Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2) Caledon, ON

Prepared For:

Argo Kennedy Limited

Project No.: 19-312-101 **Date:** August 26th, 2021

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca TOWN OF CALEDON PLANNING RECEIVED

Sep 14, 2021

19-312-101

August 26, 2021

Mr. Aron Wisson Argo Kennedy Limited 4900 Palladium Way Burlington, ON L7M 0W7

Via email: aaron@argoland.com

RE: Preliminary Hydrogeological Investigation- Mayfield West Phase 1 Expansion (Stage 2) -Caledon, ON

DS Consultants Limited (DS) was retained by Argo Kennedy Limited to complete a Preliminary Hydrogeological Investigation for the proposed Mayfield West Phase 1 Secondary Plan Expansion (Stage 2) in Caledon, Ontario. The subject lands ('site') encompass an area of approximately 100 hectares. The site is currently rural and used for agricultural purposes.

It is DS' understanding that the proposed development is to include single detached homes, townhouses, and parks. It is assumed that the detached homes will have one (1) level of basement. It is further understood that four (4) Storm Water Management (SWM) ponds are proposed across the site. The site is to include a network of roads and will be fully serviced with municipal water, storm and sanitary sewers. A natural heritage system (NHS) is located on the Hicks and Newhouse property extending from southwest to northeast, and the Greenbelt is located along the eastern boundary of the Russell property extending from north to south.

This preliminary hydrogeological investigation includes an overview of the existing geological and hydrogeological conditions at the Site and an assessment of the hydrogeological constraints and impacts of the proposed development on local groundwater and surface water features. The investigation also provides an estimation of construction dewatering for conceptual structures which extend into the water table. A water balance assessment was completed including pre- and post-development predictions on overall effects to the hydrologic function of the Site. The water balance provides support for overall servicing and the integration of Low Impact Development (LID) measures. A Wetland Water Balance Risk Evaluation was completed to assess potential risks the development poses to retained features as a result of changes to feature catchment hydrology.

If needed, the results of this investigation can be used in support of an application for a Category 3 Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) for construction dewatering from the Ministry of the Environment Conservation and Parks (MECP). Based on the results of our investigation, the following conclusions and recommendations are presented:

Based on the results of this investigation, the following conclusions and recommendations are presented:

ii

Sep 14, 2021 Project: 19-312-101 – Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2) Caledon, ON

- Based on the MECP WWR search, there are eighty-eight (88) water wells within 500 meters of the site Fiftytwo (52) wells were noted as domestic (DO) wells, eight (8) wells were noted for livestock (ST) use, and one (1) well was noted as a public supply well (PS). The depths of these wells range from 21 to 50 mbgs. A doorto-door water well survey is recommended to be completed within the study area to confirm the presence and the condition of domestic wells.
- 2. In December 2019, DS drilled eight (8) boreholes on the Hicks Property (BH19-2 to BH19-9) as part of the concurrently running hydrogeological, geotechnical, and environmental investigation. Boreholes were advanced to depths ranging from 6.5 to 13.2 mbgs (253.4-259.2 masl). Monitoring wells were installed in all the boreholes and screened to a depth of 4.6 to 13.1 mbgs (253.5-261.1 masl). An additional five (5) boreholes (BH21-1 to BH21-5) were advanced in January 2021, DS drilled one (1) borehole on the Hicks Property and four (4) boreholes on the Newhouse Property. Access was not permitted to the Russell Property, therefore no boreholes were drilled. The boreholes were advanced to depths ranging from 6.4 to 8.2 mbgs (254.1-256.5 masl).
- 3. The surficial geology at the site and study area is characterized as till (5d), dominated by clay to silttextured till derived from glaciolacustrine deposits or shale, and modern alluvial deposits (19) dominated by clay, silt, sand, gravel, and potential organic remains. At the site, the overburden geology generally consisted of clayey silt and sandy silt to silty sand till with intermittent sand layers.
- 4. Groundwater levels were measured in all available wells on the Hicks property on January 2nd, 2020 and on February 3rd, 2021 in all wells on the Hicks and Newhouse properties. Groundwater levels ranged from 262.7 to 272.0 masl on the Hicks property and from 258.0 to 261.1 on the Newhouse property. Groundwater flow direction was inferred to be west and east towards the tributaries of Etobicoke Creek which intersects the southern and eastern limits of the Newhouse property and the central portion of the Hicks property with a horizontal groundwater gradient of approximately 0.02 m/m.
- 5. Single Well Response Tests (SWRTs) to assess hydraulic conductivity (K) of the Site's overburden was calculated using the Bouwer & Rice method. The k-values ranged between 2.8 X 10⁻⁸ to 6.8 x 10⁻⁶ m/s on the Hicks Property and between 1.4 X 10⁻⁶ to 4.5 x 10⁻⁶ m/s on the Newhouse property.
- 6. On January 3rd, 2020, DS collected three (3) unfiltered groundwater samples from wells BH19-4, BH19-6 and BH19-7, and on February 5th, 2021 one (1) unfiltered groundwater sample was collected from BH21-3. The reported analytical results indicate TSS exceeded the Peel Region's sanitary/storm criteria in all four (4) samples. Manganese from BH21-3 also exceeded both criteria, and aluminum from BH21-3 exceeded only sanitary sewer criteria. Several parameters exceeded PWQO. A discharge plan will be required for the discharge of pumped groundwater from construction dewatering activities. If the water is to be discharge to local surface water, approvals will be required from the Toronto Region Conservation Authority (TRCA).
- 7. Based on results of the pre-development and post-development water balance completed for the proposed development, the proposed impervious areas will produce a reduction in annual AET at the Hicks, Newhouse and Russell properties of 72,042 m³/year, 62,829m³/year and 87,526 m³/year, respectively. A reduction in annual infiltration is estimated of 8,991 m³/year, 13,107 m³/year and 15,424 m³/year, respectively. An increase of annual runoff is estimated for the Hicks, Newhouse and Russell properties of 45,251 m³/year, 44,347 m³/year and 59,472 m³/year, respectively.

TOWN OF CALEDON

Project: 19-312-101 – Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2) Caledon, ON

- 8. A reduction in recharge on at the Site as a result of the development may result in a lowering of the water table and thus a reduction in groundwater contribution to sensitive surface water features including the wetland and tributary. To reduce risk to the tributary and wetlands, the infiltration deficit should be removed by designing LIDs which encourage the infiltration of clean sources of stormwater generated over the proposed development area.
- 9. Results of the Wetland Water Balance Risk Evaluation for impervious cover (IC) score indicate that wetland catchment W1 to W5 have a low risk based on proposed land use types. An evaluation of risk as a result of reductions in catchment size scores a risk level of low for catchment W2 to W5 and medium for catchment W1.
- 10. Construction dewatering is anticipated within the site boundaries for the proposed developments. No below grade plans were available to DS at the time of writing this report. Site servicing trenches and SWM ponds will be excavated mainly through the sandy silt soils within the proposed development The highest dewatering rate anticipated during construction of an assumed 30 m long 2 m wide trench would be approximately 66,000 L/day (66 m³/day). Construction dewatering for the SWM ponds are estimated to range between 651,000 to 880,000 L/day (651-881 m³/day). The construction dewatering for detached residential block was estimated to be 424,000 L/day (424 m³/day). These values incorporate storm water and a 100% safety factor to account for any unforeseen conditions.
- 11. Since the expected design dewatering preliminary rates for the unsealed excavations are above the MECP's daily water taking limit of 400,000 L/day, with the exception of a single site servicing trench, a PTTW application will be required to be submitted to the MECP for short-term dewatering prior to construction.
- 12. Groundwater availability to users in the area of the proposed development draw supply from depths greater than the proposed construction. The study area is generally not serviced by municipal water supply. Several domestic wells are recorded in the study area. A door-to-door water well survey is recommended to be completed within the study area to confirm the presence and the condition of domestic wells.
- 13. In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any dewatering system and monitoring wells should be carried out by a licensed contractor under the supervision of a licensed water well technician.

Should you have any questions regarding these findings, please do not hesitate to contact the undersigned.

DS Consultants Ltd.

Prepared By:

Reviewed By:

Scott Watson, B.A.T. Project Manager

Mat CA

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Sep 14, 2021

Table of Contents

1.0 INTR	ODUCTION	1
1.1	Purpose	1
1.2	Scope of Work	2
2.0 FIELD	DWORK	2
3.0 PHYS	SICAL SETTING	3
3.1	Physiography and Drainage	4
3.2	Geology	
3.2.1	Quaternary Geology	4
3.2.2	Bedrock Geology	4
3.2.3	Site Geology	4
3.3	Hydrogeology	5
3.3.1	Local Groundwater Use	5
3.3.2	Groundwater Conditions	6
3.3.3	Hydraulic Conductivity	7
3.3.4	Groundwater Quality	8
	Surface Water Conditions	
4.0 SITE V	NATER BALANCE ASSESSMENT 1	3
4.1	Existing Conditions	3
4.2	Proposed Development	4
4.3	Water Balance Components (Thornthwaite Monthly Water Balance Model)	4
4.3.1	Pre-development Water Balance1	4
4.3.2	Post-development Water Balance 1	7
4.3.3	Water Balance Analysis Results 1	8
5.0 WET	LAND WATER BALANCE RISK EVALUATION 1	9
5.1	Pre-development Subcatchments1	9
5.2	Post-Development Subcatchments1	9
5.3	Wetland Water Balance Risk Evaluation 1	9
5.3.1	Impervious Cover Score	0
5.3.2	Change in Catchment Size2	0
6.0 C	ONSTRUCTION DEWATERING	1
6.1	Total Estimation of Flow Rate- (Short Term/Construction Dewatering)	1
6.2	Permit Requirements	2
6.2.1	Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW)	
	Application2	2

	6.3	Point of Discharge	
7.0			
	7.1	Local Groundwater Use	
	7.2	Current PTTW Search	
	7.3	Surface Water	
	7.4	Groundwater Quality	
	7.5	Well Decommissioning	
8.0	GEN	ERAL COMMENTS AND LIMITATIONS OF REPORT	
9.0	REF	ERENCES	

FIGURES

Figure 1	Development Site Location and MECP Water Well Record Map
Figure 2	Surficial Geology Map
FIGURE 3	Borehole and Monitoring Well Location Plan
Figure 4	Groundwater Elevation Contours and Flow Direction Map
Figure 5	Geological Cross-Section A-A'
Figure 6A	Pre-development Land Use
Figure 6B	Post development Land Use

APPENDICES:

Appendix A	Borehole Logs
Appendix B	Hydraulic Conductivity Analysis

- Appendix C Stream Flow Calculations
- Appendix D Groundwater Quality Certificate of Analyses
- Appendix E MECP Water Wells Records
- Appendix F Site Water Balance Analysis

1.0 INTRODUCTION

DS Consultants Limited (DS) was retained by Argo Kennedy Limited to complete a Preliminary Hydrogeological Investigation for the proposed Mayfield West Phase 1 Secondary Plan Expansion (Stage 2) in Caledon, Ontario ('site'). The site is currently rural and used for agricultural purposes.

The site is currently comprised of three (3) rural parcels used for agricultural purposes. The Site occupies an area of about 100 hectares (247.45-acres) and is located at the intersection of Old School Road and Hwy 10 and extends approximately 2 km east of Highway 10 as shown in **Figure 1**. The Site is currently undeveloped and situated within a residential, agricultural, and rural landscape with an NHS located on the Hicks and Newhouse properties extending from the southwest corner of the site on Hicks to the northeast corner of the Newhouse Property. Etobicoke creek and two (2) of its tributaries flow through southern and eastern portions of the Newhouse property and extends across the central portion of the Hicks property. The Humber River flows through the northeast portion of the Russell property.

This preliminary hydrogeological investigation includes an overview of the existing geological and hydrogeological conditions at the Site and an assessment of the hydrogeological constraints and impacts of the proposed development on local groundwater and surface water features. The investigation also provides an estimation of construction dewatering for conceptual structures which extend into the water table. A site water balance assessment was completed including pre- and post-development predictions on overall effects to the hydrologic function of the Site. The water balance was completed to provide support for overall servicing and the integration of Low Impact Development (LID) measures. A Wetland Water Balance Risk Evaluation was also completed to assess potential risks as a result of changes to wetland hydrology.

1.1 Purpose

The purpose of this Hydrogeological Investigation is to assess the current groundwater and surface water conditions at the Site in order to evaluate the following:

- Temporary construction dewatering for the excavation for the proposed development on all three (3) properties;
- Explore the potential need for a Permit to Take Water (PTTW) or Environmental Activity and Sector Registration (EASR) for the purposes of Construction Dewatering from the MECP;
- Temporary management and discharge of groundwater during short term construction dewatering;
- Assess groundwater quality to identify potential adverse impacts to Peel Region's sewer system or nearby natural features; and
- Assess the potential impacts post-development may have to natural features located on site and within the study area.

1.2 Scope of Work

The scope of work for this investigation included:

- Site visits;
- Desktop review of pertinent geological and hydrogeological resources;
- Review the MECP PTTW Water Well Records and water use in the surrounding area;
- Field work including monitoring well drilling program consisting of one (1) monitoring well on the Hicks Property and four (4) monitoring wells on the Newhouse property. No wells were installed on the Russel Property;
- Installation and monitoring of surface water and shallow groundwater stations including nested piezometers and staff gauges.
- Conducting single well response tests (slug tests) to determine hydraulic conductivity values across the site;
- Characterize the stratigraphy and measure the ground water levels across the site;
- Collection and analysis of groundwater samples in order to quantify and characterize any possible contaminants that may impact future discharge applications;
- Estimation of construction dewatering volumes, which is to be used to predict the short-term groundwater control requirements for the proposed development;
- Desktop Pre- and Post Site Water Balance Assessment in support of LID measures; and
- Desktop Wetland Water Balance Risk Evaluation to establish the potential risks the proposed development may have to the ecological integrity of wetlands and catchment features within the site and study area.

2.0 FIELDWORK

In December 2019, DS drilled eight (8) boreholes on the Hicks Property (BH19-2 to BH19-9) as part of the concurrently running hydrogeological, geotechnical, and environmental investigation. Boreholes were advanced to depths ranging from 6.5 to 13.2 mbgs (253.4-259.2 masl). Monitoring wells were installed in all the boreholes and screened to a depth of 4.6 to 13.1 mbgs (253.5-261.1 masl). An additional five (5) boreholes (BH21-1 to BH21-5) were advanced in January 2021, DS drilled one (1) borehole on the Hicks Property and four (4) boreholes on the Newhouse Property. Access was not permitted to the Russell Property, therefore no boreholes were drilled. The boreholes were advanced to depths ranging from 6.4 to 8.2 mbgs (254.1-256.5 masl). All wells were completed with 50 mm diameter PVC pipes with either 1.50

TOWN OF CALEDON PLANNING

analyzed Provincial Water Quality Objectives (PWQO) and Ontario Drinking Water Standards (ODWS). One (1) unfiltered groundwater sample was collected from the Newhouse property in 2021 and analyzed against the parameters listed in the Peel Region Sanitary and Storm sewer discharge criteria and against PWQO. The borehole and monitoring well location plan is shown in **Figure 3**.

The investigation also involved commencing a long-term surface water and groundwater monitoring program to measure shallow groundwater levels, surface water levels and flow at stations instrumented along wetlands and water courses. A site reconnaissance visit was completed in April 2021 to map and characterize any visible surface water inlets and outlets or areas of groundwater seepage within the vicinity of wetlands and the NHS areas in general. The wetlands and watercourses were instrumented with staff gauges consisting of a metal t-bar driven into the stream bed and outfitted with slotted screen to serve as data logger housing. The top of t-bar was surveyed as a measuring point for obtaining relative water level measurements. A total of twelve (12) staff gauges were installed across the Site including wetland staff gauges SG1A/B, SG2A/B, SG3A/B, SG4A/B, SG5A/B and stream stations SG-EC1 and SG-EC2 installed along Etobicoke Creek. Nested piezometers were also installed within wetland areas to monitor shallow groundwater levels. A total of ten (10) piezometer nests including PZ1A-S/D, PZ1B-S/D, PZ2A-S/D, PZ2B, PZ3A-S/D, PZ3B-S/D, PZ4A-S/D, PZ4B-S/D, PZ5A-S/D, PZ5B-S/D, PZ5EEP1-S/D and PZHDF-S/D were installed to monitor shallow groundwater levels in the location of wetlands and potentially sensative areas of the Site. The shallow piezometers were screened to depths of 0.6 to 1.1 m below existing ground surface (mbgs), and the deep piezometers were screened to depths of 1.4 m to 2.0 mbgs.

Pressure recording transducers (Levelogger[™]) were installed within all staff gauge locations and select piezometer and monitoring well locations to allow for continuous monitoring of stabilized water levels. The Leveloggers[™] were pre-programmed to collect a reading at every 15-minute intervals. A barometric logger was installed at a central location of the Site to record ambient air pressure for correction of water level data.

DS commenced the monitoring program at the Site in May 2021, with a site visit to collect groundwater and surface water level and stream flow measurements. Currently, 2 monitoring intervals have been completed including one in May and in June 2021. Monitoring will continue on a monthly basis until April 2022.

3.0 PHYSICAL SETTING

Available topographic maps, environmental, geotechnical, and hydrogeological reports were used to develop an understanding of the physical setting of the study area. Borehole logs and the MECP WWRs were used to interpret the geological and hydrogeological conditions at the development site.

TOWN OF CALEDON PLANNING

3.1 Physiography and Drainage

According to the Ontario Geological Survey mapping across the region, the site lies within the South Slope physiographic region of southern Ontario and is characterized by drumlinized till plains. The site is currently being used for residential and agricultural purposes. Surface elevation at the site ranges from approximately 260.5 to 274.2 masl. Etobicoke creek and two (2) of its tributaries intersect the southern and eastern limits of the Newhouse property and intersect the central portion of the Hicks property. The Humber river intersects the northwestern corner of the Russell property. the drainage is generally directed by streams and the local topography of the site. The groundwater flow direction is generally southwest and locally south, west and east towards the tributaries of Etobicoke Creek. The interpreted groundwater flow direction map is shown in **Figure 4**.

3.2 Geology

The following presents a brief description of regional and development site geology based on the review of available information and development site-specific soil investigations.

3.2.1 Quaternary Geology

The surficial geology at the site and study area is characterized as till (5d), dominated by clay to silttextured till derived from glaciolacustrine deposits or shale, and modern alluvial deposits (19) dominated by clay, silt, sand, gravel, and potential organic remains. The site borders lands to east and south characterized by deposits of coarse and fine textured glaciolacustrine deposits, respectively. At the site, the overburden geology generally consisted of clayey silt and sandy silt to silty sand till with intermittent sand layers. The surficial geology map is shown in **Figure 2**.

3.2.2 Bedrock Geology

According to the Ontario Geological Survey mapping across the region the bedrock at the site is predominantly comprised of limestone, dolostone, and siltstone as part of the Queenston Formation. Bedrock was not encountered during the current investigation. Due to the thickness of the overburden and deep nature of the expected contact, it is not expected that bedrock will influence the groundwater system in respect to the current hydrogeological investigation.

3.2.3 Site Geology

On-site subsurface soil conditions were summarized from the boreholes advanced by DS for the current investigation. Detailed subsurface conditions are presented in **Figure 5** and the borehole logs are presented in **Appendix A**. The subsurface conditions in the boreholes are summarized in **Table 3-1**.

Table 3-1: Summary of Drill Program So	oil Stratigraphy Encountered
--	------------------------------

	Newhouse	Hicks
Topsoil & Weather/Disturbed Soil	• 75-230 mm thick topsoil	 250-350 mm thick topsoil Silty clay, silty sand to sandy silt deposits encountered below the topsoil extending to depths ranging between 0.8 to 1.5 mbgs. Very soft to stiff consistency.
Cohesionless Deposits (Sandy Silt/Silty Sand, Sand, Silt and Sand and Gravel)	 Encountered in most of the boreholes and extended to varying depths between 1.5 to 7.5 mbgs Loose to dense state 	 Encountered in most of the boreholes and extended to various depths. Wet to saturated below the depths of 0.8 to 4.6 mbgs. Loose to very dense state.
Clayey Silt Till/Clayey Silt	 Clayey silt till encountered in all of the boreholes and generally below the topsoil extending to the maximum depth of 2.6 mbgs Clayey silt units were identified below the cohesionless deposits in BH21-1 and BH21-2 extending to the maximum explored depth and 2.3 mbgs, respectively. Firm to very stiff consistency 	 Cohesive deposits of clayey silt till and clayey silt encountered in BH19-3 to BH19-6. Very Stiff to hard consistency.
Silt Sand Till/Sandy Silt Till	 Encountered in all of the boreholes and extended to depths ranging from 7.5 mbgs to the maximum explored depth. Loose to very dense state 	 The deposits were encountered in all boreholes except for BH19-4. Generally, in a dense to very dense state with occasional compact layers

3.3 Hydrogeology

The hydrogeology at the site was evaluated using the on-site monitoring wells installed by DS, and the MECP WWRs in the study area.

3.3.1 Local Groundwater Use

As part of the hydrogeological investigation, DS completed a search of the MECP water well records (WWRs) database. Based on the MECP WWR search, there are eighty-eight (88) water wells within 500 meters of the site (**Appendix E**). Fifty-two (52) wells were noted as domestic (DO) wells, eight (8) wells were noted for livestock (ST) use, and one (1) well was noted as a public supply well (PS). The depths of these wells range from 21 to 50 mbgs. All other wells were noted as test holes, monitoring well, not in use or unknown. **Figure**

1 shows the MECP water well location plan. A door-to-door water well survey is recommended to be completed within the study area to confirm the presence and the condition of domestic wells.

3.3.2 Groundwater Conditions

Groundwater levels were measured in all available wells on the Hicks property on January 2nd, 2020 and on February 3rd and May 3rd, 2021 in all wells on the Hicks and Newhouse properties. Groundwater levels ranged from 262.7 to 272.0 masl on the Hicks property and from 258.0 to 261.1 on the Newhouse property. **Figure 4** shows a groundwater contour map completed for measurements collected May 2021. Based on groundwater elevations, the flow direction is inferred to be generally west to southwest to where Etobicoke Creek flows from the site. There are localized contours toward Etobicoke Creek including those in the southeast corner of the Hicks Property which show northwest groundwater flow direction. Average horizontal groundwater gradients across the site are approximately 0.02 m/m . The levels are expected to fluctuate with seasonal variations and responses to storm events.

Well ID	Ground Surface Elevation (masl)	Well Depth (mbgs)	Screened Interval (mbgs)	Date	Depth to Water (mbgs)	Groundwater Elevation (masl)
			Hicks			
				2020-01-02	0.60	266.00
BH19-2	266.60	13.20	10.2-13.2	2021-02-03	2.20	264.40
				2021-05-03	1.31	265.29
				2020-01-02	2.90	266.60
BH19-3	269.50	12.20	9.2-12.2	2021-02-03	3.10	266.40
				2021-05-03	3.23	266.27
				2020-01-02	4.00	266.30
BH19-4	270.30	6.10	3.1-6.1	2021-02-03	3.90	266.40
				2021-05-03	3.94	266.36
				2020-01-02	2.20	272.00
BH19-5	274.20	6.10	3.1-6.1	2021-02-03	3.00	271.30
				2021-05-03	3.04	271.16
				2020-01-02	3.20	264.60
BH19-6	267.80	12.20	9.2-12.2	2021-02-03	3.40	264.40
				2021-05-03	4.11	263.69
				2020-01-02	2.90	262.80
BH19-7	265.70	4.60	3.1-4.6	2021-02-03	3.00	262.70
				2021-05-03	2.83	262.87
				2020-01-02	0.30	270.50
BH19-8	270.80	12.20	10.7-12.2	2021-02-03	3.50	267.30
				2021-05-03	0.48	270.32
BH19-9	271.60	6.10	3.1-6.1	2020-01-02	1.10	270.50

Table 3-2: Groundwater Levels in Monitoring Wells

Sep 14, 2021 Project: 19-312-101 – Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2)

Caledon, ON

Well ID	Ground Surface Elevation (masl)	Well Depth (mbgs)	Screened Interval (mbgs)	Date	Depth to Water (mbgs)	Groundwater Elevation (masl)
				2021-02-03	3.70	267.90
				2021-05-03	1.29	270.31
BH21-5			4.6-6.1	2021-02-03	frozen a	bove ground
вп21-5	263.80	6.10	4.0-0.1	2021-05-03	-1.00	264.80
Newhouse						
BH21-1	263.00	7.60	6.1-7.6	2021-02-03	1.90	261.10
BH21-1	263.00		0.1-7.0	2021-05-03	1.87	261.13
BH21-2	260.50	6.40	4.6-6.1	2021-02-03	2.50	258.00
BH21-2	200.50	6.10	4.0-0.1	2021-05-03	1.36	259.14
01124.2	262.20	C 10	1661	2021-02-03	3.60	259.70
BH21-3	263.20	6.10	4.6-6.1	2021-05-03	3.38	259.82
DU21 4	262.00	6 10	1661	2021-02-03	3.80	259.10
BH21-4	262.90 6.10		4.6-6.1	2021-05-03	3.75	259.15

3.3.3 Hydraulic Conductivity

In total, fourteen (14) Single Well Response Tests (slug tests) were completed by DS in wells BH19-2 to BH19-9 on January 2nd, 2020, and on February 3rd, 2021 in wells BH21-1, BH21-3 and BH21-4 to estimate hydraulic conductivity (k) for the representative geological units in which the wells were screened. The testing was completed using data loggers placed at the bottom of the monitoring wells to accurately measure the change in the hydraulic head versus time. Tests were completed by removing water 'instantaneously' from the well with the use of Waterra®. Hydraulic conductivity (k) values were calculated using the Bouwer and Rice method using the AquiferTest® Software. The semi-log plots for normalized drawdown versus time are provided in **Appendix B.** The k-values ranged between 2.8 X 10⁻⁸ to 6.8×10^{-6} m/s on the Hicks Property and between 1.4 X 10^{-6} to 4.5 x 10^{-6} m/s on the Newhouse property. Table 3-3 presents the Hydraulic Conductivity (k) values for the representative geological units.

Table 3-3: Summary of Hydraulic Conductivity (k) Test Results

Well ID	Screened Interval (mbgs)		
	Hicks		
BH19-2	10.2-13.2	Sand and Gravel	3.2 x 10 ⁻⁷
BH19-3	9.2-12.2	Sandy Silt Till	2.8 x 10 ⁻⁸
BH19-4	3.1-6.1	Silty Sand & Sandy Silt	1.3 x 10 ⁻⁶
BH19-5	3.1-6.1	Sandy Silt Till & Silty Sand	1.6 x 10 ⁻⁶
BH19-6	9.2-12.2	Sandy Silt Till	1.0 x 10 ⁻⁷

Sep 14, 2021 Project: 19-312-101 – Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2)

Caledon, ON

Well ID	Screened Interval (mbgs)	Screened Formation (mbgs)	K- Value- Slug Test (m/s)
BH19-7	3.1-4.6	Silty Sand	9.1 x 10 ⁻⁷
BH19-8	10.7-12.2	Gravelly Silty Sand Till	6.8 x 10 ⁻⁶
BH19-9	3.1-6.1	Sandy Silt ot Silty Sand Till	6.7 x 10 ⁻⁸
	Newhouse	·	
BH21-1	6.1-7.6	Sand	4.5 x 10 ⁻⁶
BH21-3	4.6-6.1	Sand	3.9 x 10 ⁻⁶
BH21-4	4.6-6.1	Sandy Silt to Silty Sand Till	1.4 x 10 ⁻⁶
		Geomean	7.0 x 10 ⁻⁷

3.3.4 Groundwater Quality

On January 3rd, 2020, DS collected three (3) unfiltered groundwater samples from wells BH19-4, BH19-6 and BH19-7. Analytical results were compared against PWQO to assess suitability for discharge overland. On February 5th, 2021 one (1) unfiltered groundwater sample was collected from BH21-3 and compared against the Peel Region's sewar use bylaw and against PWQO. The samples were placed in pre-cleaned laboratory supplied vials and/or bottles provided with analytical test group-specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted to SGS Laboratories in Lakefield, Ontario. SGS is certified by the Canadian Association of Laboratory Accreditation Inc. (CALA) and the Canadian Standard Association (CSA). The reported analytical results indicate TSS exceeded the Peel Region's sanitary/storm criteria in all four (4) samples. Manganese from BH21-3 also exceeded both criteria, and aluminum from BH21-3 exceeded only sanitary sewer criteria. Several parameters exceeded PWQO. Exceedances are summarized in **Table 3-4**, and the certificates of analyses are provided in **Appendix D**.

Parameter	Unit	Sanitary By-Law Criteria	Storm By- Law Criteria	PWQO	BH19-4	BH19-6	BH19-7	*BH21-3
Total Suspended Solids (TSS)	mg/L	350	15	-	2320	397	430	79200
Aluminum-Total	mg/L	50	-	0.075	<u>1.39</u>	<u>0.816</u>	<u>0.572</u>	<u>113</u>
Aluminum-Dissolved	mg/L	-	-	0.000015	0.000313	0.000183	0.000447	-
Arsenic-Total	mg/L	-	0.02	0.005	0.0015	<u>0.0106</u>	0.0011	0.0505
Cadmium-Total	mg/L	0.7	0.008	0.0001	0.000035	0.000034	0.00013	<u>0.00119</u>
Chromium-Total	mg/L	-	0.08	0.1	0.00214	0.00269	0.00137	<u>0.173</u>
Cobalt-Total	mg/L	5	-	0.0009	<u>0.00257</u>	<u>0.00102</u>	0.000408	<u>0.113</u>
Copper-Total	mg/L	-	0.05	0.001	<u>0.0101</u>	<u>0.0044</u>	<u>0.0032</u>	<u>0.386</u>
Iron-Total	mg/L	-	-	0.3	<u>3.84</u>	<u>1.4</u>	<u>0.587</u>	-
Lead- Total	mg/L	-	0.12	0.001	<u>0.00667</u>	<u>0.00214</u>	<u>0.00122</u>	<u>0.122</u>
Manganese-Total	mg/L	5	0.05	-	0.534	0.182	0.0699	11.9

Table 3-4: Parameters in Groundwater Exceeding Peel Region Criteria and PWQO

Sep 14, 2021 Project: 19-312-101 –Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2) Caledon, ON

Parameter	Unit	Sanitary By-Law Criteria	Storm By- Law Criteria	PWQO	BH19-4	BH19-6	BH19-7	*BH21-3
Nickel-Total	mg/L	-	0.08	0.025	0.0037	0.0018	0.0017	<u>0.226</u>
Phosphorus-Total	mg/L	-	0.4	0.01	0.00007	0.00006	<0.00003	<u>8.69</u>
Silver-Total	mg/L	5	0.12	0.0001	<0.00005	<0.00005	<0.00005	<u>0.00067</u>
Zinc-Total	mg/L	-	0.04	0.02	0.012	0.007	0.006	<u>0.592</u>
4AAP-Phenolics	mg/L	1	0.08	0.001	-	-	-	<u><0.002</u>
.00-Exceeds Sanitary Criteria: 0.00-Exceeds Storm Criteria: 0.00-Exceeds Sanitary & Storm Criteria: 0.00-Exceeds PWOO:								

<mark>0.00</mark>-Exceeds Sanitary Criteria; <mark>0.00</mark>-Exceeds Storm Criteria; <mark>0.00</mark>-Exceeds Sanitary & Storm Criteria; <u>0.00-</u> Exceeds PWQ(* - High sediment detected in sample

3.3.5 Surface Water Conditions

The Study area includes Etobicoke creek which enters the Site approximately 150m west of Hicks Rd. within the Hick's property and flows southwest where it exists the Newhouse Property approximately 400m south of Old School Rd. at Hurontario St. Additionally, the Humber river traverses the northwestern corner of the Russell property flowing in a southeast direction. The watercourses include tributaries and headwater drainage features (HDF's) which have been assessed by Beacon Environmental within the Newhouse and Hick's properties. Mapping for wetlands and HDF's were provided to DS for review and incorporation into our monitoring program where required. Five (5) wetlands in total were identified.

A total of Fourteen (14) monitoring stations were monitored including those installed in Wetland 1 through Wetland 5, or along tributaries, creeks, HDF's and groundwater seepage areas. A summary of the field measurements for the period from May to June 2021 is presented in **Table 2**. A discussion on the surface water conditions at all surface stations is provided below.

Wetland 1

Wetland 1 is located in the southern corner of Newhouse property alongside Etobicoke Creek reaches EC1 and Headwater Drainage Features (HDF's) EC10-A, EC1-C and EC1-A. The wetland was equipped with two stations, each comprised of a staff gauge and nested piezometers. Station 1A (SG1A, PZ1A-S and PZ1A-D) is located at the inlet location along HDF EC1-C, and Station 1B (SG1B, PZ1B-S and PZ1B-D) at the outlet along reach HDF EC1-A near the confluence with Etobicoke Creek. All Staff gauge and deep piezometers were instrumented with a datalogger to allow for continuous monitoring of surface water and groundwater levels. Based on the review of the monitoring data to date for Wetland 1, the following groundwater and surface water conditions are noted.

There were no surface water flows observed entering or leaving the location of SG1A through May and June however wet soil condition were observed along the banks of EC1-C suggesting its an area of groundwater discharge. Shallow surface water levels at SG1A were measured during the May and June 2021 monitoring rounds at 0.24m and 0.10m, respectively. Compared to the surface water level elevation, the deep piezometer was elevated in both May and June suggesting a shallow groundwater gradient

TOWN OF CALEDON

toward the watercourse. Shallow groundwater levels in piezometers PZ1A-S and PZ1A-D were noted to be above the ground surface in May and June 2021 with levels in the deep piezometer above that of the shallow piezometer suggesting an upward groundwater gradient.

At the downgradient monitoring location SG1B, flow was measured in May at 0.3 L/sec corresponding to a water level depth of 0.36m. Dry conditions were noted in June. Compared to the surface water level elevation, groundwater levels in PZ1A-S/D were both lower in May and fell below the stream bed in June. Shallow groundwater levels in the deep piezometer (PZ1A-D) were noted to be below that of the shallow piezometer suggesting a downward groundwater gradient.

Based on the above, it is expected that wetland 1 received contribution from groundwater during the May and June 2021 monitoring period at SG1A. Based on the presence of flow at SG1B, it is expected that the groundwater contribution along EC1-C extends south toward the confluence with Etobicoke Creek however becomes groundwater recharge conditions before station SG1B. Further monitoring will be required to discuss seasonal fluctuations and the potential for groundwater to provide baseflow contributions to Wetland 1 throughout the year and seasonally. A summary of the water levels in each the surface water monitoring stations is provided in Table 2.

Wetland 2

Wetland 2 comprises of two hydrologically connected wetland units located in north corner of Newhouse property alongside a tributary to Etobicoke Creek TEC1. The wetland units extend south toward the confluence of TEC1 and Etobicoke Creek and was equipped with two stations comprised of a staff gauge and nested piezometers. Station 2A (SG2A, PZ2A-S and PZ2A-D) is located at the inlet location along the north side of Wetland 2A where the tributary enters the Newhouse property. Station EC1 (SGEC1, EC1-S and EC1-D) is located south of wetland 2B at the confluence of TEC1 and Etobicoke Creek (EC2). Additionally, nested piezometers (SEEP1-D and SEEP1-S) were installed within an observed groundwater discharge area along HDF EC4-A. All Staff gauge and deep piezometers were instrumented with a datalogger to allow for continuous monitoring of surface water and groundwater levels. Based on the review of the monitoring data to date for Wetland 2, the following groundwater and surface water conditions are noted.

There were no surface water flows observed entering the location of SG2A through May and June. Surface water ponding was noted downgradient of the culvert crossing Old School Rd. Shallow groundwater levels in piezometers PZ2A-S and PZ2A-D were noted to be below the ground surface in May and June 2021. Water levels in the deep piezometer (PZ2A-D) were comparable to water levels in the shallow piezometer suggesting there is an even gradient at this location.

At the downgradient monitoring location SGEC1, flow was measured in May at 28.54 L/sec corresponding to a water level depth of 0.55m. Dry conditions were noted in June. Flows at this location consist of the combined flows of TEC1 and EC2. During the May monitoring event, flow from TEC1 was measured at 7.43 L/sec and was also dry in June. Shallow groundwater levels in piezometers PZEC1-S and PZEC1-D were noted to be below the ground surface in May and June 2021. Water levels in the deep piezometer

TOWN OF CALEDON

(PZEC1-D) were comparable to water levels in the shallow piezometer suggesting there is an even gradient at this location.

At the groundwater seepage location along HDF EC4-A, flow was observed and estimated to be approximately 3.5 L/sec. The seepage location consists of saturated soils which extend into the agricultural field and eventually channelize before discharging into TEC1 at the north extent of Wetland 2b. Saturated soils were also observed along the seep in June 2021 however there were no flowing conditions. Shallow groundwater levels in piezometers PZSEEP1-S and PZSEEP1-D were noted to be above the ground surface in May and slightly below ground surface in June 2021. Water levels in the deep piezometer (PZEC1-D) were slightly below water levels in the shallow piezometer suggesting that the seepage area is mainly the result of horizontal groundwater gradients intersecting the surface at this location.

Based on the above, it is expected that wetland 2 received contribution from groundwater during the May 2021 monitoring period. Based on the presence of flow at the seepage area and at the downstream confluence with EC1/EC2, it is expected that the groundwater contribution extends along most of TEC1. Further monitoring will be required to discuss seasonal fluctuations and the capacity for groundwater to provide baseflow contributions to Wetland 2 throughout the year and seasonally. A summary of the water levels in each the surface water monitoring stations is provided in Table 2.

Wetland 3

Wetland 3 is in located in central portions of the Hicks property along Etobicoke creek (EC2). The wetland was equipped with two stations, each comprised of a staff gauge and nested piezometers. Station 3A (SG3A, PZ3A-S and PZ3A-D) is located at the inlet location to the east where HDF EC7-A intersects the Creek. Station 3B (SG3B, PZ3B-S and PZ3B-D) is located approximately 160m west at the outlet along EC2. All Staff gauge and deep piezometers were instrumented with a datalogger to allow for continuous monitoring of surface water and groundwater levels. Shallow piezometers were measured manually once a month. The water level data in both wetlands were collected both manually and continuously. Based on the review of the monitoring data to date for Wetland 3, the following groundwater and surface water conditions are noted.

Throughout May and June, a beaver dam was observed approximately 20m upgradient of SG3B. The damming resulted in flooding of Wetland 3. Ponding was observed to extend upgradient of the Wetland 3 inlet at SG3A. As a result, flow monitoring at SG3A was not possible as the ponding was unchanneled and appeared stagnant. Shallow groundwater levels in piezometers PZ3A-S and PZ3A-D are noted to be below the ground surface in May and June 2021. Water levels in the deep piezometer (PZ2A-D) were lower than water levels in the shallow piezometer suggesting there is a downward gradient however this is expected as a result of the flooding. Once normal conditions return to Wetland 3, groundwater gradients are anticipated to change.

At the downgradient monitoring location SG3B, flow was measured in May at 19.10 L/sec corresponding to a water level depth of 0.29m. ponded conditions were noted in June. Shallow groundwater levels in piezometers PZ3B-S and PZ3B-D were noted to be below the ground surface in May and June 2021. Water

levels in the deep piezometer (PZ3B-D) were comparable to water levels in the shallow piezometer in May and lower than the shallow piezometer in June suggesting there is an even to downward gradient at this location. Compared to the surface water level elevation, the water level in the deep piezometer was comparable in May and lower in June suggesting there is potential for groundwater recharge in this area.

Based on the above, it is not yet possible to discern whether Wetland 3 receives groundwater contribution during normal conditions (i.e. no beaver dam). Further monitoring will be required to characterize representative conditions as well as seasonal fluctuations throughout the year. A summary of the water levels in each the surface water monitoring stations is provided in Table 2.

Wetland 4

TOWN OF CALEDON PLANNING

Wetland 4 is located in the northern corner of the Hicks property along Etobicoke Creek EC2. The wetland was equipped with two stations, each comprised of a staff gauge and nested piezometers. Station 4A (SG4A, PZ4A-S and PZ4A-D) is located at the wetland inlet along the north side of Wetland 4 where the tributary enters the Hicks property. Station 4B (SG4B, PZ4B-S and PZ4B-D) is located approximately 190m south at the wetland outlet along the south side of Wetland 4. All Staff gauge and deep piezometers were instrumented with a datalogger to allow for continuous monitoring of surface water and groundwater levels. Based on the review of the monitoring data to date for Wetland 1, the following groundwater and surface water conditions are noted.

Surface water flows were observed entering the location of SG4A through May and June via a culvert crossing Old School Rd. Flow was measured in May at 18.3 L/sec corresponding to a water level depth of 0.55m and in June at 9.4 L/sec corresponding to a water level depth of 0.31m. Shallow groundwater levels in piezometers PZ4A-S and PZ4A-D were noted to be below the ground surface in May and June 2021 with levels in the deep piezometer comparable to that of the shallow piezometer in May and higher than the shallow piezometer in June suggesting an even to upward groundwater gradient. Compared to the surface water level elevation, the deep piezometer was slightly elevated in May and June suggesting there is a horizontal groundwater gradient recharging the watercourse.

At the downgradient monitoring location SG4B, flow was measured in May at 14.1 L/sec corresponding to a water level depth of 0.45m. In June, flow was measured at 4.8 L/sec corresponding to a water level depth of 0.16m. Shallow groundwater levels in piezometers PZ4B-S and PZ4B-D were noted to be below the ground surface in May and June 2021 with levels in the deep piezometer (PZ1A-D) below that of the shallow piezometer suggesting a downward groundwater gradient. Compared to the surface water level elevation, the deep piezometer was elevated in both May and June suggesting there is a horizontal groundwater gradient recharging the watercourse.

Based on the above, it was observed that Etobicoke Creek (EC2) in the vicinity of Wetland 4 had a reduction in flow from upstream station SG4A to downstream station SG4B in both May and June despite some groundwater recharge conditions. It is expected that both groundwater discharge and recharge occurs along EC2 in the vicinity of Wetland 4. Withdrawal from vegetation is also expected to be a significant mechanism in reducing streamflow in May and June. Further monitoring will be required to discuss seasonal fluctuations and the capacity for groundwater to provide baseflow contributions to

Wetland 2 throughout the year and seasonally. A summary of the water levels in each the surface water monitoring stations is provided in Table 2.

Wetland 5

TOWN OF CALEDON PLANNING

Wetland 5 is located in the northern portion of Russell Property a long a tributary of Humber River (KC1) downstream of a culvert crossing Old School Rd. The wetland is equipped with two (2) staff gauges; one (SG5A) at the inflow point northwest of the wetland next to the Old School Rd culvert and one (SG5B) at the downstream portion of the wetland located east of Heart Lake Rd. Both the Staff gauges were instrumented with a datalogger to allow for continuous monitoring of surface water. Based on the review of the monitoring data to date for Wetland 5, the following groundwater and surface water conditions are noted.

Surface water flows in the location of SG5A and SG5B were observed in May and June 2021. Flow measurement obtained at the location of Staff Gauge SG5A in May and June 2021 were 31.80 L/s and 19.93 L/s respectively, and at the location of SG5B, flow recorded was 7.88L/s and 3.95 L/s respectively. The reduction in flow could be an indication of groundwater recharge conditions. Further monitoring including measurements of groundwater levels will be required to discuss seasonal fluctuations and to characterize the area as in terms of groundwater discharge or recharge. A summary of the water levels in each the surface water monitoring stations is provided in Appendix C.

4.0 SITE WATER BALANCE ASSESSMENT

4.1 Existing Conditions

The subject Site has a total area of 993,531 m² consisting of three (3) properties: Hicks (303,566 m²), Newhouse (321,393 m²), and Russell (368,572 m²). The site is presently occupied by sparse residential dwellings. The remainder of the site consists of woodland, agricultural field and open space and is considered as a pervious area. **Figure 6A** shows the pre-development conceptual model considered for establishing current hydrologic conditions.

	Hicks Property	Newhouse Property	Russel Property
Site Area (m ²)	303,566	321,393	368,572
Impervious Area (m ²)	1,848	8,609	5,312
Building and Driveway	1,848	8,609	5,312
Pervious Area (m ²)	301,718	312,784	363,260
Woodland	79,835	85,874	27,459
Agricultural	206,859	140,016	310,780
Urban Lawn	15,023	86,894	25,021

Table 4-1: Pre-depdfvelopment Land Use

TOWN OF CALEDON

4.2 Proposed Development

The area proposed for development includes the entire existing Site with a size of 993,531 m². It is proposed that the site will be re-developed with single detached houses and townhouse blocks. For the water balance calculations in this report, it is estimated that redevelopment of the property will include buildings and roads with a combined area of about 636,031 m². Out of the total area, 357,500m² area will remain as open space/park, woodland, greenbelt and stormwater facilities and are considered as a pervious area. **Figure 6B** shows the post-development conceptual model considered for establishing post-hydrologic conditions.

	Hicks Property	Newhouse Property	Russel Property
Site Area (m²)	303,566	321,393	368,572
Impervious Area (m ²)	154,774	125,395	166,057
Unconnected	102358	107,975	147,547
Connected	31,780	17,420	18,510
Pervious Area (m ²)	148,791	195,998	202,515
Pasture and Shrub	17,365	68,326	85,641
Woodland (NHS)	79,835	85,874	27,459
Urban Lawn	13,481	20,508	46,575
Urban Lawn with Roof Surplus	38,110	21,290	42,840

Table 4-2: Post-development Land Use

4.3 Water Balance Components (Thornthwaite Monthly Water Balance Model)

The Thornthwaite water balance (Thornthwaite, 1948; Mather, 1978; 1979) is an accounting type method used to analyze the allocation of water among various components of the hydrologic cycle. Inputs to the model are monthly temperature, site latitude, and precipitation. Outputs include monthly potential and actual evapotranspiration, evaporation, water surplus, total infiltration, and total runoff. For ease of calculation, a spreadsheet model was used for the computation.

When precipitation (P) occurs, it can either runoff (R) through the surface water system, infiltrate (I) to the water table, or evaporate/evapotranspiration (ET) from the earth's surface and vegetation. The sum of R and I is termed as the water surplus (S). When long-term averages of P, R, I and ET are used, there is no net change in groundwater storage (ST). Annually, however, there is a potential for small changes in ST. The annual water budget can be stated as P = ET + R + I + ST and the components are discussed below.

4.3.1 Pre-development Water Balance

To predict outputs of the pre-development water balance, various inputs were entered into the Thornthwaite model including monthly precipitation and temperature, site latitude, water holding capacity values for native soils and factors of infiltration. Various inputs and outputs of the model are described in detail below. The detailed calculations are presented in **Appendix F.**

Precipitation (P)

Based on the 30-year average for the Orangeville MOE Climate Station in Ontario, the average precipitation for the area is about 902 mm/year for the period between 1981 and 2010. Also, the average monthly temperature from this station has been used. The monthly distribution of precipitation is presented in **Table F1**, **Appendix F**.

Storage (St)

Groundwater storage (ST) of native soils for the existing Site was estimated using values of Water Holding Capacity (mm) of respective land use and soil types identified in Table 3.1 of the Storm Water Management (SWM) Planning & Design Manual (MOE, March 2003). The land uses, soil types and respective water holding capacities shown in **Table 4-3** were chosen to represent existing conditions and applied to March for monthly calculations.

Table 4-3 Existing Conditions – Water Holding Capacity and AET of Native Soils in Pervious Areas

Property	Land uses / soil types	Water Holding Capacity (mm/year)	AET (mm/year)
Hicks, Newhouse & Russell	Urban Lawn /Silt Loam	125	531
	Moderately Rooted Crops/Silt	200	545
	Loam		
	Mature Forest	400	557

Using the procedures outlined in the SWM Planning & Design Manual for each of the above land uses and soil types, the annual change in storage is 0. ST across is the lowest in August for all land use types, and highest from March to May and November to February. The monthly distributions of ST are presented in **Table F-2, Appendix F.**

Evapotranspiration (Et)

Monthly Potential Evapotranspiration (PET) is estimated using monthly temperature data and is defined as a water loss from a homogeneous vegetation-covered area that never lacks water (Thornthwaite,1948; Mather, 1978). In the Thornthwaite water balance model, PET is calculated using the Hamon equation (Hamon, 1061);

PET Hamon = $13.97 \times d \times D^2 \times Wt$

Where:

d = the number of days in the month

D = the mean monthly hours of daylight in units of 12 hours

Wt = a saturated water vapour density term = 4.95 * e0.627/100

T = the monthly mean temperature in degrees Celsius

TOWN OF CALEDON

The calculated PET for the study area is 568 mm/year, or about 63% of the total precipitation. A comparison between PET and Precipitation (P) produces a soil moisture deficit in the order of 96.6 mm by August in the study area.

The calculated Actual Evapotranspiration (AET) is based on PET and changes in ST (Δ ST). Where there is not enough P to satisfy PET, a reduction in ST occurs. As a result, volumes of AET are less than PET. The monthly distribution of ST for the land use/soil types representing existing conditions at the site produced an annual AET of 531-557 mm/yr.

Precipitation Surplus (S)

Precipitation surplus is calculated as P-ET. For pervious areas, ET is considered AET and for impervious areas ET is evaporation. A surplus of 902 mm/year (100% of P) is calculated for impervious areas. For the pervious land use/soil type representing existing conditions at the site, P-AET produces a precipitation surplus of 345-371 mm/year (38-41% of P). The more detailed calculations are included in **Table F-2**, **Appendix F.**

Infiltration (I) and Runoff (R)

For pervious areas, precipitation surplus has two (2) components in the Thornthwaite model: a runoff component (overland flow that occurs when soil moisture capacity is exceeded) and an infiltration component. The accumulation of infiltration factors for topography, soil types and cover as prescribed in Table 3.1 of the SWM Planning & Design Manual give infiltration factors for existing conditions on the Site as shown below in **Table 4-4**.

Land uses / soil types	Topography	Soil	Cover	Total infiltration factor
Urban Lawn /Silt Loam	0.30	0.20	0.10	0.60
Moderately Rooted Crops (Agriculture)/Silt Loam	0.2	0.2	0.1	0.50
Woodland/Silt Loam	0.2	0.2	0.2	0.60

Table 4-4 Existing Conditions – Infiltration Factor

Considering the above infiltration factors, the respective total annual volume of infiltration for the Hicks, Newhouse and Russell properties are estimated to be 56,181 m³/year, 58,830 m³/year and 65,721 m³/year, respectively.

The runoff component calculated in the pre-development model is the remaining volume of precipitation surplus following infiltration. Considering the precipitation surpluses and the total infiltration volume, the total annual volume of runoff for the Hicks, Newhouse and Russell properties are estimated to be 51,840 m³/year, 58,340 m³/year and 67,180 m³/year, respectively.

Detailed calculations and the monthly distribution of infiltration and runoff are presented in **Table F-2**, **Appendix F.**

4.3.2 Post-development Water Balance

Post-development conditions include impervious areas, pervious areas of urban lawn (open space), moderately rooted crops (Agricultural/Greenbelt), and Woodland (NHS) with silty loam soils. To predict outputs of the post-development water balance, the same 30-year average climate data and site latitude inputs were used. Changes in land use including landscaped areas include a reduction in soil water holding capacity inputs and factors of infiltration. Various inputs and outputs of the post-development model are presented in **Table E-3**, **Appendix F.**

Storage (St)

Groundwater storage (ST) of native soils for the post-development site remains the same for undeveloped areas. The same water holding capacity was chosen as above to represent post-development conditions and applied to March for monthly calculations. Similar to the pre-development conditions, using the procedures outlined in the SWM Planning & Design Manual for each of the above land use, the annual change in storage is 0. The monthly distribution of ST is presented in **Table F-3**, **Appendix F.**

Evapotranspiration (Et)

For pervious areas, monthly PET is estimated using the same inputs and calculations described in the predevelopment model. The unit area outputs for evapotranspiration remains the same (531-557 mm/year). A decrease in pervious surfaces means there is less area where evapotranspiration can occur. As a result, a reduction in annual volume AET occurs. Detailed calculations and the monthly distribution of AET are presented in **Appendix F.**

Precipitation Surplus (S)

For the pervious land use/soil type representing post-development conditions at the site, P-AET produces a precipitation surplus of 345-371 mm/year, and a surplus of 902 mm/year (100% of P) is calculated for impervious areas. The more detailed calculations are included in **Table F-3**, **Appendix F**.

Infiltration (I) and Runoff (R)

The accumulation of infiltration factors for topography, soil types and cover are prescribed in Table 3.1 of the SWM Planning & Design Manual. The infiltration factors remain unchanged. The annual volume of infiltration for the Hicks, Newhouse and Russel properties are estimated at 47,190 m³/year, 45,723 m³/year and 50,298 m³/year, respectively.

The runoff component calculated in the post-development model is the remaining volume of precipitation surplus following infiltration. Considering the precipitation surpluses and the total infiltration volume, the total runoff for the Hicks, Newhouse and Russel properties are estimated at 107,057 m³/year, 102,688

 m^{3} /year and 126,652 m^{3} /year, respectively. Detailed calculations and the monthly distribution of infiltration and runoff are presented in **Table F-3**, Appendix F.

4.3.3 Water Balance Analysis Results

Based on results of the pre-development and post-development water balance completed, the proposed developments will in general produce a decrease in annual evapotranspiration at each property, a reduction in annual infiltration and a general increase in annual runoff at all properties. The effects are mainly the result of increased impervious area and decreased pervious areas of the Site. The analysis is summarised as below in **Table 4-5**. The detailed calculations are presented in **Appendix F.**

Characteristic	Pre-Development	Post-Development (no mitigation)	Change (Pre- to Post Development)					
Hicks								
Proposed Development Area (m ²)	303,566	303,566	0					
Precipitation (m ³ /year)	273,695	273,695	0					
Total Evapotranspiration (m ³ /year)	165,174	93,132	-72,042					
Total Evaporation (m³/year)	500	36,282	35,782					
Total Infiltration (m ³ /year)	56,181	47,190	-8,991					
Total Runoff (m³/year)	51,840	97,092	45,251					
	Newhouse							
Proposed Development Area (m ²)	321,393	321,393	0					
Precipitation (m ³ /year)	289,768	289,768	0					
Total Evapotranspiration (m ³ /year)	170,269	107,440	-62,829					
Total Evaporation (m³/year)	2,329	33,917	31,588					
Total Infiltration (m ³ /year)	58,830	45,723	-13,107					
Total Runoff (m³/year)	58,340	102,688	44,347					
	Russell							
Proposed Development Area (m ²)	368,572	368,572	0					
Precipitation (m ³ /year)	332,305	332,305	0					
Total Evapotranspiration (m ³ /year)	197,966	110,440	-87,526					
Total Evaporation (m³/year)	1,437	44,915	43,478					
Total Infiltration (m³/year)	65,721	50,298	-15,424					
Total Runoff (m³/year)	67,180	126,652	59,472					

Table 4-5- Summary of Water Balance Analysis- Pre-Development and Post-Development

Based on the results of the site water balance, there is an overall infiltration deficit for the site including 8,991 m³/yr for the Hicks property, 13,107 m³/yr for Newhouse and 15,424 m³/yr for the Russell property. To mitigate the effects of reduced infiltration, a LID plan should be integrated into the development designs with areas to promote the collection and infiltration of clean sources of stormwater. Before the designs of LIDs, a feature based water balance should be completed to consider infiltration targets for

features prior to addressing site-wide infiltration deficits.

5.0 WETLAND WATER BALANCE RISK EVALUATION

5.1 Pre-development Subcatchments

Pre-development catchment mapping showing topographical drainage divides and wetland catchments were prepared from 2002 GPA DEM data set using GIS spatial analyst tool a to document existing drainage patterns across the site and determine which areas are within the catchments of wetlands W1 through W5. Wetland and constraints mapping was provided by Beacon. The Pre-Development catchment map is presented overlaying the TRCA watershed boundary in **Figure 6A**. The delineated catchments boundaries fit well into the TRCA subwatershed map at the water-divide between Etobicoke Creek and Humber River Watershed. The catchment areas of W1 through W4 are at the east side of Etobicoke Watershed, while wetland W5 catchment at the western border of Humber River Watershed

The pre-development mapping shows catchments for 6 wetland units including W1, W2A, W2B and W3 through W5. Catchments for wetlands W4 and W3 includes northeast areas of the Site which drain across Hicks Rd N. The largest sub-catchment is mapped draining directly into W5 and includes approximately 890.9 ha of upgradient area along the western boundary of Humber River watershed. All wetlands are within the Sites extent, however only small portions of their catchments are within the proposed development area.

5.2 Post-Development Subcatchments

Post-development wetland catchments were provided by DSEL to document proposed changes to existing drainage patterns for wetland catchments W1 to W5. The Post-Development Catchment Map is presented in **Figure 6B**. Based on the post-development wetland catchments provided, changes to catchment boundaries for Wetland 1 to 5 include area reductions. A summary of changes to catchment size and imperviousness is provided below.

5.3 Wetland Water Balance Risk Evaluation

To aid in determining the level of risk and evaluation requirements for the study, an assessment was completed using the Wetland Water Balance Risk Evaluation guidelines provided by the Toronto and Region Conservation Authority (TRCA, Nov 2017). The guideline provides criteria used to evaluate the magnitude of potential hydrological impact on a wetland. The criteria include:

- i) The proportion of impervious cover in the catchment of the wetland that would result from the proposal;
- ii) The degree of change in the size of the wetland catchment;
- iii) Water taking from, or discharge to, surface water bodies or aquifers directly connected to the wetland, and;
- iv) The impact on locally significant recharge areas.

Considering the above criteria, increases to impervious cover and changes to wetland catchment size were evaluated.

5.3.1 Impervious Cover Score

An increase in the percent of impervious cover within a wetland catchment has the effect of reducing infiltration and potentially decreasing baseflow and/or interflow contributions to the wetland. It further increases runoff contributions and risks of flooding and potentially increases stormwater sediment and contaminant loading. To assess the risk of the proposed impervious surfaces on sensitive features including Wetlands 1 through 5, the Impervious Cover Score (S) was calculated for each of the catchments. The equation defining S is as follows:

$$S = \frac{IC \cdot Cdev}{C}$$

where,

TOWN OF CALEDON

IC - is the proportion of impervious cover proposed within the specific catchment (as a percentage between 0 and 100)

Cdev - is the total proposed development area within the catchment (in ha)

C - is the size of the wetland's catchment (in ha).

Results of the calculation of impervious cover (IC) are provided in **Table 5-1** and show that wetland catchment W1 to W5 are presented with low risk based on the proposed development area with a 65% imperviousness over the Hicks and Russell property, and a 75% imperviousness over the Newhouse property. It should be noted that the catchment for Wetland 2 includes combinations of Hicks and Newhouse property and as such includes proportions of 65% and 75% proposed imperviousness.

Subcatchment Area Name	Pre- development Catchment Size (m ²)	Proposed Impervious Cover (m²)	Impervious Cover (IC) (%)	Sensitive Feature	Expected magnitude of hydrological change
Wetland 1 (W1)	552,512	51,425	9.3	Wetland	Low
Wetland 2A &2B (W2A & W2B)	2,020,072	44,718	2.2	Wetland	Low
Wetland 3 (W3)	6,705,886	112,130	1.7	Wetland	Low
Wetland 4 (W4)	6,507,880	29,749	0.5	Wetland	Low
Wetland 5 (W5)	8,908,677	61,703	0.7	Wetland	Low

Table 5-1 – Impervious Cover Score - Probabilit	v and Magnitude of Hydrological Change
Table 5-1 –IIIIpervious Cover Score - Probabilit	y and wagnitude of nyurological change

Note: * Impervious Cover Score (S) calculated using equation 1 (TRCA - Wetland Water Balance Risk Evaluation, Nov 2017)

5.3.2 Change in Catchment Size

Changes to catchment size directly effects the volume and timing of stormwater contributions to downgradient features. To evaluate the magnitude of hydrological change these effects can have, predevelopment and post-development catchments were compared. **Table 5-2** provides the area breakdown for pre and post-development conditions. The same magnitude thresholds used for impervious cover (10% and 25 %) are used as thresholds to define catchment size alteration. As a result, changes to catchment size for W1 to W6 is considered high risk.

Subcatchment Area Name	Pre- development catchment area (m ²)	Post-Development Catchment Area (m²)	% Change in Catchment Area	Sensitive Feature	Magnitude of Hydrological Change *
Wetland 1 (W1)	552,512	483,946	12.4 % decrease	Wetland	Medium
Wetland 2A &2B (W2A & W2B)	2,020,072	1,954,359	3.3 % decrease	Wetland	Low
Wetland 3 (W3)	6,705,886	6,533,378	2.6 % decrease	Wetland	Low
Wetland 4 (W4)	6,507,880	6,462,112	0.7% decrease	Wetland	Low
Wetland 5 (W5)	8,908,677	8,813,750	1.1% decrease	Wetland	Low

Note: * Based on Table 2: Criteria used to evaluate the probability and magnitude of hydrological change (TRCA - Wetland Water Balance Risk Evaluation, Nov 2017)

6.0 CONSTRUCTION DEWATERING

Construction dewatering is anticipated within the site boundaries for the proposed developments. No below grade plans were available to DS at the time of writing this report. Site servicing trenches and SWM ponds will be excavated mainly through the sandy silt soils within the proposed development and are estimated to extend approximately 4 mbgs and 7 mbgs, respectively. The water table across the site ranges from 258 to 272 masl or approximately 0.3 to 4 mbgs. As a result, groundwater will be encountered during installation of site services and excavation for the SWM pond. Similarly, excavations for the houses are anticipated to extend into the water table and basements are estimated approximately 2 mbgs. Townhouse blocks are anticipated to be constructed slab on grade, therefore no major dewatering issues are expected.

The following section calculates the estimated dewatering required during the construction of the proposed developments using the steady-state flow equation for an unsealed excavation.

6.1 Total Estimation of Flow Rate- (Short Term/Construction Dewatering)

This section calculates the estimated dewatering needed considering the open-cut excavation methods. The estimated construction dewatering flow rates are presented in **Table 6-1**. These values incorporate a 100% safety factor for precipitation and stormwater that may enter the excavation. According to the precipitation data obtained from the Georgetown WWTP climate station, the largest precipitation event occurred in September 2020 (31 mm).

Trench excavation dimensions of 30 m long and 2 m wide were assumed (open at any given time) with an approximate depth of 4 mbgs. Dimensions of the SWM ponds and detached residential blocks were estimated based on site plans provided by the client. Due to the variability of hydraulic conductivity, the

Sep 14, 2021 Project: 19-312-101 –Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2) Caledon, ON

estimated preliminary dewatering values are based on the geomean k-value obtained from the in-situ hydraulic testing and highest groundwater level recorded in BH19-8 on January 2, 2020 (0.3 mbgs/270.5 masl), and was used in the calculation using the Dupuit expression for an unconfined aquifer in steady-state conditions.

Additional pumping capacity may be required to maintain dry conditions within the open excavations following significant precipitation events. Please note that it is the responsibility of the contractor to ensure dry conditions are maintained within the excavation at all times.

It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed locally from storage resulting in lower seepage rates into the excavation.

The maximum flow calculation is intended to provide a conservative estimate to account for unforeseeable conditions that may arise during construction. It should be noted that the dewatering estimate provided in this report is preliminary and that no detailed below grade designs were available for review at the time of writing this report. Once the detailed design depths are finalized, the dewatering estimates must be revised to include the final layout of the development.

	Dewatering Q (m³/day)	Storm Water (m³/day)	Dewatering Q (100% safety factor & Storm Water) (m³/day)	Zone of Influence (m)
Site Servicing Trench	32	2	66	33
SWM Pond- Newhouse	111	592	814	95
SWM Pond A- Hicks	99	453	651	85
SWM Pond B- Hicks	115	629	859	97
SWM Pond -Russell	116	648	880	98
Detached Residential Block	88	248	424	55

Table 6-1: Estimated Preliminary Construction Dewatering Volumes

6.2 Permit Requirements

6.2.1 Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application

An EASR is required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering. A PTTW is only required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is more than 400,000 L/ day.

Since the expected design dewatering preliminary rates for the unsealed excavations are above the MECP's daily water taking limit of 400,000 L/day, with the exception of a single site servicing trench, a

PTTW application will be required to be submitted to the MECP for short-term dewatering prior to construction. These values can change based on actual soil condition at the site and the design.

6.3 Point of Discharge

TOWN OF CALEDON

A discharge plan will be required for the discharge of pumped groundwater from construction dewatering activities. The plan must identify the discharge location and ensure the discharge will not result in any adverse impacts by identifying the discharge measures to be installed and control measures to limit the turbidity of the discharge water. A discharge permit will be required in order to discharge this water to the Region's sewers. Water quality results indicated that several parameters exceeded Peel Region's storm sewer criteria and PWQO. TSS, manganese and aluminium exceeded sanitary sewer criteria.

If the water is to be discharge to local surface water, approvals will be required from the Toronto Region Conservation Authority (TRCA). As such, the quality of groundwater discharge will have to conform to the applicable standards. These include the PWQO. Discharge agreements from the Peel Region may be required if water is discharged to the sewer system.

Table 6-2 provides a recommended monitoring program, triggers for mitigation and recommended mitigation measures for groundwater levels and the discharge of water during construction.

PERIOD	MONITORING LOCATION	MONITORING FREQUENCY	METHOD	TRIGGERS FOR MITIGATION	COMMENTS / RECOMENDATIONS				
WATER LEVELS									
Pre- Construction	Groundwater level monitoring (available on-site monitoring wells)	Continuously for one week	Dataloggers within the existing wells	None	Complete hydrographs to document baseline water levels				
During construction	Existing monitoring wells or replacements adjacent to dewatering area	Daily until target water level is reached	Dataloggers with weekly downloads	Target drawdown not reached or exceeded	increased / reduced pumping; if pumping is approaching 400 m ³ /day, a PTTW will be required				
	Discharge volume	Daily at discharge location	Manual with totalizing flow meter in-line	Flow exceeds predicted volumes	Reduce to maximum allowed or obtain a PTTW				
Post- Construction	Existing monitoring wells or replacements adjacent to dewatering area	Weekly for one month or until water levels reach 90% of original static level	Datalogger water level monitoring with weekly downloads	NA	NA				

Table 6-2: Monitoring and Mitigation Plan

Sep 14, 2021 Project: 19-312-101 –Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2)

Caledon, ON

PERIOD	MONITORING LOCATION	MONITORING FREQUENCY	METHOD	TRIGGERS FOR MITIGATION	COMMENTS / RECOMENDATIONS
		w	ATER QUALITY		
During construction (discharge to sewer)	Groundwater Discharge from dewatering	Sample for parameters listed in the Sewer Use By- Law Field monitoring for turbidity and correlation with lab results	discharge	Discharge quality exceeds the Sewer Use By-Law criteria Field TSS/Turbidity exceed the criteria	More frequent monitoring will be considered Enhanced treatment of the discharge water will be considered if needed

7.0 POTENTIAL IMPACTS

The following are the predicted potential impacts as a result of construction dewatering:

7.1 Local Groundwater Use

Groundwater users in the study area of the proposed development generally draw supply from depths greater than the proposed construction. The study area is generally not serviced by municipal water supply. Several domestic well are recorded in the study area. A door-to-door water well survey is recommended to be completed within the study area to confirm the presence and the condition of domestic wells.

7.2 Current PTTW Search

The MECP PTTW Open Data Catalogue was searched within a 1 km radius of the Site. The search indicated that there were no active PTTWs within 1 km of the Site. Therefore, groundwater interferences from surrounding activities are not expected to occur.

7.3 Surface Water

Groundwater contributions to the tributary and wetlands occur on a seasonal basis in winter and spring as groundwater levels rise. A reduction in recharge over the Site as a result of the development may result in a lowering of the water table and thus a reduction in groundwater contribution. The water balance completed for the Site shows there is a total Site infiltration deficit. To reduce risk to watercourses and

Sep 14, 2021 Project: 19-312-101 –Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2) Caledon, ON

wetlands which partially rely on groundwater contribution, the infiltration deficit should be removed by designing LIDs which encourage the infiltration of clean sources of stormwater generated over the proposed development area. The LID strategy should strive to match pre-development and post-development infiltration volumes while incorporating designs aimed to maintain contributions to the tributary and wetlands.

Discharged water from temporary construction dewatering activities should be managed to avoid direct discharge of potentially impacted water into sensitive features such as the wetland. To manage the potential risks to surface water quality, a discharge plan should be developed for the discharge of pumped groundwater from the construction dewatering. It should be noted that construction dewatering in proximity to the tributary and wetland may occur and that any zone of influence from proposed construction dewatering should be assessed during detailed design to determine potential risks to surface water features.

7.4 Groundwater Quality

To prevent degradation of groundwater quality within the immediate vicinity of the proposed development, it is suggested that only clean sources of stormwater be considered for infiltration LIDs. Additionally, engineered designs for discharged water from construction dewatering activities and storm sewer systems should ensure an adequate level of treatment to protect receiving areas and shallow groundwater quality. Despite an appropriate level of treatment, it is expected that small increases in urban pollutants such as those associated with de-icing (chloride and sodium) will occur in the shallow groundwater zone. Discharge permits and agreements may be required from the Peel Region for short-term and long-term discharge.

7.5 Well Decommissioning

Following the completion of construction activities, all dewatering wells, well points, eductors, and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be carried out by a licenced water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

8.0 GENERAL COMMENTS AND LIMITATIONS OF REPORT

DS Consultants Limited (DS) should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, DS will assume no responsibility for interpretation of the recommendations in the report.

This report is intended solely for the Client named. The material in it reflects our best judgment in light of the information available to DS at the time of preparation. Unless otherwise agreed in writing by DS, it shall not be used to express or imply warranty as to the fitness of the property for a particular purpose. No portion of this report may be used as a separate entity, it is written to be read in its entirety.

TOWN OF CALEDON PLANNING

The conclusions and recommendations given in this report are based on information determined at the test hole locations. The information contained herein in no way reflects on the environment aspects of the project, unless otherwise stated. Subsurface and groundwater conditions between and beyond the test holes may differ from those encountered at the test hole locations, and conditions may become apparent during construction, which could not be detected or anticipated at the time of the Site investigation. The benchmark and elevations used in this report are primarily to establish relative elevation differences between the test hole locations and should not be used for other purposes, such as grading, excavating, planning, development, etc.

The design recommendations given in this report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report.

The comments made in this report on potential construction problems and possible methods are intended only for the guidance of the designer. The number of test holes may not be sufficient to determine all the factors that may affect construction methods and costs. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work. This work has been undertaken in accordance with normally accepted hydrogeological practices.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. DS accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.

We trust that the information contained in this report is satisfactory. Should you have any questions, please do not hesitate to contact this office.

DS Consultants Ltd.

Prepared By:

Satt Wilm

Scott Watson, B.A.T. Project Manager

Reviewed By:

Mat CA

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Sep 14, 2021 Project: 19-312-101 –Preliminary Hydrogeological Investigation Mayfield West Phase 1 Expansion (Stage 2) Caledon, ON

9.0 **REFERENCES**

Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.

Environment Canada (Climate Data)

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html

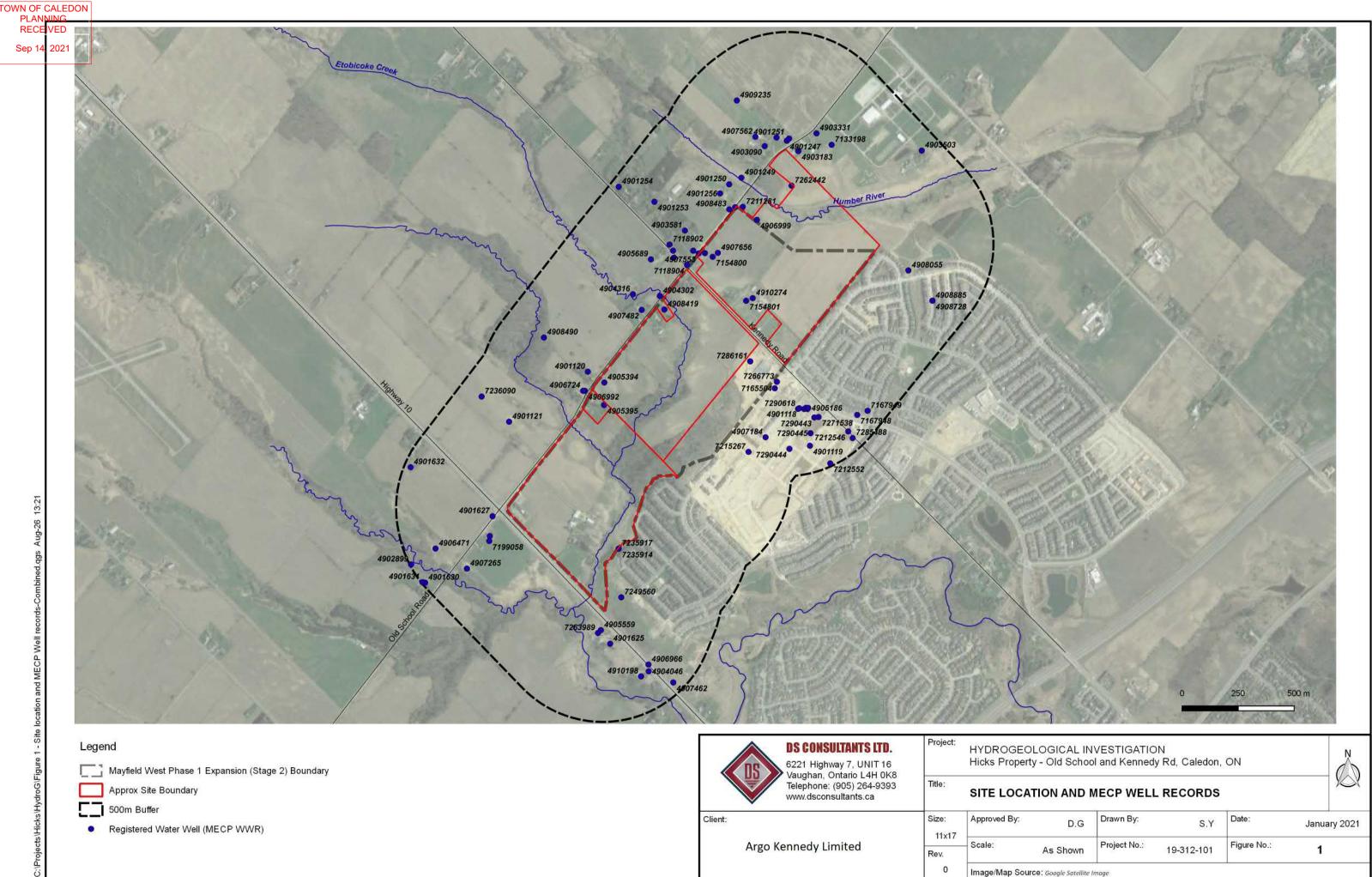
Freeze, R.A. and J.A. Cherry. "Groundwater". Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.

Ontario Regulation 245/11- Environmental Activity and Sector Registry.

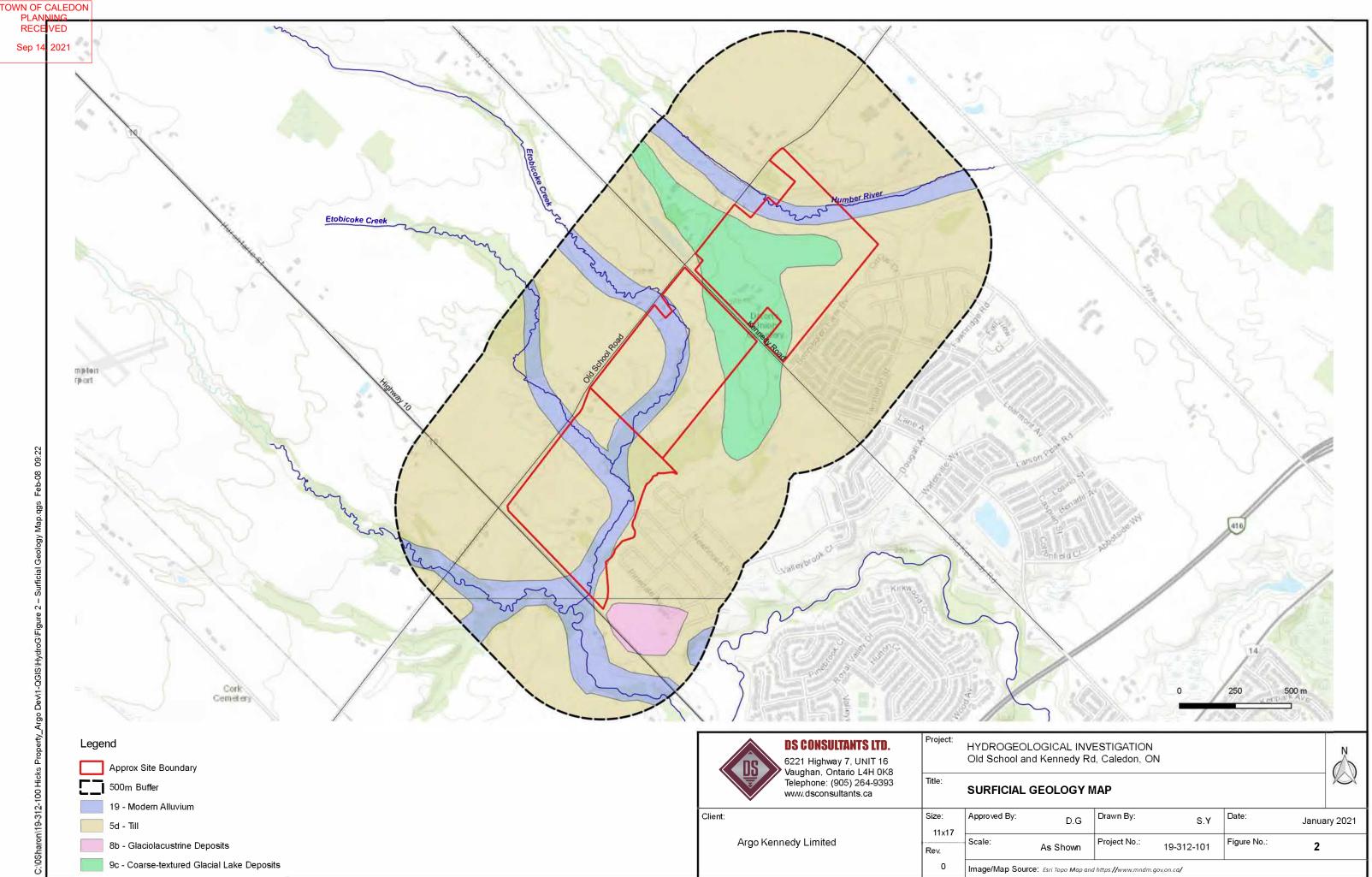
Ontario Ministry of Environment and Climate Change, Permit to Take Water Manual, April 2005

Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications - Second Edition, New York: John Wiley & Sons.

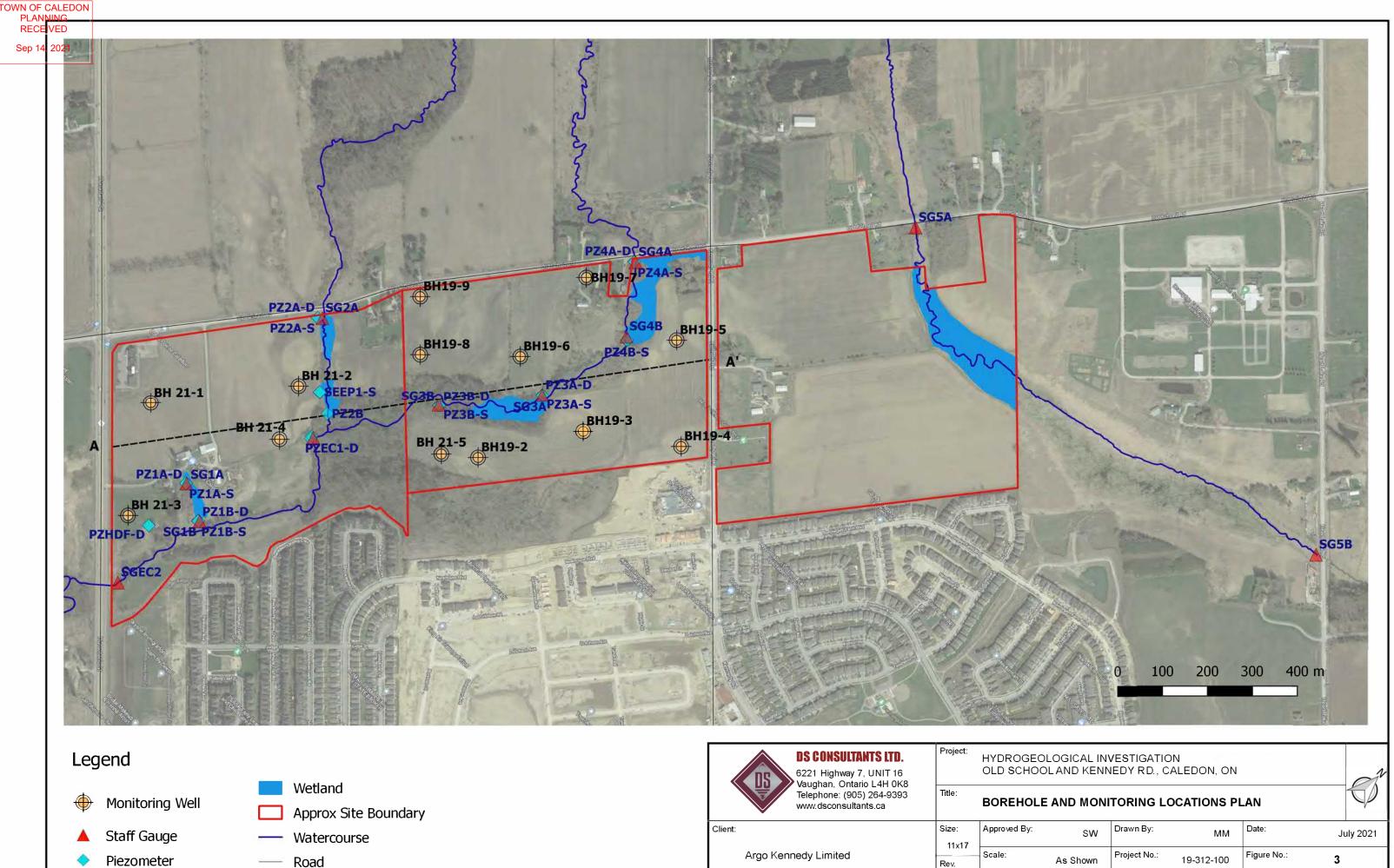
Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.


Stormwater Management Planning and Design Manual- MECP (2003)

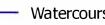
The Peel Region Sewers By-Law

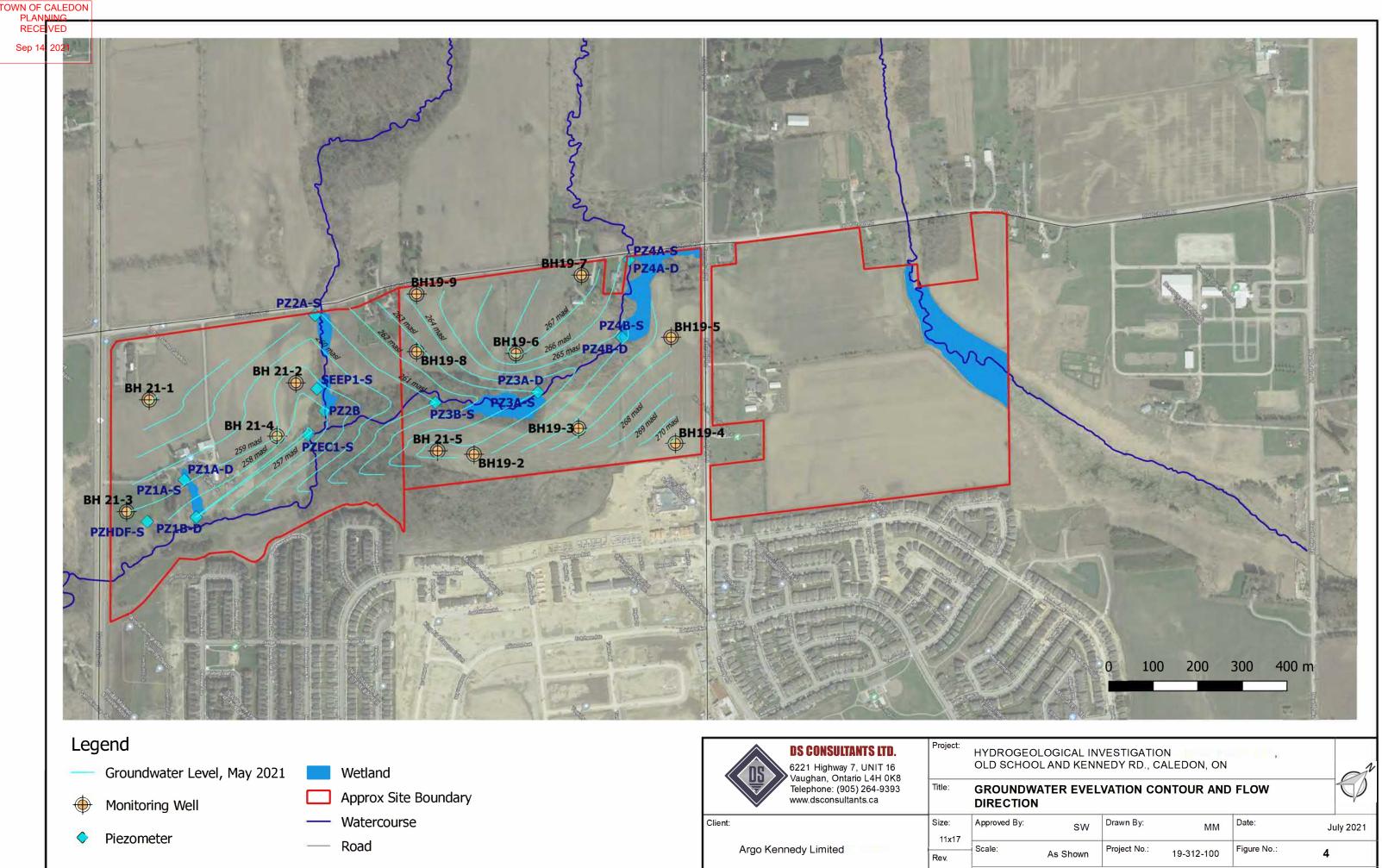

Wetland Water Balance Risk Evaluation, Toronto and Region Conservation Authority, 2017

TOWN OF CALEDON PLANNING RECEIVED Sep 14, 2021 Project: 19-312-101 –Preliminary Hydrogeological Investigation <u>Mayfi</u>eld West Phase 1 Expansion (Stage 2) Caledon, ON

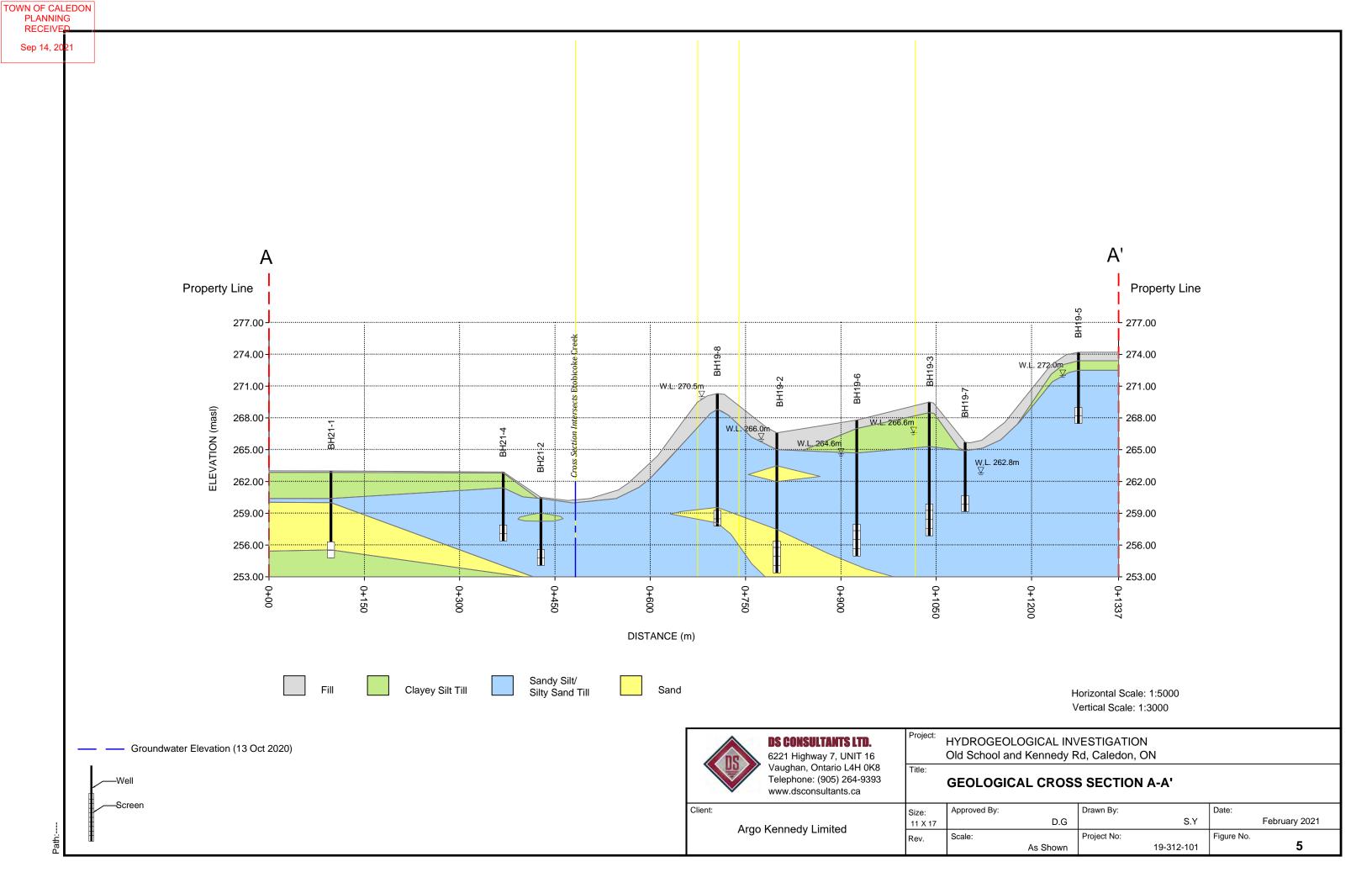

FIGURES

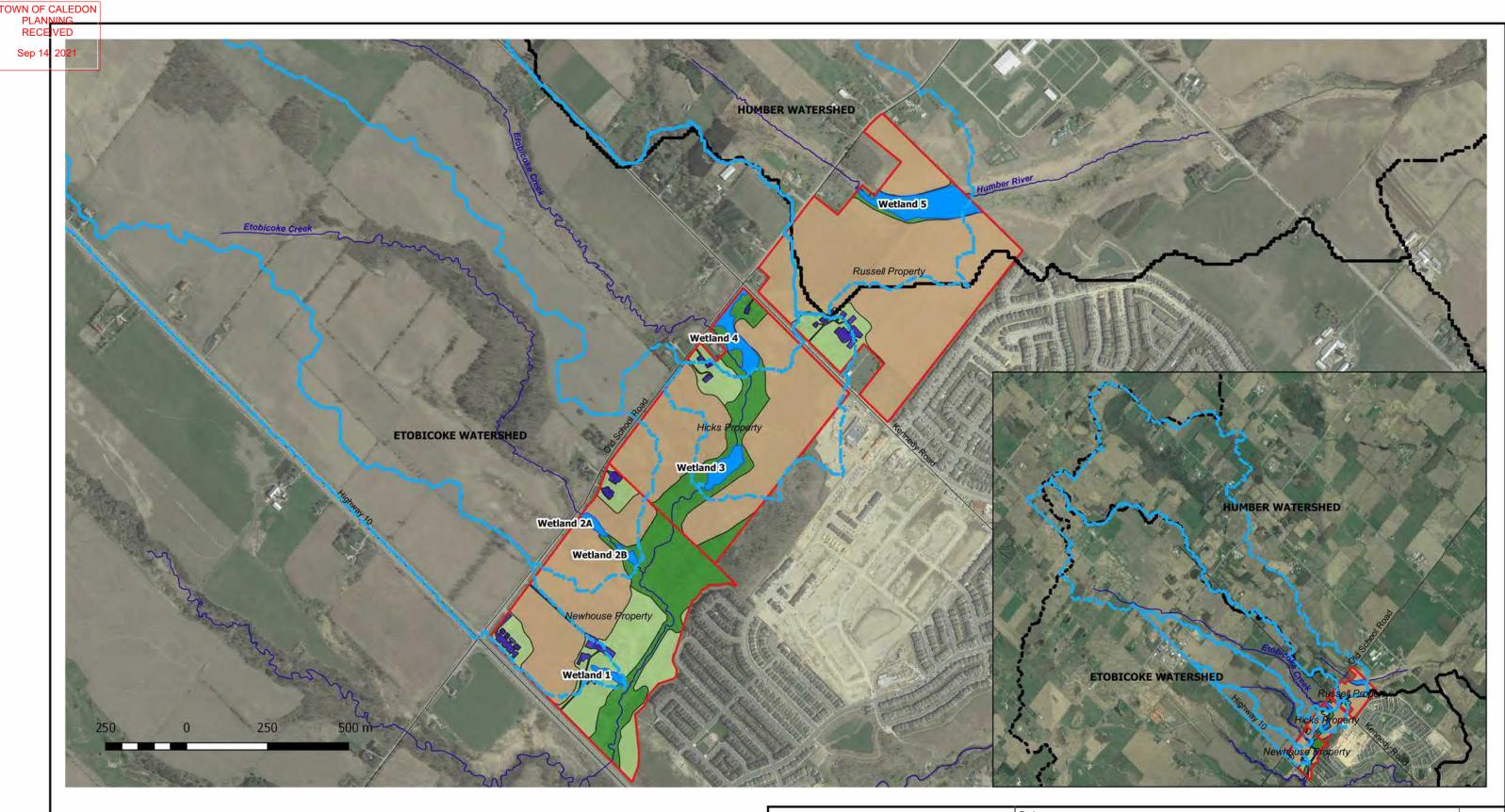
D.G	Drawn By:	S.Y	Date:	January 2021
As Shown	Project No.:	19-312-101	Figure No.:	1


D.G	Drawn By:	S.Y	Date:	January 2021			
As Shown	Project No.:	19-312-101	Figure No.:	2			
LIFCe: Essi Tano Man and https://www.madm.gov.on.cg/							



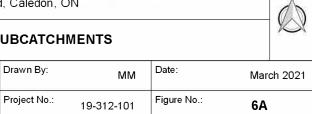
---- Road


DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8	Project:	HYDROGE OLD SCHO
Telephone: (905) 264-9393 www.dsconsultants.ca	Title:	BOREHO
lient:	Size:	Approved By:
	11x17	-
Argo Kennedy Limited	Rev.	Scale:
	0	


Google Satellite Image

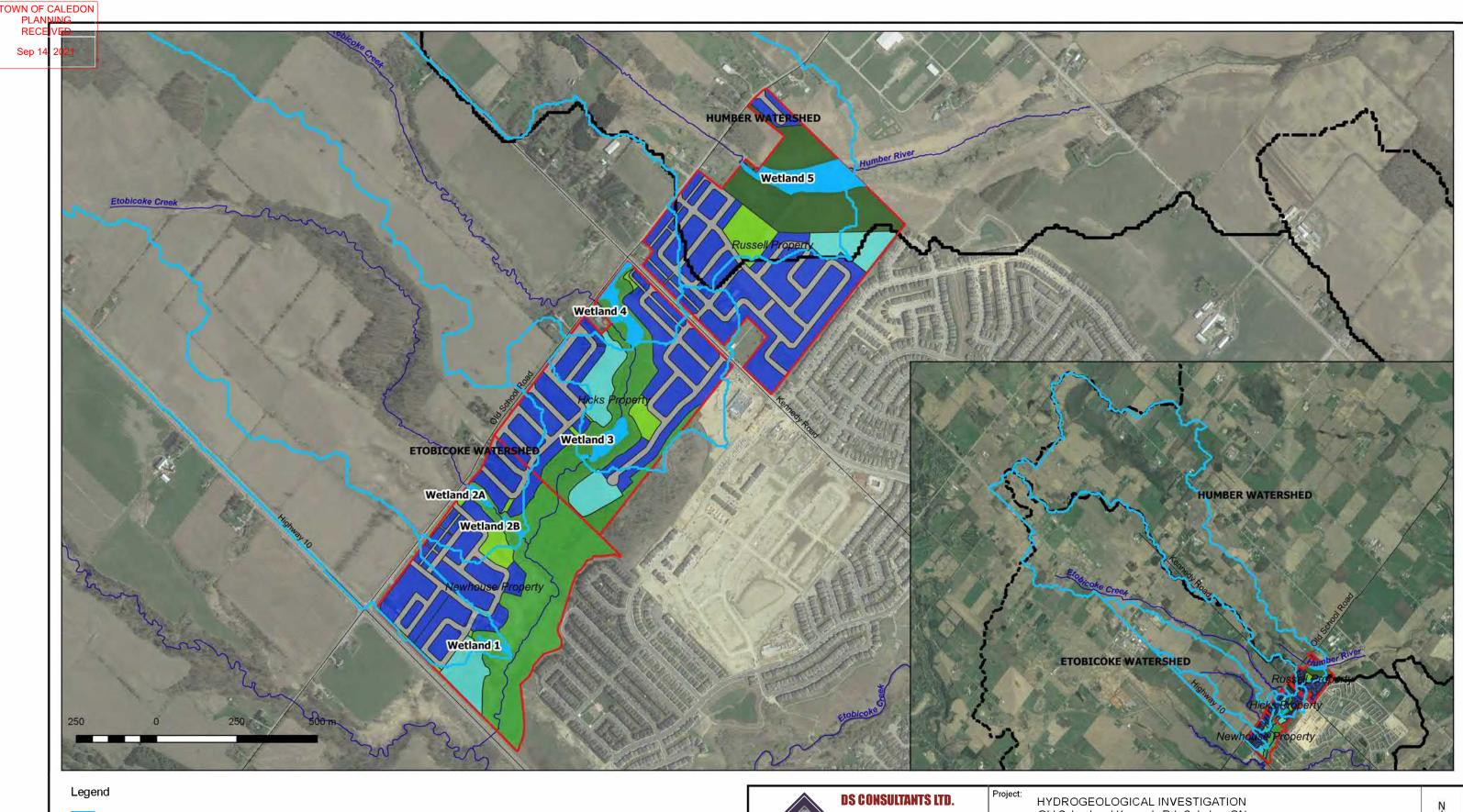
DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8	Project:	HYDROGEO OLD SCHOO
Telephone: (905) 264-9393 www.dsconsultants.ca	Title:	GROUNDW DIRECTION
Client:	Size:	Approved By:
Argo Kennedy Limited	11x17 Rev.	Scale:
	0	

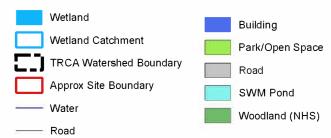
Google Satellite Image



	DS CONSULTANTS LTD.	Project:	HYDROGEOL Old School an
	6221 Highway 7, UNIT 16 ' Vaughan, Ontario L4H 0K8		
	Telephone: (905) 264-9393 www.dsconsultants.ca	Title:	PRE-DEVEL
Client:		Size:	Approved By:
Argo Kenne	dy Limited	11x17	
Algo Kellile	ay Linnea	Rev.	Scale:
		0	Image/Map Sourc

DLOGICAL INVESTIGATION and Kennedy Rd, Caledon, ON

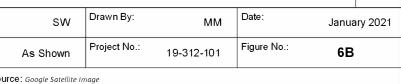



Ņ

Irce: Google Satellite Image

As Shown

SW

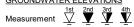


DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8	Project:	HYDROGEO Old School ar
Telephone: (905) 264-9393 www.dsconsultants.ca	Title:	POST-DEVE
Client:	Size:	Approved By:
Argo Kennedy Limited	11x17	Scale:
	Rev.	
	0	Image/Map Sour

DLOGICAL INVESTIGATION and Kennedy Rd, Caledon, ON

/ELOPMENT CATCHMENT

Appendix A


PROJ	T: Geotechnical Investigation							DRILI	LING D	ATA											
CLIEN	T: Argo Developments							Metho	od: Hol	low Ste	em Au	iger									
	ECT LOCATION: Hicks Property, Old S	choc	ol Rd,	Ontar	rio					00mm						RE	EF. NC	D.: 19	9-312	2-100	
		0455	47.0	70 5 5		000		Date:	Dec/1	1/2019)					EN	ICL N	0.: 2			
BORE	HOLE LOCATION: See Drawing 1 N 4 SOIL PROFILE	8455		79 E 5 SAMPL		693		DYNA	MIC CC		IETRA	TION		<u> </u>							•
					.E3	ËR				-				PLASTI LIMIT	C NATU	URAL	LIQUID LIMIT	ż	T WT	METHANE AND	
(m)		STRATA PLOT			SN E	GROUND WATER CONDITIONS	z				H (kF	0 10 Pa)		W _P		TENT W	WL	(KPa)	NATURAL UNIT WT (kN/m ³)	GRAIN SIZE	
<u>ELEV</u> DEPTH	DESCRIPTION	ATA F	NUMBER		BLOWS 0.3 m		ELEVATION	ου	NCONF	INED	÷	FIÉLD VA & Sensitiv	NE ity				T (%)	CC(SCK	ATUR/ (Kh	DISTRIBUTION (%)	
266.6			NUN	ТҮРЕ	ż	GRC CON	ELEV			RIAXIAL							1 (70) 30		z	GR SA SI CL	
2609.4	TOPSOIL: 250mm		. 1	SS	7			Ē													•
0.3	WEATHERED/ DISTURBED SOIL: silty clay, trace sand, trace gravel,		<u> </u>	00	, 	$\mathbf{\nabla}$. L.											-			
1	trace rootlets, brown, moist, firm to stiff	1	2	SS	12		Jan 02									0					
265.1			<u> </u> _			¥	W. L. :	ا± 265.3 ا	 m												
2 1.5	SANDY SILT: trace clay, trace gravel, brown, moist, compact		3	SS	18		May 03	3, 202 <i>°</i> F	1						0						
264.3	SILTY SAND TILL: trace clay,		-			Ţ	W. L. :	E 264.4 i	 m												
2.0	trace gravel, brown, wet, dense		4	SS	46		Feb 03	3, 2021 F	 						- •			1			
263.5 3.1	SAND: trace gravel, brown, wet,							-													
	compact		5	SS	23		263	-							(-					
4							200	Ē													
262.0								-													
4.6	SANDY SILT TILL: trace to some	<u> </u>	6	SS	67		262 Bento-														
2	clay, trace gravel/ cobble, wet sand seams, grey, moist, very dense		Ľ	00	07		Dento	Ē							Ĩ						
		0	-				261	-										-			
6								Ē													
	sandy below 6.1m		. 7	SS	95/ 280mr										0						
7							260	-													
								Ē													
	sand seams, pinkish grey below		-				259	-													
8	7.6m		8	SS	90			Ē							0						
							258	-													
257.5								-													
9.1	SAND AND GRAVEL: trcae clay, trace silt, trace cobble, reddish	0 .0	9	SS	50/ 25mn/			Ē							0						
0	brown, very dense	0					257	-													
<u> </u>		0																			
							. 256	-						<u> </u>	0			-		34 37 23 6	
1		0.0	<u>10</u>	SS _	50/ 100mr		:	Ē						1	-					57 01 20 0	
		0	1			i Hi	Filter	L Pack													
2		.0					Slotte:	d Pipe E													
		0	11	SS /	50/			Ľ						1	0						
				/	⊽5mn		254	-						+				1			
³ 253.4	grey shale fragments below 13.0m	.0	40	. 33 ,	50/			-							<u> </u>						
13.2	END OF BOREHOLE: Notes:				75mn									1							
	1) 50mm dia. monitoring well																				
	installed upon completion. 2) Water level Reading:													1							
	Date: Water Level (mbgl):																				
	Jan 02, 2020 0.6 Feb 03, 2021 2.2													1							
	May 03, 2021 1.3	1																			
	Way 05, 2021 1.5																				
	Way 03, 2021 1.3																				
	iviay 05, 2021 1.5																				

TOWN OF CA PLANNII RECEIV	NG.	N DS CONSULTANTS LTD.																				
Sep 14, 2		Grotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOF	REHO	DLE	E BH'	19-3									1 OF 1	1
		ECT: Geotechnical Investigation									G DATA											
		IT: Argo Developments ECT LOCATION: Hicks Property, Old S	Schor	d Rd	Onta	rio					lollow 200m		Auge	r			DE	F. NC) · 10	3 3 1 3	100	
		M: Geodetic		JIINU	, Ontai	10					c/10/20									9-312	-100	
		HOLE LOCATION: See Drawing 1 N 4	8457	754.1	07 E 5	93363	.181															
		SOIL PROFILE		5	SAMPL	ES	~		DYNA RESIS	MIC STAN	CONE F CE PLC		ratio >	ON			URAL	LIQUID		Ļ	METHANE	
	(m)		01			S	VATEI	-	2	20	40	60	80	100		CON	STURE ITENT W		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE	
	ELEV DEPTH	DESCRIPTION	TA PL	ER		BLOWS 0.3 m		ELEVATION	SHE/ 0 U	AR S NCO	NFINED	GTH () -	(kPa) + ^{FIÉ}	100 LD VANE ensitivity	-		o		OCKE (Cu) (F	TURAL (kN/r	DISTRIBUTION (%)	I
	269.5		STRATA PLOT	NUMBER	ТҮРЕ	"N"	GROUND WATER CONDITIONS	ELEV		UICK 20	TRIAX	IAL > 60	< LA 80	B VANE 100			ONTEN ⁻ 20 3	Г (%) Ю	–	A	GR SA SI CI	L
	269.9 269.9	TOPSOIL: 250mm WEATHERED/ DISTURBED SOIL:		. 1	SS	1			Ē								0					-
	-	silty clay, trace organics, trace rootlets, brown, moist, very soft to						269	Ē						-							
	- <u>268.5</u> 1.0	stiff /		2	SS	15			Ē							0						
	2	CLAYEY SILTY TILL: sandy, trace gravel, brown, moist, very stiff to hard		3	SS	26		268								0			-			
		cobble at 2.3m		Æ				067	Ē													
	3			4	SS	28	\Box	267	E							0						
	-			5	SS	34	Ţ	W.L. Jan 02	266.6 2, 2020	m)r .n						0						
			Ĥ	Ľ				May 0														
	- <u>265.3</u> - 4.2	SANDY SILT TILL: trace clay,		<u>,</u>				-Bento	E nite													
		trace to some gravel, brown, moist, dense to very dense		-				265	E				-									
	5	grey below 4.6m		6	SS	59			Ē						c							
	-			·				264	- -			-	+		+							
	6	reddish brown below 6.1m		·					Ē													
			. .	7	SS	54		263	-				_		c)						
	7			1																		
	-		¢.					262	-				_		_							
	- 	moist to very moist below 7.6m		8	SS	37			-						c							
	-							. 261	Ē				_									
	- - - 9								Ē													
		cobble/ boulder between 9.1m and 12.2m		9	SS	50/ 100m		: 260	E						c						5 35 55 5	•
	- 10		. 0 .	·				:	Ē													
	-		. .	·				÷-Filter ∻-Slotte	E Pack													
	- - 11			10	SS	50/		∺-Slotte :	d Pipe E	9					c							
	-		6	1		2311		:: 258	Ē													
	12			1			目	. 200	Ē													
	-256.9			11	ss	50/		<u>.</u> 057	Ē						c							
	12.6	END OF BOREHOLE: Notes:				125m	# <u></u>	257														-
DS SOILLOG 19-312-100.GPJ DS.GDT 5/17/21		 50mm dia. monitoring well installed upon completion. 																				
3DT (2) Water level Reading:																				
L DS.		Date: Water Level (mbgl): Jan 02, 2020 2.9																				
00.GP.		Feb 03, 2021 3.1 May 03, 2021 3.2																				
312-10																						
19-3																						
ГГОЕ																						
s sol																						
	GPOUN	DWATER ELEVATIONS	1	<u>ı </u>	1	1	GRAPH NOTES	<u>1</u> + 3	× ^{3.}	Numl	bers refe	er	08	^{=3%} Strai	n at Faile	ure	1	1	I			
	<u>UIUUN</u>	1st 2nd 3rd 4th					NOTES	, i		to Se	nsitivity		-	Judi								

2024	inotechnical � Environmental � Materials � Hydrogeology									3H19										1 OF 1	_
	CT: Geotechnical Investigation								ING D												
	Γ: Argo Developments CT LOCATION: Hicks Property, Old S	choc		Ontor	io				od: Holl eter: 20		em Au	ger				D		. 10	210	100	
	I: Geodetic	CHOC	n Ru,	Untai	10				Dec/1)						EF. NO		-312	-100	
	IOLE LOCATION: See Drawing 1 N 4	8460	44.80	68 E 5	93365	.481		D alto.	200, 1	.,_0.0						<u> </u>					
	SOIL PROFILE		r	AMPL				DYNA RESIS	MIC COI	NE PEN PLOT		TION			NAT	URAI			⊢	METHANE	
(m)		Ц				GROUND WATER CONDITIONS				-			0	PLASTI LIMIT	CON	ITENT	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NTN (AND	
	DESCRIPTION	STRATA PLOT	ъ		BLOWS 0.3 m		ELEVATION	SHEA	0 40 R STR NCONFI	RENGT	TH (kF	a)	NF	₩ _P		w 0	WL	CKET Su) (kP	RAL U (kN/m³	GRAIN SIZE	
DEPTH		RAT/	NUMBER	ТҮРЕ		NUOS	EVA-									ONTEN	T (%)	9 S	NATU	(%)	
270.3 27 0 .0	TOPSOIL: 250mm	LS 1/2	Я	Ţ	"Z	50	Щ	2	0 40	0 60) 8	0 10	0	1	0 2	20 3	30			GR SA SI CL	-
0.3	WEATHERED/ DISTURBED SOIL:		1	SS	4		270	-							o						
269.5 1 0.8	sandy silt to silty sand, trace rootlets, brown, moist, loose							E													
- 268.8	WEATHERED/ DISTURBED SOIL: silty sand, brown, wet, loose		2	SS	9		-Bento	Ł nite──							0						
1.5	SILTY SAND: trace clay, brown, moist to very moist, loose to		3	SS	6			Ē							0						
-2	compact						268	-													
			4	SS	13		200	Ē							•						
<u>-</u> 3	wet below 3.1m						:														
F			5	SS	11		267	-								•				0 57 41 2	
4								E													
-265.7						間	W.L.	2, 2020	1												
4.6	SANDY SILT: trace clay, trace gravel, brown, wet, compact		6	SS	10	間	Slotte	d Pipe E								0					
	J,, net, senipuot		\vdash			目	265	-													
Ē			1					Ē													
264.2 6.1	CLAYEY SILT TILL: sandy, trace		\vdash			p:E	264	-													
263.6	gravel, grey, moist, very stiff	ŀŀŀ	7	SS	18		204														
6.7	END OF BOREHOLE: Notes:																				
	1) 50mm dia. monitoring well installed upon completion.																				
	2) Water level Reading:																				
	Date: Water Level (mbgl): Jan 02, 2020 4.0																				
	Feb 03, 2021 3.9 May 03, 2021 3.9																				
	,, 0.0																				

024	Septechnical � Environmental � Materials � Hydrogeology									BH19	-5								1 OF	•
	CT: Geotechnical Investigation								LING [DATA Ilow Ste	am Au	aer								
	CT LOCATION: Hicks Property, Old S	Schoo	l Rd.	. Ontar	io					200mm		iyei			RE	EF. NC).: 19	-312	-100	
	<i>I</i> : Geodetic			, -						10/2019)					ICL NO		•		
BORE	HOLE LOCATION: See Drawing 1 N 4	8458	83.9	51 E 5	93540	.33														
	SOIL PROFILE		s	SAMPL	ES	<u>د</u>		DYNA RESIS	MIC CO			TION	PLAS		TURAL	LIQUID		₽	METHAN	E
(m)		10			S	GROUND WATER CONDITIONS	-	2	20 4	10 60) 8	0 100		COI	STURE NTENT W	LIMIT	POCKET PEN. (Cu) (kPa)	ر") (°ر	AND GRAIN SIZ	Έ
ELEV DEPTH	DESCRIPTION	STRATA PLOT	ЕR		BLOWS 0.3 m	ND V TION	ELEVATION	SHEA O UI	AR STI NCONF	RENGT	"H (kF +	0 100 Pa) FIELD VANE & Sensitivity	"-		·•		OCKE1 (Cu) (k	'URAL (kN/n	DISTRIBUTI	
		TRA	NUMBER	ТҮРЕ	2 2	SROU SOND	ILEV/			RIAXIAL 40 60	^		E WA		ONTEN [®] 20 3	T (%) 30	_	Γ¥1	(%)	~
274.2	TOPSOIL: 250mm					00	ш 274		4	+0 00) 0	0 100							GR SA SI	CL
0.3	WEATHERED/ DISTURBED SOIL: silty sand, trace clay, trace gravel,		1	SS	2		214								ο					
273.4 1 0.8	horown, very moist, very loose							-												
	CLAYEY SILT: some sand, trace gravel, trace rootlets, brown, very		2	SS	8		273	 -							<u>ل</u>					
272.5 2 1.7	moist, firm to stiff SANDY SILT: trace to some clay,		3	SS	4			F						c	, ,					
-	trace gravel, brown, very moist, loose to compact					_ ⊻	-Bento 979 W. L. 2	nite	m											
			4	SS	16		Jan 02	. <u>,</u> 2020						0						
	SANDY SILT TILL: trace clay,					Ţ	W. L. 2	E 271 2 1	 m											
	trace gravel, brown, very moist,	0	5	SS	20		May 03	3, 202′ ⊦	1					0						
4	compact							-												
-269.6							270	-												
4.6	SILTY SAND: trace clay, grey, saturated, compact		6	SS	24	E													0 64 34	2
	Saturated, compact		Ļ		2.	1:H.	-Filter Slotte						_						0 01 01	-
						に目い	Ciotte	Ē												
6			_				268	-												
267.5			7	SS	12										0					
6.7	END OF BOREHOLE: Notes:																			
	1) 50mm dia. monitoring well installed upon completion.																			
	2) Water level Reading:																			
	Date: Water Level (mbgl):																			
	Jan 02, 2020 2.2 Feb 03, 2021 3.0																			
	May 03, 2021 3.0																			

TOWN OF CA PLANNI RECEIV	NG	DS CONSULTANTS LTD.																	
Sep 14, 2		Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOF	REHO	DLE BH	19-6								1 OF 1
		ECT: Geotechnical Investigation							DRIL	LING DAT	A								
		T: Argo Developments								od: Hollow		uger							
		ECT LOCATION: Hicks Property, Old S	schoo	ol Rd	Ontar	10				eter: 200m						REF. NO			2-100
		M: Geodetic HOLE LOCATION: See Drawing 1 N 4	8457	710 3	92 E 5	92894	130		Date:	Dec/09/2	019				t	ENCL N	0.: 6		
	DOIL	SOIL PROFILE	0401	-	SAMPL				DYNA	MIC CONE		ATION					Г		
	(F				GROUND WATER CONDITIONS						0	PLASTI LIMIT	C NATURAL MOISTURE CONTENT	LIQUIE	р г <u>г</u>	NATURAL UNIT WT (kN/m ³)	METHANE AND
	(m) FLEV		STRATA PLOT			BLOWS 0.3 m	AW C	NO	SHE/	AR STREN	IGTH (k	Pa)		WP	W	WL	POCKET PEN. (Cu) (kPa)	AL UN	GRAIN SIZE
	<u>ELEV</u> DEPTH	DESCRIPTION	RATA	NUMBER	ш			ELEVATION		NCONFINEI UICK TRIAX	+ C	FIELD VA & Sensitivi	NE ity	WAT	ER CONTE	NT (%)	00 00 00	ATUR (k	(%)
	267.8			NON N	ТҮРЕ	ž	GR CO	ELE		20 40		B0 10		1	0 20	30		_	GR SA SI CL
	267:5	TOPSOIL: 350mm WEATHERED/ DISTURBED SOIL:	<u>, ' '</u> ,	1	SS	5			-						o				
	267.0	sandy silt, trace clay, trace						267	<u> </u>								_		
		stiff /		2	SS	17									0				
	2	CLAYEY SILT TILL: some sand, trace gravel, occasional cobble, brown, moist to very moist, very stiff		3	SS	36		266	-										
		to hard sandy, sand seams below 2.3m		4	SS	31									0				
	-264.7			\vdash				265	-										
	3.1	SANDY SILT TILL: trace clay, trace gravel, brown, moist to very	. . .	5	SS	35	Ť	Jan 02	264.6 2, 2020)n					0				
	-4	moist, dense to very dense						Feb 0	3, 202 F	i							1		
]			<u>¥</u>	·W.L. May 0	L 263.7	m 1									
	-	trace cobbles, grey below 4.6m	· oʻ	6	SS	50/		263						0			_		
	2					75mn													
			• •					262											
	- <u>*261.7</u> 6.1	SANDY SILT TILL: trace to some	. . .	-		90/		202	Ē										
		clay, trace gravel, trace cobble/		7	SS	2 <u>30m</u> r			Ē					0					
	7	boulder, grey, moist, very dense						261	<u>-</u>										
									Ē										
	8		ŀø	8	SS	81		260	-					0			-		
									Ē										
	-							259	-										
	<u>-9</u>								Ē										
	_			9	SS	52			Ē					0					3 41 45 11
	- 10							258	Ē										
							目	Filter	Pack										
	11		6.	· 10	SS	71		Slotte	d Pipe E					0			-		
				-					E E										
			[.i� .					256	Ē										
	12			—			E		Ē										
	255.0			. 11	SS	59			Ē					o					
/21	12.8	END OF BOREHOLE: Notes:						255											
DS SOILLOG 19-312-100.GPJ DS.GDT 5/17/2		 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: 																	
DS.G		Date: Water Level (mbgl):																	
GPJ		Jan 02, 2020 3.2 Feb 03, 2021 3.4																	
-100.		May 03, 2021 4.1																	
9-312																			
0G 1																			
DS SC																			
_	GROUN	DWATER ELEVATIONS						+ 3	× ³ :	Numbers ref	fer (8 =3%	Strain	at Failu	re				

	CT: Geotechnical Investigation								LING DA										
	: Argo Developments								od: Hollov		Auger								
	CT LOCATION: Hicks Property, Old 1: Geodetic	Schoo	ol Ra	, Ontai	10				eter: 200							EF. NC		312-	100
	IOLE LOCATION: See Drawing 1 N	18456	619.2	6 E 59	2985.4	17		Date.	Decivosi	2013					L		J 1		
-	SOIL PROFILE		r –	SAMPL				DYNA RESIS	MIC CONE TANCE P		RATION			ΝΔΤ	ΊIRΔI			_	METHANE
(m)		н				GROUND WATER CONDITIONS							PLASTI LIMIT	CON	ITENT	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	N _	AND
ELEV DEPTH	DESCRIPTION	A PLO	~		BLOWS 0.3 m		NOI	SHEA	AR STRE	NGTH (kPa)	/ANE	₩ _P		w •	WL	CKET Su) (kP	KAL U (KN/m ³	GRAIN SIZE DISTRIBUTIOI
EPIH		STRATA PLOT	NUMBER	ТҮРЕ			ELEVATION					ANE			ONTEN	• •	90) 1		(%)
265.7	TOPSOIL: 350mm	LS 1/2	ž	È	z	55	Щ	- 2	0 40	60	80 1	100	1	0 2	20 3	30		0	GR SA SI C
265:4 0.4	WEATHERED/ DISTURBED SOIL:	111	1	SS	4										þ				
264.9	sandy silty, some clay, trace gravel, trace rootlets, brown, very moist,		-				265	-											
	SANDY SILT TILL: trace to some		2	SS	7		-Bento	E nite						0					
263.9	clay, trace gravel, brown, moist,		3	SS	12		264	E			_								
1.8	Noose to compact SILTY SAND: brown, moist to very		Ļ					-						0					
	moist, compact		4	SS	27		263	-							0				
3							W.L.	262.8 I	m l										
	wet below 3.1m		5	SS	25		Jan 02	, 2020)'						þ				2 56 39 3
4							Filter	Pack_ d Pipe											
004.4							:	-											
261.1 4.6	SANDY SILT TILL: trace to some		6	SS	36	<u>i Hi</u>	261	-			_			0					
	clay, trace gravel/ cobble, grey, moist, dense to very dense		. •	- 33	30			-											
		••	·				260	-											
<u>6</u>	reddish brown below 6.1m		·		80/														
259.2 6.5	END OF BOREHOLE:	·[•]	. 7	SS	255mr			-					0					_	
0.0	Notes: 1) 50mm dia. monitoring well																		
	installed upon completion. 2) Water level Reading:																		
	, 0																		
	Jan 02, 2020 2.9																		
	Feb 03, 2021 3.0 May 03, 2021 2.8																		
		1	1		1		1					1	1		1	1			

Measurement $\underline{\nabla}$ $\underline{\nabla}$ $\underline{\nabla}$ $\underline{\nabla}$

CALEDO NING	DS CONSULTANTS LTD.							EUC		U10	Q									
, 2 <u>02</u>	Geotechnical & Environmental & Materials & Hydrogeology				LU	g Or					-0									1 OF 1
	ECT: Geotechnical Investigation										A									
	JT: Argo Developments IECT LOCATION: Hicks Property, Old S	Schor		Ontor	io				od: Hollo eter: 20		m Au	iger				D	EF. NO	. 1	0 211	2 100
	IM: Geodetic	SCHOO	JIINU	, Ontai	10				Dec/09											2-100
	EHOLE LOCATION: See Drawing 1 N 4	8457	773 5	44 F 5	93145	616		Duto.	D00/00	5/2015								0 0		
	SOIL PROFILE		1	SAMPL				DYNA	MIC CON TANCE		ETRA	TION								
						GROUND WATER CONDITIONS				_		_	n	PLASTI LIMIT	C MOIS	URAL STURE ITENT	LIQUID LIMIT	ż	NATURAL UNIT WT (kN/m ³)	METHANE AND
(m)		STRATA PLOT			N N N	.AW 0	z	SHE/	AR STR	ENGT	H (kF	pa)	1	W _P		W	WL	POCKET PEN. (Cu) (kPa)	AL UN	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	ATA	NUMBER	ш	BLOWS 0.3 m		ELEVATION	0 0		NED	+	FIÉLD V. & Sensiti	ANE vity	WA			T (%)	C DOC	ATUR. (KI	(%)
270.8		STR	NUN	ТҮРЕ	ż	GRC	ELE		UICK TR 0 40		\sim						30		z	GR SA SI CL
270:5	TOPSOIL: 350mm	<u>×1 1/</u>	1	SS	2			E								0				
- 0.4	WEATHERED/ DISTURBED SOIL: silty sand, trace clay, some				2	⊻	W.L. Jan 02	2020	n l											
<u>-</u>	organics, dark brown, very moist to		2	SS	7		May U	3, 202 E	i — — —							0				
269.3	wet, very loose to loose		. <u> </u>	00	,			Ē								Ŭ				
1.5	SANDY SILT: trace clay, trace sand, greyish brown, wet, compact		3	SS	12		269	<u> </u>						 	- o				1	
- <u>2</u> 268.5			\vdash											1					1	
2.3	SILTY SAND TILL: trace clay, trace gravel, brown, very moist,		4	SS	21			Ē						1	0				1	
- 267.7	compact						268	-												
3.1	SANDY SILT TILL: trace clay, trace to some gravel, brown, moist,		5	SS	30			Ē							\$					
Ē.	dense grey below 3.4m		<u> </u>				W.L. Feb 0													
-	grey below 5.4m	[•] • •	·				1 05 0	Ē	il											
Ē			·					E												
5			6	SS	36		266	-						0						
			-				-Bento	nite E												
-			·				265	-												
<u>264.7</u> 6.1	SILT: some clay to clayey, trace		-		_															
	sand, grey, wet, loose to compact		7	SS	7											•				
7							264													
-			8	SS	21		263	-								0				
			Ľ																	
-																				
261.7					50/		262	-												
<u> </u>	SILTY SAND TILL: trace clay, trace gravel, grey, very moist to wet,		9	SS	50/ 125mr			-							\$					
- 10	very dense						261	-												
Ē			:					Ē						1					1	
260.1								Ē						1					1	
10.7	GRAVELLY SILTY SAND TILL: trace to some clay, grey, wet, very		10	SS	53	[:目	260 E	Ē							•			1	1	25 44 23 8
	dense		·			目	Filter							1					1	
12			:				259												1	
- 258.6 - 258:3	SILTY SAND TILL: trace clay,		11	SS	50/	ĽĦ.	4	Ē						1	0				1	
12.5	reddish brown, wet, very dense	11	<u> ' '</u>		(25m)	h	-	-							- Ŭ				\vdash	
	END OF BOREHOLE: Notes:		1											1					1	
	1) 50mm dia. monitoring well installed upon completion.																			
	2) Water level Reading:		1											1					1	
	Date: Water Level (mbgl): Jan 02, 2020 0.3		1																	
	Feb 03, 2021 3.5 May 03, 2021 0.5		1											1					1	
			1											1					1	
			1																	
00 2011 FOG 13-012-100.0FJ 00.0FJ 20.0FJ			1																	
			1																	
			•		•	GRAPH NOTES	<u>1</u> _ 3	× ^{3.}	Numbers	refer		8 =3%	Strain	at Failu	Iro			-		
GRUUN	IDWATER ELEVATIONS					NOTES	· · ·	\sim	o Sensiti	ivitv	0		Juan	ai Edilü						

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \stackrel{1\text{st}}{\underline{\checkmark}} \quad \stackrel{2\text{nd}}{\underline{\checkmark}} \quad \stackrel{3\text{rd}}{\underline{\checkmark}} \quad \stackrel{4\text{th}}{\underline{\checkmark}} \end{array}$

o Developments OCATION: Hicks Property, Old S odetic LOCATION: See Drawing 1 N 4 SOIL PROFILE DESCRIPTION SOIL: 350mm ATHERED/ DISTURBED SOIL: Jy silt, trace clay, trace nics/ rootles, dark brown, wet, loose		001.3		93125	.224		Diam	eter: 2	llow Ste 00mm		ıger							2 240		
Dedetic LOCATION: See Drawing 1 N 4 SOIL PROFILE DESCRIPTION SOIL: 350mm ATHERED/ DISTURBED SOIL: Jy silt, trace clay, trace mics/ rootles, dark brown, wet, / Joose TY SAND: trace clay, brown,	STRATA PLOT 8	001.3	322 E 5	93125	.224													n 010		
LOCATION: See Drawing 1 N 4 SOIL PROFILE DESCRIPTION SOIL: 350mm ATHERED/ DISTURBED SOIL: Jy silt, trace clay, trace nics/ rootles, dark brown, wet, Joose	STRATA PLOT				.224					<u>^</u>								9-312	2-100	
SOIL PROFILE DESCRIPTION SOIL: 350mm ATHERED/ DISTURBED SOIL: dy silt, trace clay, trace inics/ rootles, dark brown, wet, loose TY SAND: trace clay, brown,	STRATA PLOT				1		Dale.	Dec/	10/2019	9					E	NCL N	0.:9			
SOIL: 350mm ATHERED/ DISTURBED SOIL: dy silt, trace clay, trace nics/ rootles, dark brown, wet, loose		1BER		1	1		DYNA		DNE PEI E PLOT	NETRA	ATION			NAT						-
SOIL: 350mm ATHERED/ DISTURBED SOIL: dy silt, trace clay, trace nics/ rootles, dark brown, wet, loose		1BER			TER				10 60		0 10	0	PLASTI LIMIT	C MOIS CON	TURE	Liquie Limit	E N E S	TW TI	METHANE AND	
ATHERED/ DISTURBED SOIL: dy silt, trace clay, trace nics/ rootles, dark brown, wet, loose		_ ≤	ТҮРЕ	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	οu	NCONF	RENGT	+	FIELD VA & Sensitiv		W _P WA1		w o ONTEN	w _L	POCKET F (Cu) (kPa	NATURAL UNIT WT (kN/m ³)	GRAIN SIZE DISTRIBUTION (%)	I
ATHERED/ DISTURBED SOIL: dy silt, trace clay, trace nics/ rootles, dark brown, wet, loose	<u> </u>	ž	1	ż	62	E	2	20 4	10 60	0 8	0 10	0	1	0 2	20 :	30			GR SA SI CL	-
nics/ rootles, dark brown, wet, loose TY SAND: trace clay, brown,	İΠ	1	SS	3		074	Ē								¢					
		2	SS	15	_ ¥	271 W. L.	E 270.5 i	m							0					
		3	SS	21		Jan 02 May 03	2, 2020 3, 202 E)n 1 							0					
: trace clay, trace sand, grey, st, compact		4	SS	22		269	-								— —		-			
DY SILT TO SILTY SAND : trace clay, trace to some	· .•.	5	SS	23		268								o						
el, grey, wet, compact to very se	· · ·					W.L. Feb 03	267.9 i 3, 2021	m 1 												
ble below 4.6m	•	6	SS	83		-Slotte	d Pipe						0				-		15 39 41 5	
	. ¢					266	-										-			
: trace to some clay, trace d, grey, moist, very dense		7	SS	68		265								0						
OF BOREHOLE: ss: Dmm dia. monitoring well alled upon completion. /ater level Reading: :: Water Level (mbgl): 02, 2020 1.1 03, 2021 3.7 03, 2021 1.3																				

TOWN OF CA	NG																				
RECEIV Sep 14, 2		DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHO	DLE B	BH21	-1									1 OF 1
	PROJ	ECT: Geotechnical Investigation								LING D											
		IT: Argo Developments ECT LOCATION: Old School Rd & Hur	ontar	rio St	ON					od: Solio eter: 15		Auge	ər				R	EF. NC) · 10	2-312	2-100
		M: Geodetic	ontai		., 011					Jan/25											-100
	BORE	HOLE LOCATION: See Drawing 1 N	18451	1			3.335					FTRA	TION						_		
		SOIL PROFILE			Sampl	.ES	ШШ			MIC CON STANCE	-	~		0	PLASTI LIMIT		URAL TURE TENT	LIQUID LIMIT	ż	т wт	METHANE AND
	(m) <u>ELEV</u> DEPTH	DESCRIPTION	A PLOT	~		BLOWS 0.3 m	D WA	NOL	SHE	AR STR	ENGT	H (kF			W _P		N N D	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	GRAIN SIZE DISTRIBUTION
			STRATA PLOT	NUMBER	ТҮРЕ	"N"	GROUND WATER CONDITIONS	ELEVATION				\sim				TER CO		. ,	δ _Ω	NATU	(%)
	263.0 26 2.9	TOPSOIL: 225mm	0 	z			00	ш	l í	20 40	60	8	0 10	10			20 3	30			GR SA SI CL
	- 0.2	FILL: clayey silt, trace gravel, sand seams, trace topsoil/ organics, brown maint firm	\bigotimes	1	SS	4			-							0					
	- <u>262.2</u> - <u>1</u> 0.8	brown, moist, firm SILTY CLAY TILL: sandy, trace gravel, sand seams, brown, moist,		2	SS	23		262	-							0					
		very stiff to hard				20			-												
	-			3	SS	34	Y	W. L. :	261 1							┣		1			2 18 49 31
								Feb 03													
	- <u>260.4</u> 2.6	SAND TO SILTY SAND: trace silt, brown, wet, loose to compact		4	SS	18		-Bento								0	0				
	-	blown, wet, loose to compact						260													
	-			5	SS	19											0				
	-							259	-												
									-												
	- - - <u>5</u>			6	SS	7		258	-								0				
				-					-												
									-												
	<u>6</u> - -	grey below 6m		\vdash				257	-												
				7	SS	9	目	Filter	r Pack r								Þ				0 59 40 1
	<u>7</u>							Slotte	d Pipe												
	255.5	SILTY CLAY: trace gravel, wet	1 TT						-												
5/25/21	- - - 254.8	sand seams, grey, very moist, very stiff		8	SS	19		255	-								0				
	8.2	END OF BOREHOLE: Notes:							-												
DS SOIL LOG 19-312-101 PHASE 2 GEO_ARGO DEVELOPMENTS.GPJ DS.GDT		1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading:																			
NTS.G		Date: Water Level (mbgl): Feb 03, 2021 1.9																			
OPME		May 03, 2021 1.9																			
DEVEL																					
RGO I																					
EO A																					
С С С С																					
1 PHAS																					
312-10																					
0 0 0																					
DS SC																					
	GROUN	DWATER ELEVATIONS		_			GRAPH NOTES	<u>+</u> + 3,	× ³ :	Numbers to Sensit	refer ivity	0	8 =3%	Strain	at Failu	ıre			_	_	

 $\begin{array}{c} 1 \text{st} \\ \text{Measurement} \\ \end{array} \begin{array}{c} 1 \text{st} \\ \Psi \end{array} \begin{array}{c} 2 \text{nd} \\ \Psi \end{array} \begin{array}{c} 3 \text{rd} \\ \Psi \end{array} \begin{array}{c} 4 \text{th} \\ \Psi \end{array}$

02	DS CONSULTANTS LTD. Greptechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHC	DLE	BH21	-2									1 OF 1	-
	T: Geotechnical Investigation																				
	T: Argo Developments									id Stem	n Auge	er									
	ECT LOCATION: Old School Rd & Hurd	ontar	10 St.	., ON						50mm							EF. NO			-100	
	/I: Geodetic HOLE LOCATION: See Drawing 1 N 4	8453	78 6	20 E 5	02843	603		Date:	Jan/∠	25/2021						EN	ICL NO	J.: 1	1		
DOKE	SOIL PROFILE	0403	1	29 E 5 SAMPL				DYNA		DNE PEN E PLOT	ETRA	TION							П		-
						GROUND WATER CONDITIONS				-		0 10	0	PLASTI LIMIT	C NATI	URAL	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	T WT	METHANE AND	
(m)		STRATA PLOT			SN E	WAT NS	z		L	RENGT	.H (KE))		W _P		TENT W	WL	ET PE (kPa)	rL UNI	GRAIN SIZE	
ELEV DEPTH	DESCRIPTION	ATA F	BER		BLOWS 0.3 m	UND DITIC	ATIC	οu	NCONF	INED	+	FIÉLD VA & Sensitivi	NE ity					POCK (Cu)	ATURA (Kh	DISTRIBUTION (%)	
260.5		STR/	NUMBER	ТҮРЕ	ż	GRO CON	ELEVATION			RIAXIAL 10 60					TER CC 0 2		1 (%) 30			GR SA SI CL	
260.9	TOPSOIL: 200mm	$\times \frac{1}{2}$						_									57				-
0.2	FILL: sandy silt to silty sand, trace clay, brown, moist, loose	\bigotimes	1	SS	4		260	-								0		Ì			
259.7	SILTY SAND: trace clay, grey, wet,	K K					200	-													
<u>1</u> 0.8	compact		2	SS	14										0						
259.0		he l'e				Ŧ	W. L. 2														
1.5	CLAYEY SILT TO SILT: trace gravel, sand seams, grey, moist,		3	SS	10		May 03	3, 202′ ⊦							0						
258.2	stiff						-Bento	nite F													
258.2	SILTY SAND TO SANDY SILT					∇		-													
	TILL: some clay, trace gravel, grey, wet, compact		4	SS	16		W. L. 2 Feb 03								0						
3								Ē													
			5	SS	12		257								o						
			\vdash				201	-													
4								-													
		. • 6 ' -					250							L							
					40		256	_													
5		 	6	SS	49		-Filter	L Pack							o						
							Slotte	L d Pipe													
							255											1			
6	venudence halaw 0.4-				F 0'																
254.1	very dense below 6.1m END OF BOREHOLE:	φ 	7	SS	50/ 125mr			_							0				\square		-
6.4	Notes:																				
	1) Water depth at 2.3m below grade during drilling.																				
	2) 50mm dia. monitoring well installed upon completion.																				
	3) Water level Reading:																				
	Date: Water Level (mbgl):																				
	Feb 03, 2021 2.5 May 03, 2021 1.4																				
	, ,																				
		1								1											

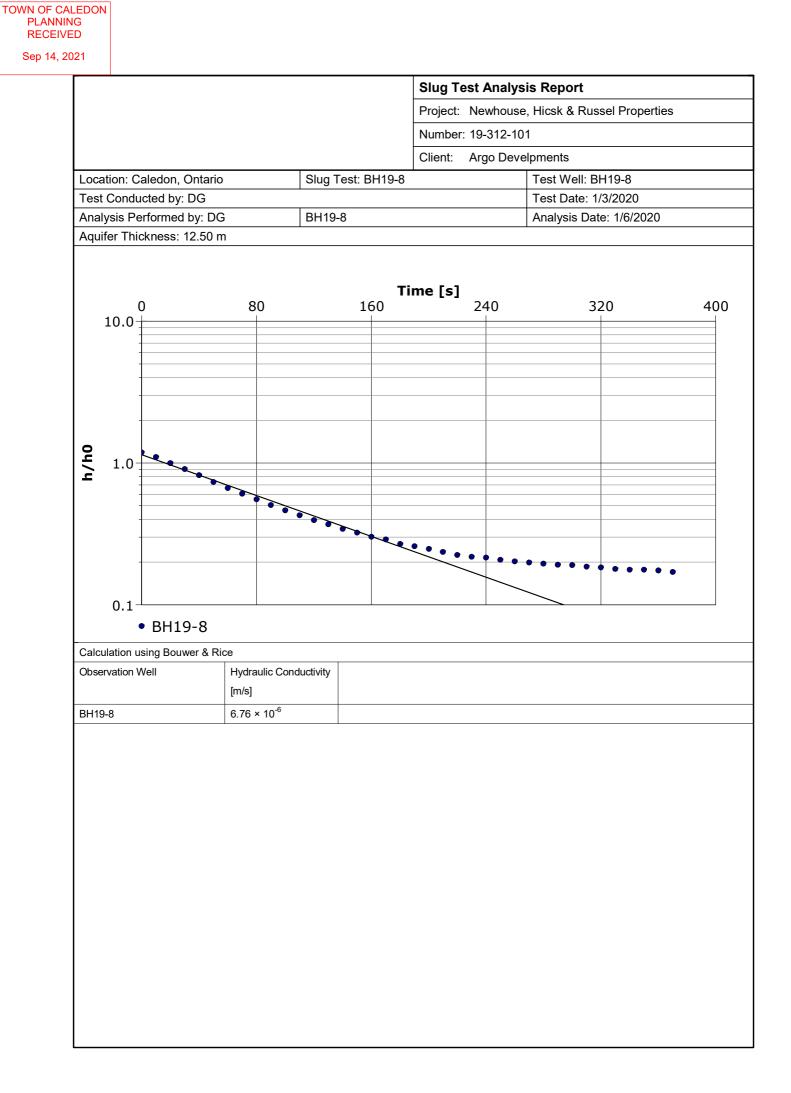
TOWN OF CA PLANNI RECEIV	NG																	
Sep 14, 2		DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHC	DLE BH	121-3							1 OF 1
		ECT: Geotechnical Investigation							DRIL	LING DAT	ГА							
		IT: Argo Developments									Stem Aug	er						
		ECT LOCATION: Old School Rd & Hurd M: Geodetic	ontar	io St	., ON					eter: 150i Jan/25/2					REF. I			2-100
		HOLE LOCATION: See Drawing 1 N 4	8449	906.8	4 E 59	2779.	707		Date.	Jan 20/2	2021				LINCL	NO	12	
		SOIL PROFILE		-	SAMPL				DYNA RESIS	MIC CONE STANCE PI		ATION		TIC NATUR			F	METHANE
	(m)		от			(OI	GROUND WATER CONDITIONS		2	20 40	60 8	30 100		TIC NATUR MOISTU CONTEI W	NT L''	AIT Zi	NATURAL UNIT WT (KN/m ³)	AND GRAIN SIZE
	ELEV DEPTH	DESCRIPTION	STRATA PLOT	ER		BLOWS 0.3 m	ND W TION	ELEVATION	SHE/ OU	AR STRE	60 8 NGTH (kl ED +	Pa) FIELD VAN	E W _P	O	v	OCKET	-URAL (kN/m	DISTRIBUTION
			STRA	NUMBER	ТҮРЕ	" "	SROU	ELEV		UICK TRIA 20 40		LAB VAN 30 100		ATER CON 10 20	100 FENT 30)	LAN	(%) GR SA SI CL
	263.2 26 9 .0	TOPSOIL: 225mm	5) <u>1,1 /y</u> XX					263	L	Í Í					-	_		GIT SA SI CL
	0.2	FILL: clayey silt, trace gravel, trace topsoil, trace rootlets, brown, moist,	\bigotimes		SS	4			Ē					0				
	- -262.1	firm	\bigotimes			_			-									
	261.7	CLAYEY SILT: trace sand, brown, moist, firm (weathered/ disturbed)	Ŵ	2	SS	7		262						c	,	-		
	1.5	SANDY SILT TO SILTY SAND: trace clay, silty clay seams, brown,		. 3	SS	7			-									0 25 65 10
	2	moist, loose			- 55	<i>'</i>		-Bento 261										0 23 03 10
	- 260.9 2.3	SILT TO SANDY SILT: trace clay,				00		201										
		brown, wet, compact		4	SS	22			Ē					0				
	3.0	SILTY SAND: trace clay, brown, wet, dense						260								_		
		,		5	SS	33	Ž	W. L. : W. L. :						0				
	4							Feb 03	3, 202	1								
	_							· 259	-									
						26												0 56 42 4
	-			6	SS	26	4 🗆 -	+Filter ∠⊃o	r					•		_		0 56 43 1
	-							Slotte	d Pipe F									
	6		臣						F									
				7	SS	24		. 257										
	- <u>256.5</u> 6.7	END OF BOREHOLE:															+	
		Notes: 1) Water depth at 3m below grade																
		during drilling. 2) 50mm dia. monitoring well																
/21		installed upon completion. 3) Water level Reading:																
. 5/25		Date: Water Level (mbgl):																
S.GDT		Feb 03, 2021 3.6 May 03, 2021 3.4																
ت ۲																		
TS.G																		
MEN																		
(ELOF																		
) DEV																		
ARGO																		
GEO																		
SE 2 (
PHA I																		
2-101																		
19-31																		
LOG																		
DS SOIL LOG 19-312-101 PHASE 2 GEO_ARGO DEVELOPMENTS.GPJ DS.GDT 5/25/21																		
DS				<u> </u>						Number	ofor	•- 001						
	<u>GROUN</u>	IDWATER ELEVATIONS					GRAPH NOTES	+ 3,	×3:	Numbers re to Sensitivi	ty C) ^{∎=3%} S	train at Fai	lure				

TOWN OF CA PLANNI RECEIV	NG	DS CONSULTANTS LTD.							EUC	DLE BH2	4 4									
Sep 14, 2	024	Geotechnical & Environmental & Materials & Hydrogeology				LU	GUF	BUR			1-4									1 OF 1
		ECT: Geotechnical Investigation T: Argo Developments								LING DATA		or								
		ECT LOCATION: Old School Rd & Hur	ontai	rio St	ON					eter: 150mm	-					RE	EF. NO	.: 19	-312	-100
		M: Geodetic			, -					Jan/25/202							ICL NO			
	BORE	HOLE LOCATION: See Drawing 1 N 4	8452	264.4	29 E 5	92898	.163		Diala			TION								
		SOIL PROFILE		5	SAMPL	ES	с		RESIS	MIC CONE PE STANCE PLOT				PLASTI	C NATI		LIQUID		Ψ	METHANE
	(m)		LOT			SI C	GROUND WATER CONDITIONS	z			60 8		00	LIMIT WP	CON	TENT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE
	ELEV DEPTH	DESCRIPTION	STRATA PLOT	BER		BLOWS 0.3 m		ELEVATION	O U	AR STRENG	тн (кі +	FIELD VA & Sensitiv	ANE rity		(0		POCKE (Cu) (TURAI (KN)	DISTRIBUTION (%)
	262.9		STR	NUMBER	ТҮРЕ	"Z	GRO	ELEV				LAB VA 0 10				ONTEN 20 3	I (%) 30			GR SA SI CL
	- 26 2 .0 - 0.2	TOPSOIL: 200mm	×1/7,	1	SS	7			-							0				
	- 0.2	FILL: clayey silt, trace gravel, trace rootlets/ topsoil, brown, moist, firm		<u> </u>	00	<i>'</i>			-											
		to stiff (weathered/ disturbed) sand seams below 0.8m	\bigotimes					262												
	261.4		\otimes	2	SS	11			-							0				
	1.5	SANDY SILT TO SILTY SAND: trace clay, brown, very moist,		. 3	SS	13			-						0					
	2	compact	ŀŀ		- 55	15		-Bento	∟ nite ⊾											
		wet below 2.3m		<u> </u>					-											
	- 259.9			4	SS	17		260	-							0				
	3.0	SANDY SILT: some clay, seams of silty clay, brown, moist, compact		1—					-											
	-	Sity day, brown, moist, compact		5	SS	26										o				
	4			1			<u>₩</u> .	W.L.												
]				. Feb 03	s, 202 F											
	Ē			-					-											
	<u>5</u>			6	SS	26		258 Filter	Fack							0				
	-							Slotte	d Pipe E											
	- 256.9							257												
	6.0	SILTY SAND TILL: trace clay, trace gravel, brown, wet, very dense		7	SS	88/			-						o					
	- <u>256.4</u> 6.5	END OF BOREHOLE:	11:1			255m	<u>n</u>	•	-											
		Notes: 1) Water depth at 4.5m below grade																		
		during drilling. 2) 50mm dia. monitoring well																		
-		iństalled upon completion. 3) Water level Reading:																		
5/25/2		Date: Water Level (mbgl):																		
DT &		Feb 03, 2021 3.8 May 03, 2021 3.8																		
DS.O																				
GPJ																				
ENTS																				
MAO																				
EVEL																				
000																				
0 AR																				
2 G																				
IASE																				
01 PH																				
312-11																				
-61 -01																				
r roc																				
DS SOIL LOG 19-312-101 PHASE 2 GEO APGO DEVELOPMENTS.GPJ DS.GDT 5/25/21																				
ă			1	<u> </u>	1	1	GRAPH	3	∟ √3.	Numbers refer	· ~	8 =3%	Otrain	+ Ee ^{tt}		1				
	GROUN	DWATER ELEVATIONS					<u>GRAPH</u> NOTES	ι÷ ,	<u> </u>	to Sensitivity	C		Suain a	ı rallu	i e					

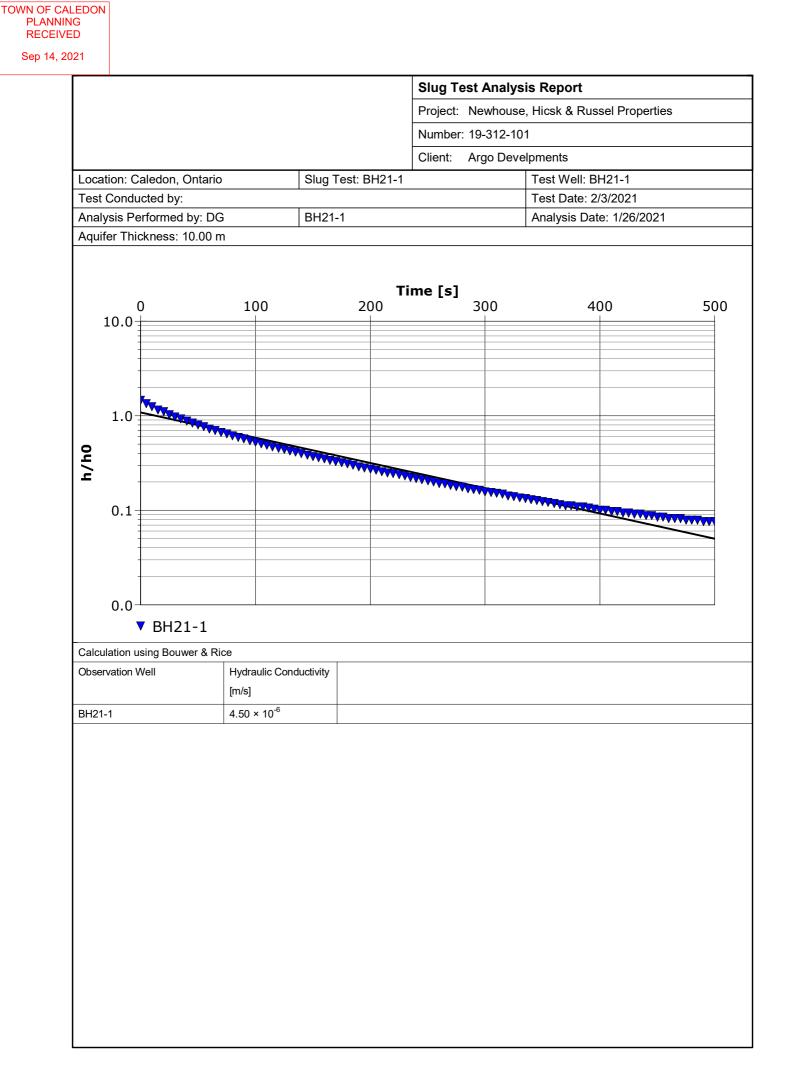
TOWN OF CA		N																			
	E	DS CONSULTANTS LTD.					~ ~ ~					_									
Sep 14, 2	02	Geotechnical & Environmental & Materials & Hydrogeology				LO	GO	BOF	EHO	JLE	BH21	-5									1 OF 1
		ECT: Geotechnical Investigation								LING											
		T: Argo Developments ECT LOCATION: Old School Rd & Hur	ontor	io St							olid Ster 150mm	n Aug	er						. 10	240	100
		M: Geodetic	oniai	10 31	., ON						25/2021							EF. NO			-100
		HOLE LOCATION: See Drawing 1 N 4	8454	195.4	06 E 5	93175	.652		Duto		20/202								J 1-	т	
		SOIL PROFILE		-	SAMPL				DYNA RESI	AMIC CO STANC	ONE PE E PLOT		TION			. NAT	URAL			F	METHANE
	(m)		5				GROUND WATER			20	40 6	0 8	0 10	00	PLASTI LIMIT			LIQUID LIMIT	PEN. a)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE
	ELEV DEPTH	DESCRIPTION	STRATA PLOT	Ľ.		BLOWS 0.3 m		W.L. May0	364.8 3, 202	^m , ST	RENG FINED RIAXIAL	ГН (kF	Pa) FIELD V/	ANE	₩ _P		N 0	WL	POCKET PEN. (Cu) (kPa)	(kN/m	DISTRIBUTION
	DEPTH		IRAT	NUMBER	түре			EVA	• G		RIAXIAL	. ×	& Sensiti LAB V/	ity ANE			ONTEN	(/0)	ΒS	NATI	(%)
	363.8 363.5	TOPSOIL: 280mm	0 . <u>x17</u>	Ī	Γ.	ż	σŭ	Ш		20 4	40 6	0 8	0 10	00	1	0 2	20 3	0			GR SA SI CL
	- 363:5 - 0.3	FILL: clayey silt, trace gravel, sand	$\overline{\times}$	1	SS	8			È.												
	363.0	seams, brown, moist, stiff	×					363	-												
	<u>-1</u> 0.8	SILTY SAND TILL: trace clay, trace gravel, brown, wet, loose to		2	SS	8		500	Ē							o					
	-	very dense						-												
				3	SS	24		_ 362	È							þ					
								-Bento	nite F												
	_	trace cobble below 2.3m		4	SS	35			Ē						0						
	3		ŀļ¢'					361	-												
	-			5	SS	74/			Ē						0						
	-			Ľ		200mi	-		Ē												
	4			·			· · ·	· 360													
	-								-												
	-			6	SS	_ 50/			Ē						0						
	-		臣			75mn		∵ 359 ∺+Filter													
			ļķ					Slotte	L d Pipe L	e											
	357.8						Ë	 	-												
	6.0	SILT: trace clay, sand seams, brown, very moist, dense		Ή					-												
	357.1	brown, very moist, dense		7	SS	39			Ē							0					
	6.7	END OF BOREHOLE: Notes:	1						[
		 Water depth at 3m below grade during drilling. 																			
		2) 50mm dia. monitoring well installed upon completion.																			
:5/21		3) Water level Reading:																			
т 5/2		Date: Water Level (mbgl):																			
S.GD		Feb 03, 2021 frozen May 03, 2021 -1.0 (above ground																			
D LA		level)																			
TS.G																					
MEN																					
ELOF																					
DEV																					
RGO																					
EO_A																					
= 2 G																					
HASE																					
101 P																					
-312-																					
G 19																					
ILLO																					
DS SOIL LOG 19-312-101 PHASE 2 GEO_ARGO DEVELOPMENTS.GPJ_DS.GDT_5/25/21																					
	GROUN	DWATER ELEVATIONS	-				GRAPI	± + 3	× ^{3.}	Numbe	ers refer	0	8 =3%	Strain	at Failu	ire					
	<u>5.000</u>						NOTES	<u>i</u>		to Sens	sıtıvity	5				-					

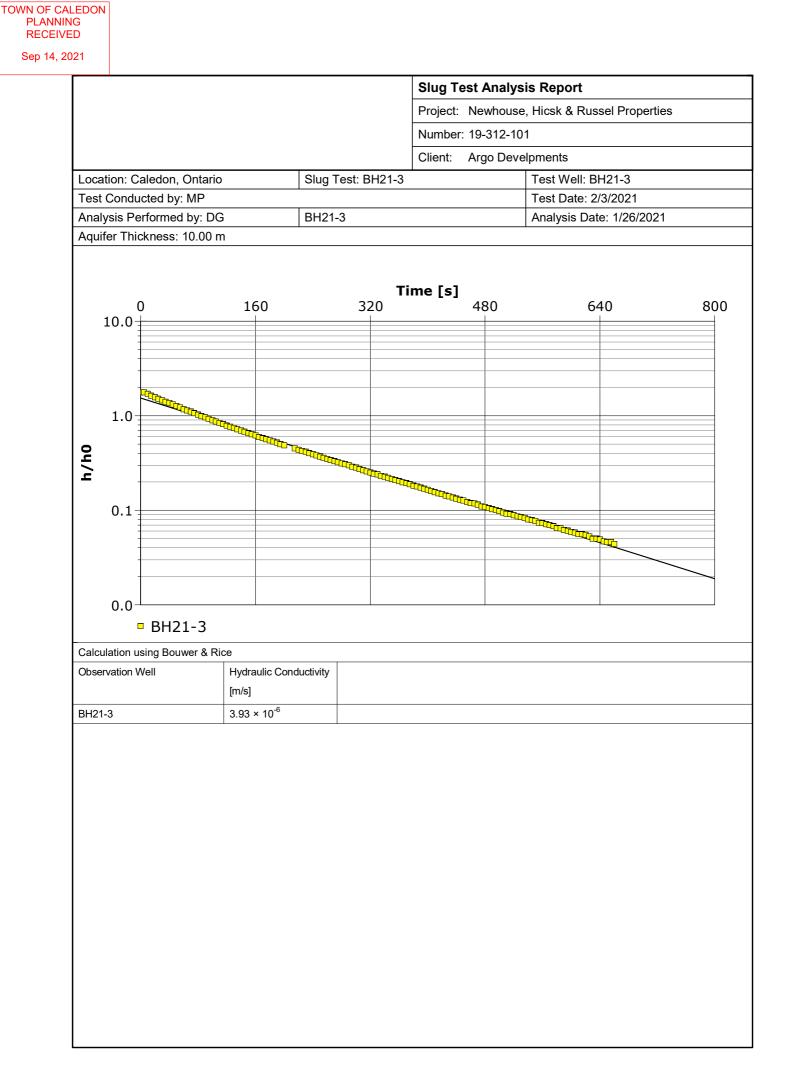
Appendix B

					Slug Te	st Analys	sis Report		
								ussel Properti	es
						19-312-10			
Locati	ani Caladan. On	torio		ot: BU10.2	Client:	Argo Deve	elpments Test Well:	RU10 2	
	on: Caledon, On conducted by: D0		Siug Te	st: BH19-2			Test Well: Test Date:		
Analys	is Performed by	r: DG	BH19-2					ate: 1/6/2020	
Aquife	r Thickness: 14.	00 m							
1	0	5000		Ti 10000	me [s]	15000	2	0000	250
1									
0									
04/H									
	1.0								
	BH19-								
Calcula	tion using Hvorsle	v							
Observa	ation Well		Conductivity						
BH19-2		[m/s] 3.15 × 10 ⁻⁸							
		∣ 3.15 × 10 °							


)21								
					Slug Test Analy			
					Project: Newhous		el Properties	3
					Number: 19-312-1			
Loopti	ani Caladan (Intorio	Clug	Toot: DU10.2		velpments	110.2	
	on: Caledon, C Conducted by: [Siug	Test: BH19-3		Test Weil: BH		
	sis Performed k		BH19	9-7		Analysis Date		
	er Thickness: 12							
1	0.0	140(00	T i 28000	ime [s] 42000	560	00	7000
-								
	1.0							
0								
04/H								
<u> </u>								
	0.1							
	0.0							
	• BH19							
	ation using Bouw							
Observ	ation Well	[m/s]	lic Conductivity					
		2.84 ×	10 ⁻⁸					
BH19-3	{ 							

021								
				Slua Te	st Analys	sis Report		<u>_</u>
						e, Hicsk & Rus	sel Properties	
				Number:				
					Argo Dev			
	aledon, Ontario	Slug 1	Fest: BH19-	4		Test Well: B		
Test Conduc		DU40	4			Test Date: 1/		
	formed by: DG kness: 6.70 m	BH19	-4			Analysis Date	e: 1/6/2020	
0		200	400	Time [s]	600	80	00	1000
	A BARAN							
0 4 0.1								
`								
-								
-								
						- `		
0.0								
	BH19-4							
Observation W	ing Bouwer & Rice	raulic Conductivity						
	[m/s							
BH19-4		5 × 10 ⁻⁶						
БП 19-4	1.33	* 10						


					Slug Tes	st Analy	sis Report		
				Ī	Project:	Newhous	e, Hicsk & Ru	ssel Propertie	es
				Ī	Number:	19-312-1	01		
				ľ	Client:	Argo Dev	elpments		
Location: C	Caledon, Ontario		Slug Test: B	H19-5			Test Well: E	3H19-5	
	ucted by: DG	I					Test Date:		
Analysis Po	erformed by: DG		BH19-5				Analysis Da	ate: 1/6/2020	
Aquifer Thi	ckness: 6.70 m								
10.0-	0	140	28	Tir 80	ne [s]	420	5	560	70
0 박/ 1.0 ⁻	Lataraaraaraa	AAAAAAA							
				* * * * *	V V V V V V V V V V				
							/ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	7	
						\rightarrow			
									_
0.1									
	BH19-5								
Calculation ι	using Bouwer & Ric	e							
Observation	Well	Hydraulic Condu	ctivity						
		[m/s]							
BH19-5		1.64 × 10 ⁻⁶							


Project: Newhouse, Hicsk & Russel Properties Number: 19-312-101 Cient: Argo Developments Location: Caledon, Ontario Slug Test: Test Well: BH19-6 Analysis Performed by: DG BH19-6 Test Date: 1/6/2020 Aquifer Thickness: 13:00 m Time [s] Test Conducted by: DG O 1400 2800 4200 5600 7 O 10.0 # # # # # Y # # # # # # # # # # # # # # # # </th <th>Number: 19-312-101 Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Well: BH19-6 Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Performed by: DG BH19-6 Time [s] 0 1400 2800 4200 5600 70 0 1400 2800 4200 5600 70 O 10.0 1400 2800 4200 5600 70 No Aray is a colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Conductivity [m/s] Time [s] Time [s] Time [s] Colspan="2">Colspan="2"</th> <th>Number: 19-312-101 Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG Manalysis Performed by: DG BH19-6 Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Time [s] Aquifer Thickness: 13.00 m Time [s] 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 1.0 * <td c<="" th=""><th>Number: 19-312-101 Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Performed by: DG BH19-6 Time [s] 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 10.0 * BH19-6 * * * Calculation using Bouwer & Rice Colservation Well Hydraulic Conductivity [m/s] * *</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Slug Te</th><th>est Ana</th><th>lysis Report</th><th></th><th></th></td></th>	Number: 19-312-101 Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Well: BH19-6 Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Performed by: DG BH19-6 Time [s] 0 1400 2800 4200 5600 70 0 1400 2800 4200 5600 70 O 10.0 1400 2800 4200 5600 70 No Aray is a colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Conductivity [m/s] Time [s] Time [s] Time [s] Colspan="2">Colspan="2"	Number: 19-312-101 Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG Manalysis Performed by: DG BH19-6 Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Time [s] Aquifer Thickness: 13.00 m Time [s] 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 1.0 * <td c<="" th=""><th>Number: 19-312-101 Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Performed by: DG BH19-6 Time [s] 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 10.0 * BH19-6 * * * Calculation using Bouwer & Rice Colservation Well Hydraulic Conductivity [m/s] * *</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Slug Te</th><th>est Ana</th><th>lysis Report</th><th></th><th></th></td>	<th>Number: 19-312-101 Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Performed by: DG BH19-6 Time [s] 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 10.0 * BH19-6 * * * Calculation using Bouwer & Rice Colservation Well Hydraulic Conductivity [m/s] * *</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Slug Te</th> <th>est Ana</th> <th>lysis Report</th> <th></th> <th></th>	Number: 19-312-101 Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Performed by: DG BH19-6 Time [s] 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 10.0 * BH19-6 * * * Calculation using Bouwer & Rice Colservation Well Hydraulic Conductivity [m/s] * *							Slug Te	est Ana	lysis Report		
Client: Argo Developments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG BH19-6 Analysis Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] Filme [s] 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 10.0 1400 2800 4200 5600 7 0 10.0 # BH19-6 East Colservation Well Hydraulic Conductivity Hydraulic Conductivity Hydraulic Conductivity 10.0 Hydraulic Conductivity Hydraulic Conductivity Hydraulic Conductivity Hydraulic Conductivity	Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG BH19-6 Analysis Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] Analysis Date: 1/6/2020 Output Item (s) Time [s] Analysis Date: 1/6/2020 Op 1400 2800 4200 5600 70 Op 10.0 # BH19-6 East Date: 1/6/2020 East Date: 1/6/2020 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity Hydraulic Conductivity Hydraulic Conductivity	Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG BH19-6 Analysis Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] Client: Analysis Date: 1/6/2020 O 1400 2800 4200 5600 7 O 10.0	Client: Argo Developments Location: Caledon, Ontario Slug Test: BH19-6 Test Well: BH19-6 Test Conducted by: DG BH19-6 Analysis Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] Filme [s] 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 1400 2800 4200 5600 7 0 10.0 1400 2800 4200 5600 7 0 10.0 # BH19-6 East Colservation Well Hydraulic Conductivity Hydraulic Conductivity Hydraulic Conductivity 10.0 Hydraulic Conductivity Hydraulic Conductivity Hydraulic Conductivity Hydraulic Conductivity							Project:	Newho	use, Hicsk & R	ussel Properti	es	
Location: Caledon, Ontario Slug Test: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] 10.0 0 1400 2800 4200 5600 7 10.0 0 1400 2800 4200 5600 7 0 10.0 0 10.0	Location: Caledon, Ontario Slug Test: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] 10.0 0 1400 2800 4200 5600 70 10.0 0 1400 2800 4200 5600 70 10.0 0 1400 2800 4200 5600 70 0 10.0 0 10.0 0 1400 2800 4200 5600 70 0 10.0 0 10.0 0 10.0 0 1400 2800 4200 5600 70 0 10.0 0 10.0 0 10.0 0 10.0 0 1400 2800 4200 5600 70 0 10.0 0 10	Location: Caledon, Ontario Slug Test: BH19-6 Test Conducted by: DG Test DH19-6 Analysis Performed by: DG BH19-6 Aquifer Thickness: 13.00 m Time [s] 10.0 0 1400 2800 4200 5600 7 10.0 0 1400 2800 4200 5600 7 10.0 0 1400 2800 4200 5600 7 10.0 0 1400 2800 4200 5600 7 10.0 0 1400 2800 4200 5600 7 10.0 10.	Location: Caledon, Ontario Slug Test: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] 10.0 0 1400 2800 4200 5600 7 10.0 0 1400 2800 4200 5600 7 0 10.0 0 10.0							Number	: 19-312	-101			
Location: Caledon, Ontario Slug Test: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] 10.0 0 1400 2800 4200 5600 7 10.0 0 1400 2800 4200 5600 7 0 10.0 0 10.0	Location: Caledon, Ontario Slug Test: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] 10.0 0 1400 2800 4200 5600 70 10.0 0 1400 2800 4200 5600 70 10.0 0 1400 2800 4200 5600 70 0 10.0 0 10.0 0 1400 2800 4200 5600 70 0 10.0 0 10.0 0 10.0 0 1400 2800 4200 5600 70 0 10.0 0 10.0 0 10.0 0 10.0 0 1400 2800 4200 5600 70 0 10.0 0 10	Location: Caledon, Ontario Slug Test: BH19-6 Test Conducted by: DG Test DH19-6 Analysis Performed by: DG BH19-6 Aquifer Thickness: 13.00 m Time [s] 10.0 0 1400 2800 4200 5600 7 10.0 0 10.0 0 1400 2800 4200 5600 7 10.0 0 10.0	Location: Caledon, Ontario Slug Test: BH19-6 Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Analysis Date: 1/6/2020 Aquifer Thickness: 13.00 m Time [s] 10.0 0 1400 2800 4200 5600 7 10.0 0 1400 2800 4200 5600 7 0 10.0 0 10.0							Client:	Argo D	evelpments			
Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Aquifer Thickness: 13.00 m Time [s] 10.0 10.0 10.0 10.0 Second 2800 10.0 Calculation using Bouwer & Rice Cbservation Well Hydraulic Conductivity [m/s]	Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Aquifer Thickness: 13.00 m Time [s] 10.0 0 10.0 0 10.0 10.0 0 10.0	Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Aquifer Thickness: 13.00 m Time [s] 10.0 10.0 10.0 10.0 Second 2800 10.0 10.0 Second 2800 10.0 Second 2800 10.0 Second 2800 10.0 Second 2800 Second 2800 Seco	Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-6 Aquifer Thickness: 13.00 m Time [s] 10.0 10.0 10.0 10.0 Second 2800 10.0 Calculation using Bouwer & Rice Cbservation Well Hydraulic Conductivity [m/s]	Location: C	aledon, Ontari	0	Slug T	est: Bl	H19-6		-		BH19-6		
Aquifer Thickness: 13.00 m Image: Constraint of the second seco	Aquifer Thickness: 13.00 m Image: Constraint of the second seco	Aquifer Thickness: 13.00 m Image: Signature of the system of th	Aquifer Thickness: 13.00 m Image: Constraint of the second seco												
Time [s] 0 1400 2800 4200 5600 7 0 10.0 0	O 1400 2800 4200 5600 70 O 1400 <td>Time [s] 0 1400 2800 4200 5600 7 0 10.0 4200 5600 7 0 10.0 10.0 10.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 * BH19-6 Calculation using Bouwer & Rice 1.0 1.0 1.0 Observation Well Hydraulic Conductivity [tr/s] 1.0 1.0 1.0</td> <td>Time [s] 0 1400 2800 4200 5600 7 0 10.0 0</td> <td></td> <td>-</td> <td>G</td> <td>BH19-</td> <td>6</td> <td></td> <td></td> <td></td> <td>Analysis D</td> <td>ate: 1/6/2020</td> <td></td>	Time [s] 0 1400 2800 4200 5600 7 0 10.0 4200 5600 7 0 10.0 10.0 10.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 * BH19-6 Calculation using Bouwer & Rice 1.0 1.0 1.0 Observation Well Hydraulic Conductivity [tr/s] 1.0 1.0 1.0	Time [s] 0 1400 2800 4200 5600 7 0 10.0 0		-	G	BH19-	6				Analysis D	ate: 1/6/2020		
0 10.	0 10.	0 10.	0 10.	Aquifer Thi	kness: 13.00	m	•								
PY 1.0 * BH19-6 Calculation using Bouver & Rice Observation Well Hydraulic Conductivity [m/s]	PG 1.0 * BH19-6 Calculation using Bouver & Rice Observation Well Hydraulic Conductivity [m/s]	og Image: Constraint of the second	PY 1.0 * BH19-6 Calculation using Bouver & Rice Observation Well Hydraulic Conductivity [m/s])	1400		280	T	ime [s]	4200	Į	5600	70	
1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	10.0-											
1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	I.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	-											
1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]												
1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]												
1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	-											
1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]												
1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	I.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0 * BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	04											
* BH19-6 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]	<u>-</u>											
* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]									_			
* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]												
* BH19-6 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]												
* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]											ŧ	
* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	* BH19-6 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]											<u> </u>	
Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	Calculation using Bouwer & Ric= Observation Well Hydraulic Conductivity [m/s]	Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0-											
Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	;	• BH19-6										
Observation Well Hydraulic Conductivity [m/s]	Observation Well Hydraulic Conductivity [m/s]	Observation Well Hydraulic Conductivity [m/s]	Observation Well Hydraulic Conductivity [m/s]	_		Rice									
[m/s]	[m/s]	[m/s]	[m/s]				onductivity								
BH19-6 1.04 × 10 ⁻⁷	BH19-6 1.04 × 10 ⁻⁷	BH19-6 1.04 × 10 ⁻⁷	BH19-6 1.04 × 10 ⁻⁷												
				BH19-6		1.04 × 10 ⁻⁷									

							sis Report		
						Newhous 19-312-10		ussel Properti	es
						Argo Dev			
	aledon, Ontario		Slug Tes	st: BH19-7			Test Well:		
	icted by: DG						Test Date:		
	erformed by: DG ckness: 6.50 m		BH19-7				Analysis L	Date: 1/6/2020	
1.0-	0	300		Ti 600	me [s]	900		1200	150
1.0									
or									
0 4/ 4									
							n _		
0.1-									
	BH19-7								
	ising Bouwer & Rice								
Observation \		Hydraulic Cono [m/s]	ductivity						
		9.07 × 10 ⁻⁷							
BH19-7		U N / X 10 ·							

Project: Number: 19-312-101 Client: Argo Developments Location: Caledon, Ontario Slug Test: BH19-9 Test Well: BH19-9 Analysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 Aquifer Thickness: 6.70 m Time [s] 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0	Number: 19-312-101 Client: Argo Developments ocation: Caledon, Ontario Slug Test: BH19-9 Test Well: BH19-9 est Conducted by: DG BH19-9 Analysis Date: 1/8/2020 analysis Performed by: DG BH19-9 Analysis Date: 1/8/2020 quifer Thickness: 6.70 m Time [s] Time [Slug Te	est Analy	sis Report		
Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH19-9 Test Well: BH19-9 Test Conducted by: DG BH19-9 Analysis Date: 1/8/2020 Analysis Performed by: DG BH19-9 Analysis Date: 1/8/2020 Aquifer Thickness: 6.70 m Time [s] Analysis Date: 1/8/2020 Image: Development of the second of the se	Client: Argo Develpments ocation: Caledon, Ontario Slug Test: BH19-9 Test Well: BH19-9 est Conducted by: DG BH19-9 Analysis Date: 1/3/2020 analysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 quifer Thickness: 6.70 m Time [s] 0 10.0 800 1600 2400 3200 4 10.0 800 1600 2400 3200 4 10.0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>Project:</th><th>Newhous</th><th>e, Hicsk & Rus</th><th>sel Propertie</th><th>S</th></t<>						Project:	Newhous	e, Hicsk & Rus	sel Propertie	S
Location: Caledon, Ontario Slug Test: BH19-9 Test Well: BH19-9 Test Conducted by: DG BH19-9 Analysis Date: 1/3/2020 Analysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 Aquifer Thickness: 6.70 m Time [s] 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 0 10.0	Occation: Caledon, Ontario Slug Test: BH19-9 Test Well: BH19-9 est Conducted by: DG Inalysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 quifer Thickness: 6.70 m Image: Signature of the signate of the signature of the signature of the signate of t						Number	: 19-312-1	01		
Location: Caledon, Ontario Slug Test: BH19-9 Test Well: BH19-9 Test Conducted by: DG BH19-9 Analysis Date: 1/3/2020 Analysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 Aquifer Thickness: 6.70 m Time [s] Analysis Date: 1/6/2020 Image: Signature of the second sec	Occation: Caledon, Ontario Slug Test: BH19-9 Test Well: BH19-9 est Conducted by: DG Test Date: 1/3/2020 nalysis Performed by: DG BH19-9 quifer Thickness: 6.70 m Time [s]						Client:	Argo De	/elpments		
Test Conducted by: DG Test Date: 1/3/2020 Analysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 Aquifer Thickness: 6.70 m Time [s] 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 10.0 1600 2400 3200 4 0 800 1600 2400 3200 4 0 10.0 - - - - - 0 800 1600 2400 3200 4 - - 0 -	Eest Conducted by: DG Test Date: 1/3/2020 nalysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 quifer Thickness: 6.70 m Time [s] 10.0	Location:	Caledon, Ontari	0	Slug Te	st: BH19-9		•		H19-9	
Analysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 Aquifer Thickness: 6.70 m Time [s] Time [s] 10.0 800 1600 2400 3200 4 9 9 9 9 9 9 9 10.0 9 9 9 9 9 9 10.0 9 9 9 9 9 10.0 9 9 9 9 9 10.0 9 9 9 9 9 10.0 9 9 9 9 9 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	Inalysis Performed by: DG BH19-9 Analysis Date: 1/6/2020 quifer Thickness: 6.70 m Time [s] 0 800 1600 2400 3200 4 10.0 0 800 1600 2400 3200 4 0 800 1600 2400 3200 4 0 10.0 0 0 0 0 0 0 10.0 0 0 0 0 0 0 0 0 0										
Image: Signature State State <td>Time [s] 0 800 1600 2400 3200 4 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td></td> <td></td> <td>G</td> <td>BH19-9</td> <td></td> <td></td> <td></td> <td>Analysis Dat</td> <td>te: 1/6/2020</td> <td></td>	Time [s] 0 800 1600 2400 3200 4 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			G	BH19-9				Analysis Dat	te: 1/6/2020	
0 800 1600 2400 3200 4 10.0 -		Aquifer Th	nickness: 6.70 m	1							
P Image: Image		10.0		800		٦ 1600	[ime [s]	2400	32	200	40(
Image:	1.0	10.0) <u> </u>								
Image:	1.0										
Image:	1.0										
Image:	1.0										
Image:	1.0										
Image:	1.0	0									
Image:	1.0	4									
▲ BH19-9 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]		<u> </u>	7								
▲ BH19-9 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]											
BH19-9 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]											
▲ BH19-9 Calculation using Bouwer & Ricconductivity Observation Well Hydraulic Conductivity [m/s]											
▲ BH19-9 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]											
▲ BH19-9 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]		1.0)								
Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	▲ BH19-9										
Observation Well Hydraulic Conductivity [m/s]		Calculation		lice							
[m/s]					onductivity						
BH19-9 6.74 × 10 ⁻⁸											
	H19-9 6.74 × 10 ⁻⁸	BH19-9		6.74 × 10 ⁻⁸							

Project: Newhouse, Hicsk & Russel Properties Number: 19-312-101 Client: Argo Develyments Test Orducted by: MP Test Date: 2/3/2021 Analysis Performed by: DG BH21-4 Test Date: 2/3/2021 Aquifer Thickness: 10.00 m Time [s] 720 960 0 240 480 720 960 100					Slug Test	Analys	is Report		
Number: 19-312-101 Client: Argo Developments Location: Caledon, Ontario Slug Test: BH21-4 Test Well: BH21-4 Test Conducted by: MP Test Date: 2/3/2021 Analysis Performed by: DG BH21-4 Analysis Date: 1/26/2021 Aquifer Thickness: 10.00 m Time [s] 720 960 O 240 480 720 960 O 400 480 400 <t< td=""><td></td><td></td><td></td><td></td><td>Project: Ne</td><td>ewhouse</td><td>e, Hicsk & Rus</td><td>sel Propertie</td><td>S</td></t<>					Project: Ne	ewhouse	e, Hicsk & Rus	sel Propertie	S
Client: Argo Develpments Location: Caledon, Ontario Slug Test: BH21-4 Test Well: BH21-4 Test Conducted by: MP Test Date: 2/3/2021 Analysis Date: 1/26/2021 Analysis Performed by: DG BH21-4 Analysis Date: 1/26/2021 Aquiffer Thickness: 10:00 m Time [s] 720 960									
Location: Caledon, Ontario Slug Test: BH21-4 Test Well: BH21-4 Test Conducted by: MP Analysis Performed by: DG Aquifer Thickness: 10.00 m Time [s] Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q									
Test Conducted by: MP Test Date: 2/3/2021 Analysis Derformed by: DG BH21-4 Analysis Date: 1/26/2021 Aquifer Thickness: 10.00 m Time [s] G O O O O O O O O O O O O O O O O O O	Location:	Caledon Ontari	Slug	Test: BH21_1				H21_/	
Analysis Performed by: DG BH21-4 Analysis Date: 1/26/2021 Aquifer Thickness: 10.00 m Time [s] 960 Time [s] 0 240 480 720 960 0 240 480 720 960 0 0 0 0 0 0 9 0.1 0 0 0 0 9 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 9 0 0 0 0 0 9 0 0 0 0 0 0 9 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
Aquifer Thickness: 10.00 m Image: Signature of Signature			G BH2 [,]	1-4					
Time [s] 720 960 1.0 0.0 0.1 0.1 0.1 0.1 0.1 0.							, ,		
0.0 • BH21-4 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	1.0		240	480	i me [s] 7	20	90	60	12
BH21-4 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]	0 4/4								
BH21-4 Calculation using Bouwer & Rice Observation Well Hydraulic Conductivity [m/s]									
• BH21-4 Calculation using Bouwer & Rizz Observation Well Hydraulic Conductivity [m/s]									
BH21-4 Calculation using Bouwer & Ricconductivity Dbservation Well Hydraulic Conductivity [m/s]								.	
• BH21-4 Calculation using Bouwer & Rizzon Observation Well Hydraulic Conductivity [m/s]									
BH21-4 Calculation using Bouwer & Ricconductivity Dbservation Well Hydraulic Conductivity [m/s]									
BH21-4 Calculation using Bouwer & Ricconductivity Dbservation Well Hydraulic Conductivity [m/s]	0.0								
Calculation using Bouwer & Line Observation Well Hydraulic Conductivity [m/s]	0.0								
Observation Well Hydraulic Conductivity [m/s]	Coloulation								
[m/s]									
	Observation	Wein							
			1.44 × 10 ⁻⁶	+					
	BH21_/		1.44 ^ 10						

Appendix C

Appendix D

Summary of Groundwater and Surface water Monitoring

SG Details					4-May-2	1		22-Jun-21	
SG ID	TOP Elevation (masl)	Stick-up TOC (m) (t- bar)	Surface Elev. (masl)	Depth to Water (TOP)	Depth to Water (mbgs)	Water Level (masl)	Depth to Water (TOP)	Depth to Water (mbgs)	Water Level (masl)
SG1A	259.720	1.49	258.230	1.25	0.24	258.470	1.39	0.10	258.330
SG1B	256.891	1.62	255.271	1.26	0.36	255.631		dry	
SG2A	261.996	1.50	260.496	0.83	0.67	261.166		1.50	261.996
SGEC2	254.295	1.43	251.256	1.11	0.32	253.185	0.79	0.64	253.505
SGEC1	258.070	1.67	256.400	1.12	0.55	256.950	0.68	0.99	257.390
SG3A	264.260	1.34	262.920	1.00	0.34	263.260		dry	
SG3B	262.304	1.68	260.624	1.39	0.29	260.914	1.59	0.09	260.714
SG4A	266.571	1.55	265.021	1.00	0.55	265.571	1.24	0.31	265.331
SG4B	265.447	1.57	263.877	1.12	0.45	264.327	1.41	0.16	264.037
SG5A	265.509	1.33	264.179	0.94	0.39	264.569	1.06	0.27	264.449
SG5B	263.097	1.32	261.777	0.84	0.48	262.257	0.90	0.42	262.197

		PZ Details				4-May-21			22-Jun-21	
PZ ID	TOP Elevation (masl)	Depth (m)(TOP)	Stick-up (m)	Surface Elev. (masl)	Depth to Water (TOP)	Depth to Water (mbgs)	Water Level (masl)	Depth to Water (TOP)	Depth to Water (mbgs)	Water Level (masl)
PZ1A-S	259.810	1.87	0.81	259.000	0.81	0.00	259.000	0.97	0.16	258.840
PZ1A-D	260.030	3.27	0.94	259.090	0.82	-0.12	259.210	0.94	0.00	259.090
PZHDF-S	259.454	1.78	0.90	258.554	1.39	0.49	258.064	1.54	0.64	257.914
PZHDF-D	259.049	1.87	0.55	258.499	0.85	0.30	258.199	1.01	0.46	258.039
PZ1B-S	256.972	1.89	0.85	256.127	1.41	0.57	255.562	1.82	0.98	255.152
PZ1B-D	257.588	3.39	1.43	256.158	2.10	0.67	255.488	2.56	1.13	255.028
PZ2A-S	261.915	1.78	0.82	261.095	0.96	0.14	260.955	1.30	0.48	260.615
PZ2A-D	261.600	1.88	0.48	261.120	0.65	0.17	260.950	0.98	0.50	260.620
SEEP1-S	260.841	1.91	1.22	259.621	1.45	0.23	259.391	1.81	0.59	259.031
SEEP1-D	260.084	1.91	0.52	259.564	0.82	0.30	259.264	1.19	0.67	258.894
PZEC1-S	258.275	1.89	0.84	257.440	1.40	0.57	256.875	1.57	0.74	256.705
PZEC1-D	258.320	2.67	0.82	257.500	1.47	0.65	256.850	1.60	0.78	256.720
PZ3A-S	264.084	1.90	0.77	263.314	0.97	0.20	263.114	1.44	0.67	262.644
PZ3A-D	264.042	2.47	1.02	263.022	1.13	0.11	262.912	1.57	0.55	262.472
PZ3B-S	262.105	1.62	1.10	261.005	1.17	0.07	260.935	1.26	0.16	260.845
PZ3B-D	261.980	2.44	0.98	261.000	0.99	0.01	260.990	1.39	0.41	260.590
PZ4A-S	266.883	1.87	0.83	266.053	1.24	0.41	265.643	1.65	0.82	265.233
PZ4A-D	266.685	2.43	0.62	266.065	1.10	0.48	265.585	1.26	0.64	265.425
PZ4B-S	265.537	1.84	0.88	264.657	1.01	0.13	264.527	0.95	0.07	264.587
PZ4B-D	265.687	2.51	1.03	264.657	1.30	0.27	264.387	1.20	0.17	264.487

Sep 14, 2021

STREAM FLOW MEASURMENTS Hicks Property, Caledon, ON

Flow Measurment Location: Wetland 1 (SG1B)				Date: 5/4/2021		
	Stre	eam Section Dim	ensions			
Stream Section ID	H1	H2	H3	H4	H5	H6
Stream Section Width (m)	0.25					
Section Water Column Height	0.02					
Section Area (m2)	0.005	0	0	0	0	0
	Average str	ream section flow	/ velocity (m/s)			
Average Velocity (m/s)	0.06					
	Stream	n Section Flow R	ate (m3/s)			
Stream Section Flow Rate (m3/s)	0.0003	0	0	0	0	0
					Total Stream	n Flow Rate
					0.00	m3/s
					26	m3/day
					0.30	L/s
very little flow, spot reading					25,920	L/day

Flow Measurment Location:

Date: 5/4/2021

Wetland 2 (SG2B)

5/4/2

	St	tream Section Dime	ensions			
Stream Section ID	H1	H2	H3	H4	H5	H6
Stream Section Width (m)	0.25	0.25	0.25			
Section Water Column Height	0.07	0.256	0.125			
Section Area (m2)	0.0175	0.064	0.03125	0	0	0
	Average s	stream section flow	velocity (m/s)			
Average Velocity (m/s)	0.08	0.06	0.07			
	Strea	am Section Flow Ra	te (m3/s)			
Stream Section Flow Rate (m3/s)	0.0014	0.00384	0.0021875	0	0	0
					Total Stream	n Flow Rate
					0.01	m3/s
					642	m3/day
					7.43	L/s
					641,736	L/day

Flow Measurment Location: Etobicoke Creek outlet (EC1), SG-EC

Date: 5/4/2021

Stream Section Dimensions								
Stream Section ID	H1	H2	H3	H4	H5	H6	H7	
Stream Section Width (m)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
Section Water Column Height	0.007	0.129	0.37	0.012	0.119	0.258	0.03	
Section Area (m2)	0.00175	0.03225	0.0925	0.003	0.02975	0.0645	0.0075	
Average stream section flow velocity (m/s)								
Average Velocity (m/s)	0.07	0.14	0.13	0.19	0.12	0.12	0.05	
		Stream Sectio	n Flow Rate (m3/s)					
Stream Section Flow Rate (m3/s)	0.0001225	0.004515	0.012025	0.00057	0.00357	0.00774		
					Total Street	m Flow Boto		

0.00337	0.00774	
Total Stream	n Flow Rate	
0.03	m3/s	
2466	m3/day	
28.54	L/s	
2,466,072	L/day	

Sep 14, 2021

Flow Measurment Location: Wetland 3 (SG3B)

Date: 5/4/2021

Stream Section Dimensions										
Stream Section ID	H1	H2	H3	H4	H5	H6	H7			
Stream Section Width (m)	0.25	0.25	0.25	0.25	0.25	0.25	0.25			
Section Water Column Height	0.035	0.112	0.111	0.049	0.096	0.112	0.024			
Section Area (m2)	0.00875	0.028	0.02775	0.01225	0.024	0.028	0.006			
	Average stream section flow velocity (m/s)									
Average Velocity (m/s)	0.09	0.11	0.18	0.16	0.17	0.15	0.12			
		Stre	am Section Flow Ra	te (m3/s)						
Stream Section Flow Rate (m3/s)	0.0007875	0.00308	0.004995	0.00196	0.00408	0.0042				
							Total Strea	m Flow Rate		

Total Stream	n Flow Rate
0.02	m3/s
1650	m3/day
19.10	L/s
1,650,456	L/day

Flow Measurment Location:
Wetland 4 (SG4A)

Г

nd 4 (SG4A)	Date:	5/4/2021
S	tream Section Dimensions	

		stream sec	tion Dimensions				
Stream Section ID	H1	H2	H3	H4	H5	H6	H7
Stream Section Width (m)	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Section Water Column Height	0.027	0.015	0.005	0.053	0.016	0.041	0.004
Section Area (m2)	0.00675	0.00375	0.00125	0.01325	0.004	0.01025	0.001
		Average stream se	ction flow velocity (m/s)			
Average Velocity (m/s)	0.34	0.48	0.58	0.64	0.45	0.31	0.19
		Stream Sectio	n Flow Rate (m3/s)				
Stream Section Flow Rate (m3/s)	0.002295	0.0018	0.000725	0.00848	0.0018	0.0031775	0.00019
					Total Strea	m Flow Rate	
					0.02	m3/s	

0.02	m3/s			
1579	m3/day			
18.28	L/s			
1,579,176	L/day			

Flow Measurment Location: Wetland 4 (SG4B)

		S	tream Section Dime	nsions				
Stream Section ID	H1	H2	H3	H4	H5	H6	H7	
Stream Section Width (m)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
Section Water Column Height	0.029	0.041	0.007	0.018	0.046	0.05	0.012	
Section Area (m2)	0.00725	0.01025	0.00175	0.0045	0.0115	0.0125	0.003	
Average stream section flow velocity (m/s)								
Average Velocity (m/s)	0.2	0.23	0.34	0.33	0.33	0.29	0.26	
Stream Section Flow Rate (m3/s)								
Stream Section Flow Rate (m3/s)	0.00145	0.0023575	0.000595	0.001485	0.003795	0.003625	0.00078	
							Total Stream Flow Rate	
							0.01	m3/s

Date:

5/4/2021

0.01	m3/s			
1217	m3/day			
14.09	L/s			
1,217,160	L/day			

Flow Measurment Location: Date: 5/4/2021 Wetland 4 (SG4C)

Stream Section Dimensions Stream Section ID Stream Section Width (m) H1 0.25 H2 0.25 H3 0.25 H4 0.25 H5 0.25 H6 0.25 H7 0.25 Section Water Column Height 0.03 0.045 0.015 0.032 0.062 0.006 0.016 Section Area (m2) 0.0075 0.01125 0.00375 0.008 0.0155 0.0015 0.004 Average stream section flow velocity (m/s) 0.13 0.69 0.84 0.52 Average Velocity (m/s) 0.37 0.46 0.78 Stream Section Flow Rate (m3/s) Stream Section Flow Rate (m3/s) 0.000975 0.0041625 0.010695 0.00126 0.00208 0.001725 0.00624

II FIOW Rate
m3/s
m3/day
L/s
L/day

Flow Measurment Location:	
Wetland 5 (SG5A)	

Date:

G5A)		
GJA)		

Stream Section Dimensions							
Stream Section ID	H1	H2	H3	H4	H5	H6	H7
Stream Section Width (m)	0.25	0.25	0.5	0.25	0.25	0.25	0.25
Section Water Column Height	0.03	0.055	0.021	0.086	0.004	0.096	0.036
Section Area (m2)	0.0075	0.01375	0.0105	0.0215	0.001	0.024	0.009
		Average stream see	ction flow velocity (m/s)			
Average Velocity (m/s)	0.18	0.23	0.31	0.37	0.48	0.50	0.40
		Stream Sectio	n Flow Rate (m3/s)				
Stream Section Flow Rate (m3/s)	0.00135	0.0031625	0.003255	0.007955	0.00048	0.012	0.0036
					0.03	m3/s	

0.03	m3/s
2748	m3/day
31.80	L/s
2,747,736	L/day

Flow Measurment Location: Wetland 5 (SG5B)

Date: 5/4/2021

Stream Section Dimensions						
Stream Section ID	H1	H2	H3	H4	H5	H6
Stream Section Width (m)	0.25	0.25	0.25			
Section Water Column Height	0.013	0.02	0.032			
Section Area (m2)	0.00325	0.005	0.008	0	0	0
	Averages	stream section flow	velocity (m/s)			
Average Velocity (m/s)	0.17	0.49	0.61			
	Stre	am Section Flow Ra	te (m3/s)			
Stream Section Flow Rate (m3/s)	0.0005525	0.00245	0.00488	0	0	0
					Total Stream	n Flow Rate
					0.01	m3/s
					681	m3/day
					7.88	L/s
					681,048	L/day

Flow Measurment Location: Etobicoke Creek Outlet (ECO) - SGout

Date: 5/4/2021

		Stream Sec	tion Dimensions				-
Stream Section ID	H1	H2	H3	H4	H5	H6	H7
Stream Section Width (m)	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Section Water Column Height	0.042	0.053	0.02	0.069	0.034	0.132	0.087
Section Area (m2)	Section Area (m2) 0.0105 0.01325		0.005	0.01725	0.0085	0.033	0.02175
		Average stream see	tion flow velocity (m/s)			
Average Velocity (m/s)	0.18	0.27	0.26	0.29	0.28	0.28	0.15
		Stream Sectio	n Flow Rate (m3/s)				
Stream Section Flow Rate (m3/s)	0.00189	0.0035775	0.0013	0.0050025	0.00238	0.00924	
					Total Strea	m Flow Rate	
					0.02	m3/s	1

5	0.00238	0.00924
	Total Stream	m Flow Rate
	0.02	m3/s
	2021	m3/day
	23.39	L/s
	2,020,896	L/day

STREAM FLOW MEASURMENTS

Hicks Property, Caledon, ON

Flow Measurment Location: Wetland 4 (SG4A)

Date: 6/22/2021

	Sti	ream Section Dime	nsions			
Stream Section ID	H1	H2	H3	H4	H5	
Stream Section Width (m)	0.25	0.25	0.25	0.25	0.25	
Section Water Column Height	0.26	0.37	0.4	0.28	0.2	
Section Area (m2)	0.065	0.0925	0.1	0.07	0.05	
Average stream section flow velocity (m/s)						
Average Velocity (m/s)	0	0.03	0.04	0.03	0.01	
	Strea	m Section Flow Rat	te (m3/s)			
Stream Section Flow Rate (m3/s)	0	0.002775	0.004	0.0021	0.0005	
Total Stream Flow Rate						
					0.01	m3/s
810 m3/day						
					9.38	L/s
					810,000	L/day

6/22/2021

Date:

Flow Measurment Location: Wetland 4 (SG4B)

Stream Section ID	H1	H2	H3	H4	H5	H6	H7	
Stream Section Width (m)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
Section Water Column Height	0.13	0.2	0.38	0.43	0.43	0.43	0.24	
Section Area (m2)	0.0325	0.05	0.095	0.1075	0.1075	0.1075	0.06	
	Average stream section flow velocity (m/s)							
Average Velocity (m/s)	0	0.01	0.02	0.01	0.01	0.002		
	Stream Section Flow Rate (m3/s)							
Stream Section Flow Rate (m3/s)	0	0.0005	0.0019	0.001075	0.001075	0.000215	0	
						Total Stream	m Flow Rate	
							0.00	m3/s

Stream Section Dimensions

0.00	1115/5
412	m3/day
4.77	L/s
411,696	L/day

Flow Measurment Location: Wetland 5 (SG5A)

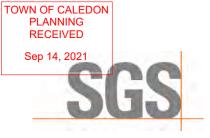
Date: 6/22/2021

Stream Section Dimensions											
Stream Section ID	H1	H2	H3	H4	H5	H6					
Stream Section Width (m)	0.25	0.25	0.5	0.25	0.25	0.25					
Section Water Column Height	0.18	0.14	0.12	0.19	0.12	0.08					
Section Area (m2)	0.045	0.035	0.06	0.0475	0.03	0.02					
Average stream section flow velocity (m/s)											
Average Velocity (m/s)	0.088	0.089	0.038	0.166	0.071	0.028					
	Strea	m Section Flow Rat	e (m3/s)								
Stream Section Flow Rate (m3/s)	0.00396	0.003115	0.00228	0.007885	0.00213	0.00056					
					Total Stream	n Flow Rate					
					0.02	m3/s					
					1722	m3/day					
					19.93	L/s					
					1,721,952	L/day					

Flow Measurment Location: Wetland 5 (SG5B)			Date: 6/22/2021										
Stream Section Dimensions													
Stream Section ID	H1	H2	H3	H4	H5	H6							
Stream Section Width (m)	0.25	0.25	0.5	0.25	0.25	0.25							
Section Water Column Height	0.10	0.12	0.20	0.18	0.22	0.10							
Section Area (m2)	0.025	0.03	0.1	0.045	0.055	0.025							
	Average	stream section flow	velocity (m/s)		•								
Average Velocity (m/s)	0	0.013	0.011	0.011	0.013	0.05							
	Stre	am Section Flow Ra	te (m3/s)										
Stream Section Flow Rate (m3/s)	0	0.00039	0.0011	0.000495	0.000715	0.00125							
			•		Total Stream	m Flow Rate							

m3/s m3/day 0.00 341 3.95 L/s 341,280 L/day

Appendix E



CA14195-FEB21 R1

19-312-101

Prepared for

DS Consultants

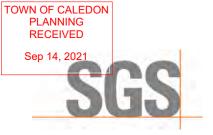
First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Dorothy Garda	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	dorothy.garda@dsconsultants.ca	SGS Reference	CA14195-FEB21
Project	19-312-101	Received	02/05/2021
Order Number		Approved	01/01/1970
Samples	Ground Water (1)	Report Number	CA14195-FEB21 R1
		Date Reported	02/12/2021

COMMENTS

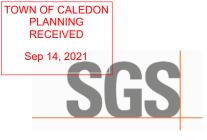
RL - SGS Reporting Limit Temperature of Sample upon Receipt: 7 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:018753


SVOC prep has a low bias for 4-Terphenyl-d14 (surr) due to sample matrix (very high TSS)

Ecoli test elevated as High sediment in sample: result is from 1 mL filter

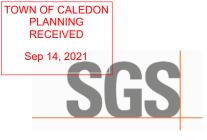
SIGNATORIES


The signatories will be applied on the final report.

Brad Moore Hon. B.Sc B mlo-

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-18
Legend	19
Annexes	20

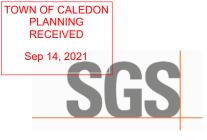

CA14195-FEB21 R1

Client: DS Consultants

Project: 19-312-101

Project Manager: Dorothy Garda

			O-marks Nk - 1	0
PACKAGE: General Chemistry (WATER	र)		Sample Number	9
			Sample Name	BH21-3
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIE	BS 3303E		Sample Matrix	Ground Water
			Sample Date	04/02/2021
Parameter	Units	RL	L1	Result
General Chemistry				
Biochemical Oxygen Demand (BOD5)	mg/L	2		rpt
Total Suspended Solids	mg/L	2		79200
Total Kjeldahl Nitrogen	as N mg/L	0.5		< 0.5
Metals and Inorganics				
Fluoride	mg/L	0.06		0.14
Cyanide (total)	mg/L	0.01		< 0.01
Sulphate	mg/L	2		83
Aluminum (total)	mg/L	0.001	0.075	113
Aluminum (0.2µm)	mg/L	0.001	0.015	0.010
Antimony (total)	mg/L	0.0009	0.02	< 0.0009
Arsenic (total)	mg/L	0.0002	0.005	0.0505
Cadmium (total)	mg/L	0.00002	0.0001	0.00119
Caumum (total)	IIIg/L	3	0.0001	0.00110
Chromium (total)	mg/L	0.00008	0.1	0.173
Copper (total)	mg/L	0.0002	0.001	0.386
Cobalt (total)	mg/L	0.00000	0.0009	0.113
	ing/E	4	0.0000	
Lead (total)	mg/L	0.00001	0.011	0.122
Manganese (total)	mg/L	0.00001		11.9
Molybdenum (total)	mg/L	0.00004	0.04	0.00158
Nickel (total)	mg/L	0.0001	0.025	0.226
Phosphorus (total)	mg/L	0.003	0.01	8.69
Selenium (total)	mg/L	0.00004	0.1	0.00238
	iiig/L	5.00004	0.1	0.00200

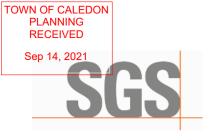

CA14195-FEB21 R1

Client: DS Consultants

Project: 19-312-101

Project Manager: Dorothy Garda

PACKAGE: Metals and Inorganics (WATE	ER)		Samp	ple Number	9
			San	mple Name	BH21-3
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3	3303E		San	mple Matrix G	round Water
			Sa	ample Date	04/02/2021
Parameter	Units	RL	L1		Result
Metals and Inorganics (continued)					
Silver (total)	mg/L	0.00005	0.0001		0.00067
Tin (total)	mg/L	0.00006			0.00149
Titanium (total)	mg/L	0.00005			1.39
Zinc (total)	mg/L	0.002	0.02		0.592
Microbiology					
E. Coli	cfu/100mL	0	100		< 100↑
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001			< 0.001
Nonylphenol Ethoxylates	mg/L	0.01			< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
Oil and Grease					
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4			< 4
Oil & Grease (mineral/synthetic)	mg/L	4			< 4

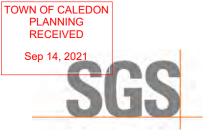

CA14195-FEB21 R1

Client: DS Consultants

Project: 19-312-101

Project Manager: Dorothy Garda

			• · · · ·	0
PACKAGE: Other (ORP) (WATER)			Sample Number	9
			Sample Name	BH21-3
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS	3303E		Sample Matrix	Ground Water
			Sample Date	04/02/2021
Parameter	Units	RL	L1	Result
Other (ORP)				
рН	No unit	0.05	8.6	7.57
Mercury (total)	mg/L	0.00001	0.0002	0.00002
PCBs				
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001		< 0.0001
Phenols				
4AAP-Phenolics	mg/L	0.002	0.001	< 0.002
	ing/L	0.002	0.001	< 0.002
SVOCs				
di-n-Butyl Phthalate	mg/L	0.002		< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002		< 0.002
VOCs				
Chloroform	mg/L	0.0005		< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005		< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005		< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005		< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005		< 0.0005
Methylene Chloride	mg/L	0.0005	0.1	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	0.07	< 0.0005
Methyl ethyl ketone	mg/L	0.02		< 0.02
Styrene	mg/L	0.0005		< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	0.05	< 0.0005
Trichloroethylene	mg/L	0.0005	0.02	< 0.0005


CA14195-FEB21 R1

Client: DS Consultants

Project: 19-312-101

Project Manager: Dorothy Garda

PACKAGE: VOCs - BTEX (WATER)			Sample Number	9
			Sample Name	BH21-3
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 33(03E		Sample Matrix	Ground Water
			Sample Date	04/02/2021
Parameter	Units	RL	L1	Result
VOCs - BTEX				
Benzene	mg/L	0.0005	0.1	< 0.0005
Ethylbenzene	mg/L	0.0005	0.008	< 0.0005
Toluene	mg/L	0.0005	0.0008	< 0.0005
Xylene (total)	mg/L	0.0005		< 0.0005
m-p-xylene	mg/L	0.0005	0.002	< 0.0005
o-xylene	mg/L	0.0005	0.04	< 0.0005

EXCEEDANCE SUMMARY

				PWQO_L / WATER		
				/ Table 2 -		
				General - July 1999		
			PIBS 3303E			
Parameter	Method	Units	Result	L1		
21-3						
Aluminum	SM 3030/EPA 200.8	mg/L	113	0.075		
Arsenic	SM 3030/EPA 200.8	mg/L	0.0505	0.005		
Cadmium	SM 3030/EPA 200.8	mg/L	0.00119	0.0001		
Chromium	SM 3030/EPA 200.8	mg/L	0.173	0.1		
Cobalt	SM 3030/EPA 200.8	mg/L	0.113	0.0009		
Copper	SM 3030/EPA 200.8	mg/L	0.386	0.001		
Lead	SM 3030/EPA 200.8	mg/L	0.122	0.011		
Nickel	SM 3030/EPA 200.8	mg/L	0.226	0.025		
Phosphorus	SM 3030/EPA 200.8	mg/L	8.69	0.01		
Silver	SM 3030/EPA 200.8	mg/L	0.00067	0.0001		
Zinc	SM 3030/EPA 200.8	mg/L	0.592	0.02		
4AAP-Phenolics	SM 5530B-D	mg/L	< 0.002	0.001		

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5011-FEB21	mg/L	2	<2	0	20	100	80	120	101	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0014-FEB21	mg/L	2	< 2	22	30	101	70	130	100	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0061-FEB21	mg/L	0.01	<0.01	ND	10	90	90	110	84	75	125

QC SUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ret	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0135-FEB21	mg/L	0.06	<0.06	3	10	102	90	110	NV	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	E.
	Reference	Reference	Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0010-FEB21	mg/L	0.00001	< 0.00001	ND	20	81	80	120	77	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	•
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery	Recover (9	ry Limits %)
						. ,	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0036-FEB21	mg/L	0.00005	<0.00005	ND	20	104	90	110	95	70	130
Aluminum (total)	EMS0036-FEB21	mg/L	0.001	<0.001	8	20	97	90	110	112	70	130
Aluminum (0.2µm)	EMS0036-FEB21	mg/L	0.001	<0.001	8	20	97	90	110	112	70	130
Arsenic (total)	EMS0036-FEB21	mg/L	0.0002	<0.0002	13	20	104	90	110	109	70	130
Cadmium (total)	EMS0036-FEB21	mg/L	0.000003	<0.000003	ND	20	101	90	110	105	70	130
Cobalt (total)	EMS0036-FEB21	mg/L	0.000004	<0.000004	8	20	101	90	110	103	70	130
Chromium (total)	EMS0036-FEB21	mg/L	0.00008	<0.00008	6	20	101	90	110	115	70	130
Copper (total)	EMS0036-FEB21	mg/L	0.0002	<0.0002	3	20	99	90	110	102	70	130
Manganese (total)	EMS0036-FEB21	mg/L	0.00001	<0.00001	1	20	102	90	110	105	70	130
Molybdenum (total)	EMS0036-FEB21	mg/L	0.00004	<0.00004	6	20	96	90	110	102	70	130
Nickel (total)	EMS0036-FEB21	mg/L	0.0001	<0.0001	3	20	96	90	110	101	70	130
Lead (total)	EMS0036-FEB21	mg/L	0.00001	<0.00001	8	20	100	90	110	104	70	130
Phosphorus (total)	EMS0036-FEB21	mg/L	0.003	0.003	10	20	99	90	110	NV	70	130
Antimony (total)	EMS0036-FEB21	mg/L	0.0009	<0.0009	ND	20	103	90	110	116	70	130
Selenium (total)	EMS0036-FEB21	mg/L	0.00004	<0.00004	14	20	104	90	110	101	70	130
Tin (total)	EMS0036-FEB21	mg/L	0.00006	<0.00006	ND	20	97	90	110	NV	70	130
Titanium (total)	EMS0036-FEB21	mg/L	0.00005	<0.00005	15	20	96	90	110	NV	70	130
Zinc (total)	EMS0036-FEB21	mg/L	0.002	<0.002	4	20	101	90	110	127	70	130
Silver (total)	EMS0043-FEB21	mg/L	0.00005	<0.00005	ND	20	101	90	110	105	70	130
Arsenic (total)	EMS0043-FEB21	mg/L	0.0002	<0.0002	4	20	104	90	110	103	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Cadmium (total)	EMS0043-FEB21	mg/L	0.000003	<0.000003	15	20	102	90	110	108	70	130
Cobalt (total)	EMS0043-FEB21	mg/L	0.000004	<0.000004	5	20	103	90	110	102	70	130
Chromium (total)	EMS0043-FEB21	mg/L	0.00008	<0.00008	5	20	104	90	110	105	70	130
Copper (total)	EMS0043-FEB21	mg/L	0.0002	<0.0002	4	20	103	90	110	110	70	130
Manganese (total)	EMS0043-FEB21	mg/L	0.00001	<0.00001	1	20	99	90	110	106	70	130
Molybdenum (total)	EMS0043-FEB21	mg/L	0.00004	<0.00004	10	20	99	90	110	102	70	130
Nickel (total)	EMS0043-FEB21	mg/L	0.0001	<0.0001	4	20	103	90	110	99	70	130
Lead (total)	EMS0043-FEB21	mg/L	0.00001	<0.00001	1	20	99	90	110	106	70	130
Phosphorus (total)	EMS0043-FEB21	mg/L	0.003	<0.003	0	20	97	90	110	NV	70	130
Antimony (total)	EMS0043-FEB21	mg/L	0.0009	<0.0009	1	20	103	90	110	115	70	130
Selenium (total)	EMS0043-FEB21	mg/L	0.00004	<0.00004	1	20	103	90	110	120	70	130
Tin (total)	EMS0043-FEB21	mg/L	0.00006	<0.00006	11	20	103	90	110	NV	70	130
Titanium (total)	EMS0043-FEB21	mg/L	0.00005	<0.00005	8	20	97	90	110	NV	70	130
Zinc (total)	EMS0043-FEB21	mg/L	0.002	<0.002	2	20	103	90	110	126	70	130

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-IENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	icate	LC	S/Spike Blank		M	latrix Spike / F	Ref.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		very Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9114-FEB21	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	-
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0113-FEB21	mg/L	0.01	< 0.01			105	55	120			
Nonylphenol Ethoxylates	GCM0113-FEB21	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0113-FEB21	mg/L	0.01	< 0.01			96	55	120			
Nonylphenol	GCM0113-FEB21	mg/L	0.001	< 0.001			96	55	120			

QC SUMMARY

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref	F.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0104-FEB21	mg/L	2	<2	NSS	20	103	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0104-FEB21	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0104-FEB21	mg/L	4	< 4	NSS	20	NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0124-FEB21	No unit	0.05	NA	0		101			NA		

QC SUMMARY

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover (9	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0079-FEB21	mg/L	0.002	<0.002	ND	10	100	80	120	99	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0118-FEB21	mg/L	0.0001	<0.0001	ND	30	138	60	140	NSS	60	140
Total												

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	əf.
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0116-FEB21	mg/L	0.002	< 0.002	NSS	30	107	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0116-FEB21	mg/L	0.002	< 0.002	NSS	30	105	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	F.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0113-FEB21	mg/L	2	< 2	0	10	101	90	110	NA		

QC SUMMARY

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		N	latrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike	Recover (%	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0097-FEB21	as N mg/L	0.5	<0.5	ND	10	102	90	110	NV	75	125
Total Kjeldahl Nitrogen	SKA0103-FEB21	as N mg/L	0.5	<0.5	ND	10	103	90	110	NV	75	125

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike	Recover (%	-	Spike Recovery	Recover (9	ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	98	60	130	100	50	140
1,2-Dichlorobenzene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
1,4-Dichlorobenzene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Benzene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
Chloroform	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	99	60	130	98	50	140
cis-1,2-Dichloroethene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	101	60	130	99	50	140
Ethylbenzene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	104	60	130	101	50	140
m-p-xylene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	103	60	130	102	50	140
Methyl ethyl ketone	GCM0125-FEB21	mg/L	0.02	<0.02	ND	30	99	50	140	101	50	140
Methylene Chloride	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
o-xylene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	103	60	130	103	50	140
Styrene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140
Tetrachloroethylene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	100	60	130	96	50	140
(perchloroethylene)												
Toluene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
Trichloroethylene	GCM0125-FEB21	mg/L	0.0005	<0.0005	ND	30	99	60	130	97	50	140

QC SUMMARY

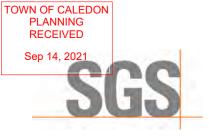
Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.


RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis. RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

	<i>φ</i> ²	02	Date:									
							7	mak	Signature: 1	Sig	8	NO
								5				Observations/Comments/Special Instructions
						-						
					-			-	_			
			+			2		-	_			
			+	1	+	1	-	-				
								+				
			+			1		-	-			
un		-	-	+	-	-	-	-	-			
			-					-	_			
un		+		+		-			_			
un					-			_	-			
										-		
	5	-	1		-			N	m9 61	Som	02.164124	BH21-3
Sewer Use: Specify pkg: Water Charact Seneral Charact	Appendix 2: 406/1 Screening Levels 1	Pesticides Organochlorine or spedi	NO BTEX VOCs all incl BTEX BTEX only	F1-F4 + BTEX	SVOCS all incl PAHs, ABNs, CPs PCBS Total	ICP Metals onl Sb,As,Ba,Be,B,Cd,Cr,Co,C	Metals & Inor ind CrVI. CN.Hg pH.(B(HV (CI. Na-water) Full Metals St ICP metals plus B(HWS-su	Field Filtered	# OF BOTTLES MA	TIME SAMPLED B	DATE SAMPLED	SAMPLE IDENTIFICATION
Exte		y other	_	_	r	y	gan /s),ec	Y/N		NO	VES	RECORD OF SITE CONDITION (RSC)
nded		,			-1.		ICS SAR		tote	ODWS Not Reportable "See note		
	ate			NUCIOF	Araclar	4VI -			Municipality:	Other:	MISA.	Table 3 Agri/Other Medum/Fine
1.1.14								m	Storm		MPWQO	
H(y) TCLP	Other (please specify)	Pest	C VOC	PCB PHC	SVOC PO		M & I	Law:	Sewe	ns:	Other Regulations:	D.Reg 153/04 DO.Reg 406/19
	Ð	ANALYSIS REQUESTED	YSIS RE	ANAL							REGULATIONS	REC
NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	ILE) WATER SAMPLES FOR	IKING (POTAE	NOTE: DRIN			te:	Specify Due Date	Spe			Email:	Email: dowthy-gendrodenon sultents o
or on weekends. 141 begins next business	RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	IN 2 Days	1 Day	Apply): Y WITH SC	EASIBILIT	ditional Cha IRM RUSH F	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITI	PLE			Phone:	Phone: 405 - 324-273> Fax:
TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after Rom or on workonde: TAT bosine new business days	TAT's are quoted in business Samples received after Rom				lays)	Regular TAT (5-7days)	Regul				Address:	Ucuyhan, ON
	TURNAROUND TIME (TAT) REQUIRED	DUND TIME	TURNARC						c		Contact	Address: 16-6221 Hung 7
	Site Location/ID;		1	-312-10	-61		Project #:	Pro	×	Accounting	Company: A	T
	P.O. 井					1	Quotation #:	Qu	MATION 90)	as Report Information)	IN Same as R	2
LABLIMS # CIP IN 195- FE		(er	Type:	220	esent: Yes, in Receipt ("C	Cooling Agent Present: Yes,	Co	No No	nact: Yes	Custody Seal Present: Custody Seal Intact:		Received Date: <u>62/05/</u> <u>Asthmiddlyy</u> Received Time: <u>14</u> <u>40</u> thr : min)
				se only	on - Lab u	tion Section	Laboratory Information Section - Lab use only	Laborato	gnature):	Received By (signature):		F.H.
Page (of			61	519-672-03	48-8060 Fax	oll Free: 877-8	19-672-4500 To	S8 Phone: 51	ndon, ON, N6E 2	sortium Court, Lo	- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	

Appendix F

TABLE F-1

CLIMATE NORMALS 1981-2010 (ORANGEVILLE MOE CLIMATE STATION)

Water Balance - Hicks, Newhouse & Russel Properties, Caledon, ON

			Thornthy	waite (1948)		
Month	Mean Temperature (°C)	Heat Index	Unadjusted Potential Evapotranspiration (mm)	Daylight Correction Value	Adjusted Potential Evapotranspiration (mm)	Total Precipitation (mm)
January	-7.5	0.0	0.0	0.81	0.0	64.3
February	-6.5	0.0	0.0	0.82	0.0	54.5
March	-2.1	0.0	0.0	1.02	0.0	60.9
April	5.3	1.1	25.9	1.13	29.2	70.1
May	11.7	3.6	58.1	1.27	73.8	86.6
June	16.9	6.3	84.7	1.29	109.3	81.3
July	19.4	7.8	97.5	1.30	126.8	80.8
August	18.4	7.2	92.4	1.20	110.9	88.2
September	14.3	4.9	71.4	1.04	74.3	87.0
October	7.8	2.0	38.4	0.95	36.5	76.6
November	2.0	0.2	9.5	0.8	7.6	87.1
December	-4.1	0.0	0.0	0.76	0.0	64.2
TOTALS		33.1	478.0		568.4	901.6

Notes: Daylight Correction values obtained from Instruction and Tables For Computing Potential Evapotranspiration and The Water Balance (Thornthwaite & Mather, 1957)

TABLE F-2 Pre-development Site Water Balance Water Balance - Newhouse Property, Caledon, ON

	ce - Newhouse Property, cale	,					Month							Total
Cat	chments and Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Iotai
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	125.00	125.00	125.00	97.04	51.04	28.36	41.11	81.22	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	106.14	108.04	95.40	74.25	36.49	7.64	0.00	0.00	0.00	531
	P-AET (mm)	60.90	40.87	12.75	-24.84	-27.24	-7.20	12.75	40.11	79.46	64.20	64.30	54.50	371
1 0	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-24.84	-52.08	-59.28	-46.54	-6.42	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	24.84	27.24	7.20	-12.75	-40.11	-6.42	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	73.04	64.20	64.30	54.50	371
Pervious Area	MECP Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	-
(Urban Lawn)	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	-
I [Infiltration (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	36.52	32.10	32.15	27.25	185
1 1	Run-Off (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	36.52	32.10	32.15	27.25	185
1 1	Catchment Area (m ²) = 86894					Subcato	hment Monthly	Volumes						
-	AET (m ³)	0.00	2540.15	6417.09	9222.60	9388.42	8289.88	6452.17	3170.67	663.70	0.00	0.00	0.00	46145
	Infiltration (m ³)	2645.92	1775.56	553.97	0.00	0.00	0.00	0.00	0.00	3173.24	2789.30	2793.64	2367.86	16100
	Run-Off (m ³)	2645.92	1775.56	553.97	0.00	0.00	0.00	0.00	0.00	3173.24	2789.30	2793.64	2367.86	16100
	Soil Moisture Storage (mm)	200.00	200.00	200.00	172.04	126.04	103.36	116.11	156.22	200.00	200.00	200.00	200.00	-
-	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	107.31	115.08	101.21	74.25	36.49	7.64	0.00	0.00	0.00	545
	P-AET (mm)	60.90	40.87	12.75	-26.01	-34.28	-13.01	12.75	40.11	79.46	64.20	64.30	54.50	357
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.01	-60.29	-73.29	-60.54	-20.43	0.00	0.00	0.00	0.00	
1 F	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.01	34.28	13.01	-12.75	-40.11	-20.43	0.00	0.00	0.00	
1 F	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	59.03	64.20	64.30	54.50	357
Pervious Area	MECP Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
(Moderatley	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Rooted Crops)	Infiltration (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
I F	Run-Off (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
-	Catchment Area (m ²) = 140016	50.45	20.43	0.58	0.00		hment Monthly		0.00	29.51	32.10	52.15	27.25	1/8
	Catchment Area (m) = 140010 AET (m ³)	0.00	4093.06	10340.16	15025.04	16112.68	14170.41	10396.68	5109.04	1069.45	0.00	0.00	0.00	76317
-	Infiltration (m ³)	4263.50	2861.05	892.63	0.00	0.00	0.00	0.00	0.00	4132.47	4494.53	4501.53	3815.45	24961
	Run-Off (m ³)	4263.50	2861.05	892.63	0.00	0.00	0.00	0.00	0.00	4132.47	4494.53	4501.53	3815.45	24961
	Soil Moisture Storage (mm)	4203.30	400.00	400.00	372.04	326.04	303.36	316.11	356.22	400.00	400.00	400.00	400.00	24501
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	108.29	120.94	106.04	74.25	36.49	7.64	0.00	0.00	0.00	557
	P-AET (mm)	60.90	40.87	12.75	-26.99	-40.14	-17.84	12.75	40.11	79.46	64.20	64.30	54.50	345
1 0	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.99	-67.12	-84.97	-72.22	-32.11	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.99	40.14	17.84	-12.75	-40.11	-32.11	0.00	0.00	0.00	-
-	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	47.35	64.20	64.30	54.50	345
Pervious Area (Woodland)	MECP Infiltration Factor Run-Off Coefficient	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	<u> </u>
(moduland)	Infiltration (mm)	36.54	24.52	7.65	0.40	0.40	0.40	0.40	0.40	28.41	38.52	38.58	32.70	207
	Run-Off (mm)	24.36	16.35	5.10	0.00	0.00	0.00	0.00	0.00	18.94	25.68	25.72	21.80	138
	Catchment Area (m ²) = 85874					Subcato	hment Monthly	Volumes						
	AET (m ³)	0.00	2510.32	6341.73	9298.96	10385.35	9106.15	6376.40	3133.43	655.90	0.00	0.00	0.00	47808
	Infiltration (m ³)	3137.82	2105.65	656.95	0.00	0.00	0.00	0.00	0.00	2439.89	3307.85	3313.00	2808.07	17769
	Run-Off (m ³)	2091.88	1403.77	437.97	0.00	0.00	0.00	0.00	0.00	1626.59	2205.23	2208.67	1872.04	11846
-	Precipitation Surplus (mm) Evaporation Factor	60.90 0.30	70.10 0.30	86.60 0.30	81.30 0.30	80.80 0.30	88.20 0.30	87.00 0.30	76.60 0.30	87.10 0.30	64.20 0.30	64.30 0.30	54.50 0.30	902
-	Run-Off Coefficient	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
Impervious Area	Evaporation (mm)	18.27	21.03	25.98	24.39	24.24	26.46	26.10	22.98	26.13	19.26	19.29	16.35	270
(Buildings and Driveway)	Run-Off (mm)	42.63	49.07	60.62	56.91	56.56	61.74	60.90	53.62	60.97	44.94	45.01	38.15	631
Drivewayj	Catchment Area (m ²) = 8609						hment Monthly	Volumes						
	Evaporation (m ³)	157.29	181.05	223.66	209.98	208.68	227.80	224.70	197.84	224.96	165.81	166.07	140.76	2329
	Run-Off (m ³)	367.01	422.45	521.88	489.94	486.93	531.53	524.29	461.62	524.90	386.89	387.50	328.44	5433
							al Catchment Vol							
	Total AET (m ³)	0.00	9143.52	23098.98	33546.61	35886.45	31566.44	23225.25	11413.14	2389.05	0.00	0.00	0.00	170269
	Total Evaporation (m ³) Total Infiltration (m ³)	157.29 10047.25	181.05 6742.26	223.66 2103.55	209.98	208.68	227.80	224.70 0.00	197.84 0.00	224.96 9745.60	165.81 10591.68	166.07 10608.18	140.76 8991.38	2329 58830
	Total Infiltration (m) Total Runoff (m ³)	9368.31	6462.83	2103.55	489.94	486.93	531.53	524.29	461.62	9/45.60	10591.68 9875.95	9891.34	8383.79	58830
	rotal Runoff (m ⁻)	9368.31	0402.83	2406.45	489.94	480.93	551.55	524.29	401.02	9457.20	98/5.95	9891.34	6383.79	58340

TABLE F-2 Pre-development Site Water Balance

Water Balance - Hicks Property, Caledon, ON

er Balance - Hicks Pro							Month							Total
Cato	hments and Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	
	Soil Moisture Storage (mm)	125.00	125.00	125.00	97.04	51.04	28.36	41.11	81.22	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	106.14	108.04	95.40	74.25	36.49	7.64	0.00	0.00	0.00	531
	P-AET (mm)	60.90	40.87	12.75	-24.84	-27.24	-7.20	12.75	40.11	79.46	64.20	64.30	54.50	371
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-24.84	-52.08	-59.28	-46.54	-6.42	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	24.84	27.24	7.20	-12.75	-40.11	-6.42	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	73.04	64.20	64.30	54.50	371
Pervious Area	MECP Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
(Urban Lawn)	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	-
	Infiltration (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	36.52	32.10	32.15	27.25	185
	Run-Off (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	36.52	32.10	32.15	27.25	185
	Catchment Area (m ²) = 15023				•	Subcate	hment Monthly	Volumes			P			
	AET (m ³)	0.00	439.17	1109.47	1594.52	1623.19	1433.26	1115.53	548.19	114.75	0.00	0.00	0.00	7978
-	Infiltration (m ³)	457.46	306.98	95.78	0.00	0.00	0.00	0.00	0.00	548.63	482.25	483.00	409.39	2783
-	Run-Off (m ³)	457.46	306.98	95.78	0.00	0.00	0.00	0.00	0.00	548.63	482.25	483.00	409.39	2783
	Soil Moisture Storage (mm)	200.00	200.00	200.00	172.04	126.04	103.36	116.11	156.22	200.00	200.00	200.00	200.00	
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	107.31	115.08	103.30	74.25	36.49	7.64	0.00	0.00	0.00	545
	P-AET (mm)	60.90	40.87	12.75	-26.01	-34.28	-13.01	12.75	40.11	79.46	64.20	64.30	54.50	357
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.01	-60.29	-73.29	-60.54	-20.43	0.00	0.00	0.00	0.00	
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.01	34.28	13.01	-12.75	-40.11	-20,43	0.00	0.00	0.00	
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	59.03	64.20	64.30	54.50	357
Pervious Area	MECP Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
(Moderatley	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Rooted Crops)	Infiltration (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
∣ ⊢	Run-Off (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
∣ ⊢	Catchment Area (m ²) = 206859	30.43	20.43	0.56	0.00		hment Monthly		0.00	29.31	32.10	52.15	27.23	1/8
I –	Catchment Area (m) = 200059 AET (m ³)	0.00	6047.05	15276.47	22197.87	23804.74	20935.24	15359.97	7548.06	1579.99	0.00	0.00	0.00	11274
-	Infiltration (m ³)	6298.86	4226.89	13276.47			1	0.00	0.00	1	6640.18	6650.52	5636.91	3687
I –	Run-Off (m ³)	6298.86		1	0.00	0.00	0.00	0.00	0.00	6105.27		6650.52	5636.91	3687
<u> </u>	Soil Moisture Storage (mm)	400.00	4226.89 400.00	1318.77 400.00	372.04	326.04	0.00 303.36	316.11	356.22	6105.27 400.00	6640.18 400.00	400.00	400.00	368/
∣ ⊢	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	108.29	120.94	106.04	74.25	36.49	7.64	400.00	0.00	400.00	- 557
-	P-AET (mm)	60.90	40.87	12.75	-26.99	-40.14	-17.84	12.75	40.11	79.46	64.20	64.30	54.50	345
-	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.99	-67.12	-84.97	-72.22	-32.11	0.00	0.00	0.00	0.00	
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.99	40.14	17.84	-12.75	-40.11	-32.11	0.00	0.00	0.00	-
L	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	47.35	64.20	64.30	54.50	345
Pervious Area	MECP Infiltration Factor Run-Off Coefficient	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	
(Woodland)	Run-Off Coefficient Infiltration (mm)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40 32.70	- 207
	Run-Off (mm)	24.36	16.35	5.10	0.00	0.00	0.00	0.00	0.00	18.94	25.68	25.72	21.80	138
-	Catchment Area (m ²) = 79835						hment Monthly							
-	AET (m ³)	0.00	2333.81	5895.82	8645.11	9655.11	8465.86	5928.05	2913.11	609.79	0.00	0.00	0.00	4444
	Infiltration (m ³)	2917.19	1957.60	610.76	0.00	0.00	0.00	0.00	0.00	2268.33	3075.26	3080.05	2610.62	1652
	Run-Off (m ³)	1944.79	1305.06	407.17	0.00	0.00	0.00	0.00	0.00	1512.22	2050.18	2053.37	1740.41	1101
_	Precipitation Surplus (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	Evaporation Factor Run-Off Coefficient	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
Impervious Area	Evaporation (mm)	0.70 18.27	0.70 21.03	0.70 25.98	0.70 24.39	0.70 24.24	0.70 26.46	0.70 26.10	0.70 22.98	0.70 26.13	0.70 19.26	0.70	0.70 16.35	- 270
(Buildings and	Run-Off (mm)	42.63	49.07	60.62	56.91	56.56	61.74	60.90	53.62	60.97	44,94	45.01	38.15	631
Driveway)	Catchment Area (m ²) = 1848	-1.05	43.07	00.02	50.51		hment Monthly		1 33.02				30.13	
	Evaporation (m ³)	33.76	38.86	48.01	45.07	44.79	48.89	48.23	42.46	48.28	35.59	35.64	30.21	500
	Run-Off (m ³)	78.77	90.67	112.01	105.16	104.51	114.08	112.53	99.08	112.66	83.04	83.17	70.49	116
						Tot	al Catchment Vol	umes						
	Total AET (m ³)	0.00	8820.03	22281.75	32437.51	35083.04	30834.36	22403.55	11009.35	2304.53	0.00	0.00	0.00	1651
			38.86	48.01	45.07	44.79	48.89	48.23	42.46	48.28	35.59	35.64	30.21	500
	Total Evaporation (m ³)	33.76												
	Total Evaporation (m ³) Total Infiltration (m ³)	33.76 9673.51 8779.88	38.86 6491.47 5929.60	2025.30 1933.73	0.00	0.00	0.00	0.00	0.00 99.08	8922.23 8278.78	10197.69 9255.64	10213.57 9270.06	8656.92 7857.20	5618

TABLE F-2 Pre-development Site Water Balance

Water Balance - Russell, Property, Caledon, ON

	chments and Hydrologic Components						Month							Total
Cat	chiments and Hydrologic components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	125.00	125.00	125.00	97.04	51.04	28.36	41.11	81.22	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	106.14	108.04	95.40	74.25	36.49	7.64	0.00	0.00	0.00	531
	P-AET (mm)	60.90	40.87	12.75	-24.84	-27.24	-7.20	12.75	40.11	79.46	64.20	64.30	54.50	371
I D	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-24.84	-52.08	-59.28	-46.54	-6.42	0.00	0.00	0.00	0.00	-
I D	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	24.84	27.24	7.20	-12.75	-40.11	-6.42	0.00	0.00	0.00	-
I [Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	73.04	64.20	64.30	54.50	371
Pervious Area	MECP Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
(Urban Lawn)	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
I F	Infiltration (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	36.52	32.10	32.15	27.25	185
I F	Run-Off (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	36.52	32.10	32.15	27.25	185
I F	Catchment Area (m ²) = 25021				1	Subcatc	hment Monthly	Volumes						
	AET (m ³)	0.00	731.43	1847.79	2655.63	2703.37	2387.05	1857.89	912.99	191.11	0.00	0.00	0.00	13287
	Infiltration (m ³)	761.89	511.27	159.51	0.00	0.00	0.00	0.00	0.00	913.73	803.17	804.42	681.82	4636
-	Run-Off (m ³)	761.89	511.27	159.51	0.00	0.00	0.00	0.00	0.00	913.73	803.17	804.42	681.82	4636
	Soil Moisture Storage (mm)	200.00	200.00	200.00	172.04	126.04	103.36	116.11	156.22	200.00	200.00	200.00	200.00	
-	Actual Potential Evapotranspiration (mm)	0.00	200.00	73.85	107.31	115.08	103.30	74.25	36.49	7.64	0.00	0.00	0.00	545
-	P-AET (mm)	60.90	40.87	12.75	-26.01	-34.28	-13.01	12.75	40.11	79.46	64.20	64.30	54.50	343
I F	Actual Soil Moisture Deficit (mm)	0.00	40.87	0.00	-26.01	-60.29	-13.01	-60.54	-20.43	0.00	0.00	0.00	0.00	
I -	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.01	34.28	13.01	-12.75	-20.43	-20.43	0.00	0.00	0.00	
I -	Precipitation Surplus (mm)													-
Pervious Area	MECP Infiltration Factor	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	59.03	64.20	64.30	54.50	357
(Moderatley	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Rooted Crops)	Infiltration (mm)													-
I -		30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
I -	Run-Off (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
I -	Catchment Area (m ²) = 310780						hment Monthly							
I -	AET (m ³)	0.00	9084.93	22950.97	33349.51	35763.63	31452.57	23076.43	11340.01	2373.74	0.00	0.00	0.00	169392
I -	Infiltration (m ³)	9463.25	6350.37	1981.28	0.00	0.00	0.00	0.00	0.00	9172.40	9976.03	9991.57	8468.75	55404
	Run-Off (m ³)	9463.25	6350.37	1981.28	0.00	0.00	0.00	0.00	0.00	9172.40 400.00	9976.03	9991.57	8468.75	55404
I -	Soil Moisture Storage (mm)	400.00							356.22		400.00	400.00	400.00	
			400.00	400.00	372.04	326.04	303.36	316.11	0.6.40				0.00	
-	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	108.29	120.94	106.04	74.25	36.49	7.64	0.00	0.00	0.00	557
-	Actual Potential Evapotranspiration (mm) P-AET (mm)	0.00 60.90	29.23 40.87	73.85 12.75	108.29 -26.99	120.94 -40.14	106.04 -17.84	74.25 12.75	40.11	7.64 79.46	0.00 64.20	0.00 64.30	54.50	557 345
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	108.29	120.94	106.04	74.25		7.64	0.00	0.00		
	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surplus (mm)	0.00 60.90 0.00 0.00 60.90	29.23 40.87 0.00 0.00 40.87	73.85 12.75 0.00	108.29 -26.99 -26.99 26.99 0.00	120.94 -40.14 -67.12	106.04 -17.84 -84.97 17.84 0.00	74.25 12.75 -72.22 -12.75 0.00	40.11 -32.11 -40.11 0.00	7.64 79.46 0.00 -32.11 47.35	0.00 64.20 0.00 0.00 64.20	0.00 64.30 0.00 0.00 64.30	54.50 0.00 0.00 54.50	
Pervious Area	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soli Moisture Deficit (mm) Change in Soli Moisture Deficit (mm) Precipitation Surplus (mm) MECP Infiltration Factor	0.00 60.90 0.00 0.00 60.90 0.60	29.23 40.87 0.00 0.00 40.87 0.60	73.85 12.75 0.00 0.00 12.75 0.60	108.29 -26.99 -26.99 26.99 0.00 0.60	120.94 -40.14 -67.12 40.14 0.00 0.60	106.04 -17.84 -84.97 17.84 0.00 0.60	74.25 12.75 -72.22 -12.75 0.00 0.60	40.11 -32.11 -40.11 0.00 0.60	7.64 79.46 0.00 -32.11 47.35 0.60	0.00 64.20 0.00 0.00 64.20 0.60	0.00 64.30 0.00 0.00 64.30 0.60	54.50 0.00 0.00 54.50 0.60	345 - -
Pervious Area (Woodland)	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient	0.00 60.90 0.00 0.00 60.90 0.60 0.40	29.23 40.87 0.00 0.00 40.87 0.60 0.40	73.85 12.75 0.00 12.75 0.60 0.40	108.29 -26.99 -26.99 26.99 0.00 0.60 0.40	120.94 -40.14 -67.12 40.14 0.00 0.60 0.40	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40	74.25 12.75 -72.22 -12.75 0.00 0.60 0.40	40.11 -32.11 -40.11 0.00 0.60 0.40	7.64 79.46 0.00 -32.11 47.35 0.60 0.40	0.00 64.20 0.00 0.00 64.20 0.60 0.40	0.00 64.30 0.00 0.00 64.30 0.60 0.40	54.50 0.00 0.00 54.50 0.60 0.40	345 - - 345 - -
	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm)	0.00 60.90 0.00 60.90 0.60 0.40 36.54	29.23 40.87 0.00 40.87 0.60 0.40 24.52	73.85 12.75 0.00 12.75 0.60 0.40 7.65	108.29 -26.99 26.99 0.00 0.60 0.40 0.00	120.94 -40.14 -67.12 40.14 0.00 0.60 0.40 0.00	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40 0.00	74.25 12.75 -72.22 -12.75 0.00 0.60 0.40 0.00	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41	0.00 64.20 0.00 64.20 0.60 0.40 38.52	0.00 64.30 0.00 64.30 0.60 0.40 38.58	54.50 0.00 0.00 54.50 0.60 0.40 32.70	345 - - 345 - - - 207
	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soli Moisture Deficit (mm) Change in Soli Moisture Deficit (mm) Precipitation Surplus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Run-Off (mm)	0.00 60.90 0.00 0.00 60.90 0.60 0.40	29.23 40.87 0.00 0.00 40.87 0.60 0.40	73.85 12.75 0.00 12.75 0.60 0.40	108.29 -26.99 -26.99 26.99 0.00 0.60 0.40	120.94 -40.14 -67.12 40.14 0.00 0.60 0.40 0.00 0.00	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40 0.00 0.00	74.25 12.75 -72.22 -12.75 0.00 0.60 0.40 0.00 0.00	40.11 -32.11 -40.11 0.00 0.60 0.40	7.64 79.46 0.00 -32.11 47.35 0.60 0.40	0.00 64.20 0.00 0.00 64.20 0.60 0.40	0.00 64.30 0.00 0.00 64.30 0.60 0.40	54.50 0.00 0.00 54.50 0.60 0.40	345 - - 345 - -
	Actual Potential Evapotranspiration (mm) P.AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Run-Off (mm) Catchment Area (m ²) = 27459	0.00 60.90 0.00 60.90 0.60 0.40 36.54 24.36	29.23 40.87 0.00 40.87 0.60 0.40 24.52 16.35	73.85 12.75 0.00 12.75 0.60 0.40 7.65 5.10	108.29 -26.99 26.99 0.00 0.60 0.40 0.00	120.94 -40.14 -67.12 40.14 0.00 0.60 0.40 0.00 0.00 Subcate	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40 0.00 0.00 hment Monthly	74.25 12.75 -72.22 -12.75 0.00 0.60 0.40 0.00 0.00 Volumes	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00 0.00	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94	0.00 64.20 0.00 64.20 0.60 0.40 38.52 25.68	0.00 64.30 0.00 64.30 0.60 0.40 38.58 25.72	54.50 0.00 54.50 0.60 0.40 32.70 21.80	345 - - 345 - - 207 138
	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soli Moisture Deficit (mm) Change in Soli Moisture Deficit (mm) Precipitation Surplus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Run-Off (mm)	0.00 60.90 0.00 60.90 0.60 0.40 36.54	29.23 40.87 0.00 40.87 0.60 0.40 24.52	73.85 12.75 0.00 12.75 0.60 0.40 7.65	108.29 -26.99 26.99 0.00 0.60 0.40 0.00	120.94 -40.14 -67.12 40.14 0.00 0.60 0.40 0.00 0.00	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40 0.00 0.00	74.25 12.75 -72.22 -12.75 0.00 0.60 0.40 0.00 0.00	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41	0.00 64.20 0.00 64.20 0.60 0.40 38.52	0.00 64.30 0.00 64.30 0.60 0.40 38.58	54.50 0.00 0.00 54.50 0.60 0.40 32.70	345 - - 345 - - - 207
	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Run-Off (mm) Catchment Area (m ²) = 27459 AET (m ³)	0.00 60.90 0.00 0.00 60.90 0.60 0.40 36.54 24.36	29.23 40.87 0.00 40.87 0.60 0.40 24.52 16.35 802.70	73.85 12.75 0.00 12.75 0.60 0.40 7.65 5.10 2027.84	108.29 -26.99 -26.99 0.00 0.60 0.40 0.00 0.00 2973.44	120.94 -40.14 -67.12 40.14 0.00 0.60 0.40 0.00 0.00 Subcatc 3320.83	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40 0.00 0.00 hment Monthly 2911.79	74.25 12.75 -72.22 -12.75 0.00 0.60 0.40 0.00 0.00 Volumes 2038.92	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00 0.00 0.00	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73	0.00 64.20 0.00 64.20 0.60 0.40 38.52 25.68	0.00 64.30 0.00 64.30 0.60 0.40 38.58 25.72	54.50 0.00 54.50 0.60 0.40 32.70 21.80	345 - - 345 - - 207 138 - 15287
	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) MECP Infiltration Factor Run-Off (cofficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ²) Infiltration (m) Run-Off (mm) Precipitation Surpus (mm)	0.00 60.90 0.00 60.90 0.60 0.60 0.40 36.54 24.36 	29.23 40.87 0.00 40.87 0.60 0.40 24.52 16.35 802.70 673.31	73.85 12.75 0.00 0.00 12.75 0.60 0.40 7.65 5.10 2027.84 210.07	108.29 -26.99 -26.99 -26.99 0.00 0.60 0.40 0.00 0.00 2973.44 0.00	120.94 -40.14 -67.12 40.14 0.00 0.60 0.40 0.00 0.00 Subcatc 3320.83 0.00	106.04 -17.84 -84.97 17.84 0.00 0.60 0.00 0.00 0.00 hment Monthly 2911.79 0.00	74.25 12.75 -72.22 -12.75 0.00 0.60 0.40 0.00 0.00 Volumes 2038.92 0.00	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00 0.00 1001.95 0.00	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18	0.00 64.20 0.00 64.20 0.60 0.40 38.52 25.68 0.00 1057.72	0.00 64.30 0.00 64.30 0.60 0.40 38.58 38.58 25.72 0.00 1059.37	54.50 0.00 54.50 0.60 0.40 32.70 21.80 0.00 897.91	345 - - - - 207 138 - - - - - - - - - - - - - - - - - - -
	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) MECP Infiltration Factor Run-Off (cofficient Infiltration factor Catchment Area (m ³) = 27459 AET (m ¹) Infiltration (m ¹) Run-Off (m ¹) Run-Off (m ³) Predipitation Surplus (mm) Evaporation Factor	0.00 60.90 0.00 0.00 0.60 0.40 36.54 24.36 0.00 1003.35 668.90 60.90 0.30	29.23 40.87 0.00 40.87 0.60 0.40 24.52 16.35 802.70 673.31 448.87 70.10 0.30	73.85 12.75 0.00 12.75 0.60 0.40 7.65 5.10 2027.84 210.07 140.05 86.60 0.30	108.29 -26.99 -26.99 26.99 0.00 0.60 0.40 0.00 2973.44 0.00 0.00 81.30 0.30	120.94 -40.14 -67.12 40.14 0.00 0.60 0.00 0.00 Subcatc 3320.83 0.00 0.00 80.80 0.30	106.04 -17.84 -84.97 17.84 0.00 0.60 0.60 0.00 0.00 hment Monthly 2911.79 0.00 0.00 88.20 0.30	74.25 12.75 -72.22 -12.75 0.00 0.60 0.60 0.00 Volumes 2038.92 0.00 0.00 87.00 0.30	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00 0.00 1001.95 0.00 0.00 76.60 0.30	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30	0.00 64.20 0.00 64.20 0.60 0.40 38.52 25.68 0.00 1057.72 705.15 64.20 0.30	0.00 64.30 0.00 64.30 0.60 0.40 38.58 25.72 0.00 1059.37 706.25 64.30 0.30	54.50 0.00 0.00 54.50 0.60 0.40 32.70 21.80 0.00 897.91 598.61 598.61 54.50 0.30	345 - - - 207 138 15287 5682 3788
	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpuls (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ³) Infiltration (mm) Run-Off (m ³) Run-Off (m ³) Precipitation Surplus (mm) Evaporation Factor Run-Off Coefficient	0.00 60.90 0.00 0.00 0.60 0.60 0.40 36.54 24.36 0.00 1003.35 668.90 60.90 0.30 0.70	29.23 40.87 0.00 40.87 0.60 0.40 24.52 16.35 16.	73.85 12.75 0.00 0.00 12.75 0.60 0.40 7.65 5.10 2027.84 210.07 140.05 86.60 0.30 0.70	108.29 -26.99 -26.99 26.99 0.00 0.60 0.40 0.00 0.00 2973.44 0.00 0.00 81.30 0.30 0.70	120.94 -40.14 -67.12 40.14 0.00 0.60 0.00 Subcatc 3320.83 0.00 0.00 80.80 0.30 0.70	106.04 -17.84 -84.97 17.84 0.00 0.60 0.00 0.00 0.00 hment Monthly 2911.79 0.00 88.20 0.30 0.70	74.25 12.75 -72.22 -12.75 0.00 0.40 0.00 0.00 Volumes 2038.92 0.00 0.00 87.00 0.30 0.70	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00 0.00 1001.95 0.00 0.00 76.60 0.30 0.70	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30 0.70	0.00 64.20 0.00 64.20 0.60 0.40 38.52 25.68 25.68 0.00 1057.72 705.15 64.20 0.30 0.70	0.00 64.30 0.00 0.00 64.30 0.60 0.40 38.58 25.72 0.00 1059.37 706.25 64.30 0.30 0.70	54.50 0.00 54.50 0.60 0.40 32.70 21.80 0.00 897.91 598.61 54.50 0.30 0.70	345 - - 345 - - 207 138 - - 15287 5682 3788 902 - -
(Woodland)	Actual Potential Evapotranspiration (mm) PAET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ²) Infiltration (mm) Run-Off (mm) Catchment Area (m ²) = 27459 AET (m ²) Infiltration (mm) Run-Off (mm) Evaporation Factor Run-Off Coefficient Evaporation (mm)	0.00 60.90 0.00 0.00 0.60 0.40 36.54 24.36 0.00 1003.35 668.90 60.90 0.30 0.70 18.27	29.23 40.87 0.00 40.87 0.60 24.52 16.35 802.70 673.31 448.87 70.10 0.30 0.70 21.03	73.85 12.75 0.00 12.75 0.60 0.40 7.65 5.10 2027.84 210.07 140.05 86.60 0.30 0.70 25.98	108.29 -26.99 -26.99 26.99 0.00 0.60 0.00 2973.44 0.00 0.00 81.30 0.30 0.70 24.39	120.94 -40.14 -47.12 40.14 0.00 0.60 0.00 Subcatc 3320.83 0.00 0.00 80.80 0.30 0.70 24.24	106.04 -17.84 -84.97 17.84 0.00 0.60 0.60 0.00 0.00 0.00 ment Monthly 2911.79 0.00 0.00 88.20 0.30 0.70 26.46	74.25 12.75 -72.22 -12.75 0.00 0.60 0.40 0.00 2038.92 0.00 0.00 87.00 0.70 0.70 26.10	40.11 -32.11 -40.11 0.00 0.60 0.00 0.00 1001.95 0.00 0.00 76.60 0.30 0.70 22.98	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30 0.70 26.13	0.00 64.20 0.00 64.20 0.60 0.40 38.52 25.68 0.00 1057.72 705.15 64.20 0.30 0.70 19.26	0.00 64.30 0.00 0.00 64.30 0.60 0.40 38.58 25.72 0.00 1059.37 706.25 64.30 0.30 0.70 19.29	54.50 0.00 0.00 54.50 0.60 0.40 32.70 21.80 997.91 598.61 54.50 0.00 897.91 598.61 0.70 16.35	345 - - - 207 138 - - 5682 3788 902 - - 270
(Woodland)	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ²) Catchment Area (m ²) = 27459 AET (m ²) Run-Off (m ²) Precipitation Surplus (mm) Evaporation Factor Run-Off Coefficient Evaporation (mm) Run-Off (comf)	0.00 60.90 0.00 0.00 0.60 0.60 0.40 36.54 24.36 0.00 1003.35 668.90 60.90 0.30 0.70	29.23 40.87 0.00 40.87 0.60 0.40 24.52 16.35 16.	73.85 12.75 0.00 12.75 0.60 0.40 7.65 5.10 2027.84 210.07 140.05 86.60 0.30 0.70	108.29 -26.99 -26.99 26.99 0.00 0.60 0.40 0.00 0.00 2973.44 0.00 0.00 81.30 0.30 0.70	120.94 -40.14 -47.12 40.14 0.00 0.60 0.00 0.00 Subcate 3320.83 0.00 0.00 80.80 0.30 0.70 24.24 56.56	106.04 -17.84 -17.84 -84.97 17.84 0.00 0.0	74.25 12.75 -72.22 -12.75 0.00 0.60 0.00	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00 0.00 1001.95 0.00 0.00 76.60 0.30 0.70	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30 0.70	0.00 64.20 0.00 64.20 0.60 0.40 38.52 25.68 25.68 0.00 1057.72 705.15 64.20 0.30 0.70	0.00 64.30 0.00 0.00 64.30 0.60 0.40 38.58 25.72 0.00 1059.37 706.25 64.30 0.30 0.70	54.50 0.00 54.50 0.60 0.40 32.70 21.80 0.00 897.91 598.61 54.50 0.30 0.70	345 - - 345 - - 207 138 - - 15287 5682 3788 902 - -
(Woodland) Impervious Area (Buildings and	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ²) Infiltration (mm) Run-Off (mm) Precipitation Surpus (mm) Evaporation Factor Run-Off (coefficient Evaporation Factor Run-Off (coefficient Evaporation (mm) Run-Off (mm) Run-Off (mm) Run-Off (mm)	0.00 60.90 0.00 0.00 0.60 0.40 36.54 24.36 0.00 1003.35 668.90 60.90 0.30 0.70 18.27 42.63	29.23 40.87 0.00 0.00 40.87 0.60 0.40 24.52 16.35 802.70 673.31 448.87 70.10 0.30 0.70 21.03 49.07	73.85 12.75 0.00 0.00 12.75 0.60 0.40 7.65 5.10 2027.84 210.07 140.05 86.60 0.30 0.70 25.98 60.62	108.29 -26.99 -26.99 2.6.99 0.00 0.60 0.40 0.00 0.00 2973.44 0.00 81.30 0.30 0.70 24.39 56.91	120.94 -40.14 -67.12 40.14 0.00 0.60 0.40 0.00 Subcatc 3320.83 0.00 80.80 0.30 0.30 0.70 24.24 56.56 Subcatc	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40 0.00	74.25 12.75 -72.22 -12.75 0.60 0.40 0.00	40.11 -32.11 -40.11 0.00 0.60 0.60 0.00 0.00 1001.95 0.00 76.60 0.30 0.70 22.98 53.62	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30 0.70 26.13 60.97	0.00 64.20 0.00 0.40 38.52 25.68 0.00 1057.72 705.15 64.20 0.30 0.70 19.26 44.94	0.00 64.30 0.00 64.30 0.60 0.40 38.58 25.72 0.00 1059.37 706.25 64.30 0.30 0.30 0.70 19.29 45.01	54.50 0.00 0.00 54.50 0.60 0.40 32.70 21.80 0.00 897.91 588.61 54.50 0.30 0.70 16.35 38.15	345 - - - - - - - - - - - - - - - - - - -
(Woodland) Impervious Area (Buildings and	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ²) Catchment Area (m ²) = 27459 MECP Infiltration (m ²) Catchment Area (m ²) = 27459 MECP Infiltration (m ²) Run-Off Coefficient Evaporation Factor Run-Off Coefficient Evaporation (mm) Catchment Area (m ²) = 5312 Evaporation (m ²)	0.00 60.90 0.00 0.00 0.60 0.60 0.60 0.60 0.60 0.60 1003.35 668.90 66.90 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.50	29.23 40.87 0.00 40.87 0.60 0.40 24.52 16.35 802.70 673.31 448.87 70.10 0.30 0.70 0.30 0.70 1.03 49.07 111.72	73.85 12.75 0.00 12.75 0.60 7.65 5.10 2027.84 210.07 140.05 86.60 0.30 0.70 25.98 60.62	108.29 -26.99 -26.99 0.00 0.00 0.00 0.00 2973.44 0.00 0.00 81.30 0.30 0.70 24.39 56.91 129.57	120.94 -40.14 -46.7.12 40.14 0.00 0.60 0.00 0.00 Subcatc 3320.83 0.00 0.00 80.80 0.00 0.30 0.70 24.24 56.56 Subcatc Subcatc 128.77	106.04 -17.84 -84.97 17.84 0.00 0.60 0.00	74.25 12.75 12.75 12.22 12.27 12.27 0.00 0.60 0.00	40.11 -32.11 -40.11 0.00 0.60 0.00 0.00 1001.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30 0.70 26.13 60.97 138.81	0.00 64.20 0.00 0.00 64.20 0.60 0.40 1852 25.68 0.00 1057.72 705.15 64.20 0.30 0.70 19.26 44.94	0.00 64.30 0.00 64.30 0.60 0.40 0.40 1.059.37 706.25 64.30 0.30 0.30 0.70 19.29 45.01	54.50 0.00 54.50 0.60 0.40 32.70 21.80 0.00 897.91 598.61 54.50 0.70 0.70 16.35 38.15	345 - - - 207 138 - - - 5682 3788 902 - - 270 631 - -
(Woodland) Impervious Area (Buildings and	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ²) Infiltration (mm) Run-Off (mm) Precipitation Surpus (mm) Evaporation Factor Run-Off (coefficient Evaporation Factor Run-Off (coefficient Evaporation (mm) Run-Off (mm) Run-Off (mm) Run-Off (mm)	0.00 60.90 0.00 0.00 0.60 0.40 36.54 24.36 0.00 1003.35 668.90 60.90 0.30 0.70 18.27 42.63	29.23 40.87 0.00 0.00 40.87 0.60 0.40 24.52 16.35 802.70 673.31 448.87 70.10 0.30 0.70 21.03 49.07	73.85 12.75 0.00 0.00 12.75 0.60 0.40 7.65 5.10 2027.84 210.07 140.05 86.60 0.30 0.70 25.98 60.62	108.29 -26.99 -26.99 2.6.99 0.00 0.60 0.40 0.00 0.00 2973.44 0.00 81.30 0.30 0.70 24.39 56.91	120.94 -40.14 -67.12 40.14 0.14 0.00 0.60 0.00	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40 0.00	74.25 12.75 72.22 12.75 12.75 12.75 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.0	40.11 -32.11 -40.11 0.00 0.60 0.60 0.00 0.00 1001.95 0.00 76.60 0.30 0.70 22.98 53.62	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30 0.70 26.13 60.97	0.00 64.20 0.00 0.40 38.52 25.68 0.00 1057.72 705.15 64.20 0.30 0.70 19.26 44.94	0.00 64.30 0.00 64.30 0.60 0.40 38.58 25.72 0.00 1059.37 706.25 64.30 0.30 0.30 0.70 19.29 45.01	54.50 0.00 0.00 54.50 0.60 0.40 32.70 21.80 0.00 897.91 588.61 54.50 0.30 0.70 16.35 38.15	345 - - - - - - - - - - - - - - - - - - -
(Woodland) Impervious Area (Buildings and	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ²) Catchment Area (m ²) = 27459 MECP Infiltration (m ²) Catchment Area (m ²) = 27459 MECP Infiltration (m ²) Run-Off Coefficient Evaporation Factor Run-Off Coefficient Evaporation (mm) Catchment Area (m ²) = 5312 Evaporation (m ²)	0.00 60.90 0.00 0.00 0.60 0.60 0.60 0.60 0.60 0.60 1003.35 668.90 66.90 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.50	29.23 40.87 0.00 40.87 0.60 0.40 24.52 16.35 802.70 673.31 448.87 70.10 0.30 0.70 0.30 0.70 1.03 49.07 111.72	73.85 12.75 0.00 12.75 0.60 7.65 5.10 2027.84 210.07 140.05 86.60 0.30 0.70 25.98 60.62	108.29 -26.99 -26.99 0.00 0.00 0.00 0.00 2973.44 0.00 0.00 81.30 0.30 0.70 24.39 56.91 129.57	120.94 -40.14 -67.12 40.14 -0.14 -0.00 0.60 0.0	106.04 -17.84 -84.97 17.84 0.60 0.60 0.00	74.25 12.75 72.22 12.75 12.75 12.75 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.0	40.11 -32.11 -40.11 0.00 0.60 0.00 0.00 1001.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	7.64 79.46 0.00 -32.11 47.35 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30 0.70 26.13 60.97 138.81	0.00 64.20 0.00 0.00 64.20 0.60 0.40 1852 25.68 0.00 1057.72 705.15 64.20 0.30 0.70 19.26 44.94	0.00 64.30 0.00 64.30 0.60 0.40 0.40 1.059.37 706.25 64.30 0.30 0.30 0.70 19.29 45.01	54.50 0.00 54.50 0.60 0.40 32.70 21.80 0.00 897.91 598.61 54.50 0.70 0.70 16.35 38.15	345 - - - 207 138 - - 5682 3788 902 - - 270 631 - -
(Woodland) Impervious Area (Buildings and	Actual Potential Evapotranspiration (mm) PAET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpus (mm) MECP Infiltration Factor Run-Off Coefficient Infiltration (mm) Catchment Area (m ²) = 27459 AET (m ²) Catchment Area (m ²) = 27459 AET (m ²) Infiltration (mm) Run-Off (mm) Evaporation Factor Run-Off Coefficient Evaporation (mm) Run-Off (mm) Catchment Area (m ²) = 5312 Evaporation (m ²)	0.00 60.90 0.00 0.00 0.60 0.40 0.40 0.40 0.40 0.4	29.23 40.87 0.00 0.00 40.87 0.60 0.40 24.52 16.35 802.70 673.31 448.87 70.10 0.30 0.70 21.03 49.07 111.72 260.68	73.85 12.75 0.00 12.75 0.60 0.40 7.65 5.10 2027.84 210.07 140.05 86.60 0.30 0.70 25.98 60.62	108.29 -26.99 -26.99 -26.99 -26.99 -26.99 -0.000 -0.00	120.94 -40.14 -67.12 40.14 0.04 0.00 0.60 0.00	106.04 -17.84 -84.97 17.84 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.0	74 25 12.75 772.22 142.75 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.0	40.11 -32.11 -40.11 0.00 0.60 0.40 0.00 -0.60 -0.00 -0	7.64 7.946 0.00 -42.11 47.13 0.60 0.40 28.41 18.94 209.73 780.18 520.12 87.10 0.30 0.30 0.30 0.26.13 60.97 138.81 323.89	0.00 64.20 0.00 0.00 64.20 0.60 0.40 25.68 25.68 25.68 25.68 25.68 100 0.00 1057.72 705.15 64.20 0.30 0.77 0.33 0.770 119.26 44.94	0.00 64.30 0.00 0.00 64.30 0.60 0.40 38.58 25.72 25.72 706.25 64.30 0.30 0.70 1059.37 706.25 64.30 0.30 0.70 19.29 45.01	54.50 0.00 0.00 54.50 0.60 0.40 32.70 21.80 897.91 598.61 54.50 0.70 0.70 16.35 38.15 86.86 202.67	345 - - - - - - - - - - - - - - - - - - -
(Woodland) Impervious Area (Buildings and	Actual Potential Evapotranspiration (mm) P-AET (mm) Actual Soil Moisture Deficit (mm) Change in Soil Moisture Deficit (mm) Precipitation Surpuls (mm) MECP Infiltration Factor Run-Off (cofficient infiltration (mm) Catchment Area (m ³) = 27459 AET (m ¹) Catchment Area (m ³) = 27459 AET (m ¹) Precipitation Surpuls (mm) Evaporation Factor Run-Off (coefficient Evaporation (mm) Catchment Area (m ³) = 5312 Evaporation (m ¹) Run-Off (mm) Catchment Area (m ³) = 5312 Evaporation (m ¹) Run-Off (mm)	0.00 60.90 0.00 0.00 0.60 0.40 0.60 0.40 36.54 24.35 7 0.00 1003.35 668.90 668.90 668.90 0.30 0.30 0.70 18.27 42.63	29.23 40.87 0.00 0.00 40.87 0.60 0.40 24.52 16.35 802.70 673.31 45.87 70.10 0.70 21.03 0.70 21.03 45.07 111.72 260.68	73.85 12.75 0.00 12.75 0.60 0.40 12.75 0.60 0.40 7.65 5.10 2027.84 210.07 86.60 0.30 0.70 25.98 60.62 138.02 322.04 222.04	108.29 -26.99 -26.99 -26.99 -26.99 -26.99 -26.99 -26.99 -26.99 -26.99 -26.99 -27.344 -27.344 -0.00 -0.00 -2973.44 -0.00 -0.00 -2973.44 -0.00 -0.00 -2973.44 -0.000 -0.0	120.94 -40.14 -67.12 40.14 0.14 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.0	106.04 -17.84 -84.97 17.84 0.00 0.60 0.40 0.00	74.25 12.75 72.22 42.75 0.00 0.60 0.40 0.00 0.00 0.00 0.00 0.00	40.11 -32.11 -40.11 -0.00 0.60 0.40 0.00 0.00 0.00 1001.95 0.00 0.00 0.00 76.60 0.30 0.70 2.2.98 2.3.98 122.08 284.85	7.64 79.46 0.00 -42.11 22.11 0.60 0.60 0.60 0.60 0.841 18.94 200.73 780.18 520.12 87.10 0.30 0.70 0.70 0.70 0.70 0.70 0.70 0.7	0.00 64.20 0.00 0.00 0.60 0.60 0.40 0.852 25.68 0.00 1057.72 705.15 64.20 0.70 1057.72 705.15 64.20 0.70 19.26 44.94 102.32 238.74	0.00 64.30 0.00 64.30 0.60 0.40 38.58 25.72 0.00 1059.37 706.25 64.30 0.30 0.30 0.70 19.29 45.01 102.48 239.11	54.50 0.00 0.00 54.50 0.60 0.40 32.70 21.80 9 897.91 588.61 54.50 0.30 0.70 16.35 38.15 86.86 202.67	345 - - - 207 138 - - - 207 138 - - - 207 138 - - - - 270 631 - - - 270 631 - - - 2353 - - - - - - - - - - - - - - - - - -

TABLE E-3

Post-development Site Water Balance

Water Balance - Newhouse, Property, Caledon, ON	
---	--

Catcher	nents and Hydrologic Components						Month							Total
Catchin	nents and Hydrologic components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	200.00	200.00	200.00	172.04	126.04	103.36	116.11	156.22	200.00	200.00	200.00	200.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	107.31	115.08	101.21	74.25	36.49	7.64	0.00	0.00	0.00	545
	P-AET (mm)	60.90	40.87	12.75	-26.01	-34.28	-13.01	12.75	40.11	79.46	64.20	64.30	54.50	357
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.01	-60.29	-73.29	-60.54	-20.43	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.01	34.28	13.01	-12.75	-40.11	-20.43	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	59.03	64.20	64.30	54.50	357
Pervious Area	MECP Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	-
(Pasture and	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Shrub)	Infiltration (mm)	30,45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
	Run-Off (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
	Catchment Area (m ²) = 68326						chment Monthly							
	AET (m ³)	0.00	1997.36	5045.88	7332.04	7862.80	6914.99	5073.46	2493.15	521.88	0.00	0.00	0.00	37242
	Infiltration (m ³)	2080.54	1396.16	435.59	0.00	0.00	0.00	0.00	0.00	2016.59	2193.28	2196.69	1861.89	12181
	Run-Off (m ³)	2080.54	1396.16	435.59	0.00	0.00	0.00	0.00	0.00	2016.59	2193.28	2196.69	1861.89	12181
	Soil Moisture Storage (mm)	250.00	250.00	250.00	222.04	176.04	153.36	166.11	206.22	250.00	250.00	250.00	250.00	12101
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	107.70	117.42	103.14	74.25	36.49	7.64	0.00	0.00	0.00	550
	P-AET (mm)	60.90	40.87	12.75	-26.40	-36.62	-14.94	12.75	40.11	79.46	64.20	64.30	54.50	352
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.40	-63.02	-77.96	-65.21	-25.10	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.40	36.62	14.94	-12.75	-40.11	-25.10	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	54.36	64.20	64.30	54.50	352
Pervious Area (Woodland)	MECP Infiltration Factor Run-Off Coefficient	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
(woodiand)	Infiltration (mm)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40 32.62	0.40 38.52	0.40	0.40 32.70	- 211
	Run-Off (mm)	24.36	16.35	5.10	0.00	0.00	0.00	0.00	0.00	21.74	25.68	25.72	21.80	141
	Catchment Area (m ²) = 85874		1	1	1		chment Monthly		1	1	1			
	AET (m ³)	0.00	2510.32	6341.73	9248.60	10083.39	8856.98	6376.40	3133.43	655.90	0.00	0.00	0.00	47207
	Infiltration (m ³)	3137.82	2105.65	656.95	0.00	0.00	0.00	0.00	0.00	2800.79	3307.85	3313.00	2808.07	18130
	Run-Off (m ³)	2091.88	1403.77	437.97	0.00	0.00	0.00	0.00	0.00	1867.19	2205.23	2208.67	1872.04	12087
	Soil Moisture Storage (mm)	125.00	125.00	125.00	97.04	51.04	28.36	41.11	81.22	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	106.14	108.04	95.40	74.25	36.49	7.64	0.00	0.00	0.00	531
	P-AET (mm)	60.90	40.87	12.75	-24.84	-27.24	-7.20	12.75	40.11	79.46	64.20	64.30	54.50	371
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-24.84	-52.08	-59.28	-46.54	-6.42	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	24.84	27.24	7.20	-12.75	-40.11	-6.42	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	73.04	64.20	64.30	54.50	371
Pervious Area	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	•
(Urban Lawn)	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Infiltration (mm)	36.54	24.52	7.65	0.00	0.00	0.00	0.00	0.00	43.82	38.52	38.58	32.70	222
	Run-Off (mm)	24.36	16.35	5.10	0.00	0.00	0.00	0.00	0.00	29.21	25.68	25.72	21.80	148
	Catchment Area (m ²) = 20508					Subcato	hment Monthly	Volumes						
					2476.67	2215.81	1956.54	1522.81	748.32	156.64	0.00	0.00	0.00	10891
	AET (m ³)	0.00	599.51	1514.53	2176.67	2215.81	1930.34							
	AET (m ³) Infiltration (m ³)	0.00	599.51	1514.53	0.00	0.00	0.00	0.00	0.00	898.72	789.98	791.21	670.62	4560

TABLE E-3

Post-development Site Water Balance Water Balance - Newhouse, Property, Caledon, ON

6 .1.1							Month							Total
Catchme	ents and Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	Evaporation Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Impervious Area	Evaporation (mm)	18.27	21.03	25.98	24.39	24.24	26.46	26.10	22.98	26.13	19.26	19.29	16.35	270
(Unconnected)	Run-Off (mm)	42.63	49.07	60.62	56.91	56.56	61.74	60.90	53.62	60.97	44.94	45.01	38.15	631
	Catchment Area (m ²) = 107975						hment Monthly							
	Evaporation (m ³)	1972.70	2270.71	2805.19	2633.51	2617.31	2857.02	2818.14	2481.26	2821.38	2079.60	2082.84	1765.39	29205
	Run-Off (m ³)	4602.97	5298.33	6545.44	6144.85	6107.06	6666.37	6575.67	5789.61	6583.23	4852.39	4859.95	4119.24	68145
	Total Precipitation Plus Roof Surplus (mm)	95.78	110.25	136.20	127.87	127.08	138.72	136.83	120.47	136.99	100.97	101.13	85.72	1418
	P-PET (mm)	95.78	81.02	62.35	18.60	0.28	27.84	62.58	83.98	129.35	100.97	101.13	85.72	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P-AET (mm)	95.78	81.02	62.35	18.60	0.28	27.84	62.58	83.98	129.35	100.97	101.13	85.72	850
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
Pervious Area	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
(Urban Lawn with	Precipitation Surplus (mm)	95.78	81.02	62.35	18.60	0.28	27.84	62.58	83.98	129.35	100.97	101.13	85.72	850
Roof Surplus)	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Infiltration (mm)	57.47	48.61	37.41	11.16	0.17	16.70	37.55	50.39	77.61	60.58	60.68	51.43	510
	Run-Off (mm)	38.31	32.41	24.94	7.44	0.11	11.14	25.03	33.59	51.74	40.39	40.45	34.29	340
	Catchment Area (m ²) = 21290				•	Subcato	hment Monthly	Volumes						
	AET (m ³)	0.00	622.36	1572.26	2326.23	2699.53	2360.58	1580.85	776.85	162.61	0.00	0.00	0.00	12101
	Infiltration (m ³)	1223.51	1034.92	796.47	237.61	3.59	355.63	799.35	1072.82	1652.31	1289.80	1291.81	1094.93	10853
	Run-Off (m ³)	815.67	689.95	530.98	158.41	2.39	237.08	532.90	715.21	1101.54	859.87	861.21	729.95	7235
	Precipitation Surplus (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	Evaporation Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Impervious Area	Evaporation (mm)	18.27	21.03	25.98	24.39	24.24	26.46	26.10	22.98	26.13	19.26	19.29	16.35	270
(Connected)	Run-Off (mm)	42.63	49.07	60.62	56.91	56.56	61.74	60.90	53.62	60.97	44.94	45.01	38.15	631
	Catchment Area (m ²) = 17420						hment Monthly		•					
	Evaporation (m ³)	318.26	366.34	452.57	424.87	422.26	460.93	454.66	400.31	455.18	335.51	336.03	284.82	4712
	Run-Off Directed to Pervious (m ³)	742.61	854.80	1056.00	991.37	985.28	1075.51 al Catchment Vol	1060.88	934.06	1062.10	782.85	784.07	664.57	10994
	T . I	0.00	5720.56	14474.40	21002 55				7151.76	1407.04	0.00	0.00	0.00	107440
	Total AET (m ³) Total Evaporation (m ³)	0.00 2290.96	5729.56 2637.05	14474.40 3257.76	21083.55 3058.38	22861.53 3039.57	20089.09 3317.95	14553.52 3272.81	7151.76 2881.57	1497.04 3276.57	0.00 2415.11	0.00	0.00 2050.21	107440 33917
	Total Evaporation (m) Total Infiltration (m ³)	7191.24	5039.60	2045.91	237.61	3039.57	355.63	799.35	1072.82	7368.41	7580.91	7592.72	6435.51	45723
	Total Runoff (m ³)	10090.64	9123.45	8054.58	6303.26	6109.45	6903.45	7108.57	6504.82	12167.70	10637.43	10653.99		102688
		20050.07				0100.10		, 100.07	0001102	1 12107.70	10007.10	10030.33	5050.21	102000

TABLE F-3

Post-development Site Water Balance

Water Balance - Kennedy, Property, Caledon, ON	
--	--

Catching	ents and Hydrologic Components						Month							Total
Catching	ents and Hydrologic components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	200.00	200.00	200.00	172.04	126.04	103.36	116.11	156.22	200.00	200.00	200.00	200.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	107.31	115.08	101.21	74.25	36.49	7.64	0.00	0.00	0.00	545
	P-AET (mm)	60.90	40.87	12.75	-26.01	-34.28	-13.01	12.75	40.11	79.46	64.20	64.30	54.50	357
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.01	-60.29	-73.29	-60.54	-20.43	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.01	34.28	13.01	-12.75	-40.11	-20.43	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	59.03	64.20	64.30	54.50	357
Pervious Area	MECP Infiltration Factor	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	-
(Pasture and	Run-Off Coefficient	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	-
Shrub)	Infiltration (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
	Run-Off (mm)	30.45	20.43	6.38	0.00	0.00	0.00	0.00	0.00	29.51	32.10	32.15	27.25	178
	Catchment Area (m ²) = 17365	50.45	20.45	0.50	0.00		hment Monthly		0.00	23.31	52.10	52.15	27.25	1/8
	Catchment Area (m) = 17565 AET (m ³)	0.00	507.61	1282.36	1863.37	1998.26	1757.38	1289.37	633.61	132.63	0.00	0.00	0.00	9465
	AEI (III) Infiltration (m ³)	528.75	354.82	1282.30	0.00	0.00	0.00	0.00	0.00	512.50	557.40	558.27	473.18	3096
	Run-Off (m ³)	528.75	354.82	110.70	0.00	0.00	0.00	0.00	0.00	512.50	557.40	558.27	473.18	3096
	Soil Moisture Storage (mm)	250.00	250.00	250.00	222.04	176.04	153.36	166.11	206.22	250.00	250.00	250.00	250.00	3096
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	107.70	117.04	103.14	74.25	36.49	7.64	0.00	0.00	0.00	550
	P-AET (mm)	60.90	40.87	12.75	-26.40	-36.62	-14.94	12.75	40.11	79.46	64.20	64.30	54.50	350
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.40	-63.02	-77.96	-65.21	-25.10	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.40	36.62	14.94	-12.75	-40.11	-25.10	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	54.36	64.20	64.30	54.50	352
Pervious Area	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
(Woodland)	Run-Off Coefficient Infiltration (mm)	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	- 211
	Run-Off (mm)	36.54 24.36	24.52 16.35	7.65 5.10	0.00	0.00	0.00	0.00	0.00	21.74	25.68	38.58	32.70 21.80	141
	Catchment Area (m ²) = 79835	24.30	10.35	5.10	0.00		hment Monthly		0.00	21.74	25.08	23.72	21.00	141
	AET (m ³)	0.00	2333.81	5895.82	8598.29	9374.38	8234.21	5928.05	2913.11	609.79	0.00	0.00	0.00	43887
	Infiltration (m ³)	2917.19	1957.60	610.76	0.00	0.00	0.00	0.00	0.00	2603.85	3075.26	3080.05	2610.62	16855
	Run-Off (m ³)	1944.79	1305.06	407.17	0.00	0.00	0.00	0.00	0.00	1735.90	2050.18	2053.37	1740.41	11237
	Soil Moisture Storage (mm)	125.00	125.00	125.00	97.04	51.04	28.36	41.11	81.22	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	106.14	108.04	95.40	74.25	36.49	7.64	0.00	0.00	0.00	531
	P-AET (mm)	60.90	40.87	12.75	-24.84	-27.24	-7.20	12.75	40.11	79.46	64.20	64.30	54.50	371
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-24.84	-52.08	-59.28	-46.54	-6.42	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	24.84	27.24	7.20	-12.75	-40.11	-6.42	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	73.04	64.20	64.30	54.50	371
Pervious Area	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
(Urban Lawn)	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Infiltration (mm)	36.54	24.52	7.65	0.00	0.00	0.00	0.00	0.00	43.82	38.52	38.58	32.70	222
	Run-Off (mm)	24.36	16.35	5.10	0.00	0.00	0.00	0.00	0.00	29.21	25.68	25.72	21.80	148
	Catchment Area (m ²) = 34118						hment Monthly							
	AET (m ³)	0.00	997.36	2519.60	3621.15	3686.26	3254.93	2533.37	1244.93	260.59	0.00	0.00	0.00	18118
	Infiltration (m ³)	1246.67	836.59	261.01	0.00	0.00	0.00	0.00	0.00	1495.13	1314.23	1316.27	1115.66	7586
	Run-Off (m ³)	831.11	557.72	174.01	0.00	0.00	0.00	0.00	0.00	996.75	876.15	877.52	743.77	5057
	Kun-Off (M)	031.11	337.72	1/4.01	0.00	0.00	0.00	0.00	0.00	990.75	0/0.15	0/7.52	745.77	5037

TABLE F-3

Post-development Site Water Balance

Water Balance - Kennedy, Property, Caledon, ON

Catchma	ents and Hydrologic Components						Month							Total
Catchine	ents and Hydrologic components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	Evaporation Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Impervious Area	Evaporation (mm)	18.27	21.03	25.98	24.39	24.24	26.46	26.10	22.98	26.13	19.26	19.29	16.35	270
(Unconnected)	Run-Off (mm)	42.63	49.07	60.62	56.91	56.56	61.74	60.90	53.62	60.97	44.94	45.01	38.15	631
I	Catchment Area (m ²) = 102358						hment Monthly					1		
	Evaporation (m ³)	1870.08	2152.58	2659.25	2496.50	2481.15	2708.39 6319.57	2671.54	2352.18 5488.42	2674.61	1971.41	1974.48	1673.55 3904.95	27686
	Run-Off (m ³) Total Precipitation Plus Roof Surplus (mm)	4363.51 96.45	5022.69 111.02	6204.93 137.15	5825.18 128.76	5789.35 127.97	139.69	6233.59 137.78	5488.42 121.31	6240.75 137.94	4599.96 101.68	4607.12	3904.95 86.31	64600 1428
			-			-			-					1428
	P-PET (mm)	96.45	81.79	63.30	19.49	1.17	28.81	63.53	84.82	130.30	101.68	101.83	86.31	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P-AET (mm)	96.45	81.79	63.30	19.49	1.17	28.81	63.53	84.82	130.30	101.68	101.83	86.31	859
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
Pervious Area	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-
(Urban Lawn with	Precipitation Surplus (mm)	96.45	81.79	63.30	19.49	1.17	28.81	63.53	84.82	130.30	101.68	101.83	86.31	859
Roof Surplus)	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Infiltration (mm)	57.87	49.07	37.98	11.70	0.70	17.28	38.12	50.89	78.18	61.01	61.10	51.79	516
	Run-Off (mm)	38.58	32.71	25.32	7.80	0.47	11.52	25.41	33.93	52.12	40.67	40.73	34.53	344
	Catchment Area (m ²) = 38110					Subcato	hment Monthly	Volumes				1		
	AET (m ³)	0.00	1114.06	2814.41	4164.06	4832.28	4225.53	2829.79	1390.59	291.09	0.00	0.00	0.00	21662
	Infiltration (m ³)	2205.41	1870.14	1447.45	445.73	26.69	658.72	1452.71	1939.61	2979.55	2324.91	2328.53	1973.64	19653
	Run-Off (m ³)	1470.27	1246.76	964.97	297.15	17.80	439.15	968.47	1293.07	1986.37	1549.94	1552.36	1315.76	13102
	Precipitation Surplus (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	Evaporation Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Impervious Area	Evaporation (mm)	18.27	21.03	25.98	24.39	24.24	26.46	26.10	22.98	26.13	19.26	19.29	16.35	270
(Connected)	Run-Off (mm)	42.63	49.07	60.62	56.91	56.56	61.74	60.90	53.62	60.97	44.94	45.01	38.15	631
	Catchment Area (m ²) = 31780			1			hment Monthly		1	-		1		
	Evaporation (m ³)	580.62	668.33	825.64	775.11	770.35	840.90	829.46	730.30	830.41	612.08	613.04	519.60	8596
	Run-Off Directed to Pervious (m ³)	1354.78	1559.44	1926.50	1808.60	1797.48 Tota	1962.10 I Catchment Vol	1935.40	1704.04	1937.63	1428.19	1430.42	1212.41	20057
	Total AET (m ³)	0.00	4952.84	12512.19	18246.87	19891.18	17472.05	12580.59	6182.24	1294.10	0.00	0.00	0.00	93132
	Total Evaporation (m ³)	2450.70	2820.92	3484.90	3271.62	3251.50	3549.28	3500.99	3082.48	3505.02	2583.49	2587.52	2193.15	36282
	Total Infiltration (m ³)	6898.02	5019.14	2429.93	445.73	26.69	658.72	1452.71	1939.61	7591.03	7271.80	7283.13	6173.10	47190
	Total Runoff (m ³)	9138.44	8487.06	7861.78	6122.33	5807.15	6758.71	7202.06	6781.49	11472.27	9633.62	9648.63	8178.08	97092

TABLE F-3

Post-development Site Water Balance Water Balance - Russel, Property, Caledon, ON

Catalana							Month							Total
Catchine	ents and Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	200.00	200.00	200.00	172.04	126.04	103.36	116.11	156.22	200.00	200.00	200.00	200.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	107.31	115.08	101.21	74.25	36.49	7.64	0.00	0.00	0.00	545
	P-AET (mm)	60.90	40.87	12.75	-26.01	-34.28	-13.01	12.75	40.11	79.46	64.20	64.30	54.50	357
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.01	-60.29	-73.29	-60.54	-20.43	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.01	34.28	13.01	-12.75	-40.11	-20.43	0.00	0.00	0.00	
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	59.03	64.20	64.30	54.50	357
Pervious Area	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	04.20	0.60	0.60	337
(Pasture and	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.00	
Shrub)	Infiltration (mm)	36.54	24.52	7.65	0.40	0.40	0.40	0.40	0.40	35.42	38.52	38.58	32.70	214
	. ,													
	Run-Off (mm)	24.36	16.35	5.10	0.00	0.00	0.00	0.00	0.00	23.61	25.68	25.72	21.80	143
	Catchment Area (m ²) = 85641						hment Monthly	1						
	AET (m ³)	0.00	2503.52	6324.55	9190.06	9855.31	8667.32	6359.13	3124.94	654.13	0.00	0.00	0.00	46679
	Infiltration (m ³)	3129.32	2099.95	655.17	0.00	0.00	0.00	0.00	0.00	3033.14	3298.89	3304.03	2800.46	18321
	Run-Off (m ³)	2086.21	1399.97	436.78	0.00	0.00	0.00	0.00	0.00	2022.10	2199.26	2202.69	1866.97	12214
	Soil Moisture Storage (mm)	250.00	250.00	250.00	222.04	176.04	153.36	166.11	206.22	250.00	250.00	250.00	250.00	-
	Actual Potential Evapotranspiration (mm) P-AET (mm)	0.00	29.23 40.87	73.85	107.70 -26.40	-36.62	103.14	74.25	36.49 40.11	7.64	0.00	0.00	0.00	550 352
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-26.40	-36.62	-14.94	-65.21	40.11	0.00	0.00	0.00	0.00	- 352
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	26.40	36.62	14.94	-12.75	-40.11	-25.10	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	0.00	54.36	64.20	64.30	54.50	352
Pervious Area	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
(Woodland)	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Infiltration (mm)	36.54	24.52	7.65	0.00	0.00	0.00	0.00	0.00	32.62	38.52	38.58	32.70	211
	Run-Off (mm)	24.36	16.35	5.10	0.00	0.00	0.00	0.00	0.00	21.74	25.68	25.72	21.80	141
	Catchment Area (m ²) = 27459	0.00	002 70	2027.04	2057.24		hment Monthly		4004.05	200 72	0.00	0.00	0.00	45005
	AET (m ³) Infiltration (m ³)	0.00 1003.35	802.70 673.31	2027.84 210.07	2957.34 0.00	3224.27 0.00	2832.12	2038.92	1001.95 0.00	209.73 895.58	0.00	0.00	0.00 897.91	15095 5797
	Run-Off (m ³)	668.90	448.87	140.05	0.00	0.00	0.00	0.00	0.00	597.05	705.15	706.25	598.61	3865
	Soil Moisture Storage (mm)	125.00	125.00	125.00	97.04	51.04	28.36	41.11	81.22	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	106.14	108.04	95.40	74.25	36.49	7.64	0.00	0.00	0.00	531
	P-AET (mm)	60.90	40.87	12.75	-24.84	-27.24	-7.20	12.75	40.11	79.46	64.20	64.30	54.50	371
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-24.84	-52.08	-59.28	-46.54	-6.42	0.00	0.00	0.00	0.00	-
	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	24.84	27.24	7.20	-40.34	-0.42	-6.42	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	40.87	12.75	0.00	0.00	0.00	0.00	-40.11	73.04	64.20	64.30	54.50	371
	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	3/1
Pervious Area (Urban Lawn)	Run-Off Coefficient													
		0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Infiltration (mm)	36.54	24.52	7.65	0.00	0.00	0.00	0.00	0.00	43.82	38.52	38.58	32.70	222
	Run-Off (mm)	24.36	16.35	5.10	0.00	0.00	0.00	0.00	0.00	29.21	25.68	25.72	21.80	148
	Catchment Area (m ²) = 46575						hment Monthly							
	AET (m ³)	0.00	1361.52	3439.56	4943.32	5032.20	4443.38	3458.37	1699.48	355.74	0.00	0.00	0.00	24734
	Infiltration (m ³)	1701.86	1142.04	356.31	0.00	0.00	0.00	0.00	0.00	2041.03	1794.08	1796.87	1523.01	10355
	Run-Off (m ³)	1134.57	761.36	237.54	0.00	0.00	0.00	0.00	0.00	1360.69	1196.05	1197.92	1015.34	6903

Sep 1	4, 2021	
-------	---------	--

6							Month							Total
Catchine	ents and Hydrologic Components	March	April	May	June	July	August	September	October	November	December	January	February	Total
	PET - Adjusted Potential Evapotranspiration (mm)	0.00	29.23	73.85	109.26	126.80	110.88	74.25	36.49	7.64	0.00	0.00	0.00	568
	P - Total Precipitation (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	P-PET (mm)	60.90	40.87	12.75	-27.96	-46.00	-22.68	12.75	40.11	79.46	64.20	64.30	54.50	-
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-27.96	-73.96	-96.64	-83.89	-43.78	0.00	0.00	0.00	0.00	-
	Precipitation Surplus (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	Evaporation Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Impervious Area	Evaporation (mm)	18.27	21.03	25.98	24.39	24.24	26.46	26.10	22.98	26.13	19.26	19.29	16.35	270
(Unconnected)	Run-Off (mm)	42.63	49.07	60.62	56.91	56.56	61.74	60.90	53.62	60.97	44.94	45.01	38.15	631
	Catchment Area (m ²) = 147547						hment Monthly					-		
	Evaporation (m ³)	2695.68	3102.91	3833.27	3598.67	3576.54	3904.09	3850.97	3390.63	3855.40	2841.75	2846.18	2412.39	39908
	Run-Off (m³) Total Precipitation Plus Roof Surplus (mm)	6289.92	7240.13	8944.29	8396.89	8345.25	9109.55 114.88	8985.61	7911.46	8995.93	6630.76	6641.09	5628.91 70.98	93120
		79.32	91.30	112.79	105.89	105.24		113.31	99.77	113.44	83.62	83.75		1174
	P-PET (mm)	79.32	62.07	38.94	-3.37	-21.56	4.00	39.06	63.28	105.81	83.62	83.75	70.98	
	Soil Moisture Deficit (mm)	0.00	0.00	0.00	-3.37	-24.93	-20.94	0.00	0.00	0.00	0.00	0.00	0.00	-
	Soil Moisture Storage (mm)	125.00	125.00	125.00	121.63	100.07	104.06	125.00	125.00	125.00	125.00	125.00	125.00	-
	Actual Potential Evapotranspiration (mm)	0.00	29.23	73.85	108.89	121.59	106.72	74.25	36.49	7.64	0.00	0.00	0.00	559
	P-AET (mm)	79.32	62.07	38.94	-3.00	-16.35	8.16	39.06	63.28	105.81	83.62	83.75	70.98	616
	Actual Soil Moisture Deficit (mm)	0.00	0.00	0.00	-3.00	-19.35	-11.19	0.00	0.00	0.00	0.00	0.00	0.00	-
Pervious Area	Change in Soil Moisture Deficit (mm)	0.00	0.00	0.00	3.00	16.35	-8.16	-11.19	0.00	0.00	0.00	0.00	0.00	-
(Urban Lawn with	Precipitation Surplus (mm)	79.32	62.07	38.94	0.00	0.00	0.00	27.87	63.28	105.81	83.62	83.75	70.98	616
Roof Surplus)	MECP Infiltration Factor	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-
	Run-Off Coefficient	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	-
	Infiltration (mm)	47.59	37.24	23.37	0.00	0.00	0.00	16.72	37.97	63.48	50.17	50.25	42.59	369
	Run-Off (mm)	31.73	24.83	15.58	0.00	0.00	0.00	11.15	25.31	42.32	33.45	33.50	28.39	246
	Catchment Area (m ²) = 42840					Subcato	hment Monthly	Volumes				1		
	AET (m ³)	0.00	1252.33	3163.72	4664.70	5208.89	4571.73	3181.01	1563.18	327.21	0.00	0.00	0.00	23933
	Infiltration (m ³)	2038.82	1595.42	1000.98	0.00	0.00	0.00	716.40	1626.52	2719.62	2149.30	2152.65	1824.56	15824
	Run-Off (m ³)	1359.21	1063.62	667.32	0.00	0.00	0.00	477.60	1084.35	1813.08	1432.87	1435.10	1216.37	10550
	Precipitation Surplus (mm)	60.90	70.10	86.60	81.30	80.80	88.20	87.00	76.60	87.10	64.20	64.30	54.50	902
	Evaporation Factor	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	-
	Run-Off Coefficient	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	-
Impervious Area	Evaporation (mm)	18.27	21.03	25.98	24.39	24.24	26.46	26.10	22.98	26.13	19.26	19.29	16.35	270
(Connected)	Run-Off (mm)	42.63	49.07	60.62	56.91	56.56	61.74	60.90	53.62	60.97	44.94	45.01	38.15	631
	Catchment Area (m ²) = 18510						hment Monthly							
	Evaporation (m ³)	338.18	389.27	480.89	451.46	448.68	489.77	483.11	425.36	483.67	356.50	357.06	302.64	5007
	Run-Off Directed to Pervious (m ³)	789.08	908.29	1122.08	1053.40	1046.93	1142.81 al Catchment Vol	1127.26	992.51	1128.55	831.84	833.14	706.16	11682
	Total AET (m ³)	0.00	5920.07	14955.67	21755.42	23320.67	20514.55	umes 15037.43	7389.55	1546.82	0.00	0.00	0.00	110440
	Total AET (m) Total Evaporation (m ³)	3033.86	3492.18	4314.16	4050.13	4025.22	4393.87	4334.09	7389.55 3815.99	4339.07	3198.26	3203.24	2715.03	44915
	Total Infiltration (m ³)	7873.36	5510.72	2222.54	0.00	0.00	0.00	716.40	1626.52	8689.38	8299.99	8312.92	7045.94	50298
	Total Runoff (m ³)	11538.83	10913.94	10425.98	8396.89	8345.25	9109.55	9463.21	8995.81	14788.86	12164.09	12183.03		126652

TABLE F-4

Water Balance Summary

Water Balance - Newhouse, Hicks, Russell Property, Caledon, ON

Total Runoff (m ³)	March	April	May	June	July	August	Sept	October	Nov	Dec	January	February	Annual Total
Newhouse													
Pre-development	9368	6463	2406	490	487	532	524	462	9457	9876	9891	8384	58340
Post-development no mitigation	10091	9123	8055	6303	6109	6903	7109	6505	12168	10637	10654	9030	102688
Deficit	-722	-2661	-5648	-5813	-5623	-6372	-6584	-6043	-2710	-761	-763	-646	-44347
Hicks													
Pre-development	8780	5930	1934	105	105	114	113	99	8279	9256	9270	7857	51840
Post-development no mitigation	9138	8487	7862	6122	5807	6759	7202	6781	11472	9634	9649	8178	97092
Deficit	-359	-2557	-5928	-6017	-5703	-6645	-7090	-6682	-3193	-378	-379	-321	-45251
Russle													
Pre-development	11121	7571	2603	302	300	328	324	285	10930	11723	11741	9952	67180
Post-development no mitigation	11539	10914	10426	8397	8345	9110	9463	8996	14789	12164	12183	10326	126652
Deficit	-418	-3343	-7823	-8095	-8045	-8782	-9140	-8711	-3859	-441	-442	-374	-59472
Site Total		•	•	•	•								
Pre-development	29269	19964	6943	897	892	974	960	846	28666	30855	30903	26193	177361
Post-development no mitigation	30768	28524	26342	20822	20262	22772	23774	22282	38429	32435	32486	27535	326431
									0760	1500	1500	1010	-149070
(ve) value implies a net increase	-1499	-8561	-19399	-19925	-19370	-21798	-22813	-21437	-9763	-1580	-1583	-1342	-149070
Deficit (ve) value implies a net increase		-8561 April	-19399 May	-19925 June	-19370 July	-21798 August	-22813 Sept	-21437 October	-9763	-1580 Dec	January	-1342 February	-149070
Deficit (ve) value implies a net increase Total Infiltration (m ³)	-1499												
Veficit (ve) value implies a net increase Total Infiltration (m ³) Newhouse	-1499 March	April	Мау	June				October	Nov	Dec	January	February	Annual Total
Ve) value implies a net increase Total Infiltration (m ³) Newhouse Pre-development	-1499 March	April 6742	May 2104	June	July	August 0	Sept 0	October 0	Nov 9746	Dec 10592	January 10608	February 8991	Annual Total 58830
Deficit (ve) value implies a net increase Total Infiltration (m ³) Newhouse Pre-development Post-development no mitigation	-1499 March 10047 7191	April 6742 5040	May 2104 2046	June 0 238	July	August 0 356	Sept 0 799	0 1073	Nov 9746 7368	Dec 10592 7581	January 10608 7593	February 8991 6436	Annual Total 58830 45723
Ve) value implies a net increase Total Infiltration (m ³) Newhouse Pre-development	-1499 March	April 6742	May 2104	June	July 0 4	August 0	Sept 0	October 0	Nov 9746	Dec 10592	January 10608	February 8991	Annual Total 58830
Veficit Deficit Total Infiltration (m ³) Newhouse Pre-development Post-development no mitigation Deficit Hicks	-1499 March 10047 7191 2856	April 6742 5040 1703	May 2104 2046 58	June 0 238	July 0 4	August 0 356	Sept 0 799	0 1073	Nov 9746 7368 2377	Dec 10592 7581 3011	January 10608 7593 3015	February 8991 6436 2556	Annual Total 58830 45723 13107
Velicit Deficit Total Infiltration (m ³) Newhouse Pre-development Post-development no mitigation Deficit Hicks Pre-development	-1499 March 10047 7191 2856 9674	April 6742 5040 1703 6491	May 2104 2046 58 2025	June 0 238 -238 0	July 0 4 -4	August 0 356 -356 0	Sept 0 799 -799 0	0 1073 -1073 0	Nov 9746 7368 2377 8922	Dec 10592 7581 3011 10198	January 10608 7593 3015 10214	February 8991 6436 2556 8657	Annual Total 58830 45723 13107 56181
Veficit Deficit Total Infiltration (m ³) Newhouse Pre-development Post-development no mitigation Deficit Hicks	-1499 March 10047 7191 2856 	April 6742 5040 1703 6491 5019	May 2104 2046 58 2025 2430	June 0 238 -238 0 446	July 0 4 -4 0 27	August 0 356 -356 - 356 0 659	Sept 0 799 -799 0 1453	October 0 1073 -1073 0 1940	Nov 9746 7368 2377 8922 7591	Dec 10592 7581 3011 10198 7272	January 10608 7593 3015 10214 7283	February 8991 6436 2556 8657 6173	Annual Total 58830 45723 13107 56181 47190
Deficit (ve) value implies a net increase Total Infiltration (m ³) Newhouse Pre-development Post-development no mitigation Deficit Hicks Pre-development Post-development no mitigation	-1499 March 10047 7191 2856 9674	April 6742 5040 1703 6491	May 2104 2046 58 2025	June 0 238 -238 0	July 0 4 -4	August 0 356 -356 0	Sept 0 799 -799 0	0 1073 -1073 0	Nov 9746 7368 2377 8922	Dec 10592 7581 3011 10198	January 10608 7593 3015 10214	February 8991 6436 2556 8657	Annual Total 58830 45723 13107 56181
Veficit Deficit Total Infiltration (m ³) Newhouse Pre-development Post-development omitigation Deficit Hicks Pre-development Post-development Post-development no mitigation Deficit	-1499 March 10047 7191 2856 	April 6742 5040 1703 6491 5019 1472	May 2104 2046 58 2025 2430 -405	June 0 238 -238 0 446	July 0 4 -4 0 27	August 0 356 -356 - 356 0 659	Sept 0 799 -799 0 1453	October 0 1073 -1073 0 1940	Nov 9746 7368 2377 8922 7591	Dec 10592 7581 3011 10198 7272	January 10608 7593 3015 10214 7283	February 8991 6436 2556 8657 6173	Annual Total 58830 45723 13107 56181 47190
Deficit Velve implies a net increase Total Infiltration (m³) Newhouse Pre-development Post-development no mitigation Deficit Hicks Pre-development no mitigation Deficit Bre-development no mitigation Deficit Russle	-1499 March 10047 7191 2856 9674 6898 2775	April 6742 5040 1703 6491 5019	May 2104 2046 58 2025 2430	June 0 238 -238 0 446 -446	U U U U U U U U U U U U U U U U U U U	August 0 356 -356 0 659 -659	Sept 0 799 -799 0 1453 -1453	October 0 1073 -1073 0 1940 -1940	Nov 9746 7368 2377 8922 7591 1331	Dec 10592 7581 3011 10198 7272 2926	January 10608 7593 3015 10214 7283 2930	February 8991 6436 2556 8657 6173 2484	Annual Total 58830 45723 13107 56181 47190 8991
Deficit Vely value implies a net increase Total Infiltration (m ³) Newhouse Pre-development Post-development no mitigation Deficit Hicks Pre-development no mitigation Deficit Hicks Pre-development no mitigation Deficit Russle Pre-development Pre-development no mitigation	-1499 March 10047 7191 2856 9674 6898 2775 11228	April 6742 5040 1703 6491 5019 1472 7535	May 2104 2046 58 2025 2430 -405 2351	June 0 238 -238 0 446 -446 0	July 0 4 -4 0 27 -27 0	August 0 356 -356 0 659 -659 0 0	Sept 0 799 -799 0 1453 -1453 0	October 0 1073 -1073 0 1940 -1940 0	Nov 9746 7368 2377 8922 7591 1331 10866	Dec 10592 7581 3011 10198 7272 2926 11837	January 10608 7593 3015 10214 7283 2930 11855	February 8991 6436 2556 8657 6173 2484 10048	Annual Total 58830 45723 13107 56181 47190 8991 65721
Deficit Velve value implies a net increase Total Infiltration (m³) Newhouse Pre-development Post-development no mitigation Deficit Hicks Pre-development no mitigation Deficit Russle Pre-development Per-development no mitigation Deficit Russle Pre-development Post-development	-1499 March 10047 7191 2856 9674 6898 2775 	April 6742 5040 1703 6491 5019 1472 7535 5511	May 2104 2046 58 2025 2430 -405 2351 2223	June 0 238 -238 0 446 -446 -446 0 0	Uly 0 4 -4 0 27 -27 0 0	August 0 356 -356 0 659 -659 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sept 0 799 -799 0 1453 -1453 0 716	October 0 1073 -1073 0 1940 -1940 0 1627	Nov 9746 7368 2377 8922 7591 1331 10866 8689	Dec 10592 7581 3011 10198 7272 2926 11837 8300	January 10608 7593 3015 10214 7283 2930 11855 8313	February 8991 6436 2556 8657 6173 2484 10048 7046	Annual Total 58830 45723 13107 56181 47190 8991 65721 50298
Deficit Total Infiltration (m³) Newhouse Pre-development Post-development no mitigation Deficit Hicks Pre-development no mitigation Deficit Hicks Pre-development omitigation Deficit Russle Pre-development Post-development no mitigation Deficit Russle Pre-development Post-development Deficit	-1499 March 10047 7191 2856 9674 6898 2775 11228 7873 3355	April 6742 5040 1703 6491 5019 1472 7535 5511 2024	May 2104 2046 58 2025 2430 -405 2351 2223 128	June 0 238 -238 0 446 -446 -446 0 0	Uly 0 4 -4 0 27 -27 0 0	August 0 356 -356 0 659 -659 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sept 0 799 -799 0 1453 -1453 0 716	October 0 1073 -1073 0 1940 -1940 0 1627	Nov 9746 7368 2377 8922 7591 1331 10866 8689 2177	Dec 10592 7581 3011 10198 7272 2926 11837 8300	January 10608 7593 3015 10214 7283 2930 11855 8313	February 8991 6436 2556 8657 6173 2484 10048 7046	Annual Total 58830 45723 13107 56181 47190 8991 65721 50298
Deficit Deficit Total Infiltration (m³) Newhouse Pre-development Post-development no mitigation Deficit Hicks Pre-development no mitigation Deficit Beride Pre-development no mitigation Deficit Russle Pre-development no mitigation Deficit Russle Pre-development no mitigation Deficit Site Total	-1499 March 10047 7191 2856 9674 6898 2775 	April 6742 5040 1703 6491 5019 1472 7535 5511	May 2104 2046 58 2025 2430 -405 2351 2223	June 0 238 -238 0 446 -446 0 0 0	July 0 4 -4 -4 -7 -27 0 0 0 0 0 0 0	August 0 336 -356 0 659 -659 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sept 0 799 -799 0 1453 -1453 0 716 -716	October 0 1073 -1073 0 1940 -1940 0 1627 -1627	Nov 9746 7368 2377 8922 7591 1331 10866 8689	Dec 10592 7581 3011 10198 7272 2926 11837 8300 3537	January 10608 7593 3015 10214 7283 2930 11855 8313 3542	February 8991 6436 2556 8657 6173 2484 10048 7046 3003	Annual Total 58830 45723 13107 56181 47190 8991 65721 50298 15424

* - (ve) value implies a net increase

