TOWN OF CALEDON PLANNING RECEIVED

April 20, 2021

FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

12563 & 12599 HWY 50 & 2 INDUSTRIAL RD

TOWN OF CALEDON REGION OF PEEL

PREPARED FOR:

12599 HWY 50 LTD.

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

FEBRUARY 2021

CFCA FILE NO. 1986-5779

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number	Date	Comments
Rev.0	February 12, 2021	Issued for First Submission

TABLE OF CONTENTS

1.0		Introduction	1
2.0		Site Description	2
3.0		Water Servicing	2
	3.1	Existing Water Servicing	2
	3.2	Design Water Demand	
	3.3		
4.0		Sanitary Servicing	4
	4.1	Existing Sanitary Servicing	4
	4.2	Design Sanitary Flow	
	4.3	Proposed Sanitary Servicing	
5.0		Drainage Conditions	6
	5.1	Existing Drainage Conditions	6
	5.2	Proposed Drainage Conditions	
6.0		Stormwater Management	7
7.0		Conclusions and Recommendations 1	0

LIST OF TABLES

Table 1:	Summary of Unit Breakdown
Table 2:	Equivalent Population Estimate
Table 3:	Estimated Design Water Demand and Fire Flow
Table 4:	Estimated Sanitary Design Flows
Table 5:	Pre-Development Land Areas and Runoff Coefficients
Table 6:	Post-Development Land Areas and Runoff Coefficients
Table 7:	Summary of Peak Flow Rates Towards Highway 50
Table 8:	Summary of Peak Flow Rates Towards Industrial Road
Table 9:	Summary of Active and Dead Storage for Catchment 201
Table 10:	Summary of Active and Dead Storage for Catchment 202

LIST OF APPENDICES

- Appendix A: Equivalent Population & Water Demand Calculations
- Appendix B: Sanitary Sewage Design Flow Calculations
- Appendix C: Stormwater Management Calculations

LIST OF DRAWINGS

- Figure 1: Preliminary Site Servicing Plan
- Figure 2: Preliminary Site Grading Plan
- Figure 3: Pre-Development Drainage Plan
- Figure 4: Post-Development Drainage Plan

1.0 Introduction

C.F. Crozier & Associates Inc. (Crozier) was retained by 12599 Hwy 50 Ltd. (the Owner) to prepare a Functional Servicing and Stormwater Management Report in support of an Official Plan Amendment (OPA) and Zoning By-Law Amendment (ZBA) related to the mixed-use development for the subject lands located at 12563 & 12599 Highway 50 and 2 Industrial Road (Site) in the Town of Caledon.

This report outlines the proposed functional servicing and stormwater management plan for the Site according to the requirements of the Province, Region, Town, and Toronto Region Conservation Authority (TRCA). The following reports, design criteria, and as-constructed drawings were referenced during the preparation of this report:

- Provincial
 - Ministry of Environment, Conservation and Parks Stormwater Management Planning and Design Manual dated March 2003.
- Regional
 - Region of Peel 2020 Water and Wastewater Master Plan for the Lake-based Systems (study completion June 2020).
 - Public Works Design, Specifications, and Procedures Manual. Linear Infrastructure. Watermain Design Criteria revised June 2010.
 - Public Works Design, Specifications, and Procedures Manual. Linear Infrastructure. Sanitary Sewer Design Criteria modified March 2017.
- Conservation Authority
 - Toronto Region Conservation Authority (TRCA) Stormwater Management Criteria dated August 2012.
- Municipal
 - Town of Caledon Development Standards Manual Version 5.0 dated 2019.
- As-constructed drawings:
 - o 03631_D: Highway 50 sanitary and water infrastructure dated 1984.
 - 03632_D Highway 50 stormwater management pond dated 1984.
 - o 03636_D Industrial Road 300 mm watermain dated 1980.
 - 08187_D Industrial Road sanitary sewer dated 1989.

2.0 Site Description

The Site covers an area of approximately 3.52 ha and currently consist of a commercial plaza, an unpaved contactor yard, a used car dealership, and a dance studio. The subject lands are in the Bolton Highway 50 Commercial Area within the Bolton Urban Boundary and are bound by Highway 50 to the south-west, Industrial Road to the south, and commercial developments to the east and north. Per Town of Caledon's Zoning By-law 2006-50 Schedule A Zone Map 1a, current land use is classified as "Bolton Highway Commercial" (CHB). The proposed development for the Site based on the site plan dated February 4, 2021 (with revised site statistics provided on February 9, 2021) provided by SRN Architects includes five buildings of mixed-use mid-rise and high-rise towers detailed as follows:

- Building 1: 32-storey mixed-use commercial and condominium residential building.
- Building 2: 26-storey mixed-use commercial and condominium residential building.
- Building 3: 22-storey mixed-use commercial and condominium residential building.
- Building 4: 23-storey mixed-use, commercial and condominium residential building.
- Building 5: 18-storey mixed-use commercial and condominium residential building.

In addition to the towers, the development will include one level of underground parking, landscaped areas, and access to Highway 50 and Industrial Road.

3.0 Water Servicing

The Region of Peel is responsible for the operation and maintenance of the public water and treatment system in the Town of Caledon, and any local system will have to connect to this public system. The existing and proposed water servicing is discussed in the following sections.

3.1 Existing Water Servicing

The Site resides in Pressure Zone 6 where existing water infrastructure generally provides adequate water supply and pressures up to a serviceable elevation up to 259.1 meters above sea level (masl). Water is sourced from the Bolton Elevated Tank, which stores water from the Tullamore Reservoir Pumping Station. A review of as-constructed drawings from the City and the Region shows the following watermains near the Site:

- Existing 300 mm diameter watermain on the north side of Industrial Road.
- Existing 300 mm diameter watermain on the west side of Highway 50.

Multiple hydrants are located near the Site for fire protection:

- Existing hydrant on the southwest corner of Highway 50 and Hopcroft Road near 12566 Highway 50 approximately 30 m from the Site.
- Existing hydrant on the northeast corner of Highway 50 and Industrial Road.

• Existing hydrant on the north side of Industrial Road approximately 130 m east of the intersection of Highway 50 and Industrial Road.

3.2 Design Water Demand

The Region of Peel Linear Infrastructure Sanitary Sewer Manual (March 2017) and an email dated December 1, 2020 with people per unit information confirmed by Alexander Sepe (Region Staff) were used to determine the equivalent population estimate for the Site. Table 1 provides a density per unit calculation. The detailed calculations are provided in Appendix A.

Phase (Building) Number	Single	Semi	Row	Apartment 2+	Apartment 1+	Total Units	Amenity Area (ha)
Building 1	0	0	0	284	235	519	
Building 2	0	5	0	217	206	423	
Building 3	0	8	0	218	187	405	1.25
Building 4	0	12	0	305	294	599	
Building 5	0	0	0	134	124	258	
Total	0	25	0	1,158	1,046	2,204	1.25

Table 1: Summary of Unit Breal

Based on the total number of units and amenity area illustrated in Table 1, Table 2 uses the provided PPU's to determine the equivalent population estimate for the Site.

Phase (Building) Number	Single	Semi	Row	Apartment 2+	Apartment 1+	Amenity Equivalent Population	Building Equivalent Population
Building 1	0	0	0	721	395		1179
Building 2	0	0	0	551	346		897
Building 3	0	0	0	554	314	63	868
Building 4	0	0	0	775	494		1269
Building 5	0	0	0	340	208		549
Total	0	0	0	2,941	1,757	63	4761

Table 2: Equivalent Population Estimate

Considering the unit breakdown for each building, the total population for the Site is 4,824 persons, which is the sum of the amenity equivalent and building equivalent populations.

The Region of Peel 2020 Water and Wastewater Master Plan was used to determine the maximum domestic water demand generated by the proposed development based on the equivalent population estimate for the Site. An average daily water demand of 270 L/cap/day, a maximum day factor of 1.8, and a peak hour factor of 3.0 were used.

The Fire Underwriters Survey method was used to estimate the fire flow demand for the proposed development. This calculation is used to estimate the size of incoming fire lines and does not provide a recommendation for fire protection. The buildings are assumed to have fire-resistive construction and therefore, a construction coefficient of 0.6 was applied to the fire flow calculations (Water Supply for Public Fire Protection by Fire Underwriters Survey, 1999). The proposed residential buildings will be equipped with automatic sprinkler systems which reduces the initial fire flow demand of each

building by up to 50%. Each automated sprinkler system is to be designed by the Mechanical Engineer; therefore, the detailed design of the system is not included in this report.

Table 3 summarizes the estimated design water demand and the required fire flow demand and duration of flow required for each phase. Appendix A contains detailed water demand and fire flow calculations as well as the Region of Peel single use demand table.

Phase Number	Average Daily Demand (L/s)	Maximum Daily Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
Building 1	3.7	6.7	11.2	83
Building 2	2.8	5.1	8.5	83
Building 3	2.8	5.0	8.3	100
Building 4	4.0	7.2	12.0	100
Building 5	1.8	3.2	5.3	83
Total	15.1	27.1	45.2	100

Table 3: Estimated Design Water Demand and Fire Flow

Note: An average daily water demand of 270 L/cap/day was used, along with a maximum day factor of 1.8 and a peak hour factor of 3.0 per the o Region of Peel 2020 Water and Wastewater Master Plan.

For this application, the domestic water services for the Site will be designed to convey a water demand equivalent to the total peak hourly demand shown in Table 3. The total domestic peak hour flow entering the Site from the watermain system is 45.2 L/s. The overall required fire suppression flow was estimated to be 100 L/s and will be delivered through a system of proposed on-site private hydrants and Siamese connections.

3.3 Proposed Water Servicing

The proposed residential towers (up to 32 storeys) are higher than 84 m and therefore, require at least two sources of water from a public water system per Ontario Building Code (OBC) 3.2.9.7.4.

Two (2) 250 mm diameter watermains (fire lines) are proposed to service the Site from the existing 300mm watermain along Highway 50 complete with complete with detector check valves in chambers. A 150 mm diameter domestic line is also proposed to service the Site (branched from one fire line 1.2 m away from the property line). The Mechanical Engineer will design the internal private water system including the internal sprinkler system within the building and underground parking structure. Preliminary site servicing details can be found on Figure 1.

4.0 Sanitary Servicing

The Region of Peel is responsible for the operation and maintenance of the sanitary sewer network in the Town of Caledon. The overall area is serviced by the McVean Trunk System and the G.E. Booth Wastewater Treatment Facility according to the 2020 Region of Peel Water and Wastewater Master Plan. The existing and proposed sanitary servicing is outlined in the following sections.

4.1 Existing Sanitary Servicing

A review of the 2020 Region of Peel Water and Wastewater Master Plan and as-constructed drawings indicate that the following infrastructure exists in proximity to the Site:

- Existing 250 mm diameter sanitary sewer on Highway 50 conveys flows south. This sanitary sewer is located on the east side of Highway 50 and crosses to the west side immediate south of the Industrial Road intersection.
- Existing 250 mm diameter sanitary sewer along the south side of Industrial Road conveys flows west. This sanitary sewer merges with the 250 mm diameter sanitary sewer along Highway 50 at an existing sanitary maintenance hole prior to crossing towards the west side of Highway 50.
- Existing 900 mm diameter Albion Vaughan Road sanitary trunk sewer approximately 480 m east of the Site. Aforementioned 250 mm diameter sanitary sewers ultimately convey sewage south along Highway 50 into the Albion Vaughan trunk sewer 1.6 km farther south at its intersection at Mayfield Road.

4.2 Design Sanitary Flow

The sanitary design flow for the subject property was calculated using the 2020 Region of Peel Water and Wastewater Master Plan with reference to Region of Peel Public Works Design, Specifications & Procedures Manual – Linear Infrastructure Sanitary Sewer Manual (March 2017) and the equivalent population estimate described in Section 3.2.

A unit sewage flow of 290 L/cap/d was used, an infiltration flow of 0.26 L/s/ha, and a Harmon peaking factor were applied to the unit sewage flow to obtain the total estimated design sewage flow. This design sewage flow was estimated in a cumulative manner that mirrors the phasing of each building assuming that Building 1 will be constructed first, followed by Building 2, and so on, until full development with the constructed of Building 5. A summary of the results is presented in Table 4 and detailed calculations are provided in Appendix B.

Phase	Cumulative Harmon Peaking Factor	Cumulative Average Daily Flow (L/s)	Cumulative Peak Flow (L/s)	Cumulative Infiltration (L/s)	Cumulative Total Design Flow (L/s)
Building 1	3.75	4.0	15.0	0.19	15.2
Buildings 1-2	3.57	7.1	25.2	0.19	25.5
Buildings 1-3	3.44	10.0	34.5	0.19	35.0
Buildings 1-4	3.31	14.3	47.3	0.19	48.1
Buildings 1-5	3.26	16.2	52.8	0.19	53.7
Total	3.26	16.2	52.8	0.94	53.7

Table 4: Estimated Sanitary Design Flows

The proposed sanitary services for the Site are designed to convey a total design sanitary demand according to the total flows indicated in Table 4. The total design sanitary flow entering the sanitary sewer system from the Site is 53.7 L/s.

4.3 Proposed Sanitary Servicing

Sanitary servicing will be provided through one (1) 250 mm diameter sanitary lateral is proposed to service the Site at the southwest corner of Building 1 through a property line sanitary maintenance hole extending from the existing 250mm diameter sanitary sewer on Highway 50. The internal sanitary system of the buildings will be designed according to the Mechanical Engineer's details and specifications. Sanitary servicing for each building will be conveyed through the underground mechanical system. Preliminary site servicing details can be found on Figure 1.

5.0 Drainage Conditions

As described in Section 2.0, the subject property currently consists of various paved and unpaved commercial lands. The following subsections detail the existing and proposed drainage conditions for the Site.

5.1 Existing Drainage Conditions

According to the topographic plan provided by ERTL Surveyors, the Site generally drains north to south as two subcatchments towards Industrial Road and Highway 50. Please refer to Figure 3 for the Pre-Development Drainage Plan. Table 5 below summarizes the existing drainage from Catchment 101 and Catchment 102.

Catchment	Area (L/s)	Runoff Coefficient				
Drainage to Highway 50						
101	1.28	0.50				
	Drainage to Industrial Road					
102	2.24	0.50				
Total	3.52					

Table 5: Pre-Development Land Areas and Runoff Coefficients

Stormwater runoff from the southwest portion of the Site (Catchment 101) flows via overland flow towards an existing ditch along Highway 50. The stormwater runoff from the north and east portions of the Site (Catchment 102) drains via overland flow towards an existing ditch along Industrial Road and ultimately drains into the existing ditch along Highway 50. Both areas of the Site are ultimately conveyed to the existing stormwater pond located at the southeast corner of Highway 50 and George Bolton Parkway.

5.2 Proposed Drainage Conditions

The post-development drainage is divided into two controlled areas and four uncontrolled areas based on proposed grading.

Drainage to Highway 50

- Catchment 201: this subcatchment predominantly includes the surface areas and surrounding road, landscaped area, and parking spaces for Building 1 and Building 5 where major overland flow is directed south towards Highway 50.
- UC1 and UC2: these landscaped areas outside of Building 1 and 5 are proposed to drain uncontrolled to Highway 50 as clean and slow-flowing discharge.

Drainage to Industrial Road

- Catchment 202: this subcatchment largely contains the surface areas, roads, landscape, and parking spaces for Building 2, Building 3, and Building 4 where major overland flow is directed south towards Industrial Road.
- UC3 and UC4: these landscaped areas outside of Building 2 and Building 3 are proposed to drain uncontrolled to Industrial Road as clean and slow-flowing discharge.

Overall, surface drainage (minor flows) collected via area drains and rooftop drainage collected via roof drains are proposed to be conveyed through an on-site underground storm sewer system designed in accordance with the mechanical design and specifications. Major flows for Catchment 201 and Catchment 202 will be directed to Highway 50 and Industrial Road, respectively. Details on preliminary site grading can be found on Figure 2.

Table 6 provides a breakdown of post-development site areas and associated runoff coefficients with the proposed drainage conditions shown on the Post-Development Drainage Plan as Figure 4.

Catchment	Area (L/s)	Runoff Coefficient					
	Drainage to I	Highway 50					
201	1.27	0.90					
UC1	0.02	0.25					
UC2	0.02	0.25					
	Drainage to Ind	dustrial Road					
202	2.12	0.90					
UC3	0.04	0.25					
UC4	0.05	0.25					
Total	3.52						

Table 6: Post-Development Land Areas and Runoff Coefficients

The drainage catchments and associated parameters illustrated in Table 6 were used to calculate the post-development peak stormwater flows.

6.0 Stormwater Management

The stormwater management criteria for the Site involves controlling the stormwater from the development in accordance with standards set by the Region of Peel, Town of Caledon and the TRCA, and are as follows:

- Water Balance: Retain runoff from a small design rainfall event (typically 5 mm) on-site through evaporation or rainwater reuse.
- Quantity Control (Region standard): Post-development flow to pre-development flow for all storm events up to the 100-year event (using a pre-development maximum runoff coefficient of 0.50).
- Quality Control: 80% Total Suspended Solids (TSS) removal on annual loading basis of the stormwater runoff leaving the development per the MOECP Enhanced Water Quality Control Criteria.

The Site is subject to internal controls for stormwater quantity, quality, and water balance. Due to restrictions in elevation, the entire site cannot be serviced by a single outlet. Therefore, an outlet to Highway 50 and an outlet to Industrial Road are proposed.

The controlled flows for Catchment 201 (outlet to Highway 50) will be detained within an underground storage chamber as active storage in the underground parking structure and discharged through an orifice tube to the existing ditch along Highway 50. Similarly, for Catchment 202 (outlet to Industrial Road), controlled flows will be detained in a chamber as active storage in the underground parking structure and discharged through an orifice tube to the existing ditch along Industrial Road.

Requirements for stormwater quality control will be met using a treatment train approach through a combination of swales and oil-grit separators. Requirements for stormwater quantity control will be met through the control of peak stormwater flows entering the existing roadside ditch system and are outlined in Table 7 and Table 8.

		Peak Flow Rate			Total Post-		
Storm Event	(L/s)						
(year)	Pre-Development	Post-Develop	ment		Flow		
() 0 0)	Catchment 101	Catchment 201 Orifice Discharge	UC1	UC2	(L/s)		
2	151.9	102.6	0.89	0.89	104.4		
5	194.4	130.7	1.14	1.14	133.0		
10	237.8	151.4	1.40	1.40	154.2		
25	277.3	198.0	1.63	1.63	201.2		
50	312.3	203.6	1.84	1.84	207.2		
100	348.3	220.4	2.05	2.05	224.5		

Table 7: Summary of Peak Flow Rates Towards Highway 50

The allowable discharge to Highway 50 will be limited to a flow that is based on the runoff generated each storm event over Catchment 101. This allowable discharge rate to the Highway 50 ditch from the Site was estimated to be 348.3 L/s for the 100-year event.

Discharge via the orifice will limit the 100-year post-development runoff to 220.4 L/s. This orifice flow in combination with uncontrolled flows from areas UC1 and UC2 yields a total release rate of 224.5 L/s, which is lower than the pre-development flow rate and therefore satisfies the stormwater quantity control requirement for flows discharging to Highway 50. The same analysis can be applied for each storm event and as demonstrated in Table 7, the post-development peak flow rate for all storm events is equal or less than the pre-development peak flow rates to the same outlet, therefore achieving the quantity control requirement.

		Total Post- Development Peak			
Storm Event (year)	Pre-Development	Post-Develop	(L/s) Post-Development		
()001)	Catchment 102	Catchment 202 Orifice Discharge	UC3	UC4	(L/s)
2	266.7	97.9	2.56	2.98	103.4
5	341.2	125.3	3.28	3.81	132.3
10	417.4	145.0	4.01	4.66	153.6
25	486.8	189.8	4.68	5.44	199.9
50	548.1	195.1	5.27	6.12	206.5
100	611.4	211.0	5.87	6.83	223.7

Table 8: Summary of Peak Flow Rates Towards Industrial Road

The allowable discharge to Industrial Road will be limited to a flow that is based on the runoff generated each storm event over Catchment 102. This allowable discharge rate to the Industrial Road ditch from the Site was estimated to be 611.4 L/s for the 100-year event.

Discharge via the orifice will limit the 100-year post-development runoff to 211.0 L/s. This orifice flow in combination with uncontrolled flows from areas UC3 and UC4 yields a total release rate of 223.7 L/s, which is lower than the pre-development flow rate and therefore satisfies the stormwater quantity control requirement for flows discharging to Industrial Road. The same analysis can be applied for each storm event and as demonstrated in Table 8, the post-development peak flow rate for all storm events is equal or less than the pre-development peak flow rates to the same outlet, therefore achieving the quantity control requirement.

Table 9 and Table 10 summarize the active and dead storage requirements for the Site. The total water balance requirement for the site was estimated to be 122 m³ and is met through proposed dead storage (to be designed by the Mechanical Engineer) in the underground parking garage where stored water can be re-used for on-site irrigation and greywater reuse.

Storm Event (year)	Active Storage Required (m ³)	Maximum Storage Required (m ³)	Water Balance Retention Required (m ³)	Total Storage Required (m ³)
2	133.0			
5	194.0			
10	248.2	10/ /	AE 7	E20.2
25	399.5	486.6	45.7	532.3
50	420.4			
100	486.6			

Table 9: Summary of Active and Dead Storage for Catchment 201

An active storage and dead storage volume of 486.6 m³ and 45.7 m³, respectively, is required to service Catchment 201. The storage requirement will be satisfied through an underground stormwater tank in the underground parking garage. Details and specifications for the tank are in accordance with mechanical, architectural, and structural designs and specifications.

Storm Event (year)	Active Storage Required	Maximum Storage Required	Water Balance Retention Required	Total Storage Required
	(m³)	(m³)	(m³)	(m³)
2	138.5			
5	201.9			
10	257.0	500.7	76.3	577.0
25	412.5	500.7	70.5	577.0
50	433.7			
100	500.7			

Table 10: Summar	of Active and Dead Storage for Catchment 202

An active storage and dead storage volume of 486.6 m³ and 45.7 m³, respectively, is required to service Catchment 201. The storage requirement will be satisfied through an underground stormwater tank in the underground parking garage. Details and specifications for the tank are in accordance with mechanical, architectural, and structural designs and specifications.

7.0 Conclusions and Recommendations

The proposed developments can be serviced for water, sanitary, and stormwater in accordance with the Town of Caledon and Region of Peel requirements and standards. Our conclusions and recommendations include:

- 1. The equivalent population of the proposed development of five (5) multi-storey residential buildings was estimated to be approximately 4,824 persons.
- 2. Water servicing will be provided through redundant 250 mm diameter fire services and a 150 mm diameter domestic water service. The water servicing will extend from the existing 300 mm diameter watermain on Highway 50 to the limit of the underground parking garage. The internal water system, designed in accordance with Mechanical details and specifications, will provide water servicing for each building.
- 3. Sanitary servicing will be provided through a 250 mm diameter sanitary lateral extending from the existing 250 mm diameter sanitary sewer on Highway 50 to the limit of the underground parking garage. The internal sanitary sewer network, designed in accordance with Mechanical details and specifications, will provide sanitary servicing for each building.
- 4. Stormwater quantity, quality, and water balance controls will be provided on-site. Individual storm connections are provided for Building 1 and Building 4, and a separate storm connection will be provided for Buildings 2, 3, and 5, to convey controlled stormwater flows to the municipal ditches.

Should you have any questions or require any further information, please do not hesitate to contact us.

Respectfully submitted,

C.F. CROZIER & ASSOCIATES INC.

Justin Lim, M.Sc. Engineering Intern

C.F. CROZIER & ASSOCIATES INC.

Nicole Segal, MM.Sc., P.Eng. Project Engineer

I:\1900\1986 - 12599 Hwy 50 Inc\5779 - 12563 & 12599 Hwy 50 & 2 Industrial Rd\Reports\2021.02.12 FSRSWM.docx

APPENDIX A

Equivalent Population & Water Demand Calculations

Connection Demand Table

12563 & 12599 Highway 50 & 2 Industrial Road, Town of Caledon

WATER CONNECTION

Connection point 3) Existing 300	mm diameter w	atermain on Highwa	y 50
Pressure zone of connection poi		Zone 6	
Total equivalent population to be	e serviced ¹⁾	4761 persons	
Total lands to be serviced		3.52 ha	
Hydrant flow test			
	ant flow test lo	cation	
Test #1 – 1	2566 Highway	50, Caledon	
	Pressure (kPa)	Flow (in l/s)	Time
Minimum water pressure	68.95	461.06	
Maximum water pressure	137.90	506.17	
Hydr	ant flow test lo	cation	
Test #2 – 2	2 Industrial Driv	ve, Caledon	
Minimum water pressure	68.95	454.18	
Maximum water pressure	137.90	497.78	

No.	Water demands – I	Phase 1 91 E	glinton
NO.	Demand type	Demand	Units
1	Average day flow	15.1	l/s
2	Maximum day flow	27.1	l/s
3	Peak hour flow	45.2	l/s
4	Fire flow ²⁾	100	l/s
Anal	ysis		
5	Maximum day plus fire flow	127.1	l/s

WASTEWATER CONNECTION

Conr	ection point ⁴⁾	Existing 250mm diameter sanitary sewer on Highway 50
Total	equivalent population to be serviced	4761
Total	lands to be serviced	3.52 ha
6	Wastewater sewer effluent (in I/s)	53.7

¹⁾ Please refer to design criteria for population equivalencies

²⁾ Please reference the Fire Underwriters Survey Document

³⁾ Please specify the connection point ID

⁴⁾ Please specify the connection point (wastewater line or manhole ID) Also, the "total equivalent population to be serviced" and the "total lands to be serviced" should reference the connection point. (the FSR should contain one copy of Site Servicing Plan)

Please include the graphs associated with the hydrant flow test information table Please provide Professional Engineer's signature and stamp on the demand table All required calculations must be submitted with the demand table submission.

Mark DiConstanzo 12599 Hwy 50 Ltd. 91 Parr Boulevard Bolton, Ontario L7E 4E3

November 9th, 2020

RE: Fire Flow Testing Hwy 50 and Industrial Road, Bolton, ON

Watermark has conducted two fire flow tests near the intersection of Highway 50 and Industrial Road, Town of Bolton, Caledon. The testing was completing in accordance with NFPA 291. Region of Peelwater operations staff were on hand to assist.

Test #1 - 12566 Highway 50

Static pressure prior to the test was observed to be 73 PSI. Using 2 x 2.5" ports on one flow hydrant, and 1 x 4" port on a second flow hydrant, a maximum flow rate of 3050 USGPM was achieved. This provided an 14% pressure drop, to 62.5 PSI.

Test #2 - 2 Industral Road

Static pressure prior to the test was observed to be 74 PSI. Using 2 x 2.5" ports on one flow hydrant, and 1 x 4" port on a second flow hydrant, a maximum flow rate of 3050 USGPM was achieved. This provided an 15% pressure drop, to 63 PSI.

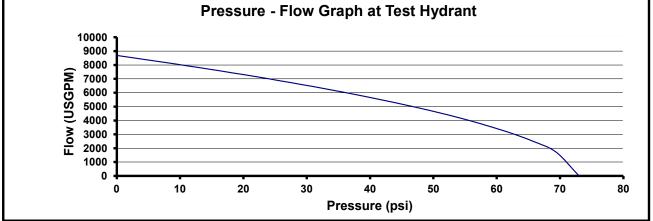
Althought the minimum required pressure drop was not acheived (25% of static), the high flow rate acheived provides increased confidence in the projected flow rates and subsequent ratings.

Equipment:

Flow: 1 x 4" HoseMonster with integrated 4" Pitotless Nozzle Flow: 2 x 2.5" HoseMonster with integrated 2" Pitotless Nozzle Pressure: HYDREKA Octopus LX Data Logger w/ 20 bar integrated pressure sensor We strongly feel that all attempts have been made to ensure that the required data as stipulated will be captured, stored and presented in an accurate, efficient and timely manner for the required period. We are pleased Watermark again as your data provider, and we look forward to working with you in the future.

Kind Regards,

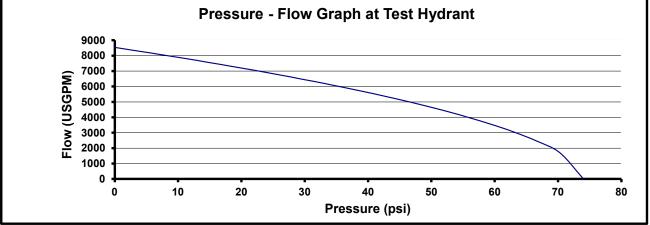
Colin Powell


(519) 217-3439 colin.powell@watermark.ca

Watermark Solutions Limited Unit 117 115 George Street Oakville, Ontario L6J 0A2 www.watermark.ca

Hydrant Flow Test Report

Date:	09-Nov-20	Time:	1:30 PM	Operator:	Colin P	owell
<u>Test Loca</u>	ation:	1256	6 Highway 50		Project No.	
	Test Numbe N.F.P.A. Co		1 BLUE	l		
	Ironto Locotio	STATIC PRES RESIDUAL PRES	SURE: <u>62.5</u>	psi psi	Pressure D 14.4%	rop
	Irants Locatio		wy 50 (on Industrial F	Road)		
ŀ	Hydrant No.	Flow Device	Outlet Dia. (in.)	Coefficient (~0.9)	Pitot Gauge Reading (psi)	Flow (USGPM)
	А	Pitot	2.5	0.9	18	662
	А	Pitot	2.5	0.9	18	662
	В	HoseMonster	4"			1725
		TSI	2.5	0.9		
_				Total Flow	(USGPM)	3049
Availab	le Flow At Tes	st Hydrant at 20 psi	7308	USGPM	6039	IGPM
Availab	le Flow At Tes	t Hydrant at 10 psi	8023	USGPM	6630	IGPM
		Dro	ssure - Flow Gra	anh at Toot Hug	Iront	



Comments/Discrepencies/Diagram:

Hydrant Flow Test Report

Date:	09-Nov-20	Time:	1:30 PM	Operator:	Colin F	Powell
<u>Test Loca</u>	ation:	2 Inc	lustrial Drive		Project No.	
	Test Numbe N.F.P.A. Co		2 BLUE			
Flow Hyd	Irants Locatio		SURE: 63	psi psi Road)	Pressure D 14.9%	Prop
H	Hydrant No.	Flow Device	Outlet Dia. (in.)	Coefficient (~0.9)	Pitot Gauge Reading (psi)	Flow (USGPM)
	A A B	Pitot Pitot HoseMonster TSI	2.5 2.5 4" 2.5	0.9 0.9 0.9	18 18	662 662 1725
Availab	le Flow At Tes	t Hydrant at 20 psi	7199	Total Flow	(USGPM) 5949	3049 IGPM
Availab	le Flow At Tes	t Hydrant at 10 psi	7890	_USGPM	6521	IGPM

Comments/Discrepencies/Diagram:

 Project:
 12563 & 12599 Hwy 50 & 2 Industrial Road

 Project No.:
 1986-5779

 Prepared By:
 JL

 Checked By:
 NRS

 Date:
 2020-11-13

 Revised:
 2021-02-12

Site Statistics 12563 & 12599 Hwy 50 & 2 Industrial Road

SUMMARY OF UNIT BREAKDOWN

Site	Single	Semi	Row	Apartment 2+	Apartment 1+	Total Units	Amenity Area (ha)
Building 1	0	0	0	284	235	519	
Building 2	0	5	0	217	206	423	
Building 3	0	8	0	218	187	405	1.25
Building 4	0	12	0	305	294	599	
Building 5	0	0	0	134	124	258	
Total	0	25	0	1158	1046	2204	1.25

SUMMARY OF POPULATION

Site	Single	Semi	Row	Apartment 2+	Apartment 1+	Amenity Area Equivalent	Building Equivalent	Total Persons
Building 1	0	0	0	721	395		1179	
Building 2	0	0	0	551	346		897	
Building 3	0	0	0	554	314	63	868	-
Building 4	0	0	0	775	494		1269	
Building 5	0	0	0	340	208		549	
Total	0	0	0	2941	1757	63	4761	4824
Total : Based on the following	g Region of Peel	-					4761	4824
Total		-					4761	4824
Total : Based on the following Single	g Region of Peel 4.15	-					4761	4824
Total : Based on the following Single Semi	g Region of Peel 4.15 4.15	-					4761	4824
Total : Based on the following Single Semi Row	g Region of Peel 4.15 4.15 3.5	People per Unit (P					4761	4824

Amenity area population based on 50 persons/ha per Region of Peel Public Works Design, Specifications & Procedures M Criteria (March, 2017) Section 2.1

Project: 12563 & 12599 Hwy 50 & 2 Industrial Road Project No.: 1986-5779 Prepared By: JL Checked By: NRS Date: 2020-11-13 Revised: 2021-02-12

WATER DEMAND CALCULATIONS - EXISTING CONDITIONS 12563 & 12599 Hwy 50 & 2 Industrial Road

Т

<u>Total Site</u>		References
Average Consumption	250 L/cap/day	2020 Region of Peel Water and Wastewater Master Pl
Equivalent Population	253 persons	Volume 3, Section 2.2, Table 1.
Area	3.61 ha	Region of Peel Public Works Design, Specifications &
		Procedures Manual - Linear Infrastructure Sanitary
Average Daily Demand	63,159 L/day	Sewer Design Criteria (July, 2009) - 2.1 - Modified Marc
	0.73 L/s	2017 REV 0.9 (CS)
Maximum Day Factor	1.4	
Peak Hour Factor	3.0	
Maximum Daily Flow	88,423 L/day	
	1.02 L/s	
Peak Hour Flow	189,478 L/day	
	2.19 L/s	

Project: 12563 & 12599 Hwy 50 & 2 Industrial Road Project No.: 1986-5779 Prepared By: JL Checked By: NRS Date: 2020-11-13 Revised: 2021-02-12

WATER DEMAND CALCULATIONS - PROPOSED CONDITIONS 12563 & 12599 Hwy 50 & 2 Industrial Road

<u>Total Site</u>	Units	Building 1	Building 2	Building 3	Building 4	Building 5	Total
Average Consumption	L/cap/day	270	270	270	270	270	270
Equivalent Population*	persons	1191	910	880	1281	561	4824
Average Daily Demand	L/day	321,667	245,644	237,712	345,911	151,528	1,302,461
	L/s	3.7	2.8	2.8	4.0	1.8	15.1
Maximum Day Factor	-	1.8	1.8	1.8	1.8	1.8	1.8
Peak Hour Factor	-	3.0	3.0	3.0	3.0	3.0	3.0
Maximum Daily Flow	L/day	579,000	442,159	427,881	622,640	272,750	2,344,430
	L/s	6.7	5.1	5.0	7.2	3.2	27.1
Peak Hour Flow	L/day	965,000	736,932	713,135	1,037,734	454,583	3,907,383
	L/s	11.2	8.5	8.3	12.0	5.3	45.2
*Each building includes an equal p	portion of the total c	amenity equivo	alent populatio	n.			

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation Building 1

Designed By: JL Checked By: NRS Date: 2020-11-13 Updated: 2021-02-12

ater Supply for Public F	ire Protection		
re Underwriters Survey			
e onderwiners solvey		Part II - Guid	e for Determination of Required Fire Flow
			·
1. An estimate of fire flow	required for a give	ven area may be deterr	nined by the formula:
		F = 220 * C * sqrt A	
where		1 - 220 C 3911 A	
	F = the requ	vired fire flow in litres per	minute
	C = coefficie	ent related to the type of = 1.5 for wo	t construction: od frame construction (structure essentially all combustible)
			inary construction (brick or other masonry walls, combustible floor and interior)
			n-combustible construction (unprotected metal structural components)
		= 0.6 for fire	resistive construction (fully protected frame, floors, roof)
		Il floor area in square me ent below grade) in the	etres (including all storeys, but excluding basements at least building considered.
Proposed Buildings			
hoposed bollangs	750 sq.m	25% of each of the	nmediately adjoining floor above
	3000 sq.m	area of largest floor	
	716 sq.m	25% of each of the i	mmediately adjoining floor below
A =	4,466 sq.m.		
C =	0.6	Fire-resistive constru	ction
There	fore F = 8.8	801 1 /	
mere	eloie r = 6,6	821 L/min	
Fire f	low determined c	above shall not exceed:	
		000 L/min for wood fram	
		000 L/min for ordinary co 000 L/min for non-comb	
		000 L/min for fire-resistive	
		ed by as much as 25% to r occupancies having c	or occupancies having low contents fire hazard or may high fire hazard
	20/0 boronaigo ro		
Non-Com		25%	Free Burning 15%
Limited Corr		5%	Rapid Burning 25%
Con	nbustible	0% (No Change)	
Non-Combustible			-25%
		205 L/min reduction 516 L/min	
	6,6		
Note: Flow determined		han 2,000 L/min	
	l shall not be less t		
3. Sprinklers - The value	shall not be less to obtained in No. 2	above maybe reduced	I by up to 50% for complete automatic sprinkler protection.
3. Sprinklers - The value The credit for the syste	I shall not be less t obtained in No. 2 m will be a maxim	above maybe reduced num of 30% for an adeq	uately designed system conforming to NFPA 13 and other
 Sprinklers - The value The credit for the syste NFPA sprinkler standard 	l shall not be less t obtained in No. 2 m will be a maxim ds. 10% may be gr	above maybe reduced num of 30% for an adeq ranted if the water supp	
 Sprinklers - The value The credit for the syste NFPA sprinkler standard hose lines required. Ad 	l shall not be less t obtained in No. 2 m will be a maxim ds. 10% may be gr ditional credit of r	above maybe reduced num of 30% for an adeq ranted if the water supp	uately designed system conforming to NFPA 13 and other by is standard for both the system and fire departement for a fully supervised system.
 Sprinklers - The value The credit for the syste NFPA sprinkler standard 	l shall not be less t obtained in No. 2 m will be a maxim ds. 10% may be gr ditional credit of r	above maybe reduced num of 30% for an adeq ranted if the water supp	uately designed system conforming to NFPA 13 and other ly is standard for both the system and fire departement
 Sprinklers - The value The credit for the syste NFPA sprinkler standard hose lines required. Ad 	I shall not be less t obtained in No. 2 m will be a maxim ds. 10% may be gr ditional credit of r prinklers	above maybe reduced num of 30% for an adeq ranted if the water supp	uately designed system conforming to NFPA 13 and other by is standard for both the system and fire departement for a fully supervised system.

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation

Page 2

Water Supply for Public Fire Protection Fire Underwriters Survey

Part II - Guide for Determination of Required Fire Flow

4. Exposure - To the value obtained in No. 2, a percentage should be added for structures exposed within 45 metres by the fire area under consideration. The percentage shall depend upon the height, area, and construction of the building(s) being exposed, the separation, openings in the exposed building(s), the length and height of exposure, the provision of automatic sprinklers and/or outside sprinklers in the building(s) exposed, the occupancy of the exposed building(s) and the effect of hillside locations on the possible spread of fire.

Separation	Charge	Separation	Charge
0 to 3 m	25%	20.1 to 30 m	10%
3.1 to 10 m	20%	30.1 to 45 m	5%
10.1 to 20 m	15%	> 45 m	0%

Exposed buildings

Direction	Name	Distance	Charge	Surcharge (L/min)	
Construction N	Building 4	30.1 to 45 m	5%	331	
Construction S	n/a	> 45 m	0%	0	
Construction E	Building 2	20.1 to 30 m	10%	662	
Construction W	Building 5	20.1 to 30 m	10%	662	
				1,654	L/min Surcharge

No.1 8,821 No. 2 -2,205 reduction No. 3 -3,308 reduction No. 4 1.654 surcharge Required Flow: 4,962 L/min Rounded to nearest 1000 L/min: 5,000 L/min or 1,321 USGPM 1,321 USGPM

Required Duration of	f Fire Flow	
Flow Required		Duration
L/min		(hours)
2,000 or less		1.0
	3,000	1.25
	4,000	1.5
	5,000	1.75
	6,000	2.0
	8,000	2.0
	10,000	2.0
	12,000	2.5
	14,000	3.0
	16,000	3.5
	18,000	4.0
	20,000	4.5
	22,000	5.0
	24,000	5.5
	26,000	6.0
	28,000	6.5
	30,000	7.0
	32,000	7.5
	34,000	8.0
	36,000	8.5
	38,000	9.0
40,000 and over		9.5

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation Building 2

Designed By: JL Checked By: NRS Date: 2020-11-13 Updated: 2021-02-12

ire Underwriters Surve	: Fire Protection	
	· /	Part II - Guide for Determination of Required Fire Flow
1. An estimate of fire flo	ow required for a g	given area may be determined by the formula:
		F = 220 * C * sqrt A
where	F = the requ	uired fire flow in litres per minute
	C = coefficie	ient related to the type of construction:
		= 1.5 for wood frame construction (structure essentially all combustible)
		 = 1.0 for ordinary construction (brick or other masonry walls, combustible floor and interior) = 0.8 for non-combustible construction (unprotected metal structural components)
		= 0.6 for fire-resistive construction (fully protected frame, floors, roof)
		al floor area in square metres (including all storeys, but excluding basements at least ent below grade) in the building considered.
Proposed Buildings		
	613 sq.m	25% of each of the immediately adjoining floor above
	2451 sq.m 577 sq.m	area of largest floor 25% of each of the immediately adjoining floor below
A =	3,641 sq.m.	
C =	0.6	Fire-resistive construction
The	refore F = 7,	,965 L/min
Fire	30,/ 30,/ 25,/	above shall not exceed: ,000 L/min for wood frame construction ,000 L/min for ordinary construction ,000 L/min for non-combustible construction ,000 L/min for fire-resistive construction
		ced by as much as 25% for occupancies having low contents fire hazard or may
be increased by up	io 25% sufcharge i	for occupancies having a high fire hazard.
		25% Free Burning 15%
Limited Cor Cor		15% Rapid Burning 25% 0% (No Change)
Non-Combustible		-25%
		.991 L/min reduction 973 L/min
Note: Flow determine	ed shall not be less	s than 2,000 L/min
The credit for the sys NFPA sprinkler stando	tem will be a maxi ards. 10% may be g	2 above maybe reduced by up to 50% for complete automatic sprinkler protection. imum of 30% for an adequately designed system conforming to NFPA 13 and other granted if the water supply is standard for both the system and fire departement of up to 10% may be given for a fully supervised system.
Complete automatio	sprinklers	-50%

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation

Page 2

Water Supply for Public Fire Protection Fire Underwriters Survey

Part II - Guide for Determination of Required Fire Flow

83.3 L/s 1,321 USGPM

4. Exposure - To the value obtained in No. 2, a percentage should be added for structures exposed within 45 metres by the fire area under consideration. The percentage shall depend upon the height, area, and construction of the building(s) being exposed, the separation, openings in the exposed building(s), the length and height of exposure, the provision of automatic sprinklers and/or outside sprinklers in the building(s) exposed, the occupancy of the exposed building(s) and the effect of hillside locations on the possible spread of fire.

Separation	Charge	Separation	Charge
0 to 3 m	25%	20.1 to 30 m	10%
3.1 to 10 m	20%	30.1 to 45 m	5%
10.1 to 20 m	15%	> 45 m	0%

Exposed buildings

Direction	Name	Distance	Charge	Surcharge (L/min)	
Construction N	Building 3	10.1 to 20 m	15%	896	
Construction S	Existing	20.1 to 30 m	10%	597	
Construction E	n/a	> 45 m	0%	0	
Construction W	Building 1	20.1 to 30 m	10%	597	
				2,091 L/min Surcharge	

Determine Required Fire Flow

No. 3	-2,987 reduction
No. 4	2,091 surcharge
Required Flow:	5,077 L/min
Rounded to nearest 1000 L/min:	5,000 L/min or

7,965

No.1

Required Duration	of Fire Flow	
Flow Required		Duration
L/min		(hours)
2,000 or less		1.0
	3,000	1.25
	4,000	1.5
	5,000	1.75
	6,000	2.0
	8,000	2.0
	10,000	2.0
	12,000	2.5
	14,000	3.0
	16,000	3.5
	18,000	4.0
	20,000	4.5
	22,000	5.0
	24,000	5.5
	26,000	6.0
	28,000	6.5
	30,000	7.0
	32,000	7.5
	34,000	8.0
	36,000	8.5
	38,000	9.0
40,000 and over		9.5

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation Building 3

Designed By: JL Checked By: NRS Date: 2020-11-13 Updated: 2021-02-12

-	,	Part II - Guide for Determination of Required Fire Flow
1. An estimate of fire flov	v required for a c	given area may be determined by the formula:
where		F = 220 * C * sqrt A
	F = the requ	uired fire flow in litres per minute
	C = coefficie	ent related to the type of construction:
		= 1.5 for wood frame construction (structure essentially all combustible)
		 1.0 for ordinary construction (brick or other masonry walls, combustible floor and interior) 0.8 for non-combustible construction (unprotected metal structural components)
		 = 0.6 for fire-resistive construction (fully protected frame, floors, roof)
		Il floor area in square metres (including all storeys, but excluding basements at least ent below grade) in the building considered.
Proposed Buildings		
-	647 sq.m	25% of each of the immediately adjoining floor above
	2587 sq.m 608 sq.m	area of largest floor 25% of each of the immediately adjoining floor below
A = C =	3,841 sq.m. 0.6	Fire-resistive construction
C	0.0	
There	fore F = 8,	181 L/min
Fire flo		ubove shall not exceed: 000 L/min for wood frame construction
		000 L/min for ordinary construction
		000 L/min for non-combustible construction
	25,0	000 L/min for fire-resistive construction
2 Values obtained in No		ced by as much as 25% for occupancies having low contents fire hazard or may
		for occupancies having a high fire hazard.
Non-Com	hustible (25% Free Burning 15%
Limited Com		15% Rapid Burning 25%
Com	bustible	0% (No Change)
		-25%
Non-Combustible		
	-21	245 L/min reduction
		045 L/min reduction 136 L/min
	6,1	136 L/min
Non-Combustible Note: Flow determined	6, 1 d shall not be less	136 L/min s than 2,000 L/min
Non-Combustible Note: Flow determined 3. Sprinklers - The value	6,1 d shall not be less obtained in No.	136 L/min s than 2,000 L/min 2 above maybe reduced by up to 50% for complete automatic sprinkler protection.
Non-Combustible Note: Flow determined 3. Sprinklers - The value The credit for the syste	6,1 d shall not be less obtained in No. m will be a maxin	136 L/min s than 2,000 L/min
Non-Combustible Note: Flow determined 3. Sprinklers - The value The credit for the syste NFPA sprinkler standar	6,1 d shall not be less obtained in No. m will be a maxiu ds. 10% may be g	136 L/min s than 2,000 L/min 2 above maybe reduced by up to 50% for complete automatic sprinkler protection. mum of 30% for an adequately designed system conforming to NFPA 13 and other
Non-Combustible Note: Flow determined 3. Sprinklers - The value The credit for the syste NFPA sprinkler standar	6,1 obtained in No. m will be a maxiu ds. 10% may be g dditional credit of	136 L/min s than 2,000 L/min 2 above maybe reduced by up to 50% for complete automatic sprinkler protection. mum of 30% for an adequately designed system conforming to NFPA 13 and other granted if the water supply is standard for both the system and fire departement
Non-Combustible Note: Flow determined 3. Sprinklers - The value The credit for the syste NFPA sprinkler standar hose lines required. Ac	6,1 obtained in No. m will be a maxii ds. 10% may be g Iditional credit of sprinklers	136 L/min s than 2,000 L/min 2 above maybe reduced by up to 50% for complete automatic sprinkler protection. mum of 30% for an adequately designed system conforming to NFPA 13 and other granted if the water supply is standard for both the system and fire departement f up to 10% may be given for a fully supervised system.

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation

Page 2

Water Supply for Public Fire Protection Fire Underwriters Survey

Part II - Guide for Determination of Required Fire Flow

4. Exposure - To the value obtained in No. 2, a percentage should be added for structures exposed within 45 metres by the fire area under consideration. The percentage shall depend upon the height, area, and construction of the building(s) being exposed, the separation, openings in the exposed building(s), the length and height of exposure, the provision of automatic sprinklers and/or outside sprinklers in the building(s) exposed, the occupancy of the exposed building(s) and the effect of hillside locations on the possible spread of fire.

Separation	Charge	Separation	Charge
0 to 3 m	25%	20.1 to 30 m	10%
3.1 to 10 m	20%	30.1 to 45 m	5%
10.1 to 20 m	15%	> 45 m	0%

Direction	Name	Distance	Charge	Surcharge (L/min)	
Construction N	Existing	10.1 to 20 m	15%	920	
Construction S	Building 2	10.1 to 20 m	15%	920	
Construction E	Existing	30.1 to 45 m	5%	307	
Construction W	Building 4	10.1 to 20 m	15%	920	
				3,068 L/min	Surcharge

Determine Required Fire Flow			Flow Required		Duration
			L/min		(hours)
No.1	8,181		2,000 or less		1
No. 2	-2,045 reduction			3,000	1
No. 3	-3,068 reduction			4,000	1
No. 4	<u>3,068</u> surcharge			5,000	1
				6,000	2
Required Flow:	6,136 L/min			8,000	2
Rounded to nearest 1000 L/min:	6,000 L/min or	100.0 L/s		10,000	2
		1,585 USGPM		12,000	2
				14,000	3
				16,000	3
				18,000	4
				20,000	4
				22,000	5
				24,000	5
				26,000	é
				28,000	e
				30,000	7
				32,000	7
				34,000	8
				36,000	8
				38,000	9

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation Building 4

Designed By: JL Checked By: NRS Date: 2020-11-13 Updated: 2021-02-12

	ey .	Part II - Guide for Determination of Required Fire Flow			
An estimate of fire flo	ow required for a g	given area may be determined by the formula:			
		F = 220 * C * sqrt A			
where					
	F = the requ	uired fire flow in litres per minute			
	C = coefficie	ent related to the type of construction:			
		= 1.5 for wood frame construction (structure essentially all combustible)			
= 1.0 for ordinary construction (brick or other masonry walls, combustible floor and interior)					
		= 0.8 for non-combustible construction (unprotected metal structural components)			
		= 0.6 for fire-resistive construction (fully protected frame, floors, roof)			
	A = The total	al floor area in square metres (including all storeys, but excluding basements at least			
	50 perce	ent below grade) in the building considered.			
Proposed Buildings					
	767 sq.m	25% of each of the immediately adjoining floor above			
	3066 sq.m	area of largest floor			
	746 sq.m	25% of each of the immediately adjoining floor below			
A =	4,579 sq.m.				
C =	0.6	Fire-resistive construction			
Ther	efore F = 8,9	932 L/min			
Fire	flow datarminad a	above shall not exceed:			
rite		,000 L/min for wood frame construction			
		,000 L/min for ordinary construction			
	25,0	.000 L/min for non-combustible construction			
	25,0	.000 L/min for fire-resistive construction			
		uced by as much as 25% for occupancies having low contents fire hazard or may			
be increased by up	io 25% surcharge f	for occupancies having a high fire hazard.			
Non-Cor	nbustible -2	25% Free Burning 15%			
	nbustible -1	15% Rapid Burning 25%			
Limited Cor	mbustible	0% (No Change)			
Limited Cor		-25%			
Limited Cor					
Limited Cor Cor					
Limited Cor Cor		233 L/min reduction			
Limited Cor Cor					
Limited Cor Cor	6,6	233 L/min reduction 699 L/min			
Limited Cor Cor Non-Combustible Note: Flow determin	6,6 ed shall not be less	233 L/min reduction 699 L/min			
Limited Cor Cor Non-Combustible Note: Flow determin Sprinklers - The valu The credit for the sys	6,6 ed shall not be less re obtained in No. tem will be a maxi	233 L/min reduction 699 L/min ss than 2,000 L/min . 2 above maybe reduced by up to 50% for complete automatic sprinkler protection. kimum of 30% for an adequately designed system conforming to NFPA 13 and other			
Limited Cor Cor Non-Combustible Note: Flow determin Sprinklers - The valu The credit for the sys NFPA sprinkler stando	6,6 ed shall not be less ue obtained in No. tem will be a maxi ards. 10% may be s	233 L/min reduction 699 L/min ss than 2,000 L/min . 2 above maybe reduced by up to 50% for complete automatic sprinkler protection. simum of 30% for an adequately designed system conforming to NFPA 13 and other granted if the water supply is standard for both the system and fire departement			
Limited Cor Cor Non-Combustible Note: Flow determin Sprinklers - The valu The credit for the sys NFPA sprinkler stando	6,6 ed shall not be less ue obtained in No. tem will be a maxi ards. 10% may be s	233 L/min reduction 699 L/min ss than 2,000 L/min . 2 above maybe reduced by up to 50% for complete automatic sprinkler protection. kimum of 30% for an adequately designed system conforming to NFPA 13 and other			
Limited Cor Cor Non-Combustible Note: Flow determin Sprinklers - The valu The credit for the sys NFPA sprinkler stando	6,6 ed shall not be less ue obtained in No. tem will be a maxi ards. 10% may be a Additional credit o	233 L/min reduction 699 L/min ss than 2,000 L/min . 2 above maybe reduced by up to 50% for complete automatic sprinkler protection. simum of 30% for an adequately designed system conforming to NFPA 13 and other granted if the water supply is standard for both the system and fire departement			

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation

Page 2

Water Supply for Public Fire Protection Fire Underwriters Survey

Part II - Guide for Determination of Required Fire Flow

4. Exposure - To the value obtained in No. 2, a percentage should be added for structures exposed within 45 metres by the fire area under consideration. The percentage shall depend upon the height, area, and construction of the building(s) being exposed, the separation, openings in the exposed building(s), the length and height of exposure, the provision of automatic sprinklers and/or outside sprinklers in the building(s) exposed, the occupancy of the exposed building(s) and the effect of hillside locations on the possible spread of fire.

Separation	Charge	Separation	Charge
0 to 3 m	25%	20.1 to 30 m	10%
3.1 to 10 m	20%	30.1 to 45 m	5%
10.1 to 20 m	15%	> 45 m	0%

Direction	Name	Distance	Charge	Surcharge (L/min)	
Construction	N n/a	> 45 m	0%	0	
Construction	S Building 5	10.1 to 20 m	15%	1005	
Construction	E Building 3	10.1 to 20 m	15%	1005	
Construction	W Existing	10.1 to 20 m	15%	1005	
				3,014	L/min Surcharge

			Required Duration	0111011044	
Determine Required Fire Flow			Flow Required		Duration
			L/min		(hours)
No.1	8,932		2,000 or less		1.0
No. 2	-2,233 reduction			3,000	1.2
No. 3	-3,349 reduction			4,000	1.5
No. 4	<u>3,014</u> surcharge			5,000	1.7
				6,000	2.0
Required Flow:	6,364 L/min			8,000	2.0
Rounded to nearest 1000 L/min:	6,000 L/min or	100.0 L/s		10,000	2.0
		1,585 USGPM		12,000	2.5
				14,000	3.0
				16,000	3.5
				18,000	4.0
				20,000	4.5
				22,000	5.0
				24,000	5.5
				26,000	6.0
				28,000	6.5
				30,000	7.0
				32,000	7.5
				34,000	8.0
				36,000	8.5
				38,000	9.0
			40,000 and over		9.5

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation Building 5

Designed By: JL Checked By: NRS Date: 2020-11-13 Updated: 2021-02-12

	ý	Part II - Guide for Determination of Required Fire Flow				
1 An estimate of fire flo	w required for a a	iven area may be determined by the formula:				
	w required for d g	iven died may be delemined by me formold.				
where		F = 220 * C * sqrt A				
WIIEle	F = the requ	ired fire flow in litres per minute				
	C = coefficie	ent related to the type of construction:				
		= 1.5 for wood frame construction (structure essentially all combustible)				
= 1.0 for ordinary construction (brick or other masonry walls, combustible floor and interior)						
		 = 0.8 for non-combustible construction (unprotected metal structural components) = 0.6 for fire-resistive construction (fully protected frame, floors, roof) 				
		= 0.6 for fire-resistive construction (fully protected frame, floors, roof)				
		I floor area in square metres (including all storeys, but excluding basements at least ent below grade) in the building considered.				
Proposed Buildings						
	458 sq.m	25% of each of the immediately adjoining floor above				
	1832 sq.m 458 sq.m	area of largest floor 25% of each of the immediately adjoining floor below				
	400 34.111	23/6 or each of the intimediately adjoining loor below				
A =	2,748 sq.m.					
C =	0.6	Fire-resistive construction				
There	efore F = 6,9	919 L/min				
Fire fl		bove shall not exceed:				
	30,000 L/min for wood frame construction 30,000 L/min for ordinary construction					
		000 L/min for non-combustible construction				
	25,0	200 L/min for fire-resistive construction				
		ced by as much as 25% for occupancies having low contents fire hazard or may or occupancies having a high fire hazard.				
	20% solendige h					
Non-Com		15% Free Burning 15%				
Limited Com Com		5% Rapid Burning 25% 0% (No Change)				
Non Combustible		-25%				
Non-Combustible		-ZJ/6				
		730 L/min reduction 189 L/min				
Noto: Flow statem						
Note: Flow determine	a shali not be less	mun 2,000 L/min				
3. Sprinklers - The value		2 above maybe reduced by up to 50% for complete automatic sprinkler protection.				
		num of 30% for an adequately designed system conforming to NFPA 13 and other granted if the water supply is standard for both the system and fire departement				
The credit for the syste						
The credit for the system NFPA sprinkler standa		up to 10% may be given for a fully supervised system.				
The credit for the system NFPA sprinkler standa	dditional credit of	-50%				

12563 & 12599 Hwy 50 & 2 Industrial Road Fire Protection Volume Calculation

Page 2

Water Supply for Public Fire Protection Fire Underwriters Survey

Part II - Guide for Determination of Required Fire Flow

4. Exposure - To the value obtained in No. 2, a percentage should be added for structures exposed within 45 metres by the fire area under consideration. The percentage shall depend upon the height, area, and construction of the building(s) being exposed, the separation, openings in the exposed building(s), the length and height of exposure, the provision of automatic sprinklers and/or outside sprinklers in the building(s) exposed, the occupancy of the exposed building(s) and the effect of hillside locations on the possible spread of fire.

Separation	Charge	Separation	Charge
0 to 3 m	25%	20.1 to 30 m	10%
3.1 to 10 m	20%	30.1 to 45 m	5%
10.1 to 20 m	15%	> 45 m	0%

Direction	Name	Distance	Charge	Surcharge (L/min)	
Construction N	Building 4	10.1 to 20 m	15%	778	
Construction S	n/a	> 45 m	0%	0	
Construction E	Building 1	20.1 to 30 m	10%	519	
Construction W	Existing	10.1 to 20 m	15%	778	
				2,076	L/min Surcharge

			Required Duration	of Fire Flow		
Determine Required Fire Flow			Flow Required		Duration	
			L/min		(hours)	
No.1	6,919		2,000 or less		1.0	
No. 2	-1,730 reduction			3,000	1.25	
No. 3	-2,595 reduction			4,000	1.5	
No. 4	2,076 surcharge			5,000	1.75	
				6,000	2.0	
Required Flow:	4,670 L/min			8,000	2.0	
Rounded to nearest 1000 L/min:	5,000 L/min or	83.3 L/s		10,000	2.0	
		1,321 USGPM		12,000	2.5	
				14,000	3.0	
				16,000	3.5	
				18,000	4.0	
				20,000	4.5	
				22,000	5.0	
				24,000	5.5	
				26,000	6.0	
				28,000	6.5	
				30,000	7.0	
				32,000	7.5	
				34,000	8.0	
				36,000	8.5	
				38,000	9.0	
			40,000 and over		9.5	

APPENDIX B

Sanitary Sewage Design Flow Calculations

		Project: 12563 & 12599 H	wy 50 & 2 Industrial Road				
	Project No.: 1986-5779						
CROZIER	Prepared By: JL Checked By: NRS						
CONSULTING ENGINEERS							
	Date: 2020-11-13						
		Revised : 2021-02-12					
	SANITARY CALCULATIONS -	EXISTING CONDITIONS					
	12563 & 12599 Hwy 50	& 2 Industrial Road					
Total Cito							
<u>Total Site</u> Average Daily Flow	270.0 L/person/day		2020 Region of Peel Water and				
Population	253 persons		Wastewater Master Plan Volume 4,				
Area	3.61 hg		Section 2.2, Table 2.				
Harmon Peaking Factor (M)	4.11						
M = 1+(14/(4+p^0.5))							
Average Daily Flow	68,212 L/day						
	0.79 L/s						
Peak Flow	280,303 L/day						
leaknow	3.24 L/s						
	0.24 L/ 3						
Infiltration	0.00026 cms/hg		2020 Region of Peel Water and				
	0.00094 cms		Wastewater Master Plan Volume 4, Section 2.2, Table 2.				
	0.94 L/s						
Total Sanitary Flow	4.18 L/s						

 Project:
 12563 & 12599 Hwy 50 & 2 Industrial Road

 Project No.:
 1986-5779

 Prepared By:
 JL

 Checked By:
 NRS

 Date:
 2020-11-13

 Revised:
 2021-02-12

CUMULATIVE SANITARY CALCULATIONS - PROPOSED CONDITIONS 12563 & 12599 Hwy 50 & 2 Industrial Road

<u>Total Site</u>	Units	Building 1	Buildings 1-2	Buildings 1-3	Buildings 1-4	Buildings 1-5	Total	References
Average Daily Flow	L/cap/day	290	290	290	290	290	290	2020 Region of Peel Water and Wastewater Masi Plan Volume 3, Section 2.2, Table 1,
Cumulative Population	persons	1191	2101	2982	4263	4824	4824	Plan Volume 3, section 2.2, Table 1.
Average Daily Flow	L/day	345,494	609,334	864,654	1,236,188	1,398,940	1,398,940	
	L/s	4.0	7.1	10.0	14.3	16.2	16.2	
Harmon Peaking Factor (M) M = 1+(14/(4+p^0.5))	-	3.75	3.57	3.44	3.31	3.26	3.26	
Peak Flow	L/day	1,295,493	2,174,729	2,978,455	4,089,885	4,559,699	4,559,699	
	L/s	15.0	25.2	34.5	47.3	52.8	52.8	Total peak flow based on Harmon Peaking Factor using the total population.
Infiltration	cms/ha	0.00026	0.00026	0.00026	0.00026	0.00026	0.00026	Infiltration area assumed to be uniform across all
	ha <mark>L/s</mark>	0.72 0.19	1.44 0.38	2.17 0.56	2.89 0.75	3.61 0.94	3.61 0.94	buildings.
Peak Hour Flow	L/s	15.2	25.5	35.0	48.1	53.7	53.7	

APPENDIX C

Stormwater Management Calculations

Project: 12563 & 12599 Hwy 50 Project No.: 1986-5779 Created By: MJ Checked By: NS Date: 2020-11-13 Updated: 2021-02-12

	Prelim	inary M	odified Ro	ational C	Calculation	s - Input Parar	neters
	_						
itorm Data:		Co	aledon				
me of Conce	ntration:	T _c =	10	min	(per city of Tov	vn of Caledon stan	dards)
eturn Period	А	В	с	l (mm/hr)			
2 yr	1,070	7.85	0.8759	85.72			
5 yr	1,593	11.00	0.8789	109.68			
10 yr	2,221	12.00	0.9080	134.16			
25 yr	3,158	15.00	0.9335	156.47			
50 yr	3,886	16.00	0.9495	176.19			
100 yr	4,688	17.00	0.9624	196.54			
e-Developm	ent Cond		tchment 101:	: Hiahway 5	0		
1		Area	Area		Weighted		
Land Us	se	(ha)	(m ²)	С	Average C ¹	Drainage Node	
Grave	Ι	1.11	11,120	0.90	0.78		
Impervic		0.16	1,630	0.90	0.12	Highway 50	
Sub tot	al	1.28	12,750	-	0.50		
			hment 102: I	ndustrial Ro			
Land Us		Area (ha)	Area (m²)	с	Weighted Average C ¹	Drainage Node	
Grave	Ι	2.14	21,350	0.90	0.86		
Impervic		0.10	1,030	0.90	0.04	Industrial Road	
	al	2.24	22,380	-	0.50		
Sub tote Overa		3.51	35,130		0.50		

Post-Development Conditions

	Cc	atchment 201:	Highway		
Land Use	Area	Area	с	Weighted	Drainage Nod
Luna Use	(ha)	(m²)	C	Average C ¹	Drainage Noa
Pervious	0.13	1,270	0.25	0.03	
Impervious	1.14	11,430	0.90	0.81	Highway 50
Subtotal	1.27	12,700	-	0.90	
	Cate	chment 202: lı	ndustrial R	oad	
Land Use	Area	Area	`	Weighted	Drainage Nod
Luna Use	(ha)	(m²)		Average C ¹	Drainage Noa
Pervious	0.21	2,120	0.25	0.03	
Impervious	1.91	19,080	0.90	0.81	Industrial Roa
Sub total	2.12	21,200	-	0.90	
	UC1	1: Uncontrolle	d Highway	/ 50	
Land Use	Area (ha)	Area (m²)	с	Weighted Average C	Drainage Nod
Pervious	0.02	150	0.25	0.25	
Impervious	0.00	-	0.90	0.00	Highway 50
Sub total	0.02	150	-	0.25	
	UC	2: Uncontrolle	d Highway	/ 50	
Land Use	Area (ha)	Area (m²)	с	Weighted Average C	Drainage Nod
Pervious	0.02	150	0.25	0.25	
Impervious	0.00	-	0.90	0.00	Highway 50
Sub total	0.02	150	-	0.25	
	UCS	3: Uncontrolled	d Industria	I 50	
Land Use	Area (ha)	Area (m²)	с	Weighted Average C	Drainage Nod
Pervious	0.04	430	0.25	0.25	
Impervious	0.00	-	0.90	0.00	Industrial Roa
Sub total	0.04	430	-	0.25	
	UC4	4: Uncontrolled	d Industria	l 50	
Land Use	Area (ha)	Area (m²)	с	Weighted Average C	Drainage Nod
Pervious	0.05	500	0.25	0.25	
Impervious	0.00	-	0.90	0.00	Industrial Roa
	0.05	500	-	0.25	1
Sub total					

Peak Flow	Intensity	
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	$i(T_d) = A / (T + B)^C$	

Project: 12563 & 12599 Hwy 50 & 2 Industrial Road Project No.: 1986-5779 Created By: JL Checked By: NS Date: 2021-01-22 Updated: 2021-02-12

Modified Rational Calculations - Peak Flow Summary

Peak Flows to Highway 50

Pre-Development

Storm Event	с	i (mm/hr)	A (ha)	Q (m ³ /s)	Q (L/s)				
2 yr	0.50	85.72		0.152	151.91				
5 yr	0.50	109.68		0.194	194.38				
10 yr	0.50	134.16	1.28	0.238	237.77				
25 yr	0.50	156.47	1.20	0.277	277.31				
50 yr	0.50	176.19		0.312	312.26				
100 yr	0.50	196.54		0.348	348.31				

Post-Development

hment 201							
Storm Event	с	i (mm/hr)	A (ha)	Q (m ³ /s)	Q (L/s)		
2 yr	0.90	85.72		0.272	272.4		
5 yr	0.90	109.68		0.349	348.5		
10 yr	0.90	134.16	1.27	0.426	426.3		
25 yr	0.90	156.47	1.2/	0.497	497.2		
50 yr	0.90	176.19		0.560	559.9		
100 yr	0.90	196.54		0.625	624.5		

UC1					
Storm Event	С	i (mm/hr)	A (ha)	Q (m ³ /s)	Q (L/s)
2 yr	0.25	85.72		0.001	0.9
5 yr	0.25	109.68		0.001	1.1
10 yr	0.25	134.16	0.02	0.001	1.4
25 yr	0.25	156.47	0.02	0.002	1.6
50 yr	0.25	176.19		0.002	1.8
100 yr	0.25	196.54		0.002	2.0

0C2					
Storm Event	с	i (mm/hr)	A (ha)	Q (m ³ /s)	Q (L/s)
2 yr	0.25	85.72		0.001	0.9
5 yr	0.25	109.68		0.001	1.1
10 yr	0.25	134.16	0.02	0.001	1.4
25 yr	0.25	156.47	0.02	0.002	1.6
50 yr	0.25	176.19		0.002	1.8
100 yr	0.25	196.54		0.002	2.0

Peak Flows to Industrial Road

Pre-Development

Catchment 102	atchment 102									
Storm Event	С	i (mm/hr)	A (ha)	Q (m ³ /s)	Q (L/s)					
2 yr	0.50	85.72		0.267	266.65					
5 yr	0.50	109.68		0.341	341.19					
10 yr	0.50	134.16	2.24	0.417	417.35					
25 yr	0.50	156.47	2.24	0.487	486.75					
50 yr	0.50	176.19	1	0.548	548.10					
100 yr	0.50	196.54		0.611	611.39					

Peak Flow $Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$

Storm Event	С	i (mm/hr)	A (ha)	Q (m ³ /s)	Q (L/s)
2 yr	0.90	85.72		0.455	454.7
5 yr	0.90	109.68		0.582	581.8
10 yr	0.90	134.16	2.12	0.712	711.6
25 yr	0.90	156.47	2.12	0.830	830.0
50 yr	0.90	176.19		0.935	934.6
100 yr	0.90	196.54		1.042	1042.5

C3								
Storm Event	С	i (mm/hr)	A (ha)	Q (m ³ /s)	Q (L/s)			
2 yr	0.25	85.72		0.003	2.6			
5 yr	0.25	109.68		0.003	3.3			
10 yr	0.25	134.16	0.04	0.004	4.0			
25 yr	0.25	156.47	0.04	0.005	4.7			
50 yr	0.25	176.19		0.005	5.3			
100 vr	0.25	196.54		0.006	5.9			

UC4					
Storm Event	С	i (mm/hr)	A (ha)	Q (m ³ /s)	Q (L/s)
2 yr	0.25	85.72		0.003	3.0
5 yr	0.25	109.68		0.004	3.8
10 yr	0.25	134.16	0.05	0.005	4.7
25 yr	0.25	156.47	0.05	0.005	5.4
50 yr	0.25	176.19		0.006	6.1
100 yr	0.25	196.54	1	0.007	6.8

Post-Development

Catchment 201 Modified Rational Calculations - 2-Year Storm Event

Control Criteria

2 yr: Control Post-Development Peak Flows to Target Flow Rate

2 yr: Uncontrolled Post-Development Flow:

Q_{post}= 272.37 L/s 2 yr: Target Flow Rate:

Qtarget =	150.13	L/s
Qorifice =	0.103	m³/s

Storage Volume Determination				
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)
10	85.72	600	0.274	102.8
15	69.05	900	0.221	121.6
20	58.06	1200	0.186	130.2
25	50.24	1500	0.161	133.0
30	44.38	1800	0.142	132.0
35	39.81	2100	0.127	128.4
40	36.14	2400	0.116	123.0
45	33.13	2700	0.106	116.2
50	30.60	3000	0.098	108.4
55	28.46	3300	0.091	99.7
60	26.62	3600	0.085	90.3
Required Store	age Volume:			133.0

Catchment 201 Modified Rational Calculations - 5-Year Storm Event

Control Criteria

5 yr: Control Post-Development Peak Flows to Target Flow Rate

5 yr: Uncontrolled Post-Development Flow:

	Q _{post} =	348.50	L/s
5 yr: Target Flow Rate			
	Qtarget =	192.09	L/s
	Qactual=	0.131	m³/s

	Storage Volume Determination				
T_d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	109.68	600	0.351	132.1	
15	90.91	900	0.291	163.8	
20	77.89	1200	0.249	181.4	
25	68.29	1500	0.219	190.5	
30	60.92	1800	0.195	194.0	
35	55.06	2100	0.176	193.5	
40	50.28	2400	0.161	190.0	
45	46.32	2700	0.148	184.4	
50	42.96	3000	0.137	177.1	
55	40.09	3300	0.128	168.3	
60	37.60	3600	0.120	158.5	
quired Store	age Volume:			194.0	

Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Catchment 201 Modified Rational Calculations - 10-Year Storm Event

Control Criteria

10 yr: Control Post-Development Peak Flows to Target Flow Rate

10 yr: Uncontrolled Post-Development Flow:

Q_{post} = 426.30 L/s

10 yr: Target Flow Rate:

Qtarget =	234.97	L/s
Qactual=	0.151	m ³ /s

Storage Volume Determination					
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	134.16	600	0.429	166.8	4
15	111.40	900	0.357	207.3	1
20	95.47	1200	0.306	230.4	1
25	83.68	1500	0.268	242.8	Discharge
30	74.58	1800	0.239	248.0	Discharge
35	67.34	2100	0.216	248.2	1
40	61.44	2400	0.197	244.8	
45	56.52	2700	0.181	238.6	
50	52.37	3000	0.168	230.3	
55	48.81	3300	0.156	220.2	
60	45.72	3600	0.146	208.8	T _c T _d ^{Time}
equired Stor	rage Volume:		-	248.2	1

Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Catchment 201 Modified Rational Calculations - 25-Year Storm Event

Control Criteria

25 yr: Control Post-Development Peak Flows to Target Flow Rate

25 yr: Uncontrolled Post-Development Flow:

Q_{post}= 497.19 L/s 25 yr: Target Flow Rate: Qtarget = 274.04 L/s

Gruiger -	2/ 4.04	L/ 3
Qactual=	0.198	m³/s

Storage Volume Determination					
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	156.47	600	0.606	244.7	
15	131.98	900	0.511	311.4	
20	114.29	1200	0.443	352.9	
25	100.90	1500	0.391	378.1	Discharge
30	90.39	1800	0.350	392.4	Discharge
35	81.93	2100	0.317	398.9	
40	74.95	2400	0.290	399.5	
45	69.10	2700	0.268	395.7	
50	64.13	3000	0.248	388.5	
55	59.84	3300	0.232	378.5	
60	56.11	3600	0.217	366.3	T _c T _d ^{Time}
Required Stor	age Volume:			399.5	

Catchment 201 Modified Rational Calculations - 50-Year Storm Event

Control Criteria

50 yr: Control Post-Development Peak Flows to Target Flow Rate

50 yr: Uncontrolled Post-Development Flow:

Q_{post} = 559.86 L/s 50 yr: Target Flow Rate: Qtarget = 308.58 L/s

Qactual=	0.204	m ³ /s	

	Storage Volun				
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	176.19	600	0.627	253.8	-
15	149.09	900	0.530	324.5	
20	129.36	1200	0.460	368.8	1
25	114.33	1500	0.407	396.1	Discharge
30	102.50	1800	0.364	411.8	
35	92.93	2100	0.330	419.2]
40	85.04	2400	0.302	420.4	
45	78.40	2700	0.279	416.9	
50	72.75	3000	0.259	409.7	
55	67.88	3300	0.241	399.6	
60	63.63	3600	0.226	387.1	T _c T _d ^{Time}
Required Stor	age Volume:			420.4]

Catchment 201 Modified Rational Calculations - 100-Year Storm Event

Control Criteria

100 yr: Control Post-Development Peak Flows to Target Flow Rate

100 yr: Uncontrolled Post-Development Flow:

	Q _{post} =	624.50	L/s
100 yr: Target Flow F	Rate:		
	Qtarget =	344.21	L/s
	Qactual=	0.220	m³/s

	Storage Volun				
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	196.54	600	0.699	287.1	1
15	166.89	900	0.593	368.8	1
20	145.13	1200	0.516	421.0	
25	128.46	1500	0.457	453.8	↑ Discharge
30	115.28	1800	0.410	473.5	Discharge
35	104.59	2100	0.372	483.6]
40	95.75	2400	0.340	486.6	
45	88.31	2700	0.314	484.2	
50	81.95	3000	0.291	477.6	
55	76.47	3300	0.272	467.6	
60	71.69	3600	0.255	454.9	T _c T _d ^{Time}
equired Stor	age Volume:		-	486.6	1

Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

CROZIER CONSULTING ENGINEER							Project: 12563 & 12599 Hwy 50 & 2 Industrial Roa Project No: 1986-5779 Created By: JL thecked By: NS Date: 2021-01-14 Updated: 2021-02-12
			ORIFICE	RATING CUP	RVE - CATCH	IMENT 201	
Diameter Ø (m Diameter Ø (m Area (A) (m Coefficient (C Orifice Inve Centroid (Control MH . Rating Table	n) = 0.250 ²) = 0.0491 b) = 0.80 ert= 240.76 h)= 240.89					Orifice Tube Discharge, Q = CA x sqrt(2gh)	_
	Orifice Discharge	UC1 + UC2 Uncontrolled	Orifice Discharge + Uncontrolled	Pre-Development	Difference	Active Storage Volume	
Elevation	erinee Lieenia ge	Discharge	+ Uncontrolled			Active Storage Volume	
Elevation	Ű	Discharge m ³ /s		m³/s		m ³	_
		Discharge	+ Uncontrolled m ³ /s		m ³ /s	-	
m	Ű	Discharge m ³ /s	m ³ /s	m³/s		-	ORIFICE INVERT 2 yr
<i>m</i> 240.76		Discharge m ³ /s -		m³/s -	m³/s -		
m 240.76 241.23	<i>m³/s</i> 0.103	Discharge m³/s - 0.002	<i>m³/s</i> - 0.104	<i>m³/s</i> - 0.152	<i>m³/s</i> - - 0.048		2 yr
m 240.76 241.23 241.45	<i>m³/s</i> 0.103 0.131	Discharge m³/s - 0.002 0.002	m ³ /s - 0.104 0.132	<i>m³/s</i> - 0.152 0.194	m ³ /s - - 0.048 - 0.062	m ³ 	2 yr 5 yr
m 240.76 241.23 241.45 241.64	m ³ /s 0.103 0.131 0.151 0.198 0.204	Discharge 	m ³ /s - 0.104 0.132 0.153	<i>m³/s</i> - 0.152 0.194 0.238	- 0.048 - 0.062 - 0.085	m ³ 133.00 193.98 248.22	2 yr 5 yr 10 yr
m 240.76 241.23 241.45 241.64 242.18	m ³ /s 0.103 0.131 0.151 0.198	Discharge m³/s - 0.002 0.002 0.002 0.002 0.002	m ³ /s 	m ³ /s - 0.152 0.194 0.238 0.277	m ³ /s - - 0.048 - 0.062 - 0.085 - 0.078	m ³ 	2 yr 5 yr 10 yr 25 yr

Catchment 202 Modified Rational Calculations - 2-Year Storm Event

Control Criteria

2 yr: Control Post-Development Peak Flows to Target Flow Rate

2 yr: Uncontrolled Post-Development Flow:

Q_{post}= 454.67 L/s

2 yr: Target Flow Rate:

Qtarget =	261.11	L/s
Qactual=	0.098	m³/s

	Storage Volu				
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	85.72	600	0.274	105.9	1
15	69.05	900	0.221	125.6	1
20	58.06	1200	0.186	135.0	1
25	50.24	1500	0.161	138.5	↓ Discharge
30	44.38	1800	0.142	138.3	
35	39.81	2100	0.127	135.6]
40	36.14	2400	0.116	131.0	
45	33.13	2700	0.106	125.0	
50	30.60	3000	0.098	117.9	
55	28.46	3300	0.091	110.0	
60	26.62	3600	0.085	101.4	
equired Store	age Volume:			138.5]

Peak Flow

$$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$$

Catchment 202 Modified Rational Calculations - 5-Year Storm Event

Control Criteria

5 yr: Control Post-Development Peak Flows to Target Flow Rate

5 yr: Uncontrolled Post-Development Flow:

	Q _{post} =	581.76	L/s
5 yr: Target Flow Rat	e:		
	Qtarget =	334.10	L/s
	Qactual=	0.125	m³/s

Storage Volume Determination					
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	109.68	600	0.351	135.9	
15	90.91	900	0.291	168.4	
20	77.89	1200	0.249	187.0	
25	68.29	1500	0.219	197.1	
30	60.92	1800	0.195	201.4	
35	55.06	2100	0.176	201.9	
40	50.28	2400	0.161	199.4	
45	46.32	2700	0.148	194.7	
50	42.96	3000	0.137	188.3	
55	40.09	3300	0.128	180.5	
60	37.60	3600	0.120	171.6	
equired Stor	age Volume:			201.9	

Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Catchment 202 Modified Rational Calculations - 10-Year Storm Event

Control Criteria

10 yr: Control Post-Development Peak Flows to Target Flow Rate

10 yr: Uncontrolled Post-Development Flow:

Q_{post} = 711.63 L/s

10 yr: Target Flow Rate:

Qtarget =	408.68	L/s
Qactual=	0.145	m ³ /s

	Storage Volu				
T _d	i	T _d	Q _{Uncont}	S _d	
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
10	134.16	600	0.429	170.7	
15	111.40	900	0.357	212.2]
20	95.47	1200	0.306	236.3]
25	83.68	1500	0.268	249.6	Discharge
30	74.58	1800	0.239	255.8	Discharge
35	67.34	2100	0.216	257.0	
40	61.44	2400	0.197	254.6	
45	56.52	2700	0.181	249.4	
50	52.37	3000	0.168	242.0	
55	48.81	3300	0.156	233.0	
60	45.72	3600	0.146	222.5	
equired Sto	rage Volume:			257.0]

Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Catchment 202 Modified Rational Calculations - 25-Year Storm Event

Control Criteria

25 yr: Control Post-Development Peak Flows to Target Flow Rate

25 yr: Uncontrolled Post-Development Flow:

Q_{post}= 829.96 L/s 25 yr: Target Flow Rate: Qtarget = 476.64 L/s

Qiuigei -	470.04	L/ 3
Qactual=	0.189	m ³ /s

	Storage Volur				
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	156.47	600	0.606	249.9	
15	131.98	900	0.511	318.0	1
20	114.29	1200	0.443	360.7	1
25	100.90	1500	0.391	387.3	Discharge
30	90.39	1800	0.350	402.8	
35	81.93	2100	0.317	410.6	11
40	74.95	2400	0.290	412.5	
45	69.10	2700	0.268	410.1	
50	64.13	3000	0.248	404.2	
55	59.84	3300	0.232	395.5	
60	56.11	3600	0.217	384.6	T _c T _d ^{Time}
Required Stor	age Volume:			412.5]

Peak Flow
$$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$$

Catchment 202 Modified Rational Calculations - 50-Year Storm Event

Control Criteria

50 yr: Control Post-Development Peak Flows to Target Flow Rate

50 yr: Uncontrolled Post-Development Flow:

 $Q_{post} = 934.56$ L/s 50 yr: Target Flow Rate:

Qtarget =	536.71	L/s
Qactual=	0.195	m³/s

	Storage Volu	me Determin	ation		
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	1
10	176.19	600	0.627	259.1	1
15	149.09	900	0.530	331.2	1
20	129.36	1200	0.460	376.8	1
25	114.33	1500	0.407	405.5	Discharge
30	102.50	1800	0.364	422.5	Discharge
35	92.93	2100	0.330	431.2	1
40	85.04	2400	0.302	433.7	
45	78.40	2700	0.279	431.6	
50	72.75	3000	0.259	425.7	
55	67.88	3300	0.241	417.0	
60	63.63	3600	0.226	405.8	T _c T _d ^{Time}
quired Store	age Volume:			433.7]

Catchment 202 Modified Rational Calculations - 100-Year Storm Event

Control Criteria

100 yr: Control Post-Development Peak Flows to Target Flow Rate

100 yr: Uncontrolled Post-Development Flow:

	Q _{post} =	1042.48	L/s
100 yr: Target Flow R	Rate:		
	Qtarget =	598.69	L/s
	Qactual=	0.211	m³/s

	Storage Volu				
T _d (min)	i (mm/hr)	T _d (sec)	Q_{Uncont} (m ³ /s)	S_d (m ³)	
10	196.54	600	0.699	292.7	1
15	166.89	900	0.593	375.9	
20	145.13	1200	0.516	429.4	
25	128.46	1500	0.457	463.7	Discharge
30	115.28	1800	0.410	484.7	Discharge
35	104.59	2100	0.372	496.2]
40	95.75	2400	0.340	500.7	
45	88.31	2700	0.314	499.7	
50	81.95	3000	0.291	494.5	
55	76.47	3300	0.272	485.9	
60	71.69	3600	0.255	474.6	T _c T _d ^{Time}
Required Store	ge Volume:	•	-	500.7	1

Peak Flow	Storage
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	$S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

	Project: 12563 & 12599 Hwy 50 & 2 Industri Project No: 1986-5779 Created By: JL Checked By: NS Date: 2021-01-14 Updated: 2021-02-12									
				ORIFICE	RATING CUR	VE - CATCI	HMENT 202			
Dian Ar Co	Parameters meter \emptyset (m) = 0 rea (A) (m ²) = 0 pefficient (C) = 0 Orifice Invert= 2 Centroid (h)= 2	0.0491 0.80 240.00					Orifice Tube Discharge, Q = CA x sqrt(2gh)			
A. Rating		Orifice Discharge	UC3 + UC4 Uncontrolled	Allowable	Pre-Development	Difference	Active Storage Volume			
A. Rating	g Table	-	Uncontrolled Discharge	Discharge						
A. Rating Ele	y Table evation (m	m ³ /s	Uncontrolled		Pre-Development m ³ /s	Difference m ³ /s				
A. Rating Ele	g Table evation (-	Uncontrolled Discharge	Discharge						
A. Rating	y Table evation (m	m ³ /s	Uncontrolled Discharge m ³ /s	Discharge m ³ /s	m³/s	m³/s		ORIFICE INVERT 2 yr		
A. Rating	y Table evation (m 40.00	<i>m³/s</i> 0.00	Uncontrolled Discharge m ³ /s	Discharge m ³ /s	m ³ /s		<i>m³</i> 0.00			
A. Rating	a Table evation <i>m</i> 40.00 40.44	m ³ /s 0.00 0.10	Uncontrolled Discharge m ³ /s - 0.01	Discharge m³/s - 0.10	m ³ /s - 0.27	<i>m³/s</i> - -0.16	m ³ 0.00 138.54	2 yr		
A. Rating Ele	m 40.00 40.44 40.64	<i>m³/s</i> 0.00 0.10 0.13	Uncontrolled Discharge m ³ /s - 0.01 0.01	Discharge 	m ³ /s - 0.27 0.34	<i>m³/s</i> -0.16 -0.21	m ³ 0.00 138.54 201.87	2 yr 5 yr		
A. Rating Ele	m 0 40.00 40.44 40.64 40.82	m ³ /s 0.00 0.10 0.13 0.14	Uncontrolled Discharge m ³ /s - 0.01 0.01 0.01	Discharge 	m ³ /s - 0.27 0.34 0.42	<i>m³/s</i> -0.16 -0.21 -0.26	m ³ 0.00 138.54 201.87 257.03	2 yr 5 yr 10 yr		
A. Rating	m () 40.00 () 40.64 () 40.82 ()	m³/s 0.00 0.10 0.13 0.14 0.19	Uncontrolled Discharge m ³ /s - 0.01 0.01 0.01 0.01	Discharge 	m ³ /s - 0.27 0.34 0.42 0.49	m ³ /s - -0.16 -0.21 -0.26 -0.29	m ³ 0.00 138.54 201.87 257.03 412.55	2 yr 5 yr 10 yr 25 yr		

Project: 12563 & 12599 Hwy 50 & 2 Industrial Road Project No.: 1986-5779 Created By: JL Checked By: NS Date: 2021-01-14 Updated: 2021-02-12

WATER BALANCE CALCULATIONS

Catchment	Land Use	Area (m²)	Required Abstraction (mm)	Initial Abstraction (mm)	Abstraction Deficit (mm)	Water Balance Deficit (m³)
Catchment 201	Impervious	11,430		1	4	45.7
Culchment 201	Pervious	1,270		5	0	0.0
Catabas ant 000	Impervious	19,080		1	4	76.3
Catchment 202	Pervious	2,120		5	0	0.0
1161	Impervious	0		1	4	0.0
UC1	Pervious 150	150		5	0	0.0
UC2	Impervious	0	5	1	4	0.0
UCZ	Pervious	150		5	0	0.0
1162	Impervious	0		1	4	0.0
UC3	Pervious	430		5	0	0.0
	Impervious	0		1	4	0.0
UC4	Pervious	500		5	0	0.0
	Site Total	35,130	175.7	-	-	122.0

Project: 12563 & 12599 Hwy 50 & 2 Industrial Road Project No.: 1986-5779 Created By: JL Checked By: NS Date: 2021-01-14 Updated: 2021-02-12

Modified Rational Calculations - Summary

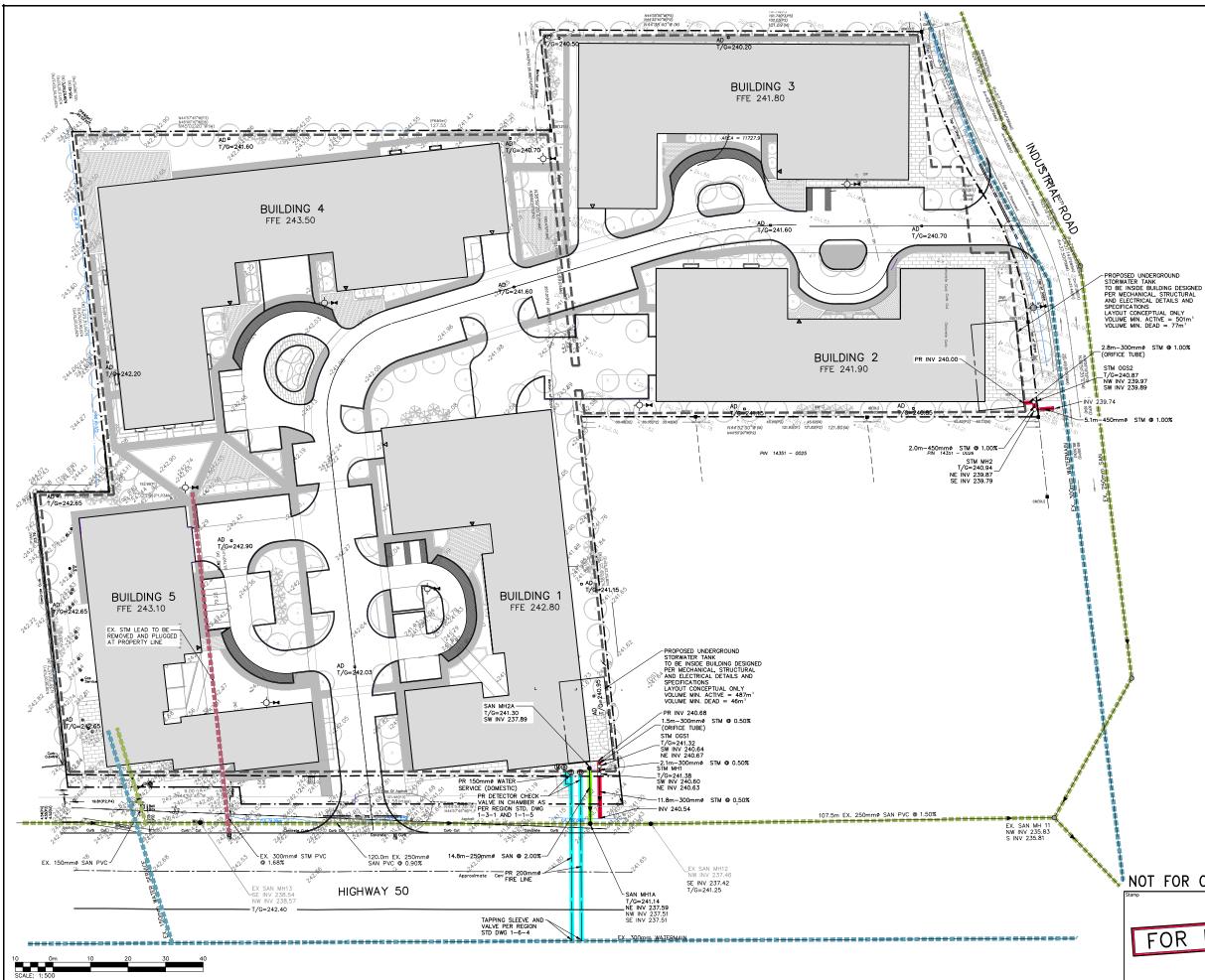
Туре	Area (ha)	Weighted Average C	Flows to Node
Pre-Development			
Catchment 101	1.28	0.50	Highway 50
Catchment 102	2.24	0.50	Industrial Road
Total	3.51	0.50	-
Post-Development			
Catchment 201	1.27	0.90	Highway 50
Catchment 202	2.12	0.90	Industrial Road
Catchment 203	0.05	0.25	Highway 50
Total	3.44	0.88	-

Pre- and Post-Development Peak Flows to Highway 50

		Peak Flow Rate			Total Release
		(L/s)			Rate
Storm Event	Pre-Development	Post-	Development		Kule
	Catchment 101	Catchment 201 Orifice Discharge	UC1	UC2	(L/s)
2 yr	151.9	102.6	0.89	0.89	104.4
5 yr	194.4	130.7	1.14	1.14	133.0
10 yr	237.8	151.4	1.40	1.40	154.2
25 yr	277.3	198.0	1.63	1.63	201.2
50 yr	312.3	203.6	1.84	1.84	207.2
100 yr	348.3	220.4	2.05	2.05	224.5

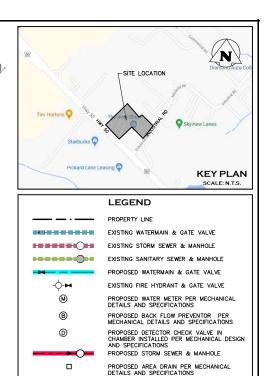
Pre- and Post-Development Peak Flows to Industrial Road

		Peak Flow Rate (L/s)						
Storm Event	Pre-Development	Post-	Rate					
	Catchment 102	Catchment 202 Orifice Discharge						
2 yr	266.65	97.88	2.56	2.98	103.4			
5 yr	341.19	125.26	3.28	3.81	132.3			
10 yr	417.35	144.95	4.01	4.66	153.6			
25 yr	486.75	189.77	4.68	5.44	199.9			
50 yr	548.10	195.08	5.27	6.12	206.5			
100 yr	611.39	210.98	5.87	6.83	223.7			


Storage for Drainage to Highway 50 (Catchment 201)

Storm Event	Storage Required	Maximum Storage Required	Water Balance Retention Required	Total Storage Required	Total Storage Provided (m ³)	
	(m ³)	(m ³)	(m ³)	(m ³)		
2 yr	133.0					
5 yr	194.0	1				
10 yr	248.2	486.6	45.7	532.3	534	
25 yr	399.5	400.0	43./	332.3	554	
50 yr	420.4	1				
100 yr	486.6	1				

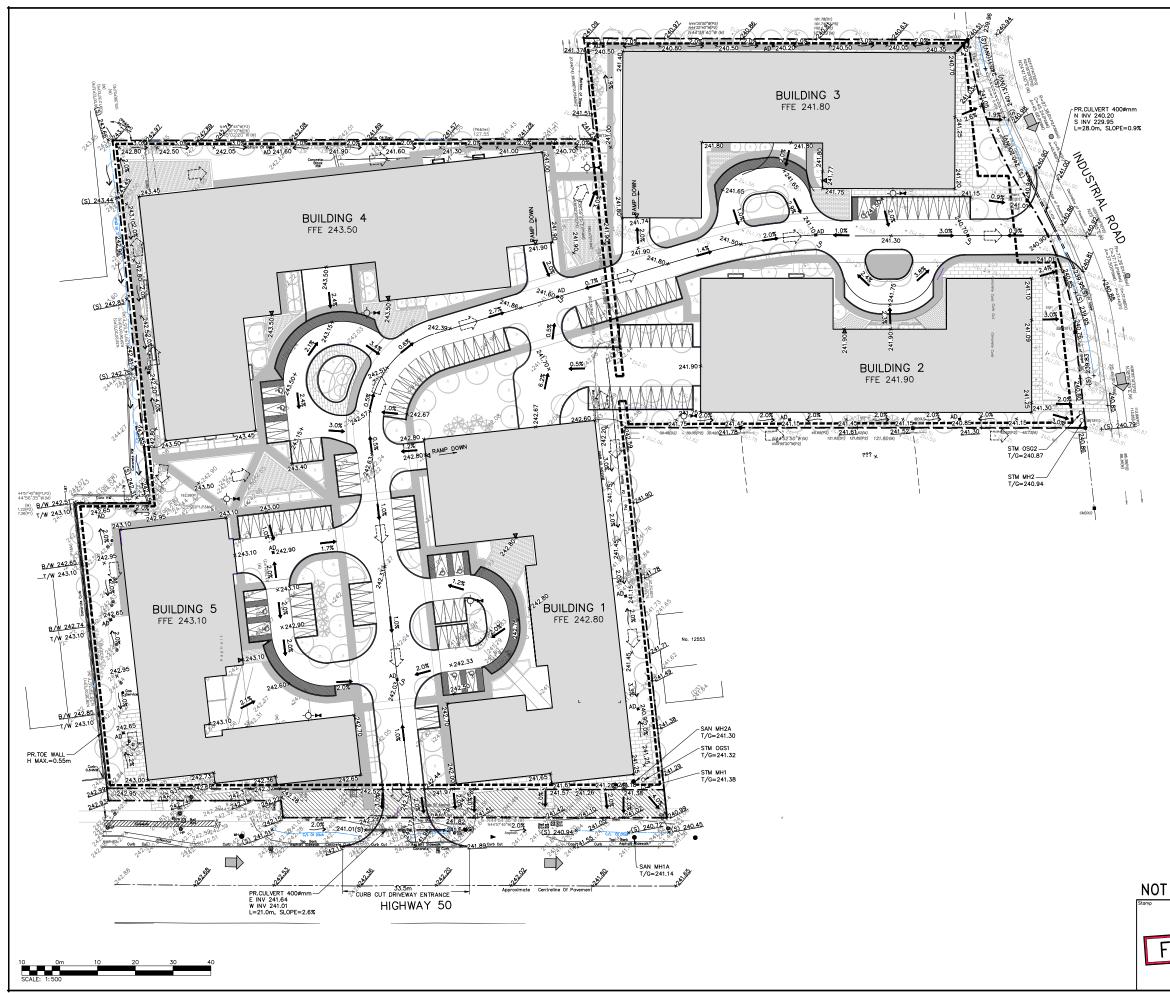
Storage for Drainage to Industrial Road (Catchment 202)


Storm Event	Storage Required	Maximum Storage Required	Water Balance Retention Required	Total Storage Required	Total Storage Provided	
	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)	
2 yr	138.5					
5 yr	201.9	-		577.0	584	
10 yr	257.0	500.7	7/ 0			
25 yr	412.5	500.7	76.3			
50 yr	433.7	-				
100 yr	500.7	1				

FIGURES

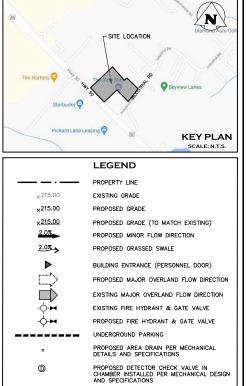
1/1900/1986 - 12599 Hwy 50 Inc/5779 - 12563 & 12599 Hwy 50 & 2 Industrial Rd/CAD/Civil/_Sheets/5779_FIG1.dwg, 2021-02-11 9:39:27 AM, DWG To PDF.pc3

	0	ISSUED FOR SUBMISSION	2021/FEB/12				
	No.	ISSUE / REVISION	YYYY/MMM/DD				
	BENCHMARK: TOWN OF CALEDON BM. No.758057 ELEVATION - 251.929 m						
	BEA	RING NOTE: RING ARE ASTRONOMIC AND ARE REFERRED TO THE SOUTHERLY I NDARD CONDOMINIUM PLAN, No.876, HAVING A BEARING OF N44"5					
	SUR	VEY NOTES:					
	SUR	VEY COMPLETED BY COMPANY ERTL SURVEYORS (2020) JECT No.: 20036					
	DIST BY	ANCES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONV DIVIDING BY 0.3048.	ERTED TO FEET				
		PLAN NOTES:					
	DRA	GN ELEMENTS ARE BASED ON SITE PLAN BY SRN ARCHITECTS WING No.: A110, (2021/FEBRUARY/04) JECT No.: S20023					
	THIS	WING NOTES: DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSO REPRODUCTION OF ANY PART OF IT WITHOUT PRIOR WRITTEN CO CE IS STRICTLY PROHIBITED.	OCIATES INC. AND NSENT OF THIS				
	THE REP THIS	CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATU ORT ANY DISCREPANCIES OR OMISSIONS TO THIS OFFICE PRIOR TO DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WI IS AND DOCUMENTS APPLICABLE TO THIS PROJECT DO NOT SCA	CONSTRUCTION.				
	ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.						
	Project 12563 & 12599 Hwy 50						
	& 2 INDUSTRIAL RÖAD						
	TOWN OF CALEDON						
	Drawin	g					
FOR CONSTRUCTION		PRELIMINARY SERVICING PL	.AN				
Stamp							
			iO 1				
OR REVIEW		CONSULTING ENGINEERS	3392 T				
	Drawn	D.B. Design N.S. Project No. 1986	6-5779				
	Check	N.S. Check A.S. Scale 1:500 Dwg.	FIG_1				
•		ii					



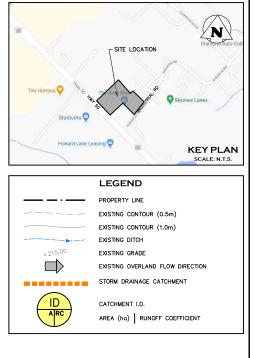
PROPOSED SANITARY SEWER & MANHOLE

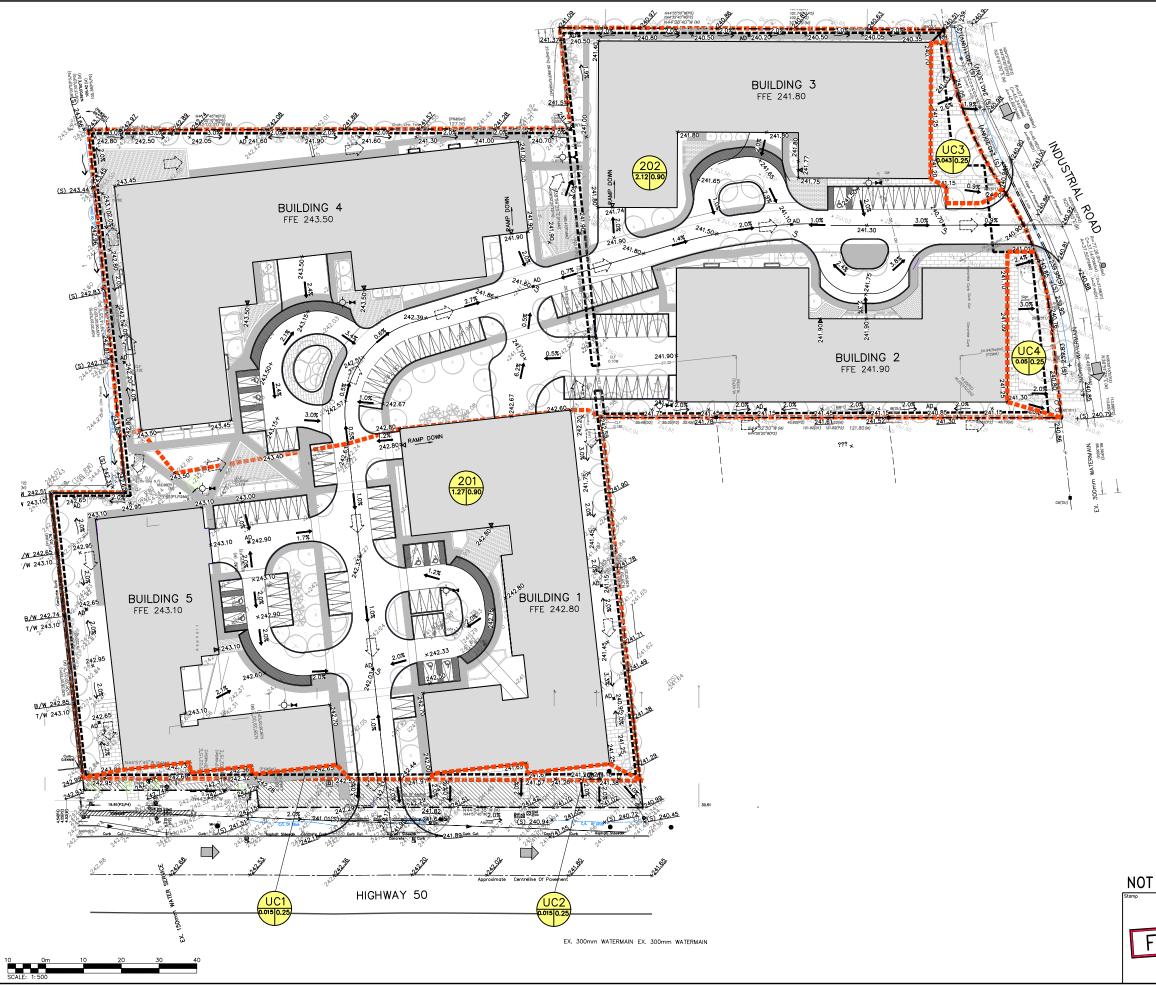
0

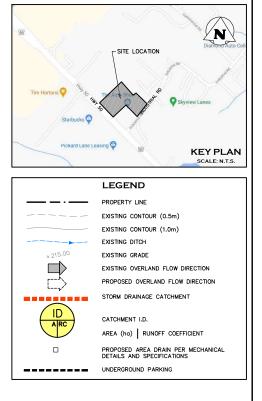

ALL STORM SEWER COMPLETE WITH INSULATION

NOTE:

^{1/1900/1986 - 12599} Hwy 50 Inc/5779 - 12563 & 12599 Hwy 50 & 2 Industrial Rd/CAD/Civil/_Sheets/5779_FIG2_4.dwg, 2021-02-11 9:48:49 AM, DWG To PDF.pc3


		_						
		0	ISSUED FOR					2021/FEB/12
		No.	ISSUE / REVI	SION				YYYY/MMM/DD
		том	ICHMARK: IN OF CALEDON VATION - 251.9	BM. No. 758057				
			RING NOTE:	929 m				
		BE A STA	RING ARE ASTRONDARD CONDOMI	NOMIC AND ARI	E REFERRE 876, HAVIN	D TO THE SO	UTHERLY L	IMIT OF PEEL
		SUF	VEY NOTES:					
		PRC	VEY COMPLETED JECT No.: 2003	6				
0		DIS' BY	DISTANCES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.					
			SITE PLAN NOTES: DESIGN ELEMENTS ARE BASED ON SITE PLAN BY SRN ARCHITECTS					
		DRA	DRAWING NO: A110, (2021/FEBRUARY/04) PROJECT No: S20023					
		ТНК	MING NOTES:	E EXCLUSIVE P	ROPERTY O	F C.F. CROZIE	R & ASSO	CIATES INC. AND
			REPRODUCTION					
		THIS	DRAWING IS TO	BE READ AND	UNDERSTO	OD IN CONJU	NCTION WI	MS ON SITE AND CONSTRUCTION. TH ALL OTHER
		PLA	NS AND DOCUME EXISTING UNDER ITRACTOR PRIOR	INTS APPLICABL	E TO THIS ES TO BE	PROJECT. DO	NOT SCA	LE THIS DRAWING.
		Projec	" 1'	2563 &	: 125	99 Hw	v 50)
		1	ć	& 2 INE	DUST	RIAL R	ÓAD	
				TOWN	OF	CALED	ON	
		Drawin	ng					
F FOR C	ONSTRUCTION		PRELIN	MINARY	SITE	GRAD	ING	PLAN
	Stamp	-	-					
				CDA7	71 C I		1 Yonge Suite 3	
				GRU/		TOR		M5B 1M4
FOR	REVIEW			LUNDULIING	CUAINE	ekð w	WW.CFCR	OZIER.CA
		Drawn	D.B.	Design	N.S.	oject No.	1986	6–5779
		Check	N.S.	Check	A.S.	ale 1:500	Dwg.	FIG_2




k/1900/1986 - 12599 Hwy 50 Inc/5779 - 12563 & 12599 Hwy 50 & 2 Industrial Rd/CAD/Civit/Sheets/5779_FIG2_4.dwg, 2021-02-11 9:47:37 AM, DWG To PDF.pc3

	ISSUED FOR SUBMISSION	2021/FEB/12
	No. ISSUE / REVISION BENCHMARK: TOWN OF CALEDON BM. No.758057 ELEVATION - 251.929 m BEARING NOTE: BEARING ARE ASTRONOMIC AND ARE REFERRED TO THE SOUTHERLY L BEARING ARE ASTRONOMIC AND ARE REFERRED TO THE SOUTHERLY L	YYYY/MMM/DD IMIT OF PEEL 7'45"W.
	SURVEY NOTES; SURVEY COMPLETED BY COMPANY ERTL SURVEYORS (2020) PROJECT No.: 20036 DISTANCES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONV BY DIVIDING BY 0.3048. SITE PLAN NOTES; DESIGN ELEMENTS ARE BASED ON SITE PLAN BY SRN ARCHITECTS	erted to feet
	DRAWING No.: A110. (2021/FEBRUARY/04) PROJECT No.: S20023 DRAWING NOTES: THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZER & ASSS THE REPROLICION OF ANY PART OF IT WITHOUT PRIOR WRITTEN CON OFFICE IS STRUCTLY PROHBITED. THE CONTRACTOR SHALL VERFY ALL DWINSIONS, LEVELS, AND DATU REPORT ANY DISCREPANCIES OR OMISSIONS TO THIS OFFICE PRIOR TO THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WI PLANS AND DOLIMENTS APPLICABLE TO THIS PROJECT DO NOT SCAL ALL EXISTING UNDERGROUND UTLITIES TO BE VERIFIED IN THE FIELD E CONTRACTOR PRIOR TO CONSTRUCTION.	NSENT OF THIS MS ON SITE AND O CONSTRUCTION. TH ALL OTHER LE THIS DRAWING.
	Project 12563 & 12599 Hwy 50 & 2 INDUSTRIAL ROAD TOWN OF CALEDON Drowing	
	PRE-DEVELOPMENT DRAINAGE	
OR REVIEW	CONSULTING ENGINEERS Dram D.B. Design N.S. Project No. 1986	01 M5B 1M4 3392 T DZIER.CA
	Check N.S. Check A.S. Scole 1:500 Pep	FIG_ 3

				0	ISSUED FOR S	SUBMISSION					2021/FEE	3/12
				No.	ISSUE / REVI	SION					YYYY/MM	<i>.</i>
				TOW	ICHMARK: IN OF CALEDON I VATION - 251.9	BM No 758057					1	
					RING NOTE;							
				STA	RING ARE ASTRO	NUMIC AND AR	876, HA	WING A	BEARING	OF N44	Limit of Peei 57'45"W.	-
					EVEY NOTES:							
				PRC	VEY COMPLETED JECT No.: 2003	5						
				BY	ANCES SHOWN O)48.	REINI	IETRES	AND CAN	BE CON	VERTED TO F	EET
				DES	E PLAN NOTES: IGN ELEMENTS A WING No.: A110, JECT No.: S2002	RE BASED ON S	SITE PLA ARY/04	N BY S	RN ARCHI	TECTS		
				ТНИ	WING NOTES: DRAWING IS TH REPRODUCTION ICE IS STRICTLY	E EXCLUSIVE PI OF ANY PART PROHIBITED.	ROPERTI DF IT W	OF C.I	F. CROZIER PRIOR WRI	& ASSI	OCIATES INC. INSENT OF TH	AND IIS
				THE REP THIS PLA	CONTRACTOR SI ORT ANY DISCRE DRAWING IS TO NS AND DOCUME EXISTING UNDER	HALL VERIFY AL PANCIES OR ON BE READ AND NTS APPLICABL	L DIMEN IISSIONS UNDERS E TO TH	ISIONS, TO TH STOOD I IIS PRO	LEVELS, A IS OFFICE N CONJUNI JECT. DO I	ND DATU PRIOR TO CTION WI NOT SCA	IMS ON SITE O CONSTRUC TH ALL OTHE LLE THIS DRA	AND TION. IR
				CON	TRACTOR PRIOR	TO CONSTRUCT	ION.	DE VERI				
				Projec	12	2563 &)	
					2	& 2 INE TOWN						
				Drawin	ıg		01	0/1				
FOR	со	NSTR	UCTION	6	POST-D	EVELOP	MEN	NT [IAG	E PLA	N
		Stamp			-							
				1		rdn7	7 I C	D		Yonge Suite 3	STREET 301	
OR	R	EVI	EW			UILU/	ENĜIN	EER\$	Toro 4	nto, ON 16-477-	N M5B 1M4 3392 T ROZIER.CA	
-				Drawn	D.B.	Design	N.S.	Project I	^{∾.} 1	986	6-57	79
				Check	N.S.	Check	A.S.	Scale	1:500	Dwg.	FIG_	4

