential Direct Surface Water Runoff (independent of temperature)	26	24	25	17	0	0	0	0	0	0	0	21	113
IMPERVIOUS AREA WATER SURPLUS													
Precipitation (P)	786	mm/year											
Potential Evaporation (PE) from impervious areas (assume 15%)	118	mm/year											
P-PE (surplus available for runoff from impervious areas)	668	mm/year											

Assume January storage is 100% of Soil Moisture Storage

Latitude of site (or climate station)	43 ^o N.
Infiltration factor	0.5
cover - urban lawns	0.1
soils - silty and clayey till + additional topsoil	0.2
topography - hilly to rolling land - graded	0.2
*MOE SWM infiltration calculations	
Soil Moisture Storage	100 mm

<-- See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

<-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003 <-- Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

WATER BALANCE CALCULATIONS Snell's Hollow Town of Caledon, Ontaric

PROJECT No.300043952.0000

TABLE H-9

	Land Use	Approx. Land Area** (m ²)	Estimated Impervious Fraction for Land Use**	Estimated Impervious Area (m ²)	Runoff from Impervious Area* (m/a)	Volume from Impervious Area (m³/a)	Estimated Pervious Area (m ²)	Runoff from Pervious Area* (m/a)	Runoff Volume from Pervious Area (m ³ /a)	Infiltration from Pervious Area* (m/a)	Infiltration Volume from Pervious Area (m ³ /a)	Total Runoff Volume (m³/a)	Total Infiltratior Volume (m ³
xisting L	and Use	1	1	1	I	II		I	I		II		1
	Agricultural Lands	183,850	0.00	0	0.668	0	183,850	0.102	18,662	0.068	12,441	18,662	12,441
	Rural Property & Agricultural Buildings NHS - Dry-Moist Old Field Meadow	29,700 166,300	0.08	2,471 0	0.668	1,651 0	27,229	0.135	3,686 18,287	0.090	2,457 9,847	5,336 18,287	2,457 9,847
Area 1	NHS - Mixed Forest & Hedge Row	8,200	0.00	0	0.668	0	8,200	0.085	694	0.085	694	694	694
	NHS - Wetland Area	73,600	0.00	0	0.668	0	73,600	0.085	6,226	0.085	6,226	6,226	6,226
	Sub-Total Agricultural Lands	461,650 111,000	0.00	2,471 0	0.668	1,651 0	459,179 111,000	0.102	47,553 11,267	0.068	31,664 7,511	49,204 11,267	31,664 7,511
A	Rural Property	3,750	0.00	0	0.668	0	3,750	0.135	508	0.090	338	508	338
Area 2	NHS - Dry-Moist Old Field Meadow	10,600	0.00	0	0.668	0	10,600	0.110	1,166	0.059	628	1,166	628
	Sub-Total Agricultural Lands	125,350 17,700	0.00	0	0.668	0	125,350 17,700	0.102	12,940 1,797	0.068	8,477 1,198	12,940 1,797	8,477 1,198
Area 3	Rural Property & Agricultural Buildings	3,100	0.10	295	0.668	197	2,806	0.135	380	0.090	253	576	253
71000	NHS - Dry-Moist Old Field Meadow Sub-Total	8,000 28,800	0.00	0 295	0.668	0 197	8,000 28,506	0.110	880 3,056	0.059	474 1,925	880 3,253	474 1,925
	E-DEVELOPMENT												
UTAL PR	E-DEVELOPMENT	615,800		2,766		1,848	613,034		63,549		42,066	65,397	42,066
Post-Deve	lopment Land Use												
	Detached/Semi-detached/St. Townhouses less select rear roofs	41,950	0.54	22,744	0.668	15,195	19,206	0.113	2,166	0.113	2,166	16,335	2,166
	Detached/Semi-detached/St. Townhouses Rear Roof to grass (assume 25% of runoff				ſ								
	volume infiltrates ^a ; excess runoff to	11,400	1.00	11,400	0.668	7,616	0	0.113	0	0.113	0	1,028	1,904
	infiltration trenches (calculated below) and storm)												
	Excess runoff from Detached/Semi- detached/St. Townhouses rear roof (1.14 ha) and rear yard (1.82 ha) areas sent to infiltration trenches designed to accommodate the 27 mm storm event from rear roofs and 7 mm storm event from rear	NA	NA	NA	NA	NA	NA	NA	NA	NA	5,710	NA	5,710
Area 201	yards. The 27 mm storm event accounts for approximately 95% of all rain (i.e., 82% of all precipitation) and 7 mm storm event accounts for approximately 58% of all rain (i.e., 50% of all precipitation). ^b												
	Dual Frontage Back-to-Back Townhouses	4,600 4,200	0.79	3,634 3,318	0.668	2,428 2,217	966 882	0.113	109 99	0.113	109 99	2,537 2,316	109 99
	SWM Pond	4,200	0.79	7,975	0.668	5,328	7,975	0.113	99	0.113	99	6,228	900
	Park	13,100	0.00	0	0.668	0	13,100	0.113	1,478	0.113	1,478	739	1,478
	Runoff from Park is directed to infiltration trenches designed to accommodate the 7 mm storm event. The 7 mm storm event accounts for approximately 58% of all rain (i.e., 50% of all precipitation). ^b	NA	NA	NA	NA	NA	NA	NA	NA	NA	739	NA	739
	Roads	42,000	1.00	42,000	0.668	28,060	0	0.113	0	0.113	0	28,060	0
	Buffer	20,800	0.00	0	0.668	0	20,800	0.113	2,346	0.113	2,346	2,346	2,346
	NHS - Mixed Forest & Hedge Row NHS - Dry-Moist Old Field Meadow	3,700 140,400	0.00	0	0.668	0	3,700 140,400	0.085	313 15,439	0.085	313 8,313	313 15,439	313 8,313
	NHS - Wetland Area	72,750	0.00	0	0.668	0	72,750	0.085	6,154	0.085	6,154	6,154	6,154
	Sub-Total Detached/Semi-detached/St. Townhouses	370,850		91,071		60,845	279,779		29,004		28,327	81,495	30,231
	less select rear roofs Detached/Semi-detached/St. Townhouses Rear Roof to grass (assume 25% of runoff volume infiltrates ^a ; excess runoff to	36,300	0.53	19,308	0.668	12,900 7,282	0	0.113	1,917 0	0.113	1,917 0	13,835 983	1,917
Area 202	infiltration trenches (calculated below) and storm) Excess runoff from Detached/Semi- detached/St. Townhouses rear roof (1.09 ha) and rear yard (1.74 ha) areas sent to infiltration trenches designed to accommodate the 27 mm storm event from rear yards. The 27 mm storm event from rear for approximately 95% of all rain (i.e., 82% of all precipitation) and 7 mm storm event	NA	NA	NA	NA	NA	NA	NA	NA	NA	5,460	NA	5,460
	accounts for approximately 58% of all rain (i.e., 50% of all precipitation). ^b												
	Dual Frontage Back-to-Back Townhouses	9,400 9,050	0.79	7,426 7,150	0.668	4,961 4,777	1,974 1,901	0.113	223 214	0.113	223 214	5,184 4,991	223 214
	SWM Pond	17,300	0.50	8,650	0.668	5,779	8,650	0.113	976	0.113	976	6,755	976
	Roads	44,250	1.00	44,250	0.668	29,563	0	0.113	0	0.113	0	29,563	0
	Buffer Sub-Total	20,800 148,000	0.00	0 97,684	0.668	0 65,262	20,800 50,317	0.113	2,346 5,675	0.113	2,346 11,135	2,346 63,657	2,346 12,956
	Medium-High Density Residential	12,500	0.79	9,875	0.668	6,597	2,625	0.113	296	0.113	296	4,057	296
rea 203	Commercial On-site measures to infiltrate 5mm storm event from impervious surfaces. The 5 mm storm event accounts for	14,700 NA	1.00 NA	14,700 NA	0.668 NA	9,821 NA	0 NA	0.113 NA	0 NA	0.113 NA	0 7,060	5,598 NA	0 7,060
	approximately 48% of all rain (i.e., 43% of Buffer	3,500	0.00	0	0.668	0	3,500	0.113	395	0.113	395	395	395
	Sub-Total	30,700		24,575		16,419	6,125		691		7,751	10,049	7,751
	Detached/Semi-detached/St. Townhouses Dual Frontage	3,700 7,800	0.64	2,368 6,162	0.668	1,582 4,117	1,332	0.113	150 185	0.113	150 185	1,732 4,302	150 185
	Back-to-Back Townhouses	9,200	0.79	7,268	0.668	4,856	1,932	0.113	218	0.113	218	5,074	218
Area 204	Medium-High Density Residential	12,750	0.79	10,073	0.668	6,729	2,678	0.113	302	0.113	302	7,031	302
	Park Roads	3,800 22,600	0.00	0 22,600	0.668	0 15,099	3,800 0	0.113	429 0	0.113 0.113	429 0	429 15,099	429 0
	Buffer	6,400	0.00	0	0.668	0	6,400	0.113	722	0.113	722	722	722
	Sub-Total	66,250		48,471		32,383	17,780		2,005		2,005	34,389	2,005
OTAL PO	ST-DEVELOPMENT	615,800		261,800		174,909	354,000		37,375		49,219	189,590	52,943

** data provided by Schaeffers

^a based on estimation in the LID SWM Planning and Design Guide (CVC & TRCA, 2010) for hydrologic groups C & D

^b based on the Toronto Wet Weather Flow Management Guidelines (City of Toronto, 2006)

the infiltration target (m^3/a) = -10,877

R.J. Burnside & Associates Limited