FUNCTIONAL SERVICING REPORT

CHICKADEE LANE ROUNDING OUT AREA "B"

13935, 13951 AND 13999 CHICKADEE LANE, 0 KING STREET
AND

550, 600 AND 615 GLASGOW ROAD
PART OF LOT 10, CONCESSION 5 AND 6
TOWN OF CALEDON

PREPARED FOR
ZANCOR HOMES (BOLTON) LTD.

MARCH 26TH 2019

REVISED JANUARY 4TH 2021

FUNCTIONAL SERVICING REPORT

CHICKADEE LANE ROUNDING OUT AREA "B"

13935, 13951 AND 13999 CHICKADEE LANE, 0 KING STREET
AND

550, 600 AND 615 GLASGOW ROAD
PART OF LOT 10, CONCESSION 5 AND 6
TOWN OF CALEDON

PREPARED FOR
ZANCOR HOMES (BOLTON) LTD.

MARCH 26TH 2019

REVISED JANUARY 4TH 2021

CONTENTS

			Page
1.	INTI	RODUCTION	1
2.	PRO	POSED DEVELOPMENT PLANS	3
3.	EXIS	STING CONDITIONS	4
	3.1	General	4
	3.2	Topography, Drainage and Natural Features	4
4.	BAC	KGROUND TECHNICAL STUDIES	5
	4.1	Master Environmental Servicing Plan	5
	4.2	Infrastructure Servicing Study (IS	5
	4.3	Physiography and Geotechnical Conditions	5
	4.4	Storm Drainage	6
5.	SANITARY AND WATER SERVICING		7
	5.1	Sanitary	7
		5.1.1 Existing Sanitary Services	7
		5.1.2 Proposed Sanitary Servicing	7
	5.2	Water	8
		5.2.1 Existing Water Network	8
		5.2.2 Proposed Watermain System	8
6.	STO	RM DRAINAGE AND STORMWATER MANAGEMENT	10
	6.1	6.1 General	
	6.2	Storm Sewer System	10
	6.3	Stormwater Management	11
		6.3.1 General	11
		6.3.2 Stormwater Management Pond - Storage Volumes	12
	6.4	Water Balance	13
7.	SED	IMENT AND EROSION CONTROL	15

CONTENTS (CONT'D)

TABLES

		Page
TABLE I	Estimated Water Demand	9
TABLE II	Proposed Stormwater Management Pond Outflow Rates	11
TABLE III	Stormwater Management Pond - Preliminary Design Data	12
TABLE IV	Stormwater Management Pond Storage vs Release Rates Comparisons	12

DRAWINGS

DRAWING PS-1 Rev. 1	Preliminary Servicing Plan
DRAWING SA-1 Rev. 1	Sanitary Drainage Area Plan
DRAWING ST-1 Rev. 1	Storm Drainage Area Plan
DRAWING IT-1 Rev. 1	Infiltration Plan
DRAWING SWM-1	Stormwater Management Pond - Plan and Sections

REFERENCE DRAWINGS

Draft Plan of Subdivision prepared by Humphries Planning Group Inc., Drawing A1 dated March 2nd 2019, Revised December 28th 2020

CONTENTS (CONT'D)

APPENDICES

APPENDIX "A"	Excerpts from Comprehensive Environmental Impact Study and Management
	Plan, Palmer Environmental Consulting Group Inc. dated December 29th 2020
	(Project No. 170163)
	Palmer Memorandum dated August 3 rd 2020, Chickadee Lane Stormwater
	Management Options assessment, Alternative Outlet Evaluation
APPENDIX "B"	Geotechnical Investigation for Proposed Residential Development, Chickadee
	Lane and Glasgow Road, Town of Caledon, Soil Engineers Ltd., dated July
	2018, Reference No. 1801-S032
	Supplementary Slope Stability Assessment prepared by Soil Engineers Ltd.
	Dated August 31st 2020, Reference No. 1801-S032
APPENDIX "C"	Hydrogeological Investigation - Chickadee Lane Rounding Out Area "B",
	Bolton Ontario, Palmer Environmental Consulting Group Inc., dated October
	12 th 2018, Project No. 170163
APPENDIX "D"	Figure 4 Subwatershed Boundaries - Humber River Watershed, Toronto and
	Region Conservation
APPENDIX "E"	Region of Peel, Figures 5 and 8, Bolton Residential Expansion Study,
	Infrastructure Report, Blue Plan Engineering Consultants Limited, June 16th
	2014
APPENDIX "F"	Sanitary Sewer Design Sheets for Proposed Subdivision; Region of Peel
	Connections Multi-Use Demand Tables
APPENDIX "G"	Hydrant Flow Test
	Region of Peel Connections Multi-Use Demand Table
APPENDIX "H"	Storm Sewer Design Sheets
	Stormwater Management Calculations - OTTHYMO Modelling
	Water Balance Calculations

1. INTRODUCTION

The subject lands are comprised of several land parcels located at the northwest, southwest and southeast corners of Glasgow Road and Chickadee Lane, east of Emil Kolb Parkway in the Town of Caledon. In total, the lands comprises 10.04 ha and are municipally known as 13935, 13951, 13977 and 13999 Chickadee Lane, 0 King Street, and 550, 600 and 615 Glasgow Road, with a legal description of Part of Lot 10, Concessions 5 and 6, Town of Caledon. Figure 1 illustrates the Site Location.

This report has been prepared in support of a request for amendment to the Town of Caledon Official Plan and Zoning By-Law as well as Draft Plan of Subdivision approval on behalf of Zancor Homes (Bolton) Ltd. and addresses sanitary, water and storm drainage servicing and stormwater management.

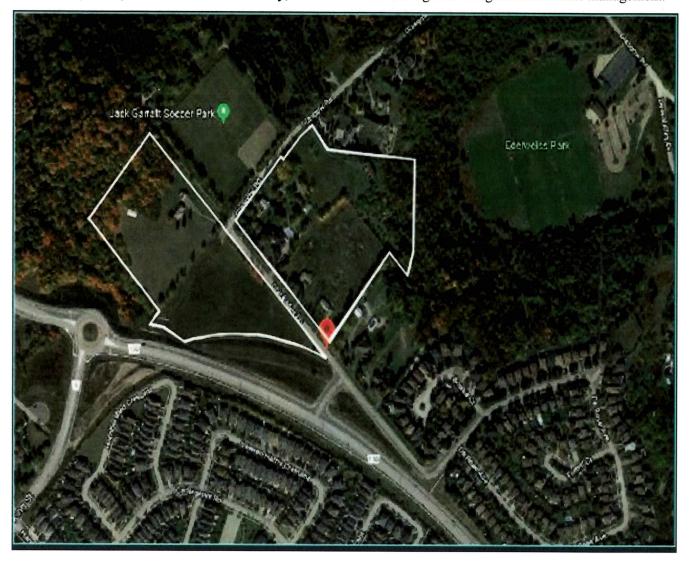


Figure 1

1. INTRODUCTION (CONT'D)

Zancor Homes (Bolton) Ltd. filed an appeal of Region of Peel Official Plan Amendment 30 (ROPA 30). By decision dated October 29th 2020, the Local Planning Appeal Tribunal (LPAT) granted approval of the appeal thereby including the subject lands within the Bolton Settlement Area.

2. PROPOSED DEVELOPMENT PLAN

The proposed Development is shown on the Draft Plan of Subdivision¹ prepared by Humphries Planning Group Inc. and comprises:

- Two (2) lots with existing residences
- Twenty five (25) Blocks with 140 Street Townhouses
- One (1) Stormwater Management Block
- One (1) Environmental Compensation/Restoration Block
- One (1) Park Block
- Three (3) Open Space Blocks

Four new roads (Streets A, B, C and D) are proposed; Street C includes a former part of Glasgow Road, between Chickadee Lane and Emil Kolb Parkway (closed when Emil Kolb Parkway was constructed).

Drawing A1, dated March 2nd 2019 Revised December 28th 2020, prepared by Humphries Planning Group Inc.

3. BACKGROUND AND SITE SPECIFIC TECHNICAL STUDIES

3.1 Background Studies

The following Technical Studies which were prepared pursuant to the Bolton Residential Expansion are relevant to the sanitary and water servicing of the subject lands:

- Bolton Residential Expansion Study Infrastructure Report, prepared by Blue Plan Engineering Consultants Limited, dated June 16th 2014.
- Bolton Residential Expansion, Water and Wastewater Servicing Analysis 2020 Update, Region of Peel Public Works (Water and Wastewater Infrastructure Planning), September 24th 2020.

3.2 Site Specific Studies

The following Studies were completed in support of the subject application:

- Geotechnial Investigation for proposed Residential Development, Chickadee Lane and Glasgow Road, Town of Caledon prepared by Soil Engineers Ltd., dated July 2018, Reference No. 1801-S032
- Chickadee Lane Rounding Out Area "B", Comprehensive Environmental Impact Study and Management Plan prepared by Palmer Consulting Group Inc., dated March 21st 2019, Project No. 170163
- Hydrogeological Investigation Chickadee Lane Rounding Out Area "B", Bolton, Ontario prepared by Palmer Environment Consulting Group Inc., dated October 12th 2018, Project No. 170163
- Supplementary Slope Stability Assessment for proposed Residential Development, Chickadee Lane and Glasgow Road, prepared by Soil Engineers Ltd., dated August 31st 2020, Reference No. 1801-S032
- Memorandum dated August 3rd 2020 prepared by Palmer, Project #1701603, Chickadee
 Lane Stormwater Management Options Assessment Alternatives, Alternative Outlet
 Evaluation

4. EXISTING CONDITIONS

4.1 Land Use

The subject subdivision property, apart from the two residences being retained as part of the Draft Plan, comprise vacant (former rural residential holdings) and Agricultural lands.

4.2 Topography and Natural Features

The majority of the subject property is relatively flat, with the high point generally located at Chickadee Lane and gentle slopes to the southeast and northwest where there are significant forested valley features associated with the Humber River².

4.3 Physiography and Geotechnical Conditions

Geotechnical³ and Hydrogeological⁴ Studies were completed for the subject subdivision. Copies of the reports are included in Appendices "B" and "C" respectively.

The Geotechnical Investigation revealed that beneath a veneer of topsoil, the site is generally underlain by silty clay till with sandy silt till deposit at the deeper level.

The level of the water table ranges from 5m to 8m below the ground surface and the ground water flow follows the topography.

The Hydraulic Conductivity (K) values were calculated to range from 3.5×10^{-6} m/s to 4.4×10^{-8} m/s with a geometric mean of 6.1×10^{-7} m/s which is typical of the Halton Till Aquitard.

Refer to Figures 8 and 9 of Comprehensive Environmental Impact Study and Management Plan included in Appendix "A"

Geotechnical Investigation for Proposed Residence Development, Chickadee Lane and Glasgow Road, Town of Caledon by Soil Engineers Ltd., dated July 2018, Reference No. 1801-S032

⁴ Hydrogeological Investigation, Chickadee Lane Rounding Out Area B, Bolton Ontario, by Palmer Environmental Consulting Group Inc., dated October 12th 2018, Project No. 170163

4. EXISTING CONDITIONS (CONT'D)

4.3 Physiography and Geotechnical Conditions (Cont'd)

Slope Stability Studies⁵ were conducted for the valley slopes at the northwest and southeast limits of the subject property and the long term stable slope lines were plotted and are graphically illustrated on the preliminary Servicing Plan (Drawing PS-1).

4.4 Storm Drainage

The subject subdivision property is located in Secondary Subwatershed No. 2 (Palgrave to Bolton) of the Main Humber River Watershed⁶. On a localized basis the property drains overland north westerly and south easterly to the valley systems of the Humber River.

Geotechnical Investigation Report dated July 2018 and Supplementary Slope Assessment Study dated August 31st 2020, included in Appendix "B".

Refer to Figure 4 Subwatershed Boundary included Appendix "D".

5. SANITARY AND WATER SERVICING

5.1 Sanitary

5.1.1 Existing Sanitary Services

As illustrated on the Preliminary Servicing Plan (Drawing PS-1) there are existing sanitary sewers on DeRose Avenue (250mm diameter) and Emil Kolb Parkway (375mm diameter). In consideration of the existing inverts and capacity, the existing 375mm diameter sewer on Emil Kolb Parkway is the preferred outlet. [Refer to Figure 8 of the Town of Caledon, Bolton Residential Expansion Study, Water and Wastewater Servicing]⁷.

5.1.2 Proposed Sanitary Servicing

The proposed sanitary sewer system is shown on Drawing PS-1; the sewer system also involves the construction of approximately 520m of an external sewer to connect to the existing 375mm diameter sewer on Emil Kolb Parkway. The sewer system is designed in accordance with the Region of Peel Criteria and Standards.

- The population density flow based on street townhouses is 75 persons/ha;
- A sanitary flow based on 302.8 Lpcd (Litres per capita per day);
- A Harmon Peaking Factor calculated based upon the Harmon Peaking Formula (M = $1+14/(4+p^{0.5})$, where M = ratio of peak flow to average flow and P = the tributary population in thousands;
- An infiltration allowance of 0.2 L/s/ha.

The sanitary drainage areas for the subdivision are shown on Drawing SA-1 and a preliminary Sanitary Sewer Design Sheet is included in Appendix "F".

A completed copy of the Region of Peel Connection Multi-Use Demand Table is included in Appendix "F".

⁷ Included in Appendix "F".

5. SANITARY AND WATER SERVICING (CONT'D)

5.2 Water

5.2.1 Existing Water Network

The proposed subdivision is located within the boundaries of Pressure Zone 6. As shown on the attached Figure 5 of the Town of Caledon (Bolton Residential Expansion Study - Water and Wastewater Servicing)⁸ and on Drawing PS-1, there is an existing 300mm diameter watermain on Glasgow Road and Chickadee Lane. There is also an existing water system in the subdivision on the west side of Emil Kolb Parkway. An hydrant flow test was conducted in April 2018 of the existing hydrants on Chickadee Lane (copy included in Appendix "G"). The flow test indicated a static pressure of 60 psi and a flow of 947 US GPM at a residual pressure of 48 psi (one hydrant port) and a flow of 1297 US GPM at a residual pressure of 44 psi (two hydrant ports).

5.2.2 Proposed Watermain System

As shown on Drawing PS-1, the proposed watermain system will connect to the existing 300mm diameter watermain on Glasgow Road and Chickadee Lane. A Water Network Analysis will be completed as part of the engineering design to determine if a second connection to the existing watermain system is desirable (system security and pressure).

⁸ Included in Appendix "E".

5. SANITARY AND WATER SERVICING (CONT'D)

5.2 Water (Cont'd)

5.2.2 Proposed Watermain System (Cont'd)

The proposed Subdivision will generate the following estimated water demand as given in Table I.

TABLE I
ESTIMATED WATER DEMAND

Description	Long Term Demand
Total Residential Units (Townhouses)	140
Population (based on 3.5 PPU)	490
Average Consumption Rate (L/cap/day)	280
Total Average Consumption (m³/day)	137.2
Peak Day Consumption (based on 2.0 peak day factor) m ³ /day	274.4
Peak Hour Consumption (based on 3.0 peak day factor) m ³ /day	411.6

A completed copy of the Region of Peel Connection Multi-Use Demand Table is included in Appendix "G".

6.1 General

In the absence of a Subwatershed Study, the MOE Stormwater Management Manual⁹ was used to provide guidance on the design of stormwater management controls for the subject subdivision. The Humber River Hydrology Study Scenario Modelling and Analysis Report conducted by TRCA in 2008¹⁰ determined that future development without stormwater management quantity controls would significantly increase the magnitude of return-period flood flows in downstream areas. It was recommended that a Tributary-Based run off control strategy be implemented to provide detention basins in developments in certain Tributaries to control peak flows to pre-development levels, using unit flow criteria to ensure consistent application in all developing areas. It stated that the results indicated that return period flood flows in watercourses throughout the watershed are generally controlled to existing levels with this approach for all of the future conditions scenarios.

In consideration of the above, it is recommended that the proposed stormwater management is designed to be consistent with the requirements as recommended in the report *Humber River Hydrology Study Scenario Modelling Analysis Report*.

6.2 Storm Sewer System

The proposed storm sewer system is shown on Drawing PS-1. The sewer system will be designed in accordance with the Town of Caledon Standards to accommodate a 10 year storm event and will outlet to the proposed stormwater management pond. The sewer system and pipe sizing will be designed so that the hydraulic grade line in the sewers will be one (1) metre below the basement floor elevations. The storm drainage areas are shown on Drawing ST-1 and the related Storm Sewer Design Sheets are included in Appendix "G". Overland flow will be conveyed within the road rights (maximum ponding depth of 0.3m) to the proposed stormwater management pond.

Stormwater Management Planning and Design Manual, Ministry of the Environment, March 2003

Humber River Hydrology Study Scenario Modelling and Analysis Report conducted by TRCA in 2008

6.2 Storm Sewer System (Cont'd)

The rear yards will generally drain via swales to rear lot catch basins which will be designed to function with the proposed infiltration trenches. The rear yards and part roofs of Blocks 11, 12 and 13 will drain directly overland to the Environmental Compensation Block 34.

6.3 Stormwater Management

6.3.1 General

As shown on Drawing PS-1 a stormwater management pond is proposed in the northwest part of the subdivision. The stormwater management pond is designed to accommodate the 100-year post development flows. In accordance with Section 5.1, Humber River Unit Flow Equation for Sub-Basin 36 is used to determine the Release Rates.

TABLE II
PROPOSED STORMWATER MANAGEMENT POND OUTFLOW RATES

Drainage	Enhanced	SWM	Imperviousness		Outfloy	v Rates (L/s	3)
Area (ha)	Protection Level (%)	Туре	(%)	DRC*	2-Year	25-Year	100-Year
7.00	80% SS Removal	Wet Pond	75	9	57	135	178

Note: For West Humber River, the DRC Release Rate is 15% of 2-year release rate, Storage is 2/3rd of 2-year Storage

The net drainage area to SWM Pond (including the area of the SWM Pond and external drainage from Glasglow Road and Street C) is 7.0ha. The storage requirements for the SWM Pond were modelled using Visual OTTHYMO Version 6.2 Hydrologic Model for 2 to 100 Year storm events (AES 6 hour). A copy of the related outputs is included in Appendix "C" and summary of data is provided in Table III.

6.3 Stormwater Management (Cont'd)

6.3.1 General (Cont'd)

TABLE III
STORMWATER MANAGEMENT POND - PRELIMINARY DESIGN DATA

Permanent Pool Storage Required = 1,353m ³ Permanent Pool Storage Provided = 1,504m ³					
Storm Event SWM Pond Release Rate Target(m³/s) VO Pond Required (m³/s) Required (m³) Pond Elevation					
2-Year	0.057	0.056	1,613	255.48	
25-Year	0.135	0.133	3,022	256.03	
100-Year	0.178	0.176	3,725	256.23	

6.3.2 Stormwater Management Pond - Storage Volumes

The storage volumes required (as per Table III) and being provided (as per Drawing SWM-1) are given in Table IV below.

TABLE IV
STORMWATER MANAGEMENT POND
STORAGE VS RELEASE RATES COMPARISONS

Storm Event	VO Storage Required (m³)	Storage Provided (m³)	Release Rate Required (m³/s)	Flows from Control Structure (m³/s)	Pond Elevation (m)
DRC	1,075	1,149	0.009	0.009	255.25
2-Year	1,613	1,623	0.057	0.036	255.48
25-Year	3,022	3,030	0.135	0.120	256.03
100-Year	3,725	3,760	0.178	0.177	256.23

6.3 Stormwater Management (Cont'd)

6.3.2 Stormwater Management Pond - Storage Volumes (Cont'd)

Related outflow calculations are included in Appendix "C" for proposed SWM Pond, orifice control will be required to control DRC outflow and broadcrested weir/orifice controls are proposed to control the outflows for the 2-year up to the 100-year storm events.

The following summarizes the outlet controls:

- DRC Release: 73mm diameter orifice;
- 2 to 100-Year Release: 73mm dia orifice and 0.33m wide and 0.15m high broadcrested weir/orifice combination;
- 10m wide emergency overflow weir is provided at elevation 256.02m.

The event storage conditions of the wet pond, supporting stage storage and discharge calculations are included in Appendix "C".

Preliminary design details of the proposed SWM Pond are illustrated on Drawing SWM-1. The configuration of pond and detailed design will be finalized as part of the Final Engineering Design.

6.4 Water Balance

The Hydrogeological Study¹¹ completed for the subject subdivision concluded that the development of the subject subdivision will result in an infiltration loss of 5,171 m³/year (i.e. pre to post development).

Included in Appendix "C"

6.4 Water Balance (Cont'd)

To balance the deficit, it is proposed that the first 5mm of runoff from the rear half of the roof surfaces and the rear yards be infiltrated where feasible. The proposed locations of the infiltration trenches are shown on Drawing IT-1 and the related calculations are in Appendix "H".

Preliminary design details of the Infiltration trenches are also shown on Drawing IT-1.

The required length of infiltration tenches is 429.7m and the length of infiltration trenches as shown on Drawing IT-1 is 570m.

The Hydrogeological investigation assessed the permeability of the underlying soils to have a mean Hydraulic Conductivity of 6.1×10^{-7} .

To assist in the infiltration of stormwater it is proposed that in the locations of the proposed infiltration trenches the native subsoil is replaced with topsoil for a depth of 2m to 3m. The topsoil mass will facilitate the surface infiltration of stormwater (in the rear yard swales) and will also provide storage and an increased surface area of infiltration of stormwater into the surrounding subsoil.

The requirement to retain the first 5mm of runoff on-site was reviewed and the related calculations are as follows:

Subdivision Area = 7.03 ha

% Imperviousness taken as 75%

Impervious Area = 0.75 (7.03 ha) = 5.27 ha

 $5 \text{mm Rainfall} = 263.5 \text{m}^3$

Infiltration Trench = $1.2m \times 1.2m$

Storage Volume @ 40% void ratio = 0.573m³/m

Total Length of Trench required = 458m

Length of Trench provided = 570m

7. SEDIMENT AND EROSION CONTROL

Erosion and sedimentation are naturally occurring processes that involve particle detachment, sediment transport and deposition of soil particles. Construction activities commonly alter the landscapes where they are located, exacerbating these natural processes. One of the most significant alterations encountered during construction is the removal of the vegetation that stabilizes the subsoil. In the absence of the vegetation, the underlying soils are fully or partially exposed to various natural forces such as rain, flowing water, wind, and gravity¹².

The discharge of high sediment loads to natural watercourses has significant impacts on receiving waters and aquatic habitat. Some specific examples include:

- Degradation of water quality;
- Damage or destruction of fish habitat;
- Increased flooding.

In consideration of the above, it is necessary as part of the Final Design and implementation of infrastructure and development servicing to incorporate a comprehensive Erosion and Sediment Control Plan. The objectives are:

- (i) Minimize wherever possible the extent of vegetation removal;
- (ii) Provide appropriate sediment control measures to minimize the off-site transport of sediment;
- (iii) Minimize the extent of time that sites are devoid of stabilizing vegetation;
- (iv) Provide interim erosion control measures where permanent restoration is not feasible.
- (v) Provide permanent restoration to eliminate future erosion.

Erosion and Sediment Control Guidelines for Urban Construction, December 2006, Greater Horseshoe Conservation Authorities.

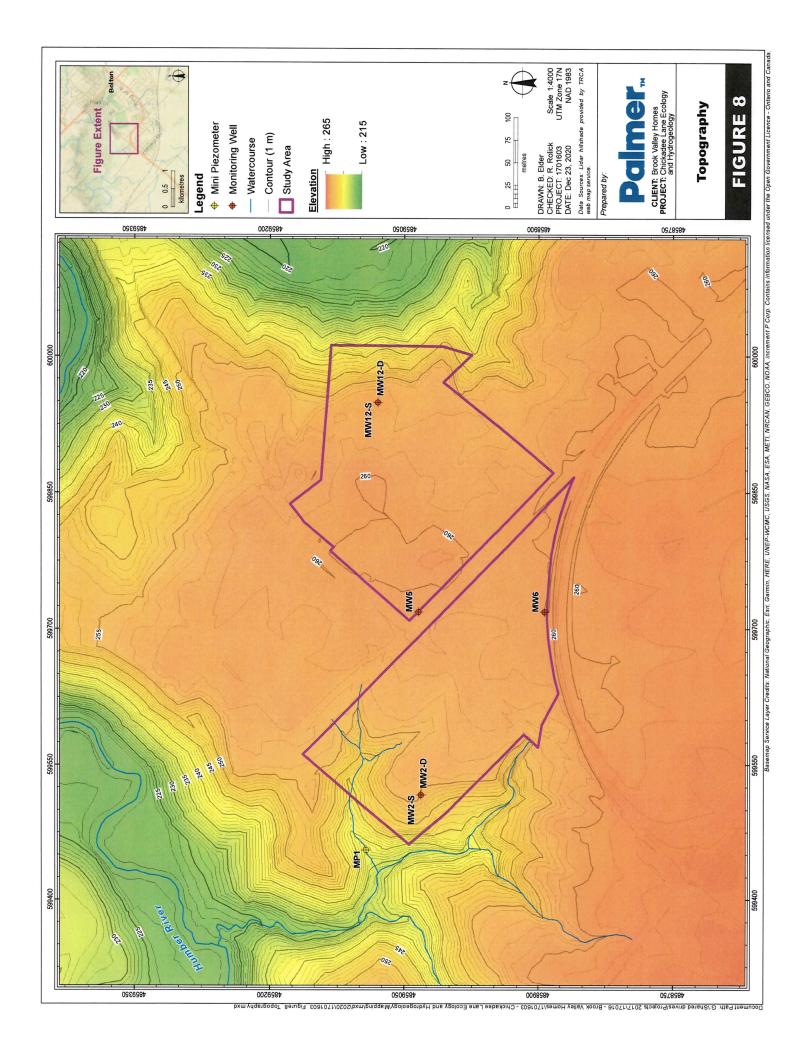
7. SEDIMENT AND EROSION CONTROL (CONT'D)

The Erosion and Sediment Control Plan should consider the specific characteristics of each development site and address the requirements relating to the following typical construction stages:

- Topsoil Stripping and Site Pre-Grading
- Infrastructure Servicing
- Building Construction

A "treatment train" approach is recommended in the development of an appropriate Erosion and Sediment Control Plan in compliance with the *Erosion and Sediment Control Guidelines for Urban Construction*. Typical sediment control measures include:

- Installation of double silt fencing along the boundary of work areas adjacent to the NHS;
- Construction of vegetated cut off swales including sediment traps and rock check dams;
- Stabilization of temporary sediment traps and provision of vegetated filter strips adjacent to the NHS;
- Provision of catch basin sediment controls.


Inherent in the Erosion and Sediment Control Plan is a monitoring program with an Action Plan to implement remedial measures in a timely manner where required.

It is recommended that the Erosion and Sediment Control Plan be submitted at the Final Design Stage.

APPENDIX "A"

Excerpts from Comprehensive Environmental Impact Study and Management Plan, Palmer Environmental Consulting Group Inc. dated December 29th 2020 (Project No. 170163)

Palmer Memorandum dated August 3rd 2020, Chickadee Lane Stormwater Management Options Assessment, Alternative Outlet Evaluation

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

Memorandum

Date: August 3, 2020

Project #: 1701603

To: Frank Filippo, Zancor Homes

From: Michael Brierley, M.Sc., and Robin McKillop, M.Sc, P.Geo

cc: Jason Cole, M.Sc, P.Geo, Diarmuid Horgan, P.Eng.

Re: Chickadee Lane Stormwater Management Options Assessment

Alternative Outlet Evaluation

1. Introduction

Palmer is pleased to provide Brookvalley Project Management Inc. (Brookvalley) on behalf of Zancor Homes Inc. (Zancor) the results of our options assessment for three proposed stormwater management (SWM) drainage alternatives to document the feasibility of each option from a fluvial geomorphological, Ecological and engineering perspective. The proposed SWM pond outlet locations will discharge into a well-defined network of gullies and channels, that descend into the Humber River Valley, draining the northwest corner of the subject property at the intersection of Chickadee Lane and Glasgow Road, in Bolton. This technical memorandum provides an overview of existing conditions, near each proposed outlet location, a brief description of the drainage alternatives and their evaluation. A photographic log is provided in **Appendix A**.

1.1 Background

Following submission of Palmer's (2019) Chickadee Lane Rounding Out Area B Comprehensive Environmental Impact Study and Management Plan (CEISMP) Toronto and Region Conservation Authority (TRCA) review comments, received 15 May 2020, expressed concern that a thorough assessment of existing conditions of the tributary was not previously completed. TRCA noted that an existing conditions assessment was required to inform proposed Stormwater Management (SWM) drainage options into the Humber River Valley. Palmer's Senior Fluvial geomorphologist, Candevcon Ltd. and Brookvalley went to the subject property on 26 May 2020, to discuss potential SWM Pond outlet alternatives, severe erosion was observed near potential outlet locations. Two additional drainage alternatives were identified during the site meeting, in addition, to the originally proposed outlet location. Each of the drainage alternatives were surveyed 15 June 2020, by KRCMAR Surveyors Ltd. An existing conditions assessment of the headwater tributary was completed on 30 June 2020.

Page 2 | August 3, 2020 Chickadee Lane Stormwater Management Options Assessment Error! Reference source not found.

2. Drainage Alternatives

A total of three drainage alternatives were identified during a field investigation on May 26 2020 (**Figure 1**). Two of the drainage alternatives are proposed to discharge into Tributary A catchment, located at the northeast corner of the subject property. The third alternative is proposed to discharge into Tributary D, located north of property boundary. An overview of proposed drainage alternatives and existing gully and channel conditions are provided below.

2.1 Alternative 1

Drainage alternative 1, originally proposed as part of Palmer's CEISMP submission, outlets directly into a V-shaped gully (Reach A4; Palmer 2020), which drains into Reach A5 approximately 60 m downstream. The gully exhibits signs of active erosion along its steep sidewalls The gully has a high gradient (14%) and an irregular, stepped bed profile. Steep energy gradient increase velocity and shear stress along the gully bottom and walls. The banks are scoured and slightly undercut, exposing roots. All flows are confined to the V-shaped gully bottom without any floodplain available to attenuate floods. The bed and bank material consist of sandy silty-clay till, locally overlain by organic matter, sand, small gravels with cobbles and anthropogenic debris (i.e. concrete rubble). Also, woody debris and exposed tree roots impart structure and roughness along the bed. Alternative 1 would require the least amount of piping and terrestrial disturbance compared to options 2 and 3.

2.2 Alternative 2

Drainage alternative 2 would be piped from the proposed SWM pond¹ to and discharged into Reach A5 for approximately 90 m. The proposed alignment of the pond outlet is located along a naturally cleared corridor along the forested valley wall. The valley wall has a gentler gradient relative to slopes 50 m to the east and west along the proposed alignment. The pond will discharge into a reach that is transitional in its genesis and characteristics, exhibiting more influence from fluvial characteristics. The channel exhibits little sign of active erosion along sidewalls and no mass movement failures. The channel has a sinuous planform however, it is not a function of lateral erosion but forced by valley topography. The gully has a moderate-high gradient (10%). The bed and bank material consist of sandy silty-clay till, overlain by cobbles and boulders. Sand and small gravels are temporarily deposited upstream of boulder clusters and woody debris. Woody debris and exposed tree roots impart structure and roughness along the bed. Coarsening of the bed material moderates erosion and limited scour along the toe of the valley wall maintain relative stability along this reach.

2.3 Alternative 3

Drainage alternative 3 would be piped from the western side of the proposed SWM pond for approximately 90 m and outlet at the upstream extent of Reach D1. The proposed alignment follows an anthropogenic cut corridor for approx. 75 m before continuing through a treed section of valley wall for the final 15 m. The

¹ Following correspondence from TRCA on 15 May 2020, the proposed SWM pond will need to be relocated outside of the delineated Long-Term Stable Top of Slope (LTSTOS) and associated allowances, which represents the limit of the Significant Valleyland as a KNHF under the Greenbelt Plan 15 m development buffer established based on habitat delineation.

Page 3 | August 3, 2020 Chickadee Lane Stormwater Management Options Assessment Error! Reference source not found.

valley wall slopes gently to a small flat 'landing' before rapidly descending into the channel. The toe of the valley wall has eroded leaving a nearly 4 m high vertical face separating the channel and crest of treed slope. The proposed drainage outlet discharges into a transitional area along the upstream extent of Reach D1. The channel is confined on both sides by prominent valley walls along its upstream extent. The channel has incised below its floodplain and become entrenched. Entrenchment has concentrated shear stress along the channel boundary, which in turn leads to further degradation and instability. Higher peak flows from increase stormwater entering the channel has eroded the channel banks and toe of valley wall enlarging the channel cross-section. The average bed gradient along the reach is 5%. Bed morphology is poorly defined due to active degradation. Bed materials are dominated by gravels and cobbles overlaid with deposited sand. Bed material is readily entrained due to the high energy gradient along the reach. Till is exposed locally along the bed, mostly along at thalweg position, and extensively along the lower banks. The entire length of Tributary D is susceptible to scour and erosion resulting from historical changes to its hydrologic and hydraulic regimes.

Page 4 | August 3, 2020 Chickadee Lane Stormwater Management Options Assessment Error! Reference source not found.

Figure 1. Site Overview and Drainage Alternative Alignments

Chickadee Lane Stormwater Management Options Assessment Error! Reference source not found.

3. Evaluation of Alternatives

Drainage alternatives are evaluated from an erosion, ecology, slope stability, civil engineering, and cost perspective (**Table 1**) to determine the preferred alignment and outlet location.

Table 1. Evaluation of proposed drainage alternatives

Discipline	Criteria Proposed Alternative			
-		Alternative 1	Alternative 2	Alternative 3
Fluvial Geomorphology	Erosion (Impact on soils, geology, rate of erosion)	Expansion of the gully's catchment area and regulation of its hydrological regime have the potential to exacerbate erosion through a positive feedback mechanism. The steepness and confinement of the gully bottom yield a naturally erosive environment.	Expansion of the gully's catchment area and regulation of its hydrological regime have the potential to exacerbate erosion along this reach. This section of channel is relatively stable with till underlaid by cobbles, boulders and woody debris along the bed and no observed valley wall instability.	Expansion of the gully's catchment area and regulation of its hydrological regime have the potential to exacerbate erosion along this unstable section of channel. The steepness and confinement of the channel bottom yield a naturally erosive environment.
	Score			
Ecology	Aquatic (Impact on connectivity, diversity and sustainability)	Approx. 0.5 wide in this section. 1-6 cm deep, slow flow (with sinks) flowing north. Silty/clay bottom with wood debris and localized boulders. Gully spanning tree roots. Steep and unlikely suitable for fish species. No groundwater influence along this section	Approx. 2 m wide in this section. 0-3 cm deep, slight trickle of water flowing east west. Silty/clay bottom, some large rocks. Steep and unlikely suitable for fish species. No groundwater influence along this section	Approx. 2 m wide in this section. 0-5 cm deep, slow trickle of water flowing north. Sand bottom with some gravels and cobbles present. Steep and unlikely suitable for fish species. limited groundwater influence along this section
	Score			
	Terrestrial (Impact on connectivity, diversity and sustainability)	Area provides potential suitable habitat for bats and salamanders. Large, tall deciduous trees provide canopy cover. The woodlands also provide confirmed habitat for Wood Thrush and Eastern Wood-pewee, both Species at Risk birds in Ontario.	cover. The woodlands also provide confirmed habitat for Wood Thrush and Eastern Wood- pewee, both Species at Risk birds in Ontario.	This area would cause the least ecological impact. This section is primarily dominated by European Buckthorn (highly invasive, nonnative) and Ash populations here have already declined with few live trees left. At the woodland edge, clearing this area would not fragment the forest.
	Regulatory Agency Acceptance (Satisfy TRCA, DFO and MNRF Mandates)	Identified as significant vall species at risk present wou		elt Plan with potential for
	Score			
		The gully exhibits little sign of active erosion with sloped sidewalls and no	The valley wall exhibits little sign of active erosion along sloped	Signs of active erosion with mass movement failures and seepage

Page 6 | August 3, 2020

Chickadee Lane Stormwater Management Options Assessment Error! Reference source not found.

Slope Stability ²		mass movement failures. No headward cut or seepage areas were observed. The gully sidewalls appear to be relatively stable, however, continued incision along the gully bottom highlight potential for future sidewall instability.	sidewalls and no mass movement failures. No seepage areas were observed. The toe of the valley walls are scoured and slightly undercut, exposing roots and silty- till, however, no instability was noted.	areas (resulting from the presence of a perched water table (Palmer 2019)) were present along the valley wall. Severe erosion along the channels bed and banks have further contributed to valley wall instability
	Score			La de la companya de
Engineering	Design			
	Score			
Cost	Construction and Monitoring			
	Score	1		
	Overview			

4. Recommendations

Prepared By:	
	Employee Name, Designation Title
Reviewed By:	
	Employee Name, Designation Title
Approved By:	
	Employee Name, Designation Title

² A long-term slope stability assessment has not been completed along the proposed drainage alternative alignments. Slope stability was evaluated based on the composition of table land and observed mass wasting or seepage areas in proximity to the proposed alignments.

Page 7 | August 3, 2020

Chickadee Lane Stormwater Management Options Assessment Error! Reference source not found.

References

Ministry of Transportation, 1990: (shift enter here to ensure this line remains with rest of reference) This is an example reference. Please delete (Short Cut Code: Alt + RL)

APPENDIX "B"

Geotechnical Investigation for Proposed Residential Development, Chickadee Lane and Glasgow Road, Town of Caledon, Soil Engineers Ltd., dated July 2018, Reference No. 1801-S032

Supplementary Slope Stability Assessment prepared by Soil Engineers Ltd. Dated August 31st 2020, Reference No. 1801-S032

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL (416) 754-8515 · FAX (905) 881-8335

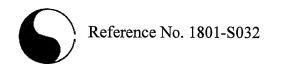
MISSISSAUGA **OSHAWA** NEWMARKET **GRAVENHURST** PETERBOROUGH **HAMILTON** TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 721-7863 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 777-7956 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (905) 881-8335 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769

A REPORT TO BROOKVALLEY PROJECT MANAGEMENT INC.

A GEOTECHNICAL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT

CHICKADEE LANE AND GLASGOW ROAD

TOWN OF CALEDON


REFERENCE NO. 1801-S032

JULY 2018

DISTRIBUTION

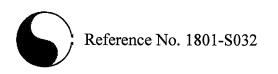
3 Copies - Brookvalley Project Management Inc.

1 Copy - Soil Engineers Ltd. (Richmond Hill)

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE AND PROJECT DESCRIPTION	2
3.0 FIELD WORK	3
4.0 SUBSURFACE CONDITIONS	
4.1 Topsoil	4
4.2 Earth Fill	
4.3 Silty Clay Till	
4.5 Compaction Characteristics of the Revealed Soils	
5.0 Groundwater Conditions	11
6.0 Slope Stability Study	13
7.0 DISCUSSION AND RECOMMENDATIONS	17
7.1 Site Preparation	
7.2 Foundations	
7.3 Engineered Fill	21
7.4 Underground Services	
7.6 Garages, Driveways and Landscaping	
7.7 Pavement Design.	
7.8 Soil Parameters	
7.9 Excavation	
8.0 I IMITATIONS OF REPORT	30

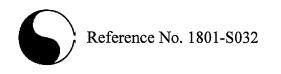
TABLES


Table 1 - Estimated Water Content for Compaction	9
Table 2 - Groundwater Levels	
Table 3 - Soil Strength Parameters	14
Table 4 - Factors of Safety Against Slope Failure	
Table 5 - Pavement Design	
Table 6 - Soil Parameters	
Table 7 - Classification of Soils for Excavation	29

DIAGRAM

Diagram 1 - Evidence of toe erosion scars along Humber River	13
Diagram 2 - Frost Protection Measures (Foundations)	20

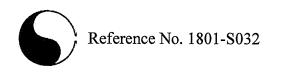
ENCLOSURES


Borehole Logs	Figures 1 to 12
Grain Size Distribution Graphs	Figures 13 and 14
Borehole Location Plan and Cross Sections	Drawing No. 1
Subsurface Profile	Drawing Nos. 2 and 3
Cross Sections A-A, B-B and C-C	Drawing Nos. 4 to 6
Long Term Stable Slope Line and Erosion Hazard Limit	Drawing No. 7

1.0 **INTRODUCTION**

In accordance with the written authorization dated November 13, 2017, from Mr. Frank Filippo of Brookvalley Project Management Inc., a geotechnical investigation was conducted at a parcel of property located in the area of Chickadee Lane and Glasgow Road in the Town of Caledon.

The purpose of the investigation was to reveal the subsurface conditions and to determine the engineering properties of the disclosed soils for the design and construction of a residential development project. Since the property is located in close proximity of the Humber River, a slope stability study was also completed for the development. The findings and resulting recommendations are presented in this Report.

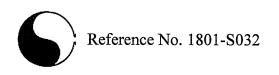

2.0 SITE AND PROJECT DESCRIPTION

The site is located at the south sector of the Town of Caledon, which is situated on Peel-Markham till plain where the drift dominates the soil stratigraphy. In places, lacustrine sand, silt, clay and drift which has been reworked by the water action of Peel Ponding (glacial lake) have modified the drift stratigraphy.

The subject property, approximately 10.91 hectares in area, is located beside the intersection of Chickadee Lane and Glasgow Road in the Town of Caledon. The existing site gradient is relatively flat, with sloping ground to the north and east of the property towards the vicinity of Humber River. The valley land is well vegetated with trees and bushes.

At the time of investigation, part of the property was an open field, with dwellings on the southeast and northwest of the road intersection.

The proposed development will consist of a residential subdivision on the south portion of the property, with municipal services and access roadways meeting the municipal standards.


3.0 **FIELD WORK**

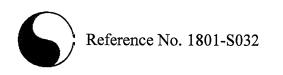
The field work, consisting of twelve (12) sampled boreholes, was performed between January 23 and 29, 2018, at the locations shown on the Borehole Location Plan of Drawing No. 1. Boreholes 2 and 12, located close to the top of slope, extended to a depth of 19.8 m and 32.0 m from the prevailing ground surface. The remaining boreholes were terminated at a depth of 6.5 m or 8.1 m from the prevailing ground level.

The holes were advanced at intervals to the sampling depths by a track-mounted, continuous-flight power-auger machine equipped for soil sampling. Standard Penetration Tests, using the procedures described on the enclosed "List of Abbreviations and Terms", were performed at the sampling depths. The test results are recorded as the Standard Penetration Resistance (or 'N' values) of the subsoil. The relative density of the granular strata and the consistency of the cohesive strata are inferred from the 'N' values. Split-spoon samples were recovered for soil classification and laboratory testing.

Upon completion of borehole drilling and sampling, monitoring wells were completed at the location of Boreholes 2, 5, 6 and 12 for hydrogeological study. The wells at Boreholes 5 and 6 were installed at a depth of 6.0 m. At the locations of Boreholes 2 and 12, nested wells were installed at a depth of 7.6 m and at the deeper levels of 19.8 m and 32.0 m, respectively. The locations and depths of the monitoring wells were specified by Palmer Environmental Consulting Group Inc., who will also be monitoring the wells.

The ground elevation at each borehole and monitoring well location was interpolated from the spot elevations shown on the Plan of Survey prepared by KRCMAR Surveyors Ltd. dated March 2017.

4.0 **SUBSURFACE CONDITIONS**


The boreholes revealed that beneath a veneer of topsoil and a layer of earth fill in places, the site is underlain by silty clay till with sandy silt till deposit at the deeper level. Detailed descriptions of the subsurface conditions are presented on the Borehole Logs, comprising Figures 1 to 12, inclusive. The revealed stratigraphy is plotted on the Subsurface Profile in Drawing Nos. 2 and 3. The engineering properties of the disclosed soils are discussed herein.

4.1 **Topsoil** (All Boreholes)

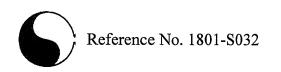
The revealed topsoil is 16 cm to 46 cm in thickness. Thicker topsoil layers are expected to occur in places, especially in the treed area and the low-lying drainage area.

The topsoil is dark brown in colour, indicating appreciable amounts of roots and humus. These materials are unstable and compressible under loads; therefore, the topsoil can only be used for general landscaping purposes. Its suitability for planting and sodding purposes must be further assessed by fertility testing.

Due to the humus content, the topsoil may produce volatile gases and generate an offensive odour under anaerobic conditions. Therefore, the topsoil must not be buried below any structures or deeper than 1.2 m below the finished grade, so that it will not have an adverse impact on the environmental well-being of the developed areas.

4.2 **Earth Fill** (Boreholes 4, 5, 7, 9 and 11)

A layer of earth fill, consisting of brown and grey silty clay, with sand and gravel, occasional rootlets, topsoils inclusions wood and brick fragments, was contacted in some of the boreholes. The fill extends to a depth of 0.6 m to 2.4 m from the prevailing ground surface. It may be placed for site grading when the road and the existing houses were constructed in the past.


The water content of the earth fill samples was determined, ranging from 19% to 34%, indicating moist to wet conditions.

The obtained 'N' values range from 3 to 30, with a median of 6 blows per 30 cm of penetration, showing the fill is non-uniform in compaction and is unsuitable to support any structures sensitive to movement. For structural uses, the existing earth fill must be subexcavated, sorted free of topsoil and any deleterious material, aerated and properly compacted in layers.

One must be aware that the samples retrieved from boreholes 10 cm in diameter may not be truly representative of the geotechnical quality of the fill, and do not indicate whether the topsoil beneath the earth fill was completely stripped. This should be further assessed by test pits.

4.3 Silty Clay Till (All Boreholes)

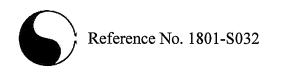
The native silty clay till deposit is heterogeneous in structure and amorphous in places. Some of the clay till samples were found to contain sand seams and clay layers. Grain size analyses were performed on 3 representative samples and the results are plotted on Figure 13.

Intermittent hard resistance to augering was encountered, indicating the presence of cobbles and boulders in the stratum.

The silty clay till deposit was found to be weathered at the upper layer in some of the boreholes, up to a depth of 0.6 m to 0.8 m from grade. The obtained 'N' values range from 2 to 69 blows, with a median of 27 blows per 30 cm of penetration. This indicates that the consistency of the clay till is soft to hard, having the soft till in the weathered zone near the ground surface only. The consistency of the clay till is generally very stiff.

The Atterberg Limits of 4 representative samples and the water content values for all the clay till samples were determined. The results are plotted on the Borehole Logs and summarized below:

Liquid Limit 42, 38, 37, 36


Plastic Limit 21, 21, 19, 20

Natural Water Content 12% to 32% (median 17%)

The above results show that the clay till is cohesive, with medium plasticity. The natural water content values are mostly below the plastic limit, confirming the generally very stiff consistency of the clay as determined from the 'N' values. The higher water content samples were obtained near the ground surface which could have been disturbed by weathering.

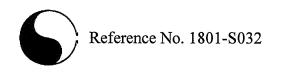
Based on the above findings, the engineering properties of the clay till pertaining to the project design are given below:

- Highly frost susceptible and soil adfreezing potential.
- Low water erodibility.

Very low in permeability, with an estimated coefficient of permeability of
 10⁻⁷ cm/sec and runoff coefficients of:

Stope	
0% - 2%	0.15
2% - 6%	0.20
6% +	0.28

Slone


- A cohesive-frictional soil, its shear strength is derived from consistency and is augmented by internal friction, thus being inversely moisture dependent and, to a lesser extent, dependent on soil density.
- In excavation, the clay till will be stable in relatively steep slopes; however, prolonged exposure will allow infiltrating precipitation to saturate the fissures and sand layers in the till, causing localized sloughing.
- A poor pavement-supportive material, with an estimated California Bearing Ratio (CBR) value of 5%.
- Moderate corrosivity to buried metal, with an estimated electrical resistivity of 3500 ohm·cm.

4.4 **Sandy Silt Till** (Boreholes 2 and 12)

The sandy silt till was contacted below 16.5 m and 22.5 m at Boreholes 2 and 12, respectively. It is heterogeneous in structure with occasional sand seams, cobbles and boulders.

The obtained 'N' values range from 28 to 78, with a median of 39 blows per 30 cm of penetration. This indicates that the relative density of the silt till is compact to very dense, generally in the dense range.

The water content values for the silt till samples were determined; the results are plotted on the Borehole Logs, ranging from 12% to 15%.

Based on the above findings, the properties of the silt till pertaining to the project are given below:

- Moderately frost susceptibility, with high soil adfreezing potential.
- Low water erodibility.

Slope

• Relatively low in permeability, with an estimated coefficient of permeability of 10⁻⁶ cm/sec and runoff coefficients of:

Stope	
0% - 2%	0.15
2% - 6%	0.20
6% +	0.28

- A cohesive-frictional soil, its shear strength is derived from consistency and is augmented by internal friction, thus being inversely moisture dependent and, to a lesser extent, dependent on soil density.
- In excavation, the silt till will be stable in relatively steep slopes; however, prolonged exposure will allow infiltrating precipitation to saturate the sand layers causing localized sloughing.
- A poor pavement-supportive material, with an estimated CBR value of 8%.
- Moderate corrosivity to buried metal, with an estimated electrical resistivity of 4000 ohm·cm.

4.5 Compaction Characteristics of the Revealed Soils

The obtainable degree of compaction is primarily dependent on the soil moisture and, to a lesser extent, on the type of compactor used and the effort applied. As a general guide, the typical water content values of the revealed soils for Standard Proctor compaction are presented in Table 1.

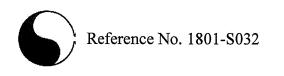
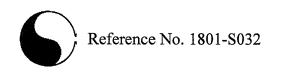
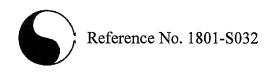


Table 1 - Estimated Water Content for Compaction


	Determined Natural Water	1	ntent (%) for ctor Compaction
Soil Type	Content (%)	100% (optimum)	Range for 95% or +
Earth Fill	19 to 34	19	15 to 22
Silty Clay Till	12 to 32 (median 17)	18	14 to 22
Sandy Silt Till	12 to 15 (median 13)	14	10 to 17

Based on the above findings, the on-site materials are mostly suitable for 95% or + Standard Proctor compaction. However, some of the earth fill and the weathered soils are relatively too wet, which will require mixing with dry soils or aeration during dry and warm weather before compaction.

Any use of the existing earth fill should be reviewed, sorted free of organics and deleterious material, aerated, before reuse for structural backfill.


The on-site material should be compacted using a heavy-weight, kneading-type roller. The lifts for compaction should be limited to 20 cm, or to a suitable thickness as assessed by test strips performed by the equipment which will be used at the time of construction.

When compacting the onsite material with cementation, the compactive energy will frequently bridge over the chunks in the soil and be transmitted laterally in the soil mantle. Therefore, the lifts of this soil must be limited to 20 cm or less (before compaction). It is difficult to monitor the lifts of backfill placed in deep trenches; therefore, it is preferable that the compaction of backfill at depths over 1.0 m below the pavement subgrade be carried out on the wet side of the optimum. This would allow a wider latitude of lift thickness.

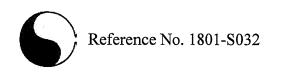
If the compaction of the soils is carried out with the water content within the range for 95% Standard Proctor dry density but on the wet side of the optimum, the surface of the compacted soil mantle will roll under the dynamic compactive load. This is unsuitable for pavement construction since each component of the pavement structure is to be placed under dynamic conditions which will induce the rolling action of the subgrade surface and cause structural failure of the new pavement.

The foundation or bedding of the sewer and slab-on-grade will be placed on a subgrade which will not be subjected to impact loads. Therefore, the structurally compacted soil mantle with the water content on the wet side or dry side of the optimum will provide an adequate subgrade for the construction.

5.0 **GROUNDWATER CONDITIONS**

Groundwater seepage encountered during augering of boreholes was recorded on the field logs. Upon completion, the level of groundwater and cave-in were measured in the boreholes; the data are plotted on the Borehole Logs and listed in Table 2.

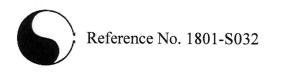
Table 2 - Groundwater Levels


Borehole/	Ground	Borehole	Soil Colour Changes Brown to Grey		Measured Groundwater Cave-In* Level On Completion	
Monitoring Well No.	Elevation (m)	Depth (m)	Depth (m)	Elevation (m)	Depth (m)	Elevation (m)
1	256.5	8.1	5.6	250.9	dry	-
2**	255.7	19.8/7.6	6.3	249.4	3.0	252.7
3	255.8	6.5	6.3	249.5	dry	•
4	258.9	6.5	5.4	253.5	dry	•
5	259.5	6.5	> 6.5	-	3.8	255.7
6	259.9	6.5	5.3	254.6	4.0	255.9
7	260.0	6.5	4.6	255.4	0.3	259.7
8	259.5	6.5	5.8	253.7	dry	•
9	260.0	6.5	4.3	255.7	1.5/4.0*	258.5/256.0*
10	257.8	6.5	3.4	254.4	dry	-
11	259.3	6.5	2.9	256.4	dry	-
12**	258.3	32.0/7.6	7.6	250.7	6.1	252.2

^{*} Cave-in level upon completion of drilling

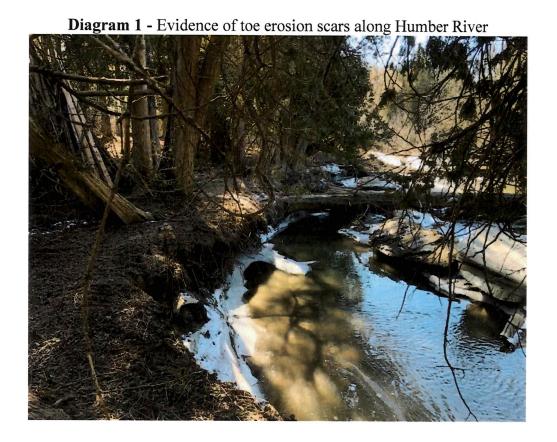
Groundwater was recorded in six boreholes, at a depth of 0.3 m to 6.1 m from the ground surface, or El. 252.2 m to 259.7 m. The other six boreholes were dry throughout the investigation process.

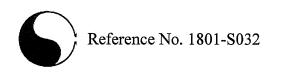
The recorded water level in the open boreholes may represent perched groundwater


^{**} With nested Monitoring Wells at shallow and deep level

in the earth fill or sand seams within the till stratum. It will fluctuate with the seasons.

In excavation, any groundwater yield is anticipated to be slow in rate and limited in quantity. It can be collected into a sump and remove by conventional pumping.


Palmer Environmental Consulting Group Inc., retained by Brookvalley Project Management Inc., will be monitoring the wells.

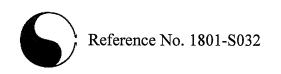


6.0 SLOPE STABILITY STUDY

A slope stability study was conducted for the valley land to the north and east of the subject property. It includes a visual inspection of the slope and stability analysis using force-moment-equilibrium criteria of the Bishop's method.

A visual inspection of the slope was performed on March 20, 2018. The inspection revealed that the sloping ground is generally covered with mature trees or vegetation, with isolated bare spots covered with fallen leaves and wood branches. Most of the trees appeared in the upright position. There were no signs of water seepage or surface erosion along the slope surface, except multiple gullies and surface erosion were present to the north and west of the property. Toe erosion scars were also evident along Humber River, as seen in Diagram 1.

Towards the east of the property, the bottom of slope is a park vicinity with no erosion hazard.


Three slope sections were selected for stability analysis, based on the field observation and the contours of slope inclination. The locations of these sections are shown on Drawing No. 1. Each slope section has a height of 20 to 30 m, with an inclination between 1 vertical (V): 2 horizontal (H) and 1V: 3H.

The slope profiles are interpreted from the contours on the topographic plan obtained from First Base Solutions. The subsurface profiles of the slope sections were interpreted from the findings of the nearby Boreholes 2 and 12 (Enclosure Nos. 2 and 12). The groundwater level recorded in these boreholes, at a depth of 3.0 m and 6.1 m, was used as the phreatic groundwater along the slope, although it was discontinuous and was considered as the perched water in the boreholes. The soil strength parameters of each soil layer are presented in Table 3.

Table 3 - Soil Strength Parameters

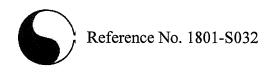
	Unit Weight	Shear Strength Parameters		
Soil Type	$\gamma (kN/m^3)$	c' (kPa)	φ' (degree)	
Silty Clay Till, very stiff	22.0	5	28	
Silty Clay Till, stiff	21.5	5	25	
Sandy Silt Till, dense	22.0	5	30	

The stability analysis was completed using "SLIDE", developed by Rocscience Inc. The results are illustrated on Drawing Nos. 4 to 6 and summarized in Table 4. The Technical Guide "River and Stream Systems: Erosion Hazard Limit" of Ministry of Natural Resources and Forestry (MNRF Guideline) was used for the management of erosion hazards along the bank.

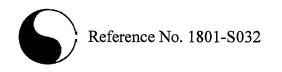
Table 4 - Factors of Safety of Slope Sections

Slope Section	Minimum Factor of Safety of Existing Slope
A-A	1.393
В-В	1.496
C-C	1.509

The minimum Factors of Safety (FOS) in Table 4 meets the Design Minimum Factor of Safety (Table 4.3 in the guideline) of 1.3 to 1.5 for Active Landuse (habitable or occupied structures near slope; residential, commercial and industrial buildings, retaining walls, storage warehousing of non-hazardous substances).


Due to the low permeability of subsoil, the water penetration into the subsoil during regional flooding is local. Any instability due to saturation of subsoil during rapid drawdown is considered insignificant.

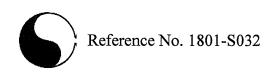
To establish the long-term stable slope line (LTSSL), a 5 m toe erosion allowance is recommended along the gullies and river bank where there are signs of erosion, according to Table 3 of MNRF Guideline. The LTSSL is shown on Drawing No. 7.


Any new development will have to set back a minimum of 6 m from the LTSSL. The Erosion Hazard Limit, including the 6 m setback from the LTSSL is also shown on Drawing No. 7.

In order to maintain the safety of slope from erosion, the following geotechnical constraints should be stipulated for any development next to the slope:

1. The prevailing vegetative cover must be maintained, since its extraction would deprive the slope of the rooting system that acts as reinforcement against soil erosion by weathering. If for any reason the vegetation cover is

- stripped, it must be reinstated to its original, or better than its original, protective condition.
- 2. The leafy topsoil cover on the slope face should not be disturbed, since this provides insulation and screen against frost wedging and rainwash erosion.
- 3. Grading of the land adjacent to the slope must be such that concentrated runoff is not allowed to drain onto the slope face. Landscaping features, which may cause runoff to pond at the top of the slope, such as infiltration trenches, as well as soil saturation at the tableland must not be permitted.
- 4. Where development is carried out near the top of the slope, there are other factors to be considered related to possible human environmental abuse. These include soil saturation from frequent watering to maintain of landscaping features, stripping of topsoil or vegetation, and dumping of loose fill and material storage close to the top of slope; none of these should be permitted.

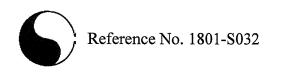

7.0 <u>DISCUSSION AND RECOMMENDATIONS</u>

The investigation revealed that beneath a veneer of topsoil and a layer of earth fill in places, the site is underlain by soft to hard, generally very stiff silty clay till stratum and compact to very dense, generally dense sandy silt till deposit at the deeper level. Groundwater was recorded in six boreholes, at a depth of 0.3 m to 6.1 m from the ground surface. It represents a perched groundwater in the earth fill or sand seams within the till stratum.

The existing slope inclination has the minimum Factors of Safety (FOS) above 1.3 to 1.5, meeting the Design Minimum Factor of Safety (Table 4.3 in the MNRF guideline) for Active Landuse. A 5 m Toe Erosion Allowance is recommended along the gullies and river bank where there are signs of erosion. Any new development will have to set back a minimum of 6 m for the Erosion Access Allowance. The Erosion Hazard Limit, including the 5 m setback for the Toe Erosion Allowance and 6 m setback for the Erosion Access Allowance is shown on Drawing No. 7.

The geotechnical findings which warrant special consideration are presented below:

- 1. The existing topsoil must be removed for the development. The revealed thickness of topsoil at the borehole locations is between 16 cm and 46 cm. Thicker topsoil layer can occur, especially in depressed areas.
- 2. After demolition of existing area, the foundation and debris should be removed and disposal off-site. The cavity should be backfilled with an engineered fill for development.
- 3. The topsoil is void of engineering value and should be stripped and removed for the project construction. It must not be buried within the building envelope or deeper than 1.2 m below the exterior finished grade of the


development.

- 4. Engineered fill and sound natural soils are suitable for normal spread and strip footing construction for the proposed development. The footings must be designed in accordance with the recommended bearing pressures in Section 7.2 and the footing subgrade must be inspected by a geotechnical engineer to ensure that its condition is compatible with the design of the foundations.
- 5. For slab-on-grade construction, the slab should be constructed on a granular base, 20 cm thick, consisting of 20-mm Crusher-Run Limestone, or equivalent, compacted to its maximum Standard Proctor dry density.
- A Class 'B' bedding, consisting of compacted 20-mm Crusher-Run
 Limestone, is recommended for the construction of the underground services.
 Where water-bearing soil is present, a Class 'A' concrete bedding should be used.
- 7. Excavation should be carried out in accordance with Ontario Regulation 213/91.

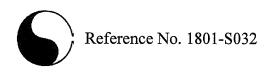
The recommendations appropriate for the project described in Section 2.0 are presented herein. One must be aware that the subsurface conditions may vary between boreholes. Should this become apparent during construction, a geotechnical engineer must be consulted to determine whether the following recommendations require revision.

7.1 Site Preparation

The property is an open field, with existing dwellings on the southeast and northwest of the road intersection. For site preparation of development, the existing topsoil must be removed and the site can be regraded with an engineered fill for normal footing, sewer and pavement construction. After demolition of the existing dwellings, the foundation cavity should be subexcavated to undisturbed soil

stratum, followed by backfilling with engineered fill, compacted in layers. The requirements for engineered fill construction are discussed in Section 7.3.

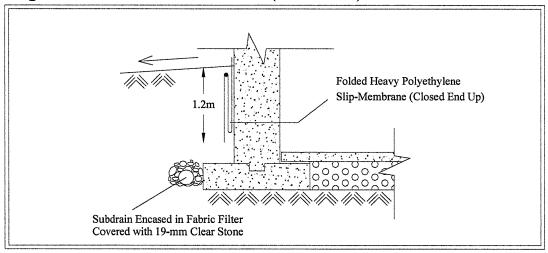
The existing earth fill should also be sub-excavated. Test pits may be excavated to evaluate the depth and the extent of earth fill for removal. The fill should be sorted free of topsoil, organic inclusion, debris, wood and other deleterious material, prior to reuse for engineered fill or structural backfill.


7.2 Foundations

The development will consist of residential houses with a normal depth basement. Based on the borehole findings, the houses can be built on conventional footings founded on sound natural silty clay till or engineered fill.

The recommended soil bearing pressures of 150 kPa (SLS) and 250 kPa (ULS) should be used for the design of normal spread and strip footings, founded on sound native soils or engineered fill. The total and differential settlements of the footings are estimated to be 25 and 15 mm, respectively.

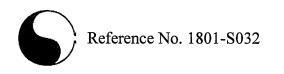
Higher design bearing pressures may be available for individual buildings at designated area. The building foundations can be reviewed by the geotechnical engineer after the site grading plan and the details of the proposed development is finalized.


The footing subgrade must be confirmed by inspection performed by a geotechnical engineer or a geotechnical technician under the supervision of a geotechnical engineer, to ensure that the revealed conditions are compatible with the foundation requirements.

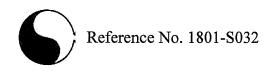
Footings exposed to weathering, or in unheated areas, should have at least 1.2 m of earth cover for protection against frost action.

Some of the in situ soils have high soil-adfreezing potential. In order to alleviate the risk of frost damage, the foundation walls must be constructed of concrete and either the backfill must consist of non-frost-susceptible granular material, or the foundation walls must be shielded with a polyethylene slip-membrane between the concrete wall and the backfill. The recommended measures are schematically illustrated in Diagram 2.

Diagram 2 - Frost Protection Measures (Foundations)


Perimeter subdrains and dampproofing of the foundation walls will be required. All subdrains must be encased in a fabric filter to protect them against blockage by silting.

The building foundation must meet the requirements specified in the latest Ontario Building Code. As a guide, the structures founded on the sound native soils or engineered fill can be designed to resist an earthquake force using Site Classification 'D' (stiff soil).

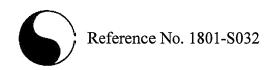

7.3 Engineered Fill

Where earth fill is required to raise the site, it is generally more economical to place engineered fill for normal footing, underground service pipes and road construction. The engineering requirements for a certifiable fill for road construction, municipal services, and footings designed with a Maximum Allowable Soil Pressure (SLS) of 150 kPa and a Factored Ultimate Soil Bearing Pressure (ULS) of 250 kPa are presented below:

- 1. All the topsoil must be removed, and the subgrade must be inspected and proof-rolled prior to any fill placement. The weathered soils and earth fill must be subexcavated, inspected, sorted free of organics and topsoil, aerated and properly compacted in layers.
- 2. The in situ organic-free soils can be used, and they must be uniformly compacted in 20 cm thick lifts to 98% or + of their maximum Standard Proctor dry density, up to the proposed lot grade and/or road subgrade. The soil moisture must be properly controlled near the optimum.
- 3. If the foundations are to be built soon after the fill placement, the densification process for the engineered fill must be increased to 100% of the maximum Standard Proctor compaction.
- 4. If imported fill is to be used, it should be inorganic soils, free of deleterious material with environmental issue (contamination). Any potential imported earth fill from off site must be reviewed for geotechnical and environmental quality by the appropriate personnel as authorized by the developer or agency, before it is hauled to the site.
- 5. If the engineered fill is to be left over the winter months, adequate earth cover, or equivalent, must be provided for protection against frost action.
- 6. The engineered fill must extend over the entire graded area; the engineered fill envelope and the finished elevations must be clearly and accurately defined in

- the field, and they must be precisely documented by qualified surveyors.
- 7. Foundations partially on engineered fill must be reinforced by two 15-mm steel reinforcing bars, depending on the thickness of the fill, in the footings and upper section of the foundation walls, or be designed by a structural engineer to properly distribute the stress induced by the abrupt differential settlement (estimated to be 15± mm) between the natural soils and engineered fill.
- 8. The engineered fill must not be placed during the period from late November to early April, when freezing ambient temperatures occur either persistently or intermittently. This is to ensure that the fill is free of frozen soils, ice and snow.
- 9. The fill operation must be inspected on a full-time basis by a technician under the direction of a geotechnical engineer.
- 10. Where the fill is to be placed on a bank steeper than 1 vertical: 3 horizontal, the face of the bank must be flattened to 3 + so that it is suitable for safe operation of the compactor and the required compaction can be obtained.
- 11. Where the ground is wet due to subsurface water seepage, an appropriate subdrain scheme must be implemented prior to the fill placement, particularly if it is to be carried out on sloping ground.
- 12. The fill operation must be fully supervised and monitored by a technician under the direction of a geotechnical engineer.
- 13. The footings and underground services subgrade must be inspected by the geotechnical consulting firm that inspected the engineered fill placement. This is to ensure that the foundations are placed within the engineered fill envelope, and the integrity of the fill has not been compromised by interim construction, environmental degradation and/or disturbance by the footing excavation.
- 14. Any excavation carried out in certified engineered fill must be reported to the geotechnical consultant who inspected the fill placement in order to document

the locations of excavation and/or to inspect reinstatement of the excavated areas to engineered fill status. If construction on the engineered fill does not commence within a period of 2 years from the date of certification, the condition of the engineered fill must be assessed for re-certification.


15. Despite stringent control in the placement of the engineered fill, variations in soil type and density may occur in the engineered fill. Therefore, the foundations must be properly reinforced and designed by structural engineer for the project. The total and differential settlements of 25 mm and 15 mm, respectively, should be considered in the design of the foundations founded on engineered fill. In sewer construction, the engineered fill is considered to have the same structural proficiency as a natural inorganic soil.

7.4 Underground Services

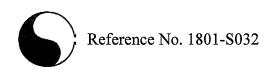
The subgrade for the underground services should consist of natural soils or engineered fill. In areas where the subgrade consists of earth fill and/or weathered soil or loose soils, these soils should be subexcavated and replaced with properly compacted inorganic soil and/or bedding material compacted to at least 95% or + of their Standard Proctor compaction.

Where the sewers are to be constructed using the open-cut method, the construction must be carried out in accordance with Ontario Regulation 213/91. In areas where a vertical cut is necessary, the use of a trench box is appropriate.

A Class 'B' bedding is recommended for construction of the underground services. The bedding material should consist of compacted 20-mm Crusher-Run Limestone, or equivalent, as approved by a geotechnical engineer. Where water bearing soil is present, a Class 'A' bearing should be used. This can be determined at the time of construction.

In order to prevent pipe floatation when the sewer trench is deluged with water, a soil cover with a thickness equal to the diameter of the pipe should be in place at all times after completion of the pipe installation.

Openings to subdrains and catch basins should be shielded with a fabric filter to prevent blockage by silting.

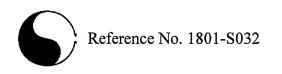

The subgrade of the underground services will generally consist of silty clay till of moderate corrosivity. The underground services should be protected against soil corrosion. For estimation of anode weight requirements, the estimated electrical resistivity of 3500 ohm·cm can be used. This, however, should be confirmed by testing the soil along the water main alignment at the time of sewer construction.

7.5 Backfilling in Trenches and Excavated Areas

The backfill in service trenches should be compacted to at least 95% of its maximum Standard Proctor dry density and increased to 98% below the floor-slab.

In the zone within 1.0 m below the road subgrade, the material should be compacted with the water content 2% to 3% drier than the optimum; and the compaction should be increased to 98% of the respective maximum Standard Proctor dry density to provide the required stiffness for pavement construction.

Most of the in situ inorganic soils are generally suitable for use as trench backfill; however, where the soil is too wet for a 95% or + Standard Proctor compaction, it can be aerated by spreading it thinly on the ground for drying prior to structural compaction. In cases where the material is too dry to compact, it may require the addition of water or mixing with a wet material.

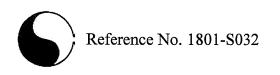

In normal construction practice, the problem areas of settlement largely occur adjacent to foundation walls, columns, manholes, catch basins and services crossings. In areas which are inaccessible to a heavy compactor, sand backfill should be used. Unless compaction of the backfill is carefully performed, settlement will occur. Often, the interface of the native soils and sand backfill will have to be flooded for a period of several days.

Narrow trenches for services crossings should be cut at 1V:2H, so that the backfill in the trenches can be effectively compacted. Otherwise, soil arching in the trenches will prevent the achievement of proper compaction. The lift of each backfill layer should either be limited to a thickness of 20 cm, or the thickness should be determined by test strips.

One must be aware of possible consequences during trench backfilling and exercise caution as described below:

- When construction is carried out in freezing winter weather, allowance should be made for these following conditions. Despite stringent backfill monitoring, frozen soil layers may inadvertently be mixed with the structural trench backfill. Should the in situ soil have a water content on the dry side of the optimum, it would be impossible to wet the soil due to the freezing condition, rendering difficulties in obtaining uniform and proper compaction.

 Furthermore, the freezing condition will prevent flooding of the backfill when it is required, such as when the trench box is removed. The above will invariably cause backfill settlement that may become evident within 1 to several years, depending on the depth of the trench which has been backfilled.
- In areas where the underground services construction is carried out during winter months, prolonged exposure of the trench walls will result in frost heave within the soil mantle of the walls. This may result in some settlement


as the frost recedes, and repair costs will be incurred prior to final surfacing of the new pavement.

- To backfill a deep trench, one must be aware that future settlement is to be expected, unless the side of the cut is flattened to at least 1V:1.5+H, and the lifts of the fill and its moisture content are stringently controlled; i.e., lifts should be no more than 20 cm (or less if the backfilling conditions dictate) and uniformly compacted to achieve at least 95% of the maximum Standard Proctor dry density, with the moisture content on the wet side of the optimum.
- It is often difficult to achieve uniform compaction of the backfill in the lower vertical section of a trench which is an open cut or is stabilized by a trench box, particularly in the sector close to the trench walls or the sides of the box. These sectors must be backfilled with sand. In a trench stabilized by a trench box, the void left after the removal of the box will be filled by the backfill. It is necessary to backfill this sector with sand, and the compacted backfill must be flooded for 1 day, prior to the placement of the backfill above this sector, i.e., in the upper sloped trench section. This measure is necessary in order to prevent consolidation of inadvertent voids and loose backfill which will compromise the compaction of the backfill in the upper section. In areas where groundwater movement is expected in the sand fill mantle, anti-seepage collars should be provided.

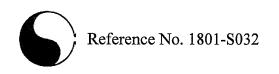
7.6 Garages, Driveways and Landscaping

Due to moderately high frost susceptibility of the underlying soil, heaving of the pavement is expected to occur during the cold weather. The driveways at the entrances to the garages must be backfilled with non-frost-susceptible granular material, with a frost taper at a slope of 1V:1H.

The slab-on-grade in open areas should be designed to tolerate frost heave, and the

grading around the slab-on-grade must be such that it directs runoff away from the surface.

Interlocking stone pavement and slab-on-grade to be constructed in areas susceptible to ground movement must be constructed on a free-draining granular base at least 1.0 m thick, with proper drainage, which will prevent water from ponding in the granular base.


7.7 Pavement Design

In preparation of the pavement subgrade, topsoil and earth fill must be removed and the entire area should be proofrolled. Any soft spots should be subexcavated, and replaced by properly compacted inorganic earth fill. New fill should consist of organic free material, compacted to 95% or + of its maximum Standard Proctor dry density. In the zone within 1.0 m below the pavement subgrade, the backfill should be compacted to 98% or + of its maximum Standard Proctor dry density, with the water content 2% to 3% drier than the optimum. The pavement design for local residential roadway and collectors is presented in Table 5.

Table 5 - Pavement Design

Course	Thickness (mm)	OPS Specifications
Asphalt Surface	40	HL-3
Asphalt Binder	60	HL-8
Granular Base	150	OPSS Granular 'A'
Granular Sub-Base	350	OPSS Granular 'B'

All the granular bases should be compacted to their maximum Standard Proctor dry density.

The pavement subgrade will suffer a strength regression if water is allowed to infiltrate prior to paving. The following measures should therefore be incorporated into the construction and pavement design:

- If the pavement construction does not immediately follow the trench backfilling, the subgrade should be properly crowned and smooth-rolled to allow interim precipitation to be properly drained.
- Lot areas adjacent to the roads should be properly graded to prevent the ponding of large amounts of water during the interim construction period.
- If the roads are to be constructed during the wet seasons and extremely soft subgrade occurs, the granular sub-base may require thickening. This can be further assessed during construction.
- Fabric filter-encased curb subdrains are required to meet the Town requirements. These subdrains should be collected to catch basins or positive outlets where water can be removed by gravity.

7.8 Soil Parameters

The recommended soil parameters for the project design are given in Table 6.

Table 6 - Soil Parameters

Unit Weight and Bulk Factor	Unit Weight (kN/m ³)		mated Factor
	Bulk	Loose	Compacted
Earth Fill	21.0	1.25	1.00
Silty Clay Till / Sandy Silt Till	22.0	1.33	1.05
Lateral Earth Pressure Coefficients	Active K _a	At Rest K _o	Passive K _p
Compacted Earth Fill	0.43	0.60	2.30
Silty Clay Till / Sandy Silt Till	0.36	0.53	2.70

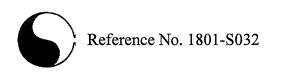
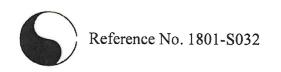


Table 6 - Soil Parameters (cont'd)

Coefficients of Friction	
Between Concrete and Granular Base	0.50
Between Concrete and Sound Natural Soils	0.40

7.9 Excavation

Excavation should be carried out in accordance with Ontario Regulation 213/91. For excavation purposes, the types of soils are classified in Table 7.


Table 7 - Classification of Soils for Excavation

Material	Туре
Silty Clay Till / Sandy Silt Till	2
Earth Fill	3

Excavation into the till containing cobbles and boulders will require extra effort and the use of heavy-duty equipment.

In excavation, any groundwater yield is anticipated to be slow in rate and limited in quantity. It can be collected into a sump and remove by conventional pumping.

Prospective contractors must be asked to assess the in situ subsurface conditions for soil cuts by digging test pits to at least 0.5 m below the sewer subgrade. These test pits should be allowed to remain open for a period of at least 4 hours to assess the trenching conditions.

8.0 LIMITATIONS OF REPORT

This report was prepared by Soil Engineers Ltd. for the account of Brookvalley Project Management Inc., for review by the designated consultants, financial institutions, and government agencies. Use of this report is subject to the conditions and limitations of the contractual agreement. The material in the report reflects the judgment of Adrian Lo, B.Sc. and Bennett Sun, P.Eng., in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

SOIL ENGINEERS LTD.

Adrian Lo, B.Sc.

Adrialo

Bennett Sun, P.Eng.

AL/BS

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

WS Wash sample

AS Auger sample CS Chunk sample DO Drive open (split spoon) DS Denison type sample FS Foil sample RC Rock core (with size and percentage recovery) ST Slotted tube TO Thin-walled, open TP Thin-walled, piston

SOIL DESCRIPTION

Cohesionless Soils:

'N' (blows/ft)		Relative Density
0 to	4	very loose
4 to	10	loose
10 to	30	compact
30 to	50	dense
over	50	very dense

Cohesive Soils:

PENETRATION RESISTANCE

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows for each foot of penetration of a 2-inch diameter, 90° point cone driven by a 140-pound hammer falling 30 inches.

Plotted as '---'

Undrained Shear

Streng	th (k	<u>sf)</u>	'N' (blows/ft) Cons		Consistency	
less t	han	0.25	0	to	2	very soft
0.25	to	0.50	2	to	4	soft
0.50	to	1.0	4	to	8	firm
1.0	to	2.0	8	to	16	stiff
2.0	to	4.0	16	to	32	very stiff
C	ver	4.0	o	ver	32	hard

Standard Penetration Resistance or 'N' Value:

The number of blows of a 140-pound hammer falling 30 inches required to advance a 2-inch O.D. drive open sampler one foot into undisturbed soil.

Plotted as 'O'

WH Sampler advanced by static weight
PH Sampler advanced by hydraulic pressure
PM Sampler advanced by manual pressure
NP No penetration

Method of Determination of Undrained Shear Strength of Cohesive Soils:

- x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding
- △ Laboratory vane test
- ☐ Compression test in laboratory

For a saturated cohesive soil, the undrained shear strength is taken as one half of the undrained compressive strength

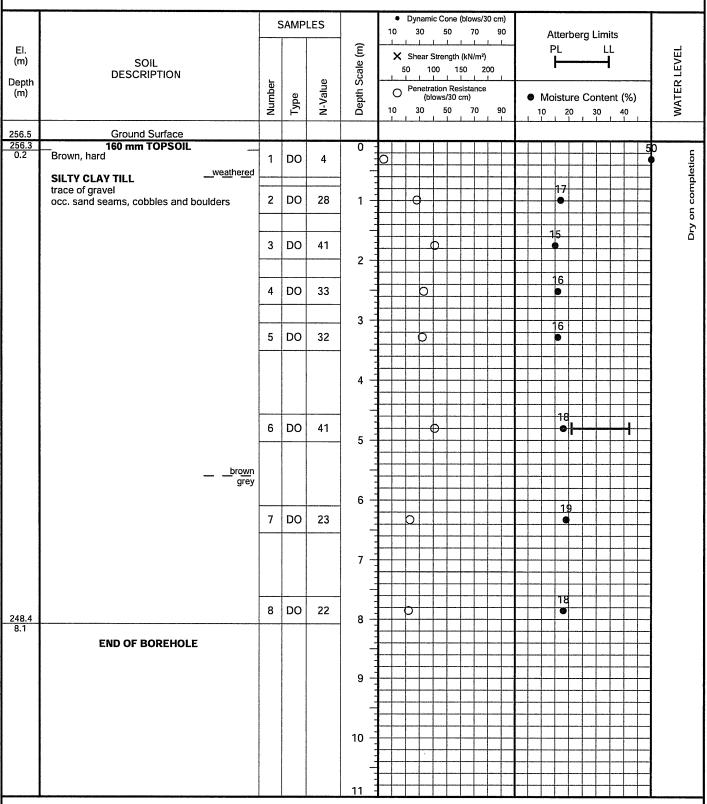
METRIC CONVERSION FACTORS

1 ft = 0.3048 metres 1lb = 0.454 kg 1 inch = 25.4 mm1ksf = 47.88 kPa

LOG OF BOREHOLE NO.: 1

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Residential Development


PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

METHOD OF BORING: Flight-Auger

(Solid-Stem)

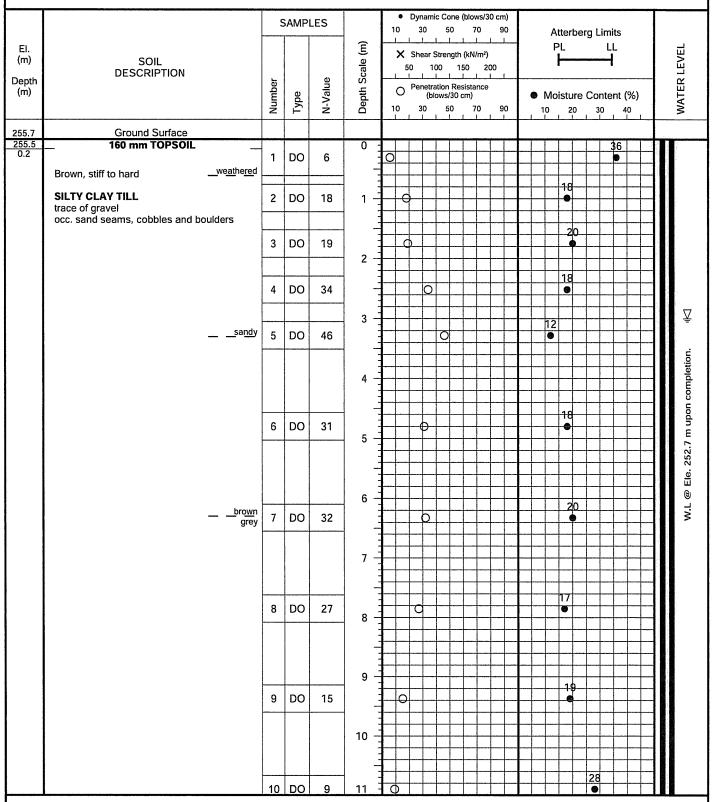
1

DRILLING DATE: January 26, 2018

LOG OF BOREHOLE NO.: 2

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Residential Development


METHOD OF BORING: Flight-Auger

(Solid-Stem)

2

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

LOG OF BOREHOLE NO.: 2

FIGURE NO.:

2

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

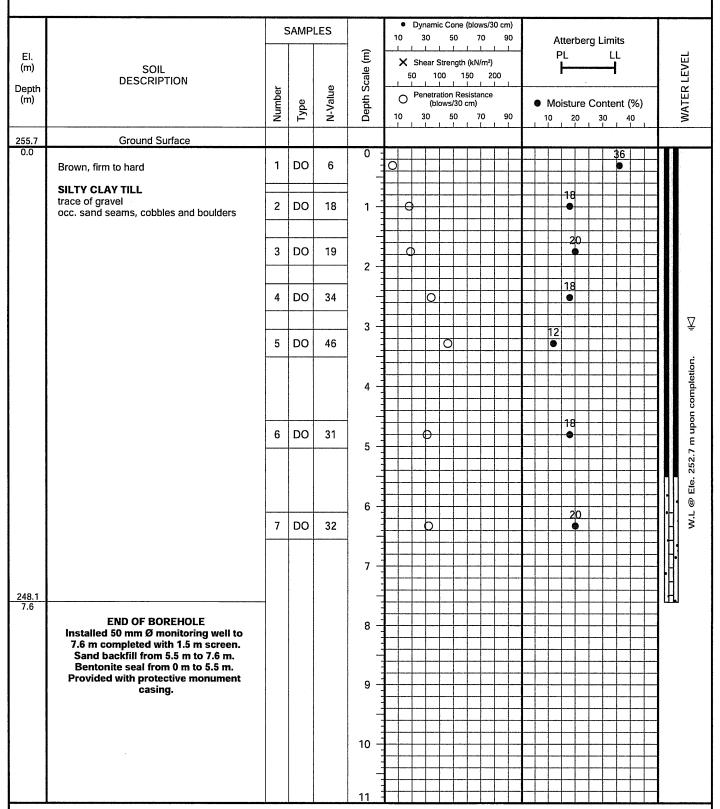
DRILLING DATE: January 26, 2018

	SOIL DESCRIPTION		SAMP	LES		Dynamic Cone (blows/30 cm) 30 50 70 90
EI. (m) Depth (m)		Number	Туре	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200
						O Penetration Resistance (blows/30 cm)
		-			11	<u></u>
	SILTY CLAY TILL (Cont'd)] '' =	
					12 -	
		11	DO	21	_	118
					13 -	
						18
		12	DO	22	14 -	
					-	
					15 -	16
		13	DO	21	_	
239.3					16 -	
16.4	Grey, compact to dense				_	12
	SANDY SILT TILL some clay and sand trace of gravel	14	DO	28	17 -	
	occ. sand seams, cobbles and boulders				-	
		-			18 -	13
		15	DO	39	-	
					19 -	
235.9 19.8					20 -	
	END OF BOREHOLE Installed 50 mm Ø monitoring well to 19.8 m completed with 1.5 m screen.				20 -	
	Sand backfill from 17.7 m to 19.8 m. Bentonite seal from 0 m to 17.7 m. Provided with protective monument				21 -	
	casing.				_	
					22	1

LOG OF BOREHOLE NO.: 2N

FIGURE NO.:

2


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

Soil Engineers Ltd.

Page: 1 of 1

LOG OF BOREHOLE NO.: 3

FIGURE NO.:

3

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

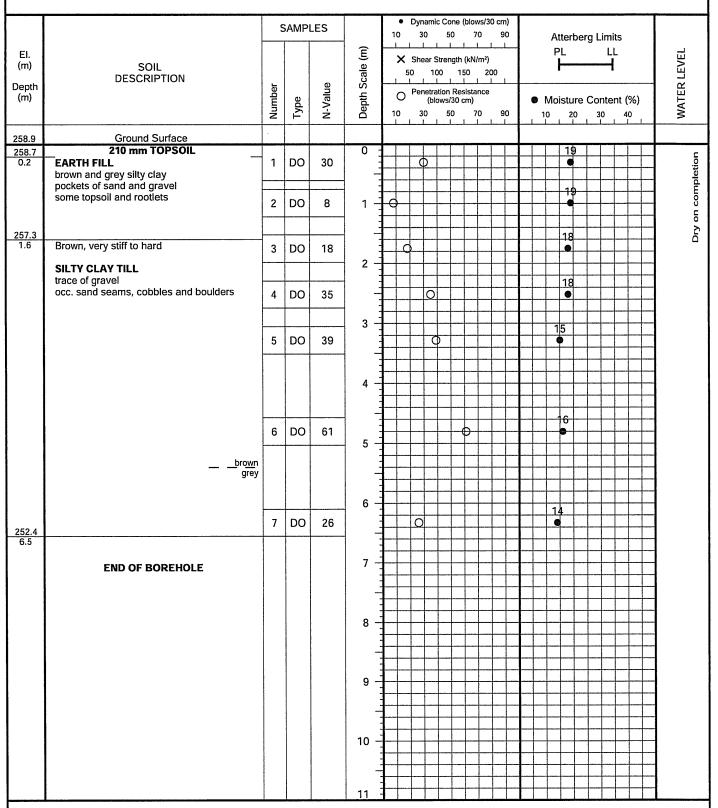
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

		:	SAMP	LES			0	30	Ę	60	70	30 cm) 90	1		Atte	erbe	rg Li	imits			
El. (m) Depth	SOIL DESCRIPTION	Number	Type	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 Penetration Resistance (blows/30 cm)						Atterberg Limits PL LL					WATER LEVEL				
(m)					Depth	1		enet (t 30		/30 cr 50	70	90		10		ture 20	Cor	ntent	(%) 40	WATE	
255.8	Ground Surface																				
255.5	260 mm TOPSOIL		-	_	0	1_		_			1	11	L	Ш	4	1		1			
0.3	Brown, very stiff to hard	1	DO	5	_	10	-	+-	+-	\vdash	+	╁┼	╁	++				D	+	- :	
	SILTY CLAY TILLweathered				1	1		\top					T	T	٦.	,	\vdash	\top	+	1 1	
	trace of gravel	2	DO	28	1 1 -			<u>d</u>					Ţ	П	1] 5	
	occ. sand seams, cobbles and boulders	<u> </u>	-		- 1	1		7	╁	\vdash	+	++	╀	\vdash	- -	+-	\vdash			-	
						+	\dashv	+	+	\vdash	-	++	╁	+	16	+	$\vdash \vdash$	+	++	Dry on completion	
		3	DO	35] ^	
					2 -	Н	-	+	+-	\vdash	_		_	\vdash	+	┿	\vdash			4	
						\vdash	\dashv	+	+	\vdash		+-	╁	++	1	9	H	-	++	-	
		4	DO	38					<u> </u>						ė				+		
					- :	1		_	\bot	\vdash	_		_	\sqcup	_	_					
		ļ			3 -	1-	-	+	+-	\vdash		++	╂┈	\vdash	1	<u>_</u>	\vdash	+	++	-	
		5	DO	29		1	\dashv	ф	+	\vdash	+	$\dagger \dagger$	┪	\Box	1		\vdash	\dashv	++	1	
					-			\perp]	
							\dashv	+	+-	\vdash		++	+	\vdash	-	-	\vdash	_	+	4	
					4 -		+	╁	+		+	++	+	\vdash	+	+	\vdash	-	++	1	
																				1	
							4	4	┿	Ш	_	 	1	-	15						
		6	DO	37	_	\mathbf{H}	+	$+\epsilon$	+	\vdash	+	++	+	\vdash	•		\vdash		++	-	
					5 -		\top					\vdash	╅	H	_	+	\vdash	_	++	1	
						_	_	4	<u> </u>				\bot]	
						1-1		+	+			++	-	\vdash	+	+-		-	++	-	
					6 -		\dashv	╁	+		+	++	╁	\vdash	\dashv	-	\vdash	+	++	1	
	br <u>ow</u> n				0				1		1		L		1						
249.3	grey	7	DO	24	-	\mathbf{H}	-	4	+	-	+	++	-	\vdash			-	- -	+	-	
6.5					1 :	1	十	+	+	\vdash	+	$\dagger \dagger \dagger$	╁	\vdash		+	\vdash		+	1	
	END OF BOREHOLE				7 -]	
	·				'	1-1		-	+			\vdash	-	\vdash		+	-		++	-	
						\mathbf{H}	\dashv	+-			+	++	╁	\vdash	+	+	1	+	++	1	
]	
					8 -		-	+	+-	-	+	$\vdash\vdash$	╁	\vdash	+	-	-	-		4	
							\dashv	+	+	\vdash	+	++	╁	\vdash	+	+		+	++		
					-								工							1	
							-		-			\vdash	- -	Н.	\dashv	-	\dashv			4	
					9 -	╂┤	+	+	+	\vdash	+	++	+	$\vdash \vdash$	+	+	\vdash	+	++	1	
					:				\perp											1	
					-	1-1	-	+	-	-	-	- -	1	\vdash	-	+1		-	11-	4	
							+	+	\vdash	$\vdash \vdash$	+	\vdash	+	$\vdash \vdash$	+	+	+	+	++	1	
					10 -			I			士		\pm	口			士	士	世	1	
						\Box	\bot	Ţ	\perp	-I	1	H	F	\Box	\perp	\Box	\Box		\prod	1	
					:	\blacksquare	+	+-	+	\dashv	+	$\vdash \vdash$	╁	\vdash	+	+-	\dashv	+	++	1	
					11		\top	+	+	\top	+-		1	\vdash	\top	+	\dashv		11	1	

LOG OF BOREHOLE NO.: 4

FIGURE NO.:


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING:

Flight-Auger (Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 29, 2018

LOG OF BOREHOLE NO.: 5

FIGURE NO.:

5

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

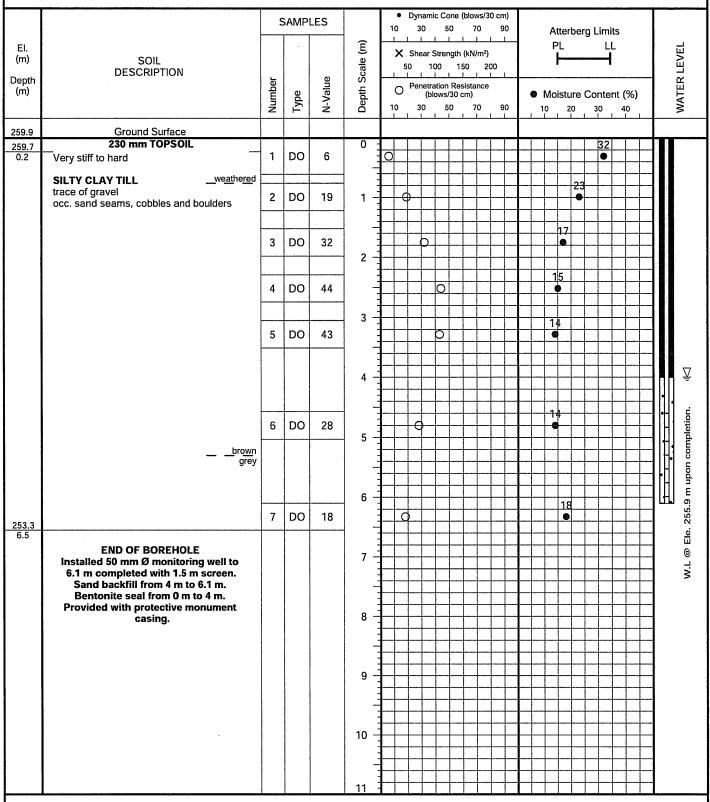
DRILLING DATE: January 29, 2018

 Dynamic Cone (blows/30 cm) SAMPLES 50 70 Atterberg Limits El. Ξ WATER LEVEL X Shear Strength (kN/m²) (m) SOIL 100 150 DESCRIPTION Depth N-Value Penetration Resistance (m) (blows/30 cm) Moisture Content (%) 10 50 259.5 **Ground Surface** 0.0 440 mm TOPSOIL 0 1 DÖ 5 . 259.1 **EARTH FILL** brown and grey silty clay pockets of topsoil 2 DO 3 1 some rootlets occ. wood pieces 3 DO 6 257.1 2.4 Grey and brown, stiff to hard DO 10 **SILTY CLAY TILL** 3 trace of gravel occ. sand seams, cobbles and boulders DO 17 @ Ele. 255.7 m upon completion. 6 DO 69 5 6 7 DO 20 Φ 253.0 6.5 **END OF BOREHOLE** 7 Installed 50 mm Ø monitoring well to 6.1 m completed with 1.5 m screen. Sand backfill from 4 m to 6.1 m. Bentonite seal from 0 m to 4 m. Provided with protective monument 8 casing. 9 10

LOG OF BOREHOLE NO.: 6

FIGURE NO.:

6


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

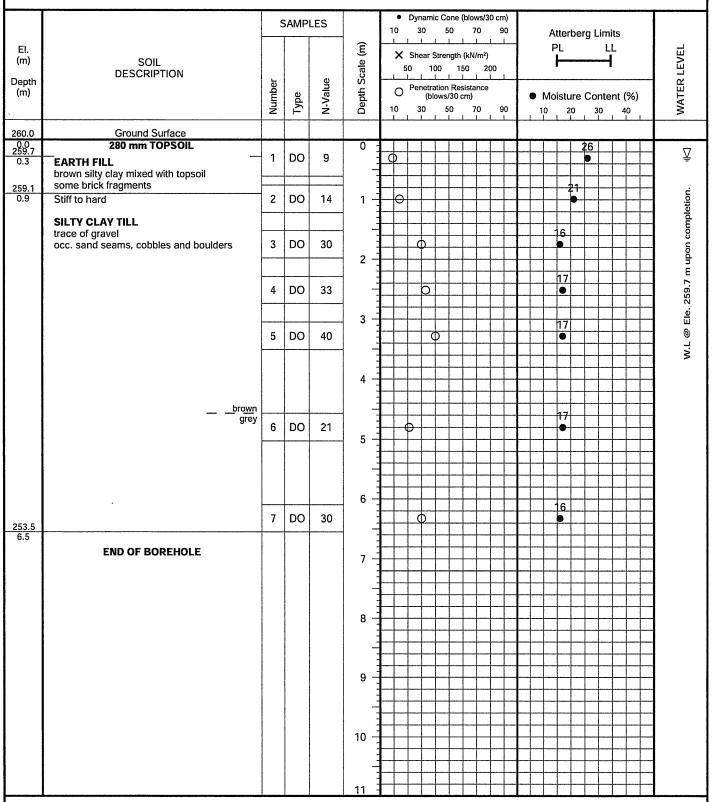
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 25, 2018

LOG OF BOREHOLE NO.: 7

FIGURE NO.:

7


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

LOG OF BOREHOLE NO.: 8

FIGURE NO.:

8

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING:

Flight-Auger (Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

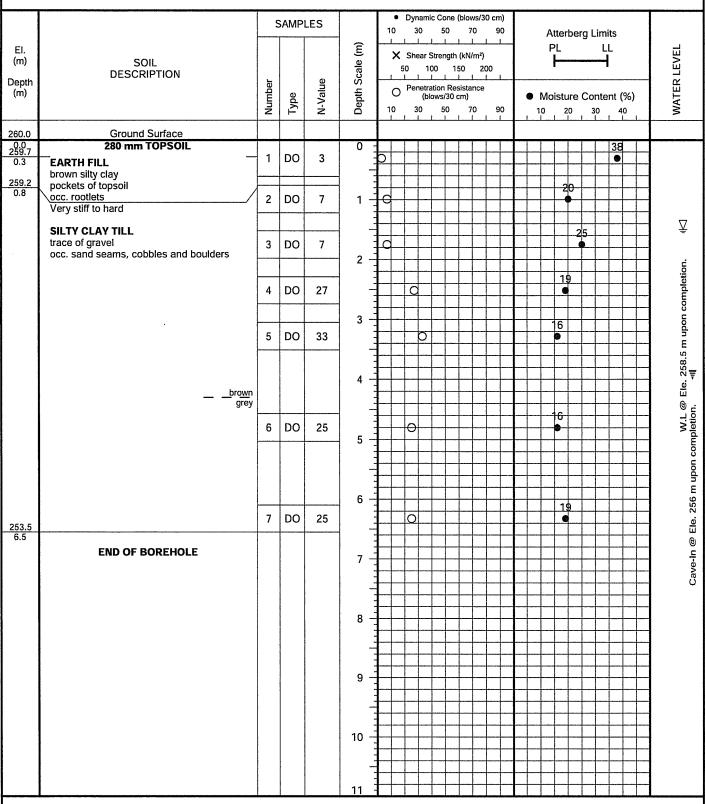
DRILLING DATE: January 23, 2018

			SAMPLES Dynamic Co 10 30 56								70	1	90								
El. (m) Depth	SOIL DESCRIPTION	_		N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 Penetration Resistance (blows/30 cm)							<u> </u>	Atterberg Limits PL LL							WATER LEVEL
(m)		Number	Type		Depth (10		30		0	istan m) 70		90				re C		ent ((%) 10	WATE
259.5	Ground Surface																				
259.3	210 mm TOPSOIL		200	_	0			1	1		_				4	\perp	25	1			
0.2	Very stiff to hard	1	DO	5		0	+	+	+-	\vdash	+	+	\vdash	+		+	-	+	+-	-	Dry on completion
1 1	SILTY CLAY TILLweathered] :		\dashv	+		Н	+	+	\top	+	+	1-	\dashv	+	+		1 \$
1 1	trace of gravel	2	DO	23	1 1		b									17] 5
	occ. sand seams, cobbles and boulders		100	23	∐ ՝ ։		\perp	_	1		_			4	_	L	4	_	1		يّ ا
						1-	- -	+	-	$\left - \right $	_	_	\vdash	-	- -	+-		+	_		-
			200	0.5	1 7	\mathbf{H}		+	+	\vdash	+	+	+	+	+	18	+	\dashv		\vdash	Ī
		3	DO	25		H	1	+		\vdash	-+	十	\Box	十	十	-	$\neg \dagger$	十	+	\vdash	1
					2 -																1
		<u> </u>	 	-	1 :		1	╀-	Ļ		_	_		_	_	15	_				_
1 1		4	DO	44	-	1		+	0	\vdash	+	+	\vdash	+	+	•	-	+			-
			 		1	1 -		┿	╫	\vdash	+	+	\vdash	+	+	+	\dashv	+	┿	\vdash	-
		 	ļ	<u> </u>	3 -		\neg	十	\dagger	\vdash	\dashv	+	\Box	+	╅	16	\dashv	+	+		1
1 1		5	DO	23			О									9					1
			-		-													I]
						1	-	+	┼	-	-	- -	-	-	- -	-	_	_	-	-	4
					4 -	\mathbf{H}		╁	┿	\vdash	+		-	-	+	+	-	+	-	\vdash	-
					:			+	 	\vdash	\dashv	+	\vdash	+	+	+	\dashv	+	+	\vdash	1
								I			I					10					1
		6	DO	23			— Ы	I								16					
			-		5 -	1-1	-	+-	┼	\vdash		-	-	+	4	Γ.	-	_	_	- -	
			1			\vdash		-	+-				\vdash	-	+	+	-	-	+	$\vdash \vdash$	-
1 1			ŀ		-	H	+	+	+-	\vdash	-+	+-	\vdash	-+	+	+	\vdash	+	+	$\vdash \vdash$	1
	<u>_brown</u>					1	_	+	\top		_	1		\neg	+	\top		\top	1		1
	grey				6 -]
1 1		-	 	 	" :			_	-			4_		4	\perp	16		_		<u> </u>	4
253.0		7	DO	24		1-1	_ 0	4	+-			+		\dashv	+	9		+	+-	\vdash	4
253.0 6.5					1 7		+	+	+		\dashv	+	\vdash	+	+	+	\dashv	+	-	\vdash	-
1 1	END OF BOREHOLE				7		+	T	\top		十	\top	\vdash	+		†	\neg	\neg	+		1
					7 -]
1						1		+	ļ				-	4		ļ		_			4
					_	\mathbf{l}		+	+-		+	-	\vdash	+	+	-		-	+-	├	-
					_ :	\vdash	+	╁	+-		\dashv	+	+	+	+	+	-	+	+		1
					8 -	1	十	┪	1		寸	+	T		+	1		\top	+	11	
							\perp	\bot	\prod		\Box	\bot			$oxed{\Box}$	ightharpoonup]
					-	1	_		╄		_	-		_		╁		_			4
								+-	╫		-+		+		+	╫	\vdash	+	+-	\vdash	4
					9 -			╁	\dagger	Н	\dashv	+	\vdash	+	+	\top	\vdash	\dashv	+	\vdash	1
														\Box]
					-	1	_	1	1		_	_				1		_	1	\coprod	_
						1-	_	4	+-	\vdash	-+		\vdash	-		+	-	- -	+		4
					10 -		+	+	+	\vdash	\dashv	-	\vdash	-	+	+	\vdash	+	+	$\vdash\vdash$	-
						1	+	T	†		\dashv	+	\vdash	\dashv	+	+	\vdash	+	+	++	1
					-																1
							_	<u> </u>	1		4	1		\perp		1		\perp			4
1					11	1															

LOG OF BOREHOLE NO.: 9

FIGURE NO.:

9


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING:

Flight-Auger (Solid-Stem)

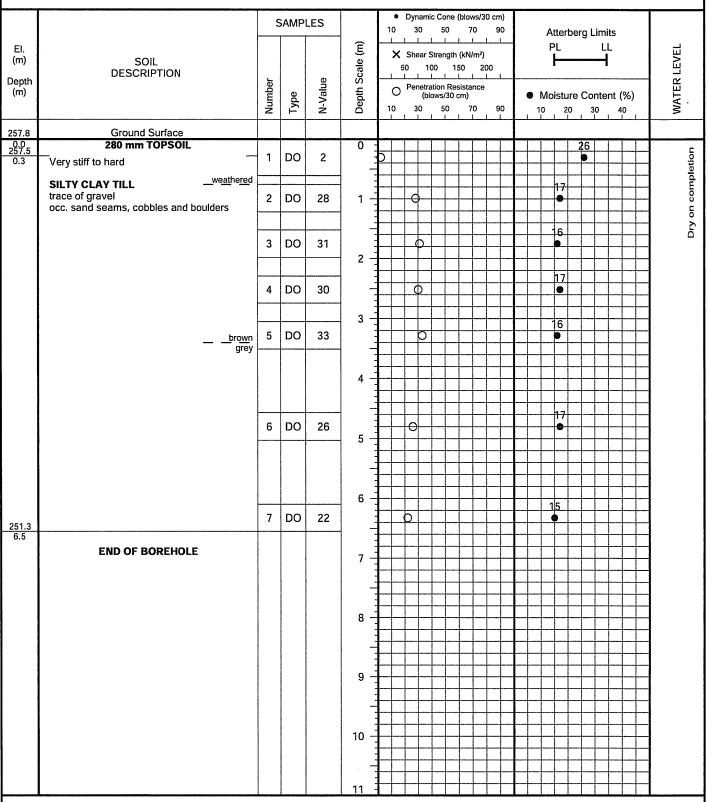
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

LOG OF BOREHOLE NO.: 10

METHOD OF BORING: Flight-Auger

10


FIGURE NO.:

PROJECT DESCRIPTION: Proposed Residential Development

(Solid-Stem)

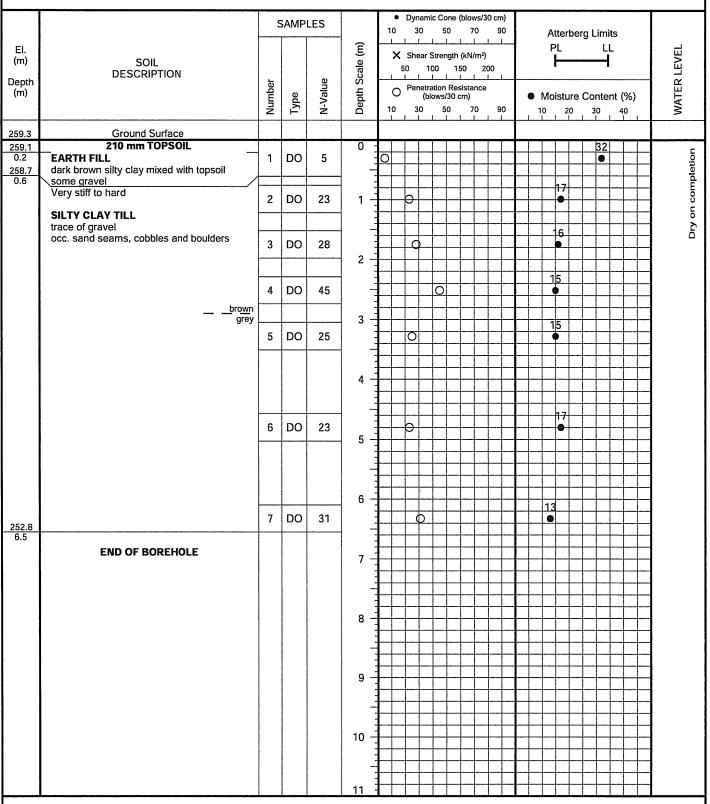
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

LOG OF BOREHOLE NO.: 11

FIGURE NO.:

11


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

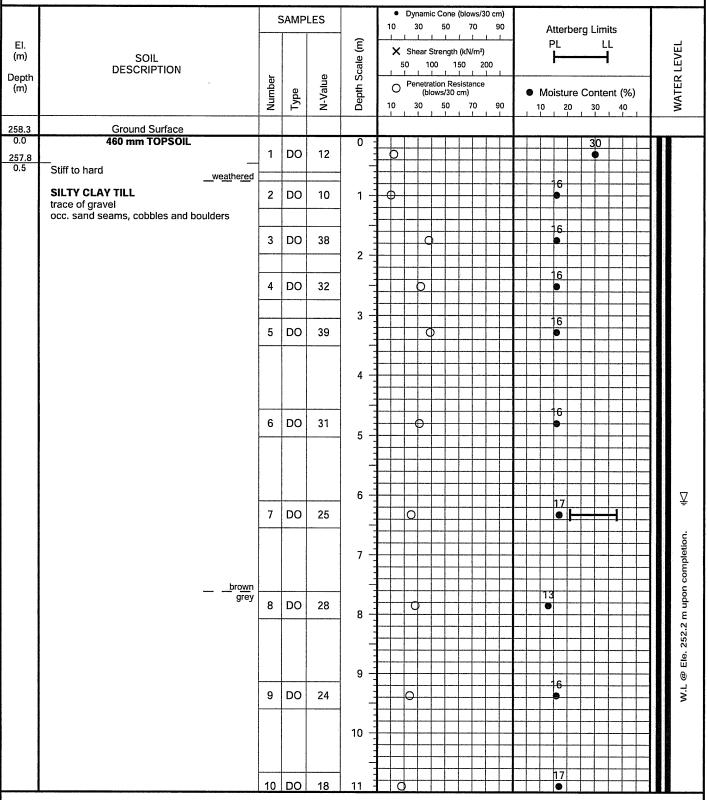
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

LOG OF BOREHOLE NO.: 12

FIGURE NO.:

12


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

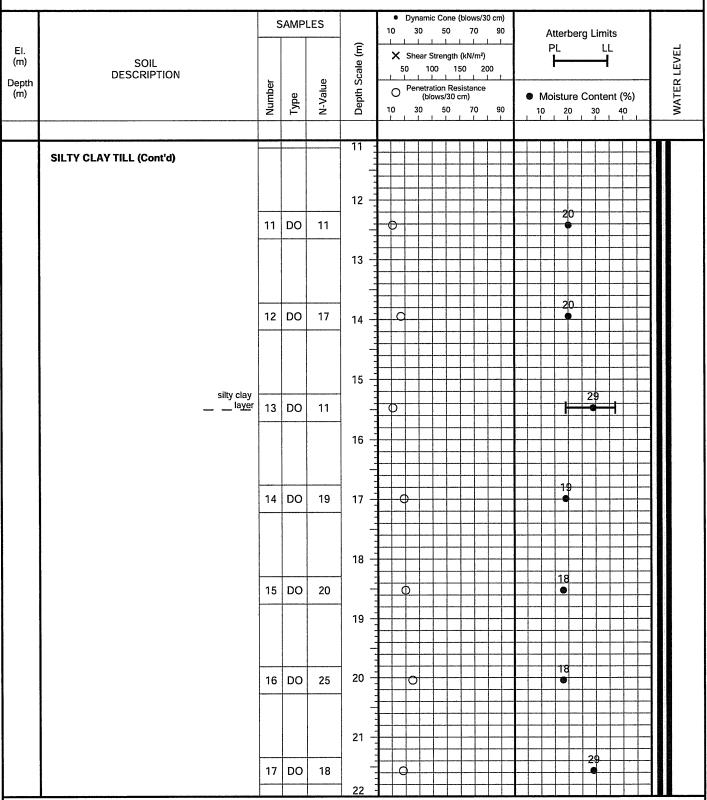
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 24, 2018

LOG OF BOREHOLE NO.: 12

FIGURE NO.:

12


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

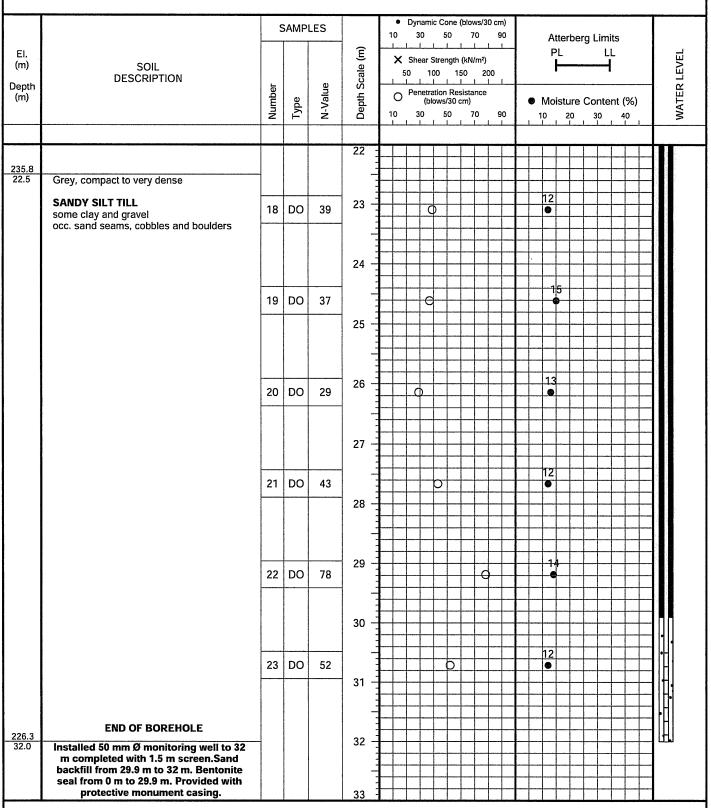
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 24, 2018

LOG OF BOREHOLE NO.: 12

FIGURE NO.:

12


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

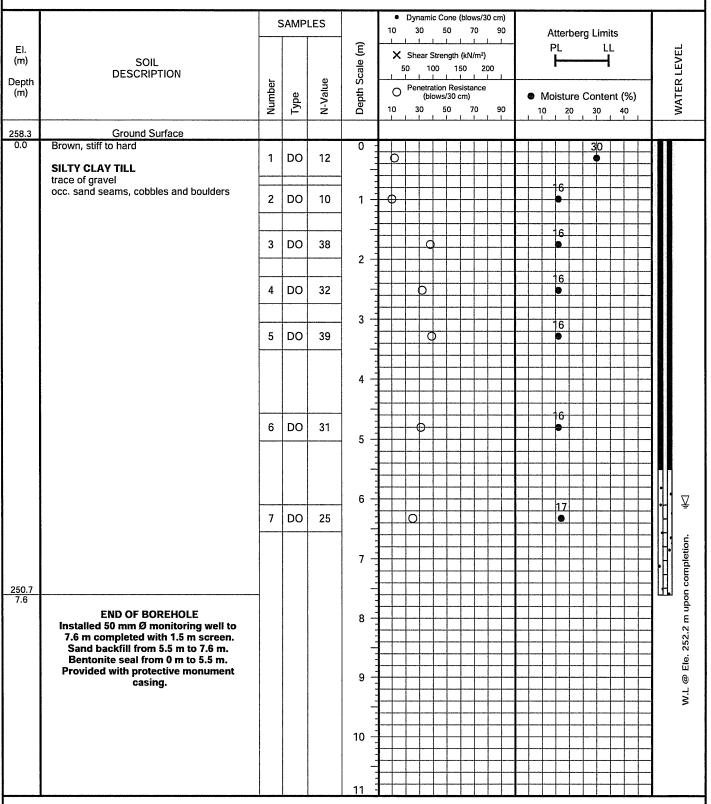
DRILLING DATE: January 24, 2018

LOG OF BOREHOLE NO.: 12N

FIGURE NO.:

12

VC. Frank A.

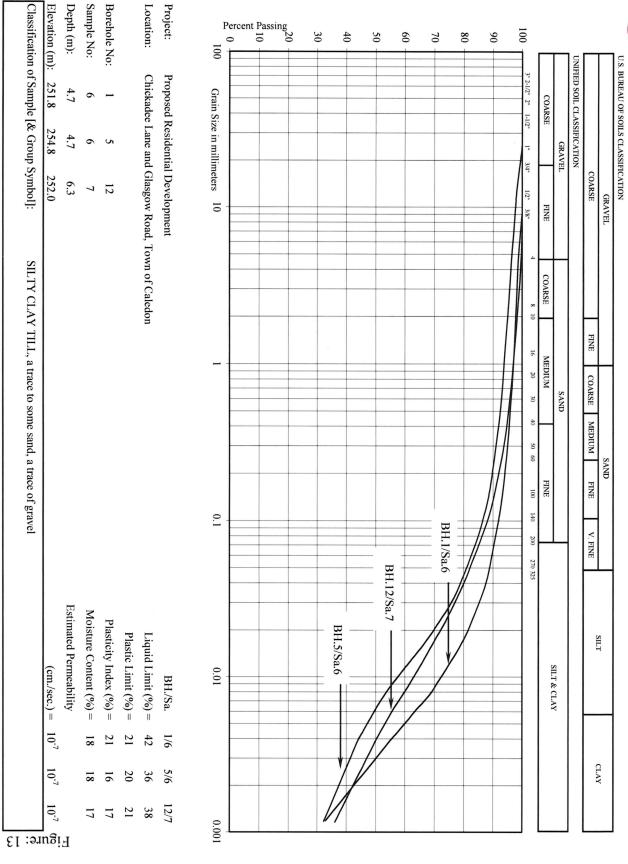

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

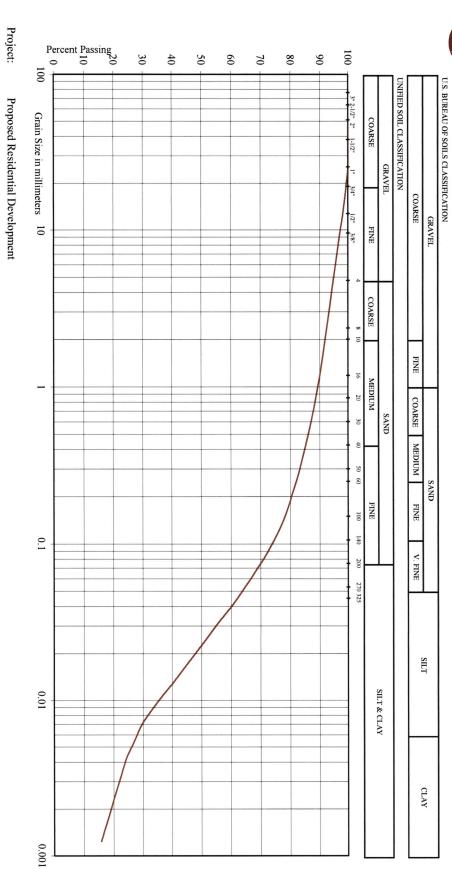
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 24, 2018



GRAIN SIZE DISTRIBUTION

Reference No: 1801-S032



Soil Engineers Ltd.

GRAIN SIZE DISTRIBUTION

Reference No: 1801-S032

SANDY SILT TILL, some clay and sand, a trace of gravel

Depth (m): Sample No: Borehole No:

18.5

2 15

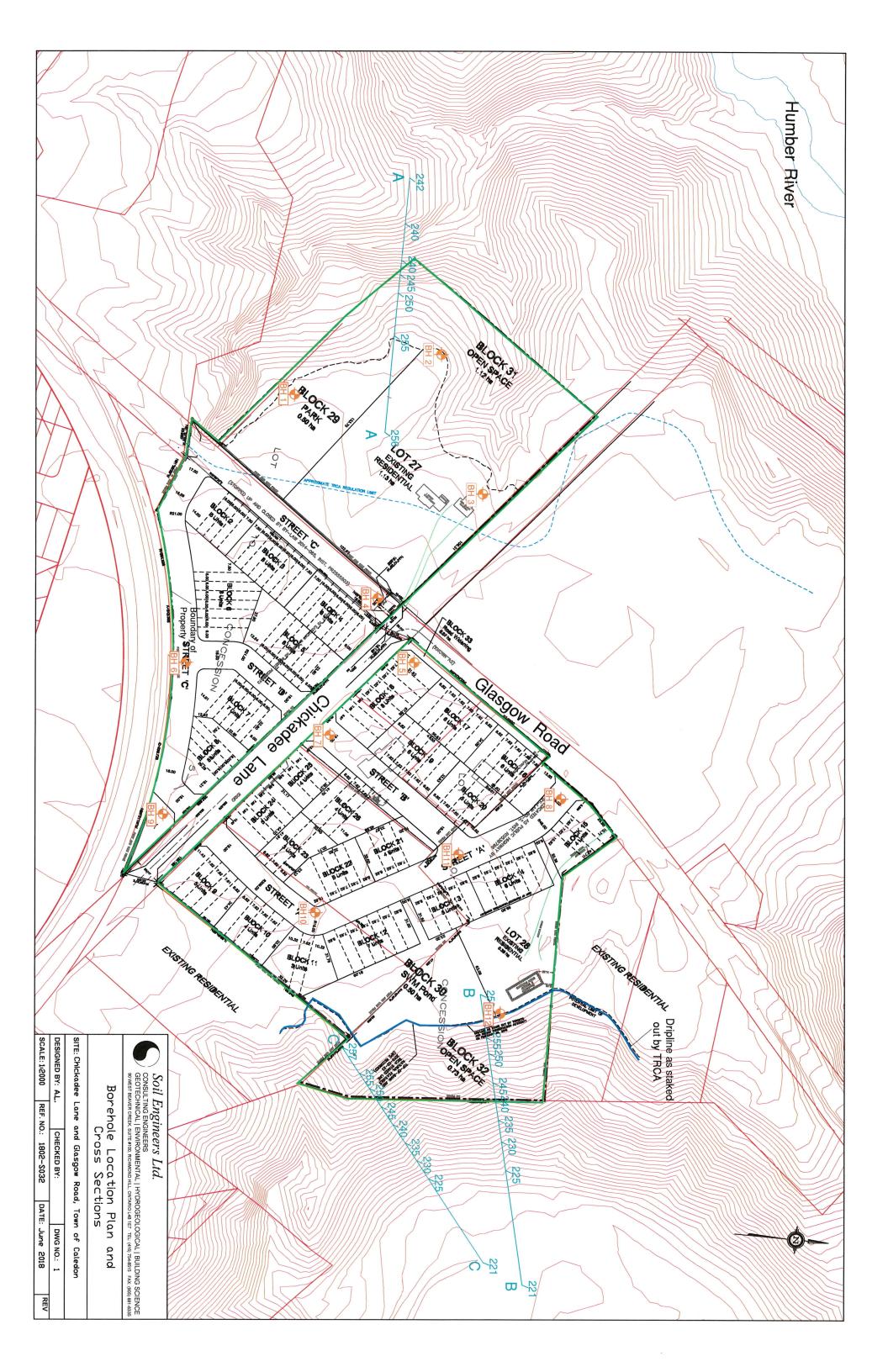
Location:

Chickadee Lane and Glasgow Road, Town of Caledon

Elevation (m): 237.2

Classification of Sample [& Group Symbol]:

Figure: 14


(cm./sec.) =

 10^{-7}

Estimated Permeability Moisture Content (%) = Plasticity Index (%) =

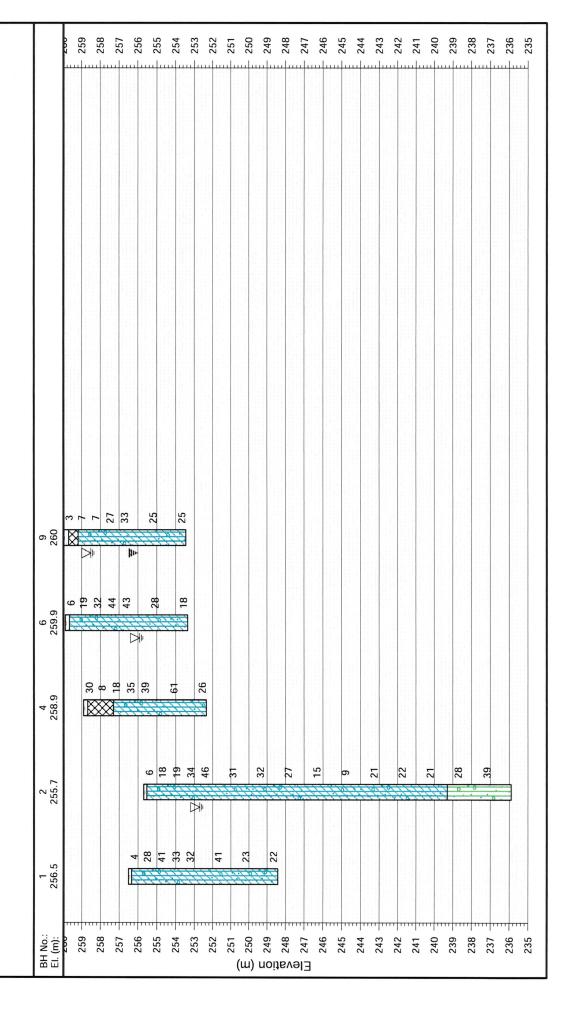
Plastic Limit (%) = Liquid Limit (%) =

9 16

Soil Engineers Ltd.
CONSULTING ENGINEERS
GEOTECHNICAL | ENVIRONMENTAL | HYDROGEOLOGICAL | BUILDING SCIENCE

SUBSURFACE PROFILE DRAWING NO. 2 SCALE: AS SHOWN

FILL [SANDY SILT TILL 📆 SILTY CLAY TILL


TOPSOIL S

LEGEND

Proposed Residential Development 1801-S032 June 2018 PROJECT DESCRIPTION: REPORT DATE:

JOB NO.:

Chickadee Lane and Glasgow Road, Town of Caledon PROJECT LOCATION:

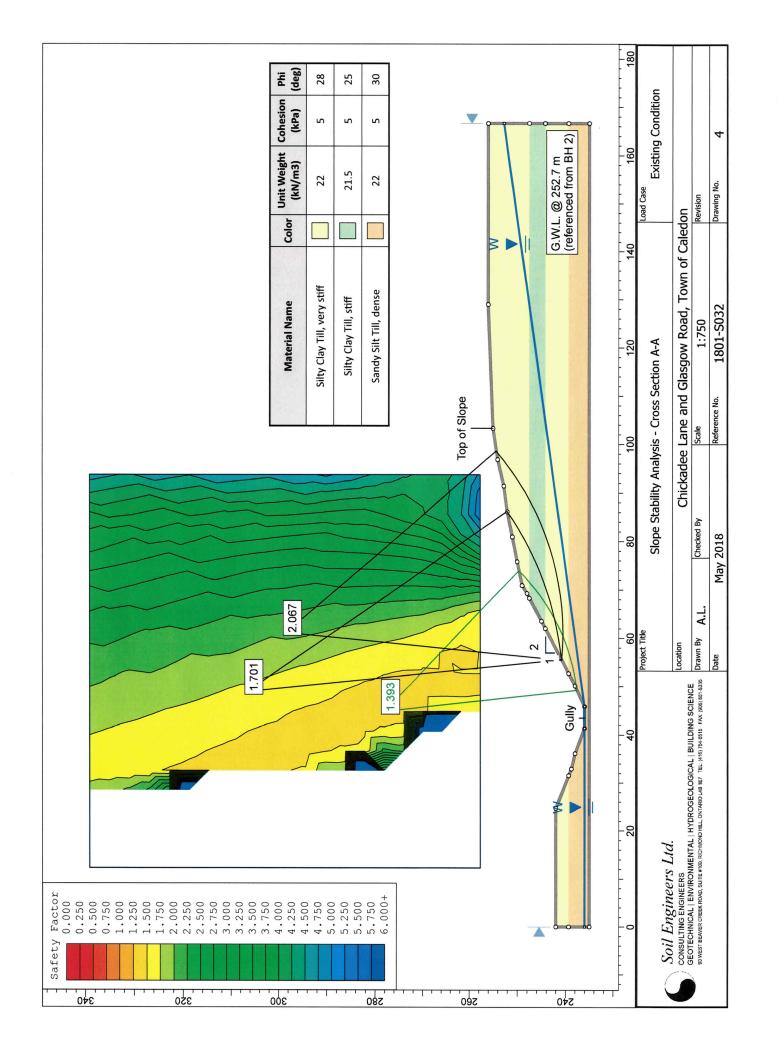
SUBSURFACE PROFILE DRAWING NO. 3 SCALE: AS SHOWN

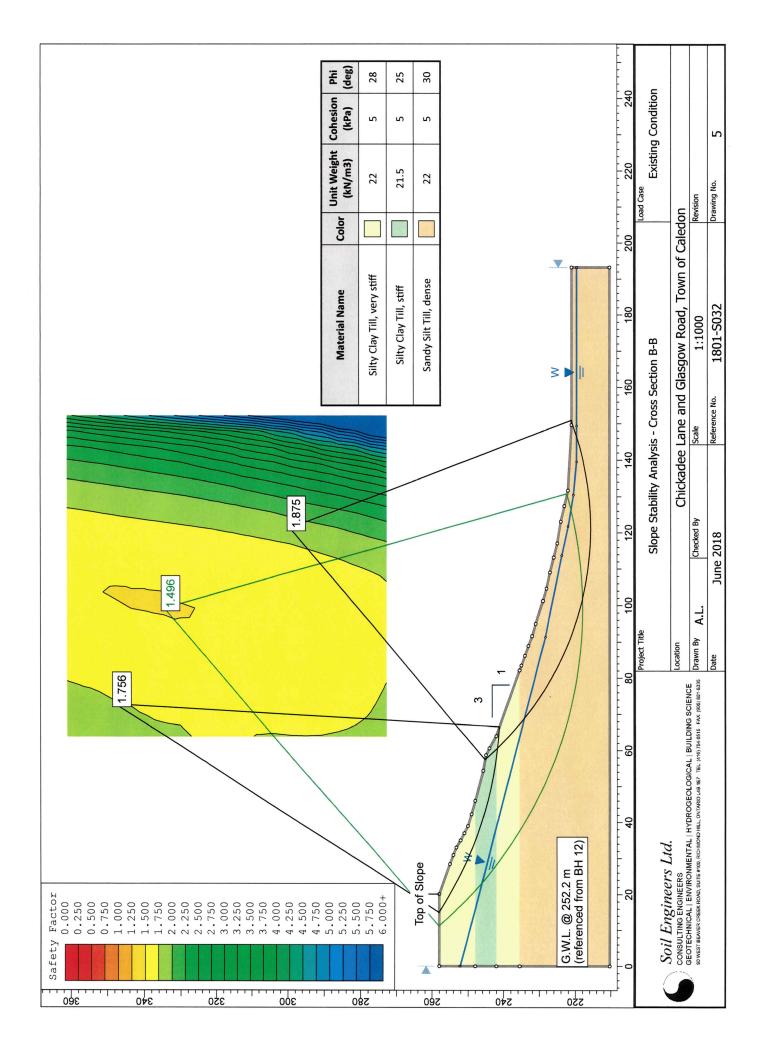
LEGEND

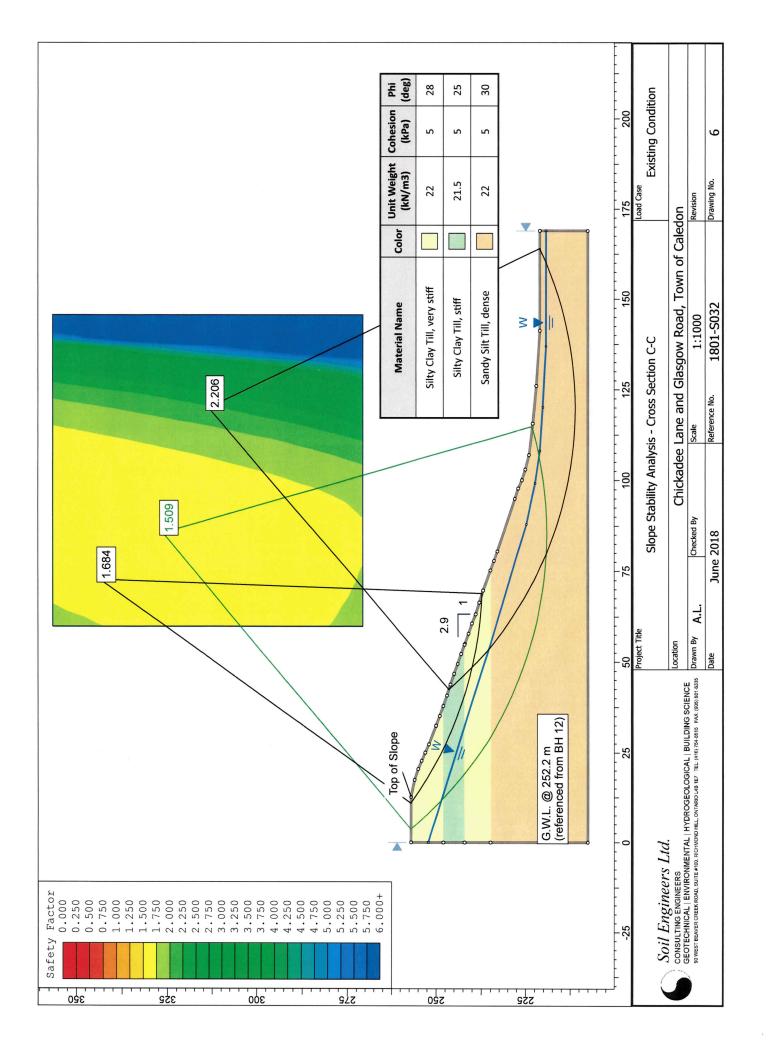
JOB NO.:

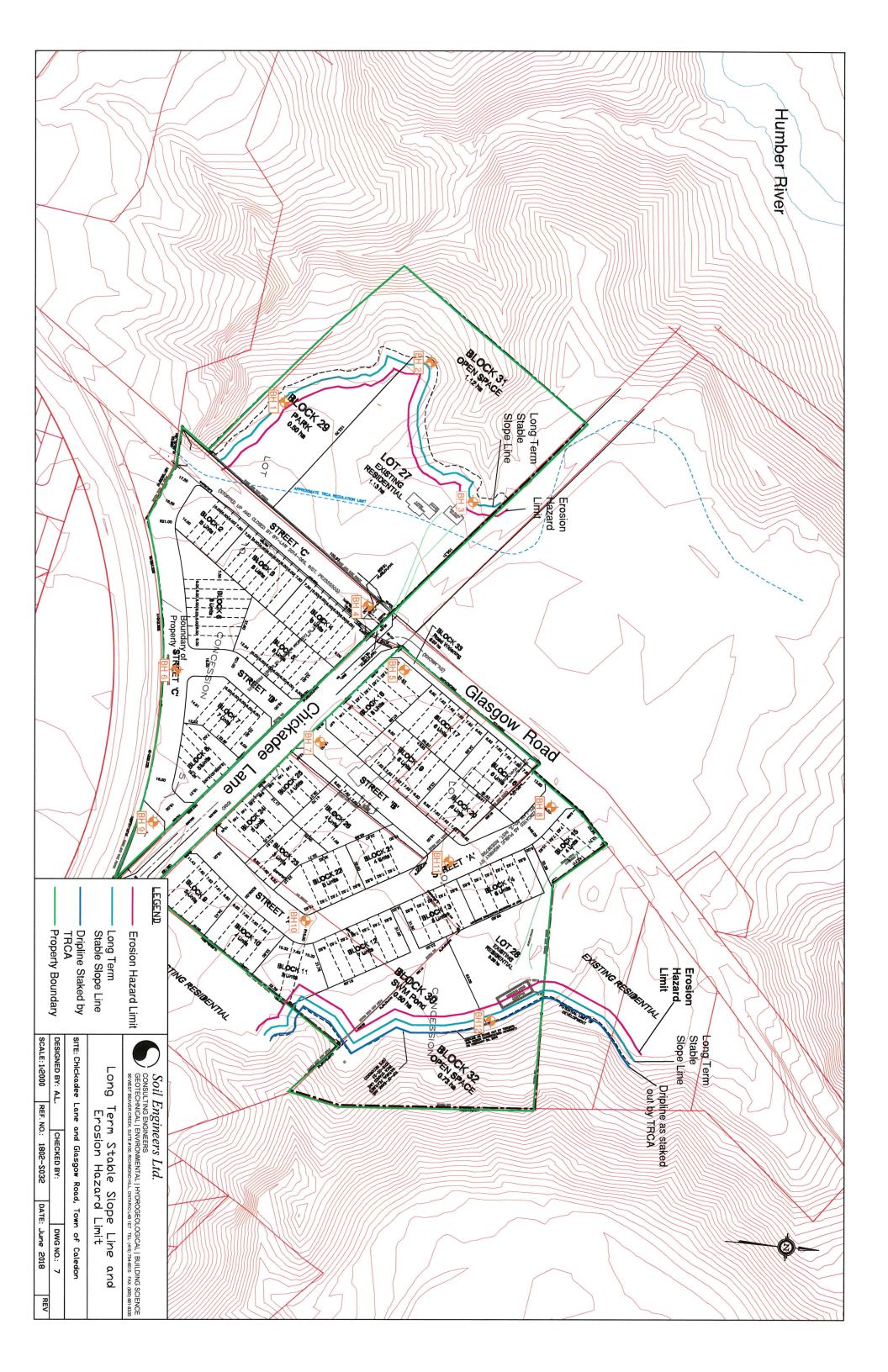
1801-S032

REPORT DATE:


June 2018


PROJECT LOCATION:


SILTY CLAY TILL SANDY SILT TILL FILL TOPSOIL 📉 33 38 39 39 39 19 28 18 17 20 25 18 39 78 31 25 24 = = 37 29 43 12 258.3 23 4 11 259.3 Chickadee Lane and Glasgow Road, Town of Caledon 330 33 56 22 10 257.8 Proposed Residential Development 23 24 8 259.5 28 18 7 260 PROJECT DESCRIPTION: 79032 69 20 5 259.5 BH No.: EI. (m):


Elevation (m)

52

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE #100, RICHMOND HILL, ONTARIO L4B 1E7 - TEL (416) 754-8515 - FAX (905) 881-8335

BARRIE MISSISSAUGA **OSHAWA** NEWMARKET **GRAVENHURST** PETERBOROUGH **HAMILTON** TEL: (705) 721-7863 TEL: (905) 542-7605 TEL: (905) 440-2040 TEL: (905) 853-0647 TEL: (705) 684-4242 TEL: (905) 440-2040 TEL: (905) 777-7956 FAX: (705) 721-7864 FAX: (905) 542-2769 FAX: (905) 725-1315 FAX: (905) 881-8335 FAX: (705) 684-8522 FAX: (905) 725-1315 FAX: (905) 542-2769

August 31, 2020

Reference No. 1801-S032

Page 1 of 4

Zancor Homes (Bolton) Ltd. 221 North Rivermede Road Concord, Ontario L4K 3N7

Attention: Mr. Frank Filippo

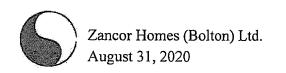
Re: A Supp

A Supplementary Slope Stability Assessment for

Proposed Residential Development Chickadee Lane and Glasgow Road

Town of Caledon

Dear Sir:


As requested, Soil Engineers Ltd. has carried out a supplementary slope stability assessment in Blocks 27, 29, 30 and 31 of the captioned site to further delineate the Long-Term Stable Slope Line (LTSSL). We herein provide a summary of our findings and analytical results of the concerned slope.

Background

The subject site is located at the intersection of Chickadee Lane and Glasgow Road, in the Town of Caledon. The concerned slope is located at the west limit of the subject site in Blocks 27, 29, 30 and 31. The height of the slope varies from 10 to 30 m, having a gradient of 1.6 to 5+ horizontal (H): 1 vertical (V). Humber River is more than 15 m away from the bottom of slope.

Subsurface Investigation

A geotechnical investigation report, Reference No. 1801-S032, dated July 2018 was completed for the subject site. Three (3) sampled boreholes (Boreholes 1 to 3, inclusive) were located in the vicinity of the concerned slope. The boreholes indicated that topsoil, 160 mm to 260 mm in thickness, was encountered at the surface of the area. Beneath the topsoil veneer, the subsoil generally consisted of firm to hard silty clay till deposit extending to a depth of 16.4 m from the prevailing ground surface, overlying compact to dense sandy silt till deposit to the maximum investigated depth of the borehole at 19.8 m from the ground surface.

Groundwater level was recorded at El. 252.7 m in Borehole 2 upon completion of the drilling program. Boreholes 1 and 3 remained dry on completion. The recorded groundwater represents a perched water condition within the till mantle and will fluctuate with seasons.

Visual Inspection

Visual inspection was performed on March 20, 2018 during the original study. The inspection revealed that the sloping ground is generally covered with mature trees or vegetation, with isolated bare spots covered with fallen leaves and wood branches. Most of the trees appeared in the upright position. There were no signs of water seepage or surface erosion along the slope surface, except multiple gullies and surface erosion were present to the north and west of the property. Toe erosion scars were also evident along Humber River.

Modeling

In addition to the Cross-Section A-A that was analyzed during the original study with the geotechnical investigation, two (2) additional sections (Cross Sections D-D and E-E) are performed to further delineate the LTSSL. The surface profiles of the slope sections are interpreted from the elevation contours shown on the topographic plan obtained from First Base Solutions. The subsurface soil information was derived from the borehole findings. The locations of the cross-sections are shown on Drawing No. 1. The details of the slope at the Cross-Sections A-A, D-D and E-E are presented on Drawing Nos. 2, 3 and 4, respectively.

The analyses were carried out with computer-aided program, SLIDE created by Rocscience Inc., using force-moment-equilibrium criteria with the soil strength parameters shown in the following table:

Soil Type	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Internal Friction Angle (degrees)
Very stiff to hard Silty Clay Till	22.0	5	28
Stiff Silty Clay Till	21.5	5	25
Sandy Silt Till	22.0	5	30

Where applicable, the highest water level detected in the boreholes and the creek level were incorporated into the analysis as a phreatic surface.

Results

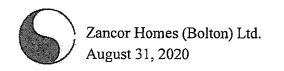
The results of the analyses are summarized in the following table and are presented on Drawing Nos. 2, 3 and 4.

Cross Section	Height (m)	Existing Slope Gradient	Factor of Safety (FOS)	Remodeled Slope Gradient	Resulting FOS
A-A	19.0	1.9 to 5.4H:1V	1.39	2.5H:1V	1,61
D-D	8.5	1.6H:1	1.31	2H:1V	1.51
E-E	7.0	3.1 to 4.7H:1V	2.40	-	**

The resulting FOS at the Cross-Section E-E meet the Ontario Ministry of Natural Resources and Forestry (OMNRF) guideline requirement for 'Active' land use (FOS of 1.5), while the FOS for Cross-Sections A-A and D-D is below the OMNRF guideline requirement. A stable slope allowance will be required for Cross-Sections A-A and D-D.

Even though there were active erosion observed at the bank of the Humber River, however, given that the river is more than 15 m away from the bottom of slope, a Toe Erosion Allowance (T.E.A.) is not required.

After incorporating the stable slope gradient of 2.5 to 2.0H:1V at Cross- Sections A-A and D-D, the resulting FOS for the remodeled slope meets the OMNRF guideline of FOS 1.5. The results are presented on Drawing No. 5 and 6.


Based on the analytical results, the LTSSL, incorporating the stable slope gradient, is established and is illustrated in Drawing No. 1.

A development setback buffer for man-made and environmental degradation based on the TRCA policy will be required. This is subject to the discretion of TRCA.

Where grading of the site requires the area to be raised, the proposed slope should maintain a gradient of 1V:3H or flatter for stability. Any slope steeper than 1V:3H will require further stability analysis and it may need to be constructed as a reinforced earth slope.

In order to prevent disturbance of the existing stable slope and to enhance the stability of the bank for the proposed project, the following geotechnical constraints should be stipulated:

- 1. The prevailing vegetative cover must be maintained, since its extraction would deprive the bank of the rooting system that is reinforcement against soil erosion by weathering. If for any reason the vegetation cover is stripped, it must be reinstated to its original, or better than its original, protective condition.
- 2. The leafy topsoil cover on the bank face should not be disturbed, since this provides an insulation and screen against frost wedging and rainwash erosion.

- 3. Grading of the land adjacent to the bank must be such that concentrated runoff is not allowed to drain onto the bank face. Landscaping features which may cause runoff to pond at the top of the bank, as well as saturation of the crown of the bank must not be permitted.
- 4. Where the construction is carried out near the top of the bank, dumping of loose fill over the bank from topsoil stripping or vegetation removal activities must be prohibited. Topsoil stripping and vegetation removal along the bank are also prohibited.

In case of any removal of vegetation during the course of construction, restoration with selective native plantings, including deep rooting systems which would penetrate the original topsoil, shall be carried out after the development to ensure slope stability. Provided that all the above recommendations are followed, the proposed development at the tableland should not have any adverse effect on the stability of the slope.

The above recommendations should be reviewed and are subject to the approval of TRCA.

We trust the above satisfies your present requirements. Should you have any further queries, please feel free to contact this office.

Yours truly,

SOIL ENGINEERS LTD.

Kin Fung Li, P.Eng.

KFL/BL

Bernard Lee, P.Eng.

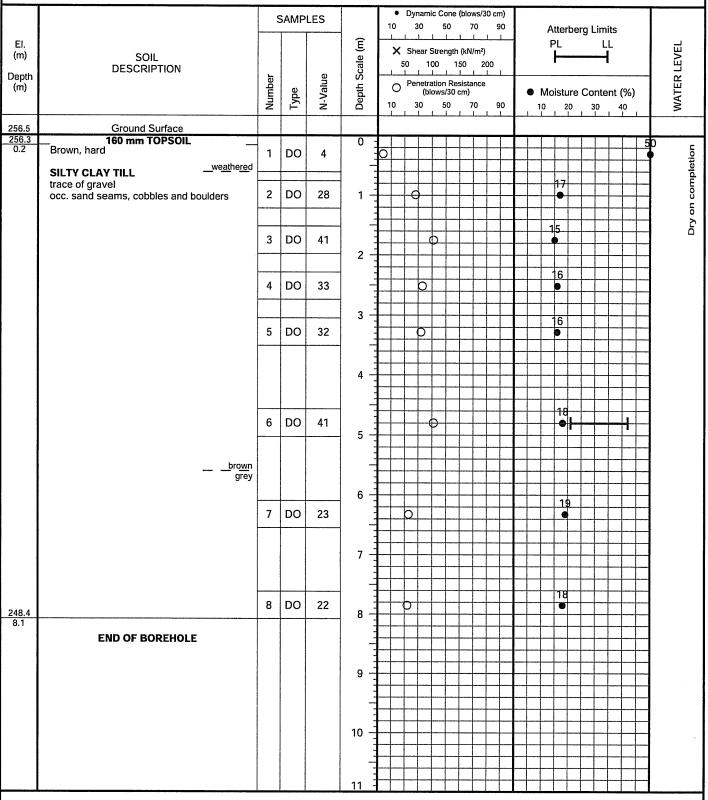
ENCLOSURES

This letter/report/certification was prepared by Soil Engineers Ltd. for the account of the captioned clients and may be relied upon by regulatory agencies. The material in it reflects the writer's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this letter/report/certification, or any reliance on or decisions to be made based upon it, are the responsibility of such third parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this letter/report/certification.

LOG OF BOREHOLE NO.: 1

FIGURE NO.:

1


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

LOG OF BOREHOLE NO.: 2

FIGURE NO.:

2

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING:

Flight-Auger

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

(Solid-Stem)

			SAMP	LES	Laboratoria de la composição de la compo	1	• 1 0	30		50	7	vs/30 0	90			Atte	erb	era	Lim	its			
El. (m) Depth	SOIL DESCRIPTION			0	Depth Scale (m)		× 50	Shea	100	engtl		/m²) 200				PL -							WATER LEVEL
(m)		Number	Туре	N-Value	Depth S		0		etratio (blow			nce 0	90		● N		tur 20		onte	ent (9			WATER
255.7	Ground Surface																						
255.5 0.2	160 mm TOPSOIL	-	DO		0	1		4		-		\perp					1	\bot	\bot	36		11	
	Brown, stiff to hardweathered	1	DO	6	-	0		_					+			+		+	-	9		11	
	SILTY CLAY TILL trace of gravel	2	DO	18	1 -		0										8-					1	1
	occ. sand seams, cobbles and boulders					1	+	+	+	+	+			\vdash	\dashv	+	_		+	\vdash	-	-	1
		3	DO	19	2 -		9										20		+]	
										_							8						
		4	DO	34	-	1			+	\downarrow		=				1	9		\pm				I
			ļ		3 -	1	\dashv	+	+	╁	\vdash	+	+-	Н	1	2	+	+	+	\vdash	\dashv	11	Δ
	sa <u>nd</u> y	5	DO	46] =		7	+	1			1	+			9	+	-	1	Ħ			! .
							1	1	#	1		4	-				1	1	1	H		11	etion
					4 -		#	1	1	1		1			1	1	_	\downarrow					Jdwc
] :		-	+	+	╁	\vdash	+	+	Н	\dashv	-	╁	+	╁	\vdash	+	11	ů C
		6	DO	31			-	-0	Ŧ			\dashv	-		4	-	8	-		H	-	11	W.L @ Ele. 252.7 m upon completion.
					5 -		4		-	-			-		4	1	+	-	-	H			52.7
					-		#			#			1		1	\downarrow	#	丰		口		11	e. 25
						1	\dashv	+	+	╫	\vdash	+	╬	H	+	+	+	+	╫	$\vdash \vdash$	\dashv	11	E
	<u>brow</u> n		50		6 -				\perp	1	П	1	1		4		20		1	H	1	11	7.
	grey	7	DO	32] =		\pm			+		\pm	\pm		\dashv	-		+		\vdash	\dashv	11	5
						H	+	-	-	-			+			-	\bot	+		\dashv		11	
					7 -		1					#				1	1			二		11	
							+	+	┿	+-	-	+			+	+	+		-	\dashv	+	H	
		8	DO	27	1 :		1			1	П					T	7			丰		11	
		-	00		8 -	H	\dashv	9	+	+	H	+	+		\dashv	+	+	+		\dashv	+	1	
							1	7	1	\vdash			1		_	1	Ŧ	1		_		11	
						\vdash	\dashv	+	+	+		+	+	\vdash	\dashv	+	+	+	+	+	+	11	
	ļ				9 -		7	\mp	Ŧ	lacksquare	П	_	-		7	7	Ŧ	1	\Box	1	1	11	
		9	DO	15]]			#	#			+	#		#	#	19	‡		\perp	\downarrow		
				·	1 =		_	_	+			\perp			_	_	1	\perp		\perp		11	
					10 -		_	+	1	\vdash	Н		_	Н		+	+	+	H	+	+		
							1	1	Ŧ	1			-		1	1	T	#		#		11	
					=		\perp		\pm	\perp		\pm			\exists	\pm	\pm	28		\vdash	\pm		
		10	DO	9	11 -	C						\perp	\perp		\Box			6		\perp			<u> </u>

LOG OF BOREHOLE NO.: 2

FIGURE NO.:

2

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

METHOD OF BORING: Flight-Auger

(Solid-Stem)

DRILLING DATE: January 26, 2018

 Dynamic Cone (blows/30 cm) **SAMPLES** 50 70 Atterberg Limits EI. Depth Scale (m) WATER LEVEL X Shear Strength (kN/m²) (m) SOIL 150 **DESCRIPTION** Depth N-Value Number Penetration Resistance (m) Moisture Content (%) (blows/30 cm) 30 50 70 90 20 30 11 SILTY CLAY TILL (Cont'd) 12 DO 21 11 13 12 DO 22 14 15 6 13 DO 21 16 239.3 Grey, compact to dense **SANDY SILT TILL** 14 DO 28 17 some clay and sand trace of gravel occ. sand seams, cobbles and boulders 18 15 DO 39 19 20 **END OF BOREHOLE** Installed 50 mm Ø monitoring well to 19.8 m completed with 1.5 m screen. Sand backfill from 17.7 m to 19.8 m. Bentonite seal from 0 m to 17.7 m. 21 Provided with protective monument casing.

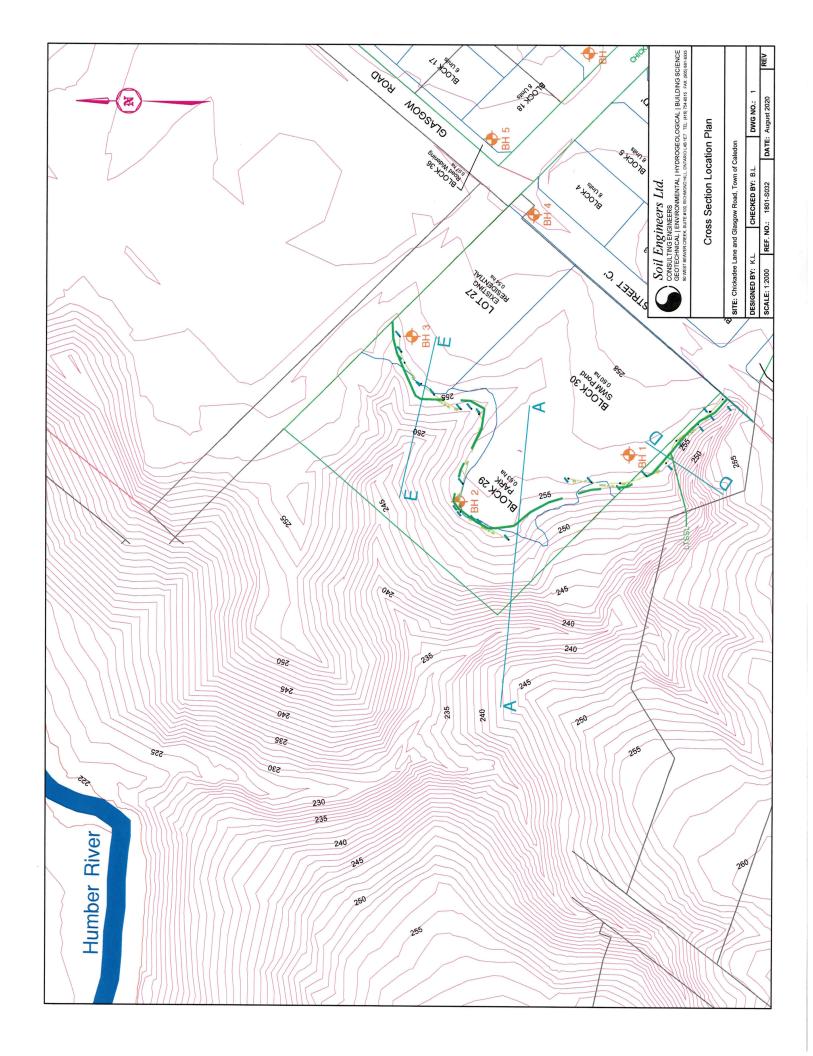
LOG OF BOREHOLE NO.: 3

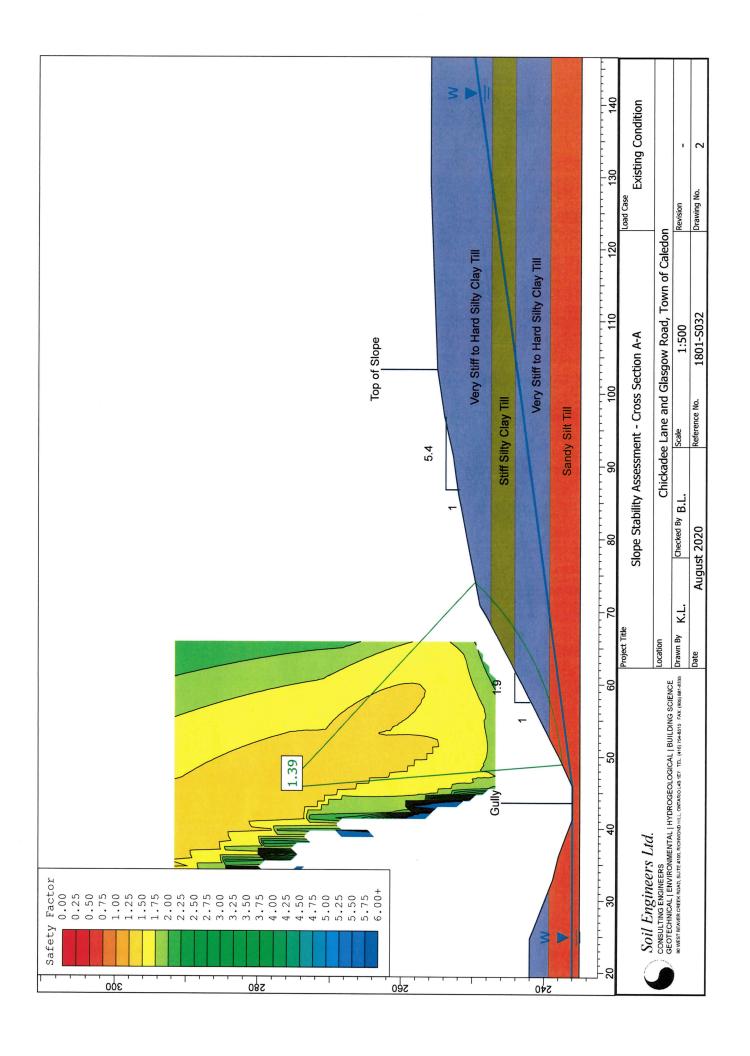
FIGURE NO.:

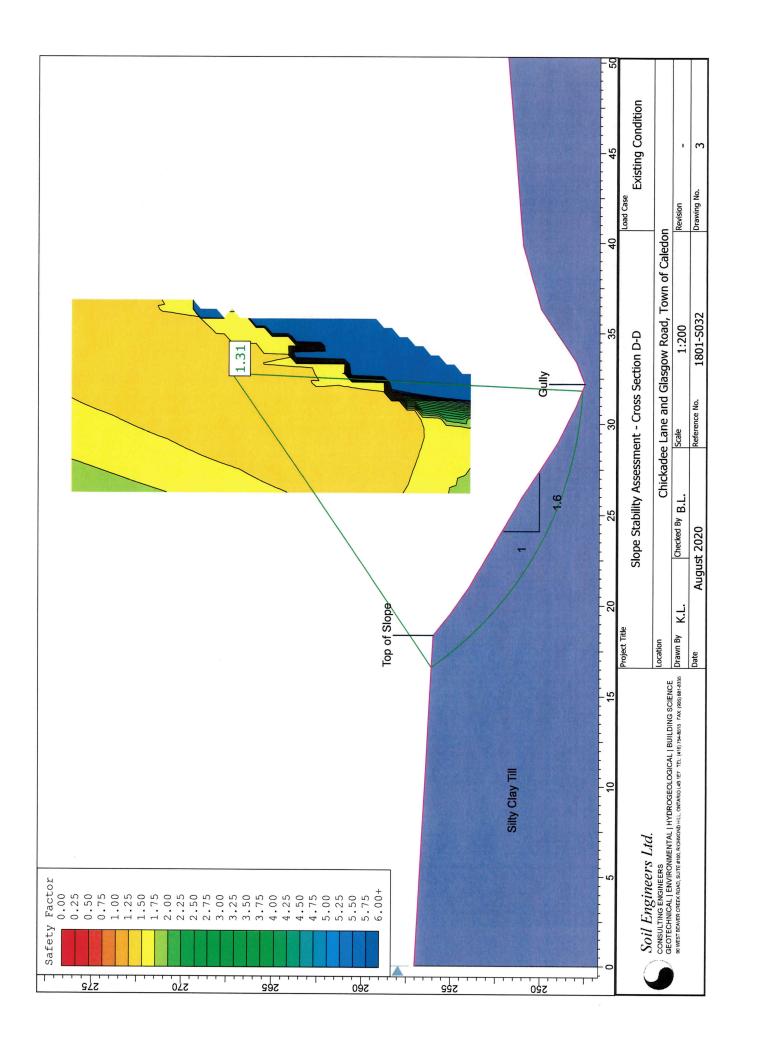
3

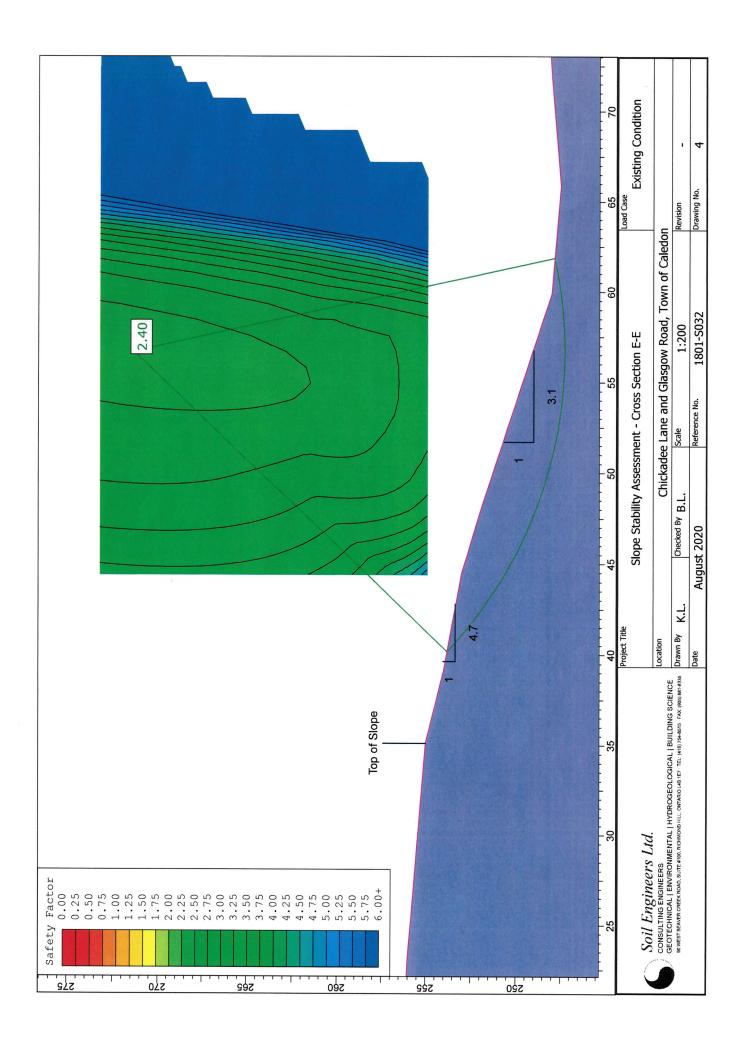
PROJECT DESCRIPTION: Proposed Residential Development

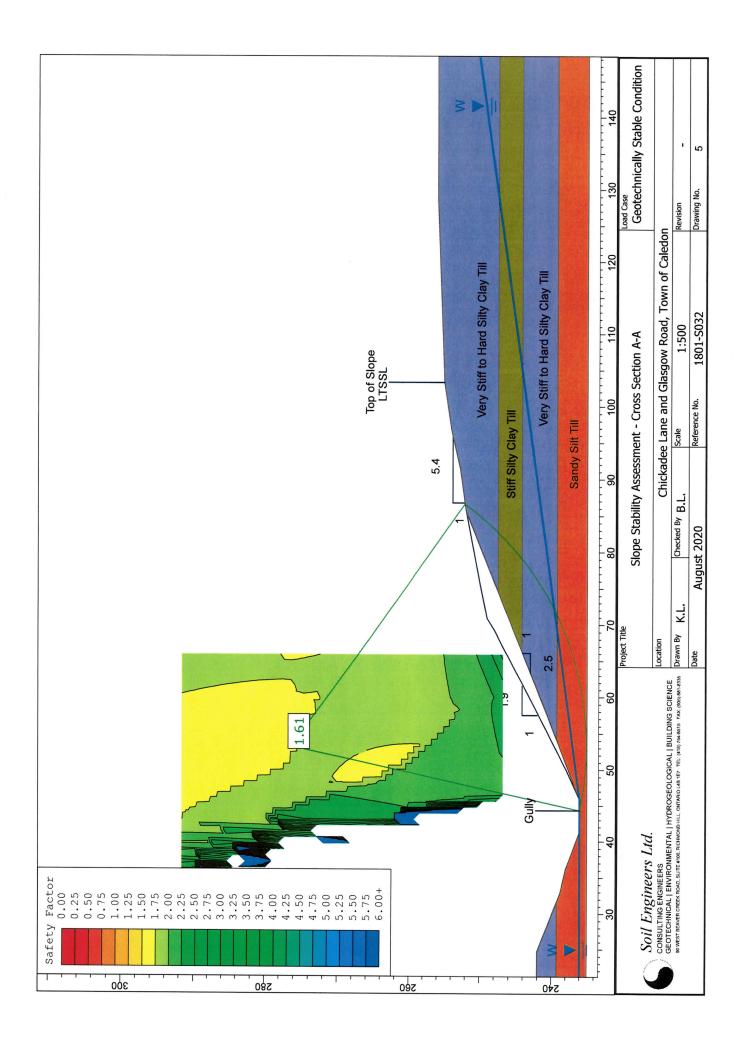
METHOD OF BORING: Flight-Auger

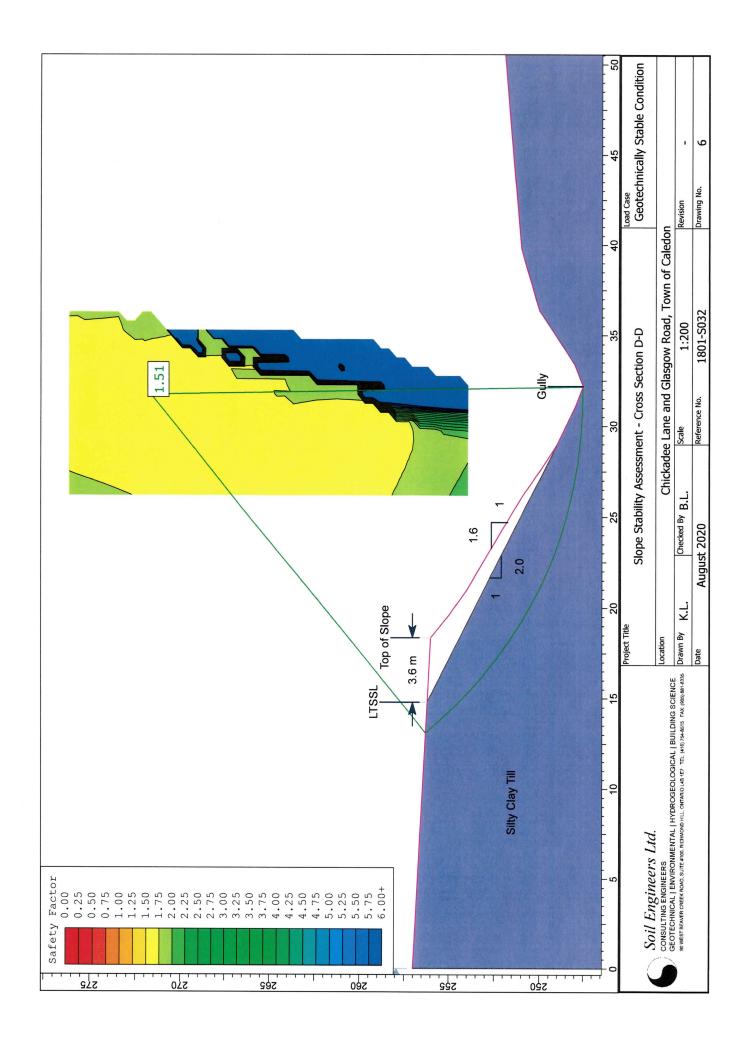

(Solid-Stem)


PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon


DRILLING DATE: January 26, 2018


		:	SAMP	LES		10	• D:	ynan 30		one (blows 70		m) 90			Δttc	rho	ra l	imite				
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)	X Shear Strength (kN/m²) 50 100 150 200 Penetration Resistance (blows/30 cm) 10 30 50 70 90								Atterberg Limits PL LL Moisture Content (%) 10 20 30 40								WATER LEVEL	
255.8	Ground Surface					1																	
255.5	260 mm TOPSOIL				0			T			Ī	I					Ι	3	1			<u> </u>	
0.3	Brown, very stiff to hard	1	DO	5		0	+	+	+	\vdash	-	+	-	-	+		+-			-		Dry on completion	
	SILTY CLAY TILLweathered				-		+	+-	+	\vdash	-	+	+-	\vdash	+		+	\vdash	-	+		ble	
	trace of gravel	2	DO	28	1 -			5_			士				士	17						, no	
	occ. sand seams, cobbles and boulders		00		」' :	1	- -`	1_	_			_			\perp		1						
]	1 +		╁	+-	-	+	+	-	\vdash	+	+	+-	\vdash	-	+-	\vdash	, , , , , , , , , , , , , , , , , , ,	
		3	DO	35		\vdash	\dashv				+	+	\vdash	\vdash	+	16	+	\vdash	+	+	\vdash	۵	
					2 -			ľ															
					- :			+	╄-		_		-	$\vdash \downarrow$	_	4.	_	\sqcup	_ _				
		4	DO	38] _	1+	-	+	╅-	$\left - \right $	-	+-	┢	\vdash		1		\vdash	+	-			
			100	- 30] :	1	+	+			\dashv	+	\vdash	\vdash	\dashv	+	+	+	+	+			
					3 -																		
]		5	DO	29]	+		 	-	\vdash	-	+-	_	$\vdash \vdash$	_	1	8			\perp			
		3	50	29]	+		Ψ-	\vdash		+	+-	-	\vdash	-	+	-	\vdash	+	+	\vdash		
					:	1	\dashv	+	\vdash	\Box	+	+	\vdash	\vdash	+	+	+	\vdash	_	+-			
					4 -																		
					" :	1	\perp	4_		Ш	_				1	L							
						\vdash	+	┼	\vdash	\vdash	-	+-	-		+	- -	+	\vdash	-	+-	-		
1			50	~~	1	\vdash	+	+-	+	H	\dashv	+	\vdash	\vdash	+	15	╁	H	-	+	-1		
		6	DO	37	5 -			†€	7		\top	\top	П	\vdash	十	•	\vdash	H	+	+			
								1			\bot	I											
					-	\vdash		+			\dashv	+	-	-		-	+	-		+			
					:	\vdash	+	+	\vdash		+	+	\vdash	\vdash		+	+	\vdash	+	+	-		
					6 -									\Box	\perp						\dashv		
	bro <u>w</u> n				" :	Ш						I			1	1	8						
249.3	grey	7	DO	24		\vdash	0	4-	\vdash	\vdash	-	4-	\vdash	-	+	_ 6	4	\vdash		-			
6.5					1 :	\vdash	+	╁	\vdash		+	+	\vdash	\vdash	+		+-	-		+			
	END OF BOREHOLE				7 -		\top	†			十	\top							\top	T			
					':	\sqcup	_	4_	\perp			\perp											
					1 -	\vdash	+	╁	\vdash	-	-	+		-	+	+	-	\vdash	+	+	-1		
					:		+	╁	H	\vdash	+	+	\vdash	-	\dashv	+	\vdash	\vdash	+	+	-		
					8 -																		
					" :	\sqcup	_	ـــ	\perp		_	-			4				\perp	\Box			
					-	1 +		╁	\vdash		+	-	-	-+			\vdash	\vdash	-	+			
					:	\vdash	+	+	\vdash	-	+	+		$\vdash \vdash$	+	+	+	$\vdash \vdash$	+	+	\dashv		
					9 -									丁	土								
							_	+	\vdash	\dashv	+	+-	\vdash	-	+	1			- -	+	_		
					-	\vdash	+-	+	\vdash	+	+	+-	\vdash	\dashv	+	+	+-	+	+	+	\dashv		
] :			1			\dashv	\top		\dashv	+	+	$\dagger \exists$	\dashv	+	+ +	-1		
					10 -																		
					' :		+	+	$\left - \right $	\dashv	4	-	Н	-	+		\vdash	4		+	_		
					-	\vdash	+	+	\vdash	\dashv	+	+	\vdash	+	+	+-	+	+	+	++	-[
					:		\perp	\perp	\vdash	\dashv	+	+		\dashv	+	+	+	\dashv	+	++	\dashv		
			, ,		11 -				1			7			_								





APPENDIX "C"

Hydrogeological Investigation - Chickadee Lane Rounding Out Area "B", Bolton Ontario, Palmer Environmental Consulting Group Inc., dated October 12th 2018, Project No. 170163

74 Berkeley St,, Toronto, Ontario M5A 2W7 t 647-795-8153

Hydrogeological Investigation – Chickadee Lane Rounding Out Area B

Bolton, Ontario

PECG Project # 170163

Prepared ForBrookvalley Project Management Inc.

October 12, 2018

74 Berkeley St,, Toronto, Ontario M5A 2W7 t 647-795-8153

October 12, 2018

Frank Filippo
Director, Land and Construction
Brookvalley Project Management Inc.
137 Bowes Road
Concord, ON L4K 1H3

Dear Mr. Filippo:

Re: Hydrogeological Investigation – Chickadee Lane Rounding Out Area B

Project #: 170163

Palmer Environmental Consulting Group Inc. is pleased to submit the attached report describing the results of our Hydrogeological Investigation for the proposed land development with the Chickadee Lane Rounding Out Area B, in Bolton, Ontario.

Please let us know if you have any questions or comments on this submission.

Thank you for the opportunity to work with your team on this project.

Yours truly,

Palmer Environmental Consulting Group Inc.

Jason Cole, M.Sc., P.Geo.

1. Colo

Principal, Senior Hydrogeologist

Table of Contents

Letter

1.	Intro	duction	1
	1.1	Scope of Work	
2.	Pogia	onal Existing Conditions	•
∠.			
	2.1	Physiography and Regional Geology	
	2.2	Hydrostratigraphy	
		2.2.1 Regional Aquifers and Aquitards	
	2.3	2.2.2 Water Supply Wells	
	2.3	Drainage	5
3.	Local	Existing Conditions	5
	3.1	Site Geology	
	0	3.1.1 Methodology	
		3.1.2 Results	
	3.2	Groundwater Levels	7
	3.3	Hydraulic Gradients	ç
	3.4	Hydraulic Conductivity	. 11
	3.5	Groundwater - Surface Water Interactions	. 12
	3.6	Groundwater Chemistry	. 12
4.	Wate	r Balance	14
	4.1	Methodology	12
	4.2	Pre-Development Water Balance Results	
		The Bevelopment viater Balance Results	
5.	Deve	Iopment Considerations	22
	5.1	LID Considerations	. 22
	5.2	Source Water Protection	
	5.3	Permit To Take Water (PTTW)	. 23
6.	Sumr	mary and Conclusions	24
7.	Signa	atures	25
8	Refer	rences	26

List of Figures

Figure 1. Site Area	2
Figure 2. Surficial Geology	
Figure 3. Recorded Groundwater Levels in MW-5 and MW-2S	
Figure 4. Groundwater Flow	
Figure 5. Site Topography	
Figure 6. Pre-Development Land Use	
Figure 7. Pre-Development Infiltration	
Figure 8. Pre-Development Runoff	21
List of Tables	
Table 1. Monitoring Well Installation Details and Groundwater Levels	•
	ხ
	6
Table 3. Hydraulic Conductivity Results	6 11
Table 2. Mini Piezometer Installation Details, Water Levels, and Hydraulic Gradients Table 3. Hydraulic Conductivity Results Table 4. Groundwater Chemistry Results	6 11 12
Table 3. Hydraulic Conductivity Results	6 11 12
Table 3. Hydraulic Conductivity Results	6 11 12

List of Appendices

Appendix A. Concept Site Design (HPG, 2018)
 Appendix B. Borehole Logs (Soil Engineers Ltd., 2018)
 Appendix C. Single Well Response Test Analyses (PECG, 2018)
 Appendix D. Groundwater Chemistry Certificate of Analysis

1. Introduction

Palmer Environmental Consulting Group Inc. (PECG) was retained by Brookvalley Project Management Inc. on behalf of Zancor Homes to complete a Hydrogeological Investigation for the proposed Chickadee Lane residential land development project in Bolton, Ontario (the "project" or the "site"). The property is referred to as the Chickadee Lane Rounding Out Area B (**Figure 1**) and is part of the Bolton Residential Expansion Lands (BRES) Official Plan Amendment (ROPA 30). Prior to submission of a Draft Plan, these lands must be brought into the Bolton urban boundary through completion of a Comprehensive Environmental Impact Study and Management Plan (CEISMP), inclusive of a hydrogeological assessment. This report was prepared to support the CEISMP process.

The site is located on an approximately 10.08 ha parcel of land, with 2.75 ha located within the Provincially designated Greenbelt Lands. The Concept Plan for the proposed Chickadee Lane Rounding Out Area B by Humphries Planning Group Inc. (HPG) is presented in **Appendix A**.

The subject property is located within the Humber River Watershed, under the jurisdiction of the Toronto and Region Conservation Authority (TRCA). The purpose of the hydrogeological investigation is to determine the existing hydrogeological conditions and identify potential impacts of the proposed development to local surface water and groundwater resources. This hydrogeological assessment was undertaken in tandem with the geotechnical investigation completed by Soil Engineers Inc. and includes an assessment of soil and groundwater conditions including groundwater levels, groundwater flow, aquifers and aquitards, local water use, a pre-to-post development water balance, and recommendations for Low Impact Development (LID) mitigation measures.

1.1 Scope of Work

The scope of work for PECG's Hydrogeological Investigation to support site design and permitting includes the following main tasks:

- Characterize the surface and sub-surface geological and hydrogeological conditions through use
 of data from six (6) boreholes and four (4) groundwater monitoring wells as installed by Soil
 Engineers Ltd.;
- Develop and complete hydraulic testing at monitoring wells (response test) to estimate hydraulic conductivity;
- Complete one (1) groundwater chemistry sample for comparison with Ontario Drinking Water Standards (ODWS);
- Installation of one (1) drive-point piezometer to assess surface water/ groundwater interactions in the tributary to the Humber River located north of the site:
- Monthly groundwater and MP water level monitoring over a 1-year period to confirm seasonality of site water levels;
- Instrumentation of two (2) wells with Solinst Leveloggers to continuously record groundwater levels:
- Conduct a pre-to-post-development site water balance; and,
- Provide a Hydrogeological Investigation Report to support preliminary site design, CEISMP reporting.

2. Regional Existing Conditions

2.1 Physiography and Regional Geology

The site is located within the South Slope physiographic region, characterised as a slightly drumlinized region that lies to the south of the Oak Ridges Moraine and north of the Peel Plain (Chapman and Putman, 1984).

The surficial geology of the site, as described by Ontario Geological Survey (OGS) mapping, is characterized as Halton Till with clayey to silt-textured sediments derived from glaciolacustrine deposits or shale (**Figure 2**). The Halton Till overlies the Newmarket Till, and where present, these tills are separated by the sandy deposits of the Oak Ridges Moraine.

Paleozoic bedrock at the site is characterized by the shale and limestone of the Georgian Bay Formation. Bedrock was not encountered during the most recent borehole drilling, and based on Ministry of Environment, Conservation and Parks (MECP) water well database information, this formation is encountered at approximately 156 m below ground surface, or 100 meters above sea level (masl) at the site location.

2.2 Hydrostratigraphy

2.2.1 Regional Aquifers and Aquitards

Hydrostratigraphic units can be classified into two distinct groups based on their capacity for permitting groundwater movement: an aquifer or an aquitard. An aquifer is generally defined as a layer of soil permeable enough to conduct a usable supply of water, while an aquitard is a layer of soil that inhibits groundwater movement due to low permeability. The major regional hydrostratigraphic units that control groundwater at the site are described below.

The *Halton Till* and underlying *Newmarket Till* are often grouped together in this area and act as significant regional aquitards of fine textured sediments. The low permeability of the unit limits groundwater recharge and contaminant migration, however the presence of sand and gravel within the tills can also act as confined aquifers on a local scale in some areas. The bulk hydraulic conductivity (K) of these units ranges from approximately 5x10⁻⁶ m/s to 5x10⁻⁸ m/s (CAMC-YPDT, 2006). Groundwater flow within these units is typically downwards towards more permeable units. Within the study area, Halton Till sediments are approximately 20 m to 40 m thick, making it the dominant aquitard unit.

The **Oak Ridges Moraine (ORM)** acts as a major aquifer and recharge complex within the region. Near the study area it is expected that the ORM is between approximately 1 m and 15 m in thickness and is confined by the lower permeability Halton Till and Newmarket Till aquitards.

The *Thorncliffe Aquifer* consists of glaciofluvial and glaciolacustrine sediments of stratified sands, silty sand, and silt and clay. This aquifer is confined by the *Newmarket Till* aquitard and is approximately 5 m to 10 m in thickness near to the study area. Overall groundwater flow within this aquifer is south towards Lake Ontario or within discharge areas in major river valleys.

2.2.2 Water Supply Wells

Based on a search of the MECP water well database, 18 water wells were identified within a 500 m radius of the site, none of which exist within the Region of Peel Wellhead Protection Area (WHPA). Of these wells, 9 are used for domestic water supply. The remaining 9 wells are either abandoned or used as observation wells.

2.3 Drainage

The study area lies within the Main Humber River Subwatershed, which forms the northernmost and largest portion of the Humber River Watershed, contributing 32% of total baseflow to the overall watershed. The subwatershed encompasses three secondary subwatersheds systems, Centreville Creek, Cold Creek, and Rainbow Creek. The subwatershed drains an area of approximately 357 km² and has the highest baseflow to total flow ratios (Baseflow Index, BFI) of the five primary subwatersheds that constitute the Humber River Watershed. This ratio indicates a largely groundwater dominated flow regime and a greater likelihood to contain cold water habitats for aquatic organisms (TRCA, 2008-a).

The study area does not contain any critical habitat for aquatic species listed under the species at risk act (SARA; DFO, 2017).

The subwatershed consists of primarily agriculture (40.8%) and natural (46.3%) land, and of the five primary subwatersheds has the lowest urban use (12.1%) and contains the majority of identified higher quality terrestrial habitat. However, the subwatershed is rated as fair for quality distribution of natural cover, and the lower reach is currently undergoing urbanization as part of municipal growth requirements.

3. Local Existing Conditions

3.1 Site Geology

3.1.1 Methodology

Borehole drilling at the site for hydrogeological purposes was conducted from February 23 to February 29, 2018. Fourteen boreholes were drilled under the supervision of Soil Engineers Ltd. staff to depths ranging from 6.10 mbgs to 32.0 mbgs. Borehole drilling was completed using solid stem augers, and six boreholes were completed as 51 mm diameter schedule 40 PVC pipe monitoring wells with 1.5 m long screens (MW2-S/N, MW2-D, MW5, MW6, MW12-S/N, and MW12-D). MW2S/D and MW12S/D were installed as nested wells, with S and D indicating shallow or deep well, respectively. The location of each monitoring well is shown on **Figure 1**, and well details are provided in **Table 1**. Borehole logs are presented in **Appendix B**.

A watercourse was noted in the Greenbelt lands to the northwest of the site which contributes to the tributary to the Humber River (**Figure 1**). One mini piezometer (MP1) was installed within the feature to measure the magnitude and direction of the hydraulic gradient within the tributary (**Table 2**).

Table 1. Monitoring Well Installation Details and Groundwater Levels

	Surface	:	;	Screened				Water	Water Level (mbgs)	(sbq		
MW ID	MW ID Elevation (masl)	stick Up (m)	Deptn (mbgs)	Interval (mbgs)	Screened	March 15, 2018	March 19, 2018	April 4, 2018	May 17, 2018	April 4, May 17, June 13, July 19, 2018	July 19, 2018	August 27, 2018
MW2-S	256	0.79	7.60	6.10 – 7.60	Silty Clay Till	0.85	0.97	0.12	0.95	2.62	3.87	4.72
MW2-D	256	0.73	19.80	18.30 – 19.80	Silty Clay Till	11.94	11.88	11.98	11.35	11.81	12.72	13.70
MW5	261	0.64	5.98	4.60 – 6.10	Silty Clay Till	0.89	0.94	0.56	0.88	0.69	1.64	2.50
MW6	259	0.68	4.59	4.60 – 6.10	Silty Clay Till	0.47	1.80	0.48	0.47	1.05	1.83	1.26
MW12-S	256	0.71	9.16	6.10 – 7.60	Silty Clay Till	90.9	8.71	8.07	4.60	3.84	4.26	4.73
MW12-D	256	08:0	30.20	30.50 – 32.00	Silty Clay Till	23.29	29.12	21.85	14.30	22.31	25.33	25.93

Table 2. Mini Piezometer Installation Details, Water Levels, and Hydraulic Gradients

MP ID	Surface Elevation (masl)	Stick Up (m)	Depth to Screen (m)	Water Level April 4, May 17, June 13, July 19, (mbtoc)* 2018 2018 2018	April 4, 2018	May 17, 2018	June 13, 2018	July 19, 2018	August 27, 2018
				<u>r</u>	1.50	1.11	1.00	1.03	1.02
2	040			Out	0.91	0.94	Dry	Dry	Dry
	243	8.	0.83	Hydraulic Gradient	-0.69	-0.20			

^{*}In/Out measurements are expressed in meters below top of casing (mbtoc), Hydraulic gradients are unitless

3.1.2 Results

Surficial geology at the site is consistent with regional OGS mapping (**Figure 2**). The overall lithology of the silty clay till unit is consistent with the Halton Till, containing trace gravel and occasional sand seams, cobbles and boulders. This unit of silty clay till was encountered throughout the length of all boreholes, indicating a very thick aquitard unit stretching across the area. Site stratigraphy encountered during borehole drilling is summarized below.

Topsoil: All boreholes encountered topsoil ranging in thickness from 0.16 m to 0.46 m.

Earth Fill: Five boreholes encountered earth fill beneath the topsoil ranging in thickness from 0.39 m to 1.96 m. This fill is generally described as brown to grey silty clay with pockets of topsoil and occasional rootlets, wood debris, and brick fragments.

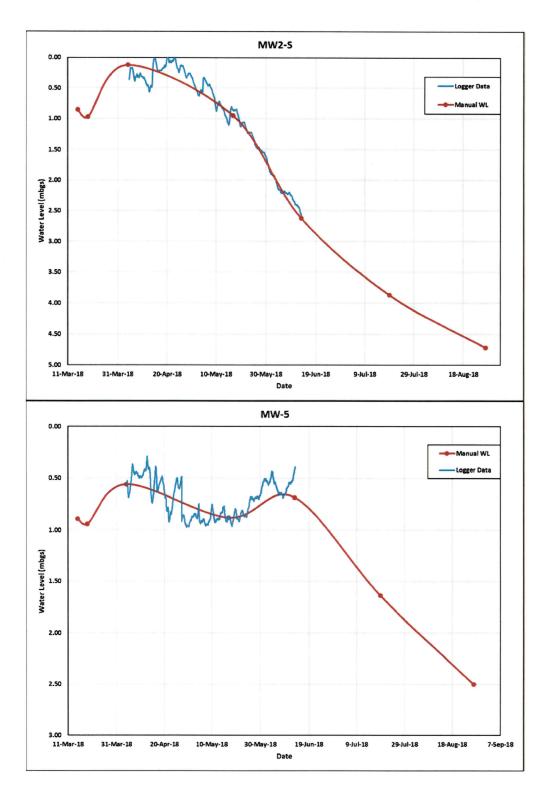
Silty Clay Till: Sediments of silty clay till from the Halton Till formation were encountered in all boreholes underlying either topsoil or earth fill. The thickness of this unit ranged from 4.10 m to 31.54 m, and the bottom of this unit was not encountered during drilling. This unit is expected to be approximately 40 m thick in this area.

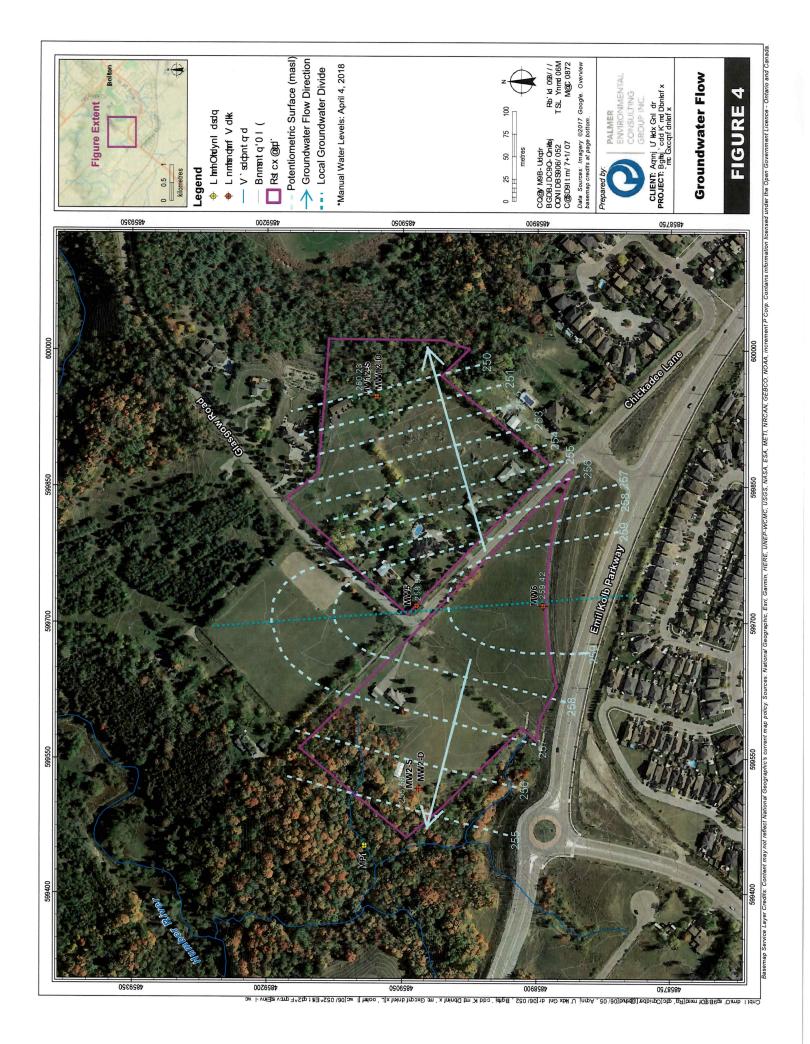
3.2 Groundwater Levels

Groundwater levels in the monitoring wells were measured on March 15th and 19th, April 4th, May 17th, June 13th, July 19th, and August 27th, 2018. The shallow groundwater table ranged in depth from 0.12 mbgs (MW2-S on April 4, 2018) to 8.71 mbgs (MW12-S on March 19, 2018), and the deep groundwater table ranged from 11.35 mbgs (MW2-D on May 17, 2018) to 29.12 mbgs (MW12-D on March 19, 2018), as indicated in **Table 1**.

The shallow water levels measured in some wells indicate the presence of perched water table conditions at the site. These conditions arise due to the very poor drainage of the Halton Till aquitard to deeper material that results in slow downward percolation rates and an increased response of shallow soils to surface water inputs. The actual level of the water table ranges from approximately 5 m to 8 m below ground surface across the site, indicated by a shift in soil colour from brown (oxidized) to grey (wet, low oxygen) seen in borehole logs for MW2, MW6, and MW12S/D (Appendix B).

It is therefore important to consider that groundwater levels are subject to fluctuations due to seasonality and precipitation input. As the monitoring events took place during the pre- and post-spring freshet, these values are unlikely to be representative of the seasonal highs, however late season manual ground water levels are likely indicative of seasonal lows (**Figure 3**).




Figure 3. Recorded Groundwater Levels in MW-5 and MW-2S

3.3 Hydraulic Gradients

Groundwater flow at the site generally follows topography and flows either in a northeast direction, or northwest towards the Humber River tributary depending upon site location (**Figure 4**). Based on these results, there is a local groundwater flow divide through the middle of the site. A mean horizontal groundwater water gradient of 0.02 is observed towards both the northwest (MW2) and northeast (MW12) of the site area.

A very strong downward hydraulic gradient was observed in the nested monitoring wells on the east (MW2 = -0.86 m/m) and west (MW12 = -1.22 m/m) margins of the site. This is expected due to the steep downwards topography of the Humber River Valley that is immediately adjacent to either of the well locations.

3.4 Hydraulic Conductivity

On March 19 and April 4, 2018, PECG personnel conducted single well response tests (i.e., slug tests) at four locations to determine the hydraulic conductivity (K) of the surrounding soils. Both rising head (RH) and falling head (FH) tests were conducted by creating a head change, through the insertion (FH Test) or removal (RH Test) of a 1-m long slug. The rate of recovery in each well was measured using a datalogger to record water levels at a 1 or 2-second frequency. During the tests, manual water level measurements were also recorded to gauge recovery. Tests were terminated when either 30 minutes had elapsed or an 80% recovery in water level was attained.

Hydraulic conductivity (K) values were calculated using the displacement-time data and were analysed using the Hvorslev (1951) method for confined aquifers, modelled using Aqtesolv™ software. The analysis results are presented in **Appendix C**, and the range of calculated hydraulic conductivity values are summarized in **Table 3**. Calculated K values ranged from 3.5x10⁻⁶ m/s to 4.4x10⁻⁸ m/s, with a sitewide geometric mean K of 6.1x10⁻⁷ m/s. This value is within the expected range for the Halton Till Aquitard (5x10⁻⁶ m/s to 5x10⁻⁸ m/s, **Section 2.2.1**).

Observed variations in K values measured across the site are likely due to spatial variations in soil horizons. For example, MW6 is screened within a sandier unit, resulting in higher K values (10⁻⁶ m/s), while MW5 is within a more continuous silt and clay unit, thus resulting in a lower observed hydraulic conductivity (10⁻⁸ m/s).

Hvdraulic Well Test Conductivity, **Aquifer Material Aquifer Type** K Geometric (m/s)Mean (m s-1) **MW2-S** FH 5.1x10⁻⁷ RH 6.3x10⁻⁷ MW2-D FH 1.2x10⁻⁷ RH 1.3x10⁻⁷ MW₅ FH 4.4x10⁻⁸ Silty Clay Till Confined 6.1x10⁻⁷ RH MW6 FH 3.5x10⁻⁶ RH 4.3x10⁻⁶ MW12-S FH RH MW12-D FH RH

Table 3. Hydraulic Conductivity Results

^{*}Response test data for MW12-S/D, and the RH component of MW5 was unable to be used for determination of K and was thus excluded from geometric mean K value

3.5 Groundwater – Surface Water Interactions

The Humber River tributary location northwest of the site showed a mean downward vertical hydraulic gradient of -0.45 m/m based on water level monitoring at MP1 (**Table 2**). Surface water flow was present within the feature on April 4th and May 17th, 2018, and absent during monitoring on June 13th, July 19th, and August 27th, 2018. This suggests that this feature is predominantly runoff supported and may be ephemeral.

3.6 Groundwater Chemistry

Groundwater chemistry samples were collected on March 15, 2018 from MW6 and analyzed for a suite of water quality parameters such as turbidity, TSS, pH, metals, and cations and anions. A summary table of the groundwater analysis results is presented on **Table 4**, with the Certificate of Analysis provided in **Appendix D**. Results were compared against Ontario Provincial Water Quality Objectives (PWQO) and indicate that the sample exceeds PWQO criteria for both total aluminum (AI) and total iron (Fe), most likely as a result of high TSS in the collected sample.

Table 4. Groundwater Chemistry Results

Parameter	Units	Detection Limit	PWQO	Concentration (MW4)
Physical Tests (Water)				
Colour, Apparent	CU	2.0		30.9
Conductivity	umhos/cm	3.0		941
Hardness (as CaCO3)	mg/L	10		461
pH	pH units	0.10	6.5-8.5	7.88
Redox Potential	mV	-1000		317
Total Dissolved Solids	mg/L	20		560
Turbidity	NTU	0.10		72.0
Anions and Nutrients (Water)				
Acidity (as CaCO3)	mg/L	5.0		30.0
Alkalinity, Total (as CaCO3)	mg/L	10		387
Ammonia, Total (as N)	mg/L	0.020		0.022
Bromide (Br)	mg/L	0.10		<0.10
Chloride (CI)	mg/L	0.50		55.8
Fluoride (F)	mg/L	0.020		0.226
Nitrate (as N)	mg/L	0.020		<0.020
Nitrite (as N)	mg/L	0.010		<0.010
Orthophosphate-Dissolved (as P)	mg/L	0.0030		<0.0030
Phosphorus, Total	mg/L	0.0030		0.0560
Sulfate (SO4)	mg/L	0.30		77.1
Bacteriological Tests (Water)				
Escherichia Coli	MPN/100mL	0	0	0
Total Coliforms	MPN/100mL	0		>201
Total Metals (Water)				
Aluminum (AI)-Total	mg/L	0.0050	0.075	1.24

Parameter	Units	Detection Limit	PWQO	Concentration (MW4)
Antimony (Sb)-Total	mg/L	0.00010	0.02	0.00017
Arsenic (As)-Total	mg/L	0.00010	0.005	0.00126
Barium (Ba)-Total	mg/L	0.00020		0.0943
Beryllium (Be)-Total	mg/L	0.00010	0.011-1.1	<0.00010
Bismuth (Bi)-Total	mg/L	0.000050		<0.000050
Boron (B)-Total	mg/L	0.010	0.2	0.027
Cadmium (Cd)-Total	ug/L	0.0000050	0.1-0.5	0.0000197
Calcium (Ca)-Total	mg/L	0.50		108
Cesium (Cs)-Total	mg/L	0.000010		0.000180
Chromium (Cr)-Total	mg/L	0.00050	CR(VI) 0.001; CR(III) 0.0089	0.00296
Cobalt (Co)-Total	mg/L	0.00010		0.00168
Copper (Cu)-Total	mg/L	0.0010	0.001-0.005	0.0026
Iron (Fe)-Total	mg/L	0.050	0.3	2.07
Lead (Pb)-Total	mg/L	0.000050	0.001-0.005	0.00144
Lithium (Li)-Total	mg/L	0.0010		0.0275
Magnesium (Mg)-Total	mg/L	0.050		46.3
Manganese (Mn)-Total	mg/L	0.00050		0.114
Molybdenum (Mo)-Total	mg/L	0.000050		0.00215
Nickel (Ni)-Total	mg/L	0.00050		0.00366
Phosphorus (P)-Total	mg/L	0.050		0.083
Potassium (K)-Total	mg/L	0.050		3.57
Rubidium (Rb)-Total	mg/L	0.00020		0.00324
Selenium (Se)-Total	mg/L	0.000050	0.01	0.000282
Silicon (Si)-Total	mg/L	0.10		8.78
Silver (Ag)-Total	mg/L	0.000050		<0.000050
Sodium (Na)-Total	mg/L	0.50		39.0
Strontium (Sr)-Total	mg/L	0.0010		0.431
Sulfur (S)-Total	mg/L	0.50		27.3
Tellurium (Te)-Total	mg/L	0.00020		<0.00020
Thallium (TI)-Total	mg/L	0.000010		0.000028
Thorium (Th)-Total	mg/L	0.00010		0.00039
Tin (Sn)-Total	mg/L	0.00010		0.00156
Titanium (Ti)-Total	mg/L	0.00030		0.0342
Tungsten (W)-Total	mg/L	0.00010		<0.00010
Uranium (U)-Total	mg/L	0.000010	0.005	0.00481
Vanadium (V)-Total	mg/L	0.00050		0.00305
Zinc (Zn)-Total	mg/L	0.0030	0.02	0.0071
Zirconium (Zr)-Total	mg/L	0.00030		0.00054

Note: PWQO - Provincial Water Quality Objectives

4. Water Balance

4.1 Methodology

A pre-development water balance was completed for the site using a monthly soil-moisture balance approach (Thornthwaite and Mather, 1957). Water balance calculations use factors such as monthly precipitation, temperature, and latitude to estimate site specific average annual evapotranspiration (ET). Long-term climate data (30-year duration, 1981 to 2010) were obtained from the meteorological station nearest to the study area, the Toronto Pearson International Airport (43°40' N, 79°37 W).

The site was divided into the two respective pre-development land use components of forested and agriculture/rural residential, and the mean annual water surplus (water available for infiltration and runoff processes) for each area was calculated by subtracting the mean annual evapotranspiration from the mean annual precipitation. To represent the silty clay till soils, soil moisture storage values of 250 mm and 400 mm were used to represent the respective agricultural/rural residential and forested components of the site.

The calculated mean annual water surplus was then partitioned using infiltration factors dependent on three components: soil type (**Figure 2**), topography/slope (**Figure 5**), and land use (**Figure 6**) (MOEE, 1995). Geographic Information System (GIS) mapping was used to divide the land use components into discrete sections and assign respective infiltration factors. Total average annual infiltration for each land use component was then determined by multiplying the appropriate water surplus value by the sum of the three individual factors. Infiltration factors used in the assessment are summarized in **Table 5**.

Table 5. Summary of Infiltration Factors (MOEE, 1995)

Area Description	Infiltration Factor
Surficial Geology	
Halton Till: Silty Clay Till	0.1
Topography/Slope (%)	
>10	0.001
10	0.05
5	0.1
2.5	0.15
1	0.2
0.5	0.25
0.1	0.3
Pre-development Landuse	
Agriculture/Rural Residential	0.1
Forest	0.15

A post-development water balance was then conducted using the same monthly soil-moisture balance approach (Thornthwaite and Mather, 1957) based on proposed site plan land use design provided by Humphries Planning Group (HPG, 2018; **Appendix A**). As impervious surfaces lack vegetation and prevent infiltration, the transpiration (T) component in the water balance is removed over these areas. Therefore, water available for both runoff and infiltration is considered as precipitation minus evaporation (P-E) in these areas. Evaporation over impervious areas is estimated to be approximately 10% of annual precipitation. Over pervious vegetated surfaces, the available water for infiltration and runoff is considered as precipitation minus evapotranspiration (P-ET).

Available water for infiltration over pervious areas was assumed to be the same from pre- to post-development scenarios as fill composition is not outlined in the proposed site plan.

Proposed methods to balance infiltration volumes post-development include a storm water management (SWM) pond, as well as parkland and natural heritage system areas at locations shown in **Appendix A**. The completed pre- to post-development water balance can be used to determine the appropriateness of these mitigation measures for this site, and whether additional Low Impact Development (LID) structures are recommended.

4.2 Pre-Development Water Balance Results

Based on 30-year climate normals, total precipitation at the site is approximately 786 mm/yr. This precipitation will either infiltrate through the unsaturated zone soils or be removed through evapotranspiration (ET). Actual ET (AET) is calculated based on potential evapotranspiration (PET) and soil-moisture storage withdrawal. Based on the Thornthwaite and Mather (1957) model, calculated AET for the Agricultural/Rural Residential and Forested land use areas is 499 mm/yr and 502 mm/yr, respectively (**Table 6**). These results are consistent with those reported by TRCA (2008-b) for the Humber River Watershed, which indicates a mean AET value of 525 mm/yr.

Monthly PET is estimated using monthly temperature data and is defined as water loss through evaporation or transpiration from a homogeneous vegetated area that does not lack water (Thornthwaite, 1948; Mather, 1978). Calculated PET for the total site area is 629 mm/yr (approximately 80% of total precipitation), while the soil moisture deficit is between 127 mm/yr (Forested) and 130 mm yr¹ (Agricultural/Rural Residential).

Estimated water surplus within the site ranges from approximately 284 mm/yr (Forested; 36% of total precipitation) to 287 mm/yr (Agricultural; 37% of total precipitation) and is divided into two components: infiltration and runoff. Using the method outlined in the MOE SWM manual and MOEE (1995), approximately 70% (401.77 mm/yr) of the surplus runs off, while the remaining 30% (169.23 mm/yr) infiltrates. Over the entire site area (100,800 m²), this translates to approximately 9,363 m³/yr of infiltration, and approximately 19,719 m³/yr of runoff (**Table 7**; **Figures 7 & 8**). These values are consistent with the reported low permeability of the Halton Till combined with the very steep terrain bordering the northwest and northeast sections of the study area.

Table 6. Available Water Surplus Values by Pre-Development Land Use

	Water Balance	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Precipitation	(mm)	51.8	47.7	49.8	68.5	74.3	71.5	75.7	78.1	74.5	61.1	75.1	57.9	786
Temperature	e (°C)	-5.5	-4.5	0.1	7.1	13.1	18.6	21.5	20.6	16.2	9.5	3.7	-2.2	8.18
Potential Eva (mm)	apotranspiration (PET)	0	0	0.3	34.7	78.4	117.5	140.5	123.8	81.5	40.5	11.8	0	628.9
P – PET		52	48	50	34	-4	-46	-65	-46	-7	21	63	58	157
	Change in Soil Moisture Storage	0	0	0	-34	-38	-31	-16	11	33	36	27	0	-12
Forested	Soil Moisture Storage	400	400	400	366	328	297	281	292	325	361	388	400	-
Area (400 mm)	Actual Evapotranspiration (AET)	0	0	0	35	112	103	92	67	42	40	12	0	502
	Soil Moisture Deficit (mm)	0	0	0	0	-34	15	49	57	40	0	0	0	127
	Surplus (P - AET)	52	48	50	34	-38	-31	-16	11	33	21	63	58	283.6
Agricultural/	Change in Soil Moisture Storage	0	0	0	-33	-35	-26	-14	10	27	33	26	0	-12
Rural	Soil Moisture Storage	250	250	250	217	182	156	142	152	179	212	238	250	-
Residential Area	Actual Evapotranspiration (AET)	0	0	0	35	109	98	90	68	48	40	12	0	499
(250 mm)	Soil Moisture Deficit (mm)	0	0	0	0	-31	20	51	56	34	0	0	0	130
	Surplus (P - AET)	52	48	50	34	-35	-26	-14	10	27	21	63	58	286.6

Table 7. Summary of Pre-Development Water Balance Analysis

Land Use	Area (ha)	GIS-Based Infiltration (mm/yr)	GIS-Based Runoff (mm/yr)	GIS-Based Infiltration (m³/yr)	GIS-Based Runoff (m³/yr)
Agricultural/Rural Residential Area	8.23	96.64	190.36	8,007	15,771
Forested Area	1.85	72.59	211.41	1,356	3,948
Site Total	10.08	169.23	401.77	9,363	19,719

5. Development Considerations

5.1 LID Considerations

The use of Low Impact Development (LID) measures are recommended as part of the overall stormwater management plan to help achieve at least 5 mm of stormwater retention and minimize changes to the existing water budget. As stated in *Low Impact Development Stormwater Management Planning and Design Guide Version 1.0* (2010) by CVC and TRCA,

"Developing stormwater management plans requires an understanding of the depth to water table, depth to bedrock, native soil infiltration rates, estimated annual groundwater recharge rates, locations of significant groundwater recharge and discharge, groundwater flow patterns and the characteristics of the aquifers and aquitards that underlay the area" (TRCA and CVC, 2010).

For sites with deep water table conditions and high permeability soils, LID practices can significantly improve infiltration and groundwater recharge to maintain the groundwater characteristics of the underlying aquifer. Conversely, for sites with low permeability soils and high-water table conditions, the amount of infiltration is limited by the saturated hydraulic conductivity of the soil (i.e., the rate at which water can infiltrate). Based on our understanding of site geology and groundwater conditions, it is expected that there is sufficient depth to the water table east of Blocks 17 to 20 and Blocks 9 to 14 (Street Townhouses). Additionally, this assumption assumes site grading following development remains the same as pre-development. It is possible that sufficient depth to the water table is achieved through the addition of at least 1 m of fill, particularly near the region of higher water table conditions located near the groundwater divide (**Figure 3**). This will assist in accounting for the apparent perched water table resulting from poor percolation through surficial material into the deeper actual water table at depths of 5 – 8 mbgs.

The surficial materials generally consist of low permeability silt and clay (10-8 m/s) therefore LID measures need to take this into consideration. Infiltration trenches, vegetated swales and bioretention areas can all be effective in low permeability soils to increase infiltration. Increasing topsoil depth can also be effective. It is recommended that site grading and rear yard grading should be directed to the tributaries of the Humber River and the associated supporting areas to maintain the water balance, where applicable. It is recommended that site-specific investigations to confirm site geology, groundwater conditions, and in-situ soil permeability are completed to assess the feasibility of infiltration LIDs.

5.2 Source Water Protection

The Clean Water Act (2006) classifies the hydrogeological vulnerability of areas into categories such as Significant Groundwater Recharge Areas (SGRA), Highly Vulnerable Aquifer (HVA), and Wellhead Protection Areas (WHPA). Based on available Source Water Protection Information Mapping compiled by the MECP, the site is not considered to be within a HVA or WHPA. A small portion of the site area that corresponds with Lot 27 (Existing Residential) of the concept plan is characterized as a SGRA with a low vulnerability score of 2. Based on the 2017 Tables of Drinking Water Threats for Pathogens and

Chemicals, no activities in these areas have been identified that could pose a threat to groundwater under various circumstances.

In addition, ecological studies completed by PECG did not identify any groundwater supported natural features (i.e., groundwater supported wetlands and watercourses) on or near the site. It is expected that vertical groundwater movement is restricted at the site due to the presence of the thick silty clay Halton Till aquitard unit (approximately 40 m thick, **Section 3.1.2**). The low permeability of the till (geometric mean K = 6.1x10⁻⁷ m/s, **Section 3.4**) greatly limits groundwater recharge and contaminant migration.

5.3 Permit To Take Water (PTTW)

Under the new EASR system, water takings that are greater than 50,000 L/day but less than 400,000 L/day do not require a Permit to Take Water (PTTW) from the Ministry of the Environment and Climate Change (MOECC), however the project must be registered on the EASR and meet a series of environmental protection criteria. Based on the low permeability and consistency of the Halton Till aquitard at the site, a PTTW is not expected to be required for construction dewatering.

6. Summary and Conclusions

The following summarizes the key results of the Hydrogeological Investigation and Water Balance Analyses conducted for the Chickadee Lane Rounding Out Area B Land Development:

- The Chickadee Lane study area lies within the South Slope physiographic region, characterized by silty clay loam sediments of the Halton Till. This was confirmed through OGS mapping of the site and borehole drilling results. On a regional scale the Halton Till acts as an unconfined aquitard, limiting groundwater recharge and discharge.
- Based on the single well response tests conducted in the monitoring wells (MW2-S/D, MW5, MW6, and MW12-S/D), the calculated geometric mean hydraulic conductivity value of the silty clay till is 6.1x10⁻⁷ m/s.
- Groundwater quality is considered typical for the area and shows an exceedance in PWQO
 criteria for total iron and total aluminum related to high TSS in the groundwater sample.
- Based on groundwater monitoring, shallow groundwater levels at the site are expected to be
 encountered between 0.12 mbgs to 8.71 mbgs, and deep groundwater levels range from 11.35
 mbgs to 29.12 mbgs. A groundwater flow divide is present running southeast to northwest
 through the center of the site, such that groundwater flow east of the divide flows northwest, and
 west of the divide flows northwest.
- One drive-point piezometer (MP1) was installed within the watercourse in the northwest corner of
 the site. Based on monitoring in April and May 2018, surface water flow was present within the
 feature, and there was a mean downward vertical hydraulic gradient within the MP (-0.45 m/m). In
 June, July, and August 2018 surface water flow was absent. The lack of surface water flow in late
 season, combined with the downwards hydraulic gradient indicates this feature is predominantly
 runoff supported.
- A water balance was completed for the site under both pre- and post-development scenarios.
 Results of these analyses showed that under pre-development conditions, approximately 9,363 m³/yr of the annual surplus infiltrates the soils, and 19,719 m³/yr becomes runoff. Following development and assuming no LID mitigation measures are implemented, a decrease in infiltration by approximately 5,179 m³/yr (-55%) and an increase in runoff by approximately 27,385 m³/yr (+139%) across the site is expected.
- The use of LID is recommended to increase infiltration post-development. Based on the site
 geology, depth to water table and proposed development plan, rear yard infiltration trenches are
 expected to be effective to support infiltration.

7. Signatures

This report was prepared and reviewed by the undersigned:

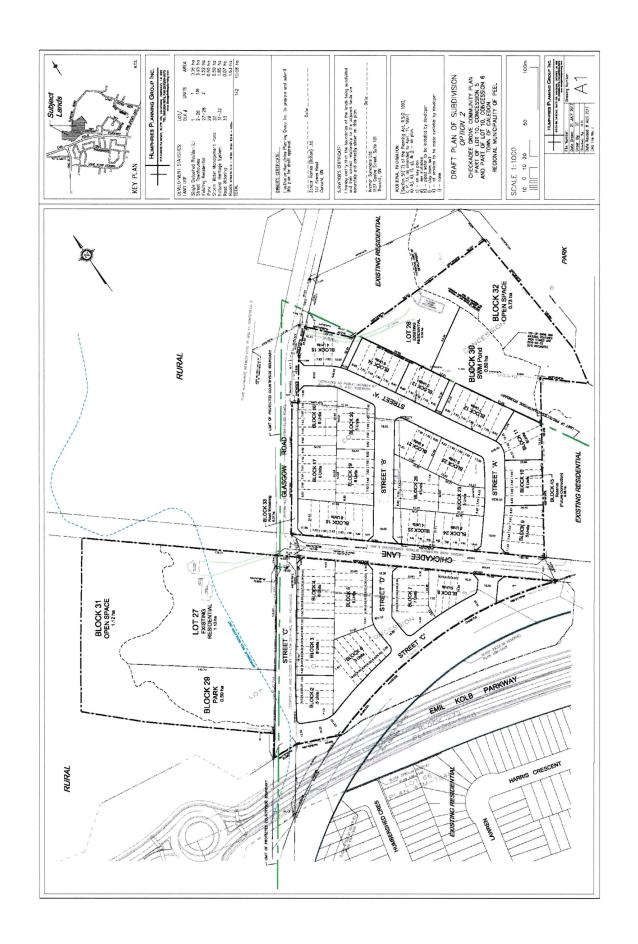
Prepared By:

Ryan Rolick, M.Sc., GIT Environmental Scientist

Reviewed By:

Jason Cole, M.Sc., P.Geo.

Principal, Senior Hydrogeologist


8. References

- Chapman, L.J. and D.F. Putnam. 1984. Physiography of Southern Ontario. Ontario Geological Survey, Special Volume 2: 270 p.
- Fisheries and Oceans Canada (DFO). 2017. Aquatic Species at Risk Maps: Ontario South West Map 11. (http://www.dfo-mpo.gc.ca/species-especes/fpp-ppp/onsw-soon-11-eng.htm).
- Kassenaar, J. D. C. and E. J. Wexler. 2006. Groundwater Modelling of the Oak Ridges Moraine Area. (YPDT-CAMC Technical Report No. 01-06).
- Mather, J.R., 1978. The climatic water budget in environmental analysis. Farnborough, Hants: Teakfield. xxi + 239 p.
- Ministry of the Environment and Energy (MOEE), 1995. Technical Information Requirements of Land Development Applications.
- Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review, Volume 38. 55-94 p.
- Thornthwaite, C.W. and J.R. Mather, 1957. Instructions and tables for computing potential evapotranspiration and water balance. Drexel Institute of Technology, Laboratory of Climatology. Publications in Climatology, Volume X. No. 3, 311p.
- Toronto and Region Conservation Authority (TRCA). 2008-a. Humber River: State of the Watershed Report.
- Toronto and Region Conservation Authority (TRCA). 2008-b. Humber River Watershed: Scenario Modelling and Analysis Report.

Appendix A

Chickadee Lane Rounding Out Area B Concept Plan (HPG, 2018)

Appendix B

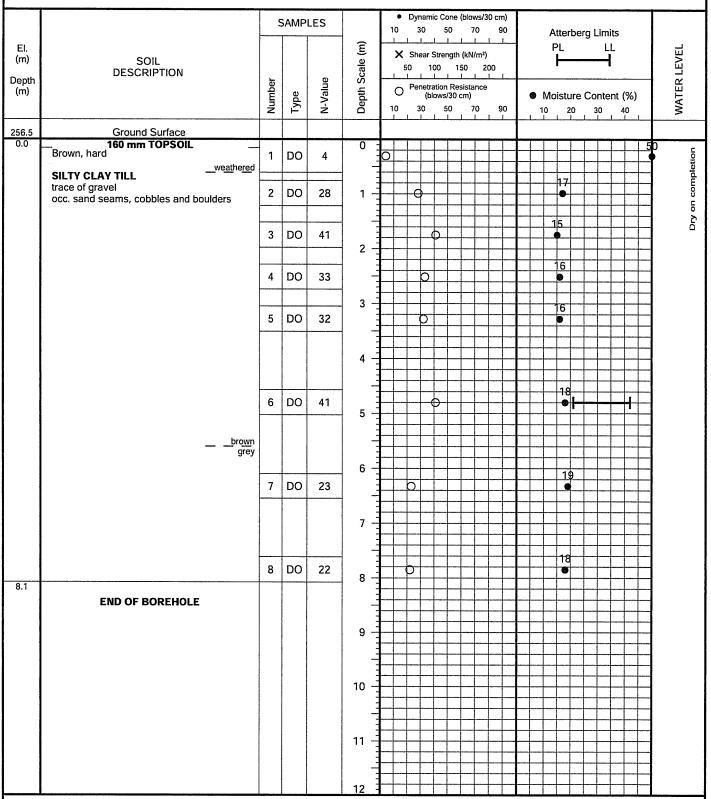
Borehole Logs

JOB NO.: 1801-S032

LOG OF BOREHOLE NO.: 1

FIGURE NO.:

1


METHOD OF BORING:

Flight-Auger (Solid-Stem)

PROJECT DESCRIPTION: Proposed Residential Development

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

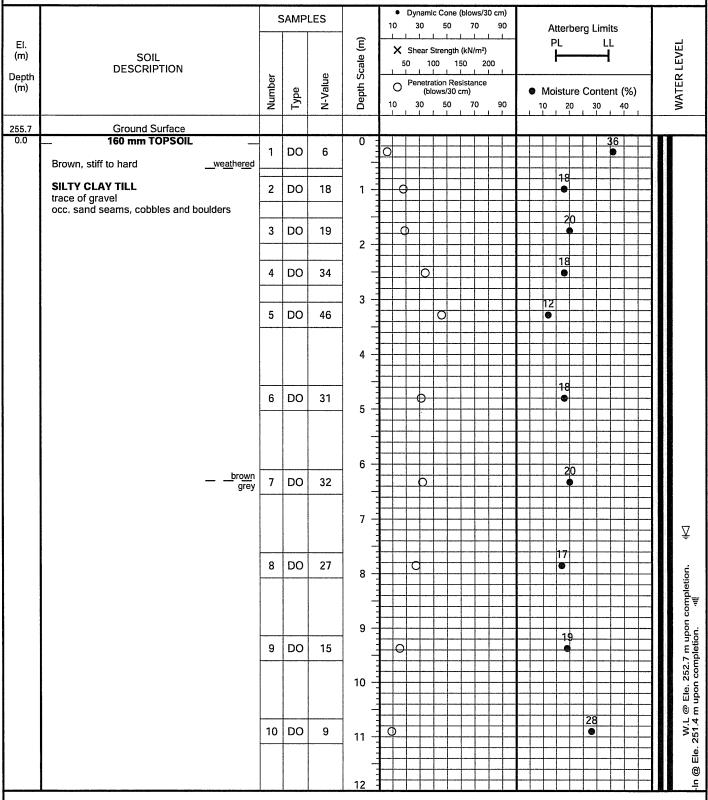
Soil Engineers Ltd.

JOB NO.: 1801-S032

LOG OF BOREHOLE NO.: 2

FIGURE NO.:

2


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING:

Flight-Auger (Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

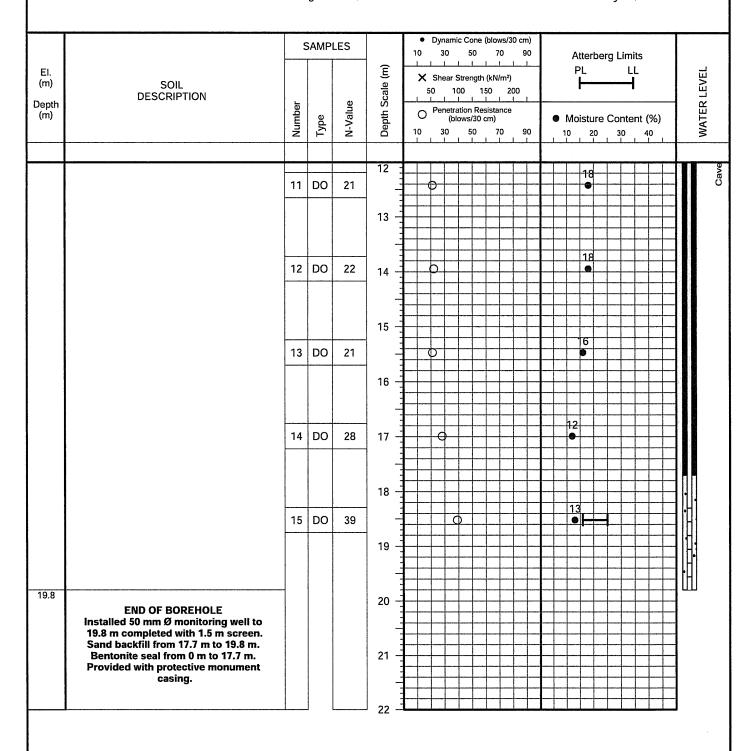
Soil Engineers Ltd.

JOB NO.: 1801-S032

LOG OF BOREHOLE NO.: 2

FIGURE NO.:

PROJECT DESCRIPTION: Proposed Residential Development


METHOD OF BORING: Flight-Auger

(Solid-Stem)

2

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

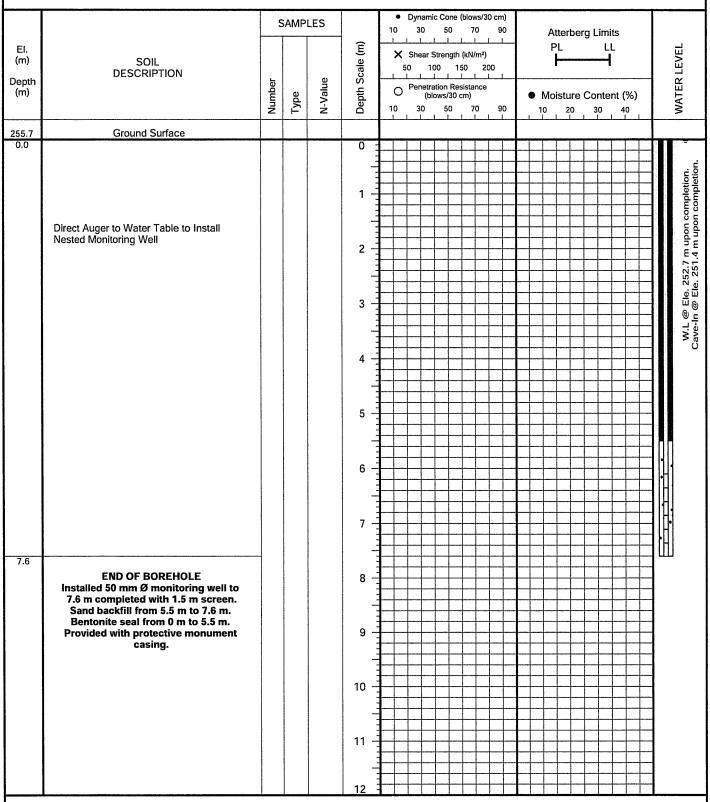
DRILLING DATE: January 26, 2018

Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 2N

FIGURE NO.:

2


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

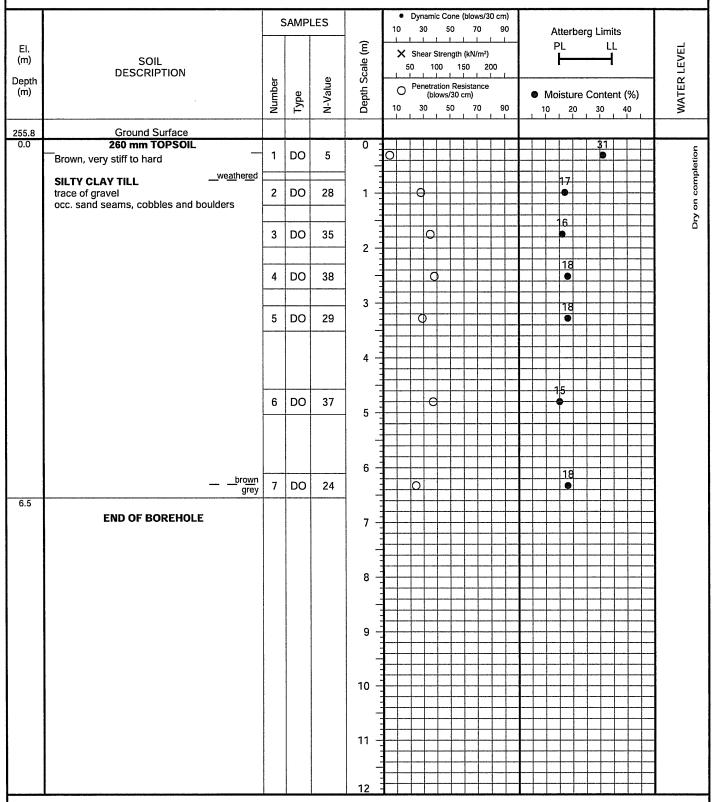
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

LOG OF BOREHOLE NO.: 3

FIGURE NO.:

3


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

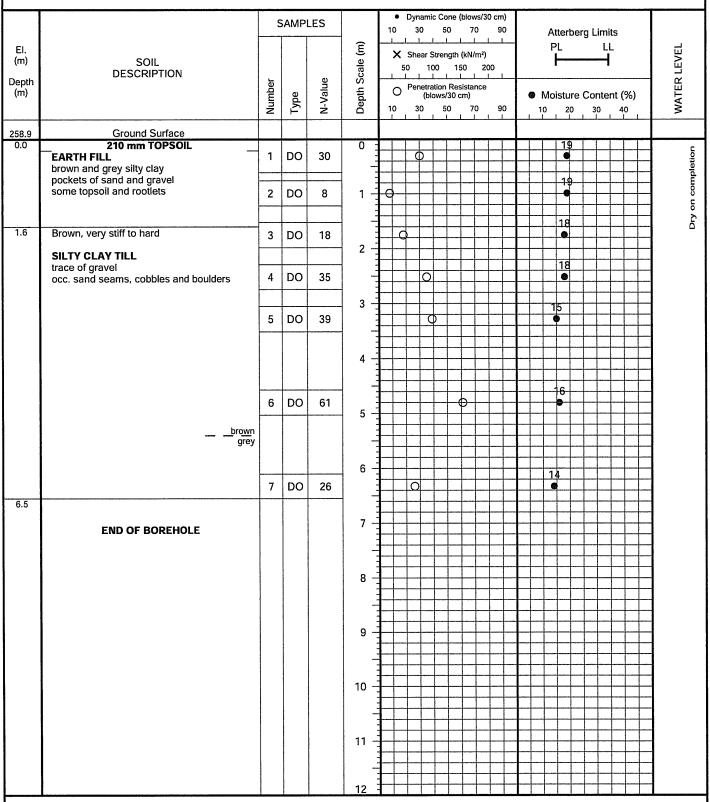
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 26, 2018

LOG OF BOREHOLE NO.: 4

FIGURE NO.:

4


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 29, 2018

LOG OF BOREHOLE NO.: 5

FIGURE NO.:

5

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING:

Flight-Auger (Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 29, 2018

		5	SAMP	LES		10		30	5	60	70		0		ļ	Atter	berg	g Lii	mits				
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Type	N-Value	Depth Scale (m)	L		hear	Strei 100 L ratior plows		kN/m 0	200 L :e	1			PL — oistu			LL - tent				WATER LEVEL
259.5	Ground Surface					П																	
0.0	440 mm TOPSOIL	1.	D.	_	0		T	Ţ	T		T	1		1	Ţ	T		3	2		1	H	
	EARTH FILL brown and grey silty clay	1	DO	5	-						$\frac{1}{2}$								33				
	pockets of topsoil some rootlets	2	DO	3	1 -	þ			+		1			+	+				•		1	100	
	occ. wood pieces	3	DO	6	2 -	0													34			The Part of the Pa	
2.4	Grey and brown, stiff to hard	4	DO	10	-									$\frac{1}{2}$		_	21						
	SILTY CLAY TILL trace of gravel				3 -		-	+	-		+	+		+	+	19	9	\dashv	+	\parallel			
	occ. sand seams, cobbles and boulders	5	DO	17	_		Q								\perp			1					
					4 -						+												Ā
			DO	69	-			+							Ŧ	18							
					5 -			$\frac{1}{2}$											#				pletion
					6 -																		on com
		7	DO	20]	1	þ	+	-		+			1	+	+	21	+				ш	dn ш /
6.5	END OF BOREHOLE Installed 50 mm Ø monitoring well to				7 -																		@ Ele. 255.7 m upon completion.
	6.1 m completed with 1.5 m screen. Sand backfill from 4 m to 6.1 m. Bentonite seal from 0 m to 4 m.			***************************************	-	1					#				#								W.L @ E
	Provided with protective monument casing.				8 -	1									+	+				+			>
					-						_					-					1		
					9 -																\exists		
					10 -	1										1							
					10 -	1	#					-		+	+	+	$\ \cdot\ $		+				
					11 -	1			_						#								
					-	1	+		+		\dashv	-			+	-			+				
					12	1	1	1	1		1	1		1		1		_	1		\Box		

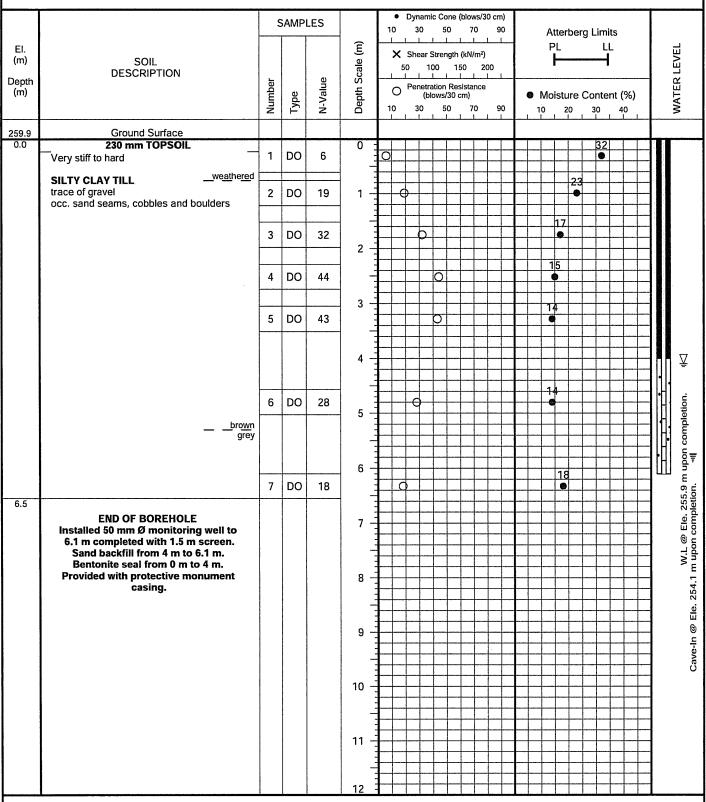
Soil Engineers Ltd.

Page: 1 of 1

LOG OF BOREHOLE NO.: 6

FIGURE NO .:

6


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

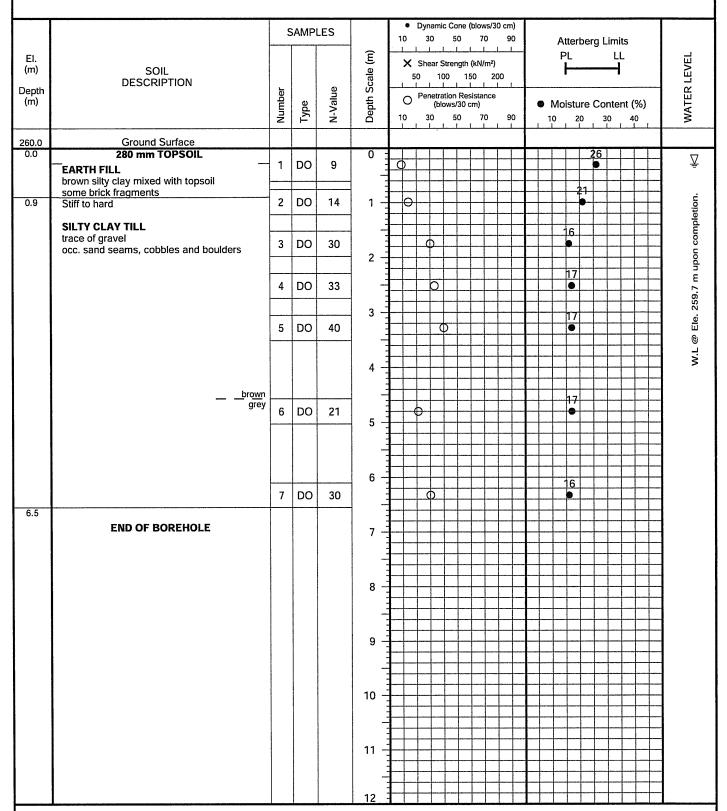
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 25, 2018

LOG OF BOREHOLE NO.: 7

FIGURE NO.:

7


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

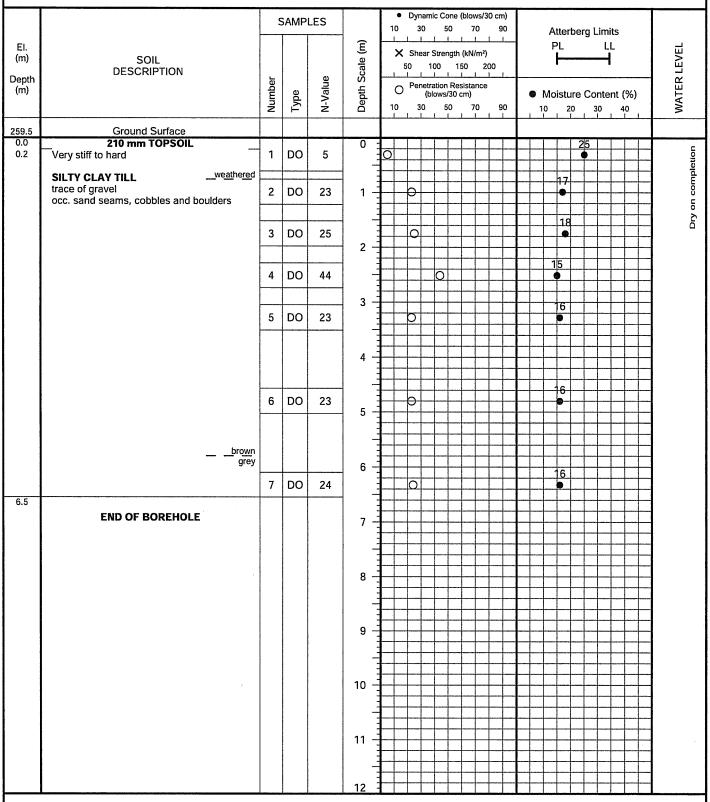
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

LOG OF BOREHOLE NO.: 8

FIGURE NO.:

8


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

LOG OF BOREHOLE NO.: 9

FIGURE NO.:

9

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

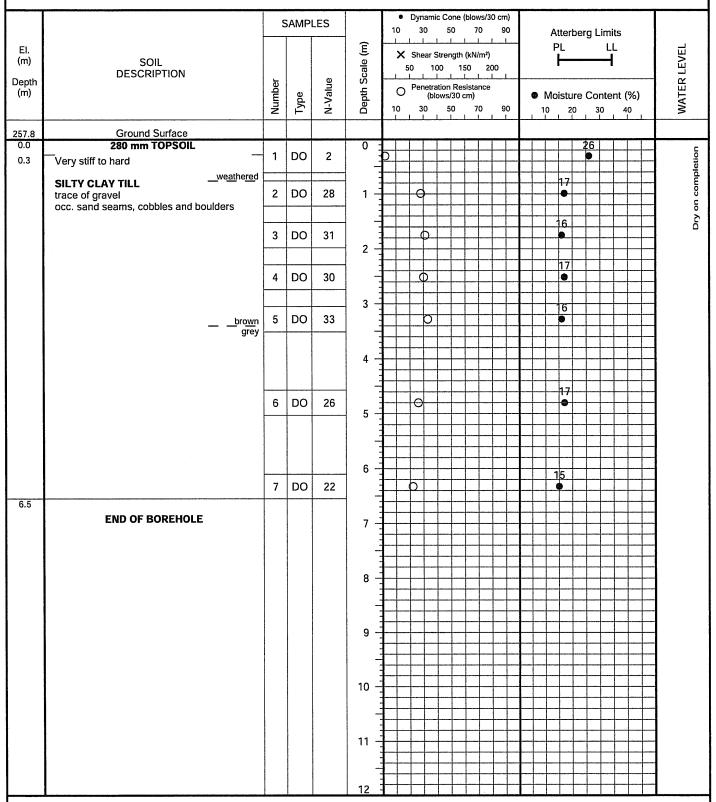
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

LOG OF BOREHOLE NO.: 10

FIGURE NO.:

10


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

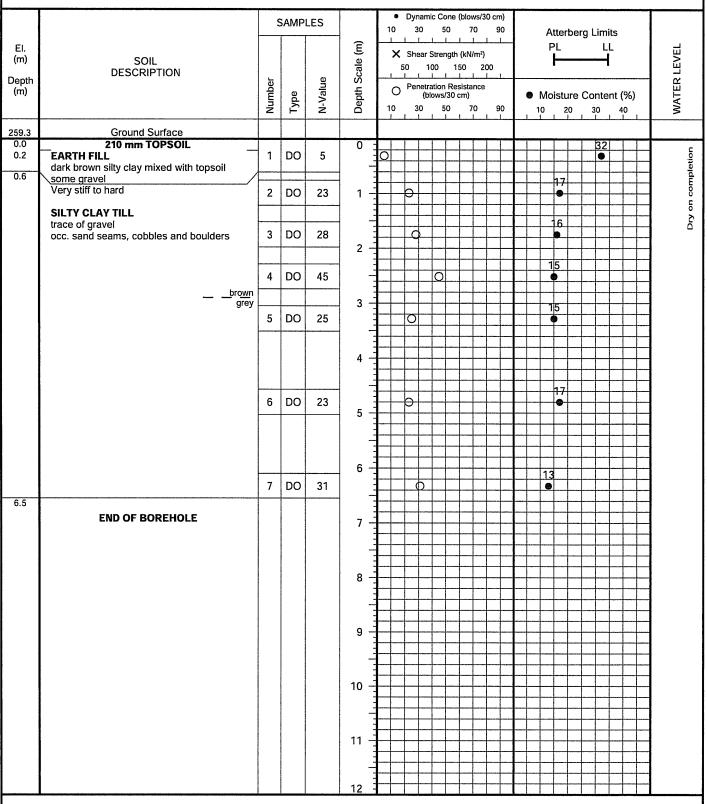
(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

LOG OF BOREHOLE NO.: 11

FIGURE NO .: 11


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 23, 2018

Soil Engineers Ltd.

Page: 1 of 1

LOG OF BOREHOLE NO.: 12

FIGURE NO.:

12

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 24, 2018

		5	SAMP	LES		1	0	Dyna 30)	50		70		m) 90			At	teri	oerg	g Lir	nits				
EI. (m) Depth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)		50 O)	10 etrat (blo	treng 0	Resis)	200 200 e	90			P 	L —	re (LL - ent	(%) 40			WATER LEVEL
258.3	Ground Surface					L																			
0.0	460 mm TOPSOIL	1	DO	12	0	1-,	5	\dashv	\dashv	+	+	+	+	+	-	-			\dashv	30	+	╁			
	Very stiff to hard weathered	<u> </u>] =			\exists	1	1	1	1	1	1					1	1	#	-			
	SILTY CLAY TILL	2	DO	10	1 -						\perp	\pm	\pm	+				6		士	士				
	trace of gravel		ВО	10	'					+	+	+	-	+	_				-	+	+	-			
	occ. sand seams, cobbles and boulders				-	Ħ						#	\perp					6		_	1			la de la composition della com	
		3	DO	38		1			9	+	+	+	+	+-	-	_		9	+	+	+	╁			
	·				2 -			\dashv	\dashv	1	1	4	Ŧ	-				6		-	4	-			
		4	DO	32	-	上			2		士	\pm	+					9			\perp		1	Ш	
					1 :	1	\vdash	-	_	-	+	+	+	╀	<u> </u>	-			-	+	+	+-			
		5	DO	39	3 -	丰				#	#	1	#	1				6		1	1	1	77		
		3	ВО	39] =	╁		-	0	+	+	+	+	+	-				-	\dashv	+	+			
						I					1	1	4							-	_	-			
					4 -	上				\exists	\pm	\pm	\pm	\perp						\perp		\perp			
						1		_	-	+	+	+	+	+	-	-	_		\dashv	_	+	_			
		6	DO	31		丰			5	1	#	†	t	\dagger				6						H	
		_	50	31	5 -	╄		\dashv	\dashv	\dashv	-	+	+	+	\vdash	-			\dashv	+	+	+	H		
:						丰					#	\downarrow							1					0250 PT-70	
					-	╂		\dashv	\dashv	\dashv	+	+	-	+	┞	_			\dashv	\dashv	+	+		no As Von	
					6 -	丰				4	1	#	1								1			of Dales and	
		7	DO	25		╊		0	_	\dashv	_	\dashv	+	+	1			17 •			\perp	1			
		<u> </u>			-	1			_	_	4	4	-	I	L	_			-		T.	\vdash	П	STATE OF STA	
					7 -	上					\pm	士	士	_							士			H	
					'	1			-	\dashv		-	-	+	-	-				-	-	-	H		
	<u>brown</u>					丰				寸	士	士		士	匚		12				丰				
	grey	8	DO	28		1-	-	-d	\dashv	\dashv	\dashv	+	+	+	┝	-	13		\dashv		+	+	Н		Δ
			-		8 -	丰			4			#	_	#	L					4	1	1			
			1		_	₽	-		-	+	+	+	+	+	┢	-	-	Н		\dashv	+	╁	Н	a de la companya de l	g.
						丰			_	4		4	-	1	F	_				-		_			oleti
			ļ		9 -	上					\exists	\perp		士			<u> </u>	6					口		m o
		9	DO	24		1		0	-	-	+	+	+	+	<u> </u>	-	-	9_		+	+	+-	H		. L
				1	1	丰				#	\exists	\downarrow	\pm	#	匚					#	#	#	口		ğ,
					10 -	╊	-			\dashv	+	+	+	+	╀╌	-	\vdash	-		\dashv	+	+	H		.2 п
						丰				_	1	#	1	#	1					#	#	1	口		252
			ļ		-	+			-	\dashv	\dashv	+	+	+-	 	-	-	17		+	+	+	H		<u>6</u>
		10	DO	18	11 -	1	С			\dashv	1	4	1	1				•			\downarrow	1			W.L @ Ele. 252.2 m upon completion.
			1		1	1				\exists	\pm	\pm	\pm	上			<u> </u>			\pm	\perp			H	۸.۲
					-	丰				\dashv	7	7	Ŧ	1	F	F	F		\dashv	\dashv	4	+	\square		ح
1					12	+				\dashv		\dashv	+	+	T	\vdash	T			\dashv	+		\Box		

LOG OF BOREHOLE NO.: 12

12

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

FIGURE NO.:

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

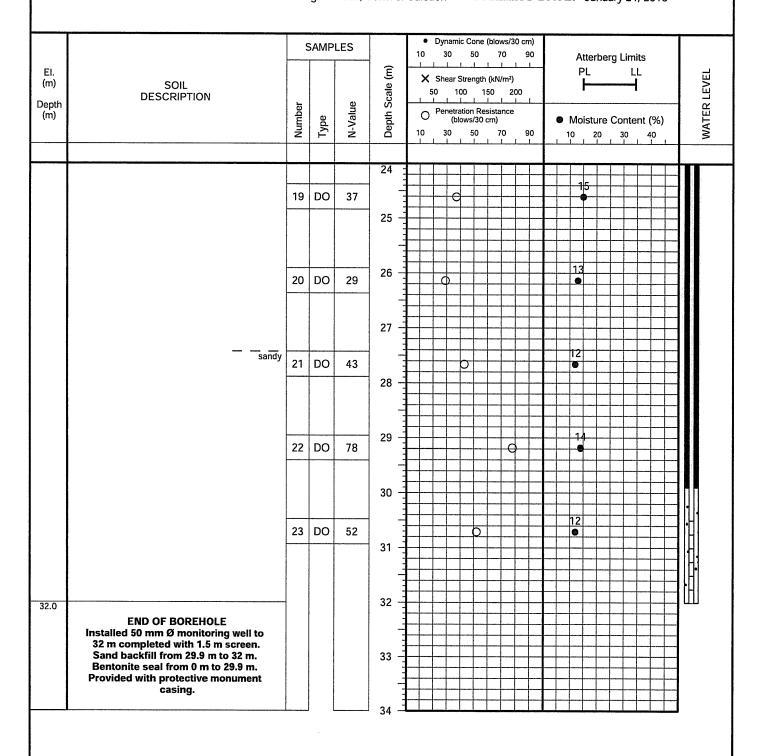
DRILLING DATE: January 24, 2018

		5	SAMP	LES		10	3	30	50	70	30 cm) 90		,	Atterb	erg L	imits.			
EI. (m) epth (m)	SOIL DESCRIPTION	Number	Туре	N-Value	Depth Scale (m)		50 50 Per	ear Str 100 L L netratio (blow	ength 15 on Res	(kN/m²) 200 			PL 	e Co	LL ntent ([%) 0		WATER LEVEL
								<u> </u>			1	T					l		
		11	DO	11	12		,					\blacksquare		20)				
											##	\blacksquare	1	##				111	
					13 -													and the state of	
					-		-					1	_	20					
		12	DO	17	14 -	#	<u>d</u>			#		\blacksquare		1	+			Control of the Control	
						#				1		#						As an ing	
						\blacksquare						\blacksquare			-				
					15 -								_		2			-	è
		13	DO	11] -	1		\Box				1		#	-	H		noth the	e F
1					16 -	1	1			#	##	\ddagger			#				
		ŀ					-			1	\parallel		1		1				
										_				19					
		14	DO	19	17 -	1	9							•	1				
					-										1			100	
					18 -				1	#				11	1				
		15	DO	20			0		_				_	18					
		15	DO	20			<u> </u>			#			_						
Ì					19 -		-		+									- 1	
]	1		-	#				11					
		16	DO	25	20 -		0							18					
			-											##					
								$\parallel \parallel$	_					##					
					21 -				_			1		11					
		17	DO	18] -	#	 		1		##	1		##	2				l
					22 -	#	+					\blacksquare		$\dagger \dagger$	+				
						目	+	#	+		##			#	#				
						#	+	$\parallel \parallel$			+		1:						
		18	DO	39	23 -	#	#	0	+		+	+	•		-				
] -	텕	#	$\parallel \parallel$	+		#	#		##					
					24	1													

LOG OF BOREHOLE NO.: 12

FIGURE NO.:

12


PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

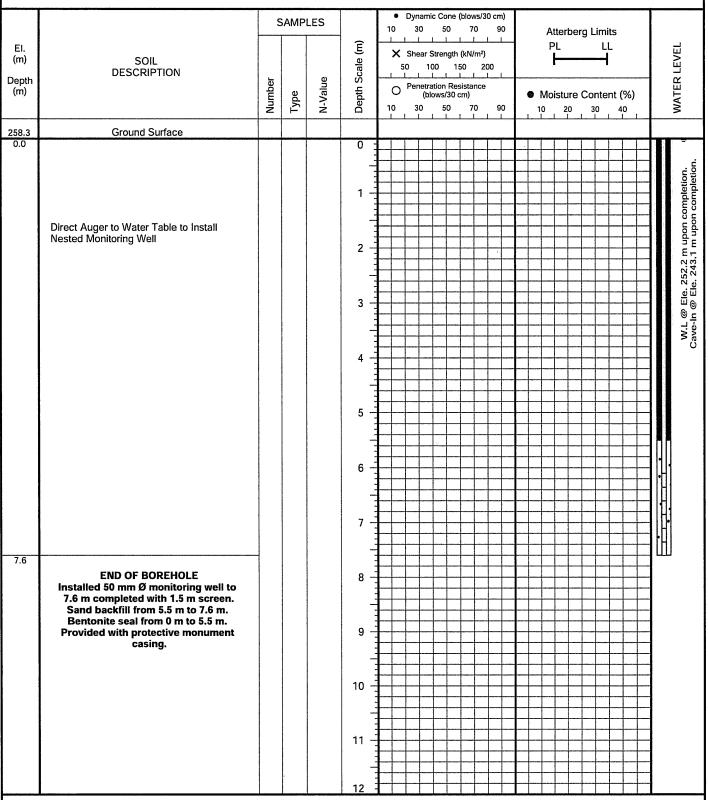
PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 24, 2018

LOG OF BOREHOLE NO.: 12N

FIGURE NO.:

12

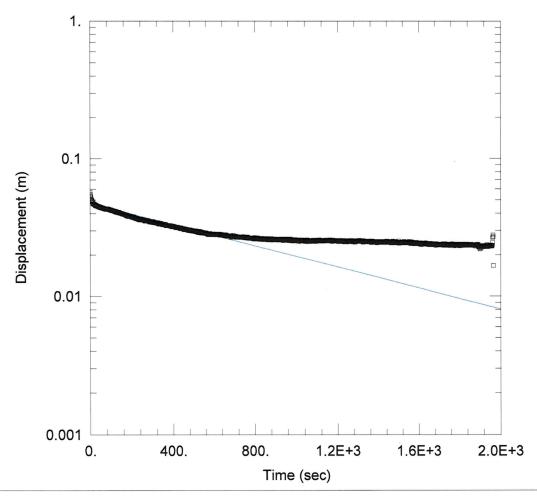

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

(Solid-Stem)

PROJECT LOCATION: Chickadee Lane and Glasgow Road, Town of Caledon

DRILLING DATE: January 24, 2018



Appendix C

Single Well Response Test Analyses

Data Set: C:\...\MW5R.aqt

Date: 10/12/18

Time: 17:14:46

PROJECT INFORMATION

Company: PECG

Client: Brook Valley Homes

Project: 170163 Location: Bolton Test Well: MW5

Test Date: March 19, 2018

AQUIFER DATA

Saturated Thickness: 5.52 m

Anisotropy Ratio (Kz/Kr): 0.1

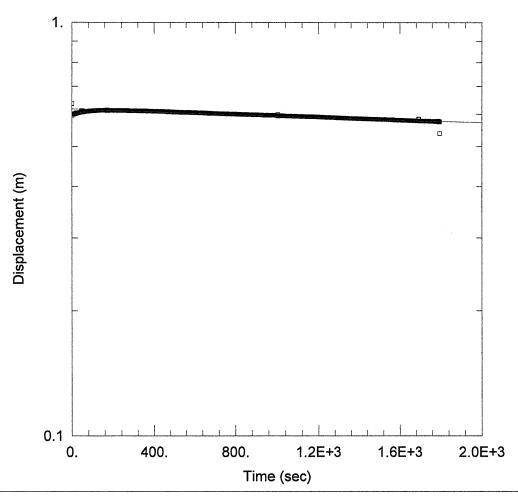
WELL DATA (MW5)

Initial Displacement: 0.0568 m Total Well Penetration Depth: 4.52 m

Casing Radius: 0.0254 m

Static Water Column Height: 4.52 m

Screen Length: 1.5 m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

Solution Method: Hvorslev

K = 9.929E-7 m/sec

y0 = 0.04692 m

Data Set: C:\...\MW5F.aqt

Date: 10/12/18 Time: 17:14:14

PROJECT INFORMATION

Company: PECG

Client: Brook Valley Homes

Project: 170163 Location: Bolton Test Well: MW5

Test Date: March 19, 2018

AQUIFER DATA

Saturated Thickness: 5.52 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW5)

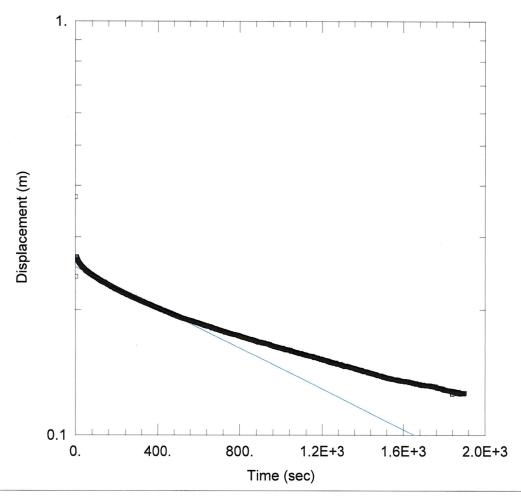
Initial Displacement: 0.6361 m

Total Well Penetration Depth: 4.52 m

Casing Radius: 0.0254 m

Static Water Column Height: 4.52 m

Screen Length: 1.5 m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

K = 4.357E-8 m/sec

Solution Method: Hvorslev

y0 = 0.6175 m

Data Set: C:\...\MW2SR.aqt

Date: 10/12/18

PROJECT INFORMATION

Time: 17:13:58

Company: PECG

Client: Brook Valley Homes

Project: 170163 Location: Bolton Test Well: MW2S

Test Date: March 19, 2018

AQUIFER DATA

Saturated Thickness: 6.84 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW2S)

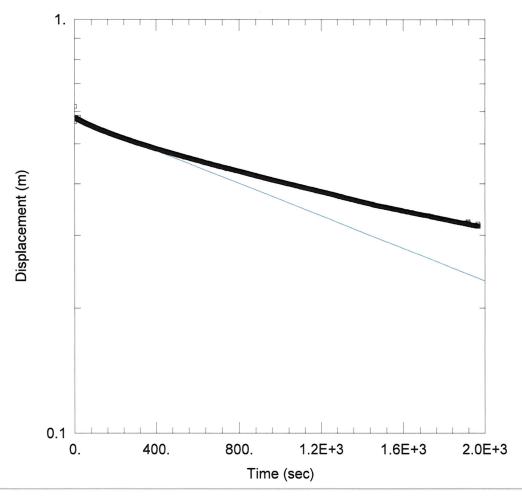
Initial Displacement: 0.3751 m

Total Well Penetration Depth: 5.84 m

Casing Radius: 0.0254 m

Static Water Column Height: 5.84 m

Screen Length: 1.5 m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

K = 6.341E-7 m/sec

Solution Method: Hvorslev

y0 = 0.2536 m

Data Set: C:\...\MW2SF.aqt

Date: 10/12/18 Time: 17:13:47

PROJECT INFORMATION

Company: PECG

Client: Brook Valley Homes

Project: 170163 Location: Bolton Test Well: MW2S

Test Date: March 19, 2018

AQUIFER DATA

Saturated Thickness: 6.84 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW2S)

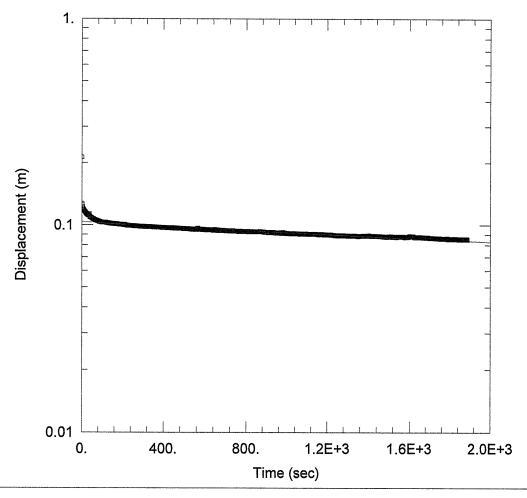
Initial Displacement: 0.6176 m

Total Well Penetration Depth: 5.84 m

Casing Radius: 0.0254 m

Static Water Column Height: 5.84 m

Screen Length: 1.5 m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

K = 5.12E-7 m/sec

Solution Method: Hvorslev

y0 = 0.5769 m

Data Set: C:\...\MW2DR.aqt

Date: 10/12/18 Time: 17:13:27

PROJECT INFORMATION

Company: PECG

Client: Brook Valley Homes

Project: 170163 Location: Bolton Test Well: MW2D

Test Date: March 19, 2018

AQUIFER DATA

Saturated Thickness: 7.46 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW2D)

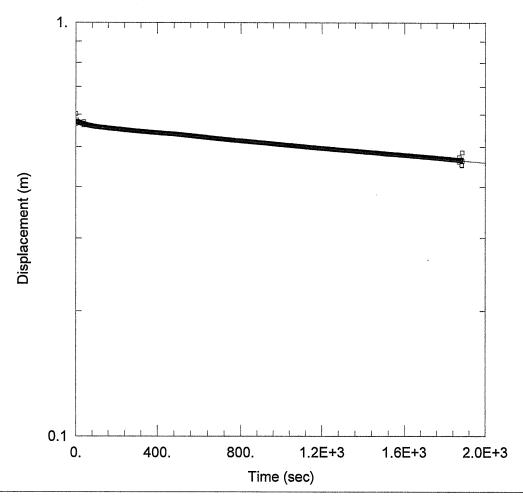
Initial Displacement: 0.213 m

Total Well Penetration Depth: 6.46 m

Casing Radius: 0.0254 m

Static Water Column Height: 6.46 m

Screen Length: 1.5 m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

K = 1.262E-7 m/sec

Solution Method: Hvorslev

y0 = 0.1033 m

Data Set: C:\...\MW2DF.aqt

Date: 10/12/18 Time: 17:05:42

PROJECT INFORMATION

Company: PECG

Client: Brook Valley Homes

Project: 170163 Location: Bolton Test Well: MW2D

Test Date: March 19, 2018

AQUIFER DATA

Saturated Thickness: 7.46 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW2D)

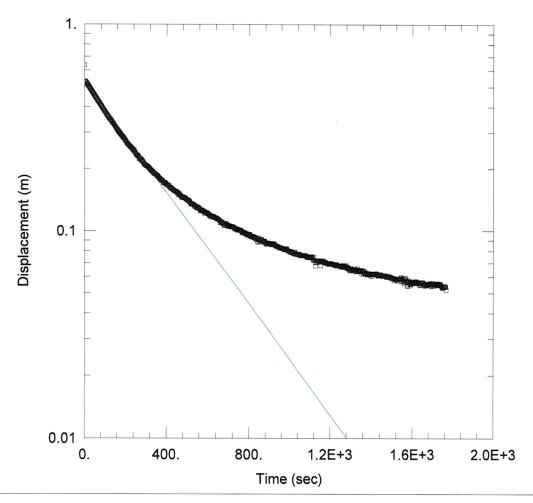
Initial Displacement: 0.6021 m

Total Well Penetration Depth: 6.46 m

Casing Radius: 0.0254 m

Static Water Column Height: 6.46 m

Screen Length: 1.5 m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

K = 1.199E-7 m/sec

Solution Method: Hvorslev

y0 = 0.5652 m

Time: 17:15:22

Data Set: C:\...\MW6F2.aqt

Date: 10/12/18

PROJECT INFORMATION

Company: PECG

Client: Brook Valley Homes

Project: 170163 Location: Bolton Test Well: MW6

Test Date: April 4, 2018

AQUIFER DATA

Saturated Thickness: 5.94 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW6)

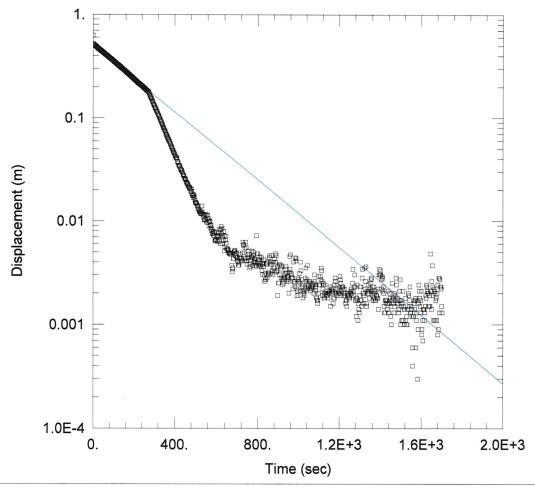
Initial Displacement: 0.6349 m

Total Well Penetration Depth: 4.94 m

Casing Radius: 0.0254 m

Static Water Column Height: 4.94 m

Screen Length: 1.5 m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Confined

K = 3.478E-6 m/sec

Solution Method: Hvorslev

y0 = 0.5265 m

Data Set: C:\...\MW6R2.aqt

Date: 10/12/18 Time: 17:16:01

PROJECT INFORMATION

Company: PECG

Client: Brook Valley Homes

Project: 170163 Location: Bolton Test Well: MW6

Test Date: April 4, 2018

AQUIFER DATA

Saturated Thickness: 5.94 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW6)

Initial Displacement: 0.6292 m

Total Well Penetration Depth: 4.94 m

Casing Radius: 0.0254 m

Static Water Column Height: 4.94 m

Screen Length: 1.5 m Well Radius: 0.0254 m

SOLUTION

Aquifer Model: Confined

K = 4.255E-6 m/sec

Solution Method: Hvorslev

y0 = 0.5174 m

Appendix D

Groundwater Chemistry Certificate of Analysis

PALMER ENVIRONMENTAL CONSULTING

GROUP INC. (Richmond Hill)

ATTN: Ryan Polick 74 Berkeley Street

Toronto ON M5V 2W7

Date Received: 15-MAR-18

Report Date: 23-MAR-18 10:45 (MT)

Version:

FINAL

Client Phone: 647-795-8153

Certificate of Analysis

Lab Work Order #: L2068971

Project P.O. #:

NOT SUBMITTED

Job Reference:

170163 CHICKADEE LANE

C of C Numbers:

17-622480

Legal Site Desc:

Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

ANALYTICAL GUIDELINE REPORT

L2068971 CONTD.... Page 2 of 5

Sample Details					And the state of t		23-M	
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Li	mits
_2068971-1 MW6								
Sampled By: CLIENT on 15-MAR-18 @ 15:45								
Matrix: WATER						#1	#2	
Physical Tests								
Colour, Apparent	30.9		2.0	CU	17-MAR-18		*5	
Conductivity	941		3.0	umhos/cm	17-MAR-18			
Hardness (as CaCO3)	461	HTC	10	mg/L	20-MAR-18		*80-100	
PH	7.88		0.10	pH units	17-MAR-18		6.5-8.5	
Redox Potential	317	PEHR	-1000	mV	20-MAR-18			
Total Dissolved Solids	560	DLDS	20	mg/L	18-MAR-18		*500	
Turbidity	72.0		0.10	NTU	17-MAR-18		*5	
Anions and Nutrients				1				
Acidity (as CaCO3)	30.0		5.0	mg/L	21-MAR-18			
Alkalinity, Total (as CaCO3)	387		10	mg/L	19-MAR-18		30-500	
Ammonia, Total (as N)	0.022		0.020	mg/L	19-MAR-18			
Bromide (Br)	<0.10		0.10	mg/L	19-MAR-18			
Chloride (CI)	55.8		0.50	mg/L	19-MAR-18		250	
Fluoride (F)	0.226		0.020	mg/L	19-MAR-18	1.5		
Nitrate (as N)	< 0.020		0.020	mg/L	19-MAR-18	10		
Nitrite (as N)	<0.010		0.010	mg/L	19-MAR-18	1		
Orthophosphate-Dissolved (as P)	<0.0030		0.0030	mg/L	19-MAR-18			
Phosphorus, Total	0.0560		0.0030	mg/L	20-MAR-18			
Sulfate (SO4)	77.1		0.30	mg/L	19-MAR-18		500	
Bacteriological Tests								
Escherichia Coli	0		0	MPN/100m	18-MAR-18	0		
Total Coliforms	>201		0		18-MAR-18	*0		
Total Metals				L				
Aluminum (AI)-Total	1.24		0.0050	mg/L	20-MAR-18		*0.1	
Antimony (Sb)-Total	0.00017		0.00010	mg/L	20-MAR-18	0.006		
Arsenic (As)-Total	0.00126		0.00010	mg/L	20-MAR-18	0.0100		
Barium (Ba)-Total	0.0943		0.00020	mg/L	20-MAR-18	1		
Beryllium (Be)-Total	<0.00010		0.00010	mg/L	20-MAR-18			
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L	20-MAR-18			
Boron (B)-Total	0.027		0.010	mg/L	20-MAR-18	5		
Cadmium (Cd)-Total	0.0000197		0.000005	mg/L	20-MAR-18	0.005		
Calcium (Ca)-Total	108		0 0.50	mg/L	20-MAR-18		,	
Cesium (Cs)-Total	0.000180		0.000010	mg/L	20-MAR-18			
Chromium (Cr)-Total	0.00296		0.00050	mg/L	20-MAR-18	0.05		
Cobalt (Co)-Total	0.00168		0.00010	mg/L	20-MAR-18			
Copper (Cu)-Total	0.0026		0.0010	mg/L	20-MAR-18		1	3
Iron (Fe)-Total	2.07		0.050	mg/L	20-MAR-18		*0.3	
Lead (Pb)-Total	0.00144		0.000050	mg/L	20-MAR-18	0.01		
Lithium (Li)-Total	0.0275		0.0010	mg/L	20-MAR-18			
Magnesium (Mg)-Total	46.3		0.050	mg/L	20-MAR-18			
Manganese (Mn)-Total	0.114		0.00050	mg/L	20-MAR-18		*0.05	
Molybdenum (Mo)-Total	0.00215		0.000050	mg/L	20-MAR-18			
Nickel (Ni)-Total	0.00366		0.00050	mg/L	20-MAR-18			
Phosphorus (P)-Total	0.083		0.050	mg/L	20-MAR-18			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L2068971 CONTD.... Page 3 of 5

ample Detai									23-MAR-18 1	IVI) C+.v.
rouping	Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
068971-1	MW6									
ampled By:	CLIENT on 15-MAR-18 @ 15:4	5								
atrix:	WATER					1	#1	#2	T	
otal Metals										
Potassium	ı (K)-Total	3.57		0.050	mg/L	20-MAR-18				
Rubidium	(Rb)-Total	0.00324		0.00020	mg/L	20-MAR-18				
Selenium	(Se)-Total	0.000282		0.000050	mg/L	20-MAR-18	0.01			
Silicon (Si		8.78		0.10	mg/L	20-MAR-18				
Silver (Ag)		<0.000050		0.000050	mg/L	20-MAR-18				
Sodium (N		39.0		0.50	mg/L	20-MAR-18	*20	200		
Strontium		0.431		0.0010	mg/L	20-MAR-18				
Sulfur (S)-		27.3		0.50	mg/L	20-MAR-18				
Tellurium		<0.00020		0.00020	mg/L	20-MAR-18				
Thallium (0.000028		0.000010	mg/L	20-MAR-18				
Thorium (0.00039		0.00010	mg/L	20-MAR-18				
Tin (Sn)-T		0.00156		0.00010	mg/L	20-MAR-18				
Titanium (0.0342		0.00030	mg/L	20-MAR-18				
Tungsten		<0.00010		0.00010	mg/L	20-MAR-18				
Uranium (I	U)-Total	0.00481		0.000010	mg/L	20-MAR-18	0.02			
Vanadium		0.00305		0.00050	mg/L	20-MAR-18				
Zinc (Zn)-	Total	0.0071		0.0030	mg/L	20-MAR-18		5		
Zirconium	(Zr)-Total	0.00054		0.00030	mg/L	20-MAR-18				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Qualifier	Description		
DLDS	Detection Limit Ra	ised: Dilution required due to hi	gh Dissolved Solids / Electrical Conductivity.
PEHR			e On Receipt: Proceed With Analysis As Requested.
нтс	Hardness was cald	culated from Total Ca and/or Mg	concentrations and may be biased high (dissolved Ca/Mg results unavailable).
Methods List	ted (if applicable):		
ALS Test Cod	le Matrix	Test Description	Method Reference***
ACIDITY-ED	Water	Acidity (as CaCO3)	APHA 2310 B - Potentiometric Titration
usually 8.3. titration to pl	If the sample is colorl H 8.3 is performed.	ess and clear, titration with base	e. It can be measured by titration with a strong base to a designated pH endpoint, e to the phenolphthalein endpoint is used. For dark or turbid samples, potentiometric
ALK-WT	Water	Alkalinity, Total (as CaC	CO3) EPA 310.2
This analysis colourimetric	s is carried out using comethod.	procedures adapted from EPA I	Method 310.2 "Alkalinity". Total Alkalinity is determined using the methyl orange
BR-IC-N-WT	Water	Bromide in Water by IC	EPA 300.1 (mod)
Inorganic an CL-IC-N-WT	ions are analyzed by Water	lon Chromatography with condu Chloride by IC	uctivity and/or UV detection. EPA 300.1 (mod)
Inorganic an	ions are analyzed by	Ion Chromatography with condu	uctivity and/or UV detection.
Analysis con Protection A	nducted in accordance ct (July 1, 2011).	e with the Protocol for Analytical	Methods Used in the Assessment of Properties under Part XV.1 of the Environmental
COLOUR-API	PARENT-WT Water	Colour	APHA 2120

OLOUR-APPARENT-WT Water

Colour

APHA 2120

Apparent Colour is measured spectrophotometrically by comparison to platinum-cobalt standards using the single wavelength method after sample decanting. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment. Concurrent measurement of sample pH is recommended.

EC-WT

Water

Conductivity

APHA 2510 B

Water samples can be measured directly by immersing the conductivity cell into the sample. F-IC-N-WT Water

Fluoride in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. HARDNESS-CALC-WT Water Hardness **APHA 2340 B**

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents.

Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

MET-T-CCMS-WT

Water

Total Metals in Water by CRC

EPA 200.2/6020A (mod)

ICPMS
Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011). NH3-WT

Ammonia, Total as N

EPA 350.1

Sample is measured colorimetrically. When sample is turbid a distillation step is required, sample is distilled into a solution of boric acid and measured colorimetrically.

NO2-IC-WT

Water

Nitrite in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-IC-WT

Water

Nitrate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-COL-WT

Water

Total P in Water by Colour

APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.

PH-WT

Water

APHA 4500 H-Electrode

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days

Reference Information

PO4-DO-COL-WT

Water

Diss. Orthophosphate in Water APHA 4500-P PHOSPHORUS

by Colour

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.

REDOX-POTENTIAL-WT Water

Redox Potential

APHA 2580

This analysis is carried out in accordance with the procedure described in the "APHA" method 2580 "Oxidation-Reduction Potential" 2012. Results are reported as observed oxidation-reduction potential of the platinum metal-reference electrode employed, in mV.

It is recommended that this analysis be conducted in the field.

SO4-IC-N-WT

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. SOLIDS-TDS-WT

Total Dissolved Solids

APHA 2540C

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

TC,EC-QT51-WT

Total Coliform and E. Coli

APHA 9223B

This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture of hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table.

TURBIDITY-WT

Water

Turbidity

APHA 2130 B

Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

17-622480

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA	ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Workorder: L2068971

Report Date: 23-MAR-18

Page 1 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ACIDITY-ED	Water							
Batch R399332 WG2737212-3 DUF Acidity (as CaCO3)		L2068891-1 42.0	43.0		mg/L	2.4	20	21-MAR-18
WG2737212-2 LCS Acidity (as CaCO3)	3		106.0		%		85-115	21-MAR-18
WG2737212-1 MB Acidity (as CaCO3)			<5.0		mg/L		5	21-MAR-18
ALK-WT	Water							
Batch R398945								
WG2735349-3 CRM Alkalinity, Total (as Ca		WT-ALK-CRM	94.5		%		80-120	19-MAR-18
WG2735349-4 DUF Alkalinity, Total (as Ca		L2068981-4 44	42		mg/L	4.6	20	19-MAR-18
WG2735349-2 LCS Alkalinity, Total (as Ca			97.8		%		85-115	19-MAR-18
WG2735349-1 MB Alkalinity, Total (as Ca			<10		mg/L		10	19-MAR-18
BR-IC-N-WT	Water							
Batch R399005	51							
WG2735070-14 DUF Bromide (Br)	•	WG2735070-1 <0.10	3 <0.10	RPD-NA	mg/L	N/A	20	19-MAR-18
WG2735070-12 LCS Bromide (Br)	3		99.0		%		85-115	19-MAR-18
WG2735070-11 MB Bromide (Br)			<0.10		mg/L		0.1	19-MAR-18
WG2735070-15 MS Bromide (Br)		WG2735070-1	3 99.1		%		75-125	19-MAR-18
CL-IC-N-WT	Water							
Batch R399009 WG2735070-14 DUF Chloride (CI)		WG2735070-1 33.3	3 33.3		mg/L	0.0	20	19-MAR-18
WG2735070-12 LCS	8	50.0	99.9		//////////////////////////////////////	0.0	90-110	19-MAR-18
WG2735070-11 MB Chloride (CI)			<0.50		mg/L		0.5	19-MAR-18
WG2735070-15 MS Chloride (CI)		WG2735070-1			%		75-125	19-MAR-18
COLOUR-APPARENT-W	/T Water		55.5		70		75-125	19-IVIALY-10

Workorder: L2068971

Report Date: 23-MAR-18

Page 2 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COLOUR-APPARENT-WT	Water							
Batch R3987300 WG2734505-3 DUP Colour, Apparent)	L2068994-1 9.1	8.7		CU	4.3	20	17-MAR-18
WG2734505-2 LCS Colour, Apparent			102.3		%		85-115	17-MAR-18
WG2734505-1 MB Colour, Apparent			<2.0		CU		2	17-MAR-18
EC-WT	Water							
Batch R3989048	}							
WG2734455-4 DUP Conductivity		WG2734455 -3 3510	3 3480		umhos/cm	0.9	10	17-MAR-18
WG2734455-2 LCS Conductivity			100.5		%		90-110	17-MAR-18
WG2734455-1 MB Conductivity			<3.0		umhos/cm		3	17-MAR-18
F-IC-N-WT	Water							
Batch R3990051 WG2735070-14 DUP Fluoride (F)		WG2735070 -	13 0.042		mg/L	0.9	20	19-MAR-18
WG2735070-12 LCS Fluoride (F)			101.5		%	0.0	90-110	19-MAR-18
WG2735070-11 MB Fluoride (F)			<0.020		mg/L		0.02	19-MAR-18
WG2735070-15 MS Fluoride (F)		WG2735070-	13 101.1		%		75-125	19-MAR-18
MET-T-CCMS-WT	Water							
Batch R3987814	Ļ							
WG2734886-4 DUP		WG2734886-	3					
Aluminum (Al)-Total		0.172	0.169		mg/L	1.5	20	19-MAR-18
Antimony (Sb)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	19-MAR-18
Arsenic (As)-Total		0.00056	0.00058		mg/L	3.4	20	19-MAR-18
Barium (Ba)-Total		0.0431	0.0428		mg/L	8.0	20	19-MAR-18
Beryllium (Be)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	19-MAR-18
Bismuth (Bi)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	19-MAR-18
Boron (B)-Total		0.031	0.031		mg/L	1.6	20	19-MAR-18
Cadmium (Cd)-Total		0.0000067	0.0000090	J	mg/L	0.0000023	0.00001	19-MAR-18
Calcium (Ca)-Total		87.1	87.9		mg/L	0.9	20	19-MAR-18

Workorder: L2068971

Report Date: 23-MAR-18

Page 3 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

WG2734886-3 <0.00050 0.000017 0.00019 0.0010 0.384 0.000202 0.0016 17.0 0.0822 0.00186 0.00065 <0.050 3.08	3 <0.00050 0.000015 0.00018 0.0010 0.387 0.000204 0.0015 16.7 0.0816 0.00184 0.00061 <0.050 3.05	RPD-NA	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A 14 2.0 0.6 0.8 1.3 1.1 2.1 0.8 1.4 7.1	20 20 20 20 20 20 20 20 20 20 20	19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18
<0.00050 0.000017 0.00019 0.0010 0.384 0.000202 0.0016 17.0 0.0822 0.00186 0.00065 <0.050 3.08	<0.00050 0.000015 0.00018 0.0010 0.387 0.000204 0.0015 16.7 0.0816 0.00184 0.00061 <0.050		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	14 2.0 0.6 0.8 1.3 1.1 2.1 0.8 1.4 7.1	20 20 20 20 20 20 20 20 20	19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18
<0.00050 0.000017 0.00019 0.0010 0.384 0.000202 0.0016 17.0 0.0822 0.00186 0.00065 <0.050 3.08	<0.00050 0.000015 0.00018 0.0010 0.387 0.000204 0.0015 16.7 0.0816 0.00184 0.00061 <0.050		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	14 2.0 0.6 0.8 1.3 1.1 2.1 0.8 1.4 7.1	20 20 20 20 20 20 20 20 20	19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18
0.00019 0.0010 0.384 0.000202 0.0016 17.0 0.0822 0.00186 0.00065 <0.050 3.08	0.00018 0.0010 0.387 0.000204 0.0015 16.7 0.0816 0.00184 0.00061 <0.050	RPD-NA	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2.0 0.6 0.8 1.3 1.1 2.1 0.8 1.4 7.1	20 20 20 20 20 20 20 20 20	19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18
0.0010 0.384 0.000202 0.0016 17.0 0.0822 0.00186 0.00065 <0.050 3.08	0.0010 0.387 0.000204 0.0015 16.7 0.0816 0.00184 0.00061 <0.050	RPD-NA	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.6 0.8 1.3 1.1 2.1 0.8 1.4	20 20 20 20 20 20 20 20	19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18
0.384 0.000202 0.0016 17.0 0.0822 0.00186 0.00065 <0.050 3.08	0.387 0.000204 0.0015 16.7 0.0816 0.00184 0.00061 <0.050	RPD-NA	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.8 1.3 1.1 2.1 0.8 1.4 7.1	20 20 20 20 20 20	19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18
0.000202 0.0016 17.0 0.0822 0.00186 0.00065 <0.050 3.08	0.000204 0.0015 16.7 0.0816 0.00184 0.00061 <0.050	RPD-NA	mg/L mg/L mg/L mg/L mg/L mg/L	1.3 1.1 2.1 0.8 1.4 7.1	20 20 20 20 20	19-MAR-18 19-MAR-18 19-MAR-18 19-MAR-18
0.0016 17.0 0.0822 0.00186 0.00065 <0.050 3.08	0.0015 16.7 0.0816 0.00184 0.00061 <0.050	RPD-NA	mg/L mg/L mg/L mg/L mg/L	1.1 2.1 0.8 1.4 7.1	20 20 20 20	19-MAR-18 19-MAR-18 19-MAR-18
17.0 0.0822 0.00186 0.00065 <0.050 3.08	16.7 0.0816 0.00184 0.00061 <0.050	RPD-NA	mg/L mg/L mg/L mg/L	2.1 0.8 1.4 7.1	20 20 20	19-MAR-18 19-MAR-18
0.0822 0.00186 0.00065 <0.050 3.08	0.0816 0.00184 0.00061 <0.050	RPD-NA	mg/L mg/L mg/L	0.8 1.4 7.1	20 20	19-MAR-18
0.00186 0.00065 <0.050 3.08	0.00184 0.00061 <0.050	RPD-NA	mg/L mg/L	1.4 7.1	20	
0.00065 <0.050 3.08	0.00061 <0.050	RPD-NA	mg/L	7.1		19-MAR-18
<0.050 3.08	<0.050	RPD-NA	_		20	
3.08		RPD-NA	/I			19-MAR-18
	3.05		mg/L	N/A	20	19-MAR-18
0.00067			mg/L	0.9	20	19-MAR-18
0.00067	0.00068		mg/L	1.8	20	19-MAR-18
0.000137	0.000124		mg/L	9.5	20	19-MAR-18
2.92	2.94		mg/L	0.5	20	19-MAR-18
<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	19-MAR-18
26.6	26.1		mg/L	1.8	20	19-MAR-18
0.267	0.274		mg/L	2.7	20	19-MAR-18
15.4	15.5		mg/L	0.4	25	19-MAR-18
<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	19-MAR-18
<0.00020	<0.00020	RPD-NA	mg/L	N/A	20	19-MAR-18
<0.00010	<0.00010	RPD-NA	mg/L	N/A	25	19-MAR-18
<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	19-MAR-18
0.00441	0.00444		mg/L	0.5	20	19-MAR-18
<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	19-MAR-18
0.00109	0.00112		mg/L	3.2	20	19-MAR-18
0.00061	0.00061		mg/L	0.0	20	19-MAR-18
<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	19-MAR-18
<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	19-MAR-18
	104.6		0/			
						19-MAR-18 19-MAR-18
	<0.00010 0.00441 <0.00010 0.00109 0.00061 <0.0030	<0.00010	<0.00010 <0.00010 RPD-NA 0.00441 0.00444 <0.00010 <0.00010 RPD-NA 0.00109 0.00112 0.00061 0.00061 <0.0030 <0.0030 RPD-NA <0.00030 <0.00030 RPD-NA 101.0	<0.00010	<0.00010	<0.00010

Workorder: L2068971

Report Date: 23-MAR-18

Page 4 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

MET.T-CCMS-WT	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
W02734886-2 LCS Arsenic (As)-Total 101.8 101.8 80-120 19-MAR-18 Barium (Ba)-Total 101.7 % 80-120 19-MAR-18 Beryllium (Be)-Total 99.5 % 80-120 19-MAR-18 Bismuth (Bi)-Total 99.7 % 80-120 19-MAR-18 Bismuth (Bi)-Total 99.7 % 80-120 19-MAR-18 Bismuth (Bi)-Total 98.4 % 80-120 19-MAR-18 Gadmium (Cd)-Total 102.5 % 80-120 19-MAR-18 Cadmium (Cd)-Total 102.5 % 80-120 19-MAR-18 Calcium (Ca)-Total 102.6 % 80-120 19-MAR-18 Chromium (Cr)-Total 102.6 % 80-120 19-MAR-18 Cosium (Cs)-Total 104.4 % 80-120 19-MAR-18 Cobalt (Co)-Total 99.8 % 80-120 19-MAR-18 Copaer (Cu)-Total 99.8 % 80-120 19-MAR-18 Copaer (Cu)-Total 99.5 % 80-120 19-MAR-18 Linium (Li)-Total 98.5 % 80-120 19-MAR-18 Lead (Pb)-Total 102.5 % 80-120 19-MAR-18 Linium (Li)-Total 98.0 % 80-120 19-MAR-18 Linium (Li)-Total 103.1 % 80-120 19-MAR-18 Linium (Li)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mh)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mh)-Total 102.9 % 80-120 19-MAR-18 Nickel (Ni)-Total 102.0 % 80-120 19-MAR-18 Nickel (Ni)-Total 103.7 % 80-120 19-MAR-18 Nickel (Ni)-Total 103.7 % 80-120 19-MAR-18 Nickel (Ni)-Total 103.7 % 80-120 19-MAR-18 N	MET-T-CCMS-WT	Water							
Arsenic (As)-Total	Batch R3987814								
Barium (Ba)-Total 101.7				404.0		0/			
Beryllium (Be)-Total 99.5 % 80-120 19-MAR-18									
Bismuth (Bi)-Total 99.7 % 80-120 19-MAR-18									
Boron (B)-Total 98.4									
Cadrium (Cd)-Total 102.5 % 80.120 19-MAR-18 Calcium (Ca)-Total 100.3 % 80.120 19-MAR-18 Chromium (Cr)-Total 102.6 % 80.120 19-MAR-18 Cesium (Cs)-Total 104.4 % 80.120 19-MAR-18 Cobalt (Co)-Total 99.8 % 80.120 19-MAR-18 Copper (Cu)-Total 99.2 % 80.120 19-MAR-18 Iron (Fe)-Total 98.5 80.120 19-MAR-18 Lead (Pb)-Total 102.5 % 80.120 19-MAR-18 Lithium (Li)-Total 98.0 % 80.120 19-MAR-18 Magnesium (Mg)-Total 103.1 % 80.120 19-MAR-18 Manganese (Mn)-Total 102.9 % 80.120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80.120 19-MAR-18 Nickel (Ni)-Total 100.2 % 80.120 19-MAR-18 Nickel (Ni)-Total 102.0 % 80.120 19-MAR-18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Calcium (Ca)-Total 100.3 % 80-120 19-MAR-18 Chromium (Cr)-Total 102.6 % 80-120 19-MAR-18 Cesium (Cs)-Total 104.4 % 80-120 19-MAR-18 Cobalt (Co)-Total 99.8 % 80-120 19-MAR-18 Copper (Cu)-Total 99.2 % 80-120 19-MAR-18 Iron (Fe)-Total 98.5 % 80-120 19-MAR-18 Lead (Pb)-Total 102.5 % 80-120 19-MAR-18 Lithium (Li)-Total 98.0 % 80-120 19-MAR-18 Magnesium (Mg)-Total 103.1 % 80-120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Mickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 1	. ,								
Chromium (Cr)-Total 102.6 % 80-120 19-MAR-18 Cesium (Cs)-Total 104.4 % 80-120 19-MAR-18 Cobalt (Co)-Total 99.8 % 80-120 19-MAR-18 Coper (Cu)-Total 99.2 % 80-120 19-MAR-18 Iron (Fe)-Total 98.5 % 80-120 19-MAR-18 Iron (Fe)-Total 98.5 % 80-120 19-MAR-18 Lead (Fb)-Total 102.5 % 80-120 19-MAR-18 Lithium (Li)-Total 98.0 % 80-120 19-MAR-18 Magnesium (Mg)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mn)-Total 102.9 % 80-120 19-MAR-18 Mixel (Ni)-Total 101.1 % 80-120 19-MAR-18 Nickel (Ni)-Total 101.1 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 70-130 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.7 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silicon (Si)-Total 103.7 % 80-120 19-MAR-18 Silicon (Si)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.8 % 80-120 19-MAR-18 Tilanium (Ti)-Total 99.8 % 80-120 19-MAR-18 Thorum (Th)-Total 107.1 % 80-120 19-MAR-18 Tilanium (Ti)-Total 107.1 % 80-120 19-MAR-18	• •								
Cesium (Cs)-Total 104.4 % 80-120 19-MAR-18 Cobalt (Co)-Total 99.8 % 80-120 19-MAR-18 Copper (Cu)-Total 99.2 % 80-120 19-MAR-18 Iron (Fe)-Total 98.5 % 80-120 19-MAR-18 Lead (Pb)-Total 102.5 % 80-120 19-MAR-18 Lithium (Li)-Total 98.0 % 80-120 19-MAR-18 Magnesium (Mg)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mn)-Total 102.9 % 80-120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Nickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.7 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>19-MAR-18</td></td<>									19-MAR-18
Cobalt (Co)-Total 99.8 % 80-120 19-MAR-18 Copper (Cu)-Total 99.2 % 80-120 19-MAR-18 Iron (Fe)-Total 98.5 % 80-120 19-MAR-18 Lead (Pb)-Total 102.5 % 80-120 19-MAR-18 Lithium (Li)-Total 98.0 % 80-120 19-MAR-18 Magnesium (Mg)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mn)-Total 102.9 % 80-120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Nickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 105.0 % 80-120 <t< td=""><td>, , ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	, , ,								
Copper (Cu)-Total 99.2 % 80-120 19-MAR-18 Iron (Fe)-Total 98.5 % 80-120 19-MAR-18 Lead (Pb)-Total 102.5 % 80-120 19-MAR-18 Lithium (Li)-Total 98.0 % 80-120 19-MAR-18 Magnesium (Mg)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mn)-Total 102.9 % 80-120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Mickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Nickel (Ni)-Total 102.0 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.7 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120									19-MAR-18
Iron (Fe)-Total	• •							80-120	19-MAR-18
Lead (Pb)-Total 102.5 % 80-120 19-MAR-18 Lithium (Li)-Total 98.0 % 80-120 19-MAR-18 Magnesium (Mg)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mn)-Total 102.9 % 80-120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Nickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Suffur (S)-Total 99.7 % 80-120 19-MAR-18 Tellurium (Ti)-Total 99.8 % 80-120 </td <td> , ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>80-120</td> <td>19-MAR-18</td>	, ,							80-120	19-MAR-18
Lithium (Li)-Total 98.0 % 80-120 19-MAR-18 Magnesium (Mg)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mn)-Total 102.9 % 80-120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Nickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-	Iron (Fe)-Total							80-120	19-MAR-18
Magnesium (Mg)-Total 103.1 % 80-120 19-MAR-18 Manganese (Mn)-Total 102.9 % 80-120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Nickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 103.1 % 80	Lead (Pb)-Total							80-120	19-MAR-18
Manganese (Mn)-Total 102.9 % 80-120 19-MAR-18 Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Nickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Thallium (T)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Titanium (Ti)-Total 98.3 % 80	Lithium (Li)-Total			98.0		%		80-120	19-MAR-18
Molybdenum (Mo)-Total 101.1 % 80-120 19-MAR-18 Nickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 80-120 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (Tl)-Total 99.8 % 80-120 19-MAR-18 Thorium (Te)-Total 101.4 % 70-130 19-MAR-18 Titanium (Ti)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120<	Magnesium (Mg)-Total			103.1		%		80-120	19-MAR-18
Nickel (Ni)-Total 100.2 % 80-120 19-MAR-18 Phosphorus (P)-Total 102.0 % 70-130 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Silver (Ag)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Suffur (S)-Total 99.0 % 80-120 19-MAR-18 Thallium (Tl)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 103.1 % 80-120 19-MAR-18	Manganese (Mn)-Total			102.9		%		80-120	19-MAR-18
Phosphorus (P)-Total 102.0 % 70-130 19-MAR-18 Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (Ti)-Total 99.8 % 80-120 19-MAR-18 Thorium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Molybdenum (Mo)-Total			101.1		%		80-120	19-MAR-18
Potassium (K)-Total 102.0 % 80-120 19-MAR-18 Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (Tl)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Nickel (Ni)-Total			100.2		%		80-120	19-MAR-18
Rubidium (Rb)-Total 102.5 % 80-120 19-MAR-18 Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (Tl)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Phosphorus (P)-Total			102.0		%		70-130	19-MAR-18
Selenium (Se)-Total 102.7 % 80-120 19-MAR-18 Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (TI)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Potassium (K)-Total			102.0		%		80-120	19-MAR-18
Silicon (Si)-Total 117.4 % 60-140 19-MAR-18 Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (Tl)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Rubidium (Rb)-Total			102.5		%		80-120	19-MAR-18
Silver (Ag)-Total 105.0 % 80-120 19-MAR-18 Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (TI)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Selenium (Se)-Total			102.7		%		80-120	19-MAR-18
Sodium (Na)-Total 103.7 % 80-120 19-MAR-18 Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (Tl)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Silicon (Si)-Total			117.4		%		60-140	19-MAR-18
Strontium (Sr)-Total 99.7 % 80-120 19-MAR-18 Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (Tl)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Silver (Ag)-Total			105.0		%		80-120	19-MAR-18
Sulfur (S)-Total 98.0 % 80-120 19-MAR-18 Thallium (TI)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Sodium (Na)-Total			103.7		%		80-120	19-MAR-18
Thallium (TI)-Total 99.8 % 80-120 19-MAR-18 Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Strontium (Sr)-Total			99.7		%		80-120	19-MAR-18
Tellurium (Te)-Total 107.1 % 80-120 19-MAR-18 Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Sulfur (S)-Total			98.0		%		80-120	19-MAR-18
Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Thallium (TI)-Total			99.8		%		80-120	19-MAR-18
Thorium (Th)-Total 101.4 % 70-130 19-MAR-18 Tin (Sn)-Total 103.1 % 80-120 19-MAR-18 Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Tellurium (Te)-Total			107.1		%		80-120	
Titanium (Ti)-Total 98.3 % 80-120 19-MAR-18	Thorium (Th)-Total			101.4		%		70-130	
	Tin (Sn)-Total			103.1		%		80-120	19-MAR-18
	Titanium (Ti)-Total			98.3		%		80-120	19-MAR-18
	Tungsten (W)-Total			99.5		%			

Workorder: L2068971

Report Date: 23-MAR-18

Page 5 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water	v			-	-		
Batch R3987814 WG2734886-2 LCS								
Uranium (U)-Total			104.2		%		80-120	19-MAR-18
Vanadium (V)-Total			101.7		%		80-120	19-MAR-18
Zinc (Zn)-Total			97.6		%		80-120	19-MAR-18
Zirconium (Zr)-Total			95.4		%		80-120	19-MAR-18
WG2734886-1 MB Aluminum (Al)-Total			<0.0050		mg/L		0.005	19-MAR-18
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	19-MAR-18
Arsenic (As)-Total			<0.00010		mg/L		0.0001	19-MAR-18
Barium (Ba)-Total			<0.00020		mg/L		0.0002	19-MAR-18
Beryllium (Be)-Total			<0.00010		mg/L		0.0001	19-MAR-18
Bismuth (Bi)-Total			<0.00005	0	mg/L		0.00005	19-MAR-18
Boron (B)-Total			<0.010		mg/L		0.01	19-MAR-18
Cadmium (Cd)-Total			<0.00000	5C	mg/L		0.000005	19-MAR-18
Calcium (Ca)-Total			<0.50		mg/L		0.5	19-MAR-18
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	19-MAR-18
Cesium (Cs)-Total			<0.00001	0	mg/L		0.00001	19-MAR-18
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	19-MAR-18
Copper (Cu)-Total			<0.0010		mg/L		0.001	19-MAR-18
Iron (Fe)-Total			<0.050		mg/L		0.05	19-MAR-18
Lead (Pb)-Total			<0.00005	0	mg/L		0.00005	19-MAR-18
Lithium (Li)-Total			<0.0010		mg/L		0.001	19-MAR-18
Magnesium (Mg)-Total			<0.050		mg/L		0.05	19-MAR-18
Manganese (Mn)-Total			<0.00050		mg/L		0.0005	19-MAR-18
Molybdenum (Mo)-Total			<0.00005	0	mg/L		0.00005	19-MAR-18
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	19-MAR-18
Phosphorus (P)-Total			<0.050		mg/L		0.05	19-MAR-18
Potassium (K)-Total			<0.050		mg/L		0.05	19-MAR-18
Rubidium (Rb)-Total			<0.00020		mg/L		0.0002	19-MAR-18
Selenium (Se)-Total			<0.00005	0	mg/L		0.00005	19-MAR-18
Silicon (Si)-Total			<0.10		mg/L		0.1	19-MAR-18
Silver (Ag)-Total			<0.00005	0	mg/L		0.00005	19-MAR-18
Sodium (Na)-Total			<0.50		mg/L		0.5	19-MAR-18
Strontium (Sr)-Total			<0.0010		mg/L		0.001	19-MAR-18
Sulfur (S)-Total			<0.50		mg/L		0.5	19-MAR-18

Workorder: L2068971

Report Date: 23-MAR-18

Page 6 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R3987814 WG2734886-1 MB								
Thallium (TI)-Total			<0.00001	0	mg/L		0.00001	19-MAR-18
Tellurium (Te)-Total			<0.00020		mg/L		0.0002	19-MAR-18
Thorium (Th)-Total			<0.00010		mg/L		0.0001	19-MAR-18
Tin (Sn)-Total			<0.00010		mg/L		0.0001	19-MAR-18
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	19-MAR-18
Tungsten (W)-Total			<0.00010		mg/L		0.0001	19-MAR-18
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	19-MAR-18
Vanadium (V)-Total			<0.00050		mg/L		0.0005	19-MAR-18
Zinc (Zn)-Total			<0.0030		mg/L		0.003	19-MAR-18
Zirconium (Zr)-Total			<0.00030		mg/L		0.0003	19-MAR-18
WG2734886-5 MS Aluminum (Al)-Total		WG2734886-6	96.6		%		70-130	19-MAR-18
Antimony (Sb)-Total			102.5		%		70-130	19-MAR-18
Arsenic (As)-Total			103.9		%		70-130	19-MAR-18
Barium (Ba)-Total			98.3		%		70-130	19-MAR-18
Beryllium (Be)-Total			98.7		%		70-130	19-MAR-18
Bismuth (Bi)-Total			99.2		%		70-130	19-MAR-18
Boron (B)-Total			N/A	MS-B	%		70-130	19-MAR-18
Cadmium (Cd)-Total			100.8	WO B	%		70-130	19-MAR-18
Calcium (Ca)-Total			N/A	MS-B	%		70-130	19-MAR-18
Chromium (Cr)-Total			102.3	WO B	%		70-130	19-MAR-18
Cesium (Cs)-Total			99.7		%		70-130	19-MAR-18
Cobalt (Co)-Total			99.7		%		70-130	19-MAR-18
Copper (Cu)-Total			97.3		%		70-130	19-MAR-18
Iron (Fe)-Total			N/A	MS-B	%		-	19-MAR-18
Lead (Pb)-Total			99.2		%		70-130	19-MAR-18
Lithium (Li)-Total			N/A	MS-B	%		-	19-MAR-18
Magnesium (Mg)-Total			N/A	MS-B	%		_	19-MAR-18
Manganese (Mn)-Total			N/A	MS-B	%		_	19-MAR-18
Molybdenum (Mo)-Total	ļ		100.6		%		70-130	19-MAR-18
Nickel (Ni)-Total			97.9		%		70-130	19-MAR-18
Phosphorus (P)-Total			110.4		%		70-130	19-MAR-18
Potassium (K)-Total			107.6		%		70-130	19-MAR-18
Rubidium (Rb)-Total			98.1		%		70-130	19-MAR-18

Workorder: L2068971

Report Date: 23-MAR-18

Page 7 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water			_				
Batch R398781	4	W.C. 70 4000						
WG2734886-5 MS Selenium (Se)-Total		WG2734886-	82.5		%		70-130	19-MAR-18
Silicon (Si)-Total			N/A	MS-B	%		-	19-MAR-18
Silver (Ag)-Total			94.3		%		70-130	19-MAR-18
Sodium (Na)-Total			N/A	MS-B	%		-	19-MAR-18
Strontium (Sr)-Total			N/A	MS-B	%		-	19-MAR-18
Sulfur (S)-Total			N/A	MS-B	%		-	19-MAR-18
Thallium (TI)-Total			99.2		%		70-130	19-MAR-18
Tellurium (Te)-Total			94.0		%		70-130	19-MAR-18
Thorium (Th)-Total			105.6		%		70-130	19-MAR-18
Tin (Sn)-Total			101.2		%		70-130	19-MAR-18
Titanium (Ti)-Total			104.9		%		70-130	19-MAR-18
Tungsten (W)-Total			104.1		%		70-130	19-MAR-18
Uranium (U)-Total			107.9		%		70-130	19-MAR-18
Vanadium (V)-Total			105.6		%		70-130	19-MAR-18
Zinc (Zn)-Total			95.7		%		70-130	19-MAR-18
Zirconium (Zr)-Total			103.0		%		70-130	19-MAR-18
NH3-WT	Water							
Batch R398970	8							
WG2735508-7 DUP Ammonia, Total (as N		L2068981-4 < 0.020	<0.020	RPD-NA	mg/L	N/A	20	19-MAR-18
WG2735508-6 LCS Ammonia, Total (as N			103.9		%		85-115	19-MAR-18
WG2735508-5 MB Ammonia, Total (as N)		<0.020		mg/L		0.02	19-MAR-18
WG2735508-8 MS Ammonia, Total (as N)	L2068981-4	94.3		%		75-125	19-MAR-18
NO2-IC-WT	Water							
Batch R399005	1							
WG2735070-14 DUP Nitrite (as N)		WG2735070- <0.010	13 <0.010	RPD-NA	mg/L	N/A	25	19-MAR-18
WG2735070-12 LCS Nitrite (as N)			98.9		%		70-130	19-MAR-18
WG2735070-11 MB Nitrite (as N)			<0.010		mg/L		0.01	19-MAR-18
WG2735070-15 MS		WG2735070-	13					

Workorder: L2068971

Report Date: 23-MAR-18

Page 8 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Contact: Ryan Polick

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-IC-WT	Water							
Batch R3990051 WG2735070-15 MS Nitrite (as N)		WG2735070-13	3 93.0		%		70-130	19-MAR-18
NO3-IC-WT	Water							
Batch R3990051 WG2735070-14 DUP Nitrate (as N)		WG2735070-1 3	3 4.98		mg/L	0.1	25	19-MAR-18
WG2735070-12 LCS Nitrate (as N)			99.3		%		70-130	19-MAR-18
WG2735070-11 MB Nitrate (as N)			<0.020		mg/L		0.02	19-MAR-18
WG2735070-15 MS Nitrate (as N)		WG2735070-13	3 N/A	MS-B	%		-	19-MAR-18
P-T-COL-WT	Water							
Batch R3988985 WG2735183-3 DUP Phosphorus, Total		L2068891-1 1.56	1.52		mg/L	2.9	20	20-MAR-18
WG2735183-2 LCS Phosphorus, Total			91.0		%		80-120	20-MAR-18
WG2735183-1 MB Phosphorus, Total			<0.0030		mg/L		0.003	20-MAR-18
WG2735183-4 MS Phosphorus, Total		L2068891-1	N/A	MS-B	%			20-MAR-18
PH-WT	Water							
Batch R3989048								
WG2734455-4 DUP pH		WG2734455-3 7.60	7.62	J	pH units	0.02	0.2	17-MAR-18
WG2734455-2 LCS pH			6.97		pH units		6.9-7.1	17-MAR-18
PO4-DO-COL-WT	Water							
Batch R3987616								
WG2735008-3 DUP Orthophosphate-Dissol	ved (as P)	L2068487-1 0.0176	0.0151		mg/L	15	30	19-MAR-18
WG2735008-2 LCS Orthophosphate-Dissol	ved (as P)		100.2		%		70-130	19-MAR-18
WG2735008-1 MB Orthophosphate-Dissol	ved (as P)		<0.0030		mg/L		0.003	19-MAR-18

Workorder: L2068971

Report Date: 23-MAR-18

Page 9 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Contact: R

Ryan Polick

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PO4-DO-COL-WT	Water							a .
Batch R3987616 WG2735008-4 MS Orthophosphate-Dissol		L2068487-1	101.9		%		70-130	19-MAR-18
REDOX-POTENTIAL-WT	Water							
Batch R3991168								
WG2735834-1 DUP Redox Potential		L2068891-1 336	333		mV	0.9	25	20-MAR-18
SO4-IC-N-WT	Water							
Batch R3990051								
WG2735070-14 DUP Sulfate (SO4)		WG2735070- 15.5	13 15.4		mg/L	0.8	20	19-MAR-18
WG2735070-12 LCS Sulfate (SO4)			100.8		%		90-110	19-MAR-18
WG2735070-11 MB Sulfate (SO4)			<0.30		mg/L		0.3	19-MAR-18
WG2735070-15 MS Sulfate (SO4)		WG2735070-	13 100.8		%		75-125	19-MAR-18
SOLIDS-TDS-WT	Water							
Batch R3988269								
WG2734727-3 DUP Total Dissolved Solids		L2068327-2 635	638		mg/L	0.4	20	18-MAR-18
WG2734727-2 LCS Total Dissolved Solids			97.9		%		85-115	18-MAR-18
WG2734727-1 MB Total Dissolved Solids			<10		mg/L		10	18-MAR-18
TC,EC-QT51-WT	Water							
Batch R3987530								
WG2734483-2 DUP Total Coliforms		L2068440-1 0	0		MDN/4001	0.0	0.5	
Escherichia Coli		0	0		MPN/100mL MPN/100mL	0.0	65 65	18-MAR-18
WG2734483-1 MB		v	J		WIFTW TOOML	0.0	65	18-MAR-18
Total Coliforms			0		MPN/100mL		1	18-MAR-18
Escherichia Coli			0		MPN/100mL		1	18-MAR-18
TURBIDITY-WT	Water							

Workorder: L2068971

Report Date: 23-MAR-18

Page 10 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Contact:

Ryan Polick

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TURBIDITY-WT	1	Water							
Batch R3 WG2734457-3 Turbidity	987229 DUP		L2068994-1 1.39	1.34		NTU	3.7	15	17-MAR-18
WG2734457-2 Turbidity	LCS			104.0		%		85-115	17-MAR-18
WG2734457-1 Turbidity	МВ			<0.10		NTU		0.1	17-MAR-18

Page 11 of 12

Workorder: L2068971 Report Date: 23-MAR-18

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Contact:

Ryan Polick

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Description Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2068971

Report Date: 23-MAR-18

Page 12 of 12

Client:

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill)

74 Berkeley Street

Toronto ON M5V 2W7

Contact:

Ryan Polick

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Redox Potential							
	1	15-MAR-18 15:45	20-MAR-18 21:00	0.25	125	hours	EHTR-FM
Logand & Qualifier Definition							

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR:

Exceeded ALS recommended hold time prior to sample receipt.

EHTL:

Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT:

Exceeded ALS recommended hold time prior to analysis.

Rec. HT:

ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2068971 were received on 15-MAR-18 17:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chaln of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2068971-

COC Number: 17-622480

Page

9 илмвек он соитыйекз Schort Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply) Same Day, Weekend or Statutory holiday [E2-200% (Laboratory opening fees may apply)] WINDLES ON HOLD 2 2 Standard TAT if received by 3 pm - business days - no surcharges apply lab use on SAMPLE CONDITION AS RECEIVED (lab use only Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below For tests that can not be performed eccording to the service level selected, you will be contacted. 1 Business day [E-100%] \$ \$ Xes. Yes Analysis Request Custody seal intact SIF Observations COOLER TEMPERATURES °C Date and Time Required for all E&P TATe: 47 Cooling Initiation AIK, 60 LL EC, PH, Roch, 795 Regular [R] 3 day [P3-25%] 2 day [P2-50%] 4 day [P4-20%] 21 EC X 1991 45 Garden 10 X Compre ut Outorio dinking mater stendards Sample Type SOL Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) INITIAL SHIPMENT RECEPTION (lab use only) X POF X EXCEL | EDD (DIGITAL) Compare Results to Criteria on Report - provide details below if box checked scales thistribution: X EMXL | | | MALL | FAX YES ... № ¥ Oil and Gas Required Fields (cilent use) EMAIL | I MAIL | Report Format / Distribution: Select Invoice Distribution: X EMAIL MAIL Routing Code (hh:mm) 15:45 Time Sampler: invoice Distribution Jacone Perg. Ca Man@ Peca. Ca # d Corinne P. P. C.S. C. Quality Control (QC) Report with Report Jacon Pecs.Ca 15-101-18 (dd-www-yy) Date Select Report Format Select Distribution: Email 1 or Fax Email 1 or Fax (ajor/Minor Code: ALS Contact: AFE/Cost Center: Requisitioner: ocation: Email 3 Email 2 Email 2 Time: 17:40 ig B Sample Identification and/or Coordinates (This description will appear on the report) PECG - PALHER BHUTRONHENTAL ALS Lab Work Order # (lab use only): (30,6897) 오 ş Company address below will appear on the final report Harel 15.2018 ñ Ð SHIPMENT RELEASE (client use 図図 Project information Drinking Water (DW) Samples1 (client use) Toronto Otherio line 1704-79-605/ 74 Berteley St Are samples taken from a Regulated DW System Copy of Involce, with Report Chikordee Are samples for human consumption/ use? Same as Report To MW6 Tris No ALS Account # / Quote #: 176163 ALS Sample # (lab use only) City/Province: Postal Code: nvoice To Company: Сотрапу: PO / AFE: Contact Job# Confact: Phone: Street: SD:

Falture to complete all portions of this form may cleby analysis. Please fit in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as appedied on the back page of the white- report copy.

1. If any worder camples are taken from a Regulated Drinking Water (DM) System, pleases submit using an Authorised DM COC form.

APPENDIX "D"

Figure 4 Subwatershed Boundary - Humber River Watershed, Toronto and Region Conservation

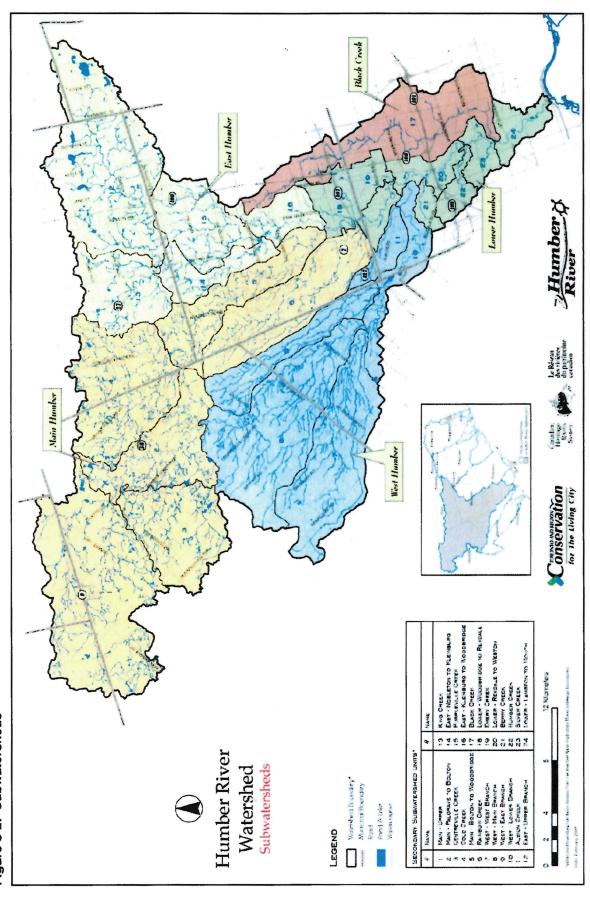
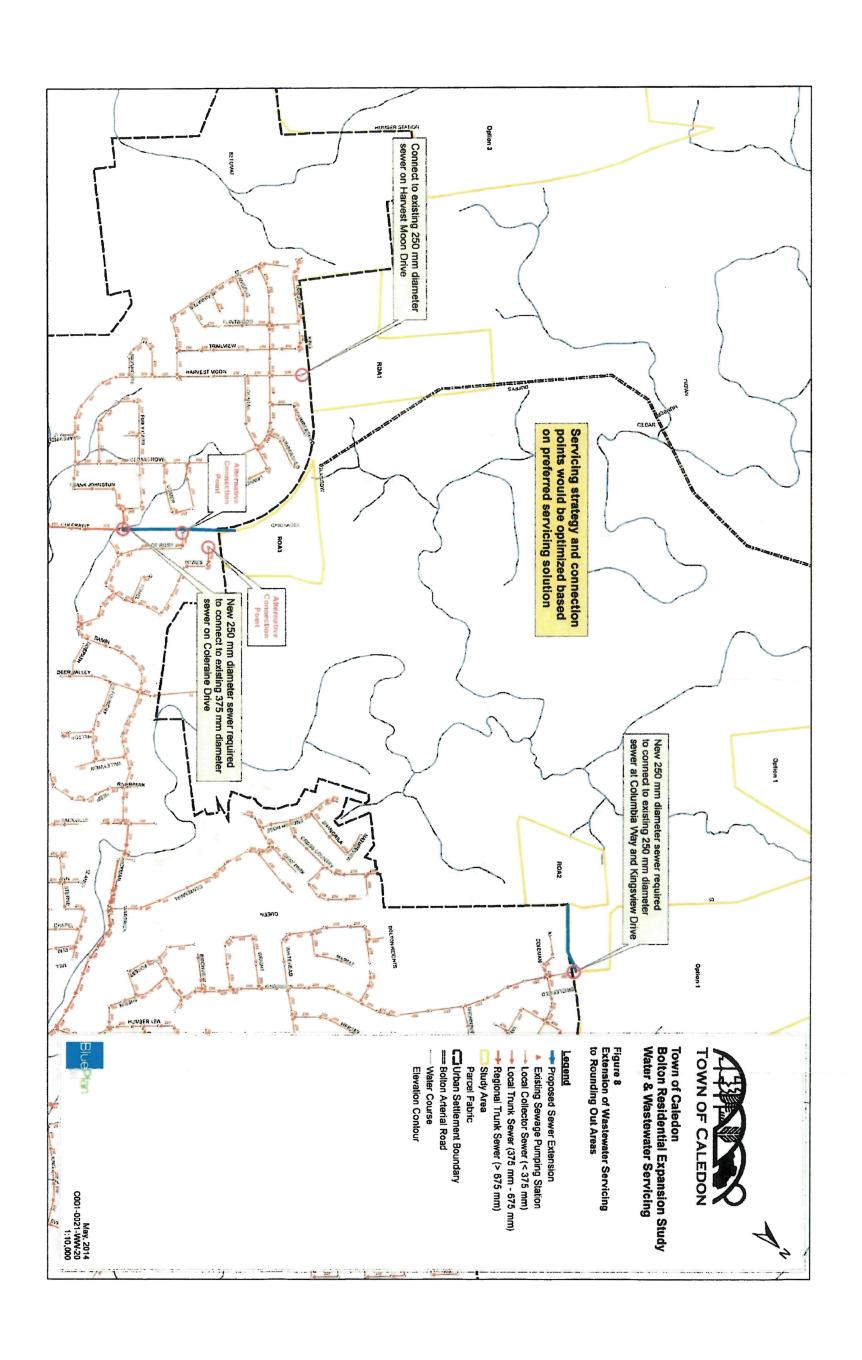
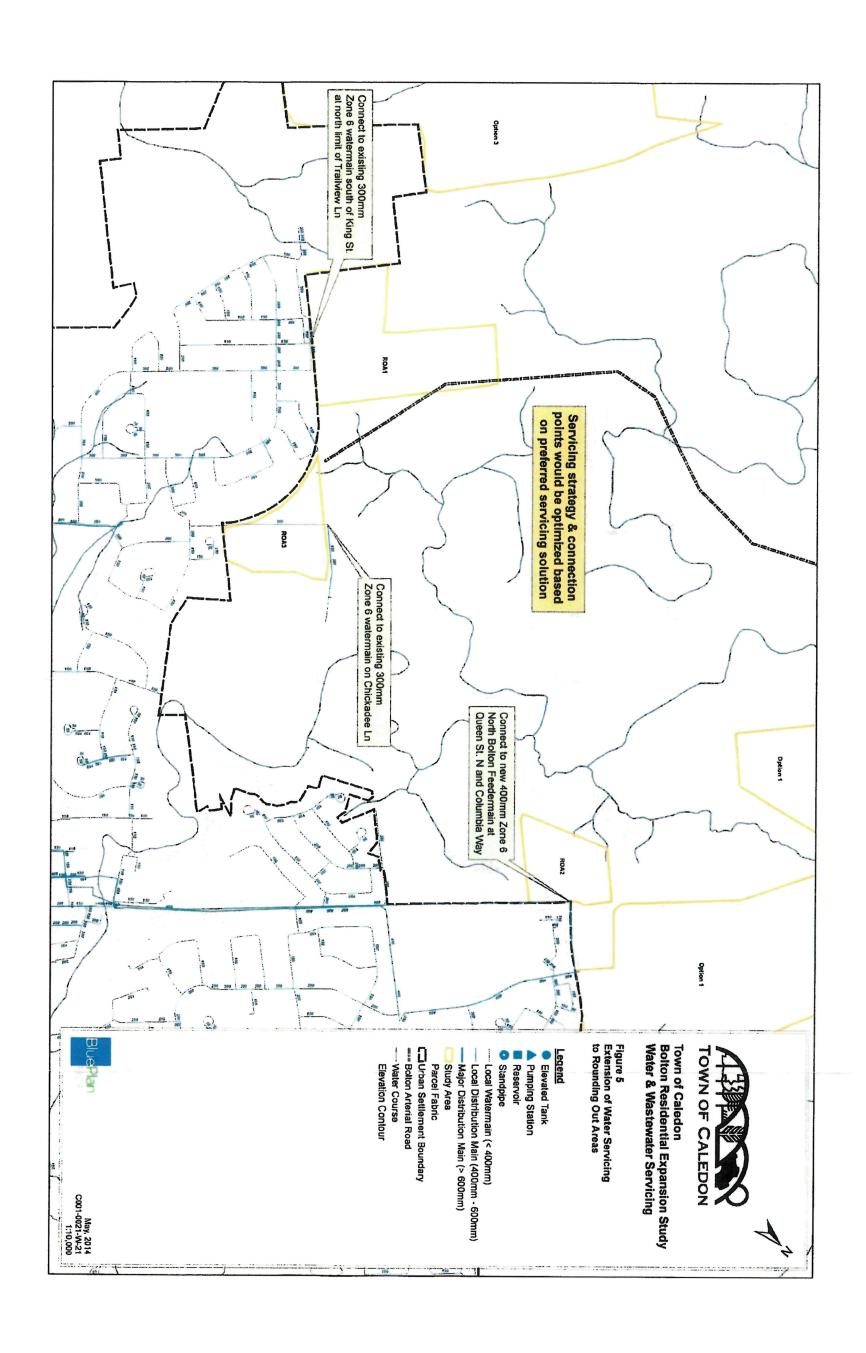




Figure 3-2: Subwatersheds

APPENDIX "E"

Region of Peel, Figures 5 and 8, Bolton Residential Expansion Study, Infrastructure Report, Blue Plan Engineering Consultants Limited, June 16th 2014

APPENDIX "H"

Storm Sewer Design Sheets

Stormwater Management Calculations - OTTHYMO Modelling

Water Balance Calculations

ļ					_							, vo 2 @ va	Q100 - Catch Basin Capacity @ 50%) - Catch B.		***			-							
9	Rev	19-Feb-19			19-Feb-19	52	F.S				Y	Based on Un Surcharged Pipe Capacity	ucharged F	d on Un Su		**				_					(0.013)	PIPE ROUGHNESS n =
	1 SHEET OF 2	DATE: 1 SHEE		E: CHE	DATE:		CALC BY:		Ħ	oth of wat	0.16m de	Based on Capacity of CB's @ 50% & 0.16m depth of water	ity of CB's	d on Capac	Base	*				-		-				= Area in hectares
11000		3.300	MMUNITY	CHICKADEE GROVE COMMUNITY	HICKADI		LOCATION:						ROW	16.0 m in 36 m ROW	16.0	5.		Velocity = m/sec	Veloc				TIME = 10 min.	INLET TIME	TY (mm/hr),	I = RAINFALL INTENSITY (mm/hr),
V17003	PROJECT NO-W17003	noad			CANDEVCON I		OMPA						ROW	14.5 m in 26 m ROW	14.5	4.	Ŕ	Capacity = cu.m/sec	Capac			RCIAL = 0.9	COMMERCIAL =			
-		-		JLIC GRADE	GRADE = HYDRAULIC	GRADE =							ROW	10.0 m in 23 m ROW	10.0	3.		GRADE = (m/m)	GRAL	_		(AL =0.9	INDUSTRIAL =0.9			
			TY > 0100	PIPE CAPACITY + ROAD CAPACITY > 0100	ACITY+I	PIPE CAF							WOY	8.0 m in 20 m ROW	8.0 L	2.	B	DIAMETER = mm	0.75 DIAM	JUSES = 6	INSTITUTIONAL & TOWN HOUSES =	MAL &	NSTITUT			
	4 m ³ /s	CAPACITY > 2	COMPLETE ROAD COLUMNS ONLY WHEN 0100 - PIPE CAPACITY > 2.4 m ³ /s	COLUMNS ONL	LETE ROAD	COMPI	1.						WOY	8.0 m in 17 m ROW	8.0 L	1-		LENGTH = m			SINGLE & SEMI-DETACHED = 0.5	SEMI-DI	SINGLE &			
						_								-								9.25/0.2	PARKS = 0.25/0.2		NT:	C=RUNOFF COEFFICIENT:
											ROAD TYPE	ROA							PIPE			_				000L
																										$Q = 2.78 \text{ A.C.I. } (\text{m}^3/\text{s});$
																			1		_	_		_		
										-	_															CHECK
2.00	0.000	Z.	02.0	9.107		-	\neg	9.00		-	_							ő	0.00		3.64					CHECK
ſ	0.000	NIA S		0 437		+	\neg	0 00		0.146	-	\neg					0		0.36	0.36 0	0.00	256.64	MH10 2	MH16 257.22	NA MI	STREET C
	0.500	NA	221 0.37	0.156	2.60%	300	48.40	0.00		0.148	0.101 0.	0.064 (.2 196.5	85.7 134.2	10.00 8	0.270 1	0.27		0.36	0.00 0	0.36	257.26	MH16 2	MH15 258.49	12 MI	STREET C
-11.50							\neg								12.21											
	0.500	N N		0.389				0.00		0.441	0.299 0.	0.189 (.7 187.0	80.1 126.7	11.43 8	0.848 1	0.413		1.13	0.58 1	0.55	256.57	MH10 2	MH9 256.82	5	STREET A
	0.500	NA		0.180		450	34.60	0.00		0.230	0.156 0.	0.099 (.3 190.3	82.0 129.3	10.92 8	0.435 1	0.225		0.58	0.28 0	0.30	256.97	MH9	MH8 257.11	4	STREET A
2.68	0.500	¥	1.01 0.92	0.111	0.40%	375	55.60	0.00		0.115	0.078 0.	0.050	.2 196.5	85.7 134.2	10.00 8	0.210 1	0.21		0.28	0.00 0	0.28	257.18	MH8	MH1 257.40	17 M	STREET A
															12.55				-							
	0.500	NA N		0.221		450		0.00		0.281	0.190 0.	0.120	.7 187.0	80.1 126.7	11.43 8	0.540 1	0.21		0.72	0.44 0	0.28	255.80	MH5	MH13 256.35	10 M	GLASGOW ROAD
	0.500	NA :		0.136		375	\neg	0.00		0.176	0.120 0.	0.076	.5 191.9	82.9 130.5	10.69 8	0.330 1	0.158		0.44	0.23 0	0.21	256.43	MH13	MH12 256.75	11 M	GLASGOW ROAD
2.68	0.500	NA	1.02 0.69	0.072	0.55%	300	41.80	0.00		0.094	0.064 0.	0.041	.2 196.5	85.7 134.2	10.00 8	0.173 1	0.173		0.23	0.00 0	0.23	256.83	MH12 :	MH11 257.05	& EXT 1 MI	STREET A 1
															10.80	_										
2.68	0.500	NA	1.14 0.80	0.180	0.40%	450	54.23	0.00		0.164	0.112 0.	0.071	.2 196.5	85.7 134.2	10.00 8	0.300 1	0.3		0.40	0.00 0	0.40	256.84	MH2	MH11 257.05	2 M	STREET A
															12.27	_										
	0.500	8		0.434		600	\neg	0.00		0.562	0.381 0.	0.242	.9 188.6	81.0 127.9	11.19 8	1.073 1	0.398		1.43	0.90 1	0.53	256.04	MH4	MH3 256.54	7 M	STREET B
2.68	0.500	NA	1.41 0.39	0.304	0.50%	525	32.84	0.00		0.359	0.244 0.	0.155	.9 191.1	82.5 129.9	10.80 8	0.675 1	0.135		0.90	0.72 0	0.18	256.61	MH3	MH2 256.77	8	STREET B
															10.59	1										
2.68	0.500	NA	1.14 0.59	0.180	0.40%	450	40.00	0.00		0.131	0.090 0.	0.057	.2 196.5	85.7 134.2	10.00 8	0.240 1	0.24		0.32	0.00 0	0.32	256.84	MH2	MH1 257.00	3	STREET A
	-																									
	- 1	ROW			→	man	Ħ														AREA	AIR			-	
CAPACITY	GRADE	TYPE	VELOCITY TIME	CAPACITY VEL	GRADE C.	SIZE	LENGTH	×	DBL)0 SGL	10 Q100	Q2 Q10			-		0.75	0.25 0.50		TR TOTAL	CONTR	NI ANI	MH I	WH INV	7	
								(m³/S)				(m³/S)								-	-					
		CLASS					,	PIPE FLOW				1000			(MIIN)	AxC (M	A								No.	
ZOAD.	NOTE 1 ROAD	Hald	-	PIPE	 - -			TOTAL	NO. OF CB'S	NO.	78 A.C.I.	FLOW = 2.78 A.C.I.	I ₁₀₀	110	ME I ₂	TOTAL TIME		AREA X STORM CO-EFF.	AREA	RES	NO. OF HECTARES	ı	DOWNSTREAM	UPSTREAM	AREA U	STREET
		the section of the se	O. C.									_														
											${f T}$	STORM SEWER DESIGN SHEET	VER DES	ORM SEV	I.S.									-		

	FIFE ROUGHNESS n =	A = Area in hectares	1 = KAINFALL IN IENSI1 Y (mm/nr),					C=RUNOFF COEFFICIENT:	1000	$Q = 2.78 \text{ A.C.I. } (\text{m}^3/\text{s});$			CHECK		מואהר כ					STREET C			CHICKADEE LANE		STREET D		CHICKADEE LANE						SIKEEI
	(0.013)	<u> </u>	x (mm/mr),				-	::				-) N	-	NA M	\perp	_	12		16 M	_	1	9		14 M	-	6					NO.	AREA
	-	-		1	-								C.7.4C7 /LIM		MH20 255.41				_	MH6 254.96	٠		MH4 255.74		MH14 258.74		MH10 256.20		ll.	ANI HW			UPSIKEAM
			INLE I IIME = 10 mm.	COMIN	INDUS	INSTI	SINGL	PARK			-		OOLIAN	2	#1 MH7		_			96 MH7	T		74 MH5	-	74 MH4		20 MH4			HIM			-
			ļij.	COMMERCIAL =	INDUSTRIAL =0.9	INSTITUTIONAL = 0.75	E & SEMI	PARKS = 0.25/0.2			.		204.55	2	255.35					254.75	254.98		255.42		257.28		255.81			V			DOWNSTREAM
_				= 0.9	9	= 0.75	SINGLE & SEMI-DETACHED = 0.5				6.67	2	2 97	3	0.00	0.00	0.22	0.80		0.35	0.40		0.36		0.45		0.39		EΑ	Z			NO. OF HECTARES
							ED = 0.5						0.01	2	1.02	1.02	0.80	0.00		5.24	4.84		3.76		0.00		1.49			CONTR			CTARES
_			<	C	G	D	E		Ę				0.01		1.02	1.02	1.02	_		5.59	5.24		4.12		0.45		1.88			TOTAL			Α
-			Velocity = m/sec	Capacity = cu.m/sec	GRADE = (m/m)	DIAMETER = mm	LENGTH = m		PIPE		0,47	5.16	3	-				0.118	-	-										0.25 0.50			AREA X STORM CO-EFF.
H			/sec	ı.m/sec	n/m)	= mm	n l				6.14	1.00	1				0.165	0.248	-	0.263	0		0.27		0.338		0.293		-				YRM CO-EF
-	-										6.61	Τ	0 4./23	\top	0 0.530	0 0.530	55 0.530	48 0.365		53 4.193	0.3 3.930		27 3.090		38 0.338		93 1.410			0 75		_	F. TOTAL
***				4.			1, 8					10.00			12.02	11.88	11.46	10.00	15.24	14.79	14.07	14.07	13.31	10.49	3 10.00	13.31	12.21						TIME
2100 - Cate	Based on Un	Based on Ca	16.0 m in 36 m ROW	14.5 m in 26 m ROW	10.0 m in 23 m ROW	8.0 m in 20 m ROW	8.0 m in 17 m ROW						68.4		78.0 1	78.5	80.0	85.7		69.6	71.6		73.8		85.7		77.4			1			I ₂ [110
h Basin Ca	n Surcharge	apacity of C	5 m ROW	5 m ROW	m ROW	m ROW	m ROW						110.5 16		123.9 18	124.5 18	126.6 18	134.2 19		112.2 16	115.0 17		118.1 17		134.2 19		123.0 18		+				Iten
Q100 - Catch Basin Capacity @ 50%	Based on Un Surcharged Pipe Capacity	Based on Capacity of CB's @ 50% & 0.16m depth of water							Ħ		-		165.7 0.898		183.3 0.115	184.2 0.116	186.8 0.118	196.5 0.087		167.9 0.811	171.7 0.782		175.8 0.634		196.5 0.080		182.2 0.303		4	3 [(m ³ /S)	1000	FLOW=
%	acity	% & 0.16п							ROAD TYPE				8 1.451		5 0.183	6 0.183	8 0.186	7 0.136		1 1.307	2 1.256		4 1.015		0 0.126		3 0.482		(In				= 2.78 A.C.I.
		ı depth of v							Ħ				2.175		0.270	0.271	0.275	0.199		1.957	1.876		1.510	-	0.184		0.714		CTOO				
		/ater																											ogr DBL		-	- 0.00	NO. OF CB'S
								-							_														1	+	(m ³ /S)	a agra	TOTAL
		Ç)	LOCA	COM	ω	2.	:		-		-		0.00 50.40		0.00 16.50	0.00 10.30	0.00 32.00	0.00 99.50		0.00 53.70	0.00 86.20		0.00 82.20		0.00 62.00		0.00 98.20		LENGIH		S)	- Carr	١٨٢.
	F.S	CALC BY:	LOCATION:	COMPANY:	GRADE	PIPE C	ÇŞ						40 1050		50 525	30 525		50 450			20 1050		20 900		300		.20 675						
	19-F	DΑ	CHICKA	CANDEVCON I	:=HYDR	APACITY -	PLETE ROA						0.40%		0.40%	0.40%	0.40%	0.40%			0.40%		0,40%		2.40%		0.40%	à	GRADE				
	19-Feb-19	DATE:		CON Limi	GRADE = HYDRAULIC GRADE	PIPE CAPACITY + ROAD CAPACITY > 0100	COMPLETE ROAD COLLIMNS ONLY WHEN DING - PIPE CAPACITY > 2 1 - 3/2						1.728		0.272	0.272	0.272	0.180		1.728	1.728		1.145		0.150		0.532	malsec	CAPACIT			FIFE	שמטב
	DKH	CHECKED BY:	VE COMM	imited	ADE	APACITY	IS ONLY WI						2.				1			2.	2.		_		2		_	1	CAPACITY VELOCITY				
		DBY:	YTINU			>0100	TEN CING						2.00 0.4			1.26 0.		1.14 1.			2.00 0.		1.80		212 0.		1.49	+	TY TIME				
	19-F	DATE:	1			111111111111111111111111111111111111111	PIDE CAPAC						0.42		0.22	0.14	0.42	1.46		0.45	0.72	-	0.76		0.49		1.10		-		CLASS	HAIA	1
	19-Feb-19 R	DATE: 2 SHEET OF 2		PROJEC		- 2.4 1	- V C V TT						A		₹	₹	₹	₹		¥ A	X A		¥		NA		N A	705					
- -	Rev)F 2		PROJECT NO-W17003		1/3	3/2	-					0.500		0.500			0.500		0.500	0.500		0.500	0.000	0.500	0.000	0.500	%	Ħ			(NOTE 1) ROAD	
	0		1000	7003									2.68		2.68	2.68	2.68	2.68		2.68	2.68		2 68	2.00	2 68	1.00	2 68		CAPACITY			ÁD	

RELEASE RATE REQUIREMENT FOR SWM POND

Project Number: W17003

Project Name: CHICKADEE LANE

Date: 02/01/2021

Checked By: D.K.H Prepared By: S.S

Total Site Area (Ha) = 7.00

Outlet Location: Innis Lake (Humber River)

Humber River SWM Quantity Control Release Rates based on Equation F (Sub Basin 36)

EVENT	HUMBER RIVER Sub-Basin	В	C	In(A)	In(A) Rel. Rate (L/S/ha) Rel. Rate (L/S)	Rel. Rate (L/S)
100 - Year	Q= 29.912 - 2.316*In(A)	29.91	2.316	1.95	25.4	178
50 - Year	Q= 26.566 - 2.082*In(A)	26.57	2.082	1.95	22.5	158
25-Year	Q= 22.639 - 1.741*In(A)	22.64	1.741	1.95	19.3	135
10-Year	Q= 17.957 - 1.373*In(A)	17.96	1.373	1.95	15.3	107
5-Year	Q= 14.652 - 1.136*In(A)	14.65	1.136	1.95	12.4	87
2-Year	Q= 9.506 - 0.719*In(A)	9.506	0.719	1.95	8.11	57

 $\overline{\sf Note}$: For West Humber River, the DRC release is 15% of 2 - year, Storage is 2/3 rd of 2 - year

Summary of SWM Pond Release Rate targets for different Storm Events

Return Period	Release Rates (L/s)
100 - Year	178
50 - Year	158
25-Year	135
10-Year	107
5-Year	87
2-Year	57
DRC	6

SWM POND STORAGE CALCS

Project Number: W17003

Prepared By: S.S Project Name: CHICKADEE LANE Checked By: D.K.H

Date: 02/01/2021

Permanent Pool and Extended Storage Volume Requirements;

Total Site Area draining to Proposed SWM Pond =

7.00 Ha

Total Site Imperviousness =

75%

MOE Standard Requirements =

233.33 m³/ha

(includes 40m³/ha Extended Detention)

Permanent Pool Volume Requirement =

193.33 m³/ha

(233.33 - 40)

PP Storage Required in proposed Pond =

1353.31 m³

Elevations	Surface Area	Average Area	Depth	Delta	Total	
				Volume	Volume	1,
(m)	(m ²)	(m ²)	(m)	(m ³)	(m ³)	
253.05	646					
		889	1.00	889		
254.05	1132	1230	0.50	615	889	
254.55	1327				1504	(Permanent Pool Storage)
254.55	1327					
		1776	1.00	1776		
255.55	2226	2498	0.40	999	1776	
255.95	2770	2400	0.40	000	2776	
050.00		3175	0.08	254		
256.03	3581	3757	0.50	1878	3030	
256.53	3932	0,07	0.00	1370	4908	(Total Active Storage)

Storm Event	Elevation (m)	Release Rate Requied (L/s)	Storage Requied* (m³)	Storage Provided (m³)
Permanent Pool			1353	1504
Water Quality	255.25	9	2193	1149
2-Year	255.48	57	1613	1623
5-Year	255.72	87	2174	2175
10-Year	255.87	107	2550	2559
25-Year	256.03	135	3022	3030
50-Year	256.13	158	3375	3392
100-Year	256.23	178	3725	3760

SWM POND CONTROL STRUCTURE DESIGN

Project Number: W17003
Prepared By: S.S
Project Name: CHICKADEE LANE
Checked By: D.K.H
Date: 02/01/2021

No. 1 (To Control DRC)
Weir/Orifice No.2 (To Control

Weir/Orifice No.2 (To Control	rol 2 - 100-Year)	
Orifice Width =	0.33 m	
Orifice Height =	0.15 m	BOX CUT-OUT DETAILS
Area =	0.05 m² ∟	
Orifice Coeff. (C)	0.63	
Invert =	255.35 m	
Orifice Centroid =	255.43 m	
Weir Equation = Q=1	1.67 x L x H^ ^{1.5}	
Weir Specifications		Where,
Length of Weir =	0.33 m	$Q_w = Flow rate (m^3/s)$
Weir Sill=	255.35 m	C = Constant
Weir Top-=	255.50 m	L = Weir Length (m)
Weir Coefficient =	1.67	H = Net Head on the Orifice (m)
	Weir/Orifice No.2 (To Control Orifice Width = Orifice Height = Area = Orifice Coeff. (C) Invert = Orifice Centroid = Weir Equation = Q = A Weir Specifications Length of Weir = Weir Top.= Weir Coefficient =	No.2 (To Control 2 - 10) Math

256.40	256.30	256.25	256.23	256.20	256.15	256.13	256.10	256.05	256.03	256.00	255.95	255 90	255.87	255.85	255.75	255.72	255.70	255.65	255.60	255.55	255.50	255.48	255.45	255.40	255.36	255.25	255.20	255.15	255.10	255.05	255.00	254.90	254.85	254.80	254.75	254.70	254.65	254.60	254 55	Elevation	╠	
1.81	1.71	1.66	1.64	1.61	1.56	1.54	1.51	1.46	1.43	1.41	1.36	1.31	1.28	1.26	1.16	1.13	1.11	1.06	1.01	0.96	0.91	0.88	0.86	0.81	0.76	0.66	0.61	0.56	0.51	0.46	0.41	0.31	0.26	0.21	0.16	0.11	0.06	0 0	Centroid (m)	Depth above orifice	OKITICE CONTROL-	Addition we included
0.016	0.015	0.015	0.015	0.015	0.015	0.014	0.014	0.014	0.014	0.014	0.014	0 013	0.013	0.013	0.013	0.012	0.012	0.012	0.012	0.011	0.011	0.011	0.011	0.010	0.010	0.009	0.009	0.009	0.008	0.008	0.007	0.006	0.006	0.005	0.005	0.004	0.003	0 0	(m³/s)	Orifice No.1 Flow	11 -	
0.98	0.88	0.83	0.81	0.78	0.73	0.71	0.68	0.63	0.60	0.58	0.53	0.48	0.45	0.38	0.33	0.30	0.28	0.23	0.18		-																		Centroid (m)	Depth above orifice	CKIT	
0.13	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11	0.11	0.10	0.10	0.09	0.09	0.09	0.08	0.07	0.07	0.06	0.06																				(m³/s)	Orifice No.2 Flow	ORIFICE/WEIR CONTROL-2 (BOX CUT-OUT)	
																				0.20	0.15	0.13	0.10	0.05															Weir (m)	Depth Above	DL-5 (BOX COI-OO	
																				0.05	0.03	0.03	0.02	0 01															(m³/s)	Weir No.2 Flow		
			0.02													The same of the same of the same of																							Centroid (m)	Depth above orifice	OVEKTLOW WEIK	
/			0.04																																				(m³/s)	Weir Flow		
0.146	0.143	0.139	0.177	0.135	0.130	0.129	0.126	0.122	0.120	0.117	0.112	0 107	0.104	0.090	0.090	0.086	0.084	0.077	0.069	0.060	0.043	0.036	0.028	0.017	0.010	0.009	0.009	0.009	0.008	0.008	0.007	0.006	0.006	0.005	0.005	0.004	0.003	0.000	(m³/s)	Total Flow		
Elevation on top of Overflow Weir = 256 20m			100-YR Control (Target - 178L/s)			50-YR Control (Target - 158L/s)			25-YR Control (Target - 135L/s)				10-YR Control (Target - 107L/s)			5-YR Control (Target - 87L/s)						2-YR Control (Target - 57L/s)				DRC Control (Target - 9L/s)																

Water Quality Volume Requirement

Project Number: W17003 Prepared By: S.S
Project Name: CHICKADEE LANE Checked By: D.K.H

Date: 02/01/2021

Drawdown Time for Water Quality Level;

Based on Equation 4.11 MOE SWM Planning and Design Manual

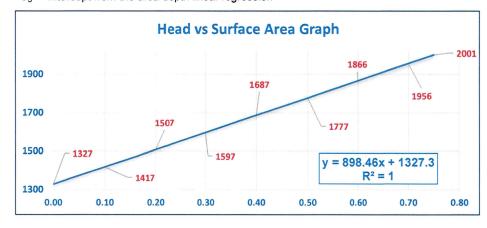
$$t = \frac{0.66 C_2 h^{1.5} + 2 C_3 h^{0.5}}{2.75 A_o}$$

t = Drawdown time in seconds

 A_p = Surface area of the pond (m²)

C = Discharge Coefficient (typically 0.63)

A_o = Cross-sectional area of the orifice (m²)


g = Gravitational acceleration constant (9.81 m/s)

h_{1 =} Starting water elevation above the orifice (m)

h₂ = Ending water elevation above the orifice (m)

C₂ = Slope coefficient from the area-depth linear regression

C₃ = Intercept from the area-depth linear regression

Elevation(m)	Head (m)	AREA (m ²)
254.55	0.00	1327
254.65	0.10	1417
254.75	0.20	1507
254.85	0.30	1597
254.95	0.40	1687
255.05	0.50	1777
255.15	0.60	1866
255.25	0.70	1956
255.30	0.75	2001

Intercept of Regression, $C_3 = 1327.3$ Slope coef. of Regression, $C_2 = 898.5$

Ultimate Ponding Elevation = 255.25 m (DRC Water Quality Level)

Depth over orifice = 0.70 m (DRC Level - Permanent Pool Elevation)

(255.25 - 254.55)

 Orifice Diameter =
 73 mm

 Orifice Area =
 0.00419 m²

 Drawdown Time (t)=
 223139 seconds

 62.0 hours

FOREBAY DESIGN CALCULATIONS

Project Name: CHICKADEE LANE Project Number: W17003

Checked By: D.K.H Prepared By: S.S

Date: 02/01/2021

Settling Calculations

Forebay Settling Length (MOE Equation 4.5)

Dist =
$$\frac{rQ_p}{V_s}$$

For Forebay

2.0 : 1 (INLET-1) Length-to-width ratio of forebay (r) =

Peak Quality flowrate (Qp) from pond based on release rate and volume of extended detention. Peak flow rate from the pond during design quality storm (Q_p) =

= DRC-Storage Volume (m³) Drawdown Time (hrs)

> 0.005148 m³/s 18.532258 m³/Hr

0.0003 m/s (Recommended from MOEE Manual)

Settling Velocity (V_s) =

21.0 m (INLET -1) Forebay Settling Length Required = Total Forebay Length Provided =

Dispersion Length Calculations

Length of Dispersion (MOE Equation 4.6)

Dist =
$$\frac{8Q}{dV_f}$$

Inlet flow rate - 10 yr. (Q) =

Depth of permanent pool in the forebay (d) =

Desired velocity in the forebay (V_f) =

Length of Dispersion) =

1.451 m³/s (Refer to Storm Design Sheet)

1.5 m

0.5 m/s (Recommended from MOEE Manual)

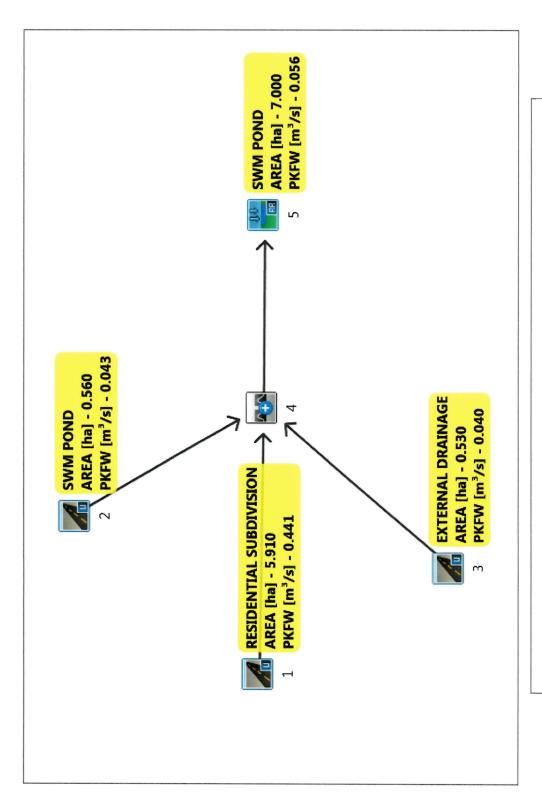
15.5 m

Minimum Forebay Deep Zone Bottom Width

Minimum Forebay Deep Zone Bottom Width (MOE Equation 4.7)

Width =
$$\frac{\text{Dist}}{8}$$

Distance (D_R) =


Width $(W_R) =$

1.93 m (Required Forebay Bottom Width)

15.5 m (Required Dispersion Length)

Forebay Bottom Width (W_P) =

12.50 m (Provided Forebay Bottom Width)

VISUAL OTTHYMO LAYOUT WITH AES STORM-6-HOUR RUN

	VO FULI	_ KESULIS.LXL		
	======================================	*************		
V V I S V V I V V I	SSSS U U A A A A A A A A A A A A A A A A	A L AA L	(v 6.2.2000)	
000 TTTTT T 0 0 T 0 0 T 000 T 000 T eveloped and Distribu opyright 2007 - 2020 S	ted by Smart City	Y MM MM O M M O M M O Water Inc		
***	** DETAIL	ED OUTP	U T *****	
Input filename: C:	\Program Files (x86)\Visual O	TTHYMO 6.2\VO2\voin	.dat
Output filename: :\Users\Shuchi\AppDat: 86-Ofc5-4fe2-bef5-9cc Summary filename: :\Users\Shuchi\AppDat: 86-Ofc5-4fe2-bef5-9cc	3d089a48c\scena a\Local\Civica\V			
OATE: 01/06/2021		TIME: 11	:06:08	
JSER:				
COMMENTS:				
**************************************	ear 6 Hour AES (Bloor, TR **		
READ STORM	1e2b	Local\Temp\ f10e-aa06-430	nppD 02-9fc0-7340cb56677d :S (Bloor, TRCA)	\9430055c
TIME hrs 0.25 0.50 0.75 1.00	RAIN TIME mm/hr hrs 0.00 2.00 1.11 2.25 1.11 2.50 1.11 2.75	mm/hr ' 18.94 3. 18.94 4.	TIME RAIN TIME hrs mm/hr hrs 75 7.80 5.50 00 4.46 5.75 25 4.46 6.00 5.00 2.23 6.25	

CALIB STANDHYD (0001) Area (ha) = 5.91Total Imp(%) = 75.00Dir. Conn.(%)= 75.00**IMPERVIOUS** PERVIOUS (i) 4.43 1.00 1.00 1.48 1.50 2.00 Surface Area (ha)=Dep. Storage Average Slope Length (mm) =(%)= 198.49 40.00 (m)=Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

hrs mm/ 0.083 0. 0.167 0. 0.250 0. 0.333 1. 0.417 1. 0.500 1. 0.583 1. 0.667 1. 0.750 1. 0.833 1. 0.917 1. 1.000 1. 1.083 1. 1.167 1. 1.250 1. 1.333 6. 1.417 6. 1.500 6.	IN TIME	NSFORMED HYETOGI RAIN TIME mm/hr hrs 6.68 3.250 6.68 3.333 18.94 3.417 18.94 3.500 18.94 3.583 18.94 3.667 18.94 3.750 18.94 3.833 51.24 4.000 51.24 4.083 51.24 4.167 51.24 4.250 51.24 4.250 51.24 4.250 51.24 4.333 14.48 4.417 14.48 4.583 14.48 4.583 14.48 4.667 14.48 4.750	RAPH RAIN mm/hr 14.48 7.80 7.80 7.80 7.80 4.46 4.46 4.46 4.46 4.46 4.46 4.46 4.223 2.2	TIME hrs 4.83 4.92 5.00 5.08 5.17 5.25 5.33 5.42 5.50 5.58 5.67 5.75 5.83 5.92 6.00 6.08 6.17 6.25	RAIN mm/hr 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	5.00 5.04 (5.00	33.51 20.00 (ii) 15.97 (i ⁻ 20.00 0.07			
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	2.75 54.69 55.69	0.10 2.92 29.66 55.69 0.53	*TOTAL 0.72 2.7 48.4 55.6 0.8	21 (iii) 75 43 59	

⁽i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 85.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

| STANDHYD (0002) | Area (ha)= 0.56

THAN THE STORAGE COEFFICIENT.

⁽iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
VO FULL RESULTS.txt
|ID= 1 DT= 5.0 min |
                      Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00
                              IMPERVIOUS
                                            PERVIOUS (i)
                                0.42
                      (ha)=
                                               0.14
    Surface Area
                                  1.00
                                               1.50
    Dep. Storage
                      (mm) =
                       (%)=
                                  1.00
                                               2.00
     Average Slope
                                 61.10
     Length
                       (m)=
                                              40.00
                                 0.013
                                              0.250
    Mannings n
        NOTE: RAINFALL WAS TRANSFORMED TO
                                             5.0 MIN. TIME STEP.
```

	TRA	NSFORMED HYET	OGRAPH		
	AIN TIME /hr hrs	RAIN TI	ME RAIN rs mm/hr		RAIN mm/hr
0.083	.00 1.667	6.68 3.25		4.83	1.11
0.167 0	.00 1.750	6.68 3.33	3 7.80	4.92	1.11
	.00 1.833 .11 1.917	18.94 3.41 18.94 3.50	7 7.80 0 7.80	5.00 5.08	$1.11 \\ 1.11$
0.417 1	.11 2.000	18.94 3.58	3 7.80	5.17	1.11
	.11 2.083	18.94 3.66		5.25	1.11
0.583 1 0.667 1	.11 2.167 .11 2.250	18.94 3.75 18.94 3.83	0 7.80 3 4.46	5.33 5.42	$1.11 \\ 1.11$
0.750 1	.11 2.333	51.24 3.91	7 4.46	5.50	1.11
	.11 2.417 .11 2.500	51.24 4.00 51.24 4.08		5.58 5.67	$\begin{array}{c} 1.11 \\ 1.11 \end{array}$
$ \begin{array}{ccc} 0.917 & 1 \\ 1.000 & 1 \end{array} $.11 2.500 .11 2.583	51.24 4.06		5.75	1.11
1.083 1	.11 2.667	51.24 4.25	0 4.46	5.83	1.11
$egin{array}{ccc} 1.167 & 1 \ 1.250 & 1 \end{array}$.11 2.750 .11 2.833	51.24 4.33 14.48 4.41		5.92 6.00	$1.11 \\ 1.11$
1.333 6	.68 2.917	14.48 4.50	0 2.23 İ	6.08	1.11
1.417 6	.68 3.000	14.48 4.58	3 2.23	6.17	1.11
	.68 3.083 .68 3.167	14.48 4.66 14.48 4.75		6.25	1.11
	·	•			
Max.Eff.Inten.(mm/hr) over (min)		33.51 15.00			
Storage Coeff. (min)			(ii)		
Unit Hyd. Tpeak (min)	= 5.00	15.00			
Unit Hyd. peak (cms)	= 0.29	0.08	*TOT	ALS*	
PEAK FLOW (cms)		0.01	0.	070 (iii))
TIME TO PEAK (hrs) RUNOFF VOLUME (mm)		2.83 29.66		2.75 3.42	
TOTAL RAINFALL (mm)	= 55.69	55.69	5.5	5.69	
_	= 0.98	0.53	C	.87	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
VO FULL RESULTS.txt
                  (mm) =
                                              1.50
Dep. Storage
                               1.00
Average Slope
                               1.00
                                              2.00
                    (%)=
                                            40.00
0.250
                    (m)=
                              59.44
Length
                              0.013
Mannings n
```

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583	RAIN mm/hr 0.00 0.00 0.00 1.11 1	TIME hrs 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083 3.167	NSFORME RAIN mm/hr 6.68 18.94 18.94 18.94 18.94 51.24 51.24 51.24 51.24 51.24 51.48 14.48 14.48	D HYETOGRA 'TIME 'hrs 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750	RAIN mm/hr 14.48 7.80 7.80 7.80 7.80 7.80 4.46 4.46 4.46 4.46 4.46 4.46 4.223 2.2	TIME hrs 4.83 4.92 5.00 5.08 5.17 5.25 5.33 5.42 5.50 5.58 5.67 5.75 5.83 5.92 6.00 6.08 6.17 6.25	RAIN mm/hr 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.
Unit Hyd. Tpeak (min) min)=	51.24 5.00 2.44 5.00 0.30	(ii)	33.51 15.00 13.37 (ii) 15.00 0.08			
	cms)= hrs)= (mm)= (mm)= T =	0.06 2.75 54.69 55.69 0.98		0.01 2.83 29.66 55.69 0.53	2 48 55	ALS* 066 (iii) .75 .42 .69 .87	l

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 85.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004)	AREA	QPEAK	TPEAK	R.V.
1 + 2 = 3	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0001):	5.91	0.721	2.75	48.43
+ ID2= 2 (0002):	0.56	0.070	2.75	48.42
ID = 3 (0004):	6.47	0.791	2.75	48.43

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Page 4

ADD HYD (0004)| 3 + 2 = 1**QPEAK** AREA **TPEAK** R.V. (cms) (ha) (mm) (hrs) ID1= 3 (+ ID2= 2 (6.47 0004): 0.791 48.43 2.75 0003): 0.53 0.066 2.75 48.42 2.75 48.43 ID = 1 (0004): 7.00 0.857 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. RESERVOIR(0005) OVERFLOW IS OFF IN= 2---> OUT= 1 DT= 5.0 min **OUTFLOW** STORAGE **OUTFLOW STORAGE** (cms) (ha.m.) (cms) (ha.m.) 0.3700 0.0000 0.0000 0.1730 0.0550 0.1600 0.2100 0.4000 0.1000 0.6800 0.4500 0.2450 **TPEAK** AREA **QPEAK** R.V. (ha) (cms) (hrs) (mm) 0.857 INFLOW : ID= 2 (
OUTFLOW: ID= 1 (2.75 0004) 7.000 48.43 3.92 0005) 7.000 0.106 48.32 REDUCTION [Qout/Qin](%)= 12.35 PEAK FLOW TIME SHIFT OF PEAK FLOW (min) = 70.00

USED

(ha.m.) = 0.2550

(v 6.2.2000) I SSSSS U U Α Ι U U A A SS L ٧ AAAAA I SS U U L U U I SS Α Α 1... SSSSS UUUUU Ι Α LLLLL Μ 000 000 $\Pi\Pi\Pi$ $\Pi\Pi\Pi$ Н Н Υ TM ΥΥ MM MM 0 0 0 T Н Н 0 Т Υ М 0 0 T Т Н Н М 0 0 000 Т Т Н 000 Н Developed and Distributed by Smart City Water Inc

Copyright 2007 - 2020 Smart City Water Inc All rights reserved.

MAXIMUM STORAGE

**** DETAILED O U T P U T *****

filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Input

Output filename:

C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\41eac 8a9-1279-40f1-93f7-54226a7d65a6\scena

Summary filename: C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\41eac 8a9-1279-40f1-93f7-54226a7d65a6\scena

TIME: 11:06:08 DATE: 01/06/2021

USER:

** SIMULATION: 100 Year 6 Hour AES (Bloor, T ** ***********

Filename: C:\Users\Shuchi\AppD
ata\Local\Temp\ READ STORM

1e2bf10e-aa06-4302-9fc0-7340cb56677d\57b24d9f

Comments: 100 Year 6 Hour AES (Bloor, TRCA) Ptotal = 80.31 mm |

TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.25	0.00	2.00	27.30	3.75	11.24	5.50	1.61
0.50	1.61	2.25	27.30	4.00	6.42	5.75	1.61
0.75	1.61	2.50	73.88	4.25	6.42	6.00	1.61
1.00	1.61	2.75	73.88	4.50	3.21	6.25	1.61
1.25	1.61	3.00	20.88	4.75	3.21		
1.50	9.64	3.25	20.88	5.00	1.61		
1.75	9.64	3.50	11.24	5.25	1.61		
				•			

CALIB | STANDHYD (0001) | |ID= 1 DT= 5.0 min | Area (ha) = 5.91Total Imp(%) = 75.00Dir. Conn.(%)= 75.00

IMPERVIOUS PERVIOUS (i) Surface Area (ha)=4.43 1.48 1.00 1.50 Dep. Storage (mm) =Average Slope (%)= 2.00 Length 198.49 40.00 (m)=Mannings n 0.013

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR/	ANSFORME) HYETOGR	APH	_	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	9.64	3.250	20.88	4.83	1.61
0.167	0.00	1.750	9.64	3.333	11.24	4.92	1.61
0.250	0.00	1.833	27.30	3.417	11.24	5.00	1.61
0.333	1.61	1.917	27.30	3.500	11.24	5.08	1.61
0.417	1.61	2.000	27.30	3.583	11.24	5.17	1.61
0.500	1.61	2.083	27.30	3.667	11.24	5.25	1.61
0.583	1.61	2.167	27.30	3.750	11.24	5.33	1.61
0.667	1.61	1 2.250	27.30	3.833	6.42	5.42	1.61
0.750	1.61	2.333	73.88	i 3.917	6.42	5.50	1.61
0.833	1.61	2.417	73.88	i 4.000	6.42	5.58	1.61
0.917	1.61	2.500	73.88	4.083	6.42	5.67	1.61
		•	Dago 6	-			

1.000 1.61 1.083 1.61 1.167 1.61 1.250 1.61 1.333 9.64 1.417 9.64 1.500 9.64 1.583 9.64	VO FULL RESUL 2.583	4.250 4.333 4.417 4.500 4.583 4.667	6.42 6.42 3.21 3.21 3.21 3.21 3.21 3.21	5.75 5.83 5.92 6.00 6.08 6.17 6.25	1.61 1.61 1.61 1.61 1.61 1.61
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	73.88 5.00 4.35 (ii) 5.00 0.23	57.08 15.00 13.18 (ii) 15.00 0.08			
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.91 2.75 79.31 80.31 0.99	0.19 2.83 50.24 80.31 0.63	2 72 80	ALS* 092 (iii) .75 .04 .31 .90)

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 85.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0002) | |ID= 1 DT= 5.0 min | Area (ha) = 0.56Dir. Conn.(%)= 75.00Total Imp(%) = 75.00**IMPERVIOUS** PERVIOUS (i) 0.14 1.50 2.00 Surface Area (ha)=0.42 1.00 Dep. Storage (mm) =Average Slope (%)= 1.00 Length 61.1040.00 (m)=Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	1.667	9.64	3.250	20.88	4.83	1.61	
0.167	0.00	1.750	9.64	3.333	11.24	4.92	1.61	
0.250	0.00	1.833	27.30	3.417	11.24	5.00	1.61	
0.333	1.61	1.917	27.30	3.500	11.24	5.08	1.61	
0.417	1.61	2.000	27.30	3.583	11.24	5.17	1.61	
0.500	1.61	2.083	27.30	3.667	11.24	5.25	1.61	
0.583	1.61	2.167	27.30	3.750	11.24	5.33	1.61	
0.667	1.61	2.250	27.30	3.833	6.42	5.42	1.61	
0.750	1.61	2.333	73.88	3.917	6.42	5.50	1.61	
0.833	1.61	2.417	73.88	4.000	6.42	5.58	1.61	
0.917	1.61	2.500	73.88	4.083	6.42	5.67	1.61	
1.000	1.61	2.583	73.88	4.167	6.42	5.75	1.61	
1.083	1.61	2.667	73.88	4.250	6.42	5.83	1.61	
1.167	1.61	2.750	73.88	4.333	3.21	5.92	1.61	
1.250	1.61	2.833	20.88	4.417	3.21	6.00	1.61	

1.33 1.41 1.50 1.58	7 9.64 0 9.64	VO FULL 2.917 3.000 3.083 3.167	RESULT 20.88 20.88 20.88 20.88	rs.txt 4.500 4.583 4.667 4.750	3.21 3.21 3.21 3.21	6.08 6.17 6.25	1.61 1.61 1.61
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(min) (min)=	73.88 5.00 2.15 5.00 0.31	(ii)	57.08 15.00 10.98 (ii) 15.00 0.09	*TOT	AL C'À	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	(cms)= (hrs)= (mm)= (mm)= ENT =	0.09 2.75 79.31 80.31 0.99		0.02 2.83 50.24 80.31 0.63	0. 2 72 80	ALS" 104 (iii) .75 .03 .31 .90	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 85.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0003) ID= 1 DT= 5.0 min	Area Total	(ha)= 0.53 Imp(%)= 75.00	Dir. Conn.(%)=	75.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.40 1.00 1.00 59.44 0.013	PERVIOUS (i) 0.13 1.50 2.00 40.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORMED	HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	9.64	3.250	20.88	4.83	1.61
0.167	0.00	1.750	9.64	3.333	11.24	4.92	1.61
0.250	0.00	1.833	27.30	3.417	11.24	5.00	1.61
0.333	1.61	1.917	27.30	3.500	11.24	5.08	1.61
0.417	1.61	2.000	27.30	3.583	11.24	5.17	1.61
0.500	1.61	2.083	27.30	3.667	11.24	5.25	1.61
0.583	1.61	2.167	27.30	3.750	11.24	5.33	1.61
0.667	1.61	2.250	27.30	3.833	6.42	5.42	1.61
0.750	1.61	2.333	73.88	3.917	6.42	5.50	1.61
0.833	1.61	2.417	73.88	4.000	6.42	5.58	1.61
0.917	1.61	2.500	73.88	4.083	6.42	5.67	1.61
1.000	1.61	2.583	73.88	4.167	6.42	5.75	1.61
1.083	1.61	2.667	73.88	4.250	6.42	5.83	1.61
1.167	1.61	2.750	73.88	4.333	3.21	5.92	1.61
1.250	1.61	2.833	20.88	4.417	3.21	6.00	1.61
1.333	9.64	2.917	20.88	4.500	3.21	6.08	1.61
1.417	9.64	3.000	20.88	4.583	3.21	6.17	1.61
1.500	9.64	3.083	20.88	4.667	3.21	6.25	1.61
1.583	9.64	3.167	20.88	4.750	3.21		

```
Max.Eff.Inten.(mm/hr)=
                             73.88
                                           57.08
           over (min)
                              5.00
                                          15.00
                              2.11 (ii)
                                          10.94 (ii)
Storage Coeff.
                (min)=
                                          15.00
Unit Hyd. Tpeak (min)=
                              5.00
Unit Hyd. peak (cms)=
                                           0.09
                              0.31
                                                        *TOTALS*
                                                          0.099 (iii)
                                            0.02
PEAK FLOW
                 (cms) =
                              0.08
                              2.75
TIME TO PEAK
                (hrs)=
                                            2.83
                                                           2.75
RUNOFF VOLUME
                                                          72.03
                  (mm)=
                             79.31
                                           50.24
                                           80.31
                                                          80.31
TOTAL RAINFALL
                  (mm) =
                             80.31
                                                           0.90
RUNOFF COEFFICIENT
                              0.99
                                           0.63
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 - $CN^* = 85.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 - THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004)	AREA	QPEAK	TPEAK	R.V.
1 + 2 = 3	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0001):	5.91	1.092	2.75	72.04
+ ID2= 2 (0002):	0.56	0.104	2.75	72.03
ID = 3 (0004):	6.47	1.196	2.75	72.04

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
ADD HYD ( 0004) \begin{vmatrix} 3 + 2 = 1 \end{vmatrix}
                                     AREA
                                                QPEAK
                                                             TPEAK
                                                                          R.V.
                                     (ha)
                                                (cms)
                                                             (hrs)
                                                                           (mm)
     ID1= 3 ( 0004):
+ ID2= 2 ( 0003):
                                               1.196
                                     6.47
                                                                        72.04
                                                             2.75
                                     0.53
                                               0.099
                                                                        72.03
                                                             2.75
                                                                        72.04
        ID = 1 (0004):
                                     7.00
                                               1.295
                                                             2.75
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0005) IN= 2> OUT= 1	OVERFLOW I	S OFF		
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
	(cms)	(ha.m.)	(cms)	(ha.m.)
	0.0000	0.0000	0.1730	0.3700
	0.0550	0.1600	0.2100	0.4000
	0.1000	0.2450	0.6800	0.4500
	ARE		TPEAK	R.V.
INFLOW: ID= 2 (000	(ha (ha) 7.0		(hrs) 2.75	(mm) 72.04
INFLOW: ID= 2 (000 OUTFLOW: ID= 1 (000				72.0 4 71.93
0011 E0N: 1B- 1 (000	,,,,	00 0.17	0 3.03	71.55
PEAK	FLOW RE	DUCTION [Qou	ut/Qin](%)= 1	
	SHIFT OF PE		(min) = 6	
MAXIM	1UM STORAGE	USED	(ha.m.)=	0.3/25

FINISH
V V I SSSSS U U A L (V 6.2.2000) V V I SS U U AAAAA L V V I SS U U A A A L VV I SSSSS UUUUU A A LLLLL
OOO TTTT TTTT H H Y Y M M OOO TM O O T T H H YY MM MM O O O O T T H H Y M M OOO Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved.
***** DETAILED OUTPUT *****
<pre>Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat</pre>
Output filename: C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\2596c 296-5080-43b9-9771-d8cae20a1e89\scena Summary filename: C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\2596c 296-5080-43b9-9771-d8cae20a1e89\scena
DATE: 01/06/2021 TIME: 11:06:08
USER:
COMMENTS:

READ STORM Filename: C:\Users\Shuchi\AppD ata\Local\Temp\ 1e2bf10e-aa06-4302-9fc0-7340cb56677d\c3eef724 Ptotal= 36.00 mm Comments: 2 Year 6 Hour AES (Bloor, TRCA)
TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 0.25 0.00 2.00 12.24 3.75 5.04 5.50 0.72 Page 10

		VO FULL	RESULTS	5.txt			
0.50	0.72	2.25	12.24	4.00	2.88	5.75	0.72
0.75	0.72	2.50	33.12	4.25	2.88	6.00	0.72
1.00	0.72	2.75	33.12	4.50	1.44	6.25	0.72
1.25	0.72	3.00	9.36	4.75	1.44		
1.50	4.32	3.25	9.36	5.00	0.72		
1.75	4.32	3.50	5.04	5.25	0.72		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	3.5.	3.23	0.72		

0.250

CALIB | STANDHYD (0001) |ID= 1 DT= 5.0 min | Area (ha)= 5.91 Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00**IMPERVIOUS** PERVIOUS (i) 1.48 1.50 Surface Area (ha)=4.43 Dep. Storage (mm)= 1.00 2.00 Average Slope (%)= 1.00 198.49 Length (m)=40.00

Mannings n

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

0.013

		TRA	ANSFORME	D HYETOGRA	PH	-	
TIME hrs	RAIN mm/hr	TIME hrs	RAIN mm/hr	' TIME ' hrs	RAIN mm/hr		RAIN mm/hr
0.083	0.00	1.667	4.32	3.250	9.36	4.83	0.72
0.167 0.250	0.00 0.00	1.750 1.833	4.32 12.24	3.333	5.04	4.92	0.72
0.230	0.72	1.033	12.24	3.417	5.04 5.04	5.00 5.08	$0.72 \\ 0.72$
0.417	0.72	2.000	12.24	3.583	5.04	5.17	0.72
0.500 0.583	0.72 0.72	2.083 2.167	12.24 12.24	3.667 3.750	5.04 5.04	5.25 5.33	0.72 0.72
0.667	0.72	2.250	12.24	3.833	2.88	5.42	0.72
0.750 0.833	0.72 0.72	2.333	33.12 33.12	3.917 4.000	2.88	5.50 5.58	0.72 0.72
0.917	0.72	2.500	33.12	4.083	2.88	5.67	0.72
1.000 1.083	0.72 0.72	2.583 2.667	33.12 33.12	4.167 4.250	2.88	5.75 5.83	0.72 0.72
1.167	0.72	2.750	33.12	4.333	1.44	5.92	0.72
1.250 1.333	0.72 4.32	2.833 2.917	9.36 9.36	4.417	1.44 1.44	6.00 6.08	0.72 0.72
1.417	4.32	3.000	9.36	4 583	1.44	6.17	0.72
1.500 1.583	4.32 4.32	3.083 3.167	9.36 9.36	4.667	1.44 1.44	6.25	0.72
Max.Eff.Inten.(mm		33.12			·		
over (5.00		17.18 25.00			
Storage Coeff. (Unit Hyd. Tpeak (min)=	6.00 5.00		20.27 (ii) 25.00			
Unit Hyd. peak (cms)=	0.19	,	0.05			
PEAK FLOW (cms)=	0.41		0.04		TALS* .441 (iii)	
TIME TO PEAK (hrs)=	2.75		3.00	2	2.75	
RUNOFF VOLUME TOTAL RAINFALL	(mm)= (mm)=	35.00 36.00		15.00 36.00		0.00 5.00	
RUNOFF COEFFICIEN		0.97		0.42).83	

⁽i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 85.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

VO FULL RESULTS.txt THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB | STANDHYD (0002) |ID= 1 DT= 5.0 min | Area (ha)= 0.56Total Imp(%)= 75.00Dir. Conn.(%)= 75.00**IMPERVIOUS** PERVIOUS (i) 0.14 1.50 2.00 Surface Area (ha)=0.42 Dep. Storage Average Slope 1.00 (mm) =1.00(%)= Length (m)= 61.10 40.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME hrs mm/hr 0.083 0.00 0.167 0.00 0.250 0.00 0.333 0.72 0.417 0.72 0.500 0.72 0.583 0.72 0.667 0.72 0.750 0.72 0.833 0.72 0.917 0.72 1.000 0.72 1.083 0.72 1.167 0.72 1.250 0.72 1.333 4.32 1.417 4.32 1.500 4.32 1.583 4.32	TIME RAIN hrs mm/hr 1.667 4.32 1.750 4.32 1.833 12.24 1.917 12.24 2.000 12.24 2.083 12.24 2.167 12.24 2.250 12.24 2.333 33.12 2.417 33.12 2.500 33.12 2.583 33.12 2.583 33.12 2.583 33.12 2.583 33.12 2.583 33.12 2.583 33.12 2.667 33.12 2.750 33.12 2.833 9.36 2.917 9.36 3.000 9.36 3.083 9.36 3.167 9.36	3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583	RAIN TIME mm/hr hrs 9.36 4.83 5.04 4.92 5.00 5.04 5.08 5.04 5.17 5.04 5.25 5.04 5.33 2.88 5.42 2.88 5.50 2.88 5.58 2.88 5.58 2.88 5.58 2.88 5.575 2.88 5.75 2.88 5.75 2.88 5.92 1.44 6.00 1.44 6.08 1.44 6.17	RAIN mm/hr 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	33.12 5.00 2.96 (ii) 5.00 0.28	17.18 20.00 17.24 (ii) 20.00 0.06		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.04 2.75 35.00 36.00 0.97	0.00 2.92 15.01 36.00 0.42	*TOTALS* 0.043 (iii) 2.75 29.98 36.00 0.83	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB | STANDHYD (0003) | |ID= 1 DT= 5.0 min | (ha) = 0.53Area Total Imp(%)= 75.00Dir. Conn.(%)= 75.00**IMPERVIOUS** PERVIOUS (i) Surface Area (ha)=0.13 0.40 1.00 1.50 (mm) =Dep. Storage 2.00 Average Slope (%)= 1.00 (m)=59.44 Length 40.00 Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORME	D HYETOGRA	PH		
TIME hrs 0.083 0.167 0.250 0.333 0.417	RAIN mm/hr 0.00 0.00 0.00 0.72 0.72	TIME hrs 1.667 1.750 1.833 1.917 2.000	RAIN mm/hr 4.32 4.32 12.24 12.24 12.24	' TIME ' hrs 3.250 3.333 3.417 3.500 3.583	RAIN mm/hr 9.36 5.04 5.04 5.04	TIME hrs 4.83 4.92 5.00 5.08 5.17	RAIN mm/hr 0.72 0.72 0.72 0.72
0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500	0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72	2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083	12.24 12.24 12.24 33.12 33.12 33.12 33.12 9.36 9.36 9.36 9.36	3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750	5.04 5.04 2.88 2.88 2.88 2.88 2.88 1.44 1.	5.92 6.00 6.08	0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
Unit Hyd. Tpeak (m	in) in)=	33.12 5.00 2.91 5.00 0.28	(ii)	17.18 20.00 17.19 (ii) 20.00 0.06	1.44 *TOT	ALS*	
TIME TO PEAK (h: RUNOFF VOLUME (i	ms)= rs)= mm)= mm)= =	0.04 2.75 35.00 36.00 0.97		0.00 2.92 15.01 36.00 0.42	0. 2 29 36	040 (iii) 1.75 1.98 1.00 1.83	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

R.V.

| ADD HYD (0004)| | 1 + 2 = 3 | AREA QPEAK TPEAK | Page 13

```
VO FULL RESULTS.txt
                                                (hrs)
                               (ha)
                                                           (mm)
                                      (cms)
      ID1= 1 ( 0001):
+ ID2= 2 ( 0002):
                                                         30.00
                               5.91
                                      0.441
                              0.56
                                      0.043
                                                 2.75
                                                         29.98
                              6.47
                                      0.484
                                                 2.75
                                                         30.00
        ID = 3 (0004):
     NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 AREA
                                       QPEAK
                                                TPEAK
                                                           R.V.
                                      (cms)
                               (ha)
                                                 (hrs)
                                                           (mm)
      ID1= 3 ( 0004):
+ ID2= 2 ( 0003):
                                                         30.00
                               6.47
                                      0.484
                                                 2.75
                              0.53
                                      0.040
                                                         29.98
                                                2.75
                              7.00
                                                         30.00
        ID = 1 (0004):
                                      0.525
                                                2.75
     NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
  RESERVOIR( 0005)
                          OVERFLOW IS OFF
  IN= 2---> OUT= 1 |
                                      STORAGE
                                                    OUTFLOW
                                                               STORAGE
DT= 5.0 min |
                          OUTFLOW
                                                               (ha.m.)
0.3700
                                                     (cms)
                           (cms)
                                      (ha.m.)
                           0.0000
                                                     0.1730
                                       0.0000
                                                     0.2100
                                                                 0.4000
                           0.0550
                                       0.1600
                                       0.2450
                           0.1000
                                                     0.6800
                                                                 0.4500
                                  AREA
                                           QPEAK
                                                      TPEAK
                                                                  R.V.
                                  (ha)
                                           (cms)
                                                                   (mm)
                                             0.525
   INFLOW : ID= 2 ( 0004)
OUTFLOW: ID= 1 ( 0005)
                                                      2.75
                                  7.000
                                                                   30.00
                                             0.056
                                  7.000
                                                         4.25
                                                                   29.89
                    PEAK FLOW REDUCTION [Qout/Qin](%)= 10.61
TIME SHIFT OF PEAK FLOW (min)= 90.00
                                                    (ha.m.) = 0.1613
                    MAXIMUM STORAGE
                                        USED
                                                            (v 6.2.2000)
                                 U
                      SSSSS U
                                            L
                 I
                                       Α
                                    A A L
AAAAA L
                      SS
                 Ι
                             U
                                 U
                             U
                                  U
                 Ι
                       SS
                       SS
                                U
                 Ι
                             U
                      SSSSS UUUUU A
         W
                 Ι
                                           LLLLL
                                                     000
        000
              TTTTT
                      TTTTT
                             Н
                                      YY
                      Т
                                            MM MM O O
       0 0
                 Т
                             Н
                                 Н
                                       Υ
                        Т
                                            M M O O
                 Т
                             Н
                                H
         0
        000
                Т
                       Т
                             Н
                                 Н
                                       Υ
                                            М
                                               М
                                                     000
Developed and Distributed by Smart City Water Inc
Copyright 2007 - 2020 Smart City Water Inc
All rights reserved.
                    ***** DETAILED OUTPUT *****
          filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat
  Input
```

Page 14

Output filename:

C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\19bd4 1d0-40da-4e7c-ab09-d8a24a2662d8\scena

Summary filename:

Mannings n

C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\19bd4 1d0-40da-4e7c-ab09-d8a24a2662d8\scena

TIME: 11:06:08 DATE: 01/06/2021

USER:

COMMENTS: _____

************ ** SIMULATION : 25 Year 6 Hour AES (Bloor, TR ** *****************

Filename: C:\Users\Shuchi\AppD
ata\Local\Temp\
1e2bf10e-aa06-4302-9fc0-7340cb56677d\484539e2
Comments: 25 Year 6 Hour AES (Bloor, TRCA) READ STORM

00

Ptotal= 65.59 mm

				•	,	•	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	l hrs	mm/hr
0.25	0.00	2.00	22,30	3.75	9.18	5.50	1.31
0.50	1.31	2.25	22.30	4.00	5.25	5.75	1.31
0.75	1.31	2.50	60.35	4.25	5.25	6.00	$\frac{1.31}{1.31}$
1.00	1.31	2.75	60.35	4.50	2.62	6.25	1.31
1.25	1.31	3.00	17.06	4.75	2.62	0.23	1.51
	7.87	3.25	17.06	5.00	1.31		
1.50							
1.75	7.87	3.50	9.18	5.25	1.31		

CALIB STANDHYD (0001) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	5.91 75.00	Dir. Conn.(%)=	75.
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVI 4.4 1.0 1.0 198.4 0.01	3 0 0 9	PERVIOUS (i) 1.48 1.50 2.00 40.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH							
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	7.87	3.250	17.06	4.83	1.31
0.167	0.00	1.750	7.87	3.333	9.18	4.92	1.31
0.250	0.00	1.833	22.30	3.417	9.18	5.00	1.31
0.333	1.31	1.917	22.30	3.500	9.18	5.08	1.31
			Domo 15				

0.417 1.3 0.500 1.3 0.583 1.3 0.667 1.3 0.750 1.3 0.833 1.3 0.917 1.3 1.000 1.3 1.083 1.3 1.167 1.3 1.250 1.3 1.333 7.8 1.417 7.8 1.500 7.8 1.583 7.8	1 2.083 22.30 1 2.167 22.30 1 2.250 22.30 1 2.333 60.35 1 2.417 60.35 1 2.500 60.35 1 2.583 60.35 1 2.750 60.35 1 2.833 17.06 7 2.917 17.06 7 3.000 17.06 7 3.083 17.06	3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 6.4.417 6.4.500 6.4.583 6.4.667	9.18 5 9.18 5 5.25 5 5.25 5 5.25 5 5.25 5 5.25 5 2.62 6 2.62 6 2.62 6	.17	
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	60.35 5.00 4.72 (ii) 5.00 0.22	43.45 15.00 14.57 (ii) 15.00 0.08	*TOTAL S	*	
PEAK FLOW (cms)= 0.74 TIME TO PEAK (hrs)= 2.75 RUNOFF VOLUME (mm)= 64.59 TOTAL RAINFALL (mm)= 65.59 RUNOFF COEFFICIENT = 0.98		0.14 2.83 37.71 65.59 0.57	*TOTALS* 0.874 (iii) 2.75 57.87 65.59 0.88		

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 85.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0002) |ID= 1 DT= 5.0 min | Area (ha)= 0.56Total Imp(%)= 75.00Dir. Conn.(%)= 75.00PERVIOUS (i) **IMPERVIOUS** Surface Area (ha)=0.42 0.14 1.50 1.00 Dep. Storage (mm) =1.00 2.00 Average Slope (%)= Length (m)=61.10 40.00 0.013 Mannings n 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH							
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	7.87	3.250	17.06	4.83	1.31
0.167	0.00	1.750	7.87	3.333	9.18	4.92	1.31
0.250	0.00	1.833	22.30	3.417	9.18	5.00	1.31
0.333	1.31	1.917	22.30	3.500	9.18	5.08	1.31
0.417	1.31	2.000	22.30	3.583	9.18	5.17	1.31
0.500	1.31	2.083	22.30	3.667	9.18	5.25	1.31
0.583	1.31	2.167	22.30	3.750	9.18	5.33	1.31
0.667	1.31	2.250	22.30	3.833	5.25	5.42	1.31
			Page 16				

```
VO FULL RESULTS.txt
                    1.31
1.31
1.31
                                                      5.25 |
                            2.333
                                    60.35 | 3.917
           0.750
                                                      5.25
                                                               5.58
                                                                       1.31
           0.833
                            2.417
                                    60.35
                                            4.000
                                                                       1.31
           0.917
                            2.500
                                    60.35
                                            4.083
                                                      5.25
                                                               5.67
                            2.583
                                                              5.75
           1.000
                    1.31
                                    60.35
                                            4.167
                                                      5.25
                                                                       1.31
                                                      5.25
                                                              5.83
           1.083
                     1.31
                            2.667
                                    60.35
                                            4.250
                                                                       1.31
                           2.750
           1.167
                    1.31
                                    60.35
                                            4.333
                                                      2.62
                                                              5.92
                                                                       1.31
                            2.833
                                                              6.00
                                    17.06
                                            4.417
                                                      2.62
                                                                       1.31
           1.250
                    1.31
           1.333
                    7.87
                            2.917
                                    17.06
                                            4.500
                                                      2.62
                                                              6.08
                                                                       1.31
           1.417
                            3.000
                    7.87
                                    17.06
                                            4.583
                                                      2.62
                                                              6.17
                                                                       1.31
                                                      2.62
           1.500
                     7.87
                                    17.06
                                                              6.25
                            3.083
                                           4.667
                                                                       1.31
                    7.87 | 3.167
           1.583
                                    17.06 | 4.750
                                                      2.62 |
                                           43.45
Max.Eff.Inten.(mm/hr)=
                             60.35
           over (min)
                             5.00
                                           15.00
Storage Coeff. (min)=
                              2.33 (ii)
                                           12.18 (ii)
Unit Hyd. Tpeak (min)=
                              5.00
                                           15.00
                                           0.09
Unit Hyd. peak (cms)=
                              0.30
                                                        *TOTALS*
                                           0.01
                                                          0.084 (iii)
                 (cms) =
                              0.07
PEAK FLOW
                                                           2.75
                                           2.83
TIME TO PEAK
                 (hrs)=
                              2.75
                                                          57.86
                             64.59
                                           37.71
RUNOFF VOLUME
                  (mm) =
                                           65.59
                             65.59
                                                          65.59
TOTAL RAINFALL
                  (mm) =
RUNOFF COEFFICIENT
                              0.98
                                            0.57
                                                           0.88
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 85.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
| CALIB
| STANDHYD ( 0003)|
|ID= 1 DT= 5.0 min |
                          Area (ha)= 0.53
Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00
                                  IMPERVIOUS
                                                   PERVIOUS (i)
                                                    0.13
     Surface Area
                         (ha)=
                                    0.40
     Dep. Storage
                         (mm) =
                                       1.00
                                                      1.50
     Average Slope
                          (%)=
                                      1.00
                                                     2.00
                                      59.44
                                                     40.00
     Length
                          (m)=
                                      0.013
                                                     0.250
     Mannings n
```

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TRANSFORMED HYETOGRAPH								
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN	
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr	
0.083	0.00	1.667	7.87	3.250	17.06	4.83	1.31	
0.167	0.00	1.750	7.87	3.333	9.18	4.92	1.31	
0.250	0.00	1.833	22.30	3.417	9.18	5.00	1.31	
0.333	1.31	1.917	22.30	3.500	9.18	5.08	1.31	
0.417	1.31	2.000	22.30	3.583	9.18	5.17	1.31	
0.500	1.31	2.083	22.30	3.667	9.18	5.25	1.31	
0.583	1.31	2.167	22.30	3.750	9.18	5.33	1.31	
0.667	1.31	2.250	22.30	3.833	5.25	5.42	1.31	
0.750	1.31	2.333	60.35	i 3.917	5.25	5.50	1.31	
0.833	1.31	2.417	60.35	4.000	5.25	5.58	1.31	
0.917	1.31	2.500	60.35	4.083	5.25	5.67	1.31	
1.000	1.31	2.583	60.35	4.167	5.25	5.75	1.31	
		1	Page 17					

```
VO FULL RESULTS.txt
                            1.31 |
1.31 |
1.31 |
                                             60.35 | 4.250
                                                                 5.25
                                    2.667
                                                                          5.83
                  1.083
                                    2.750
                                             60.35
                                                      4.333
                                                                 2.62
                                                                          5.92
                                                                                   1.31
                  1.167
                                                                 2.62
                  1.250
                                    2.833
                                             17.06
                                                    4.417
                                                                         6.00
                                                                                   1.31
                            7.87
                                    2.917
                  1.333
                                             17.06
                                                     4.500
                                                                 2.62
                                                                         6.08
                                                                                   1.31
                                                                 2.62
                                                                         6.17
                  1.417
                            7.87
                                    3.000
                                             17.06 | 4.583
                                                                                   1.31
                                             17.06 | 4.667
17.06 | 4.750
                                                                                   1.31
                            7.87 | 3.083
                                                                         6.25
                                                                2.62
                  1.500
                  1.583
                            7.87 | 3.167
                                                                 2.62
     Max.Eff.Inten.(mm/hr)=
                                     60.35
                                                    43.45
     over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
                                      5.00
2.29 (ii)
                                                    15.00
                                                    12.14 (ii)
                                   5.00
                                                    15.00
     Unit Hyd. peak (cms)=
                                      0.30
                                                    0.09
                                                                   *TOTALS*
                                                    0.01
                                                                     0.079 (iii)
                        (cms) =
                                      0.07
     PEAK FLOW
                                                                      2.75
     TIME TO PEAK
                        (hrs)=
                                      2.75
                                                     2.83
                       (mm)=
(mm)=
                                      64.59
                                                                     57.86
     RUNOFF VOLUME
                                                     37.71
                                     65.59
                                                     65.59
                                                                     65.59
     TOTAL RAINFALL
                                                     0.57
                                                                      0.88
     RUNOFF COEFFICIENT =
                                      0.98
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
        (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
       CN^* = 85.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
```

- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
ADD HYD ( 0004) | 1 + 2 = 3 |
                                                         R.V.
                                    QPEAK
                              AREA
                                                TPEAK
                                     (CMS)
                              (ha)
                                                (hrs)
                                                           (mm)
                                                         57.87
    ID1= 1 ( 0001):
+ ID2= 2 ( 0002):
                            5.91 0.874
0.56 0.084
                                                2.75
2.75
                                                         57.86
                                                         57.87
       ID = 3 (0004):
                            6.47
                                     0.958
                                               2.75
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
ADD HYD ( 0004) | 3 + 2 = 1 |
                             AREA
                                     QPEAK
                                               TPEAK
                                                         R.V.
                                                       (mm)
57.87
                                    (cms)
                                               (hrs)
                             (ha)
     ID1= 3 ( 0004):
+ ID2= 2 ( 0003):
                             6.47
                                               2.75
                                    0.958
                                   0.079
                          0.53
                                              2.75
                                                       57.86
                                                       57.87
       ID = 1 (0004):
                         7.00
                                    1.037 2.75
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR(0005)| OVERFLOW IS OFF IN= 2---> OUT= 1 DT= 5.0 min | OUTFLOW STORAGE OUTFLOW **STORAGE** (cms) (ha.m.) (cms) (ha.m.) 0.3700 0.0000 0.1730 0.0000 0.0550 0.1600 0.2100 0.4000 0.1000 0.2450 0.6800 0.4500 AREA QPEAK TPEAK R.V.

(hrs) 2.75 (ha) 7.000 (cms) (mm) INFLOW : ID= 2 (
OUTFLOW: ID= 1 (0004) 1.037 57.87 7.000 0.133 3.83 57.76 0005) FLOW REDUCTION [Qout/Qin](%)= 12.86 PEAK TIME SHIFT OF PEAK FLOW (min) = 65.00(ha.m.) = 0.3022MAXIMUM STORAGE USED SSSSS U (v 6.2.2000) I U Α L Ι SS U U ΑА AAAAA U Ι SS U L SS U ν I U Α Α L Ι SSSSS UUUUU Α Α LLLLL 000 Υ TM 000 TTTT TTTT Н Н М 0 0 Т T Н Н ΥY MM MM Ω 0 T T Н Υ М М 0 0 0 0 Н 000 Т 000 T Н Н Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved. ***** DETAILED O U T P U T **** Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Output filename: C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\4738c 921-65d2-4f1f-a66b-60ce0e3f3730\scena Summary filename: C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\4738c 921-65d2-4f1f-a66b-60ce0e3f3730\scena DATE: 01/06/2021 TIME: 11:06:08 USER: ************ ** SIMULATION : 5 Year 6 Hour AES (Bloor, TRC ** Filename: C:\Users\Shuchi\AppD READ STORM ata\Local\Temp\ 1e2bf10e-aa06-4302-9fc0-7340cb56677d\34c151e3 Ptotal= 47.81 mm | Comments: 5 Year 6 Hour AES (Bloor, TRCA) RAIN | TIME RAIN | TIME RAIN | TIME RAIN TIME

VO FULL RESULTS.txt

		VO FULL	RESULT:	S.txt			
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.25	0.00	2.00	16.25	3.75	6.69	5.50	0.96
0.50	0.96	2.25	16.25	4.00	3.82	5.75	0.96
0.75	0.96	2.50	43.98	l 4.25	3.82	6.00	0.96
1.00	0.96	2.75	43.98	1 4.50	1.91	6.25	0.96
1.25	0.96	3.00	12.43	4.75	1.91		
1.50	5.74	3.25	12.43	5.00	0.96		
1.75	5.74	3.50	6.69	5.25	0.96		
				•			

CALIB STANDHYD (0001) ID= 1 DT= 5.0 min	Area Total	(ha)= Imp(%)=	5.91 75.00	Dir. Conn.(%)=	75.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVI 4.4 1.0 1.0 198.4 0.01	3 0 0 9	PERVIOUS (i) 1.48 1.50 2.00 40.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

	-	TRAN	NSFORME	D HYETOGRA	PH		
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500	RAIN	TIME hrs 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083	RAIN mm/hr 5.74 16.25 16.25 16.25 16.25 16.25 16.25 16.25 14.98 43.98 43.98 43.98 43.98 43.98 43.98 43.98	' TIME ' hrs	RAIN mm/hr 12.43 6.69 6.69 6.69 6.69 6.69 3.82 3.82 3.82 3.82 3.82 1.91	TIME hrs 4.83 4.92 5.00 5.17 5.25 5.33 5.42 5.50 5.58 5.67 5.75 5.83 5.92 6.00 6.17 6.25	RAIN mm/96 00.96 0
1.583	5.74	3.167	12.43	4.750	1.91	0.20	
Unit Hyd. Tpeak (mi	n) n)=	43.98 5.00 5.35 5.00 0.21	(ii)	26.72 20.00 17.32 (ii) 20.00 0.06			
TIME TO PEAK (hr RUNOFF VOLUME (m	IS)= 'S)= IM)= IM)= =	0.54 2.75 46.81 47.81 0.98		0.08 2.92 23.53 47.81 0.49	*TOTA 0.6 2. 40. 47. 0.	09 (iii) 75 99 81	

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: Page 20 $\,$

- CN* = 85.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0002)	Anos	(ha)-	0.56		
ID= 1 DT= 5.0 min	Area Total		75.00	Dir. Conn.(%)=	75.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVI 0.4 1.0 1.0 61.1 0.01	2 0 0 0	PERVIOUS (i) 0.14 1.50 2.00 40.00 0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME RAIN hrs mm/hr 0.083 0.00 0.167 0.00 0.250 0.00 0.333 0.96 0.417 0.96 0.500 0.96 0.583 0.96 0.667 0.96 0.750 0.96 0.833 0.96 0.917 0.96 1.000 0.96 1.083 0.96 1.167 0.96 1.250 0.96 1.333 5.74 1.417 5.74 1.500 5.74 1.583 5.74	TRANSFORM TIME RAIN hrs mm/hr 1.667 5.74 1.750 5.74 1.833 16.25 1.917 16.25 2.000 16.25 2.083 16.25 2.167 16.25 2.250 16.25 2.333 43.98 2.417 43.98 2.500 43.98 2.583 43.98 2.667 43.98 2.750 43.98 2.750 43.98 2.750 43.98 2.750 43.98 3.083 12.43 3.083 12.43 3.083 12.43 3.083 12.43 3.083 12.43	' hrs 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667	RAIN TIME mm/hr hrs m 12.43 4.83 6.69 4.92 6.69 5.00 6.69 5.17 6.69 5.25 6.69 5.33 3.82 5.42 3.82 5.50 3.82 5.58 3.82 5.575 3.82 5.75 3.82 5.75 3.82 5.83 1.91 5.92 1.91 6.00 1.91 6.08 1.91 6.17	RAIN nm/hr).96).96).96).96).96).96).96).96
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	43.98 5.00 2.64 (ii) 5.00 0.29	26.72 15.00 14.61 (ii) 15.00 0.08		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.05 2.75 46.81 47.81 0.98	0.01 2.83 23.53 47.81 0.49	*TOTALS* 0.059 (iii) 2.75 40.98 47.81 0.86	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- $CN^* = 85.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0003) Area (ha)= 0.53Total Imp(%)= 75.00Dir. Conn. (%) = 75.00|ID= 1 DT= 5.0 min | **IMPERVIOUS** PERVIOUS (i) 0.13 1.50 2.00 Surface Area (ha)=0.40 Dep. Storage Average Slope 1.00 (mm) =1.00 (%)= Length 59.44 40.00 (m)=Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583	RAIN mm/hr 0.00 0.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 5.74 5.74 5.74 5.74	TIME hrs 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083 3.167	RATN	HYETOGRA TIME hrs 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750	RAIN mm/hr 12.43 6.69 6.69 6.69 6.69 3.82 3.82 3.82 3.82 1.91	TIME hrs 4.83 4.92 5.00 5.08 5.17 5.25 5.33 5.42 5.50 5.58 5.67 5.75 6.00 6.08 6.17 6.25	RAIN mm/hr 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
Max.Eff.Inten.(mm/h over (mi Storage Coeff. (mi Unit Hyd. Tpeak (mi Unit Hyd. peak (cm	n) n)= n)=	43.98 5.00 2.60 5.00 0.29	(ii)	26.72 15.00 14.56 (ii) 15.00 0.08			
TIME TO PEAK (hr RUNOFF VOLUME (m	ns)= rs)= nm)= nm)= =	0.05 2.75 46.81 47.81 0.98	:	0.01 2.83 23.53 47.81 0.49	2 40 47	ALS* 056 (iii) .75 .98 .81 .86	

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ID1= 1 (0001): + ID2= 2 (0002):	AREA (ha) 5.91 0.56	QPEAK (cms) 0.609 0.059	TPEAK (hrs) 2.75 2.75	R.V. (mm) 40.99 40.98
TD = 3 (0004):	6.47	0.668	2.75	40.99

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0004) | 3 + 2 = 1 | AREA **QPEAK TPEAK** R.V. (ha) (cms) (hrs) (mm) ID1= 3 (0004): + ID2= 2 (0003): 6.47 40.99 0.668 2.75 0.53 0.056 2.75 40.98

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

7.00

ID = 1 (0004):

0.724

2.75

40.99

```
RESERVOIR( 0005)|
                         OVERFLOW IS OFF
IN= 2---> OUT= 1 |
                                                             STORAGE
DT= 5.0 min |
                         OUTFLOW
                                    STORAGE
                                                  OUTFLOW
                                                   (cms)
                                                              (ha.m.)
                          (cms)
                                    (ha.m.)
                                                               0.3700
                          0.0000
                                     0.0000
                                                   0.1730
                          0.0550
                                     0.1600
                                                   0.2100
                                                               0.4000
                          0.1000
                                     0.2450
                                                   0.6800
                                                               0.4500
                                AREA
                                         QPEAK
                                                    TPEAK
                                                                R.V.
                                          (cms)
0.724
                                                    (hrs)
2.75
3.92
                                (ha)
                                                                 (mm)
                                7.000
                                                                 `40.99
```

INFLOW : ID= 2 (0004)
OUTFLOW: ID= 1 (0005) 7.000 0.085 40.88

PEAK FLOW REDUCTION [Qout/Qin](%)= 11.79 TIME SHIFT OF PEAK FLOW (min)= 70.00 (ha.m.) = 0.2174MAXIMUM STORAGE USED

(v 6.2.2000) SSSSS U U Α Ι SS U U AA L AAAAA L Ι U SS U UAAL I SSSSS UUUUU A A LLLLL

Y Y M 000 TM 000 TITT TITT H T T 0 0 Н ΥΥ MM MM O O O M M M OOO Н Y H H Т Н T Ť 000 000 Н

Developed and Distributed by Smart City Water Inc Copyright 2007 - 2020 Smart City Water Inc All rights reserved.

***** DETAILED OUTPUT *****

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Page 23

Output filename:

C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\93e85b79-b36e-418e-9f46-0d6a14682991\scena

Summary filename:

COMMENTS: _____

C:\Users\Shuchi\AppData\Local\Civica\VH5\8e061c4e-0b2b-4d34-afcd-b9145e333507\93e85b79-b36e-418e-9f46-0d6a14682991\scena

DATE: 01/06/2021 TIME: 11:06:08

USER:

** SIMULATION : 50 Year 6 Hour AES (Bloor, TR **

READ STORM

Ptotal = 73.00 mm

, 111111	Commert		ca. 0 1101	ui ALS (L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.25	0.00	2.00	24.82	3.75	10.22	5.50	1.46
0.50	1.46	2.25	24.82	4.00	5.84	5.75	1.46
0.75	1.46	2.50	67.16	4.25	5.84	6.00	1.46
1.00	1.46	2.75	67.16	4.50	2.92	6.25	1.46
1.25	1.46	3.00	18.98	4.75	2.92		
1.50	8.76	3.25	18.98	5.00	1.46		
1.75	8.76	3.50	10.22	5.25	1.46		

CALIB STANDHYD (0001) ID= 1 DT= 5.0 min	(ha)= Imp(%)=			75.00
	TMPFRVT	OUS	PERVIOUS (i)	

		TMLEKATO02	LEKATOO2 (I	J
Surface Area	(ha)=	4.43	1.48	
Dep. Storage	(mm)=	1.00	1.50	
Average Slope	(%)=	1.00	2.00	
Length	(m)=	198.49	40.00	
Mannings n	=	0.013	0.250	

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORMEI) HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	8.76	3.250	18.98	4.83	1.46
0.167	0.00	1.750	8.76	3.333	10.22	4.92	1.46
		1	Page 24				

0.333 1 0.417 1 0.500 1 0.583 1 0.667 1 0.750 1 0.833 1 0.917 1 1.000 1 1.083 1 1.167 1 1.250 1 1.333 8 1.417 8 1.500 8	VO FULL RES .00 1.833	82 3.417	1.46 1.46 <t< th=""></t<>
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	5.00 = 4.52 (ii) = 5.00	15.00 0.08	TOTAL C*
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	= 2.75 = 72.00	0.16 2.83 43.95 73.00 0.60	TOTALS* 0.983 (iii) 2.75 64.99 73.00 0.89

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 85.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
| STANDHYD ( 0002)
|ID= 1 DT= 5.0 min |
                           Area (ha)= 0.56
Total Imp(%)= 75.00
                                                       Dir. Conn.(%)= 75.00
                                                    PERVIOUS (i)
                                   IMPERVIOUS
     Surface Area
                          (ha)=
                                        0.42
                                                        0.14
                                                        1.50
                                        1.00
     Dep. Storage
                          (mm) =
                           (%)=
                                                        2.00
     Average Slope
                                        1.00
     Length
                                       61.10
                                                       40.00
                           (m)=
                                       0.013
                                                       0.250
     Mannings n
```

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	ANSFORME) HYETOGR	APH	-	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	8.76	3.250	18.98	4.83	1.46
0.167	0.00	1.750	8.76	3.333	10.22	4.92	1.46
0.250	0.00	1.833	24.82	3.417	10.22	5.00	1.46
0.333	1.46	1.917	24.82	3.500	10.22	5.08	1.46
0.417	1.46	2.000	24.82	3.583	10.22	5.17	1.46
0.500	1.46	2.083	24.82	3.667	10.22	5.25	1.46
		_					

```
VO FULL RESULTS.txt
                             2.167
                                              3.750
            0.583
                     1.46 |
                                      24.82
                                                       10.22
                                                                          1.46
                             2.250
                                               3.833
            0.667
                     1.46
                                      24.82
                                                        5.84
                                                                 5.42
                                                                         1.46
            0.750
                     1.46
                            2.333
                                      67.16
                                              3.917
                                                        5.84
                                                                 5.50
                                                                         1.46
            0.833
                                                                         1.46
                     1.46
                                                                 5.58
                            2.417
                                      67.16
                                              4.000
                                                        5.84
            0.917
                     1.46
                            2.500
                                      67.16
                                              4.083
                                                        5.84
                                                                 5.67
                                                                         1.46
                            2.583
                                                                         1.46
            1.000
                     1.46
                                              4.167
                                                        5.84
                                                                 5.75
                                      67.16
                                                                 5.83
5.92
            1.083
                     1.46
                             2.667
                                              4.250
                                      67.16
                                                        5.84
                                                                         1.46
                             2.750
2.833
                                                        2.92
            1.167
                      1.46
                                      67.16
                                              4.333
                                                                          1.46
                                                        2.92
            1.250
                                      18.98
                                              4.417
                                                                         1.46
                      1.46
                                                                 6.00
            1.333
                     8.76
                             2.917
                                      18.98
                                              4.500
                                                        2.92
                                                                 6.08
                                                                         1.46
                                      18.98
                                                                 6.17
                                                                         1.46
                     8.76
                             3.000
                                             4.583
                                                        2.92
            1.417
                                      18.98 | 4.667
                                                        2.92
            1.500
                     8.76
                             3.083
                                                                 6.25
                                                                         1.46
            1.583
                     8.76 | 3.167
                                      18.98 | 4.750
                                                        2.92
Max.Eff.Inten.(mm/hr)=
                                            50.27
                              67.16
                             5.00
           over (min)
                                            15.00
                               2.23 (ii)
5.00
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
                                            11.52 (ii)
                                            15.00
Unit Hyd. peak (cms)=
                               0.30
                                             0.09
                                                          *TOTALS*
                                                             0.094 (iii)
                                            0.02
PEAK FLOW
                 (cms) =
                               0.08
                                                             2.75
TIME TO PEAK
                 (hrs)=
                               2.75
                                            2.83
                                                            64.97
                              72.00
                                            43.95
RUNOFF VOLUME
                  (mm) =
TOTAL RAINFALL
                  (mm) =
                              73.00
                                            73.00
                                                            73.00
RUNOFF COEFFICIENT
                               0.99
                                             0.60
                                                              0.89
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 85.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0003) |ID= 1 DT= 5.0 min Area (ha) = 0.53Total Imp(%)= 75.00Dir. Conn.(%)= 75.00**IMPERVIOUS** PERVIOUS (i) (ha)=0.40 Surface Area 0.13 1.00 Dep. Storage (mm) =1.50 Average Slope (%)= 1.00 2.00 59.44 40.00 Length (m)=Mannings n 0.013 0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TRA	NSFORME	HYETOGR	APH	•	
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.00	1.667	8.76	3.250	18.98	4.83	1.46
0.167	0.00	1.750	8.76	3.333	10.22	4.92	1.46
0.250	0.00	1.833	24.82	3.417	10.22	5.00	1.46
0.333	1.46	1.917	24.82	3.500	10.22	5.08	1.46
0.417	1.46	2.000	24.82	3.583	10.22	5.17	1.46
0.500	1.46	2.083	24.82	3.667	10.22	5.25	1.46
0.583	1.46	2.167	24.82	3.750	10.22	5.33	1.46
0.667	1.46	2.250	24.82	3.833	5.84	5.42	1.46
0.750	1.46	2.333	67.16	3.917	5.84	5.50	1.46
0.833	1.46	2.417	67.16	4.000	5.84	5.58	1.46
			a				

```
VO FULL RESULTS.txt
                  0.917
                            1.46
                                    2.500
                                             67.16 | 4.083
                                                                 5.84
                                                                                   1.46
                                                                          5.67
                  1.000
                            1.46
                                             67.16
                                                                          5.75
                                    2.583
                                                     4.167
                                                                 5.84
                                                                                   1.46
                                                                          5.83
                                                                                   1.46
                  1.083
                            1.46
                                   2.667
                                             67.16 | 4.250
                                                                 5.84
                            1.46
                                             67.16 | 4.333
                  1.167
                                   2.750
                                                                 2.92
                                                                          5.92
                                                                                   1.46
                                                     4.417
                            1.46
                                   2.833
                                             18.98
                                                                 2.92
                                                                                  1.46
                  1.250
                                                                          6.00
                                            18.98 | 4.500
18.98 | 4.583
18.98 | 4.667
18.98 | 4.750
                                    2.917
                                                                 2.92
                                                                                  1.46
                  1.333
                            8.76
                                                                         6.08
                  1.417
                            8.76 | 3.000
8.76 | 3.083
8.76 | 3.167
                            8.76
                                                                 2.92
                                                                                  1.46
1.46
                                                                          6.17
                  1.500
1.583
                                                                 2.92
                                                                          6.25
                                                                 2.92
                                  67.16
5.00
2.19 (ii)
5.00
                                                     50.27
     Max.Eff.Inten.(mm/hr)=
                  over (min)
                                                    15.00
     Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
                                                    11.49 (ii)
                                                    15.00
     Unit Hyd. peak (cms)=
                                       0.31
                                                     0.09
                                                                   *TOTALS*
                                                    0.02
     PEAK FLOW
                                                                     0.089 (iii)
                        (cms) =
                                      0.07
                                  2.75
72.00
73.00
     TIME TO PEAK
                        (hrs)=
                                                                      2.75
                      (mm)=
     RUNOFF VOLUME
                                     72.00
                                                    43.95
                                                                     64.97
     TOTAL RAINFALL
                                                    73.00
                                                                     73.00
     RUNOFF COEFFICIENT
                                      0.99
                                                     0.60
                                                                      0.89
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
```

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 85.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
ADD HYD ( 0004) | 1 + 2 = 3 |
                              AREA QPEAK
(ha) (cms)
5.91 0.983
0.56 0.094
                                                                  R.V.
(mm)
                                                         TPEAK
                                                         (hrs)
     ID1= 1 ( 0001):
+ ID2= 2 ( 0002):
                                                                   64.99
                                                        2.75
2.75
                                                                 64.97
        ID = 3 (0004): 6.47
                                            1.077 2.75
                                                                  64.98
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
ADD HYD ( 0004) \begin{vmatrix} 3 + 2 = 1 \end{vmatrix}
                                 AREA QPEAK TPEAK R.V
(ha) (cms) (hrs) (mm)
6.47 1.077 2.75 64.98
0.53 0.089 2.75 64.97
                                                                          R.V.
                                                                         (mm)
      ID1= 3 ( 0004):
+ ID2= 2 ( 0003):
                                         ______
         ______
         ID = 1 (0004): 7.00 1.166 2.75
                                                                        64.98
```

NOTE - PEAK FLOWS DO NOT THELLIDE BASEFLOWS TE ANY

NOTE: PEAK FLOWS	DO NOT INCL	ODE BASELLOW	75 IF ANY.		
RESERVOIR(0005) IN= 2> OUT= 1	OVERFLOW	IS OFF			
DT= 5.0 min	OUTFLOW (cms) 0.0000 0.0550 0.1000	STORAGE (ha.m.) 0.0000 0.1600 0.2450	OUTFLOW (cms) 0.1730 0.2100 0.6800	STORAGE (ha.m.) 0.3700 0.4000 0.4500	
		Page 27			

					ARI	EΑ	QPEAK		TPEAK	R.V.
					(ha	a)	(cms)		(hrs)	(mm)
<pre>INFLOW :</pre>	ID=	2	(0004)	7.0	000	1.166	5	2.75	64.98
OUTFLOW:				0005)	7.0	000	0.154	1	3.83	64.88

PEAK FLOW REDUCTION [Qout/Qin](%)= 13.20 TIME SHIFT OF PEAK FLOW (min)= 65.00 MAXIMUM STORAGE USED (ha.m.)= 0.3375

APPENDIX "F"

Sanitary Sewer Design Sheets for Proposed Subdivision; Region of Peel Connections Multi-Use Demand Tables

CHICKADEE GROVE COMMINITY TOWN OF CALEDON

CANDEVCON LIMITED						A ALLANDA A A LANDA A LAND		1		DRAINAGE AREA PLAN NO.	FA PLAN NO		207			
CONSULTING ENGINEERS AND PLANNERS	ERS AND PLA	NNERS								PROJECT NO; W17003	W17003					
														PREPARED BY:	D BY:	F.S
LUCATION	From	To	Area	Area	Density	Population	Cumulative	Cumulative	Sewage	Infiltration	Total **	Length	Pipe Dia.	Gradient	Capacity	Velocity
	HM	MHA	No.	(ha)	(ppha)	(Equivalent)	Area (ha)	Population	Flow (1)	Flow (2)	Flow (1+2)	(m)	(mm)	%	(m3/s)	(m/s)
									(m3/s)	(m3/s)	(m3/s)					
STREET A	MH1A	MH2A	_	0.19	175	33	0.19	33	0.013	0.00004	0.01304	23	250	1.00%	0.059	1 21
STREET A	MH2A	мнза	2	0.39	175	68	0.58	102	0.013	0.00012	0.01312	7	250	0.50%	0.042	0.86
STREET A	MH3A	МН4А	ယ	0.66	175	116	1.24	217	0.013	0.00025	0.01325		250	0.50%	0.042	0.86
STREET A	MH4A	MH5A	4	0.28	175	49	1.52	266	0.013	0.00030	0.01330		250	. 0.50%	0.042	0.86
STREET A	MH5A	MH6A	5	0.45	175	79	1.97	345	0.013	0.00039	0.01339		250	0.50%	0.042	0.86
S-ZEE-B	MH10A	MH11A	6	0.22	175	39	0.22	39	0.013	0.00004	0.01304	26.2	250	0.50%	0.042	0.86
STREET B	MH11A	MH12A	15	0.50	175	88	0.72	126	0.013	0.00014	0.01314	100	250	0.50%	0.042	0.86
GLASGOW ROAD	MH7A	MH8A	14	0.21	175	37	0.21	37	0.013	0.00004	0.01304	32 6	250	1 00%	0.059	4 01
GLASGOW ROAD	MH8A	мн9А	7	0.37	175	65	0.58	102	0.013	0.00012	0.01312	100	250	0.50%	0.042	0.86
STREET C	MH13A	MH14A	120	0 25	175	44	0 25 0	A A	0000	0 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
STREET C	MH14A	МНЭА	16	0 48	175	. 178	0.73	8CF	0.013	0.00045	0.010.0	42	250	1.00%	690.0	1.21
				9.00		, -	c.;	071	0.013	0.000.0	0.01315	001	250	0.50%	0.042	0.86
CHICKADEE LANE	MH9A	MH12A	8	0.37	175	65	1.68	294	0.013	0.00034	0.01334	85.5	250	0.50%	0.042	0.86
STREET D	MHJEA	VCFHW	<u> </u>	0 55	175	000	0 77									
מואבבו ט	ACLUM	WHIZA		U.55	2/1	96	0.55	96	0.013	0.00011	0.01311	57.7	250	1.00%	0.059	1.21
CHICKADEE LANE	MH12A	мнеа	9	0.44	175	77	3.39	593	0.013	0.00068	0.01368	98	250	0.50%	0.042	0.86
STREET O	A O 7 E 1 W 4	RE 1477		0 7	175											
DIRECT C	AGI, HIM	MILIA	7.7 2.1	0.51	1/5	89	0.51	89	0.013	0.00010	0.01310	51.5	250	1.00%	0.059	1.21
	WILLIAM AND	MI IOA	10	0.38	0/1	/9	68.0	156	0.013	0.00018	0.01318	90.4	250	0.50%	0.042	0.86
טואחרו כ	ASTRIM	WITIOA	0	0.00	6/1	0	0.89	156	0.013	0.00018	0.01318	28.8	250	0.50%	0.042	0.86
CHICKADEE LANE	MH6A	MH19A	0	0.00	175	0	6.25	1094	0.014	0.00125	0.01525	75	250	0.50%	0 042	0 88
CHICKADEE LANE	MH19A	MH20A	0	0.00	175	0	6.25	1094	0.014	0.00125	0.01525	اد	250	0.50%	0.042	0.86
CHICKADEE LANE	MH20A	MH21A	0	0.00	175	0	6.25	1094	0.014	0.00125	0.01525		250	0.50%	0.042	0.86
	MH21A	MH22A	0	0.00	175	0	6.25	1094	0.014	0.00125	0.01525	-	250	0.50%	0.042	0.86
CHICKADEE LANE	MH22A	EXMH	0	0.00	175	0	6.25	1094	0.014	0.00125	0.01525		250	0.50%	0.042	0.86
CHICKADEE LANE	EXMH	EXMH	0	0.00	175	0	6.25	1094	0.014	0.00125	0.01525	_	250	0.50%	0.042	0.86
CHECK				6.25	0.00											
		-							The same and the s							-

Connection Single Use Demand Table

WATER CONNECTION

Connection point 3)				
Existing 300mm dia water-main on 0	Glasgow Road a	nd Chickadee La	ine	
Pressure zone of connection point	nt	Pressure Zone	6	
Total equivalent population to be	serviced 1)	487		
Total lands to be serviced		6.25 ha		
Hydrant flow test				
Hydrant flow test location		13977 CHICKADEE LANE		
	Pressure (kPa)	Flow (in I/s)	Time	
Minimum water pressure	303 (44psi)	59.75	1:00 PM	
Maximum water pressure	331 (48psi)	81.38	1:00 PM	

No.	Water de	mands						
NO.	Demand type	Demand	Units					
1	Average day flow	1.58	l/s					
2	Maximum day flow	3.16	l/s					
3	Peak hour flow	4.73	l/s					
4	Fire flow 2)	180*	l/s					
	Analysis .							
5	Maximum day plus fire flow	183.16	l/s					

*Typical for residential development

WASTEWATER CONNECTION

Connection point 4) Existing 375mm dia sewer or	Emil Kolb Parkv	vay
Total equivalent population to be serviced 1)	487	
Total lands to be serviced	6.25 ha	
6 Wastewater sewer effluent (in I/s)	2.96**	**

**Average flow including infiltration

Please include the graphs associated with the hydrant flow test information table Please provide Professional Engineer's signature and stamp on the demand table All required calculations must be submitted with the demand table submission.

¹⁾ The calculations should be based on the development estimated population (employment or residential).

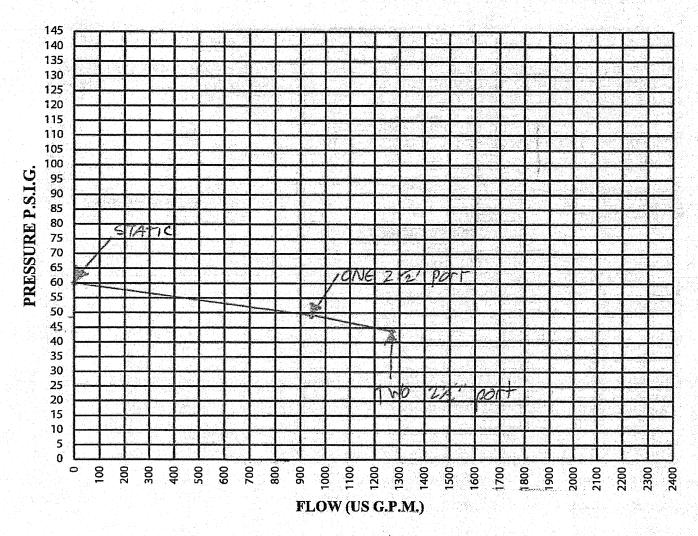
²⁾ Please reference the Fire Underwriters Survey Document

³⁾ Please specify the connection point ID

⁴⁾ Please specify the connection point (wastewater line or manhole ID) Also, the "total equivalent popopulation to be serviced" and the "total lands to be serviced" should reference the connection point. (The FSR should contain one copy of Site Servicing Plan)

APPENDIX "G"

Hydrant Flow Test
Region of Peel Connections Multi-Use Demand Table



5-200 Connie Cres. Concord ON L4K 1M1 Phone 416-883-9777 Fax 905-303-6977

FLOW TEST REPORT

LOCATION OF RESIDUAL HYDRANT	13921	CHICKADE	e LAN	l e
LOCATION OF FLOW HYDRANT	3977	CHICKAL	PEE LA	ne ·
		300 ·	united the second se	100 00

NUMBER OF OUTLETS	PITOT PRESSURE	FLOW (US G.P.M.)	RESIDUAL PRESSURE
One 2 ½" hydrant port	32 psi	943	48 ps;
Two 2 ½" hydrant port	15 psi	1297	94 051

PROJECT LOCATI	ON CHICKADEE L	ane B	Glasson	Rd D	***	1/09/1	છ	
COMPANY NAME	BROOKVALLEY	PROJEC	T Manages QI	UAZITION EMPLOY	YEE Å	lick L	Juni e	
	(PRINT NAME	5)	J"411			(PRINT NA	ME)	

Connection Single Use Demand Table

WATER CONNECTION

Connection point 3)			
Existing 300mm dia water-main on	Glasgow Road a	nd Chickadee La	ane
Pressure zone of connection point		Pressure Zone 6	
Total equivalent population to be serviced 1)		487	
Total lands to be serviced		6.25 ha	
Hydrant flow test			***
Hydrant flow test location		13977 CHICKADEE LANE	
	Pressure (kPa)	Flow (in I/s)	Time
Minimum water pressure	303 (44psi)	59.75	1:00 PM
Maximum water pressure	331 (48psi)	81.38	1:00 PM

No.	Water demands			
140.	Demand type	Demand	Units	
1	Average day flow	1.58	l/s	
2	Maximum day flow	3.16	l/s	
3	Peak hour flow	4.73	l/s	
4	Fire flow 2)	180*	l/s	
Ana	llysis			
5	Maximum day plus fire flow	183.16	l/s	

*Typical for residential development

WASTEWATER CONNECTION

Connection point 4) Existing 375mm dia sewer	on Emil Kolb Pa	rkway
Total equivalent population to be serviced 1)	487	
Total lands to be serviced	6.25 ha	7
6 Wastewater sewer effluent (in l/s)	2.96**	**

**Average flow including infiltration

Please include the graphs associated with the hydrant flow test information table Please provide Professional Engineer's signature and stamp on the demand table All required calculations must be submitted with the demand table submission.

¹⁾ The calculations should be based on the development estimated population (employment or residential).

²⁾ Please reference the Fire Underwriters Survey Document

³⁾ Please specify the connection point ID

⁴⁾ Please specify the connection point (wastewater line or manhole ID) Also, the "total equivalent popopulation to be serviced" and the "total lands to be serviced" should reference the connection point. (The FSR should contain one copy of Site Servicing Plan)