Report on Geotechnical Investigation Mayfield West Phase 1 Expansion (Stage 2) South of Old School Road From Hurontario Street to East of Kennedy Road Caledon, Ontario

> Prepared For: Argo Kennedy Limited

Project No: 19-312-100 **Date:** August 26, 2021

DS CONSULTANTS LTD.

6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 <u>www.dsconsultants.ca</u>

Table of Contents

1.	INTRODUCTION
2.	FIELD AND LABORATORY WORK
3.	SOIL AND GROUNDWATER CONDITIONS
	3.1 Subsurface Conditions from Hurontario St to Kennedy Rd2
	3.1.1 Soil Conditions
	3.1.2 Groundwater Conditions
	3.2 Subsurface Desktop Review to East of Kennedy Rd5
4.	GEOTECHNICAL DISCUSSION AND RECOMMENDATIONS7
	 4.1 Site Grading and Engineered Fill 4.2 Roads 9
	4.2.1 Stripping, Sub-excavation and Grading10
	4.2.2 Construction11
	4.2.3 Drainage11
	4.3 Sewers
	4.3.1 Trenching
	4.3.2 Bedding
	4.3.3 Backfilling of Trenches
	4.4Foundation Conditions134.5Earth Pressures144.6SWM Ponds14
5.	SLOPE STABILITY ASSESSMENT16
6.	GENERAL COMMENTS AND LIMITATIONS OF REPORT

DRAWINGS

BOREHOLE LOCATION PLAN	1
Plan of Existing Ontario Geotechnical Boreholes	1A
NOTES ON SAMPLE DESCRIPTIONS	1B
BOREHOLE LOGS	2 - 14
GRAIN SIZE DISTRIBUTION CURVES	15 - 16

APPENDIX A – GENERAL REQUIREMENTS FOR ENGINEERED FILL

Appendix B – Location Plan and Logs of Previous Boreholes (BH-1 to BH-9) by Forward Engineering Appendix C – Selected photographs for slope stability assessment

Project: 19-312-100 Geotechnical Investigation - Mayfield West Phase 1 Expansion (Stage 2) Old School Rd from Hurontario St to East of Kennedy Rd, Caledon, ON

1. INTRODUCTION

DS Consultants Ltd. (DS) was retained by Argo Kennedy Limited to undertake a geotechnical investigation for the proposed Mayfield West Phase 1 Expansion (Stage 2) development, located at the south of Old School Road from Hurontario Street to east of Kennedy Road in Caledon, Ontario.

It is understood that the project will entail residential subdivisions consisting of houses, roads, sewers and stormwater management ponds.

DS drilled eight (8) boreholes (BH19-2 through BH19-9) in December 2019 in Hick's property to the west of Kennedy Road, and a preliminary geotechnical report (No. 19-312-100, dated March 18, 2020) was submitted to ARGO Developments.

In January 2021, DS drilled 5 boreholes (BH21-1 to BH21-5) at the west part of the site, to the east of Hurontario Street.

No boreholes were drilled at the east part of the site, to the east of Kennedy Road, due to access permission problems. A desktop review of the subsurface conditions in this area was carried out in this report.

This geotechnical investigation report was prepared on the basis of all boreholes mentioned above and the desktop review of the subsurface conditions to the east of Kennedy Road.

This report deals with the geotechnical aspects of the site only. DS also carried out environmental and hydrogeological investigations at the subject site. Environmental and hydrogeological findings are documented under separate covers.

The purpose of this geotechnical investigation was to obtain information about the subsurface conditions by means of boreholes and from the findings in the boreholes to make preliminary recommendations pertaining to the geotechnical design of underground utilities and subdivision roads, storm water management ponds, and to comment on the foundation conditions for general house construction.

This report is provided on the basis of the terms of reference presented above and, on the assumption, that the design will be in accordance with the applicable codes and standards. If there are any changes in the design features relevant to the geotechnical analyses, or if any questions arise concerning the geotechnical aspects of the codes and standards, this office should be contacted to review the design. It may then be necessary to carry out additional borings and reporting before the recommendations of this office can be relied upon.

The site investigation and recommendations follow generally accepted practice for geotechnical consultants in Ontario. The format and contents are guided by client specific needs and economics and do not conform to generalized standards for services. Laboratory testing for most part follows ASTM or CSA Standards or modifications of these standards that have become standard practice.

This report has been prepared for Argo Kennedy Limited and its designers. Third party use of this report without DS Consultants Ltd. (DS) consent is prohibited.

2. FIELD AND LABORATORY WORK

In December 2019, eight (8) boreholes (BH19-2 through BH19-9) were drilled at the subject site to depths ranging from 6.5 to 13.2m. In January 2021, five (5) boreholes (BH21-1 through BH21-5) were drilled at the subject site to depths ranging from 6.4 to 8.2 m. The boreholes were drilled with hollow/solid stem continuous flight auger equipment by a drilling sub-contractor under the direction and supervision of DS personnel. Samples were retrieved at regular intervals with a 50 mm O.D. split-barrel sampler driven with a hammer weighing 624 N and dropping 760 mm in accordance with the Standard Penetration Test (SPT) method. The samples were logged in the field and returned to the DS laboratory for detailed examination by the project engineer and for laboratory testing.

As well as visual examination in the laboratory, all soil samples for the boreholes drilled by DS were tested for moisture contents. Grain size analyses and Atterberg Limits tests were conducted out on selected soil samples and the results are presented in **Drawings 15** and **16**.

Groundwater level observations were made during drilling and in the open boreholes at the completion of the drilling operations. All boreholes were equipped with 50mm dia. monitoring wells for the long-term groundwater level monitoring.

The surface elevations at the borehole locations were surveyed by DS staff using differential GPS system.

3. SOIL AND GROUNDWATER CONDITIONS

A total of 13 boreholes (BH19-2 to BH19-9, and BH21-1 to BH21-5) were drilled at the site between Hurontario Street and Kennedy Road, as presented in **Section 3.1** below. At the east part of the site to the east of Kennedy Road where no boreholes were drilled for this investigation, a desktop review of subsurface conditions is carried out, as presented in **Section 3.2**.

3.1 Subsurface Conditions from Hurontario St to Kennedy Rd

The locations of the boreholes (BH19-2 to BH19-9, and BH21-1 to BH21-5) are shown on **Drawing 1**. Notes on sample description are presented on **Drawing 1B**. The subsurface conditions

encountered in boreholes are presented in the individual borehole logs (**Drawing 2** to **14**). The subsurface conditions encountered in boreholes are summarized in the following paragraphs.

3.1.1 Soil Conditions

Topsoil:

A surficial layer of topsoil of 200mm to 350mm thick was found in the boreholes. It should be noted that the thickness of the topsoil explored at the borehole locations may not be representative for the site and should not be relied on to calculate the amount of topsoil at the site.

Fill and Weathered/Disturbed Soils:

Below the topsoil, fill and weathered/disturbed soils of silty clay, silty sand to sandy silt deposits were encountered. The weathered/disturbed materials were considered due to ploughing activities in the past. Traces of rootlets, organics and topsoil inclusions were also observed in the fill and weathered deposit. The fill and weathered/disturbed soils extended to depths ranging from 0.8 to 1.5m below ground surface and were found to have very soft to stiff consistency/very loose to compact state, with measured SPT 'N' values ranging from 1 to 15 blows per 300mm penetration.

Cohesionless Deposits (Sandy Silt/Silty sand, Sand, Silt and Sand and Gravel):

Cohesionless deposits of sandy silt/silty sand, sand, silt and sand and gravel were encountered in most of the boreholes and extended to various depths. These deposits were found in loose to very dense state, with measured SPT 'N' values ranging from 4 to more than 50 blows per 300 mm penetration. Most of the cohesionless deposits were found to be wet to saturated and below groundwater table.

Grain size analyses of seven (7) sand to silty sand, sandy silt and sand and gravel samples (BH19-2/SS10, BH19-4/SS5, BH19-5/SS6, BH19-7/SS5, BH21-1/SS7, BH21-3/SS3 and BH21-3/SS6) were conducted and the results are presented in **Drawings 15** and **16**, with the following fractions:

 Clay:
 1% to 10%

 Silt:
 23% to 65%

 Sand:
 25% to 64%

 Gravel:
 up to 34%

Cohesive Deposits (Clayey Silt to Silty Clay Till, Clayey Silt to Silty Clay):

Cohesive deposits of clayey silt to silty clay till and clayey silt to silty clay were encountered in boreholes BH19-3 to BH19-6, BH21-1 and BH21-2 at various depths. The cohesive deposits were found to have a firm to hard consistency, with measured SPT 'N' values ranging from 8 to 36 blows per 300 mm penetration.

Grain size analysis of one (1) silty clay till sample (BH21-1/SS3) was conducted and the results are presented in **Drawing 16**, with the following fractions:

Clay:	31%
Silt:	49%
Sand:	18%
Gravel:	2%

Atterberg Limits test of one (1) silty clay till sample (BH21-1/SS3) was conducted and the results are shown in the borehole log of BH21-1.

Silty Sand Till/Sandy Silt Till:

The silty sand till to sandy silt till deposits were encountered in all boreholes except BH19-4, BH21-1 and BH21-3. These deposits were found generally in a loose to very dense state with measured SPT 'N' values ranging from 8 to more than 50 blows per 300mm penetration.

Grain size analyses of four (4) silty sand to sandy silt till samples (BH19-3/SS9, BH19-6/SS9, BH19-8/SS10, BH19-9/SS6) were conducted and the results are presented in **Drawing 15**, with the following fractions:

Clay:	5% to 11%
Silt:	23% to 55%
Sand:	35% to 44%
Gravel:	3% to 25%

3.1.2 Groundwater Conditions

All boreholes were equipped with 50mm dia. monitoring wells for the measurements of long-term groundwater levels. The measured groundwater levels in the boreholes at different dates are shown in the borehole logs.

The highest groundwater level measured in each borehole is listed on **Table 1** below.

Borehole No.	Ground Surface Elev. (m)	Date of Observation	Depth of Groundwater (m)	Elevation of Groundwater (m)
BH19-2	266.6	lan 2 2020	0.6	266.0
BH19-3	269.5	lan 2, 2020	2.9	266.6
BH19-4	270.3	May 3, 2021	3.9	266.4
BH19-5	274.2	Jan.2, 2020	2.2	272.0
BH19-6	267.8	Jan.2, 2020	3.2	264.6
BH19-7	265.7	May 3, 2021	2.8	262.9
BH19-8	270.8	Jan.2, 2020	0.3	270.5
BH19-9	271.6	Jan.2, 2020	1.1	270.5
BH21-1	263.0	May 3, 2021	1.9	261.1
BH21-2	260.5	May 3, 2021	1.4	259.1
BH21-3	263.2	May 3, 2021	3.4	259.8
BH21-4	262.9	May 3, 2021	3.8	259.1
BH21-5	263.8	May 3, 2021	-1.0*	264.8*

*Note: Groundwater table measured in BH21-5 was 1.0 m above ground surface.

As listed on **Table 1**, the groundwater table measured in the monitoring wells ranged from 1.0 m above ground surface to 3.9 m below the ground surface, corresponding to elevations ranging from 259.1 to 272.0 m.

It should be noted that the groundwater levels can vary and are subject to seasonal fluctuations in response to major weather events.

3.2 Subsurface Desktop Review to East of Kennedy Rd

A geotechnical desktop study was conducted for the east part of the site, to the east of Kennedy Road. The geotechnical information available for this study consists of boreholes from Ontario Geotechnical Boreholes Database, and boreholes drilled by Forward Engineering.

The geotechnical information from the existing boreholes is limited. New boreholes at the site are required to explore more detailed soil and groundwater conditions across the site.

(1). Soil Conditions in Boreholes from Ontario Geotechnical Boreholes Database

Ontario Geotechnical Boreholes database contains records of boreholes constructed during past geotechnical investigations. The data includes information on the geological stratum identified down each hole as well as the hole depth. The data can be viewed using Google Earth.

From Ontario Geotechnical Boreholes, 6 boreholes (numbered H1 to H6 for convenience of reference) in the surrounding areas are selected for this study. The depth of the boreholes ranges from of 0.9 to 1.5 m. The locations of the boreholes are shown in **Drawing 1A**. The soil conditions in the boreholes are summarized on **Table 2**.

Ref. No.	Borehole Information	Borehole Log - Soil Conditions
H1	Borehole ID: 589881	Borehole Log (metres):
	Completion Year:	0 ~ 0.9 m till, silt, sand
	Elevation (DEM): 269.7 m	
	Total Depth: 0.9 m	
	Static Water Level: m	
H2	Borehole ID: 590056	Borehole Log (metres):
	Completion Year:	0 ~ 1.5 m sand
	Elevation (DEM): 272.9 m	
	Total Depth: 1.5 m	
	Static Water Level: m	
H3	Borehole ID: 589781	Borehole Log (metres):
	Completion Year:	0 ~ 1.4 m fine sand, silt
	Elevation (DEM): 269.0 m	
	Total Depth: 1.4 m	
	Static Water Level: m	
H4	Borehole ID: 589900	Borehole Log (metres):
	Completion Year:	0 ~ 1.1 m till, silt, sand
	Elevation (DEM): 278.1 m	
	Total Depth: 1.1 m	
	Static Water Level: m	
H5	Borehole ID: 590396	Borehole Log (metres):
	Completion Year:	0 ~ 1.5 m till, silt, sand
	Elevation (DEM): 270.5 m	
	Total Depth: 1.5 m	
	Static Water Level: m	
H6	Borehole ID: 590545	Borehole Log (metres):
	Completion Year:	0 ~ 1.5 m till, silt, sand
	Elevation (DEM): 272.7 m	
	Total Depth: 1.5 m	
	Static Water Level: m	

 Table 2: Subsurface Conditions in Ontario Geotechnical Boreholes
 (see Drawing 1A for Location Plan)

The soils in the boreholes as listed on Table 2 consisted of sand and silt deposits and silt to sand tills.

(2). Soil Conditions in Boreholes by Forward Engineering

The client provided us with a letter report entitled "Proposed Southfields Village No. 2 Public School, Hydrogeological Investigation, Part Lot 22, Concession 1, EHS, Caledon, Ontario", prepared

6

by Terraprobe Inc., No. 1-16-0771-46, dated January 20, 2017. The school site was located at northwest of Kennedy Road and Newhouse Boulevard. The letter report includes 25 boreholes (BH-1 to BH-25) drilled by Forward Engineering. The borehole location plan and the logs of 9 boreholes (BH-1 to BH-9) of 5.0 to 6.5 m in depth are attached in **Appendix B**. The other boreholes (BH-10 to BH-25) are shallow boreholes, which are not included in this report.

In the boreholes as attached in **Appendix B**, organic soil/topsoil and fill/disturbed materials were found extending to depths of up to 1.7 m. Most native soils consisted of loose to dense cohesionless (sandy) deposits (sand/silt, sandy silt to silty sand). Firm to hard clayey silt till was encountered at the lower portion of BH-1 to BH-8. Wet soils and groundwater were found typically at depth of 2 to 3 m in most boreholes.

4. GEOTECHNICAL DISCUSSION AND RECOMMENDATIONS

It is proposed to develop the site as residential subdivisions. The lots will therefore be serviced by a network of roads, watermains, storm and sanitary sewers, and storm water management ponds (SWM ponds).

4.1 Site Grading and Engineered Fill

The site will be developed as residential subdivision swith residential lots, roads and driveways. It is recommended that all fill to be placed for grading purposes be constructed as engineered fill to provide competent subgrade below house foundations, roads, boulevards, etc.

Prior to placement of engineered fill, all existing surficial topsoil, fill materials, weathered/disturbed soils and other unsuitable materials should be stripped to expose the competent inorganic subgrade. The exposed subgrade should then be proof rolled with a heavy sheepsfoot roller to identify weak areas. Any weak or excessively wet zones identified during proof-rolling should be sub-excavated and replaced with compacted competent material to establish stable and uniform conditions. Prior to placement of engineered fill, the subgrade should be inspected and approved by a geotechnical engineer.

General guidelines for the placement and preparation of engineered fill are presented on **Appendix A**. Bearing capacity values of 150 kPa at SLS and 225 kPa at ULS can be used on engineered fill, provided that all requirements on **Appendix A** are adhered to. To reduce the risk of improperly placed engineered compacted fill, full-time supervision of the contractor is essential. Despite full time supervision, it has been found that contractors frequently bulldoze loose fill into areas and compact only the surface. The inspector, either busy on other portions of the site or absent during "off hours" will be unaware of this condition. For this reason, we cannot guarantee the performance of the engineered fill, and this guarantee must be the responsibility of the contractor.

The owner and his representatives must accept the risk involved in the use of engineered fill and offset this risk with the monetary savings of avoiding deep foundations. This potential problem must be recognized and discussed at a pre-construction meeting. Procedures can then be instigated to reduce the risk of settlement resulting from un-compacted fill.

The following is a recommended procedure for engineered fill:

- 1. Prior to site work involving engineered fill, a site meeting to discuss all aspects must be convened. The surveyor, contractor, design engineer and geotechnical engineer must attend the meeting. At this meeting, the limits of the engineered fill will be defined. The contractor must make known where all fill material will be obtained, and samples must be provided to the geotechnical engineer for review, and approval before filling begins.
- 2. Detailed drawings indicating the lower boundaries as well as the upper boundaries of the engineered fill must be available at the site meeting and be approved by the geotechnical engineer.
- 3. The building footprint and base of the pad, including basements, garages, etc. must be defined by offset stakes that remain in place until the footings and service connections are all constructed. Confirmation that the footings are within the pad, service lines are in place, and that the grade conforms to drawings, must be obtained by the owner in writing from the surveyor and DS. Without this confirmation no responsibility for the performance of the structure can be accepted by DS. Survey drawing of the pre and post fill location and elevations will also be required.
- The area must be stripped of all topsoil and fill materials. Subgrade must be proof-rolled.
 Soft spots must be dug out. The stripped native subgrade must be examined and approved by a DS engineer prior to placement of fill.
- 5. The approved engineered fill must be compacted to 100% Standard Proctor Maximum Dry Density throughout. Granular Fill preferred. Engineered fill should not be placed (where it will support footings) during the winter months. Engineered fill compacted to 100% SPMDD will settle under its own weight approximately 0.5% of the fill height and the structural engineer must be aware of this settlement. In addition to the settlement of the fill, additional settlement due to consolidation of the underlying soils from the structural and fill loads will occur.
- 6. Full-time geotechnical inspection by DS during placement of engineered fill is required.Work cannot commence or continue without the presence of the DS representative.
- 7. The fill must be placed such that the specified geometry is achieved. Refer to sketches for minimum requirements. Take careful note that the projection of the compacted pad

beyond the footing at footing level is a minimum of 2 m. The base of the compacted pad extends 2 m plus the depth of excavation beyond the edge of the footing.

- Bearing capacity values of 150 kPa at SLS and 225 kPa at ULS may be used provided that all conditions outlined above are adhered to. A minimum footing width of 500 mm (20 inches) is recommended, and footings should be provided with nominal steel reinforcement.
- 9. All excavations must be done in accordance with the Occupational Health and Safety Regulations of Ontario.
- 10. After completion of the pad a second contractor may be selected to install footings. All excavations must be backfilled under full time supervision by DS to the same degree as the engineered fill pad. Surface water cannot be allowed to pond in excavations or to be trapped in clear stone backfill. Clear stone backfill can only be used with the approval of DS.
- 11. After completion of compaction, the surface of the pad must be protected from disturbance from traffic, rain and frost.
- 12. If there is a delay in construction, the engineered fill pad must be inspected and accepted by the geotechnical engineer. The location of the structure must be reconfirmed that it remains within the pad.

The inorganic clayey silt (till) are considered suitable for use as engineered fill, provided that their moisture contents at the time of construction are at or near optimum. The clayey tills are likely to be excavated in cohesive chunks or blocks and will be difficult to compact. They should be pulverized and placed in thin layers not exceeding 150 to 200 mm and compacted using heavy equipment suitable for these types of soils (e.g. heavy sheepsfoot compactors).

4.2 Roads

The investigation has shown that the predominant subgrade soil, after stripping the topsoil, loose fill and any other organic and otherwise unsuitable subsoil, will generally consist of sandy silt to silty sand, clayey silt till, silty sand and sandy silt till.

Based on the above and assuming that traffic usage will be residential minor local or local, the following minimum pavement thickness is recommended for roads to be constructed within the subdivision:

40 mm HL3 Asphaltic Concrete 65 mm HL8 Asphaltic Concrete 200 mm Granular 'A' 250 mm Granular 'B' 9

For collector streets/bus routes, the following minimum pavement thickness is recommended:

40 mm HL3 Asphaltic Concrete 85 mm HL8 Asphaltic Concrete 200 mm Granular 'A' 350 mm Granular 'B'

These values may need to be adjusted according to the Town of Caledon Standards. The site subgrade and weather conditions (i.e. if wet) at the time of construction may necessitate the placement of thicker granular sub-base layer in order to facilitate the construction. Furthermore, heavy construction equipment may have to be kept off the newly constructed roads before the placement of asphalt and/or immediately thereafter, to avoid damaging the weak subgrade by heavy truck traffic.

4.2.1 Stripping, Sub-excavation and Grading

The site should be stripped of all topsoil, existing fill, weathered soils, and any organic or otherwise unsuitable soils to the full depth of the roads, both in cut and fill areas.

Following stripping, the site should be graded to the subgrade level and approved. The subgrade should then be proof-rolled, in the presence of the Geotechnical Engineer, by at least several passes of a heavy compactor having a rated capacity of at least 8 tonnes. Any soft spots thus exposed should be removed and replaced by select fill material, similar to the existing subgrade soil and approved by the Geotechnical Engineer. The subgrade should then be re-compacted from the surface to at least 98% of its Standard Proctor Maximum Dry Density (SPMDD). The final subgrade should be cambered or otherwise shaped properly to facilitate rapid drainage and to prevent the formation of local depressions in which water could accumulate.

Owing to the clayey (i.e. impervious) nature of the same subsoil at the site, proper cambering and allowing the water to escape towards the sides (where it can be removed by means of subdrains) is considered to be beneficial for this project. Otherwise, any water collected in the granular subbase materials could be trapped thus causing problems due to softened subgrade, differential frost heave, etc. For the same reason damaging the subgrade during and after placement of the granular materials by heavy construction traffic should be avoided. If the moisture content of the local material cannot be maintained at $\pm 2\%$ of the optimum moisture content, imported granular material may need to be used.

Any fill required for re-grading the site or backfill should be select, clean material, free of topsoil, organic or other foreign and unsuitable matter. The backfill should be placed in thin layers and compacted to at least 98% of its SPMDD, or as per the City Standards. The compaction of the new fill should be checked by frequent field density tests.

4.2.2 Construction

Once the subgrade has been inspected and approved, the granular base and sub-base course materials should be placed in layers not exceeding 200 mm (uncompacted thickness) and should be compacted to at least 100% of their respective SPMDD. The grading of the material should conform to current OPS Specifications.

The placing, spreading and rolling of the asphalt should be in accordance with OPS Specifications or, as required by the local authorities.

Frequent field density tests should be carried out on both the asphalt and granular base and subbase materials to ensure that the required degree of compaction is achieved.

4.2.3 Drainage

The subdrains should be properly filtered to prevent the loss of (and clogging by) soil fines.

All paved surfaces should be sloped to provide satisfactory drainage towards catch basins. As discussed in **Section 4.2.1**, by means of good planning any water trapped in the granular sub-base materials should be drained rapidly towards subdrains or other interceptors.

4.3 Sewers

As a part of the site development, a network of new storm and sanitary sewers is to be constructed. It is assumed that the trenches are generally within 4 to 5 m below the existing grade.

4.3.1 Trenching

Based on the boreholes, the trenches will be dug through the weathered soil, sandy silt to silt sand, silty sand till and clayey silt till. Excavations can be carried out with heavy hydraulic backhoe. The groundwater in the monitoring wells was found at depths from 1.0 m above ground surface to 3.9m below ground surface. Dewatering will be required prior to any excavations below the groundwater table. Otherwise, it will result in an unstable base and flowing sides. The groundwater table must be lowered to at least 1.0 m below the deepest excavation base. A contractor specializing in dewatering should be retained to design the dewatering systems.

DS is carrying out hydrogeological study at the subject site and more comments regarding the type and extent of groundwater control required will be addressed in the hydrogeological report.

It should be noted that the till is a non-sorted sediment and therefore may contain boulders. Provisions must be made in the excavation contract for the removal of possible boulders in the till material.

The sides of excavations in the natural strata above groundwater can be expected to be temporarily stable at relatively steep side slopes for short periods of time but they should be cut back at slopes

no steeper than 1:1 in order to comply with the safety regulations. If steep side slopes are required, the sides should be supported by braced skeleton or close sheeting. Any excavation below groundwater will require dewatering.

All excavations must be carried out in accordance with the most recent Occupational Health and Safety Act (OHSA). In accordance with OHSA, the fill/weathered soils, the cohesionless (sandy) deposits and soft to stiff clayey soil can be classified as Type 3 Soil above groundwater and as Type 4 Soil below groundwater table. The very stiff to hard clayey silt silty clay deposits can be classified as Type 2 Soil above the groundwater table and as Type 3 Soil below groundwater.

4.3.2 Bedding

The undisturbed native soils will provide adequate support for the sewer pipes and allow the use of normal Class B type bedding. The recommended minimum thickness of granular bedding below the invert of the pipes is 150 mm. The thickness of the bedding may, however, have to be increased depending on the pipe diameter or in accordance with local standards or if wet or weak subgrade conditions are encountered, especially when the soil at the trench base level consists of wet, dilatant silt. The bedding material should consist of well graded granular material such as Granular 'A' or equivalent. After installing the pipe on the bedding, a granular surround of approved bedding material, which extends at least 300 mm above the obvert of the pipe, or as set out by the local Authority, should be placed.

To avoid the loss of soil fines from the subgrade, uniformly graded clear stone should not be used unless, below the granular bedding material, a suitable, approved filter fabric (geotextile) is placed. The geotextile should extend along the sides of the trench and should be wrapped all around the poorly graded bedding material.

4.3.3 Backfilling of Trenches

Based on visual and tactile examination, the on-site excavated inorganic sandy silt to silty sand, silty sand till and clayey silt to silty clay deposits, free from topsoil and organics are considered to be suitable for re-use as backfill in the service trenches provided their moisture contents at the time of construction are at or near optimum.

Granular B material should be used as backfill for trenches located under slab on grade or paved areas. Compaction of the granular soils should be carried out with vibratory compactors and loose lifts not exceeding about 200 mm.

The clayey silt to silty clay deposits especially when its consistency is very stiff to hard is likely to be excavated in cohesive chunks or blocks and will be difficult to compact in confined areas. For use as backfill, the clayey material will have to pulverized and placed in thin layers. The clayey soils will have to be compacted using heavy equipment suitable for these soils which may be difficult to

operate in the narrow confines of the trenches. Unless the clayey materials are properly pulverized and compacted in sufficiently thin lifts post-construction settlements could occur. Their use in narrow trenches such as laterals (where heavy compaction equipment cannot be operated) may not be feasible.

The backfill should be placed in maximum 200 mm thick layers at or near ($\pm 2\%$) their optimum moisture content, and each layer should be compacted to at last 95% SPMDD. The degree of compaction should be increased to 98% of SPMDD within 2.0m below the road surface. Unsuitable materials such as organic soils, boulders, cobbles, frozen soils, etc. should not be used for backfilling.

The on-site excavated soils and especially the clayey soils should not be used in confined areas (e.g. around catchbasins and laterals under roadways) where heavy compaction equipment cannot be operated. The use of imported granular fill together with an appropriate frost taper would be preferable in confined areas and around structures, such as catchbasins.

4.4 Foundation Conditions

It is understood that the proposed subdivision will consist of houses/townhouses with a basement.

The proposed houses/townhouses can be supported by spread and strip footings founded on the undisturbed competent native soils below the fill and below the weathered/disturbed soils for a bearing capacity of 150 kPa at SLS (Serviceability Limit State), and for a factored geotechnical resistance of 225 kPa at ULS (Ultimate Limit State).

Alternatively, footings can be supported by Engineered fill for a bearing capacity values of 150 kPa at SLS and 225 kPa at ULS, provided all requirements on **Appendix A** are adhered to. Prior to the placement of the engineered fill, all of the existing fill and surficially softened native soils must be removed and the exposed surface proof rolled. Any soft spots revealed during proof rolling must be sub-excavated and re-engineered. The engineered fill consisting of approved inorganic material must be compacted to 100% Standard Proctor Maximum Dry Density throughout. To reduce the risk of improperly placed engineered compacted fill, full-time supervision of the contractor is essential.

Foundations designed to the specified bearing capacities at the serviceability limit states (SLS) are expected to settle less than 25 mm total and 19 mm differential.

Where it is necessary to place footings at different levels, the upper footing must be founded below an imaginary 10 horizontal to 7 vertical line drawn up from the base of the lower footing. The lower footing must be installed first to help minimize the risk of undermining the upper footing.

It should be noted that the recommended bearing capacities have been calculated by DS from the borehole information for the preliminary design stage only. The investigation and comments are

necessarily on-going as new information of the underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes when foundation construction is underway. The interpretation between boreholes and the recommendations of this report must therefore be checked through field inspections provided by DS to validate the information for use during the construction stage.

4.5 Earth Pressures

The lateral earth pressures acting on basement walls and retaining structures may be calculated from the following expression:

$$p = K(\gamma h + q)$$

- where p = Lateral earth pressure in kPa acting at depth h
 - K=Earth pressure coefficient equal to 0.40 for vertical walls
and horizontal backfill used for permanent construction. Water pressure
must be considered, if continuous wall drains are not used.
 - γ = Unit weight of backfill, a value of 21.0 kN/m³ may be assumed
 - h = Depth to point of interest in metres
 - q = Equivalent value of surcharge on the ground surface in kPa

The above expression assumes that the perimeter drainage system prevents the buildup of any hydrostatic pressure behind the wall.

4.6 SWM Ponds

Storm water management (SWM) ponds are proposed across the site. It is understood that Boreholes BH19-6, BH21-3, BH21-5/BH19-2 (see Drawing 1 for location plan) are located in the SWM pond areas. The design water levels and bottom elevation of SWM ponds are not available to us at the time of writing this report. Preliminary geotechnical recommendations and comments on the SWM ponds are as follows.

 The soils explored in the SWM pond areas contain cohesionless (sandy) deposits. Based on the borehole information, a **clay liner** will be required at the pond bottom and side slopes, extending to at least 0.3m above the normal water level of the pond. The clay liner should consist of silty clay material with minimum 20% clay content (finer than 0.002 mm) and a plasticity index (PI) of minimum of 8.0. The clay liner should be compacted to 100% of SPMDD. The clay liner should be minimum 0.6m thick, but thicker liner will be required

where the groundwater table is high. The thickness of clay liner and any requirements for the under-liner drainage to prevent uplift failure must be further studied when the design details (i.e. design water levels, pond base elevation etc.) of the pond are available.

- 2. For the design of the pond, the side slopes should be no steeper than 3 horizontal to 1 vertical (3H:1V) above the water level in the pond. Below the water level, the side slopes should be flattened to 4H:1V or flatter.
- Berms/embankments will be required where the ponds are constructed above the existing ground surface. The embankment fill should consist of inorganic low permeability material (silty clay), with minimum 20% clay (finer than 0.002 mm) and a plasticity index (PI) of minimum 8.0. The embankment fill must be compacted to 100% SPMDD.
- 4. Dewatering will be required for any excavation below the groundwater table. It should be noted that the till is a non-sorted sediment and therefore may contain boulders. Provisions must be made in the excavation contract for the removal of possible boulders in the tills. All excavations must be carried out in accordance with the most recent Occupational Health and Safety Act (OHSA). In accordance with OHSA, the fill and the cohesionless (sandy) deposits of sand, silt, sandy silt to silty sand can be classified as Type 3 soil above groundwater table and as Type 4 Soil below groundwater. The very stiff to hard clayey silt / silty clay till can be classified as Type 2 Soil above groundwater table and as Type 3 Soil below groundwater.
- 5. Stability analyses of the pond slopes and embankment slopes will be required when the design details of the ponds are available.

In the area (BH21-5/BH19-2) where SWM pond and pumping station will be constructed, the groundwater table is high. In BH21-5, the measured groundwater table was 1.0 m **above** the ground surface. In BH19-2, the measured groundwater table was at a depth of 0.6 m below the ground surface. Without dewatering/de-pressurization of hydrostatic pressure in the cohesionless deposits below the sandy silt till to silty sand till, excavations in this area must be limited in order to avoid uplift failure of the ground.

Based on the existing borehole information, **Table 3** provides the preliminary safe excavation depths at the borehole locations, without positive dewatering or de-pressurization of the lower cohesionless deposits. A factor of Safety of 1.43 was used to calculate the safe excavation depths, in accordance with the Canadian Foundation Manual.

Borehole No.	Ground Surface Elevation (m)	Depth of Groundwater Table (m)	Safe Excavation Depth - SED (m)	Safe Excavation Elevation (m)
BH21-5	263.8	-1.0*	1.1	262.7
BH19-2	266.6	0.6	3.1	263.5

Table 3: Approximate Safe Excavation Depth (SED) in Boreholes Without Positive Dewatering/Depressurization

*Note: Groundwater table above existing ground surface.

Safe Excavation Depths should be further evaluated with additional boreholes and monitoring wells.

The base of SWM pond in the area of BH21-5/BH19-2 should be raised as high possible, in order to prevent uplift failure of the clay liner or to reduce the seepage rate of the under-liner drainage. Depending on the base elevation of the pond, a permanent under-liner drainage system will likely be required to reduce the hydrostatic pressure at the base of the clay liner and to prevent uplift failure of the clay liner. It is desirable to discharge the seepage from the under-liner drainage system by gravity drains, so that continuous mechanical pumping could be avoided.

5. SLOPE STABILITY ASSESSMENT

A slope stability assessment for the slopes at the site between Kennedy Road and Hurontario Street was carried out by DS Consultants Ltd.

Site visits were made on December 10, 2019 and March 25, 2021 by a senior geotechnical engineer from DS to visually examine the slope conditions at the above noted site. The site plan is shown on **Drawing 1**. Selected photographs (Photos C1 to C24) taken during the site visits are presented in **Appendix C**.

Based on our site observations, the slope conditions are described as follows:

- There is a wide flood plain in the creek area, where the ground is covered with trees, bushes, high grass etc. The creek is typically 3 to 5 m wide, and is about 1 to 2 m below the flood plain level.
- The slopes at both sides of the creek area are generally gentle in steepness, flatter than 3 horizontal to 1 vertical (3H:1V). A few local slopes of about 2H:1V and steeper are observed at the site.
- It is difficult to accurately estimate the height of the slopes, as the top of slope locations are not obvious, and the slopes are gentle is steepness. Typically, the elevation difference between the creek level and the tree line areas at both sides of the creek area is about 3 to 6 m.

Based on our site observations, the subject slopes are generally considered stable in terms of longterm stability. The line staked out (agreed) by TRCA during the site walk on March 30, 2021 is considered to be the long-term stable top of slope (LTSTOS) line or constraint to development limits, except for a few local areas where the slopes are 2H:1V or steeper.

During the site visits, the geotechnical engineer from DS identified 3 local areas where the slopes are 2H:1V or steeper. New boreholes will be drilled in these areas for detailed slope stability analyses to determinate the locations of the long-term stable top of slope (LTSTOS) line. A detailed slope stability assessment report will be prepared. Based on our site observations, the impact of the detailed slope stability analyses on the development limit is anticipated to be minor, compared to the line staked out (agreed) by TRCA.

6. GENERAL COMMENTS AND LIMITATIONS OF REPORT

DS Consultants Ltd. (DS) should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, DS will assume no responsibility for interpretation of the recommendations in the report.

This report is intended solely for the Client named. The material in it reflects our best judgment in light of the information available to DS at the time of preparation. Unless otherwise agreed in writing by DS, it shall not be used to express or imply warranty as to the fitness of the property for a particular purpose. No portion of this report may be used as a separate entity, it is written to be read in its entirety.

The sub-surface conditions are interpreted as relevant to the design and construction of the proposed sanitary sewer. Comments relating to construction are intended for the guidance of the design engineer to establish constructability and must not be considered as being specifications or recommendations to the prospective contractors, or as being the only suitable methods. Prospective contractors should evaluate all of the factual information, obtain additional subsurface information as they might deem necessary and should select their construction methods, sequencing and equipment based on their own experience in similar ground conditions. The readers of this report are also reminded that the conditions are known only at the borehole locations and in view of the generally wide spacing of the boreholes, conditions may vary significantly between boreholes.

The conclusions and recommendations given in this report are based on information determined at the test hole locations. The information contained herein in no way reflects on the environment aspects of the project, unless otherwise stated. Subsurface and groundwater conditions between and beyond the test holes may differ from those encountered at the test hole locations, and

conditions may become apparent during construction, which could not be detected or anticipated at the time of the site investigation. The benchmark and elevations used in this report are primarily to establish relative elevation differences between the test hole locations and should not be used for other purposes, such as grading, excavating, planning, development, etc.

The design recommendations given in this report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. DS accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. We accept no responsibility for any decisions made or actions taken as a result of this report unless we are specifically advised of and participate in such action, in which case our responsibility will be as agreed to at that time.

We trust that the information contained in this report is satisfactory. Should you have any questions, please do not hesitate to contact this office.

PROFESSION AVER DS CONSULTANTS LTD 100141195 M.Eng., P.Eng VINCE OF ONTARIO F. ZHU Fanyu Zhu, Ph.D., P.Eng. BOLANCE OF ONTARIO

Drawings

Legend			DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16			Project: Geotechnical Investigation - 321 Jarvis St., Toronto, ON						
+	Borehole Drille	d in 2021		Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca			Title: Borehole Location Plan					P
+	Borehole Drille	d in 2019		Client:		Size:	Approved By:	AS	Drawn By:	ММ	Date:	Feb 17, 2021
0	100	200	300 m	Centre	ecourt Development	Rev:	Scale:	As Shown	Project No.:	18-632-100	Drawing No.:	1
17 E					0	Image/Map Source	e: Google Satellite In	lage		-1		

egend			DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16	Project:	Project: Desktop Review - Old School Rood, Mississauga, ON					
ф в	Existing Borehole		Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca	Title:	Location F	Plan of Exis	ting Boreho	oles (H1 to H	6)	
0	250	500 m	Client:	Size:	Approved By:	FZ	Drawn By:	MM	Date:	May, 2021
			Agro Kennedy	Rev:	Scale:	As Shown	Project No.;	19-312-100	Drawing No.:	1A
				0		e: Google Satellite In	naae			

L

Drawing 1B: Notes on Soil Sample Descriptions

 All sample descriptions included in this report generally follow the Unified Soil Classification. Laboratory grain size analyses provided by DS also follow the same system. Different classification systems may be used by others, such as the system by the International Society for Soil Mechanics and Foundation Engineering (ISSMFE). Please note that, with the exception of those samples where a grain size analysis and/or Atterberg Limits testing have been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

ISSMFE SOIL CLASSIFICATION												
CLAY		SILT			SAND				GRAVEL	COBBLES	BOULDERS	
	FINE MEDIUM COARSE		FINE	MED	DIUM COA	RSE F	FINE MEDIUM COARSE		COARSE			
	0.002	0.006	0.02	0.06 I	0.2	0.6	2.0	6.0) 20) 60 I	20	10
	EQUIVALENT GRAIN DIAMETER IN MILLIMETRES											

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE			
SILT (NONPLASTIC)		SAND	GRAVEL					
UNIFIED SOIL CLASSIFICATION								

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional preliminary geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

PROJE	CT: Geotechnical Investigation							DRILI	ING DATA										
CLIENT	T: Argo Developments							Metho	od: Hollow S	tem A	uger								
PROJE	CT LOCATION: Hicks Property, Old S	choo	l Rd,	Ontar	io			Diam	eter: 200mm	ı				RI	EF. NC).: 19	-312	-100	
DATUN	1: Geodetic							Date:	Dec/11/201	19				E١	NCL N	O.: 2			
BOREH	HOLE LOCATION: See Drawing 1 N 4	8455	47.6	79 E 5	93238	.693	-												
	SOIL PROFILE		S	SAMPL	ES	к		RESIS	TANCE PLOT			PLA	STIC N	ATURAL	LIQUID		μ	METHANE	
(m)		10			ပါ	VATE VS	7	2	0 40 0	60 E	100	LIM w.		ONTENT	LIMIT W.	r PEN. (Pa)	UNIT ("	AND GRAIN SIZE	
ELEV	DESCRIPTION	A PL	КШ		LOW 0.3 m	ND V TION	IOF	SHEA	AR STRENG	STH (kl +	Pa) FIELD VAN	E F	-	-0		OCKE (Cu) (F	URAL (kN/r	DISTRIBUTION	N
		TRA-	UMB	ΥPE	 ≣_		LEV/	• Q		L X	LAB VAN	IE V	/ATER	CONTEN	IT (%)	۵.	LAN	(%)	
266.6	TOPSOIL: 250mm	0	z	-	-	00	ш	- 4				_		20 .	30			GR SA SI C	;L
0.3	WEATHERED/ DISTURBED SOIL:		1	SS	7	∇	266	-						•					
<u>1</u>	trace rootlets, brown, moist, firm to						W. L. 2 Jan 02	266.0 i 2020	n										
265.1	SUIT		2	SS	12	V	\A/ I /	É						0					
1.5	SANDY SILT: trace clay, trace		3	SS	18		May 03	3, 202'						0					
264.3	gravel, brown, moist, compact					Ţ		Ē											
2.3	SILTY SAND TILL: trace clay, trace gravel, brown, wet, dense		4	SS	46		Feb 03	264.4 i 8 <u>,</u> 2021	n				_	•					
263.5																			
3.1	SAND: trace gravel, brown, wet, compact		5	SS	23									•					
4							263	-											
								-											
<u>-262.0</u> 4.6	SANDY SILT TILL: trace to some						262	-				_	_						
5	clay, trace gravel/ cobble, wet sand seams, grey, moist, very dense		6	SS	67		-Bento	nite					Ŷ						
		. 					261	-											
6		: .					201												
	sandy below 6.1m	·[•].	7	SS	95/ 280mr								0	o 🛛					
		[.					260	-											
		: \$.																	
- - -	sand seams, pinkish grev below	[:];].					259	-				_	_						
<u>8</u>	7.6m	[•] .	8	SS	90			_					0						
-							258	_											
₽57 5							200												
9.1	SAND AND GRAVEL: trcae clay,	<u>ь</u> л	9	SS	50/			-					0						
	brown, very dense	0					257	E				-	+						
		0. ,					:												
		0				目	256	-					-					24 27 22	6
<u>11</u>		0	10	<u>ss</u>	50/ 00mr	间	:	Ē					0					34 37 23 6	ر
		0				目	Filter	t Pack											
12						目	Slotte	d Pipe E											
		0		SS .	50/	目		E					0						
				<u> </u>	75mn	R#	254	-				-+							
253.4	grey shale fragments below 13.0m	0	4.2		50/		·· 	-											
13.2	END OF BOREHOLE:		<u>, 127</u>	. 33-	75mn	1										1			
	1) 50mm dia. monitoring well																		
	2) Water level Reading:																		
	Date: Water Level (mbgl):																		
	Jan 02, 2020 0.6 Feb 03, 2021 2.2																		
	May 03, 2021 1.3																		
							1												
I									I I				1						

TOWN OF CA PLANNI RECEIV	ALEDOI NG E	N DS CONSULTANTS LTD																			
Sep 14, 2	02	Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHO	DLE	BH1	9-3									1 OF 1
	PROJ	ECT: Geotechnical Investigation							DRIL	LING	DATA										
	CLIEN	T: Argo Developments							Meth	od: H	lollow S	tem A	uger								
	PROJ	ECT LOCATION: Hicks Property, Old S	choo	ol Rd	, Ontai	io			Diam	eter:	200mm	ı					RE	EF. NO).: 19	9-312	2-100
	DATU	M: Geodetic							Date:	Dec	c/10/201	19					EN	ICL NO	D.: 3		
	BORE	HOLE LOCATION: See Drawing 1 N 4	8457	754.1	07 E 5	93363	.181	1		MIC		NFTR			1						
		SOIL PROFILE	<u> </u>		Sampl	.ES	Ľ.		RESI	STAN	CE PLOT	\geq			PLAST		URAL	LIQUID	<u> </u>	¥	METHANE
	(m)		LOT			SN -	NS TE	z		20			30 1 	00	W _P	CON	TENT N	WL	ET PEN (kPa)	(")) (m	GRAIN SIZE
	ELEV DEPTH	DESCRIPTION	TAP	BER		<u>3LOV</u>		ATIO	0 U	NCON	NFINED	н (к +	FIELD V & Sensiti	ANE vity			o		POCKE	TURAI (KN	DISTRIBUTION
	260.5		STRA	IMUN	ΓΥΡΕ	z	0 NO	ELEV	• 0	UICK 20	TRIAXIA 40 (LX	LAB V. 30 1	ANE 00	WA	1ER CC 10 2	DNIEN 20 3	I (%) 30		₹	GR SA SI CI
	269.5	TOPSOIL: 250mm	<u>×1 1,</u>		' °°	-			-				1								
	0.3	WEATHERED/ DISTURBED SOIL: silty clay, trace organics, trace		1	- 33			269									0				
	268.5	rootlets, brown, moist, very soft to		12	SS	15			Ē							0					
		CLAYEY SILTY TILL: sandy, trace		É				268	-												
	2	hard		3	SS	26										0					
		apple at 2.2m							Ē												
		CODDIE at 2.511		4	SS	28		267	-							0					
	-3						Ň	W.L.	L 266.6	m											
			ŕk	5	SS	34		May 0	3. 202	n1			-			0					
	4								É												
	4.2	SANDY SILT TILL: trace clay,						-Bento	nite												
		dense to very dense		6	SS	59		200													
		grey below 4.6m	•• 	Ľ					Ē												
				·				264	-												
	6			·					Ē												
				. 7	SS	54		263	-						0						
	7			·					Ē												
				·				000	Ē												
		moist to very moist below 7.6m	[·]		00	27		262	-												
	-		·ø		33	37			Ē												
				·				. 261													
	9		•			50/		:	Ē												
		cobble/ boulder between 9.1m and 12.2m		9	SS	50/ 00mr		: :: 260	Ē						°						5 35 55 5
	10		. ¢ .	·				·	Ē												
								: HFilter	E Pack												
				10	SS	4 50/		Slotte	d Pipe	•					0						
	<u>11</u>		. .	· ····		25m	r E	:	Ē												
			[.]}					258	-												
	12		. . .					:. :	-												
	-256.9			.11	SS	50/	. " <u> </u>	257	-						0						
-	12.6	END OF BOREHOLE:																			
17/2		1) 50mm dia. monitoring well																			
DT 5		2) Water level Reading:		1																	
DS.G		Date: Water Level (mbgl):																			
- L95		Jan 02, 2020 2.9 Feb 03, 2021 3.1																			
100.0		May 03, 2021 3.2																			
-312-				1																	
G 19				1																	
ГГОС				1																	
IOS (1																	
SQ			<u> </u>	<u> </u>		<u> </u>				Num			e -20/	<u> </u>	<u> </u>		<u> </u>	<u> </u>	L	L	
	<u>GROUN</u>	DWATER ELEVATIONS				ļ	NOTES	<u>+</u> + 3	X°:	to Sei	nsitivity	C) -3%	Strain	at Failu	ıre					

 $\begin{array}{c} 1 \text{ Measurement} & \overbrace{\underline{1}}^{1\text{st}} & \overbrace{\underline{2}}^{2\text{nd}} & \overbrace{\underline{3}}^{3\text{rd}} & \underbrace{4\text{th}}^{4\text{th}} \end{array}$

	ebtechnical & Environmental & Materials & Hydrogeology				LO	GOF	BOR			BH19	-4										1
CLIENT	C I : Geotechnical Investigation							Metho	d: Ho	DATA Ilow Ste	em Au	aer									
PROJE	CT LOCATION: Hicks Property, Old S	Schoo	l Rd	, Ontai	io			Diam	eter: 2	200mm		30.				RI	EF. NO	D.: 19	9-312	2-100	
DATUN	l: Geodetic							Date:	Dec/	11/2019)					Eľ	NCL N	0.: 4			
BOREH	IOLE LOCATION: See Drawing 1 N 4	8460	44.8	68 E 5	93365	.481						TION		-				_			
	SOIL PROFILE	-	5	SAMPL	ES	Ľ.		RESIS	STANC	E PLOT				PLAST		rural Sturf	LIQUID		WT	METHANE	
(m)		LOT			S La	WATE	z	2 SUE/) 81 	0 10	00	W _P	CON	NTENT W	WL	ET PEN (kPa)	L UNIT /m ³)	GRAIN SIZE	
ELEV DEPTH	DESCRIPTION	ATA P	BER		BLOV 0.3 r		ATIC		NCON	FINED	+	a) FIELD VA & Sensitiv	ANE rity					(Cu)	ATURA (kN	DISTRIBUTION (%)	N
270.3		STR/	MUN	ТҮРЕ	ż	GRO CON	ELEV	• QI 2		RIAXIAL 40 60	× 8 (LAB VA 0 10	ANE 00	WA	10 :	20 3	30 30		Ž	GR SA SI C)L
270.0	TOPSOIL: 250mm	<u></u>	1	SS	4		270	<u> </u>							0						
269.5	sandy silt to silty sand, trace		Ŀ					Ē													
<u>1</u> 0.8	WEATHERED/ DISTURBED SOIL:		2	SS	9		Ponto	E nito							0						
- 268.8 - 1.5 	SILY SAND: trace clay, brown, moist to very moist, loose to compact		3	SS	6		-Denio								o						
	·		4	55	13		268	-													
3					10		•	Ē							Ĭ						
	wet below 3.1m		5	SS	11		267									0				0 57 41 2	2
4			┢					E													
265 7							·W. L. Jan 02	266.3 i 2, 2020	m)									-			
4.6	SANDY SILT: trace clay, trace		6	SS	10		Slotte	d Pipe								0					
	graver, brown, wer, compact		Ļ				265											-			
- <u>*264.2</u> 6.1	CLAYEY SILT TILL: sandy, trace				10		264														
263.6	gravel, grey, moist, very stiff	<u>iii</u>	7	SS	18		204	-							^					L	
6.7	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading:																				
	Date: Water Level (mbgl): Jan 02, 2020 4.0 Feb 03, 2021 3.9 May 03, 2021 3.9																				

PROJE	CT: Geotechnical Investigation							DRILL	LING D	ΑΤΑ											
	T: Argo Developments	Schoo		Ontor	io			Metho	od: Holl	ow Ste	m Au	ger						. 10	210	100	
DATU	M: Geodetic	SCHOC	JI RU	, Untai	10			Date:	Dec/1	0/2019						EN) 19 D.: 5	-312	-100	
BORE	HOLE LOCATION: See Drawing 1 N	8458	83.9	51 E 5	93540	.33											-				
	SOIL PROFILE		5	SAMPL	ES	~		DYNA RESIS	MIC COI			TION	F		NAT	URAL	סוווסוו		Ч	METHAN	E
(m)		10			ပ၊	VATEI	-	2	0 40) 60	8	0 100	, <u>i</u>		MOIS CON	TURE TENT	LIMIT W.	r PEN. (Pa)	UNIT V	AND GRAIN SIZ	Έ
ELEV DEPTH	DESCRIPTION	TA PL	ER		10W 0.3 m		ATION	SHEA O UI	AR STR	ENGTI	H (kP +	Pa) FIELD VAN & Sensitivit	IE			o		OCKET (Cu) (k	(kN/n	DISTRIBUTI	ON
274.2		STRA	NUME	ΓΥΡΕ	ž	GROL	ELEV,	QI 2	UICK TR	IAXIAL	× 1 8	LAB VAN	NE	WAT	ER CO 0 2	ONTEN 20 3	T (%) 60		¥		CI
274.2	TOPSOIL: 250mm	<u>x 1//.</u>	1		2		274													GIV OA OI	UL
0.3 273.4	wEATHERED/ DISTURBED SOIL: silty sand, trace clay, trace gravel,		Ľ	00	2			-													
1 0.8	brown, very moist, very loose CLAYEY SILT: some sand, trace		2	SS	8		272	-								φ					
272.5	gravel, trace rootlets, brown, very moist, firm to stiff		⊨				213														
1.7	SANDY SILT: trace to some clay,		3	SS	4		-Bento	F nite							0						
	loose to compact		╞	00	40	- <u>×</u>	W. L. 2	272.0 r	m												
271 1			4	55	16		Jan U2	., 2020 E							Ö						
3.1	SANDY SILT TILL: trace clay,		5	ss	20		W.L.2 Mav 03	271.2 r 3. 2021	m 1						0						
	compact		ŀ	-				, _, E													
•			1				270	-													
269.6 4.6	SILTY SAND: trace clay, grey,				_																_
5	saturated, compact		6	SS	24		Filter	L Pack								•				0 64 34	2
							Slotte	d Pipe E													
<u>6</u>			<u> </u>				000	-													
267.5			7	SS	12		^{∠08}	-								0					
6.7	END OF BOREHOLE: Notes:																				
	 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: 																				
	Date: Water Level (mbgl):																				
	Jan 02, 2020 2.2 Feb 03, 2021 3.0 May 03, 2021 3.0																				
		1	1	1	i i	1			1			1	1			1	1				

	Geotechnical 🗢 Environmental 🗢 Materials 🗢 Hydrogeology				LOC	g of	BOR	EHC	DLE	BH19	9-6									1 OF 1	٦
PROJE	T: Geotechnical Investigation							DRILL	ING E	DATA											
CLIEN	T: Argo Developments			<u>.</u>				Metho	d: Hol	low St	em Aı	uger									ļ
PROJE	CT LOCATION: Hicks Property, Old S	choo	ol Ra,	Ontar	10			Diamo	eter: 2	00mm	0					RE	EF. NC).: 19 D : 0	9-312	2-100	ļ
BODEL		<u>8457</u>	10 3	02 5 5	02804	120		Dale.	Dec/(J9/201	9					Er		J.: 6			
DOILL		0437	10.3		52054. FS	139		DYNA		NE PE	NETR/	ATION									1
						IER		RESIS			\geq		20	PLASTI LIMIT	C NATI	URAL	LIQUID LIMIT	z	T WT	METHANE AND	ļ
(m)		LOT			NN N	WA7 NS	z	2 SHEA		RENG		Pa)	1	W _P	CON	IENI N	WL	ET PE (KPa)	n() (m ³)	GRAIN SIZE	
DEPTH	DESCRIPTION	VTA F	BER		0.3		ATIC	0 01	NCONF	INED	+	FIELD V. & Sensiti	ANE vity					Pock Cu)	\TUR^ (Kh	UISTRIBUTION (%)	ļ
267.0		STR	MUN	ΓΛΡΕ	z	GRO		• QI 2	JICK TI 0 4	RIAXIAL	- × 0 8	LAB V/ 30 10	ANE D0	WA 1	0 2	20 3	T (%) 30		Ž	GR SA SI CI	
267.5	TOPSOIL: 350mm	<u>x, 1</u>		-	-												1				-
0.4	WEATHERED/ DISTURBED SOIL:			55	5			-													ļ
- 267.0 1 0.8	_sandy silt, trace clay, trace _organics, trace rootlets, dark brown√						267	-													ļ
	Stiff		2	SS	17			-								0					ļ
	trace gravel, occasional cobble,		3	55	36		266	-													ļ
2	brown, moist to very moist, very stiff to hard	11	<u>ا</u>		00		200														ļ
	sandy, sand seams below 2.3m			22	31			-								0					ļ
- 		71		00	01		265	-						-		-					ļ
3.1	SANDY SILT TILL: trace clay,		5	22	35	\mathbf{V}	W. L.	Е 264.6 г	n												ļ
	moist, dense to very dense		Ľ	00	00		Jan 02 Feb 03	2, 2020 3, 2021	n												
4		• .				Ţ		Ē													ļ
							May 0	263.7 i 3. 2021	n												
5	trace cobbles, grey below 4.6m	· •' .	6	SS	50/ 75mn/		263	-						0							
		.																			ļ
		• \$ • \$					262	-													ļ
<u>261.7</u>	SANDY SILT TILL + trace to some	ļ.			90/		202														
	clay, trace gravel, trace cobble/		7	SS	230mr			-						°							
7	boulder, grey, moist, very dense						261	 -													
								-													ļ
		. . .		66	01		260	-													
-8			0	- 55	01		200							Ĭ							ļ
		. 	1					-													
- -9		. .	1				259	-													ļ
		œ	9	SS	52			-						0						3 41 45 11	
			-				258	-													ļ
<u>10</u>		· • ·						E													
-							Filter	Pack													ļ
-		.∳ .	10	SS	71		25/	F						0							
- - - 11			-				:	-													ļ
<u>11</u>		111					256	-													ļ
- - - - - - - - -																					
<u>11</u>		.;� . 					200	-													
11			11	SS	59		. 200							0							
255.0 12.8	END OF BOREHOLE:	. 0 	11	SS	59		255	-						0							
¹¹ 	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well		11	SS	59		-255	-						0							
¹¹ 255.0 12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading:		11	SS	59		-255	-						0							
- <u>255.0</u> 12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading:		11	SS	59		-255							0							
2 <u>55.0</u> 12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 3.2		11	SS	59		255	-						0							
¹¹ 2255.0 12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 3.2 Feb 03, 2021 3.4 May 03, 2021 4.1		. 11	SS	59		255							0							
11 12 2255.0 12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 3.2 Feb 03, 2021 3.4 May 03, 2021 4.1		11	SS	59		255							o							_
¹¹ 255.0 12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 3.2 Feb 03, 2021 3.4 May 03, 2021 4.1		. 11	SS	59		255							0							
¹¹ 2255.0 12.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 3.2 Feb 03, 2021 3.4 May 03, 2021 4.1		. 11	SS	59		255							0							-
255.0	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 3.2 Feb 03, 2021 3.4 May 03, 2021 4.1		. 11	SS	59		255							0							

)2	Gebtechnical 🗢 Environmental 🗢 Materials 🗢 Hydrogeology				LU	JOF	DUK	ЕПС		H19-	-1									1 OF	1
PROJE	T: Geotechnical Investigation											~~-									
		Schoo	1 04	Ontor	io			Nietho	ator: 200	ow Ster	n Au	ger						. 10) 240	100	
	CT LOCATION. HICKS Property, Old 3	schoo	я к а,	, Ontar	10			Date	Dec/00	JIIIII 2/2010								ייי די די ר	9-312	-100	
BORF	N. Geouello	8456	19 2	6 F 50	2985 /	117		Dale:	Dec/09	12019						Εľ		J 1			
DOILER	SOIL PROFILE	-0-+00			ES	r 1 <i>1</i>		DYNA			ETRA	TION									
		1.				ШШ		RESIS			\geq		0	PLASTI LIMIT	C NAT	URAL STURE	LIQUID LIMIT	ż	T WT	METHANE AND	
(m)		101			SN E	-MA-	z	SHEA				a)	0	WP	CON	W	WL	(KPa)	AL UNI V/m ³)	GRAIN SIZE	
DEPTH	DESCRIPTION	ATA	BER	ш	0.3	DITIC	VATIO	O UI		IED	+ {	EIÉLD VA	NE ity	WAT			T (%)	POCP (CU)	ATUR (ki	(%)	N
265 7		STR	NUN	ТУР	ż	GRC	ELE	• Qi 2	0 40	AXIAL 60	× 1 8(_AB VA) 10	INE 10	1	0 2	20 3	30		z	GR SA SI C	:L
265:4	TOPSOIL: 350mm	<u>x1 1/</u>	1	66	4			-													
0.4	WEATHERED/ DISTURBED SOIL:			33	4		265	-								Ĭ					
<u>1 0.8</u>	trace rootlets, brown, very moist,		2	<u> </u>	7		205	-													
	SANDY SILT TILL: trace to some			- 33			-Bento	L nite													
263.9	clay, trace gravel, brown, moist,		3	SS	12		264	<u> </u>	\vdash							•					
2 1.8	SILTY SAND: brown, moist to very		L					È							°						
-	moist, compact		4	SS	27		000	Ē								0					
3			⊢		<u> </u>		263 W i	262 Å 1	n												
	wet below 3.1m		5	SS	25		Jan 02	, 2020	i						.	þ				2 56 39 3	3
			⊢			目	-Filter	Pack_	$\left - \right $			_									
4								E													
261.1						l:H:	261	-													
<u>5</u>	clay, trace gravel/ cobble, grey,		6	SS	36		201	E				T		_	o						
.	moist, dense to very dense					1		Ē													
6]				260	<u>-</u>													
°	reddish brown below 6.1m		7	SS	80/																
259.2 6.5	END OF BOREHOLE:	ŀ[.[<u> '</u>		255mr	h		-						<u> </u>					\vdash		
-	Notes: 1) 50mm dia, monitoring well																				
	installed upon completion.																				
	Date: Water Level (mbgl): Jan 02, 2020 2.9																				
	Feb 03, 2021 3.0 May 03, 2021 2.8																				
	,, <u></u> . _																				
			-			-	-							-							

202	DS CONSULTANTS LTD.				LO	g of	BOR	EHC	DLE	BH1	9-8									1 OF 1	
PROJE	T: Geotechnical Investigation							DRIL	LING I	DATA]
CLIEN	T: Argo Developments							Metho	od: Ho	llow St	em Au	iger									ļ
PROJE	ECT LOCATION: Hicks Property, Old S	Schoo	ol Rd,	, Ontai	io			Diam	eter: 2	200mm						R	EF. NC	0.: 19	9-312	2-100	
DATUN	<i>I</i> : Geodetic							Date:	Dec/	09/201	9					E١	ICL NO	D.: 8			ļ
BORE	HOLE LOCATION: See Drawing 1 N	8457	73.5	44 E 5	93145	.616														-	
	SOIL PROFILE		s	SAMPL	.ES	~		DYNA RESIS	MIC CO	one pe e plot		TION		DI AOT	NAT	URAL			F	METHANE	
(m)		F				, TEF		2	20 4	40 6	0 8	0 10	00	LIMIT	IC MOIS	STURE	LIQUID	en.	N LN	AND	ļ
ELEV	DECODIDITION	PLO	~		MS m	N0	NO	SHEA	AR ST	RENG	TH (kF	Pa)		W _P		w 0	WL	L) (KP	AL U	GRAIN SIZE	ļ
DEPTH	DESCRIPTION	ATA	ABEF	ш	<u>BLO</u>		VAT				+	FIELD VA & Sensitiv	NE ∕ity	WA	TER CO		Т (%)	δ <u>ο</u>	ATUF	(%)	ļ
270.8		STR	NN	ΤYΡ	ż	GR(CO	ELE	2	20 4	40 6	0 8	0 10	0	1	10 2	20 3	30		2	GR SA SI CL	
278.5	TOPSOIL: 350mm	<u>× 1,</u>	1	22	2	$\overline{\nabla}$		E								0					
0.4	WEATHERED/ DISTURBED SOIL:			00	-	¥	W. L. 2	270.5	m)n												ļ
1	organics, dark brown, very moist to				-		May US	3, 202 F	í												ļ
269.3	wet, very loose to loose		<u></u>	- 33				-								0					ļ
1.5	SANDY SILT: trace clay, trace		3	ss	12		269	Ē		-					 _				1		
268.5	ound, groyion brown, wet, compact		Ĺ				_00												1		
2.3	SILTY SAND TILL: trace clay,		1	92	21			Ē											1		
367 7	uace gravel, brown, very moist, compact	臣臣	Ļ				268	<u> </u>							۲Ŭ			1	1		
3.1	SANDY SILT TILL: trace clay,	i o	- -	~~	20			-													ļ
-	trace to some gravel, brown, moist, dense		<u>ــــــــــــــــــــــــــــــــــــ</u>	33	30	¥	W. L. 2	L 267.3	m						Ĭ				1		
4	grey below 3.4m		•				Feb 03	3, 202 <i>°</i> F	1]	1		
<u> </u>		[]]]						F											1		
		·[•]	6	55	36		266	-	-						-			-	1		
1			Ľ				-Bento	⊦ nite						Ĭ							
		6]																		
264.7							265			1								1			
6.1	SILT: some clay to clayey, trace sand, grey, wet loose to compact		7	SS	7			ŧ								ļ					
	cana, groy, wer, loose to compact		\vdash				264	E											1		
-7			1					Ē											1		
8			8	SS	21		263	<u>-</u>								0					
			⊢					È													
			1				200												1		
261.7		ЦЦ			501		262	-										1			
9.1	SILTY SAND TILL: trace clay, trace gravel, grey, very moist to wet,		9	SS	50/ (25mr			-							¢						
	very dense	間	1				261	<u> </u>													
		^Φ	:					È											1		
260.1						:. -	•	E											1		
<u>10.7</u>	GRAVELLY SILTY SAND TILL:		10	SS	53		: 260								•					25 44 23 8	
	dense		ļ.				Filter	F Pack													
		·¦∲	:				Slotte	d Pipe											1		
258.6		ĽÜ					: 209						_						1		
	SILTY SAND TILL: trace clay,	191	11	SS	50/			-							0						ļ
258:3			1			ĺ															
258:3 12.5	END OF BOREHOLE:		1																		
2 58:3 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well																		1		
258:3 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading:								1	1	I			1	1		1		1	1	
12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading:																				
258:5 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 0.3																				
<u>- 258:8</u> 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 0.3 Feb 03, 2021 3.5 May 03, 2021 0.5																				
- <u>258.3</u> 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 0.3 Feb 03, 2021 3.5 May 03, 2021 0.5																				
- <u>258:3</u> 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 0.3 Feb 03, 2021 3.5 May 03, 2021 0.5																				
2 <u>583</u> 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 0.3 Feb 03, 2021 3.5 May 03, 2021 0.5																				
- <u>258:3</u> 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 0.3 Feb 03, 2021 3.5 May 03, 2021 0.5																				
2583 12.5	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 0.3 Feb 03, 2021 3.5 May 03, 2021 0.5																				

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \stackrel{1\text{st}}{\underline{\checkmark}} \quad \stackrel{2\text{nd}}{\underline{\checkmark}} \quad \stackrel{3\text{rd}}{\underline{\checkmark}} \quad \stackrel{4\text{th}}{\underline{\checkmark}} \end{array}$

PROJ	ECT: Geotechnical Investigation							DRIL	LING	DATA											
CLIEN	T: Argo Developments							Metho	od: Ho	ollow St	em Aı	uger									
PROJ	ECT LOCATION: Hicks Property, Old S	schoo	ol Rd	, Ontai	rio			Diam	eter: 2	200mm	•					RI	EF. NO	D.: 1	9-312	2-100	
BORE	M. Geodelic HOLE LOCATION: See Drawing 1 N 4	.8460	01.3	22 E 5	93125	224		Date.	Dec/	10/201	9					EI	NGL N	0.:9			
BOILE	SOIL PROFILE	0100	1.0	SAMPL	.ES			DYNA	MIC CO		NETR	ATION			NAT				1.		•
(m)		F				TER		2	20	40 6	<u>ح</u>	 30 10	00	PLASTI LIMIT	C MOIS CON	STURE	Liquii Limi	Ľ.	NT WT	AND	
<u>ELEV</u> DEPTH	DESCRIPTION	RATA PLO	MBER	Щ	BLOWS 0.3 m	OUND WA	EVATION	SHEA OUI	AR ST	FINED	L TH (kl + - ×	I Pa) FIELD V/ & Sensitir LAB V/	ANE vity ANE	w _P ⊢−− WA [−]	TER C	w ∽−−−− ONTEN	₩ _L ——– IT (%)	POCKET F (Cu) (kPa	NATURAL UI (KN/m ³)	GRAIN SIZE DISTRIBUTION (%)	
271.6		UT S	₽	Σ	z	80 80 80 80 80 80 80 80 80 80 80 80 80 8	EL	2	20 -	40 6	<u>ع</u> 0	30 10	00	1	0 :	20	30			GR SA SI CL	•
271:3	WEATHERED/ DISTURBED SOIL:	<u> </u>	1	SS	3		074									6					
270.8 1 0.8	sandy silt, trace clay, trace organics/ rootles, dark brown, wet, very loose		2	SS	15	₩	271 W. L.:	270.5	m							0					
2	SILTY SAND: trace clay, brown, wet, compact		3	SS	21		Jan 02 May 03	2, 2020 3, 202 ⁻ F)n 1 							0					
269.3 2.3	SILT: trace clay, trace sand, grey, moist, compact		4	SS	22		269	-								•		-			
- <u>3</u> 268.5 3.1	SANDY SILT TO SILTY SAND TILL: trace clay, trace to some		5	SS	23										0						
4	gravel, grey, wet, compact to very dense	· · · · •	ŀ				268 W. L. Feb 03	267.9 3, 202	 m 												
- - - - - -	cobble below 4.6m	· · · · •	6	SS	83		Filter Slotte	Pack d Pipe F	2					0						15 39 41 5	
		. .	ŀ				266														
-265.5 6.1	SILT: trace to some clay, trace sand, grey, moist, very dense		7	SS	68										0						
6.7	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water level Reading: Date: Water Level (mbgl): Jan 02, 2020 1.1 Feb 03, 2021 3.7 May 03, 2021 1.3																				

TOWN OF CA PLANNI	ALEDO NG	N																			
RECEIV		DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHO	DLE B	H21-	-1									1 OF 1
0ep 14, 2	PROJ	ECT: Geotechnical Investigation							DRIL	LING DA	TA										
	CLIEN	IT: Argo Developments							Meth	od: Solic	l Stem	Auge	er								
	PROJ	ECT LOCATION: Old School Rd & Hui	rontai	rio St	., ON				Diam	eter: 150)mm /2024						RE	EF. NO).: 19	9-312 0	-100
	BORE	IN: Geodetic HOLE LOCATION: See Drawing 1 N 4	48451	119.6	09 E 5	92638	.335		Date	Jan/25	/2021						EN	NCL NO	J.: 1	0	
		SOIL PROFILE		5	SAMPL	ES			DYNA RESIS	MIC CON	IE PEN PLOT -	ETRA	TION			NATI	IRAI			F	METHANE
	(m)		1				ATER		:	20 40	60	8	0 10	0	PLASTI LIMIT	C MOIS	TURE	LIQUID	PEN.	NIT W	
		DESCRIPTION	A PLO	ц.		OWS 3 m	NOIT	NOIT	SHE/			H (kF	a) FIELD VA	NE	W _P	v (v >	WL	OCKET Cu) (kP	JRAL U (kN/m ³	DISTRIBUTION
	DEPTH		TRAT	UMBE	ΥPE		ROUI	LEVA	• 9		AXIAL	×	& Sensitiv LAB VA	NE	WA		NTEN	T (%)	80	NATI	(%)
	263.0 26 2 .9	TOPSOIL: 225mm	0	z	-	f	00	ш						U			0 3				GR SA SI CL
	- 0.2	FILL: clayey silt, trace gravel, sand seams, trace topsoil/ organics,	\otimes	1	SS	4			-							0					
	262.2	brown, moist, firm	- Kar					262	-												
		gravel, sand seams, brown, moist,		2	SS	23		202	-							0					
				⊨					-												
	2			3	SS	34	Ŧ	W. L.	¢ 261.1	 m						₽		1			2 18 49 31
				\square				Feb 03	3, 202 E	1											
	260.4	SAND TO SILTY SAND: trace silt,		4	SS	18		-Bento	⊦ nite							0	0				
	-3	brown, wet, loose to compact		: —				260													
				5	SS	19			-								0				
	4			:				259	-												
				÷				200	-												
				·					-												
	- - <u>-</u> 5			6	SS	7		258	-								0				
	-			·					-												
								:	-												
	<u>-</u> 6 -	grey below 6m		·				257													
				7	SS	9	目	∺-Filter	⊦ Pack							0	þ				0 59 40 1
	- - 7			:			目		r d Pipe												
	255 5			÷			目		-												
	7.5	SILTY CLAY: trace gravel, wet	Ŕ	<u> </u>			Į Fi		-												
25/21	- - 254.8	stiff		8	SS	19		255	-								0				
DT 5	8.2	END OF BOREHOLE: Notes:																			
DS.G		 50mm dia. monitoring well installed upon completion. 																			
GPJ		2) Water level Reading:																			
ENTS		Date: Water Level (mbgl): Feb 03, 2021 1.9																			
OPMI		May 03, 2021 1.9																			
EVEL																					
0 00																					
0_AR																					
2 GE																					
ASE																					
0 PF																					
312-1																					
ບ 19-																					
IL LO																					
OS S(
	GROUN	DWATER ELEVATIONS	1			ı	GRAPH	<u>1</u> + 3	×3:	Numbers	refer	 0	8 =3%	Strain	at Failu	ire		1			
	GROUN	1st 2nd 3rd 4th					NOTES			to Sensiti	vity	0		Juant	acianu						

 $\begin{array}{c} \begin{array}{c} 1 \\ \text{Measurement} \end{array} \xrightarrow{1 \\ \text{Measurement}} \begin{array}{c} 2 \\ \underline{\Psi} \end{array} \xrightarrow{2 \\ \text{Measurement}} \begin{array}{c} 3 \\ \underline{\Psi} \end{array} \xrightarrow{4 \\ \underline{\Psi} \end{array} \xrightarrow{4 \\ \underline{\Psi} \end{array}$

TOWN OF CA	LEDO	N																	
RECEIV		DS CONSULTANTS LTD.																	
Sep 14, 2	02	Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHC	DLE B	H21-2	2							1 OF 1
	PROJ	ECT: Geotechnical Investigation							DRILI	ling da	TA								
	CLIEN	T: Argo Developments							Metho	od: Solid	Stem /	Auge	r						
	PROJ	ECT LOCATION: Old School Rd & Hur	ontar	io St	, ON				Diam	eter: 150)mm					REF	. NO.:	19-3	12-100
	DATU	M: Geodetic							Date:	Jan/25/	/2021					ENC	CL NO	.: 11	
	BORE	HOLE LOCATION: See Drawing 1 N 4	8453	678.6	29 E 5	92843	.693 I		DYNA	MIC CON	E PENE	TRAT	ION					_	
					AIVIPL	E9	н		RESIS	TANCE F		\geq		PLAS	TIC NATUR	JRE L		, İ	METHANE
	(m)		LOT			NN NN	WAT	z				80 1 (kPs	100	- WP	CONTE W	INT	WL	(kPa) L UNI	
	ELEV DEPTH	DESCRIPTION	TA F	BER		BLOV 0.3 I		ATIC	0 0		IED	+ &	A) IELD VANE Sensitivity						E DISTRIBUTION
	260 5		STR/	NUM	ТҮРЕ	z	GRO CON	ELEV	• Q 2	UICK TRIA	AXIAL 60	× L 80	AB VANE 100		10 20	30	(%)	Ž	GR SA SI CL
	260.0	TOPSOIL: 200mm	<u>x</u> 1 _{1/2}		~~~	4			-								57		
	0.2	FILL: sandy silt to silty sand, trace clay, brown, moist, loose	\bigotimes		55	4		260	-			_			0				
	259.7	SILTY SAND: trace clay, grey, wet,	K						-										
		compact		2	SS	14			-						0				
	259.0	CLAYEY SILT TO SILT: trace		F	<u></u>		¥.	W.L.	259.2	m					+				
	2	gravel, sand seams, grey, moist,		3	SS	10		-Bonto	b, ∠U∠ F pito						0				
	258.2							-Defilo											
	2.3	SILTY SAND TO SANDY SILT TILL: some clay, trace gravel, grey,	 	4	SS	16	¥	wîEî	 258.0	 m		-+			0		-+		
	3	wet, compact						Feb 03	, 202 ⁻										
				-		10													
	_			5	55	12		257	-						0				
	4								-										
									-										
	-			 				256											
	5			6	SS	49		: Filter	Pack						o				
								Slotte	l d Pipe										
			ļļģi					255	-										
	6						目	1	-										
	254.1	very dense below 6.1m	Ι' ^φ Ϊ	7	SS	50/ (25mr		•	_			_			o				
	0.4	Notes:																	
		during drilling.																	
		 2) 50mm dia. monitoring well installed upon completion. 																	
-		3) Water level Reading:																	
5/25/2		Date: Water Level (mbgl): Feb 03 2021 2 5																	
DT &		May 03, 2021 1.4																	
DS.G																			
C P J																			
NTS.0																			
MEN																			
ELOI																			
DEV																			
RGO																			
∀ _ 0:																			
2 GE																			
ASE																			
01 PF																			
112-10																			
19-3																			
LOG																			
SOIL																			
DS																			
	<u>GROUN</u>	DWATER ELEVATIONS					GRAPH NOTES	+ 3,	× ³ :	Numbers o Sensitiv	refer vity	0	s =3% Str	ain at Fail	ure				

202 PROJ CLIEN PROJ DATU	Gepterhnical & Environmental & Material & Hydrogeology ECT: Geotechnical Investigation IT: Argo Developments ECT LOCATION: Old School Rd & Hur IM: Geodetic	ontar	rio St	, ON				DRIL Metho Diam Date:	LING DATA od: Solid Ste eter: 150mm Jan/25/202	m Auge	٢			RE	F. NC	0.: 19 D.: 12	9-312 2	2-100
BORE	HOLE LOCATION: See Drawing 1 N 4	8449	906.8	4 E 59	2779.	707												
(m) ELEV DEPTH	SOIL PROFILE	STRATA PLOT	NUMBER		ES m COMS	GROUND WATER CONDITIONS	ELEVATION	SHEA Q 2 SHEA 0 U 0 2 2 2 2 2 2 2 2 2 2 2 2 2	MIC CONE PE STANCE PLOT 20 40 6 AR STRENG NCONFINED UICK TRIAXIA 20 40 6	$\frac{1}{1000} = \frac{1}{1000} = 1$	a) IION a) IELD VANE Sensitivity AB VANE 100	PLAST LIMIT W _P WA	TER CO	URAL STURE ITENT W O ONTENT 20 3(LIQUID LIMIT WL 	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	METHA AND GRAIN S DISTRIBU (%) GR SA S
26 9.0 0.2	TOPSOIL: 225mm FILL: clayey silt, trace gravel, trace topsoil, trace rootlets, brown, moist, firm		2	SS SS	4		263 262	- - - - - - - - - - - - -					0	0				
261.7 1.5 2 260.9 2 3	SANDY SILT TO SILTY SAND: trace clay, silty clay seams, brown, moist, loose		. 3	SS	7		-Bento 261	nite						o				0 25 6
<u>3260.2</u> 3.0	SILTY SAND: trace clay, brown, wet, dense		4	SS SS	22 33		260 W. L.	259.8	m					0 0				
4							W. L. Feb 03	259.6 3, 202 ⁻ 	m 1 									
- - - - - - - - - - - - - - - - - - -			6	SS	26		Filter 230	F Pack F d Pipe F F F F F						Ф				0 56 4
- <u>256.5</u> 6.7	END OF BOREHOLE: Notes: 1) Water depth at 3m below grade during drilling.		. 7	SS	24		257	-						0				
	 Somm dia. monitoring well installed upon completion. Water level Reading: Date: Water Level (mbgl): Feb 03, 2021 3.6 May 03, 2021 3.4 																	

TOWN OF CALEDON

TOWN OF CA PLANNII RECEIV		DS CONSULTANTS LTD.				1.0		BOR	FHO	ר ב	BH 21	-4									1 OF 1
Sep 14, 2	02	Gebtechnical & Environmental & Materials & Hydrogeology						DUN				-4									I OF I
	CLIEN	T: Argo Developments							Meth	od [.] Sc	DATA	n Aua	er								
	PROJ	ECT LOCATION: Old School Rd & Hur	ontai	rio St	., ON				Diam	eter:	150mm	i / tug	01				RE	EF. NO).: 19	9-312	-100
	DATU	M: Geodetic							Date:	: Jan/	/25/2021						EN	ICL NO	D.: 13	3	
	BORE	HOLE LOCATION: See Drawing 1 N 4	8452	264.4	29 E 5	92898	.163														
		SOIL PROFILE		5	SAMPL	ES	~		RESIS	MIC C STANC	ONE PEN E PLOT		TION		PLASTI	C NAT	URAL	LIQUID		ΝT	METHANE
	(m)		10			ပ	VATE	-		20	40 60) 8	0 10	00		CON	ITENT W	LIMIT W.	r PEN. (Pa)	UNIT \	AND GRAIN SIZE
	ELEV DEPTH	DESCRIPTION	TA PL	н		LOW 0.3 m		ATION	SHE/ 0 U	AR ST	FRENGT	"H (kF +	Pa) FIELD V/ & Sensitiv	ANE	⊢ –		°	—–I	OCKE (Cu) (F	rural (kn/r	
			TRA.	IUMB	ΥPE	۵ z	SROL	ILEV,	• 0	UICK		X		ANE	WA 1	n C	ONTEN 20	T (%)	Ľ	'AN	
	262.9 26 2 .9	TOPSOIL: 200mm	· <u>· · · / / /</u>	<u> </u>	-	-		ш		1		, 0									GR SA SI UL
	0.2	FILL: clayey silt, trace gravel, trace rootlets/ topsoil, brown, moist, firm	\otimes	1	SS	7			Ē								0				
	-	to stiff (weathered/ disturbed) sand seams below 0.8m	\otimes					262	-												
	-		\otimes	2	SS	11		_									0				
	- 261.4 - 1.5	SANDY SILT TO SILTY SAND:	K						-												
	-	trace clay, brown, very moist, compact		. 3	SS	13		261 -Bento	E nite							0					
	-	wet helew 0.2m						Donte	E												
	-	wel below 2.5m		• 4	SS	17			-								o				
	259.9	SANDY SILT: some clay seams of						260	-												
	0.0	silty clay, brown, moist, compact		5	SS	26			-								0				
	-			_			· M		F.												
	4							W. L. . Feb 0	259.1 3, 202	m 1											
	-							÷	-												
	-			. 6	ss	26		: 													
	-			Ľ	00	20	[:目:	Filter	Pack												
	-			·				-Slotte	d Pipe F	•											
	_ 256.9							257	-		_										
	6.0	SILTY SAND TILL: trace clay, trace gravel, brown, wet, very dense		7	SS	88/		:	-							o					
	6.5	END OF BOREHOLE:				200111															
		Notes: 1) Water depth at 4.5m below grade																			
		during drilling. 2) 50mm dia. monitoring well																			
-		installed upon completion. 3) Water level Reading:																			
125/2		Date: Water Level (mbgl):																			
DT 5		Feb 03, 2021 3.8 May 03, 2021 3.8																			
DS.G		•																			
GPJ																					
NTS.																					
DPME																					
VELO																					
O DE																					
ARG																					
GEO																					
SE 2																					
РНА																					
2-101																					
19-31																					
00																					
S SO																					
	<u>GROUN</u>	DWATER ELEVATIONS 1st 2nd 3rd 4th					GRAPH NOTES	<u>+</u> + 3	׳:	Numbe to Sen	ers refer sitivity	0	8 =3%	Strain	at Failu	re					

TOWN OF CA		٧																			
RECEIV	ED	DS CONSULTANTS LTD.																			
Sep 14, 2	02	Geotechnical & Environmental & Materials & Hydrogeology				LO	g of	BOR	EHO	DLE	BH21	1-5									1 OF 1
	PROJI	ECT: Geotechnical Investigation							DRIL	LING I	DATA										
	CLIEN	T: Argo Developments							Meth	od: So	lid Ster	n Aug	er								
	PROJ	ECT LOCATION: Old School Rd & Hur	ontar	rio St	., ON				Diam	eter: 1	50mm						RE	F. NO	.: 19	9-312	-100
	DATU	W: Geodetic		02475	650		Date:	: Jan/2	25/202	1					EN	ICL NO	D.: 14	4			
	DURE	SOIL PROFILE	0404	195.4		93175. FS	.052		DYNA			NETRA	ATION								
							HH H		RESK	20 4	10 6	\geq	10	0	PLASTI LIMIT	C NAT MOIS	URAL TURE	LIQUID LIMIT	ż.	IT WT	METHANE AND
	(m) ELEV		PLO ⁻			SN SN E	N N C	W.L.	364.8	m ₁ R ST	RENG	с ТН (kf	Pa)		W _P	001	N N	WL	KET PI (KPa)	AL UN N/m ³)	GRAIN SIZE
	DEPTH	DESCRIPTION	ATA	ABEF	щ	BLC 0.3					FINED	+	FIELD V/ & Sensitiv	ANE /ity ANE	WA	TER CO	ONTEN	Г (%)	DOC (CL	NATUR (k	(%)
	363.8		STF	Ŋ	TYF	ż	GR(COI	ELE		20 4	40 6	0 8	80 10	00	1	0 2	20 3	0		-	GR SA SI CL
	363:5	TOPSOIL: 280mm		1	SS	8			-												
	363.0	seams, brown, moist, stiff	\bigotimes	<u>}</u>					-												
	- <u>1</u> 0.8	SILTY SAND TILL: trace clay,	<u>l</u> î fî		66	0		363													
		very dense			- 33	0			-												
	-		1. 0 .1	2	99	24			-												
	-				- 55	24		-Bento	⊢ nite ⊧												
	-	trace cobble below 2.3m		-					-												
	-			4	SS	35		361	-						0						
	3			-		74/			-												
	-			5	SS	200mr			-						0						
	4							360	-												
	-							·.	-												
	-				00	50/		:	-												
	5				55	75mn	目	359	È												
	-								Pack L d Pine	2											
	-								Ē												
	357.8	SII T: trace clay, sand seams						: 358 :	-												
		brown, very moist, dense		7	SS	39			-							0					
	- 357.1	END OF BOREHOLE:	μμ					•	-												
		Notes:																			
		during drilling.																			
5		installed upon completion.																			
5/25/2		5) water lever Reading.																			
BDT		Feb 03, 2021 frozen																			
DS.(May 03, 2021 -1.0 (above ground level)																			
.GPJ																					
ENTS																					
OPMI																					
EVEL																					
SO DE																					
ARG																					
GEO																					
SE 2																					
РНА																					
2-101																					
19-31																					
06																					
OIT F																					
S SO																					
	<u>GROUN</u>	DWATER ELEVATIONS				1	GRAPH NOTES	<u>+</u> + ³ ,	׳:	Numbe to Sens	rs refer sitivity	0	8 =3%	Strain	at Failu	ire					

 $\begin{array}{c} \hline \text{GROUNDWATER ELEVATIONS} \\ \hline \text{Measurement} & \overbrace{\underline{V}}^{1\text{st}} & \overbrace{\underline{V}}^{2nd} & \overbrace{\underline{V}}^{3rd} & \underbrace{\underline{4}^{th}}{\underline{V}} \end{array}$

Project: 19-312-100 Geotechnical Investigation - Mayfield West Phase 1 Expansion (Stage 2) Old School Rd from Hurontario St to East of Kennedy Rd, Caledon, ON

Appendix A General Requirements for Engineered Fill

Project: 19-312-100

TOWN OF CALEDON PLANNING RECEIVED Sep 14, 2021

GENERAL REQUIREMENTS FOR ENGINEERED FILL

Compacted imported soil that meets specific engineering requirements and is free of organics and debris and that has been continually monitored on a full-time basis by a qualified geotechnical representative is classified as engineered fill. Engineered fill that meets these requirements and is bearing on suitable native subsoil can be used for the support of foundations.

Imported soil used as engineered fill can be removed from other portions of a site or can be brought in from other sites. In general, most of Ontario soils are too wet to achieve the 100% Standard Proctor Maximum Dry Density (SPMDD) and will require drying and careful site management if they are to be considered for engineered fill. Imported non-cohesive granular soil is preferred for all engineered fill. For engineered fill, we recommend use of OPSS Granular 'B' sand and gravel fill material.

Adverse weather conditions such as rain make the placement of engineered fill to the required degree of density difficult or impossible; engineered fill cannot be placed during freezing conditions, i.e. normally not between December 15 and April 1 of each year.

The location of the foundations on the engineered fill pad is critical and certification by a qualified surveyor that the foundations are within the stipulated boundaries is mandatory. Since layout stakes are often damaged or removed during fill placement, offset stakes must be installed and maintained by the surveyors during the course of fill placement so that the contractor and engineering staff are continually aware of where the engineered fill limits lie. Excavations within the engineered fill pad must be backfilled with the same conditions and quality control as the original pad.

To perform satisfactorily, engineered fill requires the cooperation of the designers, engineers, contractors and all parties must be aware of the requirements. The minimum requirements are as follows; however, the geotechnical report must be reviewed for specific information and requirements.

- 1. Prior to site work involving engineered fill, a site meeting to discuss all aspects must be convened. The surveyor, contractor, design engineer and geotechnical engineer must attend the meeting. At this meeting, the limits of the engineered fill will be defined. The contractor must make known where all fill material will be obtained from and samples must be provided to the geotechnical engineer for review, and approval before filling begins.
- 2. Detailed drawings indicating the lower boundaries as well as the upper boundaries of the engineered fill must be available at the site meeting and be approved by the geotechnical engineer.
- 3. The building footprint and base of the pad, including basements, garages, etc. must be defined by offset stakes that remain in place until the footings and service connections are all constructed. Confirmation that the footings are within the pad, service lines are in place, and that the grade conforms to drawings, must be obtained by the owner in writing from the surveyor and DS Consultants Ltd (DS). Without this confirmation no responsibility for the performance of the structure can be accepted by DS. Survey drawing of the pre and post fill location and elevations will also be required.
- 4. The area must be stripped of all topsoil and fill materials. Subgrade must be proof-rolled. Soft spots must be dug out. The stripped native subgrade must be examined and approved by a DS engineer prior to placement of fill.

TOWN OF CALEDON PLANNING RECEIVED Sep 14, 2021

- 5. The approved engineered fill material must be compacted to 100% Standard Proctor Maximum Dry Density throughout. Engineered fill should not be placed during the winter months. Engineered fill compacted to 100% SPMDD will settle under its own weight approximately 0.5% of the fill height and the structural engineer must be aware of this settlement. In addition to the settlement of the fill, additional settlement due to consolidation of the underlying soils from the structural and fill loads will occur and should be evaluated prior to placing the fill.
- 6. Full-time geotechnical inspection by DS during placement of engineered fill is required. Work cannot commence or continue without the presence of the DS representative.
- 7. The fill must be placed such that the specified geometry is achieved. Refer to the attached sketches for minimum requirements. Take careful note that the projection of the compacted pad beyond the footing at footing level is a minimum of 2 m. The base of the compacted pad extends 2 m plus the depth of excavation beyond the edge of the footing.
- 8. A bearing capacity of 150 kPa at SLS (225 kPa at ULS) can be used provided that all conditions outlined above are adhered to. A minimum footing width of 500 mm (20 inches) is suggested and footings must be provided with nominal steel reinforcement.
- 9. All excavations must be done in accordance with the Occupational Health and Safety Regulations of Ontario.
- 10. After completion of the engineered fill pad a second contractor may be selected to install footings. The prepared footing bases must be evaluated by engineering staff from DS prior to footing concrete placements. All excavations must be backfilled under full time supervision by DS to the same degree as the engineered fill pad. Surface water cannot be allowed to pond in excavations or to be trapped in clear stone backfill. Clear stone backfill can only be used with the approval of DS.
- 11. After completion of compaction, the surface of the engineered fill pad must be protected from disturbance from traffic, rain and frost. During the course of fill placement, the engineered fill must be smooth-graded, proof-rolled and sloped/crowned at the end of each day, prior to weekends and any stoppage in work in order to promote rapid runoff of rainwater and to avoid any ponding surface water. Any stockpiles of fill intended for use as engineered fill must also be smooth-bladed to promote runoff and/or protected from excessive moisture take up.
- 12. If there is a delay in construction, the engineered fill pad must be inspected and accepted by the geotechnical engineer. The location of the structure must be reconfirmed that it remains within the pad.
- 13. The geometry of the engineered fill as illustrated in these General Requirements is general in nature. Each project will have its own unique requirements. For example, if perimeter sidewalks are to be constructed around the building, then the projection of the engineered fill beyond the foundation wall may need to be greater.
- 14. These guidelines are to be read in conjunction with DS Consultants Ltd report attached.

* Backfill in this area to be as per the DSCL report.

Appendix B

Location Plan and Logs of Previous Boreholes (BH-1 to BH-9) by Forward Engineering

Project No: 5941

Log of Borehole BH-1

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 2

Sheet: 1 of 1

Depth (m)	Graphic Symbol	Description	G.W.L.	Elevation (m)	Number	Type	Blows/ft	Recovery	Standard Penetration Test (Blows/ft) 20 40 60 80	Water Content % 20 40 60 80
0		Ground Surface		270.42						
	$\sim \sim$	ORGANIC SOIL (±200 mm) SANDY SILT/SILTY FINE		0.00	1		7		7	↑
1		SAND with traces to some clay in the upper zone.			2		14		14	
		loose to compact, brown, moist to wet.							45	
2-					3		15			<u>+</u>
-	-			<u>268.13</u>						
-	H	Very stiff, greyish brown, moist.		2.20	4		24		24	
3-	H									
	¥.	grading grey.			5		30		30	
-										
4	Ħ									
-										
-		grading with fine sand seams, hard.			0				66	
5_				265.39	б		00			
		End of Borehole		5.05						
-										
6										
-		Upon completion of drilling, the borehole was open to 4.7 m and water								
-		level was measured at 4.1 m.								
7		Hours later, the borehole was open to								
		3.0 m and water level was measured at 2.4 m.								
8										
D	rill Me	ethod: SOLID AUGER FORWA	RD E	ENGINEI	ERIN	G			Datum: GEODE	TIC
D	rill Da	te: 26 OCT. 2016 & AS 15-244 Brockport	SOC Drive	IATES II , Toronto,	NC. Ontario	o, M9V	V 6X9		Checked by: G	S.

Sep 14, 2021

Project No: 5941

Log of Borehole BH-2

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 3

Depth (m)	Graphic Symbol	Description	G.W.L.	Elevation (m)	Number	Type	Blows/ft	Recovery	Standard Penetration Test (Blows/ft) 20 40 60 80	Water Content % 20 40 60 80
-0-	~ ~	Ground Surface		272.17						
		ORGANIC SOIL (±125 mm)		0.00	1		5		5	↑
		DISTURBED SOIL		271.41						
1-		rootlets, loose, moist.		0.76	2		13		13	
-		SANDY SILT/SILTY FINE								
с 		compact, brown/rust brown, very moist.			3		13		13	
2										
		grading brown, wet.			4		17		17	
3-										
-					5		15		15	
4										
-										
-		CLAYEY SILT TILL		<u>267.60</u> 4.57	6		22		22	
5_	H.	with sand inclusions. very stiff, greyish, moist.		267.14 5.03	0		~~~			
		End of Borehole								
6_										
		Upon completion of drilling, the								
		level was measured at 3.0 m.								
7_		Hours later, the borehole was open to 2.9 m and water level was measured								
		at 2.5 m.								
8-										
D	rill Me	ethod: SOLID AUGER FORWA	RD E	INGINE	ERIN	G			Datum: GEODE	TIC
D	rill Da	te: 26 OCT. 2016 & AS 15-244 Brockport	SOC Drive	IATES II , Toronto,	NC. Ontari	o, M9V	V 6X9		Checked by: G.	S.
			Sheet: 1 of 1							

Project No: 5941

Log of Borehole BH-3

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 4

Depth (m)	Graphic Symbol	Description	G.W.L.	Elevation (m)	Number	Type	Blows/ft	Recovery	Standard Penetration Test (Blows/ft) 20 40 60 80
0_	2	Ground Surface		272.92					
		ORGANIC SOIL (±75 mm)		0.00	1		3		3
-		DISTURBED SOIL/OLD FILL brown sandy silt/silty fine sand with							
1		some rootlets, very loose, moist. Grading possible old fill.			2		4		4
-				271.19					
2_		SILTY FINE SAND/SANDY SILT		1.73	3		11		
		compact, brown/rust brown, very moist.			4		16		16
		grading sandy silt, brown, very moist to wet.							
3					5		13		.13
-									
4-									
-									
-				<u>268.35</u> 4.57					
5_	H	with sand inclusions.		267.89	6		7		
-		End of Borebole		5.05					
-									
6_									
		Upon completion of drilling, the borehole was open to 3.4 m and water							
-		level was measured at 3.2 m.							
7_		Hours later, the borehole was open to 3.0 m and water level was measured							
-		at 2.7 m.							
8									
D	orill Me	ethod: SOLID AUGER FORWA	RD E		ERIN	G			Datum: GEODETIC
D	rill Da	te: 26 OCT. 2016 & AS	SOC	IATES I	NC.		V 6X0		Checked by: G.S.
			21100	, 10101110,	Cintail	C, 1410 V	. 0//0		Sheet: 1 of 1

Sep 14, 2021

Project No: 5941

Log of Borehole BH-4

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 5 Engineer: P.R.

Graphic Symbol Standard Penetration Water Content % evation (m) Description 20 40 60 80 Test Depth (m) Recovery Number (Blows/ft) Blows/ft G.W.L 20 40 60 80 Type Π Ground Surface 271.90 0 0.00 **ORGANIC SOIL** 4 1 4 (±200 mm) **DISTURBED SOIL** 271.14 brown sandy silt/silty fine sand with 0.76 2 13 13 1. traces of rootlets, loose, moist. SANDY SILT/SILTY FINE SAND 21 with traces to some clay inclusions in 3 21 the upper zone. 2 compact, brown/rust brown, moist to wet. 19 4 19 268.85 3 3.05 CLAYEY SILT TILL 5 10 10 stiff, greyish brown, very moist to moist. 4 grading very stiff. 30 6 30 266.87 5 - Del 5.03 End of Borehole 6 Upon completion of drilling, the borehole was open to 3.0 m and dry. 7 8

Drill Method: SOLID AUGER Drill Date: 26 OCT. 2016

FORWARD ENGINEERING & ASSOCIATES INC.

15-244 Brockport Drive, Toronto, Ontario, M9W 6X9

Datum: GEODETIC

Checked by: G.S.

Sep

Project No: 5941

Graphic Symbol

Depth (m)

0

1.

2

3

4

5

6

7

8

Log of Borehole BH-5

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 6

Engineer: P.R. Standard Penetration Water Content % levation (m) Description 20 40 60 80 Test Recovery (Blows/ft) Number Blows/ft G.W.L 20 40 60 80 Type Π Ground Surface 272.93 0.00 **ORGANIC SOIL** 5 1 5 (±100 mm) **DISTURBED SOIL** 272.17 brown sandy silt/silty fine sand with 0.76 18 2 18 traces of rootlets, loose, moist. SANDY SILT/SILTY FINE SAND 10 compact, brown, moist to very moist. 3 10 28 4 28 grading wet. 11 5 11 268.36 4.57 CLAYEY SILT (TILL) 6 6 6 with sand inclusions. 267.90 5.03 firm, greyish brown, wet.

Upon completion of drilling, the borehole was open to 3.8 m and water level was measured at 3.6 m.

End of Borehole

Drill Method: SOLID AUGER Drill Date: 26 OCT, 2016

FORWARD ENGINEERING & ASSOCIATES INC.

15-244 Brockport Drive, Toronto, Ontario, M9W 6X9

Datum: GEODETIC

Checked by: G.S.

Sep 14, 2021

Project No: 5941

Log of Borehole BH-6

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 7

Engineer: P.R.

Depth (m)	Graphic Symbol	Description	G.W.L.	Elevation (m)	Number	Type	Blows/ft	Recovery	Standard Penetration Test (Blows/ft) 20 40 60 80	'ater Content % 20 40 60 80
0-	\ \	Ground Surface		274.01						
-	Ĩ	ORGANIC SOIL		0.00	1		8		€ 8	
-		DISTURBED SOIL								
1-		brown sandy silt/silty fine sand with		273.10 0.91	2		17		17	
-		SILT TILL/CLAYEY SILT TILL								
-	$\left\{ \right\}$	very stiff to hard, brown, moist.			0				32	
2-		grading with sand layer/seam.			3		32			
	12	SILTY FINE SAND/SANDY		271.72 2.29						
-		SILT SAND/SANDT			4		26		2 6	
3_		compact, brown, moist.								
-					5		25		25	
-										
4_										
-										
-		grading wet.			6		13		.13	
5_					0		10			↑
-										
-										
6_				<u>267.91</u> 6.10						
-		firm, brown, wet.		267.46	7		7		-7	
-		End of Borehole		6.55						
7-		Upon completion of drilling, the borehole was								
-		4.5 m.								
-		Hours later, the borehole was open to 4.4 m and water level was measured at 3.9 m.								
8-										
									Datum: GEODETI	C

Drill Method: SOLID AUGER Drill Date: 26 OCT. 2016

FORWARD ENGINEERING & ASSOCIATES INC.

15-244 Brockport Drive, Toronto, Ontario, M9W 6X9

Datum: GEODETIC

Checked by: G.S.

Sep 14, 2021

Project No: 5941

Log of Borehole BH-7

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 8

Depth (m)	Graphic Symbol	Description	G.W.L.	Elevation (m)	Number	Type	Blows/ft	Recovery	Standard Penetration Test (Blows/ft) 20 40 60 80	Water Content % 20 40 60 80
0-		Ground Surface		272.65						
		ORGANIC SOIL (±200 mm)		0.00	1		8		8	Ţ
1-	XXX	brown sandy silt/silty fine sand with traces of rootlets, loose, moist.		<u>271.74</u> 0.91	2		11		11	
		SANDY SILT/SILTY FINE SAND								
2		compact, brown, moist to very moist.			3		11			
		grading wet.			4		22		22	
- - ا										
2					5		22		22	+
4-										
				<u>268.08</u>						
5	Ð	CLAYEY SILT TILL with sand inclusions.		4.57 <u>267.62</u> 5.02	6		22		22	
		Find of Borehole		5.05						
6_										
		Upon completion of drilling, the borehole was open to 3.4 m and was wet at the bottom.								
7		Hours later, the borehole was open to 3.4 m and water level was measured at 3.1 m.								
8										
	orill Me							<u> </u>	Datum: GEODE	
D	rill Da	te: 26 OCT. 2016 & AS 15-244 Brockport	SOC Drive	IATES II	NC. Ontari	о, M9V	V 6X9		Checked by: G.	S.
			Sheet: 1 of 1							

Project No: 5941

Log of Borehole BH-8

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 9

Engineer: P.R.

0 Ground Surface 273.84 0 ORGANIC SOIL (±180 mm) 0.00 1 DISTURBED SOIL brown sandy silt/ with rootlets, loose, moist. 1 6 1 6 6 2 15 15 3 17 17 3 17 17 4 32 32	60 80										
ORGANIC SOIL (±180 mm) 0.00 1 DISTURBED SOIL brown sandy silt/ with rootlets, loose, moist. 1 6 SANDY SILT/SILTY FINE SAND compact to dense, brown, moist. 15 1 17 17 4 32 32											
1 Moist. 15 15 SANDY SILT/SILTY FINE 3 17 17 2 4 32 32											
SANDY SILT/SILTY FINE SAND compact to dense, brown, moist. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3											
SAND compact to dense, brown, moist.											
2 3 3 4 32 4 5 5 5 5 5 5 5 5 5 5 5 5 5											
grading compact, wet.											
arading sandy silt and silt											
bard grey moist											
End of Borehole											
7 ⁻¹ Upon completion of drilling, the borehole was											
open to 4.8 m and water level was measured at 4.6 m.											
Hours later, the borehole was open to 4.5 m											
8 - and water level was measured at 4.2 m.											

. 30 iou. Drill Date: 26 OCT. 2016

ORWARD ENGINEERING & ASSOCIATES INC.

15-244 Brockport Drive, Toronto, Ontario, M9W 6X9

Checked by: G.S.

Project No: 5941

Log of Borehole BH-9

Project: PROPOSED SOUTHFIELD No. 2 PUBLIC SCHOOL

Client: PDSB c/o MG ARCHITECT INC.

Location: KENNEDY ROAD & NEWHOUSE BOULEVARD, CALEDON, ON.

Enclosure: 10

Engineer: P.R.

Depth (m)	Graphic Symbol	Description	G.W.L.	Elevation (m)	Number	Type	Blows/ft	Recovery	Standard Penetration Test (Blows/ft) 20 40 60 80	Water Content % 20 40 60 80
0-		Ground Surface		274.60						
		ORGANIC SOIL (±200 mm) DISTURBED SOIL brown sandy silt with traces of rootlets,		0.00 273.84 0.76	1		8			Î
1_		loose, moist.			2		17			∱
-		SANDY SILT/SILTY FINE								
2		SAND compact to dense, brown, moist.			3		26		26	
-						-	40		42	
-					4		43		43	
3-										
		grading layer of silt			5		31		31	
						-				\uparrow
-										
4-										
-										
_					6	-	17		17	
5-		grading wet.			0	-				
-										
-										
0-		grading sandy silt and silt.				-				
				268.05	7		13		1 3	
-		End of Borehole		6.55						
7_		Upon completion of drilling, the borehole was open to 5.0 m and water level was measured at 4.9 m.								
8		Hours later, the borehole was open to 3.3 m and water level was measured at 2.7 m.								
						<u> </u>			Datum: GEODF	TIC

Drill Method: SOLID AUGER Drill Date: 26 OCT. 2016

FORWARD ENGINEERING & ASSOCIATES INC.

15-244 Brockport Drive, Toronto, Ontario, M9W 6X9

Checked by: G.S.

Appendix C

Selected Photographs for Slope Stability Assessment (Photos C1 to C24 taken on Dec. 10, 2019 and Mar.25, 2021)

Photo C1: Creek view from Old School Road (looking south – downstream) December 10, 2020

Photo C2: Creek and Old School Road (looking north – upstream) December 10, 2020

Photo C3: Creek and flood plain conditions at northeast part of site (looking northwest - upstream) December 10, 2020

Photo C4: Creek and flood plain conditions at northeast part of site (looking southeast - downstream) December 10, 2020

Photo C5: East slope top area at northeast part of site, to northwest of BH19-5 (looking northwest) December 10, 2020

Photo C6: South slope top area at middle-east part of site (looking west) December 10, 2020

Photo C7: Creek and flood plain conditions at middle-east part of site (looking west) December 10, 2020

Photo C8: Creek and flood plain conditions at middle-east part of site (looking northwest) December 10, 2020

Photo C9: South slope conditions at middle-east part of site, to northwest of BH19-3 (looking northeast), December 10, 2020

Photo C10: South slope top area of middle part of site, to north of BH19-2 (looking southwest) December 10, 2020

Photo C11: Northwest slope top area of northeast part of site, to east of BH19-6 (looking northeast) December 10, 2020

Photo C12: North slope top area of middle part of site, to south of BH19-6 & BH19-8 (looking west) December 10, 2020

Photo C13: Slope and flood plain conditions at middle-west part of site (looking northeast) December 10, 2020

Photo C14: Slope and flood plain conditions at middle-west part of site (looking southeast) December 10, 2020

Photo C15: East side of wet area to northeast of BH21-2 (looking south from Old School Rd) March 25, 2021

Photo C16: West side of wet area to northeast of BH21-2 (looking south from Old School Rd) March 25, 2021

Photo C17: Slope to southeast of BH21-2 (looking southwest) March 25, 2021

Photo C18: Gentle slope to east of BH21-4 (looking northeast) March 25, 2021

Photo C19: Slope and flood plain conditions to south of BH21-4 (looking south) March 25, 2021

Photo C20: Slope conditions to west of BH21-4 (looking west) March 25, 2021

Photo C21: Slope conditions at west part of site near Hurontario St (looking west) March 25, 2021

Photo C22: Slope and flood plain conditions at west part of site near Hurontario St (looking northwest), March 25, 2021

Photo C23: Top of slope near Hurontario St (looking east) March 25, 2021

Photo C24: Creek which was more than 15 m away from slope toe at west part of site (looking west) March 25, 2021

