

Transportation Impact Study and Haul Route Assessment

# Caledon Pit/Quarry

First Submission: December 2022

Second Submission: July 2023

March 2025 Revision | Project # 10042 CBM Aggregates, a division of St. Marys Cement Inc. (Canada)





# **EXECUTIVE SUMMARY**

T.Y. Lin International Canada Inc. (TYLin) was retained by CBM Aggregates (CBM), a division of St. Marys Cement Inc. (Canada) to complete a Transportation Impact Study (TIS) and Haul Route Assessment for the proposed CBM Caledon Pit / Quarry. This assessment concluded the following:

- Updated traffic volume counts surveyed June 2023 are deemed acceptable, ware adopted as baseline traffic conditions for traffic capacity and queueing analyses. These new traffic counts required revisions to the December 2022 TIS included herein such as; baseline and future traffic volumes, calibrated signal timing, updated traffic analysis, and access design.
- During the a.m. peak hour, a total of 30 new passenger car trips were estimated consisting of 15 inbound and outbound trips. During the p.m. peak hour, a total of 60 new car trips would be generated consisting of 25 inbound and 35 outbound trips. As employees and contractors are assumed to be entering and exiting the site outside of the adjacent road peak hours on Saturdays, no passenger car trips would be generated during the Saturday peak hour since staff is not expected to arrive or depart during the peak hours.
- During the a.m. peak hour, a total of 75 new truck trips would be generated consisting of 30 inbound and 45 outbound trips. During each of the p.m. and Saturday peak hours, a total of 60 new truck trips would be generated consisting of 30 inbound and 30 outbound trips.
- The proposed truck distribution includes 95% of truck traffic heading east on Charleston Sideroad towards Hurontario Street (with 90% travelling south and 5% travelling north on Hurontario Street) and the remaining 5% truck traffic heading west on Charleston Sideroad.
- A haul route assessment was undertaken to determine the location of the new future site access for the Caledon Pit / Quarry and includes several site access considerations including existing haul route restrictions, impact to existing residents, access spacing requirements in accordance with Region of Peel Road Characterization Study (RCS) and TAC guidelines, physical constraints, and safety considerations.
- It was determined that the preferred location of the proposed site access is along Charleston Sideroad (Regional Road 24) between Mississauga Road and Main Street (Regional Road 136) / Cataract Road. TYLin recommends the site access be located approximately 530 metres east of Mississauga Road and 880 metres west of Regional Road 136 measured curb extension-to-curb extension.
- Horizontal and vertical sightline assessments were conducted in the field. Based on a 100 km/h design speed, the proposed Charleston Sideroad access location satisfies

Transportation Association of Canada combination truck stopping sight distance and intersection sight distance requirements.

- The requirement for a traffic signal was not explicitly warranted at the proposed Charleston Sideroad site access under future total conditions based on a traffic volume. However, signalization of the access is recommended to improve the operation of the intersection by providing suitable gaps for trucks to enter and exit the site and accelerate safely without posing risk to other vehicles using Charleston Sideroad. It is noted that if the Region desires a signalized site access, the installation of the signal can be implemented at the cost of the client. Additionally, Charleston Sideroad is classified as rural/suburban road and satisfies the Transportation Association of Canada Geometric Design Guide for Canadian Roads minimum 400-metre full movement intersection spacing design criteria, preserving the arterial function of Charleston Sideroad, measured from curb extension to curb extension.
- A dedicated eastbound left-turn and westbound right-turn lane is proposed at the site access using requirements from the Region's RCS as well as the Transportation Association of Canada Geometric Design Guide for Canadian Road (TAC Manual).
- Under baseline conditions, all study intersections operate with reserve capacity and low delays with the exception of long delays for the eastbound through and westbound through movements in the PM and Saturday peak hours, though overall operations are still considered acceptable.
- This traffic impact assessment analyzed one future horizon year for the future conditions of the pit / quarry. As a result, the analyses adopted future background and total traffic conditions at a 2037 planning horizon year.
- During future background conditions, with the addition of background corridor growth, all intersections are expected to operate well and within capacity. However, southbound and northbound movements at Hurontario Street and Charleston Sideroad are expected to be at critical capacity but still with acceptable delay and with reserve capacity available. Long delays are again noted for the eastbound and westbound movements. As a result, TYLin recommends that the Region considers future monitoring in order to determine if adjustments to the signal timing plan and intersection operation parameters (e.g. cycle length adjustments, split optimizations) are required to accommodate an increase in background traffic, as needed.
- Under future total conditions, overall all intersections operate well with reserve capacity and acceptable delays with the addition of projected site traffic. The northbound, and southbound movements at the Hurontario Street and Charleston Sideroad intersection continue to operate with critical capacity but with acceptable delay and with reserve



capacity available . It was observed the addition of site traffic does not materially impact the operation of the intersection. The remaining study intersections, including the proposed site access, are expected to operate with reserve capacity and relatively low delays.

- Queueing analysis for all intersections projected that the average queues can be accommodated across all horizons within the effective storage. With the exception of Hurontario Street and Charleston Sideroad, the queueing analysis shows that the 95<sup>th</sup> percentile queues can be accommodated by the available storage. However, at Hurontario Street and Charleston Sideroad, it is observed under baseline and future background conditions that 95<sup>th</sup> percentile queues exceed the available storage length for multiple movements and is expected to continue under future total conditions. As a result, traffic analysis shows that the addition of site traffic would not contribute materially to the conditions at this intersection.
- It is concluded that the adjacent Charleston Sideroad study intersections at Main Street and Mississauga Road can accommodate the proposed Caledon Pit / Quarry development with significant reserve capacity. Under baseline and future traffic conditions the Hurontario Street and Charleston Sideroad intersection experiences acceptable though near capacity operations for several movements.

Overall based on this assessment it is concluded that:

- The proposed haul route is an existing and identified haul route in the Town of Caledon Official Plan;
- With the implementation of the recommendations, the proposed truck traffic from the CBM Pit / Quarry will not have unacceptable impacts on the safe and efficient use of the road network; and
- From an overall transportation perspective, the proximity of the site to market will result in minimizing the length and number of vehicle trips required to transport an essential raw material needed for the construction and maintenance of communities.

The results of the assessment provide the basis for the following technical recommendation to be included on the Aggregate Resources Act Site Plan for the proposed Caledon Pit / Quarry:

- Prior to shipping the licensee shall enter into an agreement with the Region of Peel for the construction of the: a) entrance / exit, b) Charleston Sideroad improvements,
- Prior to below water operations commencing in the Main Area and prior to operations commencing in the South Area, the licensee shall enter into an agreement with the Region of Peel for a crossing underneath Main Street and Charleston Sideroad, respectively.

# **TABLE OF CONTENTS**

| EX | ECUTI  | 'E SUMMARYII                                                         |
|----|--------|----------------------------------------------------------------------|
| 1  | INTRO  | DDUCTION                                                             |
| 2  | SITE C | HARACTERISTICS                                                       |
|    | 2.1    | Study Environs                                                       |
|    | 2.2    | Study Area6                                                          |
|    | 2.3    | Pit / Quarry Statistics                                              |
|    | 2.4    | Proposed Routing Plan and Haul Route Roadways7                       |
| 3  | BASEL  | INE TRAFFIC CONDITIONS                                               |
|    | 3.1    | Road Network                                                         |
|    | 3.2    | Baseline 2023 Traffic Volumes                                        |
| 4  | SITE A | CCESS CONSIDERATIONS                                                 |
|    | 4.1    | Haul Route Restrictions 11                                           |
|    | 4.2    | Access Spacing Requirements13                                        |
|    | 4.3    | Traffic Signal Infrastructure and Existing Intersection Improvements |
|    | 4.4    | Horizontal and Vertical Sightlines15                                 |
|    | 4.5    | Safety and Route Considerations16                                    |
|    | 4.6    | Preferred Future Site Access Location17                              |
| 5  | FUTUI  | RE BACKGROUND CONDITIONS                                             |
|    | 5.1    | Study Horizon Years                                                  |
|    | 5.2    | Study Area Road Network Improvements18                               |
|    | 5.3    | Background Developments 18                                           |
|    | 5.4    | Background Corridor Growth18                                         |
|    | 5.5    | Future Background Traffic Volumes19                                  |
| 6  | SITE G | ENERATED TRAFFIC                                                     |
|    | 6.1    | Site Trip Generation                                                 |
|    |        | 6.1.1 Passenger Car Peak Hour Trips21                                |
|    |        | 6.1.2 Truck Peak Hour Trips                                          |
|    |        | 6.1.3 Passenger Car Equivalent Factors23                             |
|    | 6.2    | Site Trip Distribution and Assignment25                              |
|    | 6.3    | Existing Access to 1420 Charleston Sideroad25                        |
| 7  | FUTUI  | RE TOTAL TRAFFIC CONDITIONS                                          |



| 8  | SITE A | CCESS WARRANT ANALYSIS                                         | 32 |
|----|--------|----------------------------------------------------------------|----|
|    | 8.1    | Signal Warrant                                                 | 32 |
|    | 8.2    | Left-Turn Warrant Analysis                                     | 32 |
|    | 8.3    | Auxiliary Right-Turn Lane                                      | 33 |
| 9  | PROP   | DSED SITE ACCESS CONCEPTUAL DESIGN                             | 34 |
|    | 9.1    | Left-Turn and Right-Turn Auxiliary Lane Requirements           | 34 |
|    | 9.2    | Access Spacing and Snow Storage Facility Access Considerations | 35 |
|    | 9.3    | Left-Turn Lane Design and Curb Radii                           | 36 |
| 10 | САРАС  | CITY ANALYSIS                                                  | 38 |
|    | 10.1   | Baseline 2023 Capacity Analysis                                | 38 |
|    | 10.2   | Future Background 2037 Capacity Analysis                       | 39 |
|    | 10.3   | Future Total 2037 Capacity Analysis                            | 41 |
| 11 | QUEU   | EING ANALYSIS                                                  | 44 |
| 12 | COLLIS | SION HISTORY REVIEW                                            | 48 |
|    | 12.1   | Background                                                     | 48 |
|    | 12.2   | Site Access                                                    | 51 |
|    | 12.3   | Collision Data                                                 | 51 |
|    | 12.4   | Collision Data Analysis                                        | 52 |
| 13 | CONC   | LUSIONS AND RECOMMENDATIONS                                    | 61 |

# **APPENDICES**

- APPENDIX A PRE-CONSULTATION CORRESPONDENCE
- APPENDIX B EXISTING TRAFFIC DATA
- APPENDIX C ACCESS SPACING EXCERPTS FROM TAC CHAPTER 9 AND PEEL RCS
- APPENDIX D SIGHTLINE ANALYSIS
- APPENDIX E SITE VISIT AND SIGHTLINE DETAILS
- APPENDIX F TRANSPORTATION TOMORROW SURVEY (TTS) QUERIES
- APPENDIX G SIGNAL WARRANT RESULTS
- APPENDIX H LEFT-TURN WARRANT RESULTS
- APPENDIX I TAC CHAPTER 9 EXCERPTS AND PEEL REGION STANDARD DRAWINGS



APPENDIX J TRUCK SWEPT PATH ANALYSIS AT FUTURE SITE ACCESS
APPENDIX K SYNCHRO CAPACITY ANALYSIS REPORTS
APPENDIX L SIMTRAFFIC QUEUEING ANALYSIS REPORTS
APPENDIX M COLLISION DATA
APPENDIX N TRANSPORTATION STUDY SUBMISSION SUMMARY

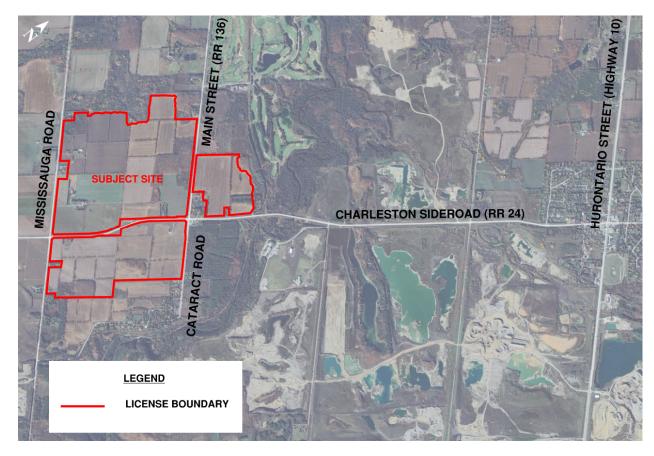
# **LIST OF FIGURES**

| Figure 1-1   | Proposed Caledon Pit / Quarry Location                            | 2  |
|--------------|-------------------------------------------------------------------|----|
| Figure 3-1   | Baseline 2023 Traffic Volumes                                     | 10 |
| Figure 4-1   | Site Access Restrictions                                          | 12 |
| Figure 4-2   | Existing Truck Restrictions                                       | 13 |
| Figure 4-3   | Approximate Location of SSD and ISD Measurements                  | 16 |
| Figure 5-1   | Future Background 2037 Traffic Volumes                            | 20 |
| Figure 6-1   | Caledon Pit / Quarry Site Generated Traffic Volumes (Total)       | 26 |
| Figure 6-2   | Caledon Pit / Quarry Site Generated Traffic Volumes (Cars)        | 27 |
| Figure 6-3   | Caledon Pit / Quarry Site Generated Traffic Volumes (Trucks)      | 28 |
| Figure 6-4   | 1420 Charleston Sideroad Site Traffic Volumes                     | 29 |
| Figure 7-1   | Future Total 2037 Traffic Volumes                                 | 31 |
| Figure 9-1   | Future Site Access Conceptual Design                              | 37 |
| Figure 12-1  | Proposed Pit / Quarry Location                                    | 49 |
| Figure 12-2  | Caledon Pit / Quarry Site Generated Traffic Volumes (Trucks)      | 50 |
| Figure 12-3  | Total Collisions Versus Dump Truck Collisions over 9-years        | 53 |
| Figure 12-4  | Dump Truck Collisions at Intersections by Collision Location      | 54 |
| Figure 12-5  | Dump Truck Collisions at Mid-Block Segments by Collision Location | 54 |
| Figure 12-6  | Total Collisions by Road Surface Conditions                       | 57 |
| Figure 12-7  | Total Collisions by Light Conditions                              | 58 |
| Figure 12-8  | Collision Driver Action                                           | 58 |
| Figure 12-9  | Total Collisions Versus Dump Truck Collisions by Time-of-Day      | 59 |
| Figure 12-10 | Dump Truck Collisions by Impact Location                          | 60 |

# **LIST OF TABLES**

cbm

VOTORANTIM cimentos


| Turning Movement Count Data Summary                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISD and SSD for Different Design Vehicles                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Passenger Car Peak Hour Trips                                          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Monthly Material Shipping Estimates                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Truck Peak Hour Trips                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Passenger Car Equivalent (PCE) Adjusted Vehicle Peak Hour Trips        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Passenger Site Trip Distribution                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Baseline 2023 Capacity Analysis Summary                                | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Future Background 2037 Capacity Analysis Summary                       | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Future Total 2037 Capacity Analysis Summary                            | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Queueing Analysis Summary - Baseline                                   | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Queueing Analysis Summary – Future Background (2037)                   | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Queueing Analysis Summary – Future Total (2037)                        | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Painted and Effective Storage Length of Exclusive Turn Lanes           | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Collision Frequency for Ontario, Caledon, and Subject Route            | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Summary of Total and (Truck) Collisions by Location and Collision Type | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                        | ISD and SSD for Different Design Vehicles<br>Passenger Car Peak Hour Trips<br>Monthly Material Shipping Estimates<br>Truck Peak Hour Trips<br>Passenger Car Equivalent (PCE) Adjusted Vehicle Peak Hour Trips<br>Passenger Site Trip Distribution<br>Passenger Site Trip Distribution<br>Baseline 2023 Capacity Analysis Summary<br>Future Background 2037 Capacity Analysis Summary<br>Future Total 2037 Capacity Analysis Summary<br>Queueing Analysis Summary - Baseline<br>Queueing Analysis Summary - Future Background (2037)<br>Queueing Analysis Summary – Future Total (2037)<br>Painted and Effective Storage Length of Exclusive Turn Lanes<br>Collision Frequency for Ontario, Caledon, and Subject Route |



# **1 INTRODUCTION**

CBM Aggregates (CBM), a division of St. Marys Cement Inc. (Canada) is applying to the Ministry of Natural Resources and Forestry (MNRF) for a Class A License (Pit and Above Water / Quarry Below Water) and to the Town of Caledon for an Official Plan Amendment and Zoning By-law Amendment to permit a mineral aggregate operation. T.Y. Lin International Canada Inc. (TYLin) has been retained by CBM to complete a Transportation Impact Study and Haul Route Assessment for the proposed CBM Caledon Pit / Quarry in accordance with the Terms of Reference found in **Appendix A**, Caledon Official Plan Sections 5.11.2.4.14 and 5.11.2.5, and the MNRF, Aggregate Resources Act Ontario Regulation 244/97.

CBM owns / controls approximately 323 hectares of land located at the northwest, northeast and southwest intersection of Regional Road 24 (Charleston Sideroad) and Regional Road 136 (Main Street). Of these lands, 261 hectares are proposed to be licensed under the Aggregate Resources Act and designated / zoned under the Planning Act to permit the proposed CBM Caledon Pit / Quarry. These lands are mapped as a Caledon High Potential Mineral Aggregate Resource Area (CHPMARA) in the Town of Caledon Official Plan and High Potential Mineral Aggregate Resource Area (HPMARA) in the Region of Peel Official Plan and are protected for their aggregate potential. The subject lands are generally bounded by Mississauga Road to the west, Main Street to the east, and Cataract to the east and south. The proposed pit / quarry location is shown in **Figure 1-1**.



#### Figure 1-1 Proposed Caledon Pit / Quarry Location

cbm

OTORANTIM

The remaining approximately 62 hectares of land owned / controlled by CBM are not subject to the application. These lands are referred to as "CBM Additional Lands" and these lands include approximately 36 hectares of land that is located adjacent to the minor urban centre of Cataract. As part of the application, CBM is proposing to create an upland forest and meadow grassland on these lands and is exploring the potential of conveying them permanently to a public authority for long term protection.

The lands proposed to be licensed under the Aggregate Resources Act are referred to as the "Subject Site" and are legally described as Part of Lots 15-18, Concession 4 WSCR and Part of Lot 16, Concession 3 WSCR (former Geographic Township of Caledon). The Subject Site is approximately 261 hectares and extraction is proposed on approximately 200 hectares. These lands are referred to as the "Extraction Area". The remaining approximate 61 hectares within the Subject Site and outside of the Extraction Area are referred to as the "Setback / Buffer Lands". The Setback / Buffer Lands are used to provide setbacks to surrounding land uses and natural heritage features and the majority of these lands include a 5-metre visual / acoustic berm and visual plantings.



The proposed Extraction Area includes approximately 78 million tonnes of a high-quality bedrock resource and approximately four million tonnes of a high-quality sand and gravel resource; the largest known available source of dolostone in the Greater Toronto and Hamilton Area (GTHA) Testing has confirmed that the mineral aggregate resource found on-site is suitable for the production of a wide range of construction products, including the use for high performance concrete. The bedrock resource provides some of the strongest and most durable aggregate material in Southern Ontario. The primary market area for the proposed CBM Caledon Pit / Quarry is the Greater Toronto Area, including the Town of Caledon and the Region of Peel. This site represents a close to market source of a high-quality mineral aggregate resource.

The proposed tonnage limit for the proposed CBM Caledon Pit / Quarry is 2.5 million tonnes per year and on average CBM anticipates shipping approximately 2.0 million tonnes per year. The proposed CBM Caledon Pit / Quarry is proposed to be operated in 7 phases. Phases 1, 2A, 3, 4, 5 are located to the northwest of the intersection of Regional Road 24 and 136. This area is referred to as the "Main Area". Phase 2B is located to the northeast of the intersection of Regional Road 24 and 136. This area is referred to as the "North Area". Phases 6 and 7 are located to the southwest of the intersection of Regional Road 24 and 136. This area is referred to the southwest of the intersection of Regional Road 24 and 136. This area is referred to as the "North Area". Phases 6 and 7 are located to the southwest of the intersection of Regional Road 24 and 136. This area is referred to as the "South Area".

Operations would commence in the Main Area and Phase 1 would include the permanent processing area (crushing, screening, and wash plant), aggregate recycling area and the entrance / exit for the quarry. Until such time as sufficient space is opened up to establish the permanent processing area, a temporary mobile crushing and processing plant is proposed to be used in Phase 1.

The entrance / exit for the CBM Caledon Pit / Quarry is proposed to be located onto Regional Road 24, approximately 160 west of the existing snow storage facility, 530 metres east of Mississauga Road, measured from curb extension-to-curb extension. The entrance / exit is proposed to be controlled by a new traffic light and the installation of auxiliary turn lanes and tapers on Regional Road 24 at CBM's expense. The primary haul route for the proposed CBM Caledon Pit / Quarry is trucks will travel eastward on Regional Road 24 and then southward on Highway 10. The proposed haul route is an existing aggregate haul route and is designated as an aggregate haul route in the Town of Caledon Official Plan.

Access to the North Area for aggregate extraction is anticipated approximately 10 years after the start of the operations in the Main Area. There will be no processing in the North Area and aggregate extracted from the North Area is proposed to be transported to the Main Area through a proposed tunnel underneath Regional Road 136 that would accommodate either a conveyor system or a truck crossing. Access to South Area is anticipated approximately 30 years after the

start of the operations in the Main Area. There will only be initial processing in the South Area and aggregate extracted from the South Area is proposed to be transported to the Main Area through a proposed tunnel underneath Regional Road 24 that would accommodate either a conveyor system or a truck crossing. Aside from the establishment of a 1-hectare stormwater settling pond on the easternmost portion of the North Area in the initial year of operation, the North and South areas will be maintained in their current state and agricultural uses until they are required for preparation for aggregate extraction.

The CBM Caledon Pit / Quarry is proposed to operate (extraction, processing, and drilling) 7:00 am to 7:00 pm Monday to Saturday, excluding statutory holidays and shipping is proposed from 6:00 am to 7:00 pm Monday to Saturday consistent with other mineral aggregate operations in Caledon. CBM is also proposing to permit limited shipping in the evening (7:00 pm to 6:00 am) to support public authority contracts that require the delivery of aggregates during these hours to complete public infrastructure projects. These activities will be limited to only highway trucks and shipping loaders and no other operations will be permitted during evening hours. Site preparation and rehabilitation is proposed to be permitted 7:00 am to 7:00 pm Monday to Friday.

The proposed CBM Caledon Pit / Quarry involves stripping topsoil and overburden from the subject site to create perimeter berms and any excess soil will be temporarily stored in the northern portion of the Main Area or used for progressive rehabilitation of the site. The proposed Extraction Area includes extracting both sand and gravel below the water table and the site will be dewatered to allow operations in a dry state. The proposed Extraction Area includes extracting sand and gravel resources (e.g., pit) at surface where it is located on site, and bedrock resources below the sand and gravel and/or overburden (e.g., quarry). The proposed quarry is proposed below the water table and the quarry will be dewatered to operate the quarry in a dry state. The site will be extracted in sequence of the proposed phases (Phase 1 to 7) and following extraction of Phase 7 the permanent processing plant in Phase 1 will be removed and this will be the final area to be extracted and rehabilitated. The phasing of the proposed mineral aggregate operation has been designed to reach final extraction limits and depths within each phase so progressive rehabilitation of the side slopes can be completed.

The proposed Aggregate Resources Act Site Plans includes all of the technical recommendations from this report to ensure that the site operates in accordance with applicable provincial standards and the applicable policy requirements of the Provincial Policy Statement, Places To Grow Plan, Greenbelt Plan, Region of Peel Official Plan and Town of Caledon Official Plan.

The objective of this study is to determine the traffic volumes anticipated to be generated by truck activity associated with the proposed quarry activity during the typical weekday a.m., p.m., and Saturday peak periods; to assess the impact of traffic on the adjacent road network; and as necessary, to recommend possible improvements to accommodate the projected site-related



traffic (as separate and distinct from traffic generated by background scenarios).

# **2 SITE CHARACTERISTICS**

# 2.1 Study Environs

CBM owns / controls approximately 323 hectares of land located at the northwest, northeast and southwest intersection of Regional Road 24 (Charleston Sideroad) and Regional Road 136 (Main Street). Of these lands, 261 hectares are proposed to be licensed under the Aggregate Resources Act and designated / zoned under the Planning Act to permit the proposed CBM Caledon Pit / Quarry. These lands are mapped as a Caledon High Potential Mineral Aggregate Resource Area (CHPMARA) in the Town of Caledon Official Plan and High Potential Mineral Aggregate Resource Area (HPMARA) in the Region of Peel Official Plan and are protected for their aggregate potential. The subject lands are generally bounded by Mississauga Road to the west, Main Street to the east, and Cataract to the east and south.

# 2.2 Study Area

The haul route analyses include the following intersections, as requested during pre-consultation with the review agencies:

- Hurontario Street (Highway 10) and Charleston Sideroad (Peel Regional Road 24)
- Charleston Sideroad (Peel Regional Road 24) and Main Street (Peel Regional Road 136)
- Charleston Sideroad (Peel Regional Road 24) and Mississauga Road
- Charleston Sideroad (Peel Regional Road 24) and Future Site Access

Further details regarding the proposed location of the future site access are found in **Section 4**.

# 2.3 Pit / Quarry Statistics

The proposed tonnage limit for the proposed CBM Caledon Pit / Quarry is 2.5 million tonnes per year and on average CBM anticipates shipping approximately 2.0 million tonnes per year with an average of truck aggregate capacity of approximately 30 tonnes. The CBM Caledon Pit / Quarry is proposed to operate (extraction, processing, and drilling) 7:00 am to 7:00 pm Monday to Saturday, excluding statutory holidays and shipping is proposed from 6:00 am to 7:00 pm Monday to Saturday consistent with other mineral aggregate operations in Caledon. CBM is also proposing to permit limited shipping in the evening (7:00 pm to 6:00 am) to support public authority contracts that require the delivery of aggregates during these hours to complete public infrastructure projects. These activities will be limited to only highway trucks and shipping loaders and no other operations will be permitted during evening hours.

CBM is expected to employ approximately 30 staff members during the day shift (5:00 a.m. to 5:00 p.m.) and 20 members during the night shift (5:00 p.m. to 5:00 a.m.), should a public authority project require a night shift. Additionally, approximately 20 contractors will be on site for non-haulage operations during the day shift should one be needed for public authority contracts, when the site is at full operations.

## 2.4 Proposed Routing Plan and Haul Route Roadways

In accordance with Caledon Official Plan Section 5.11.2.4.14, the following primary haul routes for trucks destined to/from Caledon Pit / Quarry are proposed: 95% of truck traffic is anticipated to head east on Charleston Sideroad towards Hurontario Street (with 90% travelling south and 5% travelling north on Hurontario Street) and the remaining 5% is proposed to head west on Charleston Sideroad.

# **3 BASELINE TRAFFIC CONDITIONS**

# 3.1 Road Network

**Hurontario Street (Highway 10)** is an existing north-south provincial highway with a rural fourlane cross-section under the jurisdiction of the MTO. Within the study area, Hurontario Street has a posted speed limit of 50 km/h north of Charleston Sideroad until Mistywood Drive / Chester Drive where it transitions to 60 km/h. The posted speed limit south of Charleston Sideroad is 50 km/h and increases to 80 km/h approximately one kilometre south of Charleston Sideroad.

**Charleston Sideroad (Regional Road 24)** is an existing east-west rural road with a two-lane cross-section under the jurisdiction of the Region of Peel. Within the study area, Charleston Sideroad has a posted speed limit of 80 km/h west of Willoughby Road and decreases to 50-60 km/h through Caledon Village.

**Main Street (Regional Road 136)** is an existing north-south rural road with a two-lane crosssection under the jurisdiction of the Region of Peel. Within the study area, Main Street has a posted speed limit of 80 km/h.

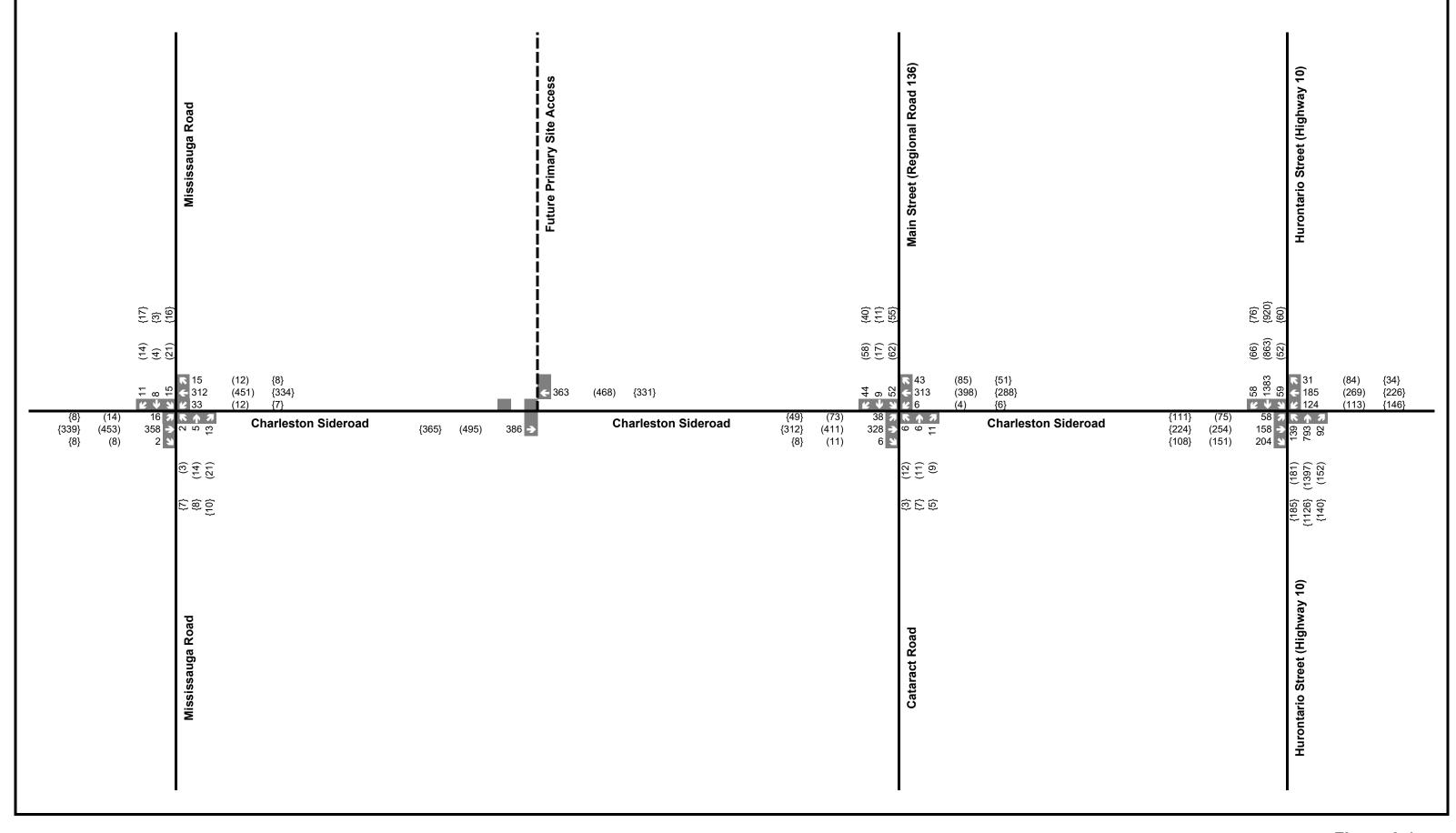
**Mississauga Road** is an existing north-south road with a rural two-lane cross-section under the jurisdiction of the Town of Caledon. Within the study area, Mississauga Road has a posted speed limit of 80 km/h north of Charleston Sideroad and 60 km/h south of Charleston Sideroad.

**Cataract Road** is an existing local road with a rural two-lane cross-section under the jurisdiction of the Town of Caledon. Cataract Road runs north-south from Charleston Sideroad (Peel Regional Road 24) and bends approximately 930 metres south of Charleston Sideroad and intersects as an east-west roadway with Mississauga Road. Within the study area, Cataract Road has a posted speed limit of 40 km/h.

## 3.2 Baseline 2023 Traffic Volumes

Turning movement counts (TMC) were obtained during 2020, 2021, 2022, and during 2023 with additional TMC data received for the intersection of Charleston Sideroad and Hurontario Street from MTO for the year of 2018. The table below summarizes the data collection dates and times. Existing traffic data is provided in **Appendix B**.




|                                                           |                                                                                                      | Date of Data Received                                                                                |                                                                      |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Intersection                                              | АМ                                                                                                   | РМ                                                                                                   | Saturday                                                             |
| Hurontario Street and<br>Charleston Sideroad              | May 16, 2018<br>November 5, 2020<br>July 8, 2021<br>April 21, 2022<br>June 22, 2023<br>June 23, 2023 | May 16, 2018<br>November 5, 2020<br>July 8, 2021<br>April 21, 2022<br>June 22, 2023<br>June 23, 2023 | November 7, 2020<br>July 10, 2021<br>April 23, 2022<br>June 24, 2023 |
| Charleston Sideroad and<br>Main Street / Cataract<br>Road | November 5, 2020<br>July 8, 2021<br>April 21, 2022<br>June 22, 2023<br>June 23, 2023                 | November 5, 2020<br>July 8, 2021<br>April 21, 2022<br>June 22, 2023<br>June 23, 2023                 | November 7, 2020<br>July 10, 2021<br>April 23, 2022<br>June 24, 2023 |
| Charleston Sideroad and<br>Mississauga Road               | November 5, 2020<br>July 8, 2021<br>April 21, 2022<br>June 22, 2023<br>June 23, 2023                 | November 5, 2020<br>July 8, 2021<br>April 21, 2022<br>June 22, 2023<br>June 23, 2023                 | November 7, 2020<br>July 10, 2021<br>April 23, 2022<br>June 24, 2023 |

#### Table 3-1 Turning Movement Count Data Summary

Under previous versions of this report, the TMC data was observed for all the collection years to determine the most conservative observed traffic volumes in the study network. At Charleston Sideroad & Hurontario Street, 2018 pre-COVID MTO traffic counts were adopted as baseline traffic volumes as they were the most conservative.

However, upon revision, it is generally understood that municipalities across southern Ontario are currently accepting new traffic counts without adjustment for COVID-related factors. Therefore, 2023 data were adopted for the revision and used without adjustment factors applied for COVID-related reductions.

A comparison of total intersection volumes showed that Thursday June 22, 2023 had a greater total volume of vehicles in both the AM and PM peak hours when compared to peak hour volumes on Friday June 23, 2023. Therefore, Thursday June 23 data was selected for the AM and PM peak hour traffic analysis in order to achieve a more conservative analysis. Additionally, the revised TIS adopted the 2023 Saturday mid-day peak TMC. **Figure 3-1** shows the baseline 2023 traffic volumes.



Legend

A.M. Peak Hour Traffic P.M. Peak Hour Traffic

xx (xx) {xx} Saturday Peak Hour Traffic

Figure 3-1 Existing 2023 Traffic Volumes

# **4 SITE ACCESS CONSIDERATIONS**

In order to satisfy Section 5.11.2.4.4 of the Caledon Official Plan, an evaluation of alternative haul routes has been identified and evaluated. As part of the haul route assessment, the potential locations that were considered for the future site access include:

- The segment on Charleston Sideroad between Mississauga Road and Main Street / Cataract Road;
- The segment on Main Street approximately 600 metres north of Charleston Sideroad and adjacent to the subject lands bounded by Main Street; and
- The segment of Mississauga Road north of Charleston Sideroad and south of existing residential dwellings (approximately 300 metres north of Charleston Sideroad).

A qualitative review was done based on several criteria in order to determine the preferred location for the site access as described below.

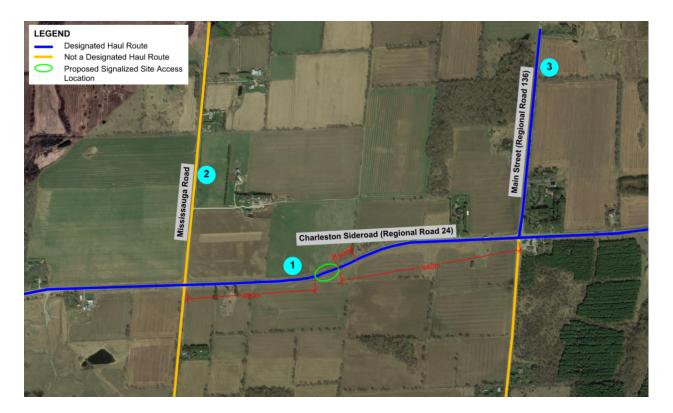
## 4.1 Haul Route Restrictions

One of the criteria for determining the ideal site access location includes a review of heavy vehicle restrictions along the study area roadways where a site access could be proposed. The following summarizes the findings:

- Charleston Sideroad: There are no heavy vehicle restrictions along Charleston Sideroad within the vicinity of the subject site and thus, this road is a viable option for a site access location.
- Mississauga Road: There are heavy vehicle restrictions on Mississauga Road from King Street to Bush Street, south of the subject site. Furthermore, municipal heavy restrictions (seasonal or all-year) are placed along Mississauga Road directly north and south of the subject lands. In order to propose a site access along Mississauga Road, road improvements may be required to accommodate heavy vehicle activity.
- Main Street: There are no heavy vehicle restrictions along Main Street within the study area.
- Cataract Road: There are heavy vehicle restrictions along Cataract Road within the vicinity of the site and thus, does not establish a feasible location for a site access.

Additionally, as per the Town of Caledon Official Plan (OP) (April 2018), haul routes for new aggregate operations are to be on High-capacity Arterial roads only. Both Charleston Sideroad and Main Street are identified as high-capacity arterial roads as per the Caledon OP Section 5.11.2.5.1 and Schedule J.

As Cataract Road and Mississauga Road have heavy vehicle restrictions, Charleston Sideroad and Main Street are considered to be preferred alternatives for the future site access location based on heavy vehicle restrictions criteria.


**Figure 4-1** shows the locations along study area road network where a site location is not recommended as per TAC and RCS site access guidelines.

# LECEND Incations along Study Roads, where a Site Access is not Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Recommended Integrating Study Roads, Recommended United Site Access is not Roads, Recommended Integrating Study Roads, Recommended United Site Access is not Roads, Recommended Integrating Study Roads, Recommended United Site Access is not Roads, Recommended Integrating Study Roads, Recommended United Site Access is not Roads, Recommended Integrating Study Roads, Recommended United Site Access is not Roads, Recommended Integrating Study Roads, Recommended

#### Figure 4-1 Site Access Restrictions

**Figure 4-2** illustrates the existing trucks restrictions and preferred location for the future site access. The revised access location satisfies TAC minimum intersection spacing and will ensure that storage and taper lengths of the proposed auxiliary turn lanes do not impact the existing accesses, specifically the Charleston Sideroad snow storage facility access.

#### Figure 4-2 Existing Truck Restrictions



## **4.2 Access Spacing Requirements**

Access spacing requirements were determined using Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDG) Chapter 9 – Intersections Guidelines and Peel Region Road Characterization Study (RCS). Excerpts from TAC GDG Chapter 9 and Peel Region RCS are found in **Appendix C**.

In accordance with Peel Region RCS guidelines, full-moves intersections along rural roads such as Charleston Sideroad and Main Street are required to be spaced a minimum of 600 metres measured from curb extension to curb extension. Along the segment of Charleston Sideroad between Mississauga Road and Main Street / Cataract Road, there are two-600-metre segments where a site access cannot be located which provides a smaller potential range where a site access can be placed. Main Street has only one-600-metre restricted segment within the vicinity of the study area, and Mississauga Road is a local road which follows TAC GDG suggested intersection



spacing of 400 metres, thus permitting a larger range of acceptable access spacing along Mississauga Road where the quarry access can be located.

Given the criteria mentioned, a midblock section along Charleston Sideroad is the ideal location for the proposed midblock entrance to the quarry. This segment is situated on a horizontal curve along Charleston Sideroad, where there is an existing snow storage facility. This facility operates with a one-way counter-clockwise circulation and has distinct inbound and outbound driveways.

Using the intersection spacing from the Road Characterization Study to determine the allowable location for the proposed entrance has placed it near the snow storage facility. This proximity means the proposed driveway design could affect the snow storage facility, especially if auxiliary lanes and tapers overlap the existing driveways. Additionally, simultaneous use of the snow storage facility and the proposed site driveway could lead to conflicting traffic movements and interactions between vehicles, which must be considered when identifying the preferred quarry entrance location.

While the Road Characterization Study outlines ideal intersection spacing, the proposed quarry entrance assessment considered other factors, such as sightlines (Section 4.4) and entrance design (Section 9), considering the road's horizontal deflection and the presence of a snow storage facility and truck turnaround.

These factors indicate that a location outside the midblock segment is more suitable based on a comparison of the trade-offs between adhering to intersection spacing guidelines and avoiding design and operational conflicts with nearby driveways.

TAC GDG Chapter 9 – Intersections, recommends a minimum 400 metre intersection spacing along arterial rural/suburban roadways. This allows sufficient space required for left-turn lane facilities and potential acceleration/deceleration distances required at adjacent intersections. Furthermore, satisfying the minimum intersection spacing will ensure that storage and taper lengths of the potential left-turn lanes do not impact the existing accesses, specifically the Charleston Sideroad Peel Region snow storage access.

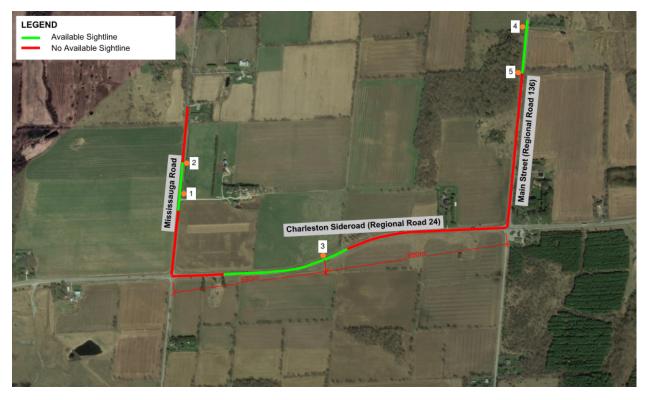
Based on the above criteria, it is recommended the proposed site access be located approximately 530 metres east of Mississauga Road, 160 metres west of the snow storage facility access.

# 4.3 Traffic Signal Infrastructure and Existing Intersection Improvements

Left-turn infrastructure is present at the intersection of Charleston Sideroad and Main Street, allowing for easier left turns to and from the north. Should auxiliary lanes be recommended as a mitigation measure to service the quarry, external road improvements would be required on Charleston Sideroad at Mississauga Road or the quarry access. Furthermore, currently there are traffic signals located only at the Charleston Sideroad and Main Street intersection. If signalization is required at the potential access along Charleston Sideroad, or Mississauga Road intersection, road improvements would be necessary to accommodate signal infrastructure, at CBM's expense.

# 4.4 Horizontal and Vertical Sightlines

A site visit was conducted on November 16, 2021, by TYLin Staff to assess vertical and horizontal sightlines along the study area road network based on intersection sight distance (ISD) and stopping sight distance (SSD) in accordance with TAC guidelines to confirm practicality for site access locations. **Table 4-1** summarizes the ISD and SSD from Equation 9.9.1, Table 9.9.4 and 9.9.6 from the TAC guidelines that were referred to during the site investigation.


| Demonster                  | Design                          | ı Speed     |
|----------------------------|---------------------------------|-------------|
| Parameter                  | 90 km/hour                      | 100 km/hour |
|                            | Left-Turn ISD (m)               |             |
| Passenger Car              | 190                             | 210         |
| Single-Unit Truck          | 240                             | 265         |
| Combination Truck          | 290                             | 320         |
|                            | Right-Turn ISD (m)              |             |
| Passenger Car              | 165                             | 185         |
| Single-Unit Truck          | 215                             | 240         |
| Combination Truck          | 265                             | 295         |
|                            | SSD Approaching Intersection (m | )           |
| Passenger Car <sup>1</sup> | 160                             | 185         |

#### Table 4-1 ISD and SSD for Different Design Vehicles

<sup>1</sup> - TAC guidelines only provide SSD for passenger vehicles however Section 2.5.3.1 of TAC states that SSD requirements for trucks are generally longer due to additional distance required to stop as well as due to cabin position. The sight distance above assumes a minimal vertical deflection.

For a more conservative sightline analysis, the 100 km/h design speed was selected. **Figure 4-3** shows the approximate locations where measurements were taken for the sightline review. **Appendix D** shows the sightline analysis drawings conducted at the site access.





#### Figure 4-3 Approximate Location of SSD and ISD Measurements

Along Mississauga Road, right-turn ISD requirements were not met for trucks at the potential site access near Location 1. In addition, a site visit on December 10, 2024 assessed the left-turn ISD and observed an ISD of approximately 200m. Near Location 2, only right-turn ISD was assessed due to limited sightlines at Location 1. All right-turn ISD requirements were met at Location 2.

Along Charleston Sideroad, all sightline distances met the required criteria near Location 3. It was observed that some road signs cause slight visual obstructions due to the horizontal curve. It is recommended to clear all landscape or other obstructions near the edge of the property as driver's sightline may go through the property line in the future.

Along Main Street at Location 4, the right-turn ISD requirements were only met for a single-unit truck due to a crest in the road. All sightline distances met the required standards at Location 5.

Further details and images of the site visit can be found in **Appendix E**.

## 4.5 Safety and Route Considerations

The Belfountain Village and Conservation Area is located south of the subject site along Mississauga Road; although temporarily closed, this Conservation Area would generate non-site related traffic when reopened and create potential conflicts with trucks turning outbound along Mississauga Road. Aside from the heavy truck restrictions, this is another reason that Mississauga



Road is not a preferred roadway for a site access location.

CBM confirmed the proposed truck distribution estimates 95% of truck traffic heading east on Charleston Sideroad towards Hurontario Street (with 90% travelling south and 5% travelling north on Hurontario Street) and the remaining 5% truck traffic heading west on Charleston Sideroad to serve other markets west of the study area. Placing a site access along the proposed haulage route creates a more efficient haulage process. As the haulage route is proposed to primarily travel along Charleston Sideroad, it is a preferred road for a site access location.

## 4.6 Preferred Future Site Access Location

A site access consideration review was conducted to determine the preferred location for the future site access. Several factors and conditions were analyzed quantitatively and qualitatively including haul route restrictions, existing capacity analysis results, a high-level sightline review, study area road classifications, safety / route considerations, and physical constraints.

Due to heavy vehicle restrictions, Cataract Road and Mississauga Road are not considered preferred locations for the site access unless future road improvements are completed to accommodate heavy truck activity. Main Street is considered as an alternative location for the proposed site access as it does not pose any physical or safety concerns. However, Main Street is the primary north-south connection to /from Alton serving local residents. Additionally, there are no physical or safety concerns for Charleston Sideroad and moreover, the haulage route travels primarily along this roadway; therefore, Charleston Sideroad is another preferred alternative for the future site access location.

After conducting the site access consideration review, TYLin recommends the future site access to be located along the segment of Charleston Sideroad (Regional Road 24) between Mississauga Road and Main Street / Cataract Road. The potential location for the site access adhere to TAC's guidelines of minimum intersection spacing. This will allow for any future left and right-turn facilities and their associated storage and taper lengths to be accommodated by adjacent intersections and will not interfere with the snow storage facility. Therefore, the proposed site access is to be located at least 400 metres from Mississauga Road and 160 metres from Main Street/Cataract Road.

# **5 FUTURE BACKGROUND CONDITIONS**

## 5.1 Study Horizon Years

As per pre-consultation correspondence and in order to satisfy Caledon Official Plan Section 5.11.2.4.14, a planning horizon study period of 2037 was assumed for future conditions traffic analysis, which correlates to 10 years post-baseline 2022 conditions. Although revised counts were undertaken in 2023, the 2037 horizon was kept to maintain consistency previous versions of this report allowing for comparative analysis.

## 5.2 Study Area Road Network Improvements

The Region of Peel and the Town of Caledon confirmed there are no current planning capital roadwork improvements in the study area within the 2037 planning horizon.

## **5.3 Background Developments**

During pre-consultation, Town staff confirmed there are no significant background developments within the vicinity of the site that is anticipated to impact the traffic analysis during the planning horizon period. However, background corridor growth rates, compounded annually (see **Section 5.4**), were applied to future traffic projections to account for population and employment forecasts. A portion of these growth rates includes background development outside of the Town's jurisdiction to account for future commuter traffic travelling through the study area.

## **5.4 Background Corridor Growth**

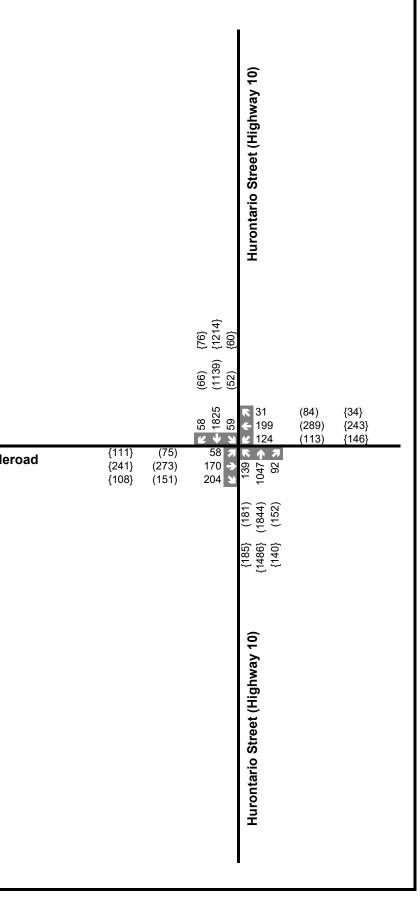
All traffic was grown from the year the data was collected to predict future non-quarry related traffic volumes along the haul routes for the future horizon years using the following growth rates that were agreed upon through pre-consultation correspondence:

- 2% for Hurontario Street
- ▶ 0.5% for Charleston Sideroad
- ▶ 0.5% for Main Street
- 2% for Cataract Road
- 2% for Mississauga Road



Utilizing the calculated growth factors, compounded annually, traffic counts for the study area intersections were grown and balanced to the horizon year. Pre-consultation correspondence can be found in **Appendix A**.

## 5.5 Future Background Traffic Volumes


The 2023 baseline traffic plus the corridor growth were combined to produce the 2037 background weekday a.m., p.m., and Saturday peak hour traffic volumes.

The future background 2037 traffic volumes are presented in **Figure 5-1**.

|                                    |                                                | Mississauga Road                                      |                       |                     |          |   |       |       |       | Primary Site Access |            |             |    |                      |                       |                      | Main Street (Regional Road 136)                                           |                      |                      |      |
|------------------------------------|------------------------------------------------|-------------------------------------------------------|-----------------------|---------------------|----------|---|-------|-------|-------|---------------------|------------|-------------|----|----------------------|-----------------------|----------------------|---------------------------------------------------------------------------|----------------------|----------------------|------|
|                                    | {17}<br>{4}<br>{16}                            |                                                       |                       |                     |          |   |       |       |       |                     |            |             |    |                      |                       | {40}<br>{12}<br>{55} |                                                                           |                      |                      |      |
|                                    | (14)<br>(6)<br>(21)                            |                                                       |                       |                     |          |   |       |       |       |                     |            |             |    |                      |                       | (58)<br>(19)<br>(62) |                                                                           |                      |                      |      |
|                                    | <ul> <li>11</li> <li>11</li> <li>15</li> </ul> | <ul> <li>€ 15</li> <li>€ 335</li> <li>2 33</li> </ul> | (12)<br>(484)<br>(12) | {8}<br>{359}<br>{7} |          |   |       |       |       | <b>(</b> 390        | (502) {355 | j}          |    |                      |                       | 44<br>▲ 10<br>52     | <ul> <li><b>€</b> 43</li> <li><b>€</b> 336</li> <li><b>€</b> 6</li> </ul> | (85)<br>(427)<br>(4) | {51}<br>{309}<br>{6} |      |
| {8} (14)<br>{364} (486)<br>{8} (8) | 16 <b>7</b><br>384 →                           | 2 <b>3</b><br>7 <b>4</b><br>13 <b>4</b>               |                       |                     | Sideroad | 1 | {392} | (531) | 414 🗦 |                     | Charle     | ston Sidero | ad | {49}<br>{335}<br>{8} | (73)<br>(441)<br>(11) | 38<br>352<br>6       | 6 × 7                                                                     |                      | Charleston S         | ider |
|                                    |                                                | (3)<br>(19)<br>(21)                                   |                       |                     |          |   |       |       |       |                     |            |             |    |                      | ( )                   |                      | (12)<br>(12)<br>(9)                                                       |                      |                      |      |
|                                    |                                                | {7}<br>{11}<br>{10}                                   |                       |                     |          |   |       |       |       |                     |            |             |    |                      |                       |                      | (2)<br>(2)<br>(3)<br>(3)                                                  |                      |                      |      |
|                                    |                                                | Mississauga Road                                      |                       |                     |          |   |       |       |       |                     |            |             |    |                      |                       |                      | Cataract Road                                                             |                      |                      |      |

Legend

A.M. Peak Hour Traffic P.M. Peak Hour Traffic Saturday Peak Hour Traffic xx (xx) {xx}



# Figure 5-1

Future Background 2037 Traffic Volumes

# **6 SITE GENERATED TRAFFIC**

# 6.1 Site Trip Generation

New employee (passenger car) and truck trips were generated using the following methodology based on data received through pre-consultation correspondence.

#### 6.1.1 Passenger Car Peak Hour Trips

CBM estimates the quarry will employ approximately 30 staff during the day shift between 5:00 a.m. to 5:00 p.m. and 20 employees during the night shift between 5:00 p.m. to 5:00 a.m., should one be needed for public authority projects. As shift change occurs at 5:00 p.m., it is assumed that there will be no employee trips during the a.m. or Saturday peak hours. Although night shift staff members are not intended to be onsite regularly, 20 employees were included during the p.m. peak hour as a conservative measure. Additionally, approximately 20 contractors are estimated to be on site for non-haulage operations during the day shift. It is assumed that these contractors will be entering and exiting the site at different off-peak hours during the day shift, and as a conservative measure, these trips were split 75%-25% between the a.m. and p.m. peak hour, respectively. Transportation Tomorrow Survey (TTS) queries used can be found in **Appendix F** 

**Table 6-1** summarizes the new employee passenger car trips generated for all peak hours.

|    | Employee Passenger Car Trips |       |    |           |       |                    |     |       |  |  |  |  |  |
|----|------------------------------|-------|----|-----------|-------|--------------------|-----|-------|--|--|--|--|--|
| A  | M Peak Ho                    | ur    | PI | M Peak Ho | ur    | Saturday Peak Hour |     |       |  |  |  |  |  |
| In | Out                          | Total | In | Out       | Total | In                 | Out | Total |  |  |  |  |  |
| 15 | 15                           | 30    | 25 | 35        | 60    | 0                  | 0   | 0     |  |  |  |  |  |

#### Table 6-1 Passenger Car Peak Hour Trips

As seen in **Table 6-1**, there are a total of 30 passenger car trips generated during the a.m. peak hour consisting of 15 inbound and 15 outbound trips. During the p.m. peak hour, a total of 60 trips are generated consisting of 25 inbound and 35 outbound trips. Staff members will be entering and exiting the site outside of the adjacent street peak on Saturdays. Additionally, CBM confirmed contractors are not expected to be onsite on Saturdays. However, on the rare occurrence contractors visit the site on Saturday they would be entering/exiting during the opening hours of the site, outside of the adjacent street Saturday peak hours. Therefore, no passenger car trips are generated on Saturday.

#### 6.1.2 Truck Peak Hour Trips

Caledon Pit / Quarry is proposed to ship approximately 2,000,000 tonnes of aggregate per year with an average of truck aggregate capacity of approximately 30 tonnes.

The haulage hours of operation are between 6:00 a.m. and 7:00 p.m. on weekdays and Saturdays, with no haulage activity occurring on Sundays and holidays; thus, totaling to 78 hours per week (minimum of 312 hours per month) of haulage activity.

The quarry is proposed to operate year-round from January to December with variable amounts of material extraction and shipping depending on the month. Based on historical shipping data records archived by TYLin, peak shipping generally occurs during the 'construction season' between the months of May and October. **Table 6-2** summarizes the average monthly breakdown of material extraction based on archived historical data from existing quarry operations in southern Ontario shipped per month for 2019 and 2020. Based on data received, it was determined that the month of July had the highest percentage of the total haulage activity and therefore will generate the largest volume of new truck trips.

| Month     | 2019 | 2020 |
|-----------|------|------|
| January   | 4%   | 6%   |
| February  | 4%   | 5%   |
| March     | 7%   | 5%   |
| April     | 8%   | 5%   |
| May       | 10%  | 6%   |
| June      | 9%   | 12%  |
| July      | 11%  | 12%  |
| August    | 10%  | 10%  |
| September | 11%  | 11%  |
| October   | 11%  | 11%  |
| November  | 9%   | 11%  |
| December  | 6%   | 7%   |
| Total     | 100% | 100% |

#### Table 6-2 Monthly Material Shipping Estimates

It has been our experience that additional peaking occurs during early morning shipping activity, to provide material to construction sites in the morning. As a result, additional outbound loaded



trucks could occasionally occur creating a short-lived 'peak within a peak' condition (generally occurring prior to the adjacent street peak).

It is expected that during the a.m. peak hour, truck traffic surges occur shortly after haulage hours begin because the trucks will often arrive at quarries prior to when shipping hours commence and are permitted to pre-load, pre-weigh, and pre-permit before entering the road network external to the site. Such 'pre-loaded' trucks will wait on-site until shipping hours commence. To account for this peaking, the a.m. peak hour outbound truck volume was increased by an additional 50%, equating to 45 loaded outbound truck trips per hour. We have adopted this peak trip generation as the design-hour vehicle volume for our site-impact analysis. As alluded to above, these 'peak within a peak' activities are predicted to occur largely outside of the adjacent street peak hours, so in this respect we are predicting an unlikely (and conservative) scenario of the quarry and adjacent street peaks coinciding.

Table 6-3 summarizes the new truck trips generated.

|    | Truck Trips  |                                        |    |     |       |    |     |       |  |  |  |  |
|----|--------------|----------------------------------------|----|-----|-------|----|-----|-------|--|--|--|--|
| Α  | M Peak Ho    | k Hour PM Peak Hour Saturday Peak Hour |    |     |       |    |     | Hour  |  |  |  |  |
| In | In Out Total |                                        |    | Out | Total | In | Out | Total |  |  |  |  |
| 30 | 45           | 75                                     | 30 | 30  | 60    | 30 | 30  | 60    |  |  |  |  |

#### Table 6-3 Truck Peak Hour Trips

As seen in **Table 6-3**, there are a total of 75 new truck trips generated during the a.m. peak hour consisting of 30 inbound and 45 outbound trips. During both of the p.m. and Saturday peak hours, a total of 60 new tuck trips are generated consisting of 30 inbound and 30 outbound trips.

#### 6.1.3 Passenger Car Equivalent Factors

In order to satisfy Caledon Official Plan Section 5.11.2.4.14, a comparison between the percentage of heavy vehicle peak hour generation and passenger car equivalent (PCE) was completed for the purpose of the heavy truck impact analyses. PCE factors were applied to account for the additional time it takes a heavy vehicle (in this case, different PCE's for each of the loaded and empty gravel trucks) to travel through an intersection. Based on TYLin's previous pit / quarry traffic study experience, a PCE of 3.0 for outbound loaded trucks and a PCE of 2.0 for inbound empty trucks was adopted. The subsequent PCE adjusted volumes are summarized in **Table 6-4**.

|    | Truck Trips  |                                           |    |     |       |    |     |       |  |  |  |  |
|----|--------------|-------------------------------------------|----|-----|-------|----|-----|-------|--|--|--|--|
| A  | M Peak Ho    | 1 Peak Hour PM Peak Hour Saturday Peak Ho |    |     |       |    |     | Hour  |  |  |  |  |
| In | In Out Total |                                           |    | Out | Total | In | Out | Total |  |  |  |  |
| 60 | 135          | 195                                       | 60 | 90  | 150   | 60 | 90  | 150   |  |  |  |  |

#### Table 6-4 Passenger Car Equivalent (PCE) Adjusted Vehicle Peak Hour Trips

Heavy vehicle volumes generated by the site are accounted for in the future total conditions using the heavy vehicle percentage parameter in the traffic analysis model. Therefore, a PCE factor was not included in the future total volumes for the purpose of traffic capacity analysis. However, it is noted that the PCE factor was applied to future total traffic volumes when conducting a signal warrant at the future proposed site access. Further details are provided in **Section 8.1**.

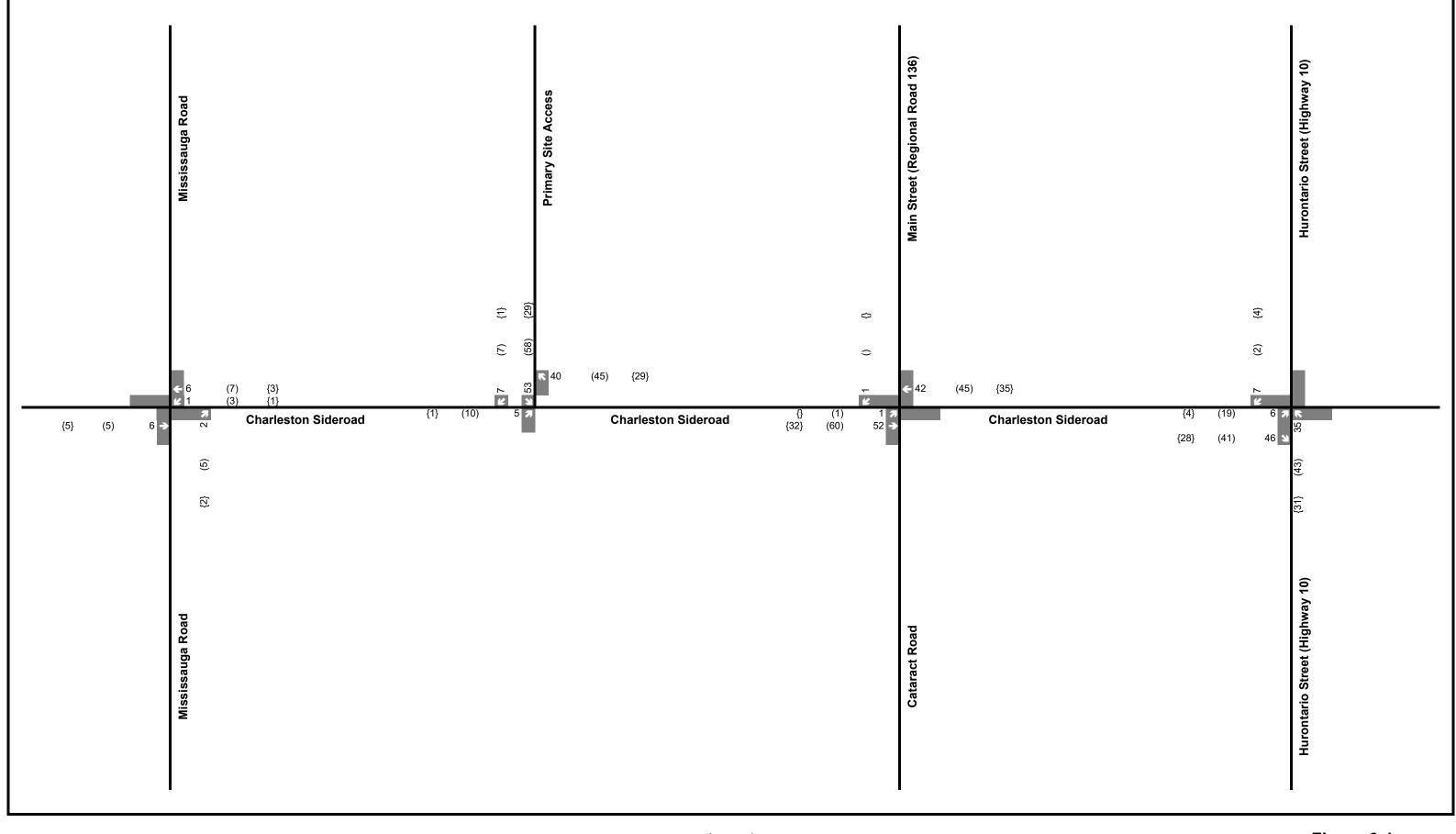


Truck trips were distributed throughout the network based on the proposed haulage route as outlined in **Section 2.4**: 95% heading east on Charleston Sideroad towards Hurontario Street (with 90% travelling south and 5% travelling north on Hurontario Street) and the remaining 5% heading west on Charleston Sideroad.

Distribution of employee trips was derived from a review of 2016 Transportation Tomorrow Survey (TTS) summary data and existing travel patterns. Site traffic was assigned to the road network based on these distributions and have been provided in **Table 6-5**.

| Divertions | AM Pea | ak Hour | PM Pea | k Hour | Saturday I | Peak Hour |
|------------|--------|---------|--------|--------|------------|-----------|
| Directions | In     | Out     | In     | Out    | In         | Out       |
| North      | 21%    | 28%     | 0%     | 26%    | 0%         | 26%       |
| East       | 18%    | 19%     | 0%     | 35%    | 0%         | 35%       |
| South      | 47%    | 29%     | 100%   | 34%    | 100%       | 34%       |
| West       | 13%    | 24%     | 0%     | 5%     | 0%         | 5%        |
| Total      | 100%   | 100%    | 100%   | 100%   | 100%       | 100%      |

#### Table 6-5 Passenger Site Trip Distribution


OTORANTIM

cbm

The total proposed site trips during the a.m., p.m., and Saturday peak periods are shown in **Figure 6-1**. Separate site traffic for passenger cars and trucks are shown in **Figure 6-2** and **Figure 6-3**, respectively.

## 6.3 Existing Access to 1420 Charleston Sideroad

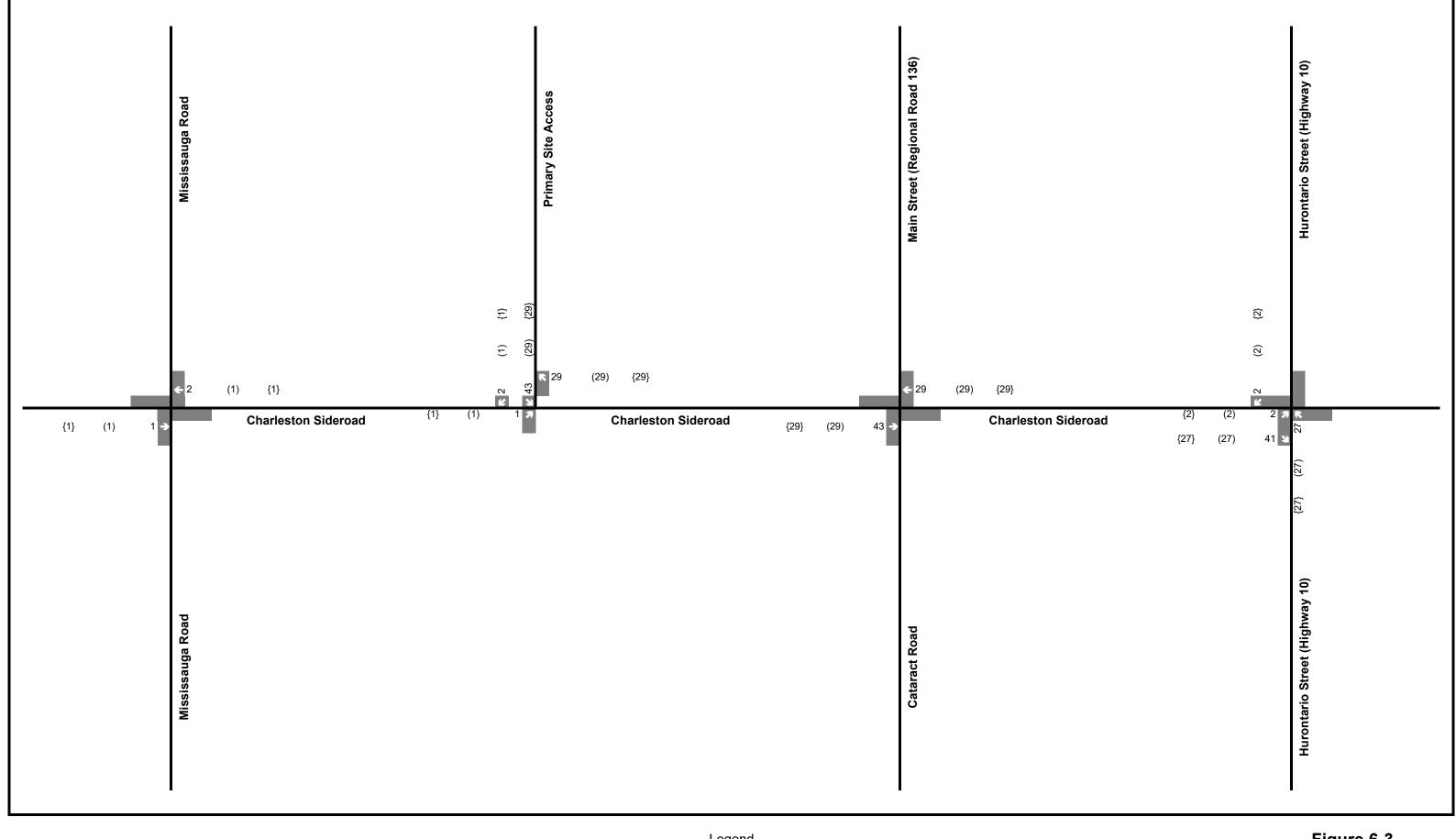
A heritage property is currently located at 1420 Charleston Sideroad with a single driveway access. The property is currently in use as a residence and is proposed to be adaptively reused as an office and laboratory during the license period with intention to revert the property back to residential use following surrender of the license. The proposed office/lab space will employ a total of 6 employees. Based on the number of employees provided, TYLin has assumed a maximum of 6 trips to/from the study area network. Due to the nominal number of site-generated trips to/from the existing heritage access, no further traffic analysis at this site access will be required. Separate site traffic to/from 1420 Charleston Sideroad is shown in **Figure 6-4.** 



Legend

A.M. Peak Hour Traffic P.M. Peak Hour Traffic xx (xx) {xx}

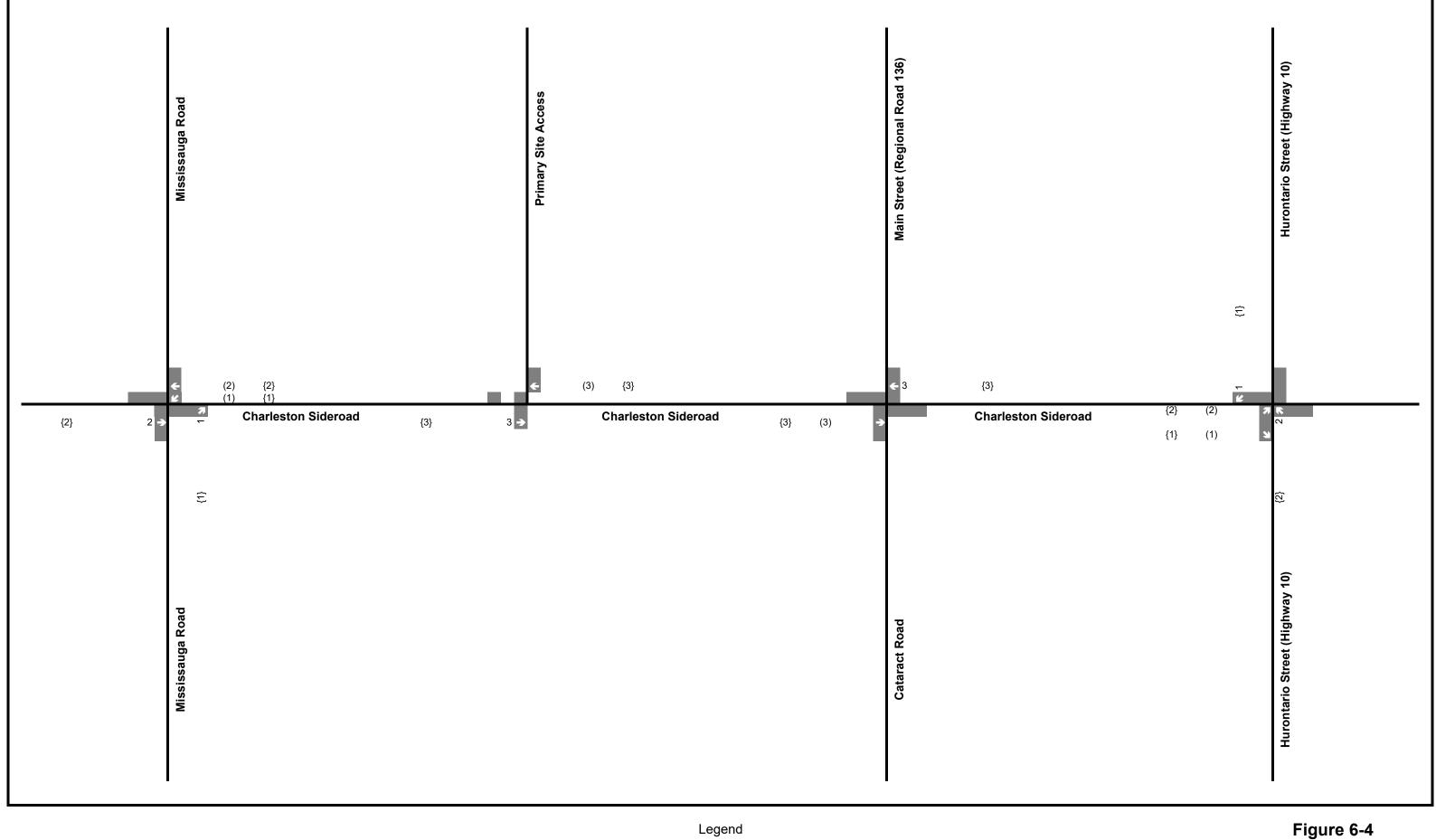
Saturday Peak Hour Traffic


Figure 6-1 Caledon Quarry Site Generated Traffic Volumes (Total)



A.M. Peak Hour Traffic P.M. Peak Hour Traffic

xx (xx) {xx} Saturday Peak Hour Traffic


Figure 6-2 Caledon Quarry Site **Generated Traffic Volumes** (Passenger Cars)



A.M. Peak Hour Traffic P.M. Peak Hour Traffic xx (xx) {xx}

Saturday Peak Hour Traffic

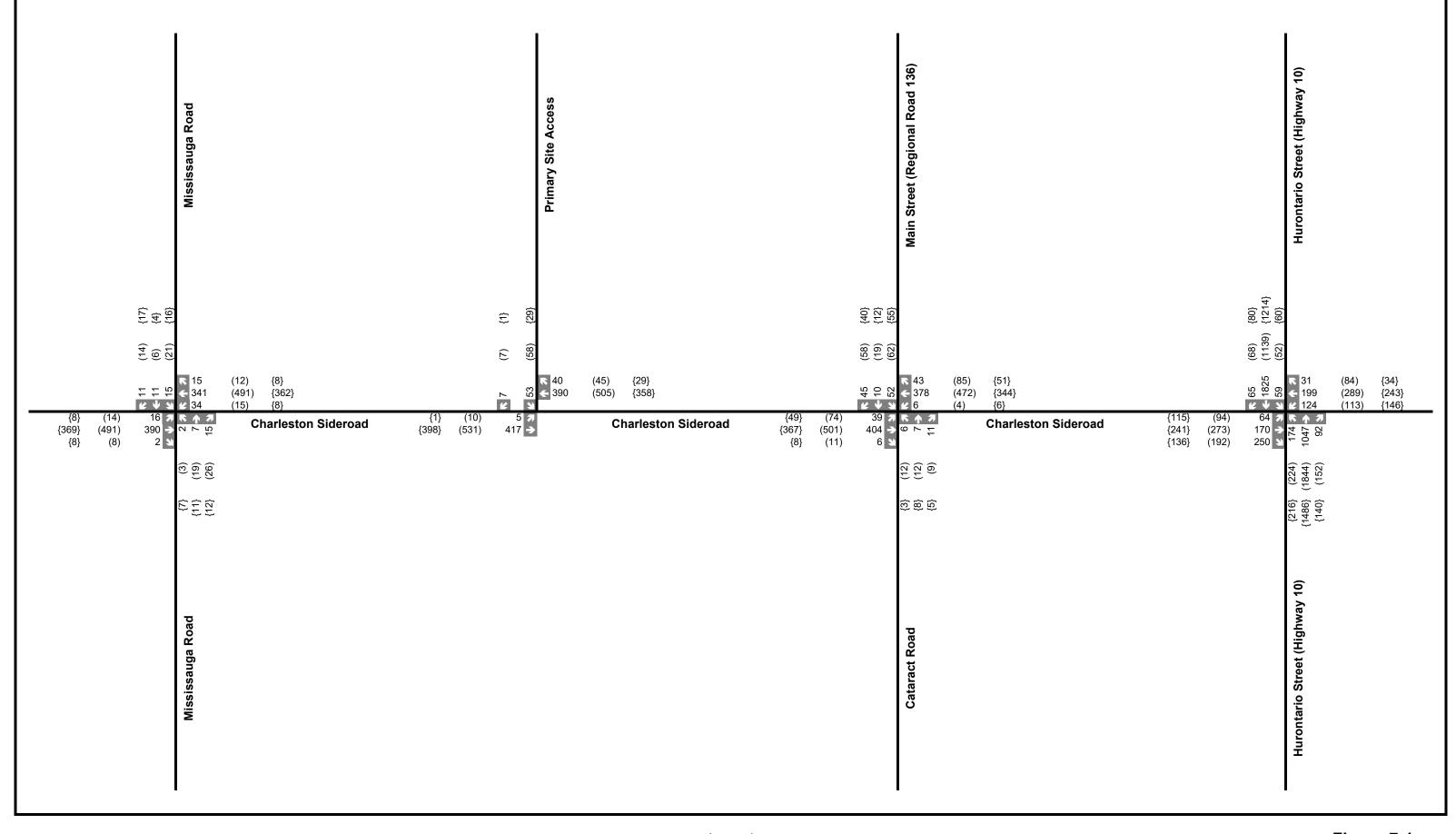
Figure 6-3 Caledon Quarry Site Generated Traffic Volumes (Trucks)



TYLin

Legend

A.M. Peak Hour Traffic P.M. Peak Hour Traffic xx (xx) {xx}


Saturday Peak Hour Traffic

1420 Charleston Sideroad Site Traffic Volumes



# **7 FUTURE TOTAL TRAFFIC CONDITIONS**

The future total traffic conditions for the peak study hours in the 2037 planning horizon was derived by combining the projected future background traffic with the corresponding estimate of the total site generated traffic. **Figure 7-1** summarizes the future total traffic volumes for the 2037 planning horizon during the weekday a.m., p.m., and Saturday peak hours.



**TYLin** 

Legend

A.M. Peak Hour Traffic xx (xx) {xx}

P.M. Peak Hour Traffic

Saturday Peak Hour Traffic

Figure 7-1 Future Total 2037 **Traffic Volumes** 

# **8 SITE ACCESS WARRANT ANALYSIS**

### 8.1 Signal Warrant

A signal warrant was conducted under future total 2037 conditions to determine if a signal is warranted at the proposed site access on Charleston Sideroad from a capacity standpoint. It was determined that a signal warrant was not satisfied. An additional signal warrant was completed using PCE factors to account for the heavy vehicle trips and was also not satisfied under future total conditions. Results of the signal warrant can be found in **Appendix G**.

Although a signal warrant is not explicitly satisfied at the site access, it is recommended that the site access is signalized in future conditions in order to improve operations and allow for ease of traffic flow onto Charleston Sideroad.

It is noted that if signalization of the future site access on Charleston Sideroad is desired by the Region, a signal can be installed at the cost of the client accordingly, as agreed to by CBM.

### 8.2 Left-Turn Warrant Analysis

Left-turn warrants were conducted using MTO's Ontario Geometric Design Standards (OGDS) Chapter E – At Grade Intersections guidelines. Under future total 2037 conditions, southbound left-turn warrant analysis was conducted at the site access. It was determined that from a capacity standpoint, a left-turn warrant was not satisfied. Therefore, a southbound left-turn lane is not proposed at the site access.

An eastbound left-turn warrant was also conducted under future total conditions with a design speed of 100 km/h (posted speed at Charleston Sideroad is 80 km/h). It was determined that an eastbound left-turn lane is warranted with a minimum storage length of 25 metres during the p.m. peak hour in accordance with OGDS Chapter E and 15 metre storage warranted in the a.m. peak hour). Additionally, as per the Region's RCS, an auxiliary eastbound left-turn lane is recommended to provide increased safety on the road mitigating slower-moving turning vehicles from the higher-speed vehicles in the through lanes. See **Appendix H** for the results of the left-turn lane warrants.

## 8.3 Auxiliary Right-Turn Lane

TAC Chapter 9 – Intersections states that a right-turn lane (without a separate signal indication) is recommended when the right-turning volume is 10% to 20% of the total approaching volume. Under future total conditions, the right-turning volume is approximately 12% during the a.m. peak hour.

Furthermore, the Region's RCS, recommends including an auxiliary right-turn lane at a new access in order to mitigate traffic flow. Therefore, a right-turn lane at the site access is proposed under future total conditions.

Design criteria for the auxiliary left and right-turn lanes at the site access are discussed in further detail in **Section 9**.

# **9 PROPOSED SITE ACCESS CONCEPTUAL DESIGN**

As part of this study, a conceptual design was considered for the future site access. As mentioned in **Section 4**, Charleston Sideroad is the preferred location for the site access in order to have the least traffic impact on the adjacent study network. The proposed site access is planned to be modelled as a 'T' intersection with access to the site north of Charleston Sideroad proposed within the horizon period.

Region of Peel Public Works Standard Drawings, Peel Region RCS, as well as TAC Chapter 8 – Access and Chapter 9 – Intersections guidelines were referenced when designing the future site access at Charleston Sideroad. The criteria that were used are summarized below. Excerpts from the relevant studies and guidelines is found in **Appendix I**.

### 9.1 Left-Turn and Right-Turn Auxiliary Lane Requirements

Table 6 in the RCS states some design criteria for auxiliary left and right-turn lanes for rural roads (note that Charleston Road is classified as a rural road as per the RCS).

The minimum RCS storage length for both the left and right-turn lanes is 30 metres. The lane width is required to be a minimum of 3.5 metres for both the left and right-turn lanes.

In accordance with TAC Table 9.14.2, the minimum right-turn taper for a 3.50-metre-wide rightturn lane with a design speed of 100 km/h (based on an 80 km/h posted speed, for higher design speeds, the 100 km/h design speed dimensions are used) is between 60 metres and 84 metres. The minimum parallel deceleration length is between 60 and 130 metres. Furthermore, the minimum storage length was determined to be 15 metres. Therefore, the total minimum auxiliary lane (storage plus deceleration) is required to be between 75 metres and 145 metres. TYLin proposes an auxiliary lane length of 75 metres and a taper length of 85 metres for the dedicated westbound right-turn lane at the site access.

For the dedicated left-turn lane with a width of 3.50 metres, a minimum 15-metre storage length is required as per Section 9.17.4.3 of the TAC guideline. The left-turn lane warrant conducted in **Section 8.2** identifies that a storage length of 25 metres is warranted in the PM peak hour, though based on the queueing analysis conducted (**Section 11**), it is expected that a storage length of 15 metres would satisfy the 95<sup>th</sup> percentile queues and would therefore be sufficient. Notwithstanding, from a safety perspective, a 25 metres storage length is recommended. The minimum approach taper for a design speed of 100 km/h is 105 metres as per TAC table 9.17.1. A minimum braking distance is required to be a minimum of 115 metres as per Table 2.5.2 of the TAC guideline. Therefore, TYLin proposes an auxiliary lane length of 140 metres (25 metre storage

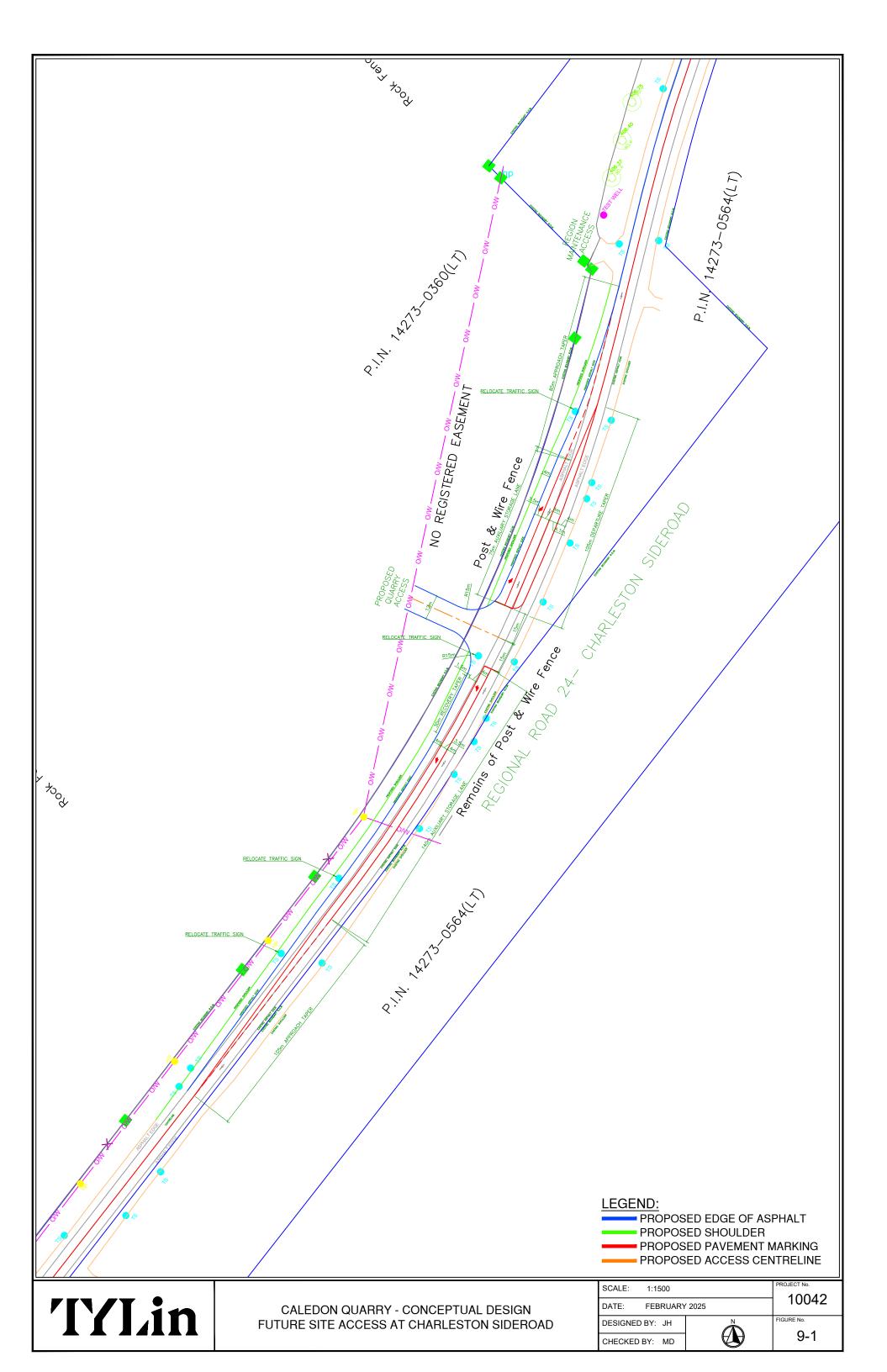


plus 115-metre braking distance) and a taper length of 105 metres for the dedicated eastbound left-turn lane at the site access.

## 9.2 Access Spacing and Snow Storage Facility Access Considerations

As mentioned in **Section 4.2**, a minimum of 400 metres is recommended between full-moves intersections/accesses along Charleston Sideroad from curb extension to curb extension. As such, the access was proposed approximately 530 metres east of Mississauga Road and approximately 880 metres west of Main Street. It is noted that a snow storage facility is located on Charleston Sideroad with 'enter only' and 'exit only' accesses located approximately 820 metres and 710 metres east of Mississauga Road, respectively.

Sound transportation engineering design recommends locating right-turn lane tapers beyond a driveway curb return to mitigate any driver confusion. Therefore, the access design proposes that the 85-metre westbound right-turn lane taper begins west of the inbound (easterly) and ahead of the outbound (westerly) snow storage facility accesses.


It is expected that the snow storage facility will be gated and not in use during the peak operational months of the quarry (during the spring, summer, and fall seasons); thus, the 160metre spacing between the outbound access of the snow storage facility and the proposed site access (from curb extension to curb extension) is deemed sufficient and is not expected to negatively impact the operations at the snow storage facility or the operations at the quarry access. OTORANTIM

imentos

cbm

Figure 9.17.2 in the TAC guidelines provided three alternatives for an auxiliary left-turn lane. As per TAC, it is preferred that the left-turn lane be designed right of the road centerline. Therefore, the conceptual design of the left-turn lane was modelled after Figure 9.17.2a of the TAC guideline.

A minimum curb radius of 15 metres is required at the site access. In order to accommodate truck maneuvers in and out of the site, a curb radius of 15 metres and 18 metres was proposed for the inbound and outbound curb radii, respectively. Additionally, in order for trucks to exit the site without encroaching onto the incoming lane, a 30-metre departure taper was proposed for trucks turning right out of the site. **Figure 9-1** illustrates the conceptual design for the proposed site access on Charleston Sideroad. **Appendix J** shows the swept path analysis of dump trucks and trucks with pony trailers entering and exiting the site. It is concluded that the design trucks can maneuver the site without conflict and do not encroach onto adjacent lanes.



# **10 CAPACITY ANALYSIS**

The capacity analysis identifies how well the intersections and access driveways are operating and how they are expected to operate in the future. The analysis contained in this report utilized the Highway Capacity Manual (HCM) 2000 techniques within the Synchro Software package. The reported intersection volume-to-capacity ratios (v/c) are a measure of the saturation volume for each turning movement, while the levels-of-service (LOS) are a measure of the average delay for each turning movement. Queueing characteristics are reported as the predicted 95<sup>th</sup> percentile queues, derived using SimTraffic micro-simulation software using the following methodology: 10 minutes seeding time, one-hour recording, and 10 runs.

The analysis includes identification of all intersections and for all movements; volume to capacity (v/c) ratios, LOS indicators and 50<sup>th</sup> and 95<sup>th</sup> percentile queue lengths. 'Critical' intersections and movements are shown in bold below, in accordance with the Region of Peel's Traffic Impact Study Guidelines for signalized and unsignalized intersections:

- V/C ratios for overall intersection operations, through movements or shared through/turning movements increased to 0.90 or above
- V/C ratios for exclusive movements that shall exceed 1.00

All detailed Synchro intersection capacity sheets are found in **Appendix K** 

## **10.1 Baseline 2023 Capacity Analysis**

The Synchro / HCM capacity results for study intersections during the weekday a.m., p.m., and Saturday peak hours under existing traffic conditions are shown in **Table 10-1**.

|                              |          | AM F | Peak Hou     | ur  | PM   | Peak Ho      | ur  | Saturda | ay Peak      | Hour |
|------------------------------|----------|------|--------------|-----|------|--------------|-----|---------|--------------|------|
| Intersection                 | Movement | V/C  | Delay<br>(s) | LOS | V/C  | Delay<br>(s) | LOS | V/C     | Delay<br>(s) | LOS  |
|                              | Overall  | 0.75 | 30           | С   | 0.82 | 33           | С   | 0.68    | 29           | С    |
|                              | EBL      | 0.30 | 44           | D   | 0.43 | 42           | D   | 0.59    | 48           | D    |
|                              | EBT      | 0.68 | 59           | E   | 0.86 | 71           | Е   | 0.78    | 64           | E    |
| Hurontario                   | EBR      | 0.25 | 49           | D   | 0.10 | 44           | D   | 0.07    | 46           | D    |
| Street                       | WBL      | 0.54 | 46           | D   | 0.63 | 47           | D   | 0.76    | 61           | E    |
| (Highway 10)<br>& Charleston | WBT      | 0.69 | 58           | E   | 0.82 | 64           | Е   | 0.79    | 65           | E    |
| Sideroad (RR                 | WBR      | 0.02 | 45           | D   | 0.06 | 42           | D   | 0.02    | 56           | D    |
| 24)                          | NBL      | 0.73 | 41           | D   | 0.55 | 14           | В   | 0.56    | 13           | В    |
| 24) –                        | NBTR     | 0.51 | 17           | В   | 0.83 | 28           | С   | 0.64    | 20           | В    |
|                              | SBL      | 0.20 | 12           | В   | 0.43 | 23           | С   | 0.27    | 14           | В    |
|                              | SBTR     | 0.78 | 26           | С   | 0.55 | 22           | С   | 0.53    | 19           | В    |

#### Table 10-1 Baseline 2023 Capacity Analysis Summary

| VOTORANTIM<br>cimentos |  | cbm |
|------------------------|--|-----|
|------------------------|--|-----|

|                      |          | AM P | eak Hou      | ır  | PM   | Peak Ho      | ur  | Saturda | ay Peak      | Hour |
|----------------------|----------|------|--------------|-----|------|--------------|-----|---------|--------------|------|
| Intersection         | Movement | V/C  | Delay<br>(s) | LOS | V/C  | Delay<br>(s) | LOS | V/C     | Delay<br>(s) | LOS  |
|                      | Overall  | 0.29 | 9            | Α   | 0.26 | 9            | А   | 0.26    | 9            | Α    |
|                      | EBL      | 0.05 | 4            | А   | 0.07 | 4            | А   | 0.07    | 4            | А    |
| Charleston           | EBTR     | 0.29 | 6            | А   | 0.26 | 5            | А   | 0.26    | 5            | А    |
| Sideroad (RR         | WBL      | 0.01 | 4            | А   | 0.01 | 4            | А   | 0.01    | 4            | А    |
| 24) & Main           | WBT      | 0.30 | 6            | Α   | 0.23 | 5            | А   | 0.23    | 5            | А    |
| Street (RR<br>136) / | WBR      | 0.03 | 4            | Α   | 0.03 | 4            | А   | 0.03    | 4            | А    |
| Cataract             | NBL      | 0.03 | 30           | С   | 0.01 | 30           | С   | 0.01    | 30           | С    |
| Road                 | NBTR     | 0.03 | 30           | С   | 0.03 | 30           | С   | 0.03    | 30           | С    |
| Road                 | SBL      | 0.25 | 32           | С   | 0.26 | 32           | С   | 0.26    | 32           | С    |
|                      | SBTR     | 0.06 | 30           | С   | 0.07 | 30           | С   | 0.07    | 30           | С    |
|                      | EBL      | 0.01 | 8            | А   | 0.01 | 8            | А   | 0.01    | 8            | А    |
| Charleston           | EBTR     | 0.22 | 0            | А   | 0.22 | 0            | А   | 0.22    | 0            | А    |
| Sideroad (RR         | WBL      | 0.04 | 9            | А   | 0.01 | 8            | А   | 0.01    | 8            | А    |
| 24) &                | WBTR     | 0.20 | 0            | А   | 0.21 | 0            | А   | 0.21    | 0            | А    |
| Mississauga<br>Road  | SBLTR    | 0.05 | 14           | В   | 0.07 | 14           | В   | 0.07    | 14           | В    |
| NUdu                 | NBLTR    | 0.10 | 17           | С   | 0.09 | 14           | В   | 0.09    | 14           | В    |

As seen in **Table 10-1**, under baseline conditions all intersections operate acceptably with reserve capacity and acceptable delays. No intersections or movements are considered critical, though notable delays are experienced in the AM/PM/Saturday peak hours for the intersection of Hurontario Street (Highway 10) at Charleston Sideroad (RR 24) for the eastbound through (59/71/64 seconds), westbound through movements (58/64/65 seconds), and Saturday westbound left turn movements (64 seconds) with a level of service "E". Notwithstanding, these operations are still considered acceptable from a traffic capacity standpoint under baseline conditions.

### **10.2 Future Background 2037 Capacity Analysis**

The Synchro / HCM capacity results for study intersections during the weekday a.m., p.m. and Saturday peak hours under future background 2037 traffic conditions are shown in **Table 10-2**. All timings and calibrations from the Baseline 2023 scenario were carried forward.

|              | AM Peak Hour |      |              |     | PM   | Peak H       | our | Sature | day Peak     | Hour |
|--------------|--------------|------|--------------|-----|------|--------------|-----|--------|--------------|------|
| Intersection | t            | V/C  | Delay<br>(s) | LOS | V/C  | Delay<br>(s) | LOS | V/C    | Delay<br>(s) | LOS  |
| Hurontario   | Overall      | 0.92 | 46           | D   | 1.01 | 56           | Ε   | 0.84   | 33           | С    |
| Street       | EBL          | 0.30 | 44           | D   | 0.45 | 42           | D   | 0.60   | 48           | D    |
| (Highway 10) | EBT          | 0.71 | 60           | E   | 0.89 | 77           | Е   | 0.80   | 66           | E    |
| & Charleston | EBR          | 0.30 | 49           | D   | 0.10 | 43           | D   | 0.07   | 46           | D    |
| Sideroad (RR | WBL          | 0.54 | 45           | D   | 0.65 | 48           | D   | 0.78   | 63           | E    |

#### Table 10-2 Future Background 2037 Capacity Analysis Summary



|                 |              | AN   | l Peak H     | our | PM   | Peak H       | our | Saturday Peak Hour |              |     |  |
|-----------------|--------------|------|--------------|-----|------|--------------|-----|--------------------|--------------|-----|--|
| Intersection    | Movemen<br>t | V/C  | Delay<br>(s) | LOS | V/C  | Delay<br>(s) | LOS | V/C                | Delay<br>(s) | LOS |  |
| 24)             | WBT          | 0.72 | 59           | E   | 0.86 | 68           | E   | 0.81               | 66           | E   |  |
|                 | WBR          | 0.02 | 45           | D   | 0.06 | 42           | D   | 0.02               | 45           | D   |  |
|                 | NBL          | 0.81 | 64           | Е   | 0.75 | 30           | С   | 0.76               | 31           | С   |  |
|                 | NBTR         | 0.67 | 21           | С   | 1.08 | 75           | E   | 0.83               | 27           | С   |  |
|                 | SBL          | 0.28 | 13           | В   | 0.43 | 31           | С   | 0.43               | 22           | С   |  |
|                 | SBTR         | 1.03 | 58           | E   | 0.73 | 26           | С   | 0.69               | 24           | С   |  |
|                 | Overall      | 0.92 | 40           | D   | 0.98 | 50           | D   | -                  | -            | -   |  |
|                 | EBL          | 0.39 | 51           | D   | 0.55 | 50           | D   | -                  | -            | -   |  |
| Hurontario      | EBT          | 0.84 | 84           | F   | 0.99 | 107          | F   | -                  | -            | -   |  |
| Street          | EBR          | 0.37 | 56           | E   | 0.10 | 49           | D   | -                  | -            | -   |  |
| (Highway 10)    | WBL          | 0.67 | 60           | E   | 0.80 | 75           | E   | -                  | -            | -   |  |
| & Charleston    | WBT          | 0.85 | 81           | F   | 1.00 | 111          | F   | -                  | -            | -   |  |
| Sideroad (RR    | WBR          | 0.02 | 51           | D   | 0.06 | 49           | D   | -                  | -            | -   |  |
| 24)             | NBL          | 0.79 | 66           | Е   | 0.66 | 22           | С   | -                  | -            | -   |  |
| (Optimized)     | NBTR         | 0.61 | 17           | В   | 1.00 | 49           | D   | -                  | -            | -   |  |
|                 | SBL          | 0.26 | 12           | В   | 0.49 | 35           | D   | -                  | -            | -   |  |
|                 | SBTR         | 0.96 | 41           | D   | 0.70 | 25           | С   | -                  | -            | -   |  |
|                 | Overall      | 0.30 | 9            | Α   | 0.37 | 10           | Α   | 0.27               | 9            | Α   |  |
|                 | EBL          | 0.06 | 4            | А   | 0.11 | 5            | А   | 0.07               | 4            | А   |  |
| Charleston      | EBTR         | 0.31 | 6            | А   | 0.39 | 7            | А   | 0.28               | 6            | А   |  |
| Sideroad (RR    | WBL          | 0.01 | 4            | А   | 0.01 | 4            | А   | 0.01               | 4            | А   |  |
| 24) & Main      | WBT          | 0.32 | 6            | А   | 0.37 | 6            | А   | 0.25               | 5            | А   |  |
| Street (RR 136) | WBR          | 0.03 | 4            | А   | 0.06 | 4            | А   | 0.03               | 4            | А   |  |
| / Cataract      | NBL          | 0.03 | 30           | С   | 0.06 | 30           | С   | 0.01               | 30           | С   |  |
| Road            | NBTR         | 0.03 | 30           | С   | 0.05 | 30           | С   | 0.03               | 30           | С   |  |
|                 | SBL          | 0.25 | 32           | С   | 0.29 | 32           | С   | 0.26               | 32           | С   |  |
|                 | SBTR         | 0.07 | 30           | С   | 0.11 | 31           | С   | 0.07               | 30           | С   |  |
| Charleston      | EBL          | 0.01 | 8            | Α   | 0.01 | 9            | А   | 0.01               | 8            | А   |  |
| Sideroad (RR    | EBTR         | 0.24 | 0            | Α   | 0.30 | 0            | А   | 0.23               | 0            | А   |  |
| 24) &           | WBL          | 0.04 | 9            | Α   | 0.01 | 9            | А   | 0.01               | 8            | А   |  |
| Mississauga     | WBTR         | 0.22 | 0            | Α   | 0.30 | 0            | А   | 0.23               | 0            | А   |  |
| Road            | SBLTR        | 0.06 | 15           | С   | 0.15 | 19           | С   | 0.08               | 16           | С   |  |
| (Unsignalized)  | NBLTR        | 0.13 | 18           | С   | 0.18 | 24           | С   | 0.10               | 15           | С   |  |

As seen in **Table 10-2**, under 2037 future background conditions all intersections operate acceptably with reserve capacity and acceptable delays, except the intersection of Hurontario Street (Highway 10) and Charleston Sideroad (RR24). Under 2037 future background conditions Hurontario Street (Highway 10) and Charleston Sideroad (RR24) is at critical capacity for the southbound through-right (v/c ratio of 1.03) during the AM peak hour. During the PM peak hour, northbound through-right is at critical capacity (v/c ratio of 1.08). The critical movements are likely the result of the anticipated growth in north-south volumes along Highway 10. The signal timings have been optimized for Hurontario Street (Highway 10) and Charleston Sideroad (RR24) and the



results are summarized in table for comparison. As under baseline conditions, notable delays are experienced at the Hurontario Street (Highway 10) and Charleston Sideroad (RR24) intersections with few movements having a level of service "E". Notwithstanding, the intersection is shown to operate acceptably from a traffic capacity and delay standpoint under future background conditions. The signal timings have been optimized for Hurontario Street (Highway 10) and Charleston Sideroad (RR24) and the results are summarized in table for comparison. TYLin recommends that the Region consider future monitoring as needed in order to determine if adjustments to the signal timing plan and intersection operation parameters (e.g. cycle length adjustments, split optimizations) are required to accommodate an increase in background traffic.

## **10.3 Future Total 2037 Capacity Analysis**

The Synchro/HCM capacity results for study intersections during the weekday a.m., p.m. and Saturday peak hours under future total 2037 traffic conditions are shown in **Table 10-3**. The calibrations that were made Hurontario Street (Highway 10) and Charleston Sideroad (RR 24) under baseline conditions were carried forward to future total conditions, with no additional modifications or adjustments were made under future total conditions.

Additionally, as mentioned in **Section 8.1**, a signal is proposed at the site access on Charleston Sideroad. The signal timing plan has been modeled as per the Region of Peel Synchro Guidelines (December 2010).



|                     |          | ۵۸   | / Peak He    | our | DN   | 1 Peak Ho    | JUL | Saturday Peak Hour |              |     |  |
|---------------------|----------|------|--------------|-----|------|--------------|-----|--------------------|--------------|-----|--|
| Intersection        | Movement | V/C  | Delay<br>(s) | LOS | V/C  | Delay<br>(s) | LOS | V/C                | Delay<br>(s) | LOS |  |
|                     | Overall  | 0.97 | 58           | Ε   | 1.03 | 58           | Ε   | 0.94               | 38           | D   |  |
|                     | EBL      | 0.34 | 44           | D   | 0.57 | 45           | D   | 0.61               | 47           | D   |  |
|                     | EBT      | 0.71 | 60           | E   | 0.91 | 81           | F   | 0.85               | 72           | E   |  |
| Hurontario          | EBR      | 0.56 | 53           | D   | 0.18 | 45           | D   | 0.11               | 45           | D   |  |
| Street              | WBL      | 0.54 | 45           | D   | 0.67 | 51           | D   | 0.80               | 67           | Ε   |  |
| (Highway 10)        | WBT      | 0.72 | 59           | E   | 0.92 | 82           | F   | 0.82               | 67           | Ε   |  |
| & Charleston        | WBR      | 0.02 | 45           | D   | 0.06 | 43           | D   | 0.02               | 44           | D   |  |
| Sideroad (RR<br>24) | NBL      | 0.89 | 78           | E   | 0.98 | 79           | E   | 0.95               | 75           | Ε   |  |
| 24)                 | NBTR     | 0.67 | 21           | С   | 1.07 | 72           | E   | 0.85               | 28           | С   |  |
|                     | SBL      | 0.28 | 15           | В   | 0.43 | 31           | С   | 0.48               | 24           | С   |  |
|                     | SBTR     | 1.09 | 83           | F   | 0.74 | 27           | С   | 0.78               | 29           | С   |  |
|                     | Overall  | 0.96 | 47           | D   | 0.99 | 51           | D   | -                  | -            | -   |  |
|                     | EBL      | 0.44 | 52           | D   | 0.70 | 60           | E   | -                  | -            | -   |  |
| Hurontario          | EBT      | 0.84 | 84           | F   | 0.99 | 107          | F   | -                  | -            | -   |  |
| Street              | EBR      | 0.68 | 68           | E   | 0.15 | 50           | D   | -                  | -            | -   |  |
| (Highway 10)        | WBL      | 0.67 | 60           | E   | 0.80 | 75           | E   | -                  | -            | -   |  |
| & Charleston        | WBT      | 0.85 | 81           | F   | 1.00 | 111          | F   | -                  | -            | -   |  |
| Sideroad (RR        | WBR      | 0.02 | 51           | D   | 0.06 | 49           | D   | -                  | -            | -   |  |
| 24)                 | NBL      | 0.96 | 103          | F   | 0.83 | 44           | D   | -                  | -            | -   |  |
| (Optimized)         | NBTR     | 0.61 | 17           | В   | 1.00 | 49           | D   | -                  | -            | -   |  |
|                     | SBL      | 0.26 | 13           | В   | 0.49 | 35           | С   | -                  | -            | -   |  |
|                     | SBTR     | 1.00 | 50           | D   | 0.73 | 29           | С   | -                  | -            | -   |  |
|                     | Overall  | 0.36 | 9            | Α   | 0.43 | 10           | Α   | 0.36               | 9            | Α   |  |
|                     | EBL      | 0.06 | 4            | А   | 0.13 | 5            | Α   | 0.07               | 4            | А   |  |
| Charleston          | EBTR     | 0.38 | 7            | Α   | 0.47 | 7            | Α   | 0.38               | 7            | Α   |  |
| Sideroad (RR        | WBL      | 0.01 | 4            | Α   | 0.01 | 4            | Α   | 0.01               | 4            | Α   |  |
| 24) & Main          | WBT      | 0.38 | 7            | Α   | 0.43 | 7            | Α   | 0.37               | 6            | Α   |  |
| Street (RR          | WBR      | 0.03 | 4            | А   | 0.06 | 4            | Α   | 0.03               | 4            | Α   |  |
| 136) / Cataract     | NBL      | 0.03 | 30           | С   | 0.06 | 30           | С   | 0.04               | 30           | С   |  |
| Road                | NBTR     | 0.03 | 30           | С   | 0.05 | 30           | С   | 0.03               | 30           | С   |  |
|                     | SBL      | 0.25 | 32           | С   | 0.29 | 32           | С   | 0.27               | 32           | С   |  |
|                     | SBTR     | 0.07 | 30           | С   | 0.11 | 31           | С   | 0.08               | 30           | С   |  |
|                     | EBL      | 0.01 | 8            | А   | 0.01 | 9            | Α   | 0.01               | 8            | Α   |  |
| Charleston          | EBTR     | 0.24 | 0            | А   | 0.31 | 0            | Α   | 0.24               | 0            | Α   |  |
| Sideroad (RR        | WBL      | 0.04 | 9            | Α   | 0.02 | 9            | Α   | 0.01               | 8            | Α   |  |
| 24) &               | WBTR     | 0.22 | 0            | А   | 0.31 | 0            | Α   | 0.27               | 0            | Α   |  |
| Mississauga<br>Road | SBLTR    | 0.06 | 15           | В   | 0.17 | 19           | С   | 0.07               | 16           | С   |  |
| коай                | NBLTR    | 0.13 | 18           | С   | 0.20 | 26           | D   | 0.07               | 17           | С   |  |
| Charleston          | Overall  | 0.34 | 16           | В   | 0.41 | 19           | В   | 0.30               | 16           | В   |  |
| Sideroad (RR        | EBL      | 0.02 | 11           | В   | 0.05 | 12           | В   | 0.01               | 11           | В   |  |
| 24) & Site          | EBT      | 0.55 | 17           | В   | 0.69 | 20           | С   | 0.52               | 16           | В   |  |
| Access              | WBT      | 0.51 | 16           | В   | 0.66 | 19           | В   | 0.47               | 15           | В   |  |

#### Table 10-3 Future Total 2037 Capacity Analysis Summary



|                |          | AN   | 1 Peak He    | our | PN   | l Peak Ho    | our | Satur | day Peak     | Hour |
|----------------|----------|------|--------------|-----|------|--------------|-----|-------|--------------|------|
| Intersection   | Movement | V/C  | Delay<br>(s) | LOS | V/C  | Delay<br>(s) | LOS | V/C   | Delay<br>(s) | LOS  |
| (Signalized)   | WBR      | 0.04 | 11           | В   | 0.05 | 11           | В   | 0.04  | 11           | В    |
|                | SBLR     | 0.14 | 12           | В   | 0.13 | 12           | В   | 0.08  | 12           | В    |
| Charleston     | EBL      | 0.00 | 9            | А   | 0.01 | 9            | А   | 0.00  | 10           | А    |
| Sideroad (RR   | EBT      | 0.25 | 0            | А   | 0.31 | 0            | А   | 0.23  | 0            | Α    |
| 24) & Site     | WBT      | 0.23 | 0            | А   | 0.30 | 0            | А   | 0.21  | 0            | А    |
| Access         | WBR      | 0.02 | 0            | А   | 0.03 | 0            | А   | 0.02  | 0            | А    |
| (Unsignalized) | SBLR     | 0.22 | 22           | А   | 0.33 | 30           | D   | 0.11  | 20           | С    |

As seen in **Table 10-3**, under 2037 total conditions all intersections operate acceptably with reserve capacity and acceptable delays, except for the Hurontario Street (Highway 10) and Charleston Sideroad (RR24) intersection. Under 2037 future total conditions Hurontario Street (Highway 10) and Charleston Sideroad (RR24) is at critical capacity for the southbound through-right (v/c ratio of 1.09) during the AM peak hour. During the PM peak hour, northbound through-right is at critical capacity (v/c ratio of 1.07). The critical movements are likely the result of the anticipated growth in north-south volumes along Highway 10. The signal timings have been optimized for Hurontario Street (Highway 10) and Charleston Sideroad (RR24) and the results are summarized in table for comparison. As previously noted, the critical movements are likely the result of the result of the anticipated growth in north-south volumes along Highway 10.

As under baseline conditions, notable delays are experienced at the Hurontario Street (Highway 10) and Charleston Sideroad (RR24) intersections with few movements having a level of service "E". With the addition of site traffic, there is an increase in delay for the northbound left movement across all peak hours, with the AM peak hour having a notable delay of 78 seconds (level of service "E") and the PM and SAT peak hours with 79 and 75 seconds respectfully; however, as these movements have not yet met critical capacity, the movement is still considered to operate acceptably.

The proposed signalized site access is projected is operate well under future total conditions with no capacity or delay concerns. The unsignalized site access results are summarized in the table for comparison.

Overall, under future total conditions, the intersections in the study network are shown to operate acceptably from a traffic capacity and delay standpoint, and the overall impact of site traffic is considered reasonably immaterial and acceptable. As under future background conditions, TYLin recommends that the Region consider future monitoring as needed in order to determine if adjustments to the signal timing plan and intersection operation parameters (e.g. cycle length adjustments, split optimizations) are required to accommodate an increase in traffic.

# **11 QUEUEING ANALYSIS**

Queueing analysis was conducted using SimTraffic micro-simulation software using the following methodology: 10 minutes seeding time, one-hour recording, and 10 runs. A summary of the average (50<sup>th</sup> percentile) and 95<sup>th</sup> percentile queue lengths derived from microsimulation of baseline, future background 2037 (optimized), and future total 2037 (optimized) traffic conditions. 95<sup>th</sup> percentile queues from Synchro (HCM) and SimTraffic (SIM) have been included for comparison. The 95<sup>th</sup> percentile queue lengths that are bolded are predicted to extend beyond available storage of a dedicated turn lane or extend beyond an upstream intersection and/or major access point. Queueing analysis detailed conditions are provided in **Appendix L**.

|                          |          |         | Queue Length (m) |     |     |                  |     |     |                  |         |     |
|--------------------------|----------|---------|------------------|-----|-----|------------------|-----|-----|------------------|---------|-----|
| Interestica              |          | Storage |                  | AM  |     |                  | PM  |     | S                | aturday | /   |
| Intersection             | Movement | (m)     | 50 <sup>th</sup> | 95  | th  | 50 <sup>th</sup> | 95  | th  | 50 <sup>th</sup> | 95      | th  |
|                          |          |         | НСМ              | НСМ | SIM | НСМ              | НСМ | SIM | НСМ              | НСМ     | SIM |
|                          | EBL      | 80      | 12               | 22  | 39  | 15               | 27  | 84  | 23               | 37      | 80  |
| Hurontario               | EBR      | 65      | 7                | 30  | 64  | 0                | 18  | 100 | 0                | 16      | 67  |
| Street                   | WBL      | 40      | 27               | 42  | 49  | 23               | 39  | 124 | 31               | 48      | 116 |
| (Highway<br>10) &        | WBR      | 55      | 0                | 0   | 17  | 0                | 14  | 107 | 0                | 0       | 62  |
| Charleston               | NBL      | 85      | 17               | 53  | 50  | 18               | 27  | 57  | 16               | 28      | 44  |
| Sideroad                 | NBTR     | -       | 71               | 101 | 85  | 179              | 221 | 162 | 115              | 152     | 121 |
| (RR 24)                  | SBL      | 40      | 5                | 10  | 37  | 5                | 12  | 33  | 5                | 11      | 34  |
|                          | SBTR     | -       | 162              | 197 | 139 | 86               | 106 | 112 | 86               | 111     | 106 |
| Charlester               | EBL      | 125     | 2                | 5   | 13  | 4                | 9   | 18  | 3                | 7       | 13  |
| Charleston               | EBTR     | -       | 21               | 34  | 40  | 29               | 45  | 52  | 20               | 32      | 35  |
| Sideroad                 | WBL      | 60      | 1                | 2   | 4   | 1                | 2   | 3   | 1                | 2       | 4   |
| (RR 24) &<br>Main Street | WBR      | 90      | 0                | 3   | 9   | 0                | 5   | 14  | 0                | 4       | 10  |
| (RR 136) /               | NBL      | 70      | 1                | 4   | 7   | 2                | 6   | 10  | 1                | 3       | 4   |
| Cataract                 | NBTR     | -       | 1                | 6   | 10  | 2                | 7   | 10  | 1                | 6       | 9   |
| Road                     | SBL      | 85      | 7                | 18  | 21  | 9                | 20  | 22  | 8                | 18      | 21  |
| Road                     | SBLTR    | -       | 2                | 11  | 15  | 3                | 13  | 18  | 2                | 11      | 14  |
| Charleston               | EBL      | 30      | -                | 1   | 5   | -                | 1   | 6   | -                | 1       | 4   |
| Sideroad                 | WBL      | 30      | -                | 1   | 15  | -                | 1   | 6   | -                | 1       | 3   |
| (RR 24) &                | WBTR     | -       | -                | 0   | 1   | -                | 0   | 2   | -                | 0       | 0   |
| Mississauga              | NBLTR    | -       | -                | 2   | 17  | -                | 3   | 16  | -                | 2       | 12  |
| Road                     | SBLTR    | -       | -                | 3   | 12  | -                | 5   | 14  | -                | 3       | 11  |

#### Table 11-1 Queueing Analysis Summary - Baseline



|                        |          |         | Queue Length (m) |     |     |                  |     |     |                  |          |     |  |  |
|------------------------|----------|---------|------------------|-----|-----|------------------|-----|-----|------------------|----------|-----|--|--|
| Interrection           | Movement | Storage |                  | AM  |     |                  | РМ  |     | 9                | Saturday | /   |  |  |
| Intersection           | wovement | (m)     | 50 <sup>th</sup> | 95  | th  | 50 <sup>th</sup> | 95  | th  | 50 <sup>th</sup> | 95       | th  |  |  |
|                        |          |         | НСМ              | НСМ | SIM | НСМ              | НСМ | SIM | НСМ              | НСМ      | SIM |  |  |
|                        | EBL      | 80      | 13               | 25  | 56  | 17               | 30  | 93  | 23               | 37       | 88  |  |  |
| Hurontario             | EBR      | 65      | 0                | 22  | 87  | 0                | 19  | 113 | 0                | 16       | 88  |  |  |
| Street                 | WBL      | 40      | 29               | 47  | 71  | 26               | 53  | 75  | 30               | 48       | 74  |  |  |
| (Highway               | WBR      | 55      | 0                | 0   | 67  | 0                | 11  | 123 | 0                | 90       | 92  |  |  |
| 10) &<br>Charleston    | NBL      | 85      | 26               | 48  | 66  | 17               | 33  | 124 | 17               | 52       | 101 |  |  |
| Sideroad               | NBTR     | -       | 110              | 136 | 104 | 364              | 364 | 345 | 183              | 237      | 189 |  |  |
| (RR 24)                | SBL      | 40      | 5                | 10  | 59  | 15               | 15  | 57  | 5                | 13       | 54  |  |  |
| (1(1( 24)              | SBTR     | -       | 306              | 374 | 278 | 172              | 172 | 148 | 133              | 161      | 144 |  |  |
|                        | EBL      | 125     | 2                | 6   | 13  | 4                | 9   | 20  | 3                | 7        | 14  |  |  |
| Charleston             | EBTR     | -       | 23               | 37  | 42  | 31               | 49  | 54  | 22               | 34       | 35  |  |  |
| Sideroad               | WBL      | 60      | 1                | 2   | 4   | 1                | 2   | 3   | 1                | 2        | 4   |  |  |
| (RR 24) &              | WBR      | 90      | 0                | 3   | 8   | 0                | 5   | 13  | 0                | 4        | 9   |  |  |
| Main Street            | NBL      | 70      | 1                | 4   | 7   | 2                | 6   | 13  | 1                | 3        | 5   |  |  |
| (RR 136) /<br>Cataract | NBTR     | -       | 1                | 7   | 11  | 2                | 8   | 12  | 2                | 6        | 11  |  |  |
| Road                   | SBL      | 85      | 8                | 18  | 20  | 9                | 20  | 21  | 8                | 18       | 20  |  |  |
| Road                   | SBLTR    | -       | 2                | 11  | 14  | 3                | 14  | 20  | 2                | 11       | 13  |  |  |
| Charleston             | EBL      | 30      | -                | 1   | 6   | -                | 1   | 6   | -                | 1        | 4   |  |  |
| Sideroad               | WBL      | 30      | -                | 1   | 15  | -                | 1   | 8   | -                | 1        | 4   |  |  |
| (RR 24) &              | WBTR     | -       | -                | 0   | 1   | -                | 0   | 1   | -                | 0        | 0   |  |  |
| Mississauga            | NBLTR    | -       | -                | 2   | 18  | -                | 4   | 16  | -                | 16       | 12  |  |  |
| Road                   | SBLTR    | -       | -                | 4   | 12  | -                | 5   | 14  | -                | 16       | 12  |  |  |

#### Table 11-2 Queueing Analysis Summary – Future Background (2037)



|                          |          | 7 mary 515 |                  | -   |     | 01161            | ie Leng | th (m) |                  |         |                 |
|--------------------------|----------|------------|------------------|-----|-----|------------------|---------|--------|------------------|---------|-----------------|
|                          |          | Storage    |                  | AM  |     | Quei             | PM      |        |                  | Saturda | v               |
| Intersection             | Movement | (m)        | 50 <sup>th</sup> | 95  | th  | 50 <sup>th</sup> | 95      | th     | 50 <sup>th</sup> |         | 5 <sup>th</sup> |
|                          |          | ()         | НСМ              | НСМ | SIM | НСМ              | НСМ     | SIM    | НСМ              | НСМ     | SIM             |
|                          | EBL      | 80         | 15               | 28  | 51  | 21               | 40      | 93     | 23               | 39      | 88              |
| Hurontario               | EBR      | 65         | 29               | 72  | 97  | 0                | 22      | 110    | 0                | 78      | 96              |
| Street                   | WBL      | 40         | 30               | 49  | 67  | 26               | 53      | 69     | 30               | 53      | 66              |
| (Highway                 | WBR      | 55         | 0                | 0   | 63  | 0                | 11      | 156    | 0                | 0       | 138             |
| 10) &<br>Charleston      | NBL      | 85         | 85               | 85  | 113 | 30               | 61      | 123    | 37               | 90      | 123             |
| Sideroad                 | NBTR     | -          | 123              | 123 | 181 | 323              | 364     | 311    | 193              | 246     | 197             |
| (RR 24)                  | SBL      | 40         | 9                | 7   | 65  | 5                | 14      | 59     | 5                | 14      | 61              |
| (IXIX 24)                | SBTR     | -          | 342              | 342 | 359 | 142              | 175     | 154    | 141              | 171     | 169             |
|                          | EBL      | 125        | 3                | 6   | 11  | 5                | 10      | 17     | 3                | 6       | 11              |
| Charleston               | EBTR     | -          | 28               | 45  | 50  | 38               | 60      | 60     | 28               | 44      | 51              |
| Sideroad                 | WBL      | 60         | 1                | 2   | 4   | 1                | 2       | 4      | 1                | 2       | 5               |
| (RR 24) &<br>Main Street | WBR      | 90         | 0                | 3   | 9   | 0                | 5       | 12     | 0                | 4       | 10              |
| (RR 136) /               | NBL      | 70         | 1                | 4   | 5   | 2                | 6       | 12     | 2                | 5       | 8               |
| Cataract                 | NBTR     | -          | 1                | 7   | 8   | 2                | 8       | 7      | 2                | 5       | 6               |
| Road                     | SBL      | 85         | 8                | 18  | 20  | 9                | 20      | 24     | 8                | 19      | 21              |
| Road                     | SBLTR    | -          | 2                | 11  | 15  | 3                | 14      | 19     | 2                | 12      | 18              |
| Charleston               | EBL      | 30         | -                | 1   | 6   | -                | 1       | 6      | -                | 1       | 4               |
| Sideroad                 | WBL      | 30         | -                | 1   | 16  | -                | 1       | 7      | -                | 1       | 6               |
| (RR 24) &                | WBTR     | -          | -                | 0   | 0   | -                | 0       | 2      | -                | 0       | 1               |
| Mississauga              | NBLTR    | -          | -                | 2   | 17  | -                | 5       | 16     | -                | 2       | 12              |
| Road                     | SBLTR    | -          | -                | 4   | 11  | -                | 6       | 14     | -                | 2       | 10              |
| Charleston               | EBL      | 130        | 1                | 2   | 7   | 1                | 4       | 9      | 1                | 1       | 4               |
| Sideroad                 | WBR      | 75         | 0                | 5   | 22  | 0                | 5       | 21     | 0                | 5       | 21              |
| (RR 24) &<br>Site Access | SBLR     | -          | 4                | 10  | 29  | 5                | 12      | 24     | 2                | 7       | 22              |

#### Table 11-3 Queueing Analysis Summary – Future Total (2037)

As shown in all tables, the average queue length for all movements at all intersections is expected to be accommodated by the storage for all horizons, except for the Hurontario Street (Highway 10) and Charleston Sideroad (RR24) intersection . Driver behaviour, available vehicle space within the painted medians, and effective storage lengths were observed and confirmed during the site visit on December 10, 2024. Effective storage lengths are considered, though not added in as "storage" for the Syncrho/SimTraiffic analysis for the Hurontario Street and Charleston Sideroad intersection. A comparison of painted versus effective storage is provided in **Table 11-4**.

| Lane | Painted<br>Storage (m) | Painted<br>Taper (m) | Effective<br>Storage (m) | Notes                                                                                                                                                                                  |
|------|------------------------|----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL  | 80                     | -                    | 35                       | While the storage ends at 80m, there is a painted median that can accommodate the length of a full vehicle up to 35m without blocking the adjacent through lane.                       |
| EBR  | 65                     | 20                   | -                        | -                                                                                                                                                                                      |
| WBL  | 40                     | 15                   | -                        | -                                                                                                                                                                                      |
| WBR  | 55                     | 75                   | -                        | -                                                                                                                                                                                      |
| NBL  | 85                     | 30                   | 20                       | While the painted storage and taper ends at<br>115m, there is a taper that can<br>accommodate the length of a full vehicle up<br>to 20m without blocking the adjacent<br>through lane. |
| SBL  | 40                     | 35                   | -                        | -                                                                                                                                                                                      |

#### Table 11-4 Painted and Effective Storage Length of Exclusive Turn Lanes

Under baseline conditions, at the intersection of Charleston Sideroad (RR 24) and Hurontario Street (Highway 10) intersection, the 95<sup>th</sup> SimTraffic percentile queue for the westbound left movement is expected to exceed the available storage for all peak periods. Additionally, under PM and Saturday conditions, the 95<sup>th</sup> SimTraffic percentile queues for the eastbound left and right, and westbound right, movements are expected to exceed available storage.

All 95<sup>th</sup> percentile queues noted as exceeding the storage under baseline conditions are also expected to exceed the available storage under future background conditions, with the inclusion of the southbound left queue in the AM/Saturday peak hour and the northbound left queue in the PM/Saturday peak hour. It is expected that increase in critical queues is due to the anticipated growth along both corridors.

All 95<sup>th</sup> percentile queues noted as exceeding the storage under future background conditions are also expected to exceed the available storage under future total conditions. The northbound left queue in the AM peak hour is also shown to be exceeding the storage length. Given that only one movement is significantly impacted between future background and future total conditions, it is suggested based on the analysis that the impact of the projected site traffic on future operations at this intersection is reasonably immaterial and acceptable. Furthermore, it is noted again that the average queues at this intersection are expected to be accommodated within the effective storage.

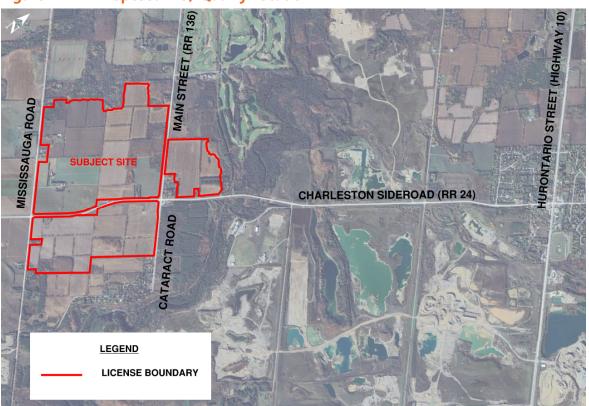
Based on the results of the queueing analysis, it is recommended that the intersection of Charleston Sideroad at Hurontario Street (Highway 10) continued to be monitored as needed by the Town, Region, and Province for existing/future queueing issues prior to evaluating potential mitigation measures for the intersection.

# **12 COLLISION HISTORY REVIEW**

The Transportation Impact Study and Haul Route Assessment was submitted to the Town of Caledon dated August 2023. As part of their review the following preliminary comment was provided in a letter dated November 17, 2023:

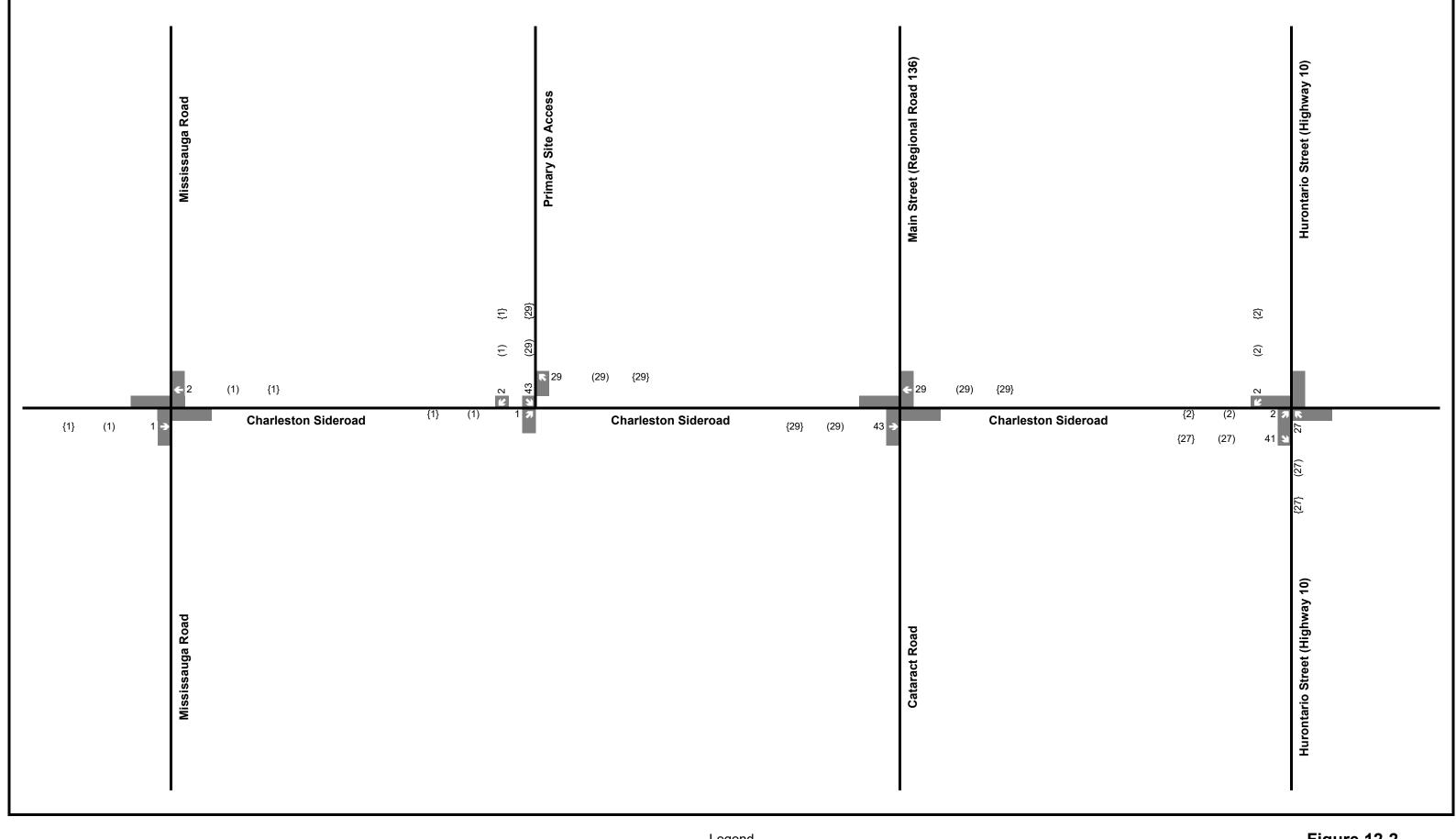
"During pre-submission consultation with the Town, the proponent's traffic consultant completed Terms of Reference for the Transportation Impact Assessment which included a requirement related to reviewing available collision data. The Town reiterates its concerns related to safety along the proposed haul route, particularly the adequacy of the intersection of Charleston Sideroad and Highway 10. Further review of the safety and adequacy of the haul route is required in this regard."

In addition, the Transportation Impact Study and Haul Route Assessment was submitted to HDR (Peer Reviewer). As part of their review the following preliminary comment was provided in a letter dated October 10, 2024:


"Should be updated to capture 5 years before/after the Covid-19 period to ensure the analysis is based on typical conditions. The analysis should also focus on specific turning movements and intersections to identify 'hotspots' and to identify potential mitigation. The analysis should be extended to include all intersections along the haul route from the site entrance to Highway 10, as well as the midblock segments."

As part of the response to comments the following collision history review has been prepared.

## 12.1 Background


The lands proposed to be licensed under the Aggregate Resources Act are referred to as the "Subject Site" and are legally described as Part of Lots 15-18, Concession 4 WSCR and Part of Lot 16, Concession 3 WSCR (former Geographic Township of Caledon). The Subject Site is approximately 261 hectares, and extraction is proposed on approximately 200 hectares. The remaining approximate 61 hectares within the Subject Site are the "Setback / Buffer Lands are used to provide setbacks to surrounding land uses and natural heritage features and most of these lands include a 5-metre visual / acoustic berm and visual plantings. The proposed pit / quarry location is shown in **Figure 12-1**.





#### Figure 12-1 Proposed Pit / Quarry Location

The proposed tonnage limit for the proposed CBM Caledon Pit / Quarry is 2.5 million tonnes per year and on average CBM anticipates shipping approximately 2.0 million tonnes per year. The primary haul route for the proposed CBM Caledon Pit / Quarry includes trucks travelling eastward on Regional Road 24 and then southward on Highway 10. The proposed haul route is an existing aggregate haul route and is designated as an aggregate haul route in the Town of Caledon Official Plan. The following distribution of trucks was proposed for the Haul Route Assessment: 95% of truck traffic is anticipated to head east on Charleston Sideroad towards Hurontario Street per hour (with 90% travelling south and 5% travelling north on Hurontario Street) and the remaining 5% is proposed to head west on Charleston Sideroad. The site is expected to add a maximum of 41 trucks per hour (AM peak) to the eastbound right turn at the intersection of Charleston Sideroad and Hurontario Street (Highway 10). This is considered to be the worst-case scenario during peak operation periods and is not expected to be consistent throughout the year. **Figure 12-2** shows the estimated site generated truck traffic volumes in the study network.



TYLin

A.M. Peak Hour Traffic P.M. Peak Hour Traffic xx (xx) {xx}

Saturday Peak Hour Traffic

Figure 12-2 Caledon Quarry Site Generated Traffic Volumes (Trucks)



The entrance / exit for the CBM Caledon Pit / Quarry is proposed to be located on Regional Road 24, approximately 720m west of Regional Road 136, measured from curb extension-to-curb extension. The entrance / exit is proposed to be controlled by a new traffic signal and the installation of auxiliary turn lanes and tapers on Regional Road 24 at CBM's expense.

The CBM Caledon Pit / Quarry is proposed to operate (extraction, processing, and drilling) 7:00 am to 7:00 pm Monday to Saturday, excluding statutory holidays and shipping is proposed from 6:00 am to 7:00 pm Monday to Saturday consistent with other mineral aggregate operations in Caledon. CBM is also proposing to permit limited shipping in the evening (7:00 pm to 6:00 am) to support public authority contracts that require the delivery of aggregates during these hours to complete public infrastructure projects. These activities will be limited to only highway trucks and shipping loaders and no other operations will be permitted during evening hours. Site preparation and rehabilitation is proposed to be permitted 7:00 am to 7:00 pm Monday to Friday.

CBM is expected to employ approximately 30 staff members during the day shift (5:00 a.m. to 5:00 p.m.) and 20 members during the night shift (5:00 p.m. to 5:00 a.m.), should a public authority project require a night shift. Additionally, approximately 20 contractors will be on site for non-haulage operations during the day shift should one be needed for public authority contracts, when the site is at full operations.

### **12.2 Site Access**

As part of the initial Transportation Impact Study prepared by TYLin, a detailed site access consideration analysis was conducted which reviewed potential access locations for the development. The analysis included review of existing heavy vehicle restrictions, access spacing requirements, vertical and horizontal sightlines, and physical constraints. The review concluded that the preferred access location would be along Charleston Sideroad approximately halfway between Mississauga Road and Main Street.

Signal warrant analysis for the proposed access was prepared in the initial Transportation Impact Study. The results of the analysis confirmed that from a traffic capacity perspective, a signal is not warranted under 2032 future total conditions. However, in the interest of safety and operations, CBM has agreed to signalize the access at their own expense. The signal will provide adequate gaps in through traffic to allow for trucks to enter and exit the site and accelerate safely without posing risk to vehicles along Charleston Sideroad.

## **12.3 Collision Data**

Collision history data was obtained from the Region of Peel on April 12, 2024, and November 19, 2024, for the intersection of Main Street (RR136) and Charleston Sideroad (RR24) as well as the



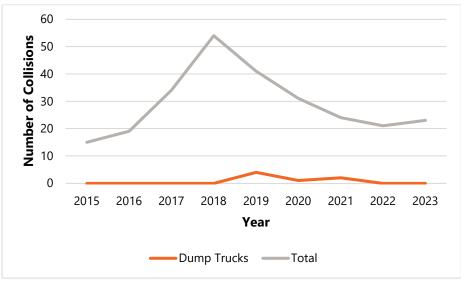
segment of Main Street (RR136) between Charleston Side Road (RR24) and Beech Grove Sideroad for the period of January 1, 2015 to December 31, 2023.

Collision history data was obtained from the Ministry of Transportation Ontario on March 21, 2024, and January 15, 2025, for the intersection of Charleston Sideroad (RR24) and Hurontario Street (Highway 10) as well as the segments of Hurontario Street 100 m north and south of the intersection for the period of January 1, 2015 to December 31, 2023.

The collision records were analyzed to identify collision patterns and understand the impact the proposed development may have on the area. The raw data for dump truck collisions provided by the Region and Ministry can be found in **Appendix M**. The full set is available as requested.

## **12.4 Collision Data Analysis**

The Ontario Road Safety Annual Report (ORSAR) was reviewed to identify any trends in the number of collisions in Ontario compared to Caledon and the haul route. The reports for 2021 – 2023 are not available as of writing. Relevant excerpts of the ORSAR are included in **Appendix M**. A summary of the latest annual collision trends is shown in **Table 12-1**.

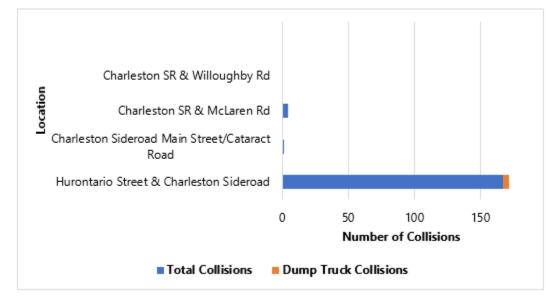

|      | Ont        | ario     | Cale       | don      | Haul       | Route    |
|------|------------|----------|------------|----------|------------|----------|
| Year | Collisions | % Change | Collisions | % Change | Collisions | % Change |
| 2015 | 221,385    | -        | 896        | -        | 15         | -        |
| 2016 | 208,389    | -5.87%   | 988        | 10.26%   | 19         | 26.67%   |
| 2017 | 209,075    | 0.33%    | 1,009      | 2.13%    | 34         | 78.95%   |
| 2018 | 214,847    | 2.76%    | 1,027      | 1.78%    | 54         | 58.85%   |
| 2019 | 221,785    | 3.23%    | 1,188      | 15.68%   | 41         | -24.07%  |
| 2020 | 147,750    | -33.38%  | 803        | -32.41%  | 31         | -24.39%  |
| 2021 | -          | -        | -          | -        | 24         | -22.58%  |
| 2022 | -          | -        | -          | -        | 21         | -12.5%   |
| 2023 | -          | -        | -          | -        | 23         | -9.52%   |

#### Table 12-1 Collision Frequency for Ontario, Caledon, and Subject Route

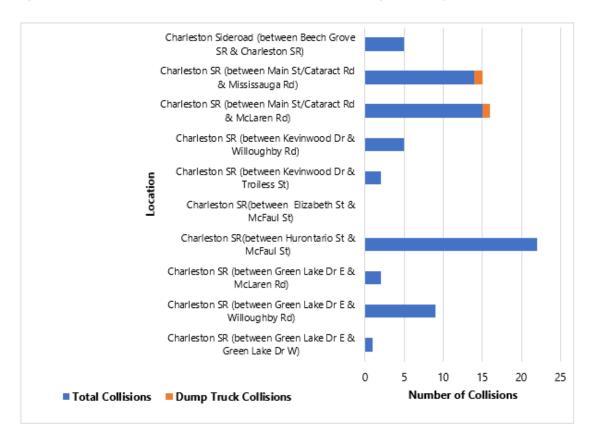
The collision data for the Province, Town, and haul route generally follow the same trend with collisions increasing from 2015 – 2019, dropping significantly after 2018. The percent change calculated in 2021 – 2023 for the haul route suggests that the trend continues as travel patterns



do not return to pre-COVID conditions. This is likely due to the change in commuting behaviour with work-from-home becoming more prevalent. It should be noted that since there is a relatively low number of accidents along the haul route, the calculated percent change can appear more drastic. **Figure 12-3** further illustrates the decline in collisions over a 9-year period.







The chart suggests that post-COVID travel patterns have reduced the frequency of collisions in the Region including the proposed haul route.

A review of the data shows that for the period of 2015 – 2023 there were 172 accidents along Highway 10 at the intersection with Charleston Sideroad or within 100 m north or south of the intersection. Of those accidents only 5 involved dump trucks which represents 2.9% accident rate and approximately 0.56 dump truck collisions per year. A review of available historical turning movement count data shows that the haul route intersection was active with aggregate truck hauling within the study period. This shows that although the route has an elevated volume of dump truck traffic due to its haul route designation and the abundance of quarry operations surrounding the route, dump trucks contribute to a relatively small proportion of the accidents at the key intersections. **Figure 12-4** illustrates the proportion of dump truck collisions at intersections along the haul route. Figure 12-5 further illustrates the proportion of dump truck collisions at mid-block segments along the haul route.





#### Figure 12-5 Dump Truck Collisions at Mid-Block Segments by Collision Location



The collision data available from 2015 – 2023 was analyzed further to identify the types of collisions and severity of collisions (results) in general as well as specifically for dump trucks. The

OTORANTIM

cbm

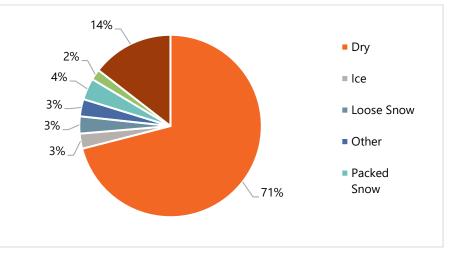


results of the analysis are summarized in Table 12-2.

| Type of Collision                                               |       |           |           |                  |           |             |            |              | Result of Collision |            |                |  |  |
|-----------------------------------------------------------------|-------|-----------|-----------|------------------|-----------|-------------|------------|--------------|---------------------|------------|----------------|--|--|
| Locations                                                       | Angle | Rear End  | Sideswipe | Turning Movement | SMV/Other | Approaching | Total      | Fatal-Injury | Non-Fatal Injury    | P.D. Only  | Non-Reportable |  |  |
| Hurontario St &<br>Charleston SR                                | 9     | 82<br>(1) | 21<br>(2) | 30<br>(1)        | 27<br>(1) | 3           | 172<br>(5) | -            | 32<br>(2)           | 140<br>(3) | -              |  |  |
| Charleston SR & Main<br>St/Cataract Rd                          | _     | _         | _         | _                | 1         | _           | 1          | _            | 1                   | _          | -              |  |  |
| Charleston SR & McLaren<br>Rd                                   | -     | 1         | -         | _                | 3         | _           | 4          | _            | 2                   | 2          | _              |  |  |
| Charleston SR &<br>Willoughby Rd                                | 6     | -         | -         | -                | 2         | -           | 8          | -            | 2                   | 6          | -              |  |  |
| Charleston SR (between<br>Green Lake Dr E & Green<br>Lake Dr W) | -     | -         | 1         | -                | -         | _           | 1          | -            | -                   | 1          | -              |  |  |
| Charleston SR (between<br>Green Lake Dr E &<br>Willoughby Rd)   | _     | 4         | 1         | _                | 4         | _           | 9          | _            | 1                   | 8          | -              |  |  |
| Charleston SR (between<br>Green Lake Dr E &<br>McLaren Rd)      | _     | _         | _         | _                | 2         | _           | 2          | _            | -                   | 2          | _              |  |  |
| Charleston SR (between<br>Hurontario St & McFaul<br>St)         | 10    | 3         | 2         | 6                | -         | 1           | 22         | _            | 3                   | 19         | _              |  |  |
| Charleston SR (between<br>Elizabeth St & McFaul St)             | _     | _         | -         | _                | -         | _           | 0          | _            | _                   | _          | -              |  |  |

#### Table 12-2 Summary of Total and (Truck) Collisions by Location and Collision Type

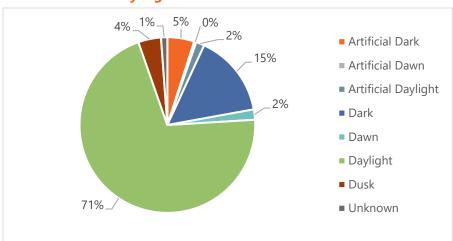



| Type of Collision                                                  |       |              |             |                  |             |             |              |              | Result of Collision |             |                |  |  |
|--------------------------------------------------------------------|-------|--------------|-------------|------------------|-------------|-------------|--------------|--------------|---------------------|-------------|----------------|--|--|
| Locations                                                          | Angle | Rear End     | Sideswipe   | Turning Movement | SMV/Other   | Approaching | Total        | Fatal-Injury | Non-Fatal Injury    | P.D. Only   | Non-Reportable |  |  |
| Charleston SR (between<br>Kevinwood Dr & Troiless<br>St)           | -     | -            | -           | -                | 2           | -           | 2            | -            | -                   | 2           | -              |  |  |
| Charleston SR (between<br>Kevinwood Dr &<br>Willoughby Rd)         | -     | _            | _           | 1                | 2           | 2           | 5            | _            | _                   | 5           | _              |  |  |
| Charleston SR (between<br>Main St/Cataract Rd &<br>McLaren Rd)     | 1     | 2            | 1<br>(1)    | 1                | 11          | _           | 16<br>(1)    | 1            | -                   | 15<br>(1)   | -              |  |  |
| Charleston SR (between<br>Main St/Cataract Rd &<br>Mississauga Rd) | -     | _            | -           | -                | 12<br>(1)   | 3           | 15<br>(1)    | _            | 3                   | 12<br>(1)   | -              |  |  |
| Charleston Sideroad<br>(between Beech Grove<br>SR & Charleston SR) | -     | -            | -           | -                | 5           | -           | 5            | -            | 1                   | 4           | -              |  |  |
| Total                                                              | 26    | 92<br>(1)    | 26<br>(3)   | 38<br>(1)        | 71<br>(2)   | 9           | 262<br>(7)   | (1)          | 46<br>(2)           | 216<br>(5)  | 0              |  |  |
| Collison Frequency by<br>Type (%)                                  | 10%   | 35%<br>(>1%) | 10%<br>(1%) | 15%<br>(>1%)     | 27%<br>(1%) | 3%          | 100%<br>(3%) | 1%<br>(>1%)  | 18%<br>(1%)         | 82%<br>(2%) | 0%             |  |  |

The Table above suggests that the type of collisions that occurred most frequently was rear-end type collisions with a frequency of 35%, followed by collisions involving only single motor vehicle (SMV) with a frequency of 27% over the past five years. Of the 262 collisions reported, 18% resulted in non-fatal injury, while 82% resulted in property damage only. In 2019, there was 1 fatal injury reported on Charleston Sideroad (between Main Street/Cataract Road & Mississauga Road).



For dump truck collisions the most frequent type are sideswipes and single motor vehicle/other collisions with 3 and 2 collisions reported, respectively. Of the 7 recorded dump truck collisions, 2 resulted in non-fatal injuries, while 5 resulted in property damage only (P.D. Only). This is similar to the distribution of the total collisions. This data suggests that the results of dump truck collisions are generally the same as all other collisions occurring on the route and do not increase the severity of collisions.


The figure below illustrates the number of collisions categorized by road surface conditions.

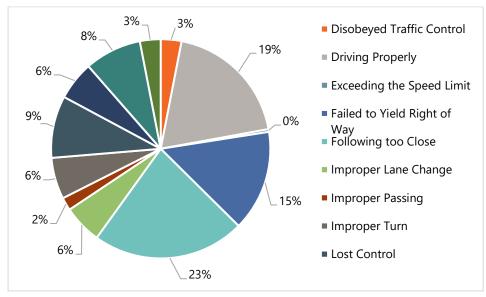




Approximately 71% of the reported collisions occurred on dry road surface conditions, 14% on a wet surface, and 4% on both packed road surface conditions. Based on the results of the analysis, it has been determined that poor road surface conditions may not be a contributing factor, as majority of collisions occurred during dry road surface conditions.

**Figure 12-7** illustrates the number of collisions categorized by lighting conditions. Artificial indicates that there were streetlights turned on at the time of the accident.




#### Figure 12-7 Total Collisions by Light Conditions

cbm

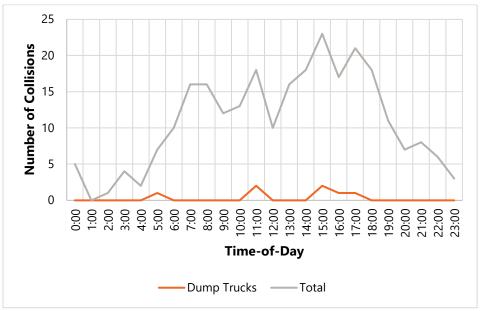
OTORANTIM

Approximately 71% of collisions occurred during daylight conditions, 15% in dark conditions, and 5% in dawn conditions. Based on the results of the analysis, it has been determined that poor lighting conditions may not be a contributing factor, as majority of collisions occurred during good visibility conditions.

**Figure 12-8** illustrates the driver action of the first vehicle in each of the recorded collisions. Since collisions could involve one or several vehicles, the driver action of the first vehicle shows the general driving behaviour of all collisions in the area.

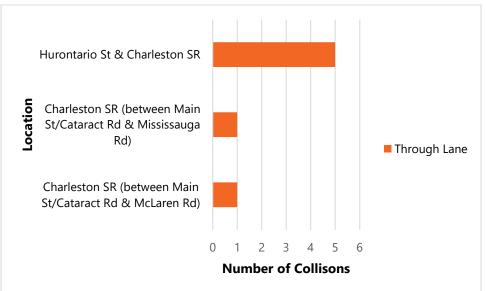


#### Figure 12-8 Collision Driver Action


Approximately 19% of drivers were driving properly at the time of their collision. Most of the driver action proceeding collisions were driver error such as speeding, improper maneuvers, following too close, and failing to yield. This indicates that poor driving behaviour is likely the leading cause



of collisions in the area. This is further supported by **Figure 12-6** and **Figure 12-7** which show that the majority of collisions happen under good road conditions removing environmental factors.


The figure shows the number of collisions by time of day.





Generally, collisions occur during the daytime with peaks that coincide with the established peak hours of traffic. Dump truck collisions also follow a similar pattern with only 1 collision occurring at mid-day rather than around the peak hours. No dump trucks collisions were recorded outside of the established hauling times proposed by the development. This establishes that the proposed dump truck hauling schedule would not create any additional risk of collisions throughout the day.





#### Figure 12-10 Dump Truck Collisions by Impact Location

As illustrated in the above figure all 7 dump truck collisions occurred in the through lanes, with 5 collisions at Hurontario Street and Charleston Sideroad. Of the 7 collisions, 6 reported during day light conditions and 1 during dark conditions. All 7 reported collisions occurred during clear and dry conditions. This data indicates that poor driving behaviour is likely the leading cause of dump truck collisions in the area.

# **13 CONCLUSIONS AND RECOMMENDATIONS**

#### Haul Route Assessment and Transportation Impact Study

The Caledon Pit / Quarry is expected to ship approximately 2,000,000 tonnes of aggregate annually with an assumed average truck aggregate capacity of 30 tonnes. The Quarry is proposed to operate during weekdays and Saturdays during the year, with haulage operation hours being from 6:00 a.m. to 7:00 p.m. Using historical haulage activity data, it was determined that July has the typical highest haulage activity.

During pre-consultation with the Town, no background developments within the vicinity of the study area were identified within the horizon year. However, background corridor growth rates, compounded annually, were applied to future traffic projections to account for population and employment forecasts. A portion of these growth rates include background development outside of the Town's jurisdiction to account for future commuter traffic travelling through the study area. A growth rate of 2% was applied to Hurontario Street, Mississauga Road and Cataract Road, whereas a growth rate of 0.5% was applied to Charleston Sideroad and Main Street (Regional Road 136).

During the a.m. peak hour, a total of 30 new passenger car trips were estimated consisting of 15 inbound and outbound trips. During the p.m. peak hour, a total of 60 new trips were generated consisting of 25 inbound and 35 outbound trips. As employees are entering and exiting the site outside of peak hours on Saturdays, no passenger car trips were generated during the Saturday peak hour.

During the a.m. peak hour, a total of 75 new truck trips were generated consisting of 30 inbound and 45 outbound trips. During each of the p.m. and Saturday peak hours, a total of 60 new truck trips are generated consisting of 30 inbound and 30 outbound trips.

The proposed truck distribution includes 95% of truck traffic heading east on Charleston Sideroad towards Hurontario Street (with 90% travelling south and 5% travelling north on Hurontario Street) and the remaining 5% truck traffic heading west on Charleston Sideroad.

A haul route assessment was undertaken to determine the location of the new future site access for the Caledon Pit / Quarry and include several site access considerations including existing haul route restrictions, impact to existing residents, access spacing requirements in accordance with Region of Peel Road Characterization Study (RCS) and TAC guidelines, physical constraints, and safety considerations. It was determined that the preferred location of the proposed site access is along Charleston Sideroad (Regional Road 24) between Mississauga Road and Main Street (Regional Road 136) / Cataract Road. TYLin recommends the site access be located approximately 530 metres east of Mississauga Road, measured between curb extensions.



Horizontal and vertical sightline assessments were conducted in the field. Based on a 100 km/h design speed, the proposed Charleston Sideroad access location satisfies Transportation Association of Canada combination truck stopping sight distance and intersection sight distance requirements. It is recommended to keep clear low-lying landscape or other obstructions near the edge of the property to ensure driver's sightlines are not encumbered in the future.

A traffic signal warrant was not explicitly satisfied at the proposed Charleston Sideroad site access under future total conditions based on a traffic volume. However, signalization of the access is recommended to improve the operation of the intersection by providing suitable gaps for trucks to enter and exit the site and accelerate safely without posing risk to other vehicles using Charleston Sideroad. It is noted that if the Region desires a signalized site access, the installation of the signal can be implemented at CBM's expense. Additionally, Charleston Sideroad is classified as rural road and satisfies Transportation Association of Canada Geometric Design Guide for Canadian Roads minimum 400-metre full movement intersection spacing design criteria, preserving the arterial function of Charleston Sideroad.

Additionally, a dedicated eastbound left-turn and westbound right-turn lane is proposed at the site access using requirements from the Region's RCS as well as TAC Chapter 9 – Intersections. It is recommended to include a dedicated westbound right-turn lane with an auxiliary lane (storage plus deceleration) length of 75 metres and a taper length of 85 metres. Furthermore, a dedicated eastbound left-turn lane with an auxiliary lane (storage is stool at the site access and a taper length of 140 metres and a taper length of 105 metres is recommended.

Under baseline conditions, all study intersections operate with reserve capacity and low delays with the exception of long delays for the eastbound through and westbound through movements in the PM and Saturday peak hours, though overall operations are still considered acceptable.

During future background conditions, with the addition of background corridor growth, all intersections are expected to operate well and within capacity. However, southbound and northbound movements at Hurontario Street and Charleston Sideroad are expected to be at critical capacity but still with acceptable delay and with reserve capacity available. Long delays are again noted for the eastbound and westbound movements. As a result, TYLin recommends that the Region considers future monitoring as needed in order to determine if adjustments to the signal timing plan and intersection operation parameters (e.g. cycle length adjustments, split optimizations) are required to accommodate an increase in background traffic.

Under future total conditions, overall all intersections operate well with reserve capacity and acceptable delays with the addition of projected site traffic, except for except for the Hurontario Street (Highway 10) and Charleston Sideroad (RR24) intersection. The westbound, northbound, and southbound movements at the Hurontario Street and Charleston Sideroad intersection continue to operate at capacity. It was observed the addition of site traffic does not materially



impact the operation of the intersection. The remaining study intersections, including the proposed site access, are expected to operate with reserve capacity and relatively low delays. As under future background conditions, TYLin recommends that the Region consider future monitoring as needed in order to determine if adjustments to the signal timing plan and intersection operation parameters (e.g. cycle length adjustments, split optimizations) are required to accommodate an increase in traffic.

Queueing analysis for all intersections projected that the average queues can be accommodated across all horizons within the effective storage. With the exception of Hurontario Street and Charleston Sideroad, the queueing analysis shows that the 95<sup>th</sup> percentile queues can be accommodated by the available storage. However, at Hurontario Street and Charleston Sideroad, it is observed under baseline and future background conditions that 95<sup>th</sup> percentile queues exceed the available storage length for multiple movements and is expected to continue under future total conditions. As previously discussed, TYLin recommends that the Region consider future monitoring as needed in order to determine if adjustments to the signal timing plan and intersection operation parameters (e.g. cycle length adjustments, split optimizations) are required to accommodate future increases in traffic.

Overall based on this assessment it is concluded that:

- The proposed haul route is an existing and identified haul route in the Town of Caledon Official Plan;
- With the implementation of the recommendations, the proposed truck traffic from the CBM Pit / Quarry will not have unacceptable impacts on the safe and efficient use of the road network; and
- From an overall transportation perspective, the proximity of the site to market will result in minimizing the length and number of vehicle trips required to transport an essential raw material needed for the construction and maintenance of communities.

The results of the assessment provide the basis for the following technical recommendation to be included on the Aggregate Resources Act Site Plan for the proposed Caledon Pit / Quarry:

- Prior to shipping the licensee shall enter into an agreement with the Region of Peel for the construction of the: a) entrance / exit, b) Charleston Sideroad improvements,
- Prior to below water operations commencing in the Main Area and prior to operations commencing in the South Area, the licensee shall enter into an agreement with the Region of Peel for a crossing underneath Main Street and Charleston Sideroad, respectively.



#### **Collision History Review**

Based on a detailed review of the available and recent collision history for the intersections of Charleston Sideroad at Hurontario Street (Highway 10) and Charleston Sideroad at Main Street, it can be concluded that the proposed pit / quarry development and haul route will not create any additional safety concerns to the surrounding road network.

Collisions in the area have been trending lower due to changes in traffic patterns, and the majority of collisions occur in good lighting and dry road conditions showing that the route is not deficient in any way. Driver behaviour appears to be the leading cause of collisions with only 19% of drivers reported to be driving properly at the time of their collisions. The Town and Region should explore additional signage and driver education to improve driver behaviour as mitigation measures aiming to reduce collisions in the area.

Dump truck collisions make up a very small proportion of the total collisions along the route at approximately 0.55 dump truck collisions per year, despite being an active haul route that experiences elevated levels of dump truck activity. The dump truck collisions that did occur show a similar distribution of outcomes compared to regular vehicle collisions in the area. No fatalities have occurred, and the majority of collisions result in property damage only. Based on the analysis of dump truck collisions, all 7 occurred in the through lanes, indicating poor driving behaviour is likely the leading cause of dump truck collisions in the area. Finally, the dump truck collisions generally coincided with the peak hours of traffic and the peak hours of collisions which shows that dump truck hauling activities do not change when collisions typically happen.

It is TYLin's opinion that the proposed development would not pose any additional risk of collisions to the existing haul route through its operations and supports the proposed development.

#### **Transportation Study Version**

A summary of the changes made to the "Revised July 2023" and the "Revised March 2025" Caledon Quarry Transportation Impact Study and Haul Route Assessment is provided in **Appendix N**.

# **APPENDIX A**

**Pre-Consultation Correspondence** 

## Subject:

FW: Transportation Study - Terms of Reference - Input Request

From: Arash Olia <<u>Arash.Olia@caledon.ca</u>>
Sent: Saturday, December 19, 2020 8:22 PM
To: Alycia Gruchalla <<u>AGruchalla@tmig.ca</u>>
Cc: Michael Dowdall <<u>MDowdall@tmig.ca</u>>
Subject: RE: Transportation Study - Terms of Reference - Input Request

Hi Alycia,

Based on the terms of reference for the TIS, the subject application is located on Charleston Sideroad between Mississauga Road and Main Street (RR 136). Since Charleston Sideroad is a regional road, and the other intersections mentioned in the TIS are either regional or MTO highways (with the possible exception of Cataract Road and any proposed internal roads) review of the TIS ToR's should primarily be addressed by the Region of Peel.

Regarding first principals vs ITE guidelines for trip generation, note the following, I would recommend to take a conservative approach regarding trip generation and use whatever methodology would result in the higher trip generation numbers.

Regards,

# Arash Olia, P.Eng., Ph.D.

Manager, Transportation Engineering Engineering Services Department

Office: 905.584.2272 x.4073 Cell: 416.452.7091 Email: <u>arash.olia@caledon.ca</u>

Town of Caledon | <u>www.caledon.ca</u> | <u>www.visitcaledon.ca</u> | Follow us @YourCaledon

From: Alycia Gruchalla <agruchalla@tmig.ca>
Sent: Thursday, December 17, 2020 3:03 PM
To: Arash Olia <<u>Arash.Olia@caledon.ca</u>>
Cc: Michael Dowdall <<u>mdowdall@tmig.ca</u>>
Subject: Transportation Study - Terms of Reference - Input Request

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the contents to be safe.

Hello Arash,

TMIG has been retained to perform a haul route assessment and transportation impact study in support of the proposed CBM Aggregates, a division of St. Marys Cement Inc., Caledon Quarry project in the Town of Caledon.

| From:    | Khan, Ayesha <ayesha.khan@peelregion.ca></ayesha.khan@peelregion.ca> |
|----------|----------------------------------------------------------------------|
| Sent:    | Friday, January 15, 2021 9:20 AM                                     |
| То:      | Alycia Gruchalla                                                     |
| Cc:      | Michael Dowdall; Hamdani, Hashim                                     |
| Subject: | RE: Transportation Study - Terms of Reference - Input Request        |

Good morning Alycia,

We've reviewed your terms of reference submitted in support of the Caledon Quarry Project and wish to offer the following comments:

- We are satisfied with the study area scope/road network;
- We are satisfied with the horizon of 10 years post full build-out for the analyses;
- Please contact <u>Transportation</u> to confirm growth rates along the subject Regional road(s).
- Please contact Damian Jamroz (<u>damian.jamroz@peelregion.ca</u>), Supervisor of Traffic Operations to obtain the most recent TMCs and/or average annual daily traffic (AADT).
- Please contact Rick Laing (<u>rick.laing@peelregion.ca</u>), Supervisor of Traffic Signals and Streetlighting, to obtain traffic signal timing parameters and ensure that the information includes the appropriate walk/don't walk splits, recall modes and offsets.
- Please contact <u>Development Services Planning</u> staff to obtain details on surrounding developments in the area that would affect traffic capacity in the planning horizon year(s)
- Please see the following link for further details on our website for the preferred general layout and requirements of the TIS -<u>https://www.peelregion.ca/pw/transportation/business/traffic-impact-study.asp</u>

Feel free to reach out to me if you have any further questions.

Thank you,

Ayesha Khan Technical Analyst, Traffic Development & Permits Traffic Engineering Region of Peel 10 Peel Centre Drive, Suite B, 4<sup>th</sup> Floor Brampton, ON L6T 4B9 (905) 791 - 7800 ext. **7909** 



This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Alycia Gruchalla <AGruchalla@tmig.ca>
Sent: January 5, 2021 2:22 PM
To: Khan, Ayesha <ayesha.khan@peelregion.ca>
Cc: Carrick, Sean <sean.carrick@peelregion.ca>; Michael Dowdall <MDowdall@tmig.ca>
Subject: Transportation Study - Terms of Reference - Input Request

| From:        | Yousaf, Kamran (MTO) <kamran.yousaf@ontario.ca></kamran.yousaf@ontario.ca>                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sent:        | Friday, June 25, 2021 5:00 PM                                                                                                                                                         |
| То:          | Sara Rahman                                                                                                                                                                           |
| Cc:          | Alycia Gruchalla; Aurini, Shawn (MTO); Lau, Wes (MTO); Zivkovic, Branko (MTO);<br>Hakomaki, Eric (MTO)                                                                                |
| Subject:     | RE: Terms of Reference Contact                                                                                                                                                        |
| Attachments: | 16470 - 10 & RR24 - 26-09-18.pdf; Signalized_Hwy 10 at RR 24 - Charleston Sideroad -<br>Main St.pdf; General Guidelines for the Preparation of Traffic Impact Studies Feb<br>2021.pdf |

You don't often get email from kamran.yousaf@ontario.ca. Learn why this is important

Hi Sara,

After review of the draft TIS submitted for the proposed quarry in Caledon, MTO would recommend the following:

Since Highway 10 and RR24 intersection is mentioned in the analysis of the study, MTO recommends utilizing the following documents listed in preparation of the TIS:

- Ministry's TIS guideline;
- Ministry's TMC from 2018;
- Ministry's signal timing plan at Hwy 10/RR24 intersection.
- Published traffic volume data: https://www.library.mto.gov.on.ca/SydneyPLUS/TechPubs/Portal/tp/tvSplash.aspx

All documents have been attached for your reference.

Thank you, Kamran Yousaf

From: Sara Rahman <SRahman@tmig.ca>
Sent: June 24, 2021 12:22 PM
To: Yousaf, Kamran (MTO) <Kamran.Yousaf@ontario.ca>
Cc: Alycia Gruchalla <AGruchalla@tmig.ca>; Aurini, Shawn (MTO) <Shawn.Aurini@ontario.ca>
Subject: RE: Terms of Reference Contact

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Hi Kamran,

I am following up on my previous email about the proposed terms of reference for the new Caledon Quarry project (please see attached). I wanted to confirm if you had any questions or comments about the proposed scope of work.

Thanks,

Sara Rahman TMIG | TYLI +1.905.738.5700 x261 | c: +1.403.862.8438



Date: May 6, 2021 From: Sara Rahman, The Municipal Infrastructure Group Ltd. Re: Growth Rates Data Request – Charleston Road between Mississauga Road and Hurontario Street

Sara,

Here are the estimated CAGR values for Charleston Road between Mississauga Road and Hurontario Street:

| 2016 – 2021 | 2021 – 2031 |
|-------------|-------------|
| 0.5%        | 0.5%        |

These growth rates are estimated based on multiple sources including Peel Travel Demand forecasting model, ATR and land use/forecasts data. Please note that this area may be further affected by future growth (after 2031 and beyond). Please use your professional judgement when using these values.

If you require further assistance, please contact me at (905) 791-7800 ext. 4810.

Regards,

Tiggy Chen Co-op Student, Transportation System Planning Transportation Division, Public Works Services, Region of Peel 10 Peel Centre Drive, Suite B, 4<sup>th</sup> Floor Brampton, ON L6T 4B9 W: (905) 791-7800 x4810 C: (647) 918-2827 E: <u>tiggy.chen@peelregion.ca</u>



Date: May 6, 2021 From: Sara Rahman, The Municipal Infrastructure Group Ltd. Re: Growth Rates Data Request – Main Street north of Charleston Road

Sara,

Here are the estimated CAGR values for Main Street north of Charleston Road:

| 2016 – 2021 | 2021 – 2031 |
|-------------|-------------|
| 0.5%        | 0.5%        |

These growth rates are estimated based on multiple sources including Peel Travel Demand forecasting model, ATR and land use/forecasts data. Please note that this area may be further affected by future growth (after 2031 and beyond). Please use your professional judgement when using these values.

If you require further assistance, please contact me at (905) 791-7800 ext. 4810.

Regards,

Tiggy Chen Co-op Student, Transportation System Planning Transportation Division, Public Works Services, Region of Peel 10 Peel Centre Drive, Suite B, 4<sup>th</sup> Floor Brampton, ON L6T 4B9 W: (905) 791-7800 x4810 C: (647) 918-2827 E: tiggy.chen@peelregion.ca

| From:    | Arash Olia <arash.olia@caledon.ca></arash.olia@caledon.ca>    |
|----------|---------------------------------------------------------------|
| Sent:    | Thursday, May 6, 2021 3:19 PM                                 |
| То:      | Sara Rahman                                                   |
| Cc:      | Alycia Gruchalla                                              |
| Subject: | RE: Transportation Study - Terms of Reference - Input Request |

Hi Sara – assume 2% for Cataract Road and for Highway 10; I have no contact person. You should reach out to MTO for that.

**Arash Olia, Ph.D., P.Eng.** Manager, Transportation Engineering Engineering Services Department

Office: 905.584.2272 x.4073 Cell: 416.452.7091 Email: <u>arash.olia@caledon.ca</u>

Town of Caledon | www.caledon.ca | www.visitcaledon.ca | Follow us @YourCaledon

From: Sara Rahman <SRahman@tmig.ca>
Sent: Thursday, May 6, 2021 2:30 PM
To: Arash Olia <Arash.Olia@caledon.ca>
Cc: Alycia Gruchalla <AGruchalla@tmig.ca>
Subject: RE: Transportation Study - Terms of Reference - Input Request

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the contents to be safe.

### Hi Arash,

As per the correspondence below, I was wondering if you have information about growth rate data, or if you could direct me to the appropriate contact regarding this information? Please see below the sections of roadways we are interested in.

| Roadway                           | Interested Roa                                 | adway Section        |
|-----------------------------------|------------------------------------------------|----------------------|
| Noadway                           | From                                           | То                   |
| Hurontario Street<br>(Highway 10) | Beechgrove Side Road                           | Escarpment Side Road |
| Cataract Road                     | Charleston Sideroad<br>(Peel Regional Road 24) | Mississauga Road     |

Please let me know if you have any questions!

Thanks,

Sara Rahman, B.A.Sc, E.I.T. Transportation Planner

TMIG | TYLI

| From:    | Arash Olia <arash.olia@caledon.ca></arash.olia@caledon.ca>    |
|----------|---------------------------------------------------------------|
| Sent:    | Thursday, May 6, 2021 3:54 PM                                 |
| То:      | Sara Rahman; Kant Chawla                                      |
| Cc:      | Alycia Gruchalla                                              |
| Subject: | RE: [Update] RE: Growth Rate Request for Transportation Study |

You can assume 2%.

#### Arash Olia, Ph.D., P.Eng. Manager, Transportation Engineering Engineering Services Department

Office: 905.584.2272 x.4073 Cell: 416.452.7091 Email: <u>arash.olia@caledon.ca</u>

Town of Caledon | www.caledon.ca | www.visitcaledon.ca | Follow us @YourCaledon

From: Sara Rahman <SRahman@tmig.ca>
Sent: Thursday, May 6, 2021 3:37 PM
To: Kant Chawla <Kant.Chawla@caledon.ca>; Arash Olia <Arash.Olia@caledon.ca>
Cc: Alycia Gruchalla <AGruchalla@tmig.ca>
Subject: RE: [Update] RE: Growth Rate Request for Transportation Study

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the contents to be safe.

Thank you, Kant!

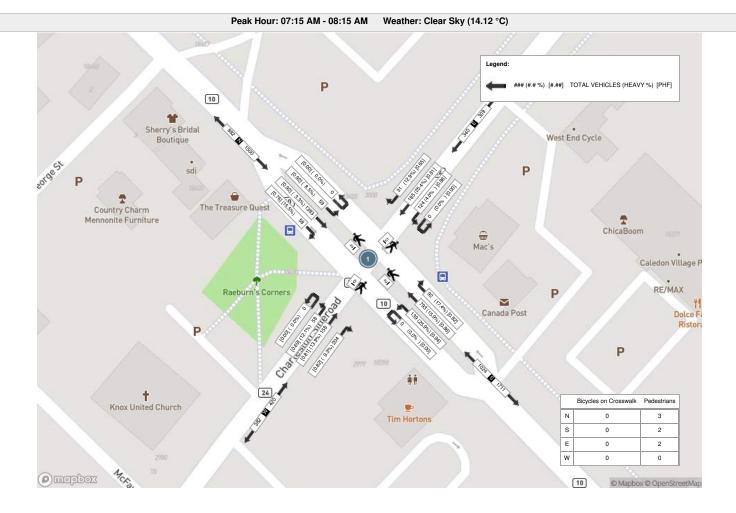
Arash, thank you for providing me with growth rate information for Cataract Road, as per our previous correspondence. I have contacted the MTO about growth rate information regarding Hurontario Street. All that is left is the growth rate for Mississauga Road. Please see in the correspondence below for the sections of Mississauga Road that we are interested in.

Let me know if you have any questions.

Best,

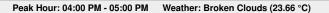
Sara Rahman TMIG | TYLI +1.905.738.5700 x261 | c: +1.403.862.8438

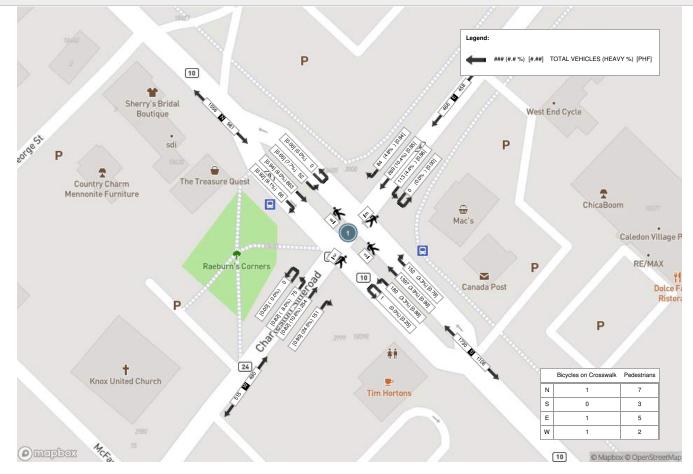
From: Kant Chawla <<u>Kant.Chawla@caledon.ca</u>>
Sent: Thursday, May 6, 2021 3:30 PM
To: Sara Rahman <<u>SRahman@tmig.ca</u>>
Cc: Alycia Gruchalla <<u>AGruchalla@tmig.ca</u>>; Arash Olia <<u>Arash.Olia@caledon.ca</u>>
Subject: RE: [Update] RE: Growth Rate Request for Transportation Study


Sara , thank you for your email! By way of copy , I am requesting Arash and his section to assist you with your data request as appropriate.

# **APPENDIX B**

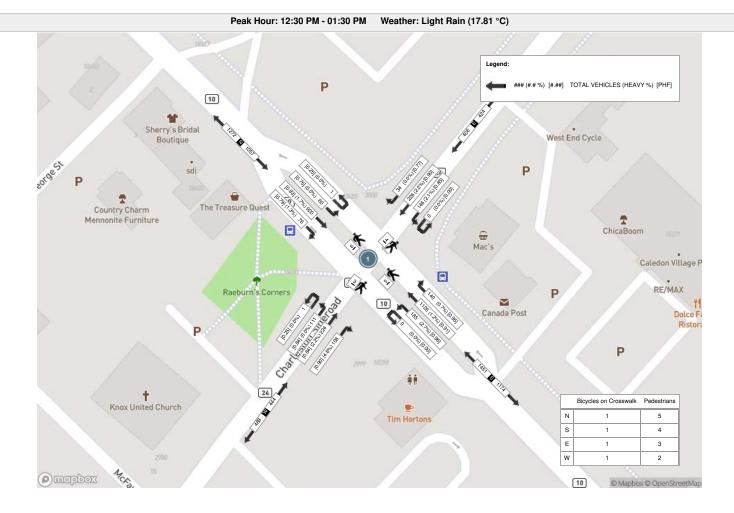
**Existing Traffic Data** 



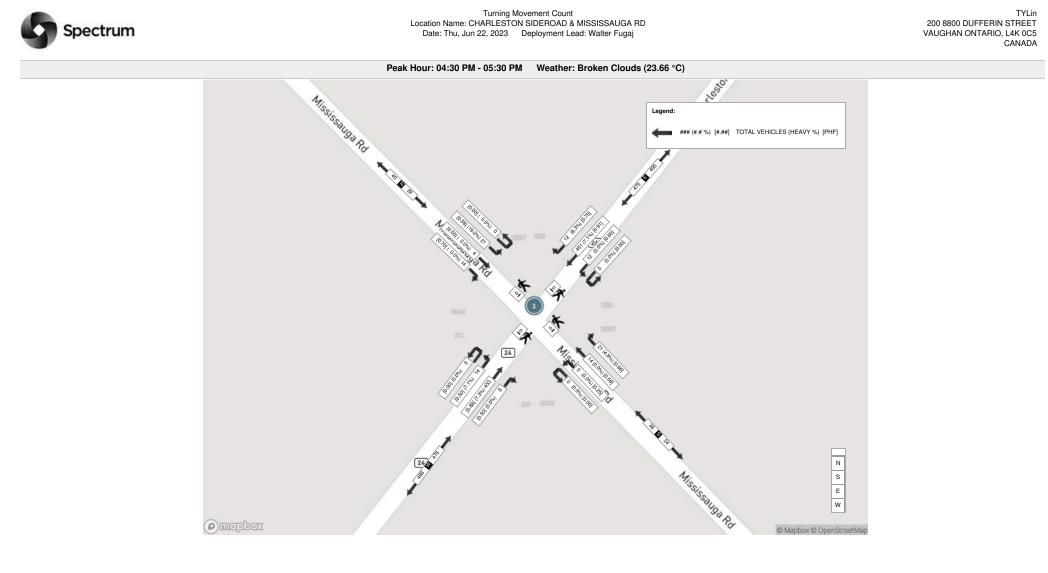


#### Turning Movement Count Location Name: CHARLESTON SIDEROAD & HIGHWAY 10 (HURONTARIO ST) Date: Thu, Jun 22, 2023 Deployment Lead: Walter Fugaj





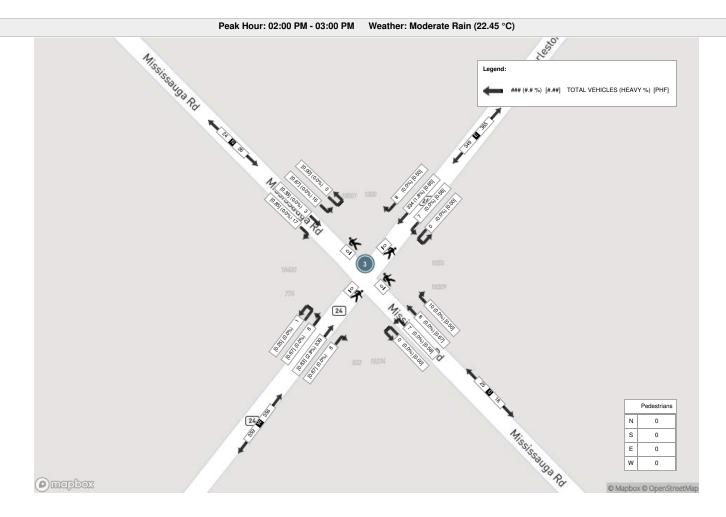

#### Turning Movement Count Location Name: CHARLESTON SIDEROAD & HIGHWAY 10 (HURONTARIO ST) Date: Thu, Jun 22, 2023 Deployment Lead: Walter Fugaj



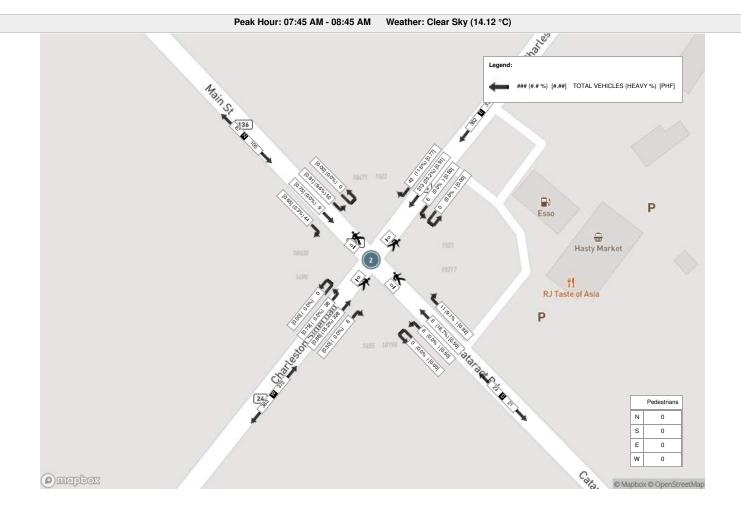



#### Turning Movement Count Location Name: CHARLESTON SIDEROAD & HIGHWAY 10 (HURONTARIO ST) Date: Sat, Jun 24, 2023 Deployment Lead: Walter Fugaj



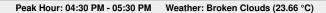


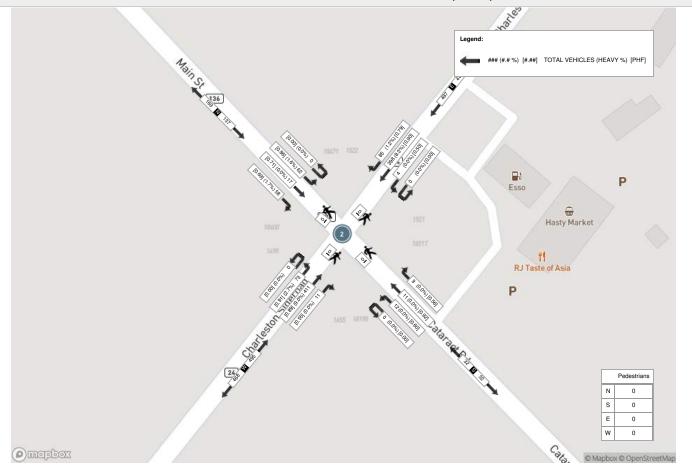



#### Turning Movement Count Location Name: CHARLESTON SIDEROAD & MISSISSAUGA RD Date: Sat, Jun 24, 2023 Deployment Lead: Walter Fugaj



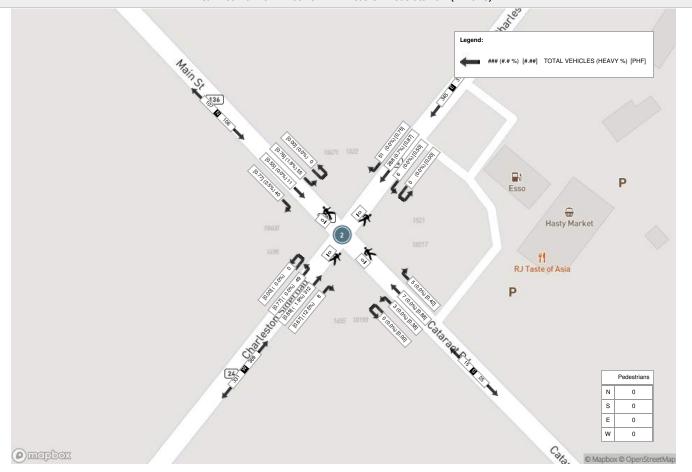




#### Turning Movement Count Location Name: CHARLESTON SIDEROAD & REGIONAL ROAD 136 (MAIN ST) / CATARACT RD Date: Thu, Jun 22, 2023 Deployment Lead: Walter Fugaj





#### Turning Movement Count Location Name: CHARLESTON SIDEROAD & REGIONAL ROAD 136 (MAIN ST) / CATARACT RD Date: Thu, Jun 22, 2023 Deployment Lead: Walter Fugaj








#### Turning Movement Count Location Name: CHARLESTON SIDEROAD & REGIONAL ROAD 136 (MAIN ST) / CATARACT RD Date: Sat, Jun 24, 2023 Deployment Lead: Walter Fugaj





# **GENERIC SIGNAL TIMING SHEET**

| ACTUATED        | Х               | PRE-TIMED        |              | SIGNAL TO BE MAINTAINED BY | Peel Region |
|-----------------|-----------------|------------------|--------------|----------------------------|-------------|
| LOCATION:       | Highwa          | y 10 at Charlest | on Side Road | SIGNAL TO BE OPERATED BY:  | MTO         |
| MAINSTREET (HW) | /): <u>High</u> | way 10           |              | TIMING DEVELOPED BY: MTO   |             |

DATE TIMING DEVELOPED : 2018-09-26

GENERIC TIMING IDENTIFIED HERE SHALL BE TRANSCRIBED ONTO "OFFICIAL" TIMING SHEETS FOR THE TRAFFIC SIGNAL CONTROLLER BEING USED AT THIS SIGNALIZED INTERSECTION. A COPY OF THE "OFFICIAL" LOCAL TIMING SHEETS AND COORDINATION SHEETS IF USED, SHALL BE ATTACHED TO THIS FORM AND FILED IN THE MTO REGIONAL TRAFFIC OFFICE

**OPERATIONAL NOTES:** 1

- All Prot/Perm left turn movements shall be followed by parent through movements without exception
- 2 If serving F2 and F6 the signal must cycle to F4 and/or F8 prior to serving a call for F1 and/or F5 if these left turn movements are protected/permissive.
- 3 If serving F4 and F8, the signal must cycle to F2 and/or F6 prior to serving a call for F3 and /or F7 if these left turn movements are protected/permissive.
- 4 Through Movements shall lag left turn movements unless otherwise specified.
- 5 70 km/h operating speed used for Highwy 10 calculations, 60 km/h for RR 24.

|                                          |         |         | M       | OVEME   | NT (FAZ | E)      |         |         |
|------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| FUNCTION/OPERATION                       | NB LEFT | NB THRU | WB LEFT | WB THRU | SB LEFT | SB THRU | EB LEFT | EB THRU |
| PERMITTED MOVEMENTS                      | Х       | X       | X       | X       | Х       | X       | X       | X       |
| RED LOCK                                 |         |         |         |         |         |         |         |         |
| AMBER LOCK                               |         |         |         |         |         |         |         |         |
| VEHICLE RECALL                           |         |         |         |         |         |         |         |         |
| PEDESTRIAN RECALL                        |         | Х       |         |         |         | Х       |         |         |
| VEHICLE MAX RECALL                       |         |         |         |         |         |         |         |         |
| OVERLAP A                                | T       |         |         |         |         |         |         |         |
| OVERLAP B                                | T       |         |         |         |         |         |         |         |
| PROT/PERM LEFT TURN ARROW                | X       |         | Х       |         | X       |         | Х       |         |
| PROT/PERM FAST FLASH ADVANCE GREEN       | T       |         |         |         |         |         |         |         |
| FULLY PROTECTED LEFT TURN                | 1       |         |         |         |         |         |         |         |
| DISPLAY AMBER ON STARTUP                 |         | X       |         |         |         | Х       |         |         |
| PLACE PED CALLS ON STARTUP               | 1       | X       |         | Х       |         | Х       |         | X       |
| PLACE VEHICLE CALLS ON STARTUP           | X       | X       | Х       | Х       | X       | Х       | Х       | Х       |
| REST IN WALK                             |         |         |         |         |         |         |         |         |
| MOVEMENTS MUST GAP OUT SIMULTANEOUSLY    |         | X       |         | Х       |         | Х       |         | Х       |
| DOUBLE ENTRY                             |         | Х       |         | Х       |         | Х       |         | X       |
| EXCLUSIVE (SEPERATE) PHASING BY APPORACH |         |         |         |         |         |         |         |         |
|                                          |         |         |         |         |         |         |         |         |
|                                          | T       |         |         |         |         |         |         |         |

# **F** Region of Peel Working for you

# FIELD COPY

| Interrocetion News                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                       | Deed Cade                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cup #                                                                                                           | Deur                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Intersection Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ľ                       | Road Code<br>00000013                    | 9939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sys #                                                                                                           | Rev.                                       |
| Hwy. 10 @ Charleston<br>Controller Make                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | Firmware R                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 3                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second |                         | -nniware R                               | ev. 140.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                            |
| McCain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2070/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| *- Start From Main Menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Re                      | vision                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| NO Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                               | ield Chg                                   |
| Y M D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | by                                         |
| 9 18 Implement T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iming Provided by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | МТО                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                               | GUILD                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| *- Start From Main Menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | and the second second second             | denotes and an and an instant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PHASE DI                | ESCRIPTIO                                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | No. of Concession, Name of Street or other |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| Ph1 Hwy. 10 - S/B L.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                       | h5 Hwy. 10                               | ) - N/B L.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                            |
| Ph2 Hwy. 10 - N/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | PH6 Hwy. 10                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| Ph3 Charleston - W/B L.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          | ton - E/B L.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                            |
| Ph4 Charleston - E/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                       | h8 Charles                               | ton - W/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | And the second second second                                                                                    |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IGURATION               | SU phase 2                               | & 6 jumpere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d to recall m                                                                                                   | ain street ped                             |
| Lag-2-2-110-111-121-23-121-21-21-21-21-21-21-21-21-21-21-21-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1978) en 60 (2 9 m.h.f.) 1998 en 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                          | 4 - <u>1999 - 1999 - 1999 - 1999 - 1999</u> - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 | 1911 Hard Hard & Hardweiter Hard Hard Hard Hard Hard Hard Hard Har                                              | 9-1-1/6-7-2-1/1-7-1/1-1/                   |
| Port Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| Port 2 Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                                            |
| Telemetry Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| System Detector address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| Telem response delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| Duplex - Half or Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| Modem Data Rate (BPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| Data, Parity, Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TION CUIDAS             | Chill comb                               | roller sequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contraction of the state of the state                                                                           |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONFIGURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TION SUBM               | ENU - CON                                | roner sequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ce                                                                                                              |                                            |
| 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| R1 1 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 3 4 9<br>6 7 8 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                            |
| R2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                      | U. BULLOF                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17-0-0720 IP4/10-140                                                                                            |                                            |
| Lease and the second se | CONFIGURATIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O FID-DIVING VIEW DV/10 | and the subscription of the party of the | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                            |
| Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                       | 4                                        | 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                               | 8                                          |
| Phase in use :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>X X</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u>                 | <u></u>                                  | <u>x</u> <u>x</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-\frac{x}{0}$                                                                                                  | <u>×</u>                                   |
| Exclusive Ped :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                       | 0                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                               | 0                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTROLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER SUBME                | NU - TIMIN                               | G DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                                            |
| initian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1925.                   |                                          | 120 0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 627                                                                                                           |                                            |
| Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                       | 4                                        | 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                               | 8                                          |
| Minimum Green :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                       | 10                                       | 7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 10                                         |
| Walk:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                       | 22                                       | 0 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 22<br>17                                   |
| Pedestrian Clearance. :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                       | 17                                       | 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 17                                         |
| Veh. Ext. :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                       | 3                                        | 3 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                               | 3                                          |
| Veh. Ext. 2 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                       | 0                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                               | 0 20                                       |
| Max. Ext. :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                       | 0                                        | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                               | 0                                          |
| Maximum No 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                       | 20                                       | 10 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 20                                         |
| Maximum No 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                       | 25                                       | 19 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 25                                         |
| Maximum No 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                       | 20<br>25<br>0                            | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                               | 0                                          |
| Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                       | 4.5                                      | 3 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 4.5                                        |
| Red Clr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 2.4                                      | 0 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the second se | 2.4                                        |
| Detector Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                      | 10                                       | 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                              | 10                                         |
| Doloolor Doloy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                              | 1.0                                        |

|                                                                                                                  |           | CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROLLER SU                                                                                                       | BMENU - F                              | RECALL DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                              | 110 1010        |
|------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------|-----------------|
|                                                                                                                  | Phase:    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                               | 3 4                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7           | 8                                                                            | Course of the   |
| Locking Memory                                                                                                   | :         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 -                                                                                                             | 0 0                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 0                                                                            |                 |
| Vehicle Recall                                                                                                   | ;         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x –                                                                                                             | 0 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           | 0                                                                            |                 |
| Ped Recall                                                                                                       |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x –                                                                                                             | 0 0                                    | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0 | 8<br>0<br>0<br>0                                                             |                 |
| Recall to Max                                                                                                    |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                               | 0 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| Soft Recall                                                                                                      |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                               | 0 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| Don't Rest Here                                                                                                  |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                               | 0 0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| Ped Dark n/call                                                                                                  |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                               | 0 0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| Tanta dan selaman basa mengan basa dan bertangan b                                                               |           | CONTROLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ER SUBMEN                                                                                                       | U - START                              | /FLASH D/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 1.25 Cf L Bas                                                                | and a line spec |
|                                                                                                                  | Phase:    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                               | 3 4                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7           | 8                                                                            |                 |
| Power Start                                                                                                      |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                               | 0 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| External Start:                                                                                                  |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                               | 0 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| Power start All Re                                                                                               | ed Time   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                               | 0 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| <b>Power Start Flash</b>                                                                                         | n time    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                              | 0 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           | 0                                                                            |                 |
| Out of Flash Yello                                                                                               | w         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>x</u>                                                                                                        | 0 0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| Out of Flash All F                                                                                               | Red       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                               | 0 0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| NAMES OF A DESCRIPTION OF A |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mental scenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                              |                 |
|                                                                                                                  |           | COT CONTRACTOR OF THE PARTY OF | ROLLER SU                                                                                                       | COLOR DATE OF COLOR DATE OF COLOR DATE | PTION DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conception of the local division of the loca |             |                                                                              |                 |
|                                                                                                                  | Phase:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 3 4                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _7          | 8<br>X<br>0<br>X<br>0<br>X<br>0<br>0<br>X<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 129400          |
| Guar Passage                                                                                                     | :         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the second se | 0 X                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | _ <u>X</u> _                                                                 |                 |
| Nonactuated 1                                                                                                    | :         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 0 0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| Nonactuated 2                                                                                                    |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | _0                                                                           |                 |
| Dual Entry                                                                                                       |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 0 <u>X</u>                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | <u></u> X                                                                    |                 |
| Cond Service                                                                                                     |           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                               | X 0                                    | _ <u>X</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>_X</u>   | _0                                                                           |                 |
| Rest in Walk                                                                                                     |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 0 0                                    | 0_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 0                                                                            |                 |
| Flashing Walk                                                                                                    |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the second se | 0 0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                                                                            |                 |
| Phase Omit                                                                                                       |           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                               | 4 0                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8           | 0                                                                            |                 |
| Phase - Yellow                                                                                                   |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 0 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | _0                                                                           |                 |
| Enable                                                                                                           | Programmi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DD - NIC PRO                                                                                                    | ual Entry                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |                 |
| Step                                                                                                             | PGM       | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pattern                                                                                                         | Overrid                                | the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | - 5 - 5                                                                      | -               |
| 1                                                                                                                | 1         | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                               | overrid                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |                 |
| 2                                                                                                                | 1         | 05:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |                 |
| 3                                                                                                                | 1         | 09:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |                 |
| 4                                                                                                                | 1         | 15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *3                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |                 |
| 5                                                                                                                | 1         | 19:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |                 |
| 6                                                                                                                | 2         | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |                 |
| 0                                                                                                                | -         | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                              |                 |

•

|                 |                         | NIC/1          | OD -             | TOD                                                                                                            | PROG           | RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STE         | EPS            | *-5-6                                                                                                          |
|-----------------|-------------------------|----------------|------------------|----------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|----------------------------------------------------------------------------------------------------------------|
| TOD PROG Step 1 | a designed and a second | and the second | annihite Bredonn | a for the second se | D-D-manufactor | And a state of the | transfer to | and in case of | na de la companya de |
| AY PGM NUM1     |                         |                |                  |                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                                                                                                                |
| tep Begins00:00 |                         |                |                  |                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                                                                                                                |
| PHASE           | 1                       | 2              | 3                | 4                                                                                                              | 5              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7           | 8              |                                                                                                                |
| MAX 2 ENABLE    |                         |                |                  |                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                                                                                                                |
| MAX 3 ENABLE    |                         |                |                  |                                                                                                                | 1.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                                                                                                                |
| VEH RECALL      |                         | 20             |                  |                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | 0                                                                                                              |
| VEH MAX RECALL  |                         |                |                  |                                                                                                                |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 2              | PATTERN 2                                                                                                      |
| PED RECALL      |                         |                |                  |                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | 11.1.2                                                                                                         |
| PHASE OMIT      |                         | 1              |                  |                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                                                                                                                |

| TOD PROG Step 2                 |   |       |   |              |       |     |       |   |                                         |
|---------------------------------|---|-------|---|--------------|-------|-----|-------|---|-----------------------------------------|
| DAY PGM NUM1                    |   |       |   |              |       |     |       |   |                                         |
| Step Begins05:30                |   |       |   |              | 122   |     | -     |   |                                         |
| PHASE                           | 1 |       | 3 | 4            | 5     | 6   | 7     | 8 |                                         |
| MAX 2 ENABLE                    |   | X     |   | X            |       | X   | 8     | X |                                         |
| MAX 3 ENABLE                    |   | •     | • |              | •     |     | •     | • |                                         |
| VEH RECALL                      |   |       |   |              |       |     |       | • | PATTERN                                 |
| VEH MAX RECALL                  |   |       | • | 0.0          |       | •   | •     | • |                                         |
| PED RECALL                      |   | y     |   | ( <b>.</b> ) |       |     |       | • |                                         |
| PHASE OMIT                      |   | 0.9.7 | 1 | •            |       | •   | •     | • |                                         |
| TOD PROG Step 3                 |   |       |   |              |       |     |       |   |                                         |
| DAY PGM NUM 1                   |   |       |   |              |       |     |       |   |                                         |
| Step Begins09:30                |   |       |   |              |       |     |       |   |                                         |
| PHASE                           | 1 | 2     | 3 | 4            | 5     | 6   | 7     | 8 |                                         |
| MAX 2 ENABLE                    |   |       |   |              |       | 5.0 |       |   |                                         |
| MAX 3 ENABLE                    |   |       |   |              |       |     |       |   |                                         |
| VEH RECALL                      |   |       |   |              |       |     |       |   | PATTERN 2                               |
| VEH MAX RECALL                  |   |       |   |              |       |     |       |   | 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - |
| PED RECALL                      |   |       |   |              |       |     |       |   |                                         |
| PHASE OMIT                      |   |       |   |              |       |     |       |   |                                         |
|                                 |   |       |   |              |       |     |       |   |                                         |
| TOD PROG Step 4                 |   |       |   |              |       |     |       |   |                                         |
| DAY PGM NUM1                    |   |       |   |              |       |     |       |   |                                         |
| Step Begins15:00                |   |       |   |              |       |     |       |   |                                         |
| PHASE                           | 1 | 2     | 3 | 4            | 5     | 6   | 7     | 8 |                                         |
| MAX 2 ENABLE                    |   | X     |   | X            | X     | X   | -     | Х |                                         |
| MAX 3 ENABLE                    |   |       |   |              |       |     |       | • | 7                                       |
| VEH RECALL                      |   |       |   |              |       |     |       |   | PATTERN 3                               |
| VEH MAX RECALL                  |   |       |   |              |       |     |       |   | 14.15                                   |
| PED RECALL                      |   |       |   |              |       |     |       |   |                                         |
| PHASE OMIT                      |   |       |   |              |       | •   | ()    |   |                                         |
| TOD PROG Step 5                 |   |       |   |              |       |     |       |   |                                         |
| DAY PGM NUM 1                   |   |       |   |              |       |     |       |   |                                         |
| Step Begins19:00                |   |       |   |              |       |     |       |   |                                         |
| PHASE                           | 1 | 2     | 3 | 4            | 5     | 6   | 7     | 8 |                                         |
| MAX 2 ENABLE                    |   |       | 5 | *            |       | 0   | '     | 0 |                                         |
| MAX 3 ENABLE                    | • | •     | • |              | (e) ( |     | •     |   |                                         |
| VEH RECALL                      |   | •     | • | •            |       | •   | •     | • | 1 7                                     |
| VEH MAX RECALL                  |   | •     |   | •            | (     | •   | •     |   | PATTENN 2                               |
| PED RECALL                      |   |       | • | •            | (*)   |     | •     | • |                                         |
| PHASE OMIT                      |   |       |   |              |       |     | :     |   |                                         |
| TOD DDOC Stor 6                 |   |       |   |              |       |     | 51417 |   |                                         |
| TOD PROG Step 6<br>DAY PGM NUM2 |   |       |   |              |       |     |       |   |                                         |
|                                 |   |       |   |              |       |     |       |   |                                         |
| Step Begins00:00                |   |       |   |              |       |     |       |   |                                         |
| PHASE                           | 1 | 2     | 3 | 4            | 5     | 6   | 7     | 8 |                                         |
| MAX 2 ENABLE                    |   | ٠.    |   |              |       |     |       |   |                                         |
| MAX 3 ENABLE                    |   |       |   |              |       |     |       |   |                                         |
| VEH RECALL                      |   |       |   |              |       |     |       |   |                                         |
| VEH MAX RECALL                  |   |       |   |              |       |     |       |   |                                         |
| PED RECALL                      |   |       |   |              |       |     |       |   |                                         |
| PHASE OMIT                      |   |       |   |              |       |     |       |   |                                         |
|                                 |   |       |   |              |       |     |       |   |                                         |

# NIC/TOD - WEEKLY PROGRAMS

| WEEK | SUN MON TUE WED THU | J FRI SAT |  |
|------|---------------------|-----------|--|
| 1    | 2 1 1 1             | 1 1 2     |  |
| 2    |                     |           |  |
| 3    |                     |           |  |
| 4    |                     |           |  |
| 5    |                     |           |  |
| 6    |                     |           |  |
| 7    |                     | 2 3       |  |
| 8    |                     |           |  |
| 9    |                     |           |  |
| 10   |                     |           |  |
|      |                     |           |  |

| mments:                 | MAX II Active in AM & PM |  |
|-------------------------|--------------------------|--|
| A.                      | 05:30 to 09:30           |  |
| liver som som syste     | 15:00 to 19:00           |  |
|                         |                          |  |
|                         |                          |  |
|                         |                          |  |
|                         |                          |  |
|                         |                          |  |
|                         |                          |  |
| and Street and an other |                          |  |

Authorized Signature:

î

R. Laix

Date: Dor. 10/ 18

\*-5-2

 GENERIC SIGNAL TIMING SHEET

 ACTUATED
 PRE-TIMED
 X
 SIGNAL TO BE MAINTAINED BY
 Peel Region

 LOCATION:
 Highway 10 at Charleston Side Road
 SIGNAL TO BE OPERATED BY:
 MTO

 MAINSTREET (HWY):
 Highway 10
 TIMING DEVELOPED BY:
 MTO

 DATE TIMING DEVELOPED :
 2018-09-26
 GENERIC TIMING IDENTIFIED HERE SHALL BE TRANSCRIBED ONTO "OFFICIAL" TIMING SHEETS FOR THE TRAFETIC SIGNAL CONTROL LEP BEING USED AT THIS SIGNAL ZED INTERSECTION.
 A CODY OF THE "OFFICIAL"

PLEASE JAPLEMENT THESE TIMING

WHEN LOOPS FAILED.

TRAFFIC SIGNAL CONTROLLER BEING USED AT THIS SIGNALIZED INTERSECTION. A COPY OF THE "OFFICIAL" LOCAL TIMING SHEETS AND COORDINATION SHEETS IF USED, SHALL BE ATTACHED TO THIS FORM AND FILED IN THE MTO REGIONAL TRAFFIC OFFICE

**OPERATIONAL NOTES: 1** 

- All Prot/Perm left turn movements shall be followed by parent through movements without exception
- 2 If serving F2 and F6 the signal must cycle to F4 and/or F8 prior to serving a call for F1 and/or F5 if these left turn movements are protected/permissive.
- 3 If serving F4 and F8, the signal must cycle to F2 and/or F6 prior to serving a call for F3 and /or F7 if these left turn movements are protected/permissive.
- 4 Through Movements shall lag left turn movements unless otherwise specified.
- 5 70 km/h operating speed used for Highwy 10 calculations, 60 km/h for RR 24.

| FUNCTION/OPERATION                                                                                                                                                                                                                                                                                                                                                                                         | 2. 200                    | No.     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IOVEMEI    | NT (FAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E)        | 10000       | Pro Service           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------------------|
| PUNCTION/OPERATION                                                                                                                                                                                                                                                                                                                                                                                         | NB LEFT                   | NB THRU | WBLEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WB THRU    | SB LEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SB THRU   | E8 LEFT     | EB THRU               |
| PERMITTED MOVEMENTS                                                                                                                                                                                                                                                                                                                                                                                        | X                         | X       | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х          | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X         | X           | X                     |
| RED LOCK                                                                                                                                                                                                                                                                                                                                                                                                   |                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| AMBER LOCK                                                                                                                                                                                                                                                                                                                                                                                                 |                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| VEHICLE RECALL                                                                                                                                                                                                                                                                                                                                                                                             | (X)                       |         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X          | (X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | X           | CX                    |
| PEDESTRIAN RECALL                                                                                                                                                                                                                                                                                                                                                                                          |                           | X       | Self-Self-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -Bernburge | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Х         |             | a market a m          |
| VEHICLE MAX RECALL                                                                                                                                                                                                                                                                                                                                                                                         |                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | *******               |
| OVERLAP A                                                                                                                                                                                                                                                                                                                                                                                                  | 1                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| OVERLAP B                                                                                                                                                                                                                                                                                                                                                                                                  | 1                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| PROT/PERM LEFT TURN ARROW                                                                                                                                                                                                                                                                                                                                                                                  | X                         | - 03 ST | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and seeing | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N. BARRIE | Х           | COL CRIME             |
| PROT/PERM FAST FLASH ADVANCE GREEN                                                                                                                                                                                                                                                                                                                                                                         | 1                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| FULLY PROTECTED LEFT TURN                                                                                                                                                                                                                                                                                                                                                                                  | 1                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| DISPLAY AMBER ON STARTUP                                                                                                                                                                                                                                                                                                                                                                                   |                           | Х       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X         |             |                       |
| PLACE PED CALLS ON STARTUP                                                                                                                                                                                                                                                                                                                                                                                 | 1                         | Х       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X         |             | Х                     |
| PLACE VEHICLE CALLS ON STARTUP                                                                                                                                                                                                                                                                                                                                                                             | X                         | Х       | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X          | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х         | X           | Х                     |
| REST IN WALK                                                                                                                                                                                                                                                                                                                                                                                               | a constant                |         | A Stanton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Constant of |                       |
| MOVEMENTS MUST GAP OUT SIMULTANEOUSLY                                                                                                                                                                                                                                                                                                                                                                      |                           | Х       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X         |             | Х                     |
| DOUBLE ENTRY                                                                                                                                                                                                                                                                                                                                                                                               |                           | Х       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х         |             | X                     |
| EXCLUSIVE (SEPERATE) PHASING BY APPORACH                                                                                                                                                                                                                                                                                                                                                                   |                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |
| an - Cranikan (en fan de fan de fan de fan de fan fan de f | to a design of the second |         | 1000 B 100 B 1000 B 100 |            | a series from a section of the secti |           |             | 101.50-8 (ALS CLARKS) |
| ***************************************                                                                                                                                                                                                                                                                                                                                                                    |                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                       |

|                                        | MOVEMENT (FAZE) |         |        |         |                        |         |                               |         |  |  |  |
|----------------------------------------|-----------------|---------|--------|---------|------------------------|---------|-------------------------------|---------|--|--|--|
| INTERVAL TIMES                         | NB LEFT         | NB THRU | WBLEFT | WB THRU | SB LEFT                | SB THRU | EB LEFT                       | EB THRU |  |  |  |
| WALK                                   | States and      | 21      |        | 22.     | Constant of the second | 21      |                               | 22      |  |  |  |
| FLASHING DON'T WALK                    |                 | 16      |        | 17      |                        | 16      |                               | 17      |  |  |  |
| MINIMUM GREEN                          | 7.0             | (50.0)  | 7.0    | (18.0)  | 7.0                    | (50.0)  | 7.0                           | (18.0)  |  |  |  |
| VEHICLE EXTENSION (PASSAGE TIME)       | 3.0             | 4.4     | 3.0    | 3.0     | 3.0                    | 4.4     | 3.0                           | 3.0     |  |  |  |
| MAXIMUM GREEN (INCLUDES MIN GREEN)     | 10.0            | (60.0)  | 7.0    | (25.0)  | 10.0                   | (60.0)  | 7.0                           | 25.0    |  |  |  |
| MAXIMUM GREEN 2 (ALTERNATE MAX GREEN)  | 19.0            | 67.0    |        | 25.0    |                        | 67.0    |                               | 25.0    |  |  |  |
| AMBER CLEARANCE                        | 3.0             | 5.0     | 3.0    | 4.5     | 3.0                    | 5.0     | 3.0                           | 4.5     |  |  |  |
| ALL RED CLEARANCE                      | 1               | 2.4     |        | 2.4     |                        | 2.4     |                               | 2.4     |  |  |  |
| MAX GAP (VEH. EXTENSION)               | 3.0             | 4.4     | 3.0    | 3.0     | 3.0                    | 4.4     | 3.0                           | 3.0     |  |  |  |
| MIN GAP (VEH. EXTENSION)               | 3.0             | 4.4     | 3.0    | 3.0     | 3.0                    | 4.4     | 3.0                           | 3.0     |  |  |  |
| REDUCE GAP BY                          |                 | 1       |        |         |                        |         |                               |         |  |  |  |
| REDUCE GAP EVERY                       |                 | 11      |        | ĵi      |                        |         |                               |         |  |  |  |
| MAX INITIAL GREEN TIME (VARIABLE INIT) |                 | 25      |        |         |                        | 25      | have not managed with the tra |         |  |  |  |
| TIME ADDED/VEHICLE (VARIABLE INIT)     |                 | 1 1     |        |         |                        | 1       |                               |         |  |  |  |
|                                        |                 |         |        |         |                        |         |                               |         |  |  |  |
|                                        |                 |         |        |         |                        |         |                               |         |  |  |  |

| DETECTOD OFTLID                       | MOVEMENT (FAZE) |         |         |         |         |         |         |         |  |  |  |  |
|---------------------------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|--|--|--|--|
| DETECTOR SETUP                        | NB LEFT         | NB THRU | WB LEFT | WB THRU | SB LEFT | SB THRU | EB LEFT | EB THRU |  |  |  |  |
| DELAY TIME ON PRESENCE DETECTION      | 5.0             |         | 10.0    | 10.0    | 5.0     |         | 10.0    | 10.0    |  |  |  |  |
| DELAY ON LONG DISTANCE DETECTION      |                 |         |         |         |         |         |         |         |  |  |  |  |
| CARRY-OVER ON PRESENCE DETECTION      | 1               |         |         |         |         |         |         |         |  |  |  |  |
| CARRY-OVER ON LONG DISTANCE DETECTION | T               |         |         |         |         |         |         |         |  |  |  |  |

| DDD CMDTION                           |         |         | N       | OVEME   | MOVEMENT (FAZE) |                  |                    |         |  |  |  |  |  |  |  |
|---------------------------------------|---------|---------|---------|---------|-----------------|------------------|--------------------|---------|--|--|--|--|--|--|--|
| PRE-EMPTION                           | NB LEFT | NB THRU | WB LEFT | WB THRU | SB LEFT         | SB THRU          | EB LEFT            | EB THRU |  |  |  |  |  |  |  |
| 1ST EMERG. PRE-EMPT MOVEMENTS         |         | X       |         |         |                 | X                |                    |         |  |  |  |  |  |  |  |
| 1ST EMERG. PRE-EMPT DELAY TIME        |         | 1       |         |         |                 |                  |                    |         |  |  |  |  |  |  |  |
| 1ST EMERG. PRE-EMPT CLEARANCE TIME    |         | 1       |         |         |                 |                  |                    |         |  |  |  |  |  |  |  |
| 2ND EMERG, PRE-EMPT MOVEMENTS         |         |         |         | X       |                 |                  |                    | X       |  |  |  |  |  |  |  |
| 2ND EMERG. PRE-EMPT DELAY TIME        | 1       | 1       |         |         |                 |                  |                    |         |  |  |  |  |  |  |  |
| 2ND EMERG. PRE-EMPT CLEARANCE TIME    |         | 1       |         |         |                 |                  |                    |         |  |  |  |  |  |  |  |
| RR PRE-EMPT TRACK CLEARANCE MOVEMENTS |         | 1       |         |         |                 |                  |                    |         |  |  |  |  |  |  |  |
| RR PRE-EMPT CLEARANCE TIME            |         | ]       |         |         |                 |                  |                    |         |  |  |  |  |  |  |  |
| RR PRE-EMPT DELAY TIME                | 1       |         |         |         |                 |                  |                    |         |  |  |  |  |  |  |  |
| RR PRE-EMPT LIMITED SERVICE MOVEMENTS | 1       |         |         |         |                 | AVER DE LEVE AND | BUILDINGS SHOT SAT |         |  |  |  |  |  |  |  |

| TIME OF DAY  | TIME  | TIME OF DAY |     |     |   | )F | WE    | E | K MOVEMENT (FAZE) |                |         |            |         |         |         |         |            |
|--------------|-------|-------------|-----|-----|---|----|-------|---|-------------------|----------------|---------|------------|---------|---------|---------|---------|------------|
| OPERATIONS   | START | END?        | S   | M   | T | W  | T     | F | S                 | NB LEFT        | NB THRU | WB LEFT    | WB THRU | SB LEFT | SB THRU | EB LEFT | EB THRU    |
| PHASE OMIT   |       |             | Π   |     |   |    | 11222 |   |                   |                |         |            |         |         |         |         | er dei mid |
| MAX RECALL   | 05:30 | 09:30       |     | X   | X | X  | X     | X |                   |                | X       |            | X       |         | X       |         | X          |
| MAX RECALL   | 15:00 | 19:00       |     | X   | X | X  | X     | X |                   | Х              | X       |            | X       |         | X       |         | X          |
| PED RECALL   | 1     |             |     |     |   |    |       |   |                   |                |         |            |         |         |         |         |            |
| MIN RECALL   |       |             |     |     |   |    |       |   |                   |                | 1       |            | ]       |         |         |         |            |
| MAX GREEN 2  |       |             |     | · · |   |    |       | ] |                   |                |         |            |         |         |         |         |            |
| REST IN WALK |       |             | 1-1 |     |   |    |       | 1 |                   | The lot of the |         | a fragment |         |         |         |         |            |
| AMBER LOCK   | 1     |             | 1-1 |     |   |    |       | 1 |                   |                | 1       |            |         |         |         |         |            |
| RED LOCK     | 1     |             | 1   |     |   |    |       | 1 |                   |                | 1       |            |         |         |         |         |            |
|              | 1     |             | T   |     |   |    |       |   |                   |                | T       |            |         |         |         |         |            |
|              | 1     |             | 1   |     |   |    |       |   |                   |                | 1       |            |         |         |         |         |            |

4

# GENERIC SIGNAL TIMING SHEET

| ACTUATED        | Х               | PRE-TIMED         |              | SIGNAL TO BE MAINTAINED | ) BY | Peel Region |  |
|-----------------|-----------------|-------------------|--------------|-------------------------|------|-------------|--|
| LOCATION:       | Highwa          | ay 10 at Charlest | on Side Road | SIGNAL TO BE OPERATED   | BY:  | МТО         |  |
| MAINSTREET (HW  | Y): <u>High</u> | iway 10           |              | TIMING DEVELOPED BY: N  | NTO  |             |  |
| DATE TIMING DEV |                 | · 2018-00-20      | 3            |                         |      |             |  |

GENERIC TIMING IDENTIFIED HERE SHALL BE TRANSCRIBED ONTO "OFFICIAL" TIMING SHEETS FOR THE TRAFFIC SIGNAL CONTROLLER BEING USED AT THIS SIGNALIZED INTERSECTION. A COPY OF THE "OFFICIAL" LOCAL TIMING SHEETS AND COORDINATION SHEETS IF USED, SHALL BE ATTACHED TO THIS FORM AND FILED IN THE MTO REGIONAL TRAFFIC OFFICE

**OPERATIONAL NOTES: 1** 

- All Prot/Perm left turn movements shall be followed by parent through movements without exception
- 2 If serving F2 and F6 the signal must cycle to F4 and/or F8 prior to serving a call for F1 and/or F5 if these left turn movements are protected/permissive.
- 3 If serving F4 and F8, the signal must cycle to F2 and/or F6 prior to serving a call for F3 and /or F7 if these left turn movements are protected/permissive.
- 4 Through Movements shall lag left turn movements unless otherwise specified.
- 5 70 km/h operating speed used for Highwy 10 calculations, 60 km/h for RR 24.

| FUNCTION/OPERATION                       | Second Second | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M                     | OVEME   | NT (FAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 Mar 19 M             |
|------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PONCTION/OFERATION                       | NB LEFT       | NB THRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WB LEFT               | WB THRU | SB LEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SB THRU     | EBLEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EB THRU                 |
| PERMITTED MOVEMENTS                      | X             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                     | X       | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X                       |
| RED LOCK                                 | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                       |
| AMBER LOCK                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| VEHICLE RECALL                           | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| PEDESTRIAN RECALL                        |               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |         | A CARLEY PAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| VEHICLE MAX RECALL                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| OVERLAP A                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| OVERLAP B                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| PROT/PERM LEFT TURN ARROW                | X             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                     |         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sugar State | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a state of the second   |
| PROT/PERM FAST FLASH ADVANCE GREEN       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| FULLY PROTECTED LEFT TURN                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| DISPLAY AMBER ON STARTUP                 |               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| PLACE PED CALLS ON STARTUP               | 1             | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | X       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                       |
| PLACE VEHICLE CALLS ON STARTUP           | X             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х                     | X       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X                       |
| REST IN WALK                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>-</u>                |
| MOVEMENTS MUST GAP OUT SIMULTANEOUSLY    |               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | X       | 09000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X                       |
| DOUBLE ENTRY                             |               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | X       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           | Sala and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                       |
| EXCLUSIVE (SEPERATE) PHASING BY APPORACH |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ····        | and the second se |                         |
|                                          | T             | Contractory of the local division of the loc | and the second second |         | Street of the local division of the local di | B 1 62 TM   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • • • • • • • • • • • • |
|                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |

| INTERVAL TIMES                         | - States                | N. P. States | N       | OVEME   | NT (FAZ | E)      | STAR ST |               |
|----------------------------------------|-------------------------|--------------|---------|---------|---------|---------|---------|---------------|
|                                        | NB LEFT                 | NB THRU      | WB LEFT | WB THRU | SB LEFT | SB THRU | EBLEFT  | EB THRU       |
| WALK                                   |                         | 21           |         | 22 .    | A REAL  | 21      |         | 22            |
| FLASHING DON'T WALK                    |                         | 16           |         | 17      |         | 16      |         | 17            |
| MINIMUM GREEN                          | 7.0                     | 20.0         | 7.0     | 10.0    | 7.0     | 20.0    | 7.0     | 10.0          |
| VEHICLE EXTENSION (PASSAGE TIME)       | 3.0                     | 4.4          | 3.0     | 3.0     | 3.0     | 4.4     | 3.0     | 3.0           |
| MAXIMUM GREEN (INCLUDES MIN GREEN)     | 10.0                    | 55.0         | 7.0     | 20.0    | 10.0    | 55.0    | 7.0     | 20.0          |
| MAXIMUM GREEN 2 (ALTERNATE MAX GREEN)  | 19.0                    | 67.0         |         | 25.0    |         | 67.0    |         | 25.0          |
| AMBER CLEARANCE                        | 3.0                     | 5.0          | 3.0     | 4.5     | 3.0     | 5.0     | 3.0     | 4.5           |
| ALL RED CLEARANCE                      | 1                       | 2.4          |         | 2.4     |         | 2.4     |         | 2.4           |
| MAX GAP (VEH. EXTENSION)               | 3.0                     | 4.4          | 3.0     | 3.0     | 3.0     | 4.4     | 3.0     | 3.0           |
| MIN GAP (VEH. EXTENSION)               | 3.0                     | 4.4          | 3.0     | 3.0     | 3.0     | 4.4     | 3.0     | 3.0           |
| REDUCE GAP BY                          | 1                       |              |         |         |         |         |         |               |
| REDUCE GAP EVERY                       |                         |              |         |         |         |         |         |               |
| MAX INITIAL GREEN TIME (VARIABLE INIT) | a a construction of the | 25           |         |         |         | 25      |         | a/201114/00/0 |
| TIME ADDED/VEHICLE (VARIABLE INIT)     |                         | 1            |         |         |         | 1       |         |               |

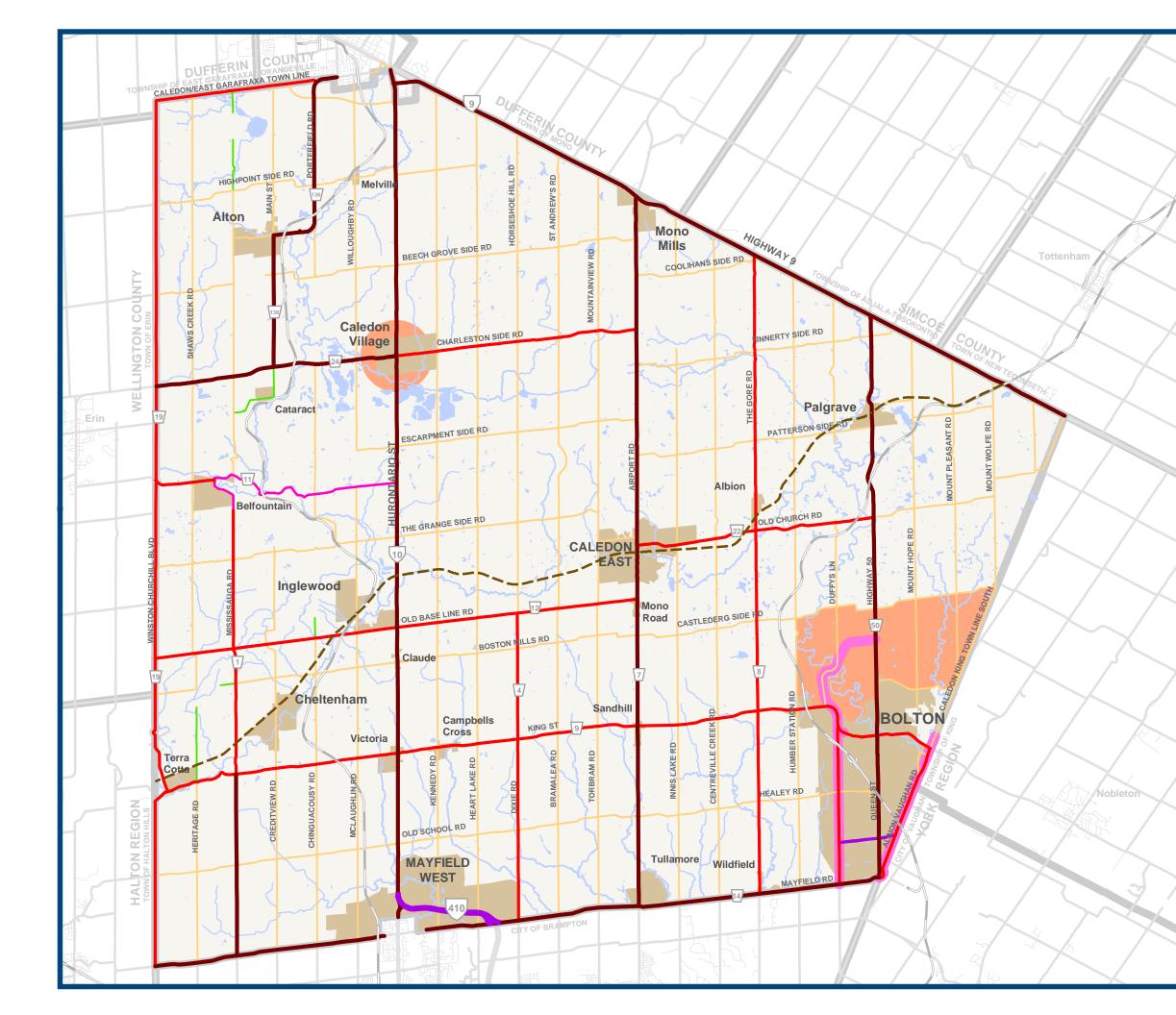
| DETECTOR SETUP                        | MOVEMENT (FAZE) |         |         |         |         |         |        |         |  |  |  |
|---------------------------------------|-----------------|---------|---------|---------|---------|---------|--------|---------|--|--|--|
| DETECTOR DETOR                        | NB LEFT         | NB THRU | WB LEFT | WB THRU | SB LEFT | SB THRU | EBLEFT | EB THRU |  |  |  |
| DELAY TIME ON PRESENCE DETECTION      | 5.0             |         | 10.0    | 10.0    | 5.0     |         | 10.0   | 10.0    |  |  |  |
| DELAY ON LONG DISTANCE DETECTION      | 1               |         |         |         |         |         |        |         |  |  |  |
| CARRY-OVER ON PRESENCE DETECTION      | 1               |         |         |         |         |         |        |         |  |  |  |
| CARRY-OVER ON LONG DISTANCE DETECTION | 1               |         |         |         |         |         |        |         |  |  |  |

| PRE-EMPTION                           | MOVEMENT (FAZE) |         |         |         |         |         |         |                                     |  |  |  |
|---------------------------------------|-----------------|---------|---------|---------|---------|---------|---------|-------------------------------------|--|--|--|
|                                       | NB LEFT         | NB THRU | WB LEFT | WB THRU | SB LEFT | SB THRU | EB LEFT | EB THRU                             |  |  |  |
| 1ST EMERG. PRE-EMPT MOVEMENTS         | 1               | X       |         |         |         | X       |         | and a second designed of the second |  |  |  |
| 1ST EMERG. PRE-EMPT DELAY TIME        | 1               |         |         |         |         |         |         |                                     |  |  |  |
| 1ST EMERG. PRE-EMPT CLEARANCE TIME    |                 |         |         | 1{      |         |         |         |                                     |  |  |  |
| 2ND EMERG. PRE-EMPT MOVEMENTS         | 1               |         |         | X       |         |         |         | X                                   |  |  |  |
| 2ND EMERG. PRE-EMPT DELAY TIME        |                 |         |         |         |         |         |         |                                     |  |  |  |
| 2ND EMERG. PRE-EMPT CLEARANCE TIME    |                 |         |         |         |         |         |         |                                     |  |  |  |
| RR PRE-EMPT TRACK CLEARANCE MOVEMENTS |                 |         |         |         |         |         |         |                                     |  |  |  |
| RR PRE-EMPT CLEARANCE TIME            |                 |         |         | ()      |         |         |         |                                     |  |  |  |
| RR PRE-EMPT DELAY TIME                | 1               |         |         | 11      |         |         |         |                                     |  |  |  |
| RR PRE-EMPT LIMITED SERVICE MOVEMENTS | 1               |         |         |         |         |         |         |                                     |  |  |  |

| TIME OF DAY  | TIMEC | TIME OF DAY DA |     |    |     |    | EE       | K  | MOVEMENT (FAZE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                |         |         |                    |
|--------------|-------|----------------|-----|----|-----|----|----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------|---------|---------|--------------------|
| OPERATIONS   | START | END            | S   | M  | TIV | T  | F        | S  | NB LEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NB THRU | the case of the later of the la | WB THRU | production of the owner where the second | SB THRU | EB LEFT | EB THRU            |
| PHASE OMIT   | 1     |                |     | T  | T   | T  | T        |    | Contraction of the local division of the loc | 1000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                |         |         | CALL AND           |
| MAX RECALL   |       |                | 1-1 |    | -1  |    | <b>†</b> | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                |         |         | Contraction of the |
| PED RECALL   | 1     |                | 1-1 |    | 1   | 1  | 1        | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | C.C.H.ST.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                |         |         |                    |
| MIN RECALL   | -     |                | 1   |    |     | -  | 1        | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                |         |         |                    |
| MAX GREEN 2  | 05:30 | 09:30          | 1-1 | X  | xD  | ίx | X        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X       |                                                                                                                | х       |         | X                  |
| MAX GREEN 2  | 15:00 | 19:00          |     | XX | x)  | X  | X        |    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X       |                                                                                                                | X       |         | X                  |
| REST IN WALK |       |                | 1-1 |    | -1  | -  | 1        | 11 | and and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                                                                | ·       |         |                    |
| AMBER LOCK   |       |                | 1-1 | 1- |     |    | 1        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                |         |         |                    |
| RED LOCK     |       |                | 1   |    |     | 1  | 1        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                |         |         |                    |
|              | -     |                | 1-1 |    |     | 1  | ţ        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                |         |         |                    |
|              |       |                | 1-1 |    |     | 1  | 1        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                |         |         |                    |

|                               |                                     | REGIONAL MUN<br>Traffic Signa |         | _                  | EEL        |            |                                                                         |             |            |  |  |
|-------------------------------|-------------------------------------|-------------------------------|---------|--------------------|------------|------------|-------------------------------------------------------------------------|-------------|------------|--|--|
| Database I                    | Date                                | August 1, 2001                |         |                    | Pre        | pared Date |                                                                         | May 7, 2021 |            |  |  |
| Database F                    | Rev                                 | 1                             | 1       |                    | Со         | npleted By |                                                                         | MA          |            |  |  |
| Timing Ca                     | rd / Field rev                      | 1                             | 1       |                    | C          | hecked By  |                                                                         | BL          |            |  |  |
| Location                      |                                     | Charleston Sidero             | ad @ Ma | in Street/C        | Cataract F | Road       |                                                                         |             |            |  |  |
| Phase Street Name - Direction |                                     | Vehicle                       |         | estrian<br>num (s) | Amber      | All Red    | TIME PERIOD (s)<br>SPLITS = Green + Amber + All Red<br>MAX = Green Only |             |            |  |  |
| #                             |                                     | Minimum (s)                   |         |                    | (s)        | (s)        | AM                                                                      | OFF         | PM         |  |  |
|                               |                                     |                               | WALK    | FDWALK             |            |            | MAX                                                                     | MAX         | MAX        |  |  |
| 1                             | Not In Use                          | -                             | -       | -                  | -          | -          | -                                                                       | -           | -          |  |  |
| 2                             | Charleston Sideroad - E/W           | 20                            | 8       | 16                 | 4.6        | 2.0        | 40                                                                      | 40          | 40         |  |  |
| 3                             | Not In Use                          | -                             | -       | -                  | -          | -          | -                                                                       | -           | -          |  |  |
| 4                             | Main Street/Cataract Road - N/S     | 16                            | 8       | 16                 | 4.6        | 2.0        | 30                                                                      | 30          | 30         |  |  |
| 5                             | Not In Use                          | -                             | -       | -                  | -          | -          | -                                                                       | -           | -          |  |  |
| 6                             | Not In Use                          | -                             | -       | -                  | -          | -          | -                                                                       | -           | -          |  |  |
| 7                             | Not In Use                          | -                             | -       | -                  | -          | -          | -                                                                       | -           | -          |  |  |
| 8                             | Not In Use                          | -                             | -       | -                  | -          | -          | -                                                                       | -           | -          |  |  |
|                               | Note: Phase 2 is set to min. recall |                               | _       |                    |            |            |                                                                         |             |            |  |  |
|                               | System Control                      | -                             |         | TIME               | (M-F)      | PEAK       | CYCLE L                                                                 | ENGTH (s)   | OFFSET (s) |  |  |
|                               | No                                  |                               |         | FR                 | EE         | AM         |                                                                         | 0           | 0          |  |  |
|                               | Semi-Actuated Mode                  |                               |         | FR                 | EE         | OFF        |                                                                         | 0           |            |  |  |
|                               | No                                  |                               |         | FR                 | EE         | PM         |                                                                         | 0           | 0          |  |  |

| INTERVAL TIMES                         | MOVEMENT (FAZE) |         |         |         |         |         |         |         |  |  |  |  |
|----------------------------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|--|--|--|--|
|                                        | NB LEFT         | NB THRU | WB LEFT | WB THRU | SB LEFT | SB THRU | EB LEFT | EB THRU |  |  |  |  |
| WALK                                   |                 | 21      |         | 22      |         | 21      |         | 22      |  |  |  |  |
| FLASHING DON'T WALK                    |                 | 16      |         | 17      |         | 16      |         | 17      |  |  |  |  |
| MINIMUM GREEN                          | 7.0             | 20.0    | 7.0     | 10.0    | 7.0     | 20.0    | 7.0     | 10.0    |  |  |  |  |
| VEHICLE EXTENSION (PASSAGE TIME)       | 3.0             | 4.4     | 3.0     | 3.0     | 3.0     | 4.4     | 3.0     | 3.0     |  |  |  |  |
| MAXIMUM GREEN (INCLUDES MIN GREEN)     | 10.0            | 55.0    | 7.0     | 20.0    | 10.0    | 55.0    | 7.0     | 20.0    |  |  |  |  |
| MAXIMUM GREEN 2 (ALTERNATE MAX GREEN)  | 19.0            | 67.0    |         | 25.0    |         | 67.0    |         | 25.0    |  |  |  |  |
| AMBER CLEARANCE                        | 3.0             | 5.0     | 3.0     | 4.5     | 3.0     | 5.0     | 3.0     | 4.5     |  |  |  |  |
| ALL RED CLEARANCE                      |                 | 2.4     |         | 2.4     |         | 2.4     |         | 2.4     |  |  |  |  |
| MAX GAP (VEH. EXTENSION)               | 3.0             | 4.4     | 3.0     | 3.0     | 3.0     | 4.4     | 3.0     | 3.0     |  |  |  |  |
| MIN GAP (VEH. EXTENSION)               | 3.0             | 4.4     | 3.0     | 3.0     | 3.0     | 4.4     | 3.0     | 3.0     |  |  |  |  |
| REDUCE GAP BY                          |                 |         |         |         |         |         |         |         |  |  |  |  |
| REDUCE GAP EVERY                       |                 |         |         |         |         |         |         |         |  |  |  |  |
| MAX INITIAL GREEN TIME (VARIABLE INIT) |                 | 25      |         |         |         | 25      |         |         |  |  |  |  |
| TIME ADDED/VEHICLE (VARIABLE INIT)     |                 | 1       |         |         |         | 1       |         |         |  |  |  |  |
|                                        |                 |         |         |         |         |         |         |         |  |  |  |  |
|                                        |                 |         |         |         |         |         |         |         |  |  |  |  |


| DETECTOR SETUP                        | MOVEMENT (FAZE) |         |         |         |         |         |         |         |  |  |  |  |
|---------------------------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|--|--|--|--|
| DETECTOR SETUP                        | NB LEFT         | NB THRU | WB LEFT | WB THRU | SB LEFT | SB THRU | EB LEFT | EB THRU |  |  |  |  |
| DELAY TIME ON PRESENCE DETECTION      | 5.0             |         | 10.0    | 10.0    | 5.0     |         | 10.0    | 10.0    |  |  |  |  |
| DELAY ON LONG DISTANCE DETECTION      |                 |         |         |         |         |         |         |         |  |  |  |  |
| CARRY-OVER ON PRESENCE DETECTION      |                 |         |         |         |         |         |         |         |  |  |  |  |
| CARRY-OVER ON LONG DISTANCE DETECTION |                 |         |         |         |         |         |         |         |  |  |  |  |

| PRE-EMPTION                           | MOVEMENT (FAZE) |         |         |         |         |         |         |         |  |  |  |  |
|---------------------------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|--|--|--|--|
| FRE-EMFTION                           | NB LEFT         | NB THRU | WB LEFT | WB THRU | SB LEFT | SB THRU | EB LEFT | EB THRU |  |  |  |  |
| 1ST EMERG. PRE-EMPT MOVEMENTS         |                 | X       |         |         |         | X       |         |         |  |  |  |  |
| 1ST EMERG. PRE-EMPT DELAY TIME        |                 |         |         |         |         |         |         |         |  |  |  |  |
| 1ST EMERG. PRE-EMPT CLEARANCE TIME    |                 |         |         |         |         |         |         |         |  |  |  |  |
| 2ND EMERG. PRE-EMPT MOVEMENTS         |                 |         |         | X       |         |         |         | Х       |  |  |  |  |
| 2ND EMERG. PRE-EMPT DELAY TIME        |                 |         |         |         |         |         |         |         |  |  |  |  |
| 2ND EMERG. PRE-EMPT CLEARANCE TIME    |                 |         |         |         |         |         |         |         |  |  |  |  |
| RR PRE-EMPT TRACK CLEARANCE MOVEMENTS |                 |         |         |         |         |         |         |         |  |  |  |  |
| RR PRE-EMPT CLEARANCE TIME            |                 |         |         |         |         |         |         |         |  |  |  |  |
| RR PRE-EMPT DELAY TIME                |                 |         |         |         |         |         |         |         |  |  |  |  |
| RR PRE-EMPT LIMITED SERVICE MOVEMENTS |                 |         |         |         |         |         |         |         |  |  |  |  |

| TIME OF DAY  | TIME C | DAY OF WEEK |             |    |       |   |   | < | MOVEMENT (FAZE) |         |         |         |         |         |         |         |         |
|--------------|--------|-------------|-------------|----|-------|---|---|---|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|
| OPERATIONS   | START  | END         | SI          | M  | T   \ | W | Т | F | S               | NB LEFT | NB THRU | WB LEFT | WB THRU | SB LEFT | SB THRU | EB LEFT | EB THRU |
| PHASE OMIT   |        |             |             |    |       |   |   |   |                 |         |         |         |         |         |         |         |         |
| MAX RECALL   |        |             |             | 1- |       |   |   |   |                 |         |         |         |         |         |         |         |         |
| PED RECALL   |        |             | <b>1</b> i: | 1- |       |   |   |   |                 |         |         |         |         |         |         |         |         |
| MIN RECALL   |        |             | <b>1</b> "  | 1- |       |   |   |   |                 |         |         |         |         |         |         |         |         |
| MAX GREEN 2  | 05:30  | 09:30       |             | X  | X     | X | X | Χ |                 |         | Х       |         | Х       |         | X       |         | X       |
| MAX GREEN 2  | 15:00  | 19:00       |             | X  | X     | X | X | Χ |                 | Х       | Х       |         | Х       |         | X       |         | X       |
| REST IN WALK |        |             |             |    |       |   |   |   |                 |         |         |         |         |         |         |         |         |
| AMBER LOCK   |        |             |             |    |       |   |   |   |                 |         |         |         |         |         |         |         |         |
| RED LOCK     |        |             |             |    |       |   |   |   |                 |         |         |         |         |         |         |         |         |
| [            |        |             | <b> </b>    | 1- |       |   |   |   |                 |         |         |         |         |         |         |         |         |
|              |        |             |             | 1- |       |   |   |   |                 |         |         |         |         |         |         |         |         |

# **APPENDIX C**

Access Spacing Excerpts from TAC Chapter 9 and Peel RCS

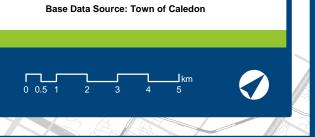




# Schedule J LONG RANGE ROAD NETWORK






- Medium Capacity Arterial
- Low Capacity Arterial
  - Collector
  - East-West Industrial Collector
- Local
- **—** Trailway
  - Proposed Bolton Arterial Route (BAR)



Transportation Study Area Settlement



Provincial Road - Regional Road Railway



# 5.11.2.5 <u>Aggregate Traffic</u>

- 5.11.2.5.1 Haul routes for new aggregate operations shall only be located, except as provided for in Section 5.11.2.5.2, on the High Capacity Arterials as are identified on Schedule J to this Plan and on Charleston Sideroad, Old Church Road between Regional Road 7 and Regional Road 50 and King Street between Highway 10 and Regional Road 50. Use of other roads for haul routes by existing aggregate operations can continue.
- 5.11.2.5.2 Access to a new or expanded aggregate operation should be via an existing entrance onto a road identified in Section 5.11.2.5.1 either directly or through the use of an inter-pit road. Where this is not possible, access via a new entrance onto a road identified in Section 5.11.2.5.1 may be considered. Access onto a road that is not a road identified in Section 5.11.2.5.1 will only be considered where there is no practical alternative and subject to satisfying the requirements of Sections 5.11.2.4.2(b) and 5.11.2.4.4(c). Such access may only be considered subject to the road being improved to a standard considered appropriate by the road authority.

Any required improvement shall be a condition of planning application approval and recommended to the appropriate authority to be a condition on the issuance of any access permit. The Applicant shall prepare a Road Improvement Study for approval by the applicable road authority to indicate the measures proposed to minimize the impacts of any road improvement. This Road Improvement Study shall include the following:

- a) Existing road right-of-way characteristics, particularly vertical alignments, should be maintained as closely as possible, subject to safety considerations with an understanding that many of these roads possess inherent traffic calming characteristics;
- b) Existing trees and other vegetation within the road right-of-way shall be retained wherever possible, including any scrub-like settings. Introduction of manicured boulevards as "landscaping elements" should be avoided;
- c) Wood, wire, stump, and stone fence lines shall be retained wherever possible as historical landscape remnants and incorporated as "new" design elements;
- d) Traditional open grassed ditches shall be used at every reasonable opportunity; and,
- e) New lighting elements, such as poles or standards and luminaires shall be as unobtrusive as possible within the road right-of-way and lighting should be directed downward and shielded.
- 5.11.2.5.3 The identification of roads upon which haul routes shall be located in Section 5.11.2.5.1 shall be reviewed and updated as necessary by the Town of Caledon. As part of this review, the Town of Caledon will work with adjacent municipalities and the Region of Peel to minimize impacts from traffic from outside of the Town of Caledon.



## 9.4.2.1 Arterials

Along signalized arterial roads, vehicular traffic volumes are generally high. It is therefore desirable to provide spacing between signalized intersections that is consistent with the desired vehicular traffic progression speed and signal cycle lengths. By spacing the intersections uniformly, based on known or assumed running speeds and appropriate cycle lengths, signal progression in both directions can be achieved. Progression allows platoons of vehicles to travel through successive intersections without stopping. For a progression speed of about 50 km/h and a cycle length of 60 s, the corresponding desired spacing between signalized intersections is approximately 400 m. As speeds increase, the optimal intersection spacing increases proportionately.

Where an arterial corridor must accommodate a variety of road users (e.g., vehicles, cyclists, and pedestrians), vehicle operations and the consequent intersection designs must balance the various needs while recognizing that the priority of arterial roadways is generally servicing vehicular traffic movement.

A typical minimum intersection spacing along arterial roadways is 200 m, generally only applicable in areas of intense existing development or restrictive physical controls where feasible alternatives do not exist. The 200 m spacing allows for minimum lengths of back to back storage for left turning vehicles at the adjacent intersections.

The close spacing does not permit signal progression; therefore, it is normally preferable not to signalize the intersection that interferes with progression along a major arterial. Intersection spacing at or near the 200 m minimum is normally only acceptable along minor arterials, where optimizing traffic mobility is not as important as along major arterials.

Where intersection spacing along an arterial does not permit an adequate level of traffic service, many alternatives can be considered to improve traffic flow. These include, but are not limited to:

- Converting two-way to one-way operation
- Implementing cul-de-sacs for minor connecting roads
- Introducing channelization to restrict turning movements at selected intersections to right turns only.

The designer's options may be substantially limited by the policies of the local jurisdiction.

On divided arterial roads, a right-in, right-out intersection without a median opening may be permitted at least 100 m from an adjacent all-directional intersection. The distance is measured between the closest edges of pavement of the adjacent intersecting roads.

In retrofit situations, the desired spacing of intersections along an arterial is sometimes compromised in consideration of other design controls, such as the nature of existing adjacent development and the associated access needs.

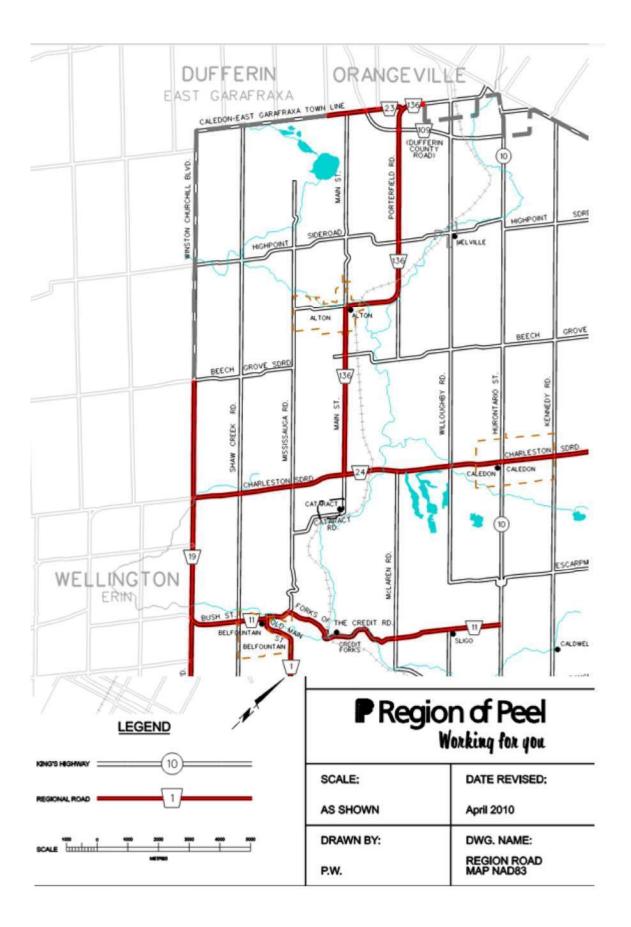
## 9.4.2.2 Collectors

The typical minimum spacing between adjacent intersections along a collector road is 60 m.

## 9.4.2.3 Locals

Along local roads, the minimum spacing between four-legged intersections is normally 60 m. Where the adjacent intersections are three-legged, a minimum spacing of 40 m is acceptable.

# **Executive Summary**

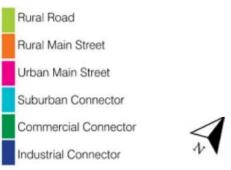

on such actions given to arterial roads (because of their importance for mobility) and with less attention given to collector and local streets. Typically in past access control practice, no distinctions were made as to the character of the roads (other than their functional class). The scope of access control measures depends on the road's functional class, reflecting the blend of mobility and property access intended for the road context. The roads addressed in the RCS are all classified as arterial and all of them are important for movement of through traffic (traffic with neither origin nor destination adjacent to the road). To more effectively consider road character in our access control approach and to address growth and development over time we referenced block dimensions in other successful urban places. This approach reaffirmed that as land uses develop, intersection spacing should decrease. Our new access control approach aligns with the block dimensions of successful places; approximately 150 m x 75 m, closely corresponding to the existing block dimensions in Port Credit, Mississauga and downtown Brampton, among others.


| Minimum<br>Spacing<br>Between (metres)                       | Rural Road | Industrial<br>Connector | Suburban<br>Connector | Commercial<br>Connector | Rural<br>Main Street | Urban<br>Main Street |
|--------------------------------------------------------------|------------|-------------------------|-----------------------|-------------------------|----------------------|----------------------|
| Full to Full                                                 | 600        | 450                     | 300                   | 300                     | 150                  | 150                  |
| Full to<br>Left-In/Right-In/Right-Out                        | ISR        | 225                     | 150                   | 150                     | 75                   | 75                   |
| Left-In/Right-In/Right-Out to Left-<br>In/Right-In/Right-Out | ISR        | 225                     | 150                   | 150                     | 75                   | 75                   |

Table 1: Median Opening Spacing (from RCS Section 3: Access Control, Table 2)

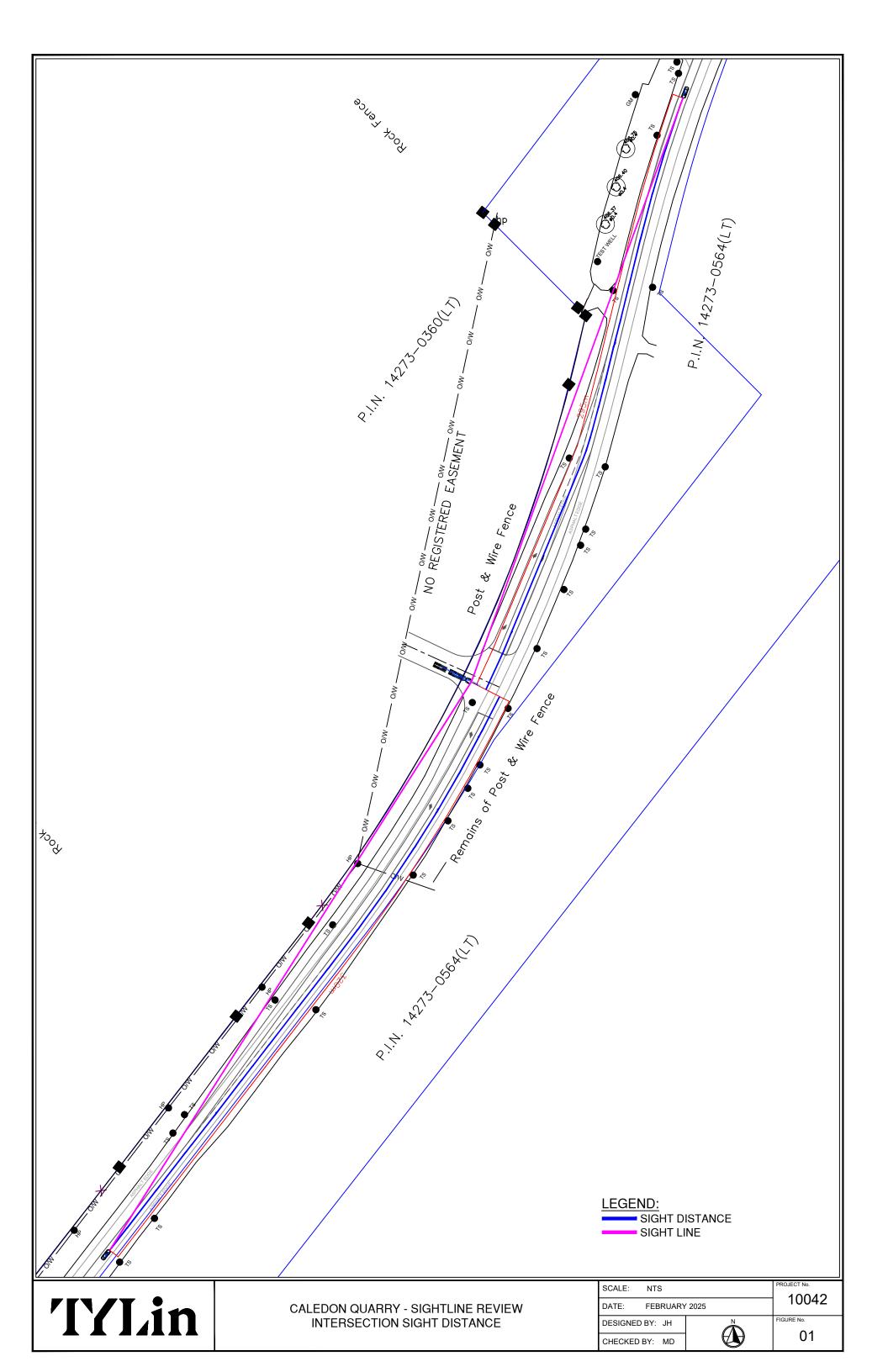
Legend: ISR - Individual Site Review

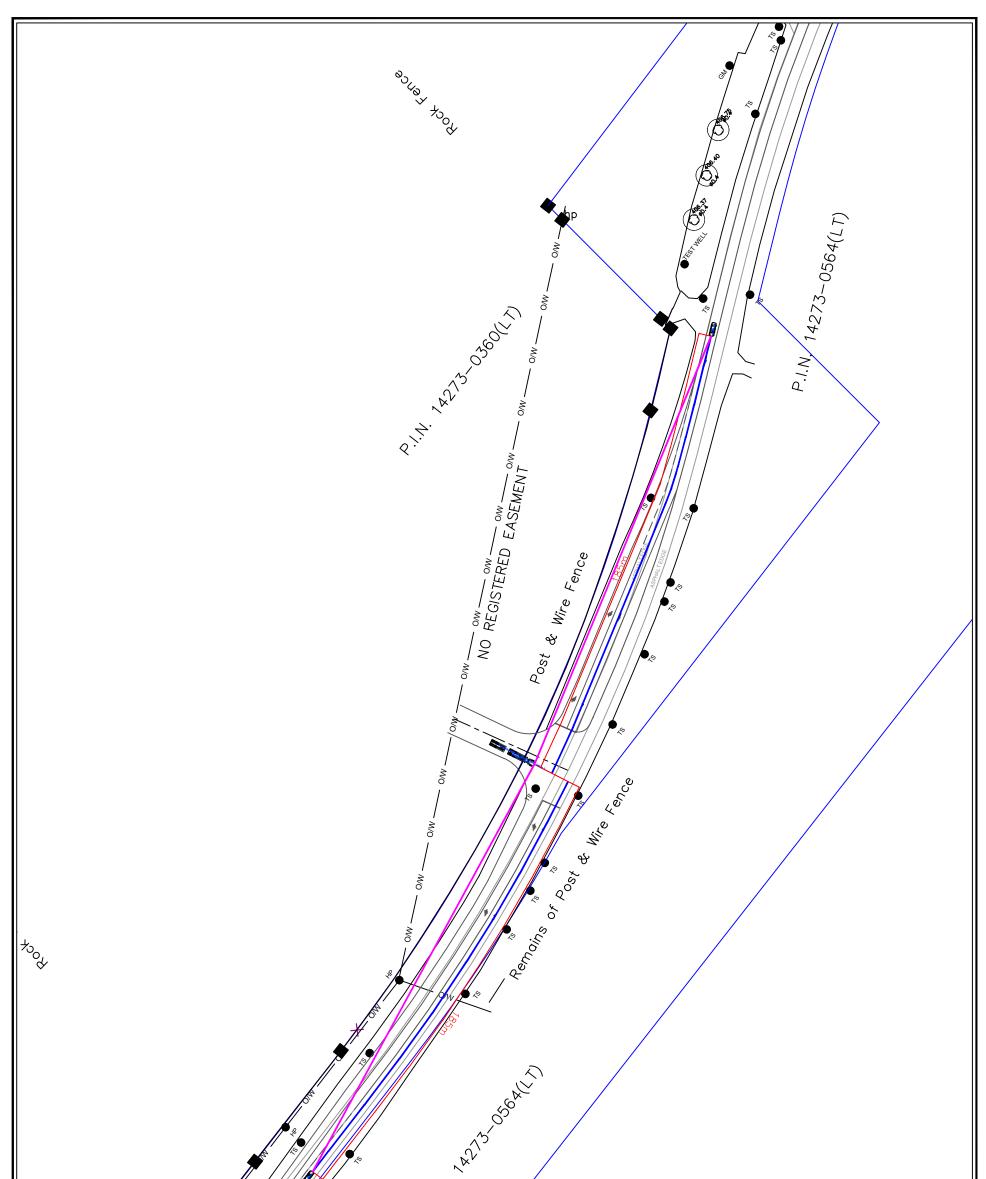
Note: Spacing measured from curb extension to curb extension (See Figures 24-26 in RCS Section 3). All spacing to be verified by a Transportation Impact Assessment and/or sightline analysis.






# 5.0 Road Character Map


The Road Character Map shows Regional Roads and their associated road typologies. Further detail is provided in the Road Character Matrix.


The RCS map will be updated approximately every 5 years, or when there is greater certainty regarding changes in land use or transportation plans, including the GTA West Corridor.



## **APPENDIX** D

Sightline Analysis





|       |                                                              | LEGEND:<br>SIGHT DISTANCE<br>SIGHT LINE                                |                                          |
|-------|--------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------|
| TYLin | CALEDON QUARRY - SIGHTLINE REVIEW<br>STOPPING SIGHT DISTANCE | SCALE: NTS<br>DATE: FEBRUARY 2025<br>DESIGNED BY: JH<br>CHECKED BY: MD | PROJECT No.<br>10042<br>FIGURE No.<br>02 |

## **APPENDIX E**

Site Visit and Sightline Details

## **Caledon Quarry Site Visit Summary**

On November 16, 2021, the Caledon Quarry site was visited to assess the sight lines of potential access locations based on Intersection sight distance (ISD) and stopping sight distance (SSD).

Update: On October 29, 2024 and December 10, 2024, a site visit was conducted to confirm sight lines, storage lengths, and assess the potential of shifting the proposed site access based on Intersection sight distance (ISD) and stopping sight distance (SSD). This summary has been updated to include sight line photos.

A review of the TAC manual provided the ISD and SSD distances that were used during the site investigation.

| Left Turn ISD       | 90 kph | 100 kph |
|---------------------|--------|---------|
| Passenger Car       | 190 m  | 210 m   |
| Single-Unit Truck   | 240 m  | 265 m   |
| Combination Truck   | 290 m  | 320 m   |
| Right Turn ISD      |        |         |
| Passenger Car       | 165 m  | 185 m   |
| Single-Unit Truck   | 215 m  | 240 m   |
| Combination Truck   | 265 m  | 295 m   |
| Left/Right Turn SSD |        |         |
| Passenger Car       | 160 m  | 185 m   |

Source TAC eqn 9.9.1, table 9.9.4, table 9.9.6

ISD values are derived from equation 9.9.1 in the TAC manual which is a function of design speed and time gap for minor vehicle. TAC only provides SSD values for passenger vehicles but notes in paragraph 2.5.3.1 that truck SSD is generally longer due to additional distance required to stop but also generally have a longer sightline due to cabin position.

The 100kph combination truck stopping distance was measured on site for most conservative analysis.

The following figure shows the approximate location where each set of measurements were taken.



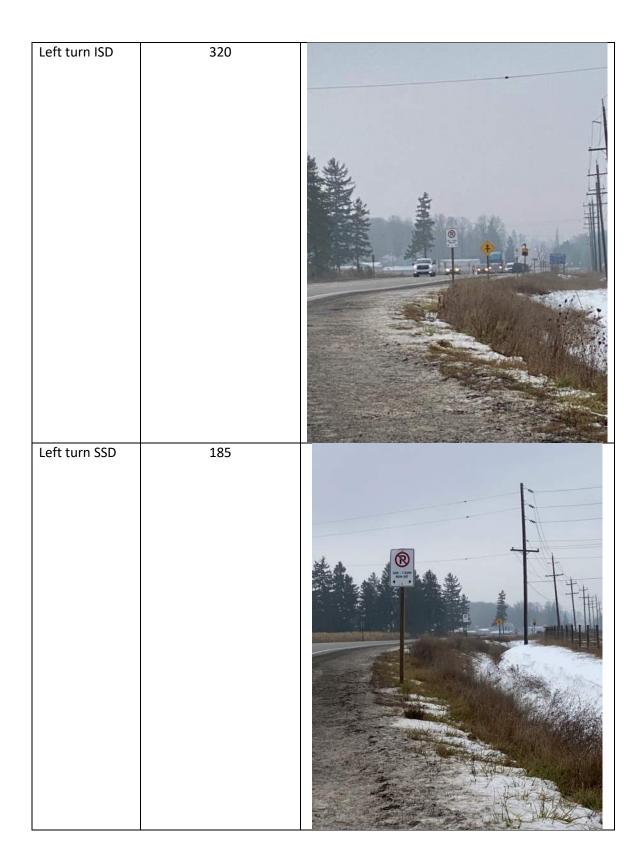
## 1. Mississauga Road south access

The right turn ISD does not meet the truck standards for both design speeds due to a crest in the road at approximately 200m. With the access location moved further to the North, it will improve the sight distance for right turn ISD. All other sightlines met the required standard.

| Movement       | Distance (m)                                        | Image |
|----------------|-----------------------------------------------------|-------|
| Right turn ISD | Available 210<br>Only meets<br>passenger car<br>ISD |       |
| Right turn SSD | 185                                                 |       |

| Left turn ISD | 320 |  |
|---------------|-----|--|
| Left turn SSD | 185 |  |

## 2. Mississauga Road north access


For the alternative north access on Mississauga Road, only the right turn ISD was checked due to limited sightline at the proposed south access. Right turn ISD meets All other sightline distances were deemed acceptable based on the measurements recorded from the southern proposed access

| Movement       | Distance (m) | Image |
|----------------|--------------|-------|
| Right turn ISD | 295          |       |
| Left Turn ISD  | 320          |       |

## 3. Charleston sideroad access

All sightline distances from the Charleston Sideroad access meet the required standards. It was observed that some road signs cause slight visual obstructions for due to the horizontal curve. It is recommended to clear all landscape or other obstructions near the edge of the property as driver's sightline may go through the property line in the future.

| Movement       | Distance (m) | Image |
|----------------|--------------|-------|
| Right turn ISD | 295          |       |
| Right turn SSD | 185          |       |



## 4. Main Street north access

Right turn ISD only meets standard for single unit truck due to crest in road. All other sightline distances meet the required standard.

| Movement       | Distance (m)                                                                              | Image |
|----------------|-------------------------------------------------------------------------------------------|-------|
| Right turn ISD | Available 270<br>Only meets the<br>single unit truck<br>sightline distance<br>requirement |       |
| Right turn SSD | 185                                                                                       |       |

| Left turn ISD | 320 |  |
|---------------|-----|--|
| Left turn SSD | 185 |  |

## 5. Main Street south access

All sightline distances meet the required standard

| Movement       | Distance (m) | Image |
|----------------|--------------|-------|
| Right turn ISD | 295          |       |
| Right turn SSD | 185          |       |

| Left turn ISD | 320 |  |
|---------------|-----|--|
| Left turn SSD | 185 |  |
|               |     |  |

## **APPENDIX F**

**Transportation Tomorrow Survey (TTS) Queries** 

## AM (IN)

Tue Jul 27 2021 13:44:26 GMT-0400 (Eastern Daylight Time) - Run Time: 2621ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06\_orig Column: 2006 GTA zone of destination - gta06\_dest

Filters:

2006 GTA z 3103 3105 3106 3107 3108 and Start time of trip - start\_time In 0630-0930 and Trip purpos

Trip 2016

Table:

|      | 3102 | 3103 | 3105 | 3106 | 3107 | 3108 |
|------|------|------|------|------|------|------|
| 3102 | 26   | 0    | 0    | 0    | 0    | 54   |
| 3103 | 0    | 0    | 21   | 0    | 0    | 0    |
| 3107 | 0    | 0    | 0    | 0    | 4    | 0    |
| 3108 | 0    | 0    | 0    | 0    | 0    | 13   |
| 3194 | 0    | 32   | 0    | 0    | 0    | 0    |
| 3377 | 0    | 0    | 23   | 0    | 0    | 0    |
| 3459 | 0    | 0    | 0    | 24   | 0    | 0    |
| 3467 | 0    | 0    | 40   | 0    | 0    | 0    |
| 3489 | 6    | 0    | 0    | 0    | 0    | 0    |
| 3500 | 0    | 13   | 0    | 0    | 0    | 0    |
| 3515 | 0    | 0    | 7    | 0    | 0    | 0    |
| 3674 | 0    | 0    | 25   | 0    | 0    | 0    |
| 4160 | 33   | 0    | 0    | 0    | 0    | 0    |
| 4163 | 32   | 0    | 0    | 0    | 0    | 0    |
| 8092 | 0    | 9    | 0    | 0    | 0    | 0    |
| 8102 | 37   | 0    | 0    | 0    | 0    | 0    |
| 8344 | 0    | 0    | 0    | 0    | 0    | 19   |
| 8369 | 0    | 0    | 18   | 0    | 0    | 0    |
| 8401 | 0    | 0    | 0    | 0    | 0    | 22   |
| 8402 | 0    | 0    | 0    | 16   | 0    | 0    |
| 8404 | 0    | 28   | 0    | 0    | 0    | 40   |
| 8412 | 0    | 12   | 12   | 0    | 0    | 0    |
| 8509 | 0    | 0    | 21   | 0    | 0    | 0    |

| 8563 | 0 | 0 | 13 | 0 | 0 | 0 |
|------|---|---|----|---|---|---|
| 8648 | 0 | 0 | 26 | 0 | 0 | 0 |

## AM (OUT)

Tue Jul 27 2021 13:46:29 GMT-0400 (Eastern Daylight Time) - Run Time: 2345ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of destination - gta06\_dest Column: 2006 GTA zone of origin - gta06\_orig

| Filters: |  |
|----------|--|
|----------|--|

| 2006 GTA z         | 3103         | 3105        | 3106 | 3107 | 3108 |
|--------------------|--------------|-------------|------|------|------|
| and                |              |             |      |      |      |
| Start time of trip | - start_time | In 0630-093 | 80   |      |      |
| and                |              |             |      |      |      |
| Trip purpos        |              |             |      |      |      |
|                    |              |             |      |      |      |

Trip 2016 Table:

|      | 3102 | 3103 | 3105 |
|------|------|------|------|
| 3102 | 26   | 0    | 0    |
| 3108 | 6    | 0    | 0    |
| 3194 | 0    | 0    | 21   |
| 8372 | 26   | 0    | 0    |
| 8402 | 0    | 31   | 0    |

## PM (IN)

Tue Jul 27 2021 13:45:07 GMT-0400 (Eastern Daylight Time) - Run Time: 2474ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of origin - gta06\_orig Column: 2006 GTA zone of destination - gta06\_dest

 Filters:

 2006 GTA z
 3103
 3105
 3106
 3107
 3108

 and

 Start time of trip - start\_time In 1530-1830

 and

 Trip purpos

Trip 2016 Table:

> 3102 3102 4

## PM (OUT)

Tue Jul 27 2021 13:47:06 GMT-0400 (Eastern Daylight Time) - Run Time: 3437ms

Cross Tabulation Query Form - Trip - 2016 v1.1

Row: 2006 GTA zone of destination - gta06\_dest Column: 2006 GTA zone of origin - gta06\_orig

 Filters:

 2006 GTA z
 3103
 3105
 3106
 3107
 3108

 and
 Start time of trip - start\_time In 1530-1830
 and
 Trip purpos

Trip 2016 Table:

|      | 3102 | 3103 | 3105 | 3106 | 3107 | 3108 |
|------|------|------|------|------|------|------|
| 2654 | 0    | 0    | 0    | 57   | 0    | 0    |
| 2760 | 0    | 50   | 0    | 0    | 0    | 0    |
| 3102 | 0    | 0    | 0    | 0    | 0    | 82   |
| 3107 | 0    | 0    | 0    | 0    | 4    | 0    |
| 3108 | 0    | 0    | 0    | 0    | 0    | 13   |
| 3194 | 0    | 32   | 0    | 0    | 0    | 0    |
| 3363 | 0    | 0    | 0    | 0    | 0    | 14   |
| 3377 | 0    | 0    | 23   | 0    | 0    | 0    |
| 3459 | 0    | 0    | 0    | 24   | 0    | 0    |
| 3467 | 0    | 0    | 40   | 0    | 0    | 0    |
| 3500 | 0    | 13   | 0    | 0    | 0    | 0    |
| 3674 | 0    | 0    | 25   | 0    | 0    | 0    |
| 4163 | 32   | 0    | 0    | 0    | 0    | 0    |
| 8092 | 0    | 9    | 0    | 0    | 0    | 0    |
| 8344 | 0    | 0    | 0    | 0    | 0    | 19   |
| 8366 | 0    | 0    | 14   | 0    | 0    | 0    |
| 8401 | 0    | 0    | 12   | 0    | 0    | 0    |
| 8402 | 0    | 31   | 0    | 0    | 0    | 40   |
| 8403 | 0    | 0    | 0    | 16   | 0    | 0    |
| 8404 | 0    | 0    | 0    | 12   | 0    | 0    |
| 8405 | 0    | 0    | 0    | 12   | 0    | 0    |
| 8412 | 0    | 12   | 0    | 0    | 0    | 0    |
| 8415 | 0    | 28   | 0    | 16   | 0    | 0    |
| 8553 | 113  | 0    | 0    | 0    | 0    | 0    |
| 8563 | 0    | 0    | 13   | 0    | 0    | 0    |
| 8664 | 0    | 13   | 0    | 0    | 0    | 0    |
| 8807 | 0    | 0    | 7    | 0    | 0    | 0    |

## **APPENDIX G**

Signal Warrant Results

# Traffic Signal Warrant - Input Sheet Justification 7 - Projected Volumes Based Ontario Traffic Manual Book 12 - Traffic Signals (March 2012)

| Project and Scenario Summary |                            |                |             |          |            |  |  |  |
|------------------------------|----------------------------|----------------|-------------|----------|------------|--|--|--|
| Project                      | Project No.:               |                |             |          |            |  |  |  |
| Project:                     | Caledon                    | Caledon Quarry |             |          | 2025-01-15 |  |  |  |
| Horizon:                     | Future Total               | Horizon Year:  | 2037        | Analyst: | JH         |  |  |  |
|                              | Study Intersection Summary |                |             |          |            |  |  |  |
| Major Street:                | Charlesto                  | Direction:     | East/West   |          |            |  |  |  |
| Minor Street:                | Site Act                   | Direction:     | North/South |          |            |  |  |  |

## Intersection Details for Warrant Parameters

| Flow Conditions: | Restricted Flow (Urban)  | Number of Lanes:   | 1   |
|------------------|--------------------------|--------------------|-----|
| Number of Legs:  | Three ("T" Intersection) | Intersection Type: | New |

Notes: "Free Flow" is used when the operating speed is greater than or equal to 70km/h, "Restricted Flow" otherwise. The Number of Lanes greater than 1 only needs to be for one direction along the major road.

An intersection is considered "New" if at least 1-leg is added to an existing intersection.

## Input Volumes and Average Hourly Volume Determination

| Peak Hour Major: Charleston SR |     |     |     |     |     | Minor: Site Access |     |     |     | Pedestrians |     |     |                       |
|--------------------------------|-----|-----|-----|-----|-----|--------------------|-----|-----|-----|-------------|-----|-----|-----------------------|
| Feak Hour                      | EBL | EBT | EBR | WBL | WBT | WBR                | NBL | NBT | NBR | SBL         | SBT | SBR | <b>Crossing Major</b> |
| AM                             | 5   | 417 | 0   | 0   | 390 | 40                 | 0   | 0   | 0   | 53          | 0   | 7   | 0                     |
| PM                             | 10  | 531 | 0   | 0   | 505 | 45                 | 0   | 0   | 0   | 58          | 0   | 7   | 0                     |
| AHV <sup>1</sup>               | 4   | 237 | 0   | 0   | 224 | 21                 | 0   | 0   | 0   | 28          | 0   | 4   | 0                     |

1. The AHV is determined by the availability of the peak hour estimates. If both the AM and PM Peak Hour Volume estimate is available then AHV =  $(AM_{PHV} + PM_{PHV}) / 4$ . In the case that only one estimate is available then AHV =  $AM_{PHV}$  / 2 or AHV =  $PM_{PHV}$  / 2.

## **Determination of Justification Volumes (Based on AHV)**

| Justification 1A:<br>All Approach Lanes           | 518 | Justification 2A:<br>Major Street Both Approaches  | 486 |
|---------------------------------------------------|-----|----------------------------------------------------|-----|
| Justification 1B:<br>Minor Street Both Approaches | 32  | Justification 2B:<br>Traffic Crossing Major Street | 28  |

| Note: The <u>crossing</u> volume is defined as the sum of:                                       |            |    |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|------------|----|--|--|--|--|--|
| (1) Left turns from both minor street approache                                                  | s:         | 28 |  |  |  |  |  |
| (2) The heaviest through volume from the mind                                                    | or street: | 0  |  |  |  |  |  |
| (3) 50% of the heavier left turn movement from street when both of the following criteria are me |            | 0  |  |  |  |  |  |
| (a) The left turn volume > 120 vph 4                                                             | FALSE      |    |  |  |  |  |  |
| (b) The left turn volume plus the<br>opposing volume > 720 vph 228                               | FALSE      |    |  |  |  |  |  |
| (4) Pedestrians crossing the major street:                                                       | 0          |    |  |  |  |  |  |
|                                                                                                  | Total      | 28 |  |  |  |  |  |

# Traffic Signal Warrant - Output Sneet Justification 7 - Projected Volumes Based Ontario Traffic Manual Book 12 - Traffic Signals (March 2012)

| Project and Scenario Summary |              |                |             |          |    |  |  |  |
|------------------------------|--------------|----------------|-------------|----------|----|--|--|--|
| Project No.:                 |              |                |             |          |    |  |  |  |
| Project:                     | Caledon G    | Caledon Quarry |             |          |    |  |  |  |
| Horizon:                     | Future Total | Horizon Year:  | 2037        | Analyst: | JH |  |  |  |
| Study Intersection Summary   |              |                |             |          |    |  |  |  |
| Major Street:                | Charlesto    | Direction:     | East/West   |          |    |  |  |  |
| Minor Street:                | Site Acc     | Direction:     | North/South |          |    |  |  |  |

## **Summary of Base Justification Thresholds**

| Justification                     | 1 Appro   | ach Lane               | 2 or More Approach Lanes |                        |  |
|-----------------------------------|-----------|------------------------|--------------------------|------------------------|--|
| Justification                     | Free Flow | <b>Restricted Flow</b> | Free Flow                | <b>Restricted Flow</b> |  |
| 1A: All Approach Lanes            | 480       | 720                    | 600                      | 900                    |  |
| 1B: Minor Street Both Approaches  | 120       | 170                    | 120                      | 170                    |  |
| 2A: Major Street Both Approaches  | 480       | 720                    | 600                      | 900                    |  |
| 2B: Traffic Crossing Major Street | 50        | 75                     | 50                       | 75                     |  |

The above values are taken from Table 12 and Table 13 from OTM Book 12 (March 2012). The grey shaded values are provided for reference only, and are not applicable to the study intersection.

## Adjusted Justification Thresholds for Study Intersection Conditions

| Justification                     | <b>Base Threshold</b> | New Intersection | "T" Intersection | Final Threshold |
|-----------------------------------|-----------------------|------------------|------------------|-----------------|
| 1A: All Approach Lanes            | 720                   | 150%             | -                | 1080            |
| 1B: Minor Street Both Approaches  | 170                   | 150%             | 150%             | 382.5           |
| 2A: Major Street Both Approaches  | 720                   | 150%             | -                | 1080            |
| 2B: Traffic Crossing Major Street | 75                    | 150%             | -                | 113             |

The above adjustments are taken from OTM Book 12 (March 2012) the "T" Intersection adjustment only applies to Justification 1B, and is a 50% increase on the threshold when the study intersection is a "T' intersection. Otherwise a value of 100% is used.

#### Warrant Calculation

| Justification                     | Study Intersection<br>Justification Volume | Justification<br>Threshold | Percentage<br>Warrant | Warrant Met? |
|-----------------------------------|--------------------------------------------|----------------------------|-----------------------|--------------|
| 1A: All Approach Lanes            | 518                                        | 1080                       | 48%                   | No           |
| 1B: Minor Street Both Approaches  | 32                                         | 383                        | 8%                    | NO           |
| 2A: Major Street Both Approaches  | 486                                        | 1080                       | 45%                   | No           |
| 2B: Traffic Crossing Major Street | 28                                         | 113                        | 25%                   | NO           |

Notes: In the case of Justification 7 based on AHV both Warrant 1 and 2 must be met 100%, which requires both the A and B part of each warrant being equal to 100%.

When calculating the percentage, any value greater than 100% is expressed as 100%.

## Based on OTM Book 12's Signal Warrant Justification 7 and the estimated AHV for the subject study intersection a signal is:

## Not Warranted

# Traffic Signal Warrant - Input Sheet Justification 7 - Projected Volumes Based Ontario Traffic Manual Book 12 - Traffic Signals (March 2012)

|                         | Project and Scenario Summary |                |      |            |             |  |  |
|-------------------------|------------------------------|----------------|------|------------|-------------|--|--|
| Breisstu Caladan Quarry |                              |                |      |            | 10042       |  |  |
| Project:                | Caledon                      | Caledon Quarry |      |            |             |  |  |
| Horizon:                | Future Total                 | Horizon Year:  | 2037 | Analyst:   | JH          |  |  |
|                         | Study Intersection Summary   |                |      |            |             |  |  |
| Major Street:           | Charleston SR                |                |      | Direction: | East/West   |  |  |
| Minor Street:           | Site Access                  |                |      | Direction: | North/South |  |  |

## Intersection Details for Warrant Parameters

| Flow Conditions: | Restricted Flow (Urban)  | Number of Lanes:   | 1   |
|------------------|--------------------------|--------------------|-----|
| Number of Legs:  | Three ("T" Intersection) | Intersection Type: | New |

Notes: "Free Flow" is used when the operating speed is greater than or equal to 70km/h, "Restricted Flow" otherwise. The Number of Lanes greater than 1 only needs to be for one direction along the major road.

An intersection is considered "New" if at least 1-leg is added to an existing intersection.

## Input Volumes and Average Hourly Volume Determination

| Peak Hour        |     | Maj | or: Cha | arlestor | n SR |     | Minor: Site Access |     |     |     | Pedestrians |     |                       |
|------------------|-----|-----|---------|----------|------|-----|--------------------|-----|-----|-----|-------------|-----|-----------------------|
| Feak Hour        | EBL | EBT | EBR     | WBL      | WBT  | WBR | NBL                | NBT | NBR | SBL | SBT         | SBR | <b>Crossing Major</b> |
| AM               | 1   | 398 | 0       | 0        | 358  | 29  | 0                  | 0   | 0   | 29  | 0           | 1   | 0                     |
| PM               | 0   | 0   | 0       | 0        | 0    | 0   | 0                  | 0   | 0   | 0   | 0           | 0   | 0                     |
| AHV <sup>1</sup> | 1   | 199 | 0       | 0        | 179  | 15  | 0                  | 0   | 0   | 15  | 0           | 1   | 0                     |

1. The AHV is determined by the availability of the peak hour estimates. If both the AM and PM Peak Hour Volume estimate is available then AHV =  $(AM_{PHV} + PM_{PHV}) / 4$ . In the case that only one estimate is available then AHV =  $AM_{PHV}$  / 2 or AHV =  $PM_{PHV}$  / 2.

## **Determination of Justification Volumes (Based on AHV)**

| Justification 1A:<br>All Approach Lanes           | 410 | Justification 2A:<br>Major Street Both Approaches  | 394 |
|---------------------------------------------------|-----|----------------------------------------------------|-----|
| Justification 1B:<br>Minor Street Both Approaches | 16  | Justification 2B:<br>Traffic Crossing Major Street | 15  |

| Note: The <u>crossing</u> volume is defined as the sum of:                                          |         |    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------|----|--|--|--|--|
| (1) Left turns from both minor street approaches                                                    | :       | 15 |  |  |  |  |
| (2) The heaviest through volume from the minor                                                      | street: | 0  |  |  |  |  |
| (3) 50% of the heavier left turn movement from r street when both of the following criteria are met |         | 0  |  |  |  |  |
| (a) The left turn volume > 120 vph 1                                                                | FALSE   |    |  |  |  |  |
| (b) The left turn volume plus the<br>opposing volume > 720 vph 180                                  | FALSE   |    |  |  |  |  |
| (4) Pedestrians crossing the major street:                                                          | 0       |    |  |  |  |  |
|                                                                                                     | Total   | 15 |  |  |  |  |

# Traffic Signal Warrant - Output Sheet Justification 7 - Projected Volumes Based Ontario Traffic Manual Book 12 - Traffic Signals (March 2012)

| Project and Scenario Summary |                    |                   |                    |            |             |  |
|------------------------------|--------------------|-------------------|--------------------|------------|-------------|--|
| Project No.: 10              |                    |                   |                    |            |             |  |
| Project:                     | ct: Caledon Quarry |                   |                    |            | 2025-01-15  |  |
| Horizon:                     | Future Total       | Horizon Year:     | Horizon Year: 2037 |            | JH          |  |
|                              | Study              | Intersection Summ | ary                |            |             |  |
| Major Street:                | Charleston SR      |                   |                    | Direction: | East/West   |  |
| Minor Street:                | Site Access        |                   |                    | Direction: | North/South |  |

#### **Summary of Base Justification Thresholds**

| Justification                     | 1 Appro   | ach Lane               | 2 or More Approach Lanes |                        |  |
|-----------------------------------|-----------|------------------------|--------------------------|------------------------|--|
| Justification                     | Free Flow | <b>Restricted Flow</b> | Free Flow                | <b>Restricted Flow</b> |  |
| 1A: All Approach Lanes            | 480       | 720                    | 600                      | 900                    |  |
| 1B: Minor Street Both Approaches  | 120       | 170                    | 120                      | 170                    |  |
| 2A: Major Street Both Approaches  | 480       | 720                    | 600                      | 900                    |  |
| 2B: Traffic Crossing Major Street | 50        | 75                     | 50                       | 75                     |  |

The above values are taken from Table 12 and Table 13 from OTM Book 12 (March 2012). The grey shaded values are provided for reference only, and are not applicable to the study intersection.

## Adjusted Justification Thresholds for Study Intersection Conditions

| Justification                     | Base Threshold | New Intersection | "T" Intersection | <b>Final Threshold</b> |
|-----------------------------------|----------------|------------------|------------------|------------------------|
| 1A: All Approach Lanes            | 720            | 150%             | -                | 1080                   |
| 1B: Minor Street Both Approaches  | 170            | 150%             | 150%             | 382.5                  |
| 2A: Major Street Both Approaches  | 720            | 150%             | -                | 1080                   |
| 2B: Traffic Crossing Major Street | 75             | 150%             | -                | 113                    |

The above adjustments are taken from OTM Book 12 (March 2012) the "T" Intersection adjustment only applies to Justification 1B, and is a 50% increase on the threshold when the study intersection is a "T' intersection. Otherwise a value of 100% is used.

## Warrant Calculation

| Justification                     | Study Intersection<br>Justification Volume | Justification<br>Threshold | Percentage<br>Warrant | Warrant Met? |
|-----------------------------------|--------------------------------------------|----------------------------|-----------------------|--------------|
| 1A: All Approach Lanes            | 410                                        | 1080                       | 38%                   | No           |
| 1B: Minor Street Both Approaches  | 16                                         | 383                        | 4%                    | NO           |
| 2A: Major Street Both Approaches  | 394                                        | 1080                       | 36%                   | No           |
| 2B: Traffic Crossing Major Street | 15                                         | 113                        | 13%                   | NO           |

Notes: In the case of Justification 7 based on AHV both Warrant 1 and 2 must be met 100%, which requires both the A and B part of each warrant being equal to 100%.

When calculating the percentage, any value greater than 100% is expressed as 100%.

## Based on OTM Book 12's Signal Warrant Justification 7 and the estimated AHV for the subject study intersection a signal is:

## Not Warranted

## **TYLin**

## **Traffic Signal Warrant - Input Sheet** Traffic Signal warram - mput success Justification 7 - Projected Volumes Based Ontario Traffic Manual Book 12 - Traffic Signals (March 2012)

|               | Project and Scenario Summary |                      |      |            |             |  |  |
|---------------|------------------------------|----------------------|------|------------|-------------|--|--|
| Project:      | Project Project              |                      |      |            |             |  |  |
| Flojeci.      | Caledon Qua                  | Caledon Quarry - PCE |      |            |             |  |  |
| Horizon:      | Future Total                 | Horizon Year:        | 2037 | Analyst:   | JH          |  |  |
|               | Study Intersection Summary   |                      |      |            |             |  |  |
| Major Street: | Charleston SR                |                      |      | Direction: | East/West   |  |  |
| Minor Street: | Site Acc                     | Site Access          |      |            | North/South |  |  |

## Intersection Details for Warrant Parameters

| Flow Conditions: | Restricted Flow (Urban)  | Number of Lanes:   | 1   |
|------------------|--------------------------|--------------------|-----|
| Number of Legs:  | Three ("T" Intersection) | Intersection Type: | New |

Notes: "Free Flow" is used when the operating speed is greater than or equal to 70km/h, "Restricted Flow" otherwise. The Number of Lanes greater than 1 only needs to be for one direction along the major road.

An intersection is considered "New" if at least 1-leg is added to an existing intersection.

## Input Volumes and Average Hourly Volume Determination

| Peak Hour        | Major: Charleston SR |     |     |     |     |     |     | Minor: Site Access |     |     |     |     | Pedestrians           |
|------------------|----------------------|-----|-----|-----|-----|-----|-----|--------------------|-----|-----|-----|-----|-----------------------|
| Feak Hour        | EBL                  | EBT | EBR | WBL | WBT | WBR | NBL | NBT                | NBR | SBL | SBT | SBR | <b>Crossing Major</b> |
| AM               | 5                    | 417 | 0   | 0   | 390 | 40  | 0   | 0                  | 0   | 53  | 0   | 7   | 0                     |
| PM               | 10                   | 531 | 0   | 0   | 505 | 45  | 0   | 0                  | 0   | 58  | 0   | 7   | 0                     |
| AHV <sup>1</sup> | 4                    | 237 | 0   | 0   | 224 | 21  | 0   | 0                  | 0   | 28  | 0   | 4   | 0                     |

1. The AHV is determined by the availability of the peak hour estimates. If both the AM and PM Peak Hour Volume estimate is available then AHV =  $(AM_{PHV} + PM_{PHV}) / 4$ . In the case that only one estimate is available then AHV =  $AM_{PHV}$  / 2 or AHV =  $PM_{PHV}$  / 2.

## **Determination of Justification Volumes (Based on AHV)**

| Justification 1A:<br>All Approach Lanes           | 518 | Justification 2A:<br>Major Street Both Approaches  | 486 |
|---------------------------------------------------|-----|----------------------------------------------------|-----|
| Justification 1B:<br>Minor Street Both Approaches | 32  | Justification 2B:<br>Traffic Crossing Major Street | 28  |

| Note: The crossing volume is defined as the sum of                                               | of:                                                                                                      |    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| (1) Left turns from both minor street approache                                                  | s:                                                                                                       | 28 |  |  |  |  |  |  |
| (2) The heaviest through volume from the mind                                                    | or street:                                                                                               | 0  |  |  |  |  |  |  |
| (3) 50% of the heavier left turn movement from street when both of the following criteria are me | (3) 50% of the heavier left turn movement from major street when both of the following criteria are met: |    |  |  |  |  |  |  |
| (a) The left turn volume > 120 vph 4                                                             | FALSE                                                                                                    |    |  |  |  |  |  |  |
| (b) The left turn volume plus the<br>opposing volume > 720 vph 228                               |                                                                                                          |    |  |  |  |  |  |  |
| (4) Pedestrians crossing the major street:                                                       | 0                                                                                                        |    |  |  |  |  |  |  |
|                                                                                                  | Total                                                                                                    | 28 |  |  |  |  |  |  |

## TYLin

## Traffic Signal Warrant - Output Sheet Justification 7 - Projected Volumes

Based Ontario Traffic Manual Book 12 - Traffic Signals (March 2012)

| Project and Scenario Summary        |              |                                 |            |             |  |  |  |  |  |  |  |
|-------------------------------------|--------------|---------------------------------|------------|-------------|--|--|--|--|--|--|--|
| Project No.: 10042                  |              |                                 |            |             |  |  |  |  |  |  |  |
| Project: Caledon Quarry - PCE Date: |              |                                 |            |             |  |  |  |  |  |  |  |
| Horizon:                            | Future Total | Future Total Horizon Year: 2037 |            |             |  |  |  |  |  |  |  |
|                                     | Study Inte   | ersection Summ                  | ary        |             |  |  |  |  |  |  |  |
| Major Street:                       | Charlesto    | Direction:                      | East/West  |             |  |  |  |  |  |  |  |
| Minor Street:                       | Site Acc     |                                 | Direction: | North/South |  |  |  |  |  |  |  |

## **Summary of Base Justification Thresholds**

| Justification                     | 1 Appro   | ach Lane               | 2 or More Approach Lanes |                        |  |
|-----------------------------------|-----------|------------------------|--------------------------|------------------------|--|
| Justification                     | Free Flow | <b>Restricted Flow</b> | Free Flow                | <b>Restricted Flow</b> |  |
| 1A: All Approach Lanes            | 480       | 720                    | 600                      | 900                    |  |
| 1B: Minor Street Both Approaches  | 120       | 170                    | 120                      | 170                    |  |
| 2A: Major Street Both Approaches  | 480       | 720                    | 600                      | 900                    |  |
| 2B: Traffic Crossing Major Street | 50        | 75                     | 50                       | 75                     |  |

The above values are taken from Table 12 and Table 13 from OTM Book 12 (March 2012). The grey shaded values are provided for reference only, and are not applicable to the study intersection.

## Adjusted Justification Thresholds for Study Intersection Conditions

| Adjusted vasification rifesholds for olday intersection conditions |                |                  |                  |                 |  |  |  |  |  |  |
|--------------------------------------------------------------------|----------------|------------------|------------------|-----------------|--|--|--|--|--|--|
| Justification                                                      | Base Threshold | New Intersection | "T" Intersection | Final Threshold |  |  |  |  |  |  |
| 1A: All Approach Lanes                                             | 720            | 150%             | -                | 1080            |  |  |  |  |  |  |
| 1B: Minor Street Both Approaches                                   | 170            | 150%             | 150%             | 382.5           |  |  |  |  |  |  |
| 2A: Major Street Both Approaches                                   | 720            | 150%             | -                | 1080            |  |  |  |  |  |  |
| 2B: Traffic Crossing Major Street                                  | 75             | 150%             | -                | 113             |  |  |  |  |  |  |

The above adjustments are taken from OTM Book 12 (March 2012) the "T" Intersection adjustment only applies to Justification 1B, and is a 50% increase on the threshold when the study intersection is a "T' intersection. Otherwise a value of 100% is used.

#### Warrant Calculation

| Justification                     | Study Intersection<br>Justification Volume | Justification<br>Threshold | Percentage<br>Warrant | Warrant Met? |  |  |
|-----------------------------------|--------------------------------------------|----------------------------|-----------------------|--------------|--|--|
| 1A: All Approach Lanes            | 518                                        | 1080                       | 48%                   | No           |  |  |
| 1B: Minor Street Both Approaches  | 32                                         | 383                        | 8%                    | Νο           |  |  |
| 2A: Major Street Both Approaches  | 486                                        | 1080                       | 45%                   | No           |  |  |
| 2B: Traffic Crossing Major Street | 28                                         | 113                        | 25%                   | No           |  |  |

Notes: In the case of Justification 7 based on AHV both Warrant 1 and 2 must be met 100%, which requires both the A and B part of each warrant being equal to 100%.

When calculating the percentage, any value greater than 100% is expressed as 100%.

## Based on OTM Book 12's Signal Warrant Justification 7 and the estimated AHV for the subject study intersection a signal is:

## **Not Warranted**

# Traffic Signal Warrant - Input Sheet Justification 7 - Projected Volumes Based Ontario Traffic Manual Book 12 - Traffic Signals (March 2012)

|                                                | Project and Scenario Summary |                                 |            |            |             |  |  |  |  |  |  |  |
|------------------------------------------------|------------------------------|---------------------------------|------------|------------|-------------|--|--|--|--|--|--|--|
| Project: Caledon Quarry - PCE Project No.: 100 |                              |                                 |            |            |             |  |  |  |  |  |  |  |
| Project:                                       | Caledon Qua                  | Date:                           | 2025-01-15 |            |             |  |  |  |  |  |  |  |
| Horizon:                                       | Future Total                 | Future Total Horizon Year: 2037 |            |            |             |  |  |  |  |  |  |  |
|                                                | Study Inte                   | ersection Summ                  | ary        |            |             |  |  |  |  |  |  |  |
| Major Street:                                  | Charlesto                    | Direction:                      | East/West  |            |             |  |  |  |  |  |  |  |
| Minor Street:                                  | Site Acc                     | cess                            |            | Direction: | North/South |  |  |  |  |  |  |  |

## Intersection Details for Warrant Parameters

| Flow Conditions: | Restricted Flow (Urban)  | Number of Lanes:   | 1   |
|------------------|--------------------------|--------------------|-----|
| Number of Legs:  | Three ("T" Intersection) | Intersection Type: | New |

Notes: "Free Flow" is used when the operating speed is greater than or equal to 70km/h, "Restricted Flow" otherwise. The Number of Lanes greater than 1 only needs to be for one direction along the major road.

An intersection is considered "New" if at least 1-leg is added to an existing intersection.

## Input Volumes and Average Hourly Volume Determination

| Peak Hour        | Major: Charleston SR |     |     |     |     |     |     | Minor: Site Access |     |     |     |     | Pedestrians           |
|------------------|----------------------|-----|-----|-----|-----|-----|-----|--------------------|-----|-----|-----|-----|-----------------------|
| Feak Hour        | EBL                  | EBT | EBR | WBL | WBT | WBR | NBL | NBT                | NBR | SBL | SBT | SBR | <b>Crossing Major</b> |
| AM               | 1                    | 398 | 0   | 0   | 358 | 29  | 0   | 0                  | 0   | 29  | 0   | 1   | 0                     |
| PM               | 0                    | 0   | 0   | 0   | 0   | 0   | 0   | 0                  | 0   | 0   | 0   | 0   | 0                     |
| AHV <sup>1</sup> | 1                    | 199 | 0   | 0   | 179 | 15  | 0   | 0                  | 0   | 15  | 0   | 1   | 0                     |

1. The AHV is determined by the availability of the peak hour estimates. If both the AM and PM Peak Hour Volume estimate is available then AHV =  $(AM_{PHV} + PM_{PHV}) / 4$ . In the case that only one estimate is available then AHV =  $AM_{PHV}$  / 2 or AHV =  $PM_{PHV}$  / 2.

## **Determination of Justification Volumes (Based on AHV)**

| Justification 1A:<br>All Approach Lanes           | 410 | Justification 2A:<br>Major Street Both Approaches  | 394 |
|---------------------------------------------------|-----|----------------------------------------------------|-----|
| Justification 1B:<br>Minor Street Both Approaches | 16  | Justification 2B:<br>Traffic Crossing Major Street | 15  |

| Note: The crossing volume is defined as the sum of                                               | of:                                                                                                      |    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| (1) Left turns from both minor street approache                                                  | s:                                                                                                       | 15 |  |  |  |  |  |  |
| (2) The heaviest through volume from the mind                                                    | or street:                                                                                               | 0  |  |  |  |  |  |  |
| (3) 50% of the heavier left turn movement from street when both of the following criteria are me | (3) 50% of the heavier left turn movement from major street when both of the following criteria are met: |    |  |  |  |  |  |  |
| (a) The left turn volume > 120 vph 1                                                             | FALSE                                                                                                    |    |  |  |  |  |  |  |
| (b) The left turn volume plus the<br>opposing volume > 720 vph 180                               | FALSE                                                                                                    |    |  |  |  |  |  |  |
| (4) Pedestrians crossing the major street:                                                       | 0                                                                                                        |    |  |  |  |  |  |  |
|                                                                                                  | Total                                                                                                    | 15 |  |  |  |  |  |  |

# Traffic Signal Warrant - Output Sheet Justification 7 - Projected Volumes Based Ontario Traffic Manual Book 12 - Traffic Signals (March 2012)

| Project and Scenario Summary  |               |               |            |             |           |
|-------------------------------|---------------|---------------|------------|-------------|-----------|
| Projecti Coloder Overny DCE   |               |               |            |             | 10042     |
| Project: Caledon Quarry - PCE |               |               | Date:      | 2025-01-15  |           |
| Horizon:                      | Future Total  | Horizon Year: | 2037       | Analyst:    | JH        |
| Study Intersection Summary    |               |               |            |             |           |
| Major Street:                 | Charleston SR |               |            | Direction:  | East/West |
| Minor Street:                 | Site Access   |               | Direction: | North/South |           |

#### **Summary of Base Justification Thresholds**

| Justification                     | 1 Approach Lane |                        | 2 or More Approach Lanes |                        |
|-----------------------------------|-----------------|------------------------|--------------------------|------------------------|
| Justification                     | Free Flow       | <b>Restricted Flow</b> | Free Flow                | <b>Restricted Flow</b> |
| 1A: All Approach Lanes            | 480             | 720                    | 600                      | 900                    |
| 1B: Minor Street Both Approaches  | 120             | 170                    | 120                      | 170                    |
| 2A: Major Street Both Approaches  | 480             | 720                    | 600                      | 900                    |
| 2B: Traffic Crossing Major Street | 50              | 75                     | 50                       | 75                     |

The above values are taken from Table 12 and Table 13 from OTM Book 12 (March 2012). The grey shaded values are provided for reference only, and are not applicable to the study intersection.

## Adjusted Justification Thresholds for Study Intersection Conditions

| Justification                     | Base Threshold | New Intersection | "T" Intersection | <b>Final Threshold</b> |
|-----------------------------------|----------------|------------------|------------------|------------------------|
| 1A: All Approach Lanes            | 720            | 150%             | -                | 1080                   |
| 1B: Minor Street Both Approaches  | 170            | 150%             | 150%             | 382.5                  |
| 2A: Major Street Both Approaches  | 720            | 150%             | -                | 1080                   |
| 2B: Traffic Crossing Major Street | 75             | 150%             | -                | 113                    |

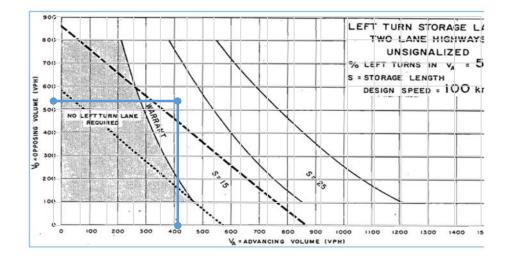
The above adjustments are taken from OTM Book 12 (March 2012) the "T" Intersection adjustment only applies to Justification 1B, and is a 50% increase on the threshold when the study intersection is a "T' intersection. Otherwise a value of 100% is used.

## Warrant Calculation

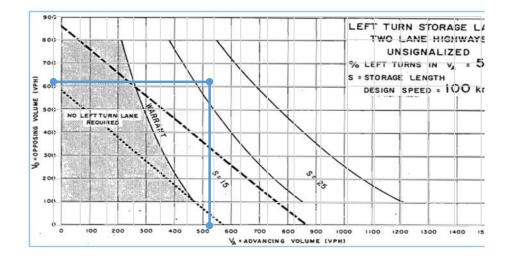
| Justification                     | Study Intersection<br>Justification Volume | Justification<br>Threshold | Percentage<br>Warrant | Warrant Met? |  |
|-----------------------------------|--------------------------------------------|----------------------------|-----------------------|--------------|--|
| 1A: All Approach Lanes            | 410                                        | 1080                       | 38%                   | No           |  |
| 1B: Minor Street Both Approaches  | 16                                         | 383                        | 4%                    | NO           |  |
| 2A: Major Street Both Approaches  | 394                                        | 1080                       | 36%                   | No           |  |
| 2B: Traffic Crossing Major Street | 15                                         | 113                        | 13%                   |              |  |

Notes: In the case of Justification 7 based on AHV both Warrant 1 and 2 must be met 100%, which requires both the A and B part of each warrant being equal to 100%.

When calculating the percentage, any value greater than 100% is expressed as 100%.


## Based on OTM Book 12's Signal Warrant Justification 7 and the estimated AHV for the subject study intersection a signal is:

## Not Warranted


## **APPENDIX H**

Left-Turn Warrant Results

| AM    | Peak Period       |
|-------|-------------------|
| EB    | Analysis Approach |
| 5     | %LT               |
| 100_5 | Scenario          |
| 465   | Advancing Volumes |
| 536   | Opposing Volumes  |



| PM    | Peak Period       |
|-------|-------------------|
| EB    | Analysis Approach |
| 5     | %LT               |
| 100_5 | Scenario          |
| 584   | Advancing Volumes |
| 619   | Opposing Volumes  |



## **APPENDIX I**

TAC Chapter 9 Excerpts and Peel Region Standard Drawings

| Design Speed (km/h)<br>(through roadway) | Taper Ratio | Taper Length for<br>w = 3.5 (m) | Horizontal Curve <sup>a</sup> (R) |
|------------------------------------------|-------------|---------------------------------|-----------------------------------|
| 50                                       | 15:1        | 53                              | 500                               |
| 60                                       | 18:1        | 63                              | 750                               |
| 70                                       | 21:1        | 74                              | 1,000                             |
| 80                                       | 24:1        | 84                              | 1,200                             |

#### Table 9.14.1: Right-Turn Tapers without Auxiliary Lanes

Note : a) Flat radii as indicated can be used rather than tangent alignment for right-turn tapers.

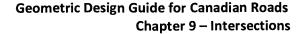
The taper can be a straight line or a larger radius curve (see **Table 9.14.1** for suggested horizontal curve values); curves are typically used in an urban environment where curb and gutter is provided and straight tapers in a rural environment where curb and gutter is not used.

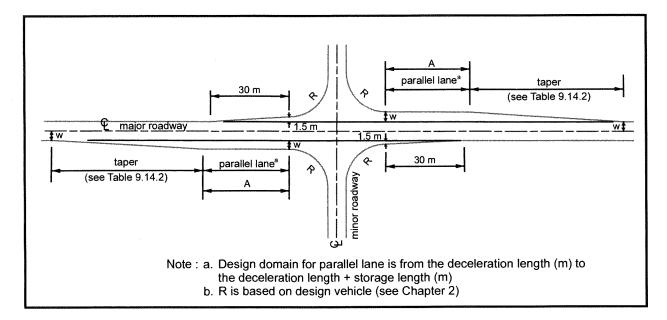
Shortened taper lengths may be considered for intersections on curve to provide a visible break from the through lanes. On high-speed roads, the taper length should generally conform to that discussed in **Chapter 10**.

#### 9.14.4 DESIGN ELEMENTS FOR RIGHT-TURN TAPERS WITH AUXILIARY LANES

The length of an auxiliary lane is based on deceleration and storage requirements. Deceleration should occur exclusively within the auxiliary lane, although in an urban environment, deceleration (up to 15 km/h) over the bay taper is normally tolerable (especially in a peak-hour condition).

Suggested taper and parallel lengths are shown in **Table 9.14.2** and illustrated in **Figure 9.14.4**. Adjustments for intersections on curves are discussed in **Section 18.8**.


| Design Speed (km/h) | Taper Ratio <sup>ª</sup><br>Design Domain | Radius for Reverse <sup>a</sup><br>Curves (m) | Parallel Lane Length <sup>b</sup><br>Design Domain |
|---------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| 50                  | 11:1-17:1                                 | 90–150                                        | 35–75                                              |
| 60                  | 14:1-17:1                                 | 150                                           | 40–90                                              |
| 70                  | 17:1-20:1                                 | 150-220                                       | 50-110                                             |
| 80 <sup>c</sup>     | 17:1-24:1                                 | 150300                                        | 60–130                                             |


#### Table 9.14.2: Right-Turn Taper with Parallel Deceleration Lane Design

Notes: a) Taper may be straight line or may be symmetrical reverse curves; length is derived from design values calculated for a 3 s lane change criterion for the appropriate operating speed.

b) Additional parallel lane length may be required for storage.

c) For higher design speeds, refer to Chapter 10.







Auxiliary lanes can be developed using reverse curves or straight line tapers; reverse curves are typically used in an urban environment with curb and gutter. On high-speed roads, the taper length to the auxiliary lane should generally conform to that discussed in **Chapter 10**. Where auxiliary lanes are used for the storage of turning vehicles at unsignalized intersections, the length of the lane in addition to deceleration length and exclusive of taper is usually based on the number of vehicles that are likely to accumulate in two minutes. The storage length required is calculated by the following formula and can be used for right- or left-turning vehicles:

$$S = \frac{NL}{30}$$
 (9.14.1)

Where:

S = Storage length (m) N = Design volume of turning vehicles (v/h) L = Length (m) occupied by each vehicle (see **Chapter 2**)

At signalized intersections, the storage lane length should accommodate about 1.5 times the average number of vehicles to be stored per cycle for roadways with design speeds of 60 km/h or less, and about twice the average number of vehicles for design speeds greater than 60 km/h.

The storage length calculated above should be checked against capacity analysis to ensure an acceptable level of service. The required storage for two-lane operation is one half that for a single-lane operation.

Where there is a possibility that an auxiliary lane may be used for either storage or deceleration, the length is determined for both conditions and the total is used in design. For urban and suburban roads, the right-turn lane length tends to be used mainly for storage during peak hours (typically slower peak

The tapers can be made smooth by using horizontal curves at the beginning and end of transitions. The radii of the horizontal curves typically vary from about 500 m for tapers at a design speed of 50 km/h, to 3,000 m for tapers at a design speed of 120 km/h.

Where space to develop tapers is limited, the taper length could also be based on running speed rather than design speed. Gradual approach and departure tapers are particularly important for the higher design speeds. It is also desirable to provide decision sight distance for the taper areas to enhance safe operation. Combinations of minimum sight distance and minimum taper ratios should be avoided.

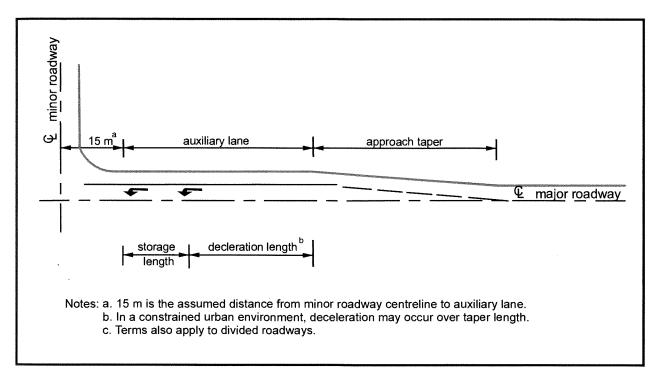
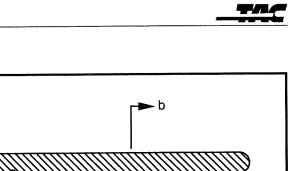
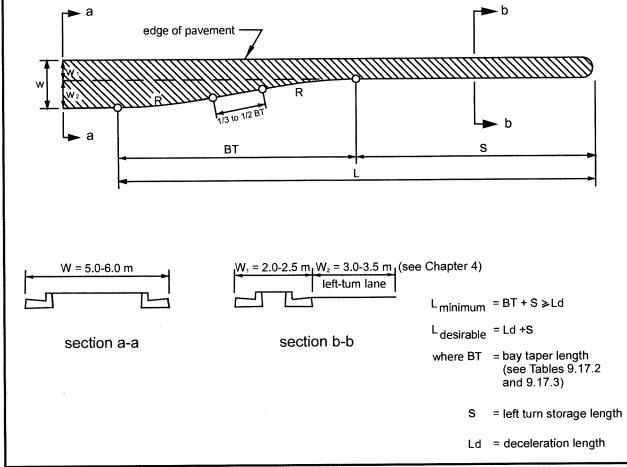





Figure 9.17.1: Left-Turn Lane, Pictorial Description of Terms

| Design Speed (km/h) | Design Domain for<br>Taper Ratio | Horizontal Curve to Smooth<br>Taper R (m) |
|---------------------|----------------------------------|-------------------------------------------|
| 50                  | 8:1 - 30:1                       | 500                                       |
| 60                  | 15:1 - 36:1                      | 750                                       |
| 70                  | 15:1 - 42:1                      | 1,000                                     |
| 80                  | 15:1 - 48:1                      | 1,200                                     |
| 90                  | 27:1 - 54:1                      | 1,500                                     |
| 100                 | 30:1 - 60:1                      | 2,000                                     |
| 110                 | 33:1 - 66:1                      | 2,500                                     |
| 120                 | 36:1 - 72:1                      | 3,000                                     |

### Table 9.17.1: Approach and Departure Taper Ratios and Lengths for Left Turns at Intersections





## Figure 9.17.4: Left-Turn Lane and Taper with Symmetrical Reverse Curves

Bay taper designs are a function of design speed and the width of the left-turn auxiliary lane. **Table 9.17.2** provides suggested straight-line bay taper ratios for a range of design speeds. **Table 9.17.3** provides suggested taper ratios and radii for bay tapers designed using symmetrical reverse curves. Both tables are applicable to tangent main line alignments. Where the main line alignment is on curve, adjustments to the bay taper may be required.

| Table 9.17.2: Bay Tapers | Straight Line |
|--------------------------|---------------|
|--------------------------|---------------|

| Design Speed<br>(km/h) | Taper Ratio<br>Design Domain |
|------------------------|------------------------------|
| 50                     | 10:1                         |
| 60                     | 10:1–12:1                    |
| 70                     | 10:1–18:1                    |
| 80                     | 13:1–20:1                    |

Note: For higher design speeds, the 80 km/h design speed dimensions are used and the storage length is increased to provide deceleration length.

| Design Speed<br>(km/h) | Taper Ratio<br>Design Domain | Radii (m) |  |  |
|------------------------|------------------------------|-----------|--|--|
| 50                     | 10:1                         | 90–150    |  |  |
| 60                     | 10:1-12:1                    | 150       |  |  |
| 70                     | 10:1–18:1                    | 150-220   |  |  |
| 80                     | 13:1–20:1                    | 150-300   |  |  |

#### Table 9.17.3: Bay Tapers Symmetrical Reverse Curves

Note: For higher design speeds, the 80 km/h design speed dimensions are used and the storage length is increased to provide deceleration length.

#### 9.17.4.2 Deceleration Requirements

In the design of left-turn auxiliary lanes, it is important to consider the deceleration requirements. The minimum deceleration length is based on the distance needed for the driver to brake comfortably to come to a full stop at the intersection. Desirably, the distance needed for deceleration is provided by the auxiliary lane, exclusive of storage requirements. In urban conditions, it is often not feasible to provide both the deceleration distance and storage length due to other considerations, such as intersection spacing, access needs, and other physical controls. In these cases, the taper length may be used for deceleration distance. The deceleration distances for a range of speeds are provided in **Chapter 2**.

#### 9.17.4.3 Storage Length

The storage length is normally designed to accommodate not only left-turning vehicles. It is also made sufficiently long so that vehicles queued in the through lanes do not block the entrance to the turning lane. As a minimum, the auxiliary lane length should be determined by checking that the storage length plus the bay taper length is equal to the deceleration length required for the design speed. Ideally, however, storage length should be provided in addition to deceleration length.

The storage length required to accommodate the left-turning vehicles depends on the number of leftturning vehicles approaching the intersection and whether or not the intersection is, or will be, signalized.

For an unsignalized intersection, storage length can be calculated using the equation outlined in Section 9.14. If the intersection is to be signalized, either initially or in the future, the turn lane provided is normally sufficiently long to store the left-turning traffic and to clear the equivalent per-lane volume of traffic stored on the through lanes, during unsaturated flow conditions. Additional storage length must be provided for larger design vehicles. The minimum storage length that should be provided is 15 m (see Section 9.17.2).

#### 9.17.4.4 Run-out Lane

The run-out lane terminates the bypass lane on the far side of the intersection. The width of the parallel section of the run-out lane is the same as that of the bypass lane. The taper length varies with the design speed and is the same as that applied to the acceleration lane (see **Chapter 10**). The run-out lane is shown in **Figure 9.17.2** and **Figure 9.17.3**.

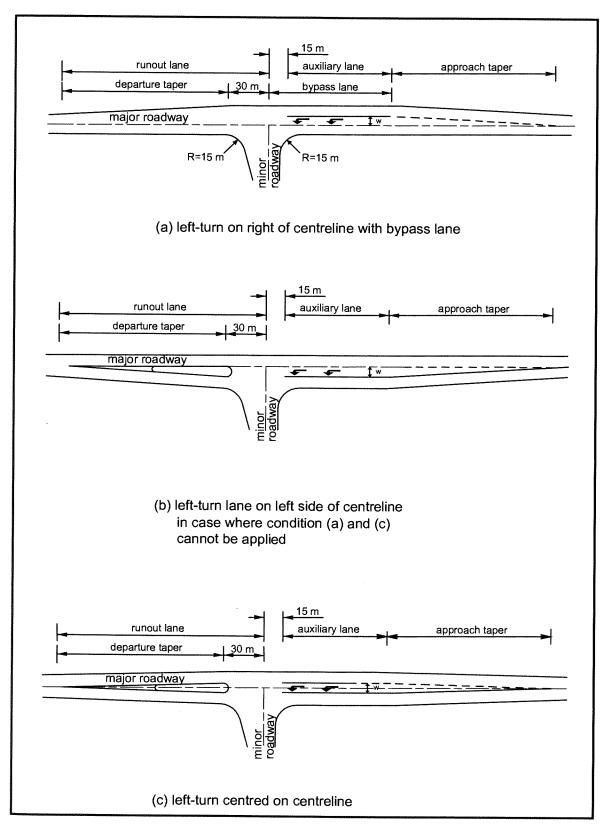
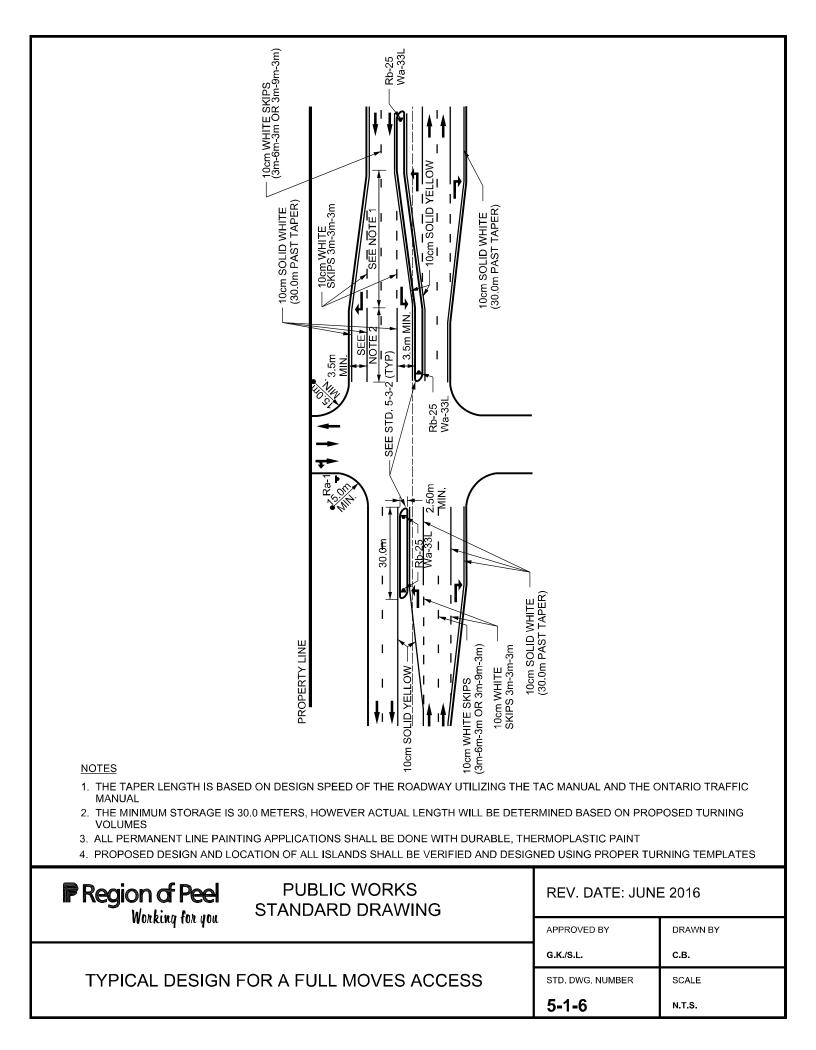




Figure 9.17.2: Left-Turn Lanes at T-Intersections



# Access Management Elements

### 5.6 Design Criteria for Access

Design criteria for access are summarized in the following table and the four supporting diagrams:

- Table 6: Design Criteria for Access.
- Figure 31: Typical Layout for Right-In/ Right-Out Access (with Median Island).
- Figure 32: Typical Layout for Right-In/ Right-Out Access (without Median Island).
- Figure 33: Typical Layout for Full Moves Median Opening.
- Figure 34: Typical Layout for Left-In, Right-In/Right-Out Access.

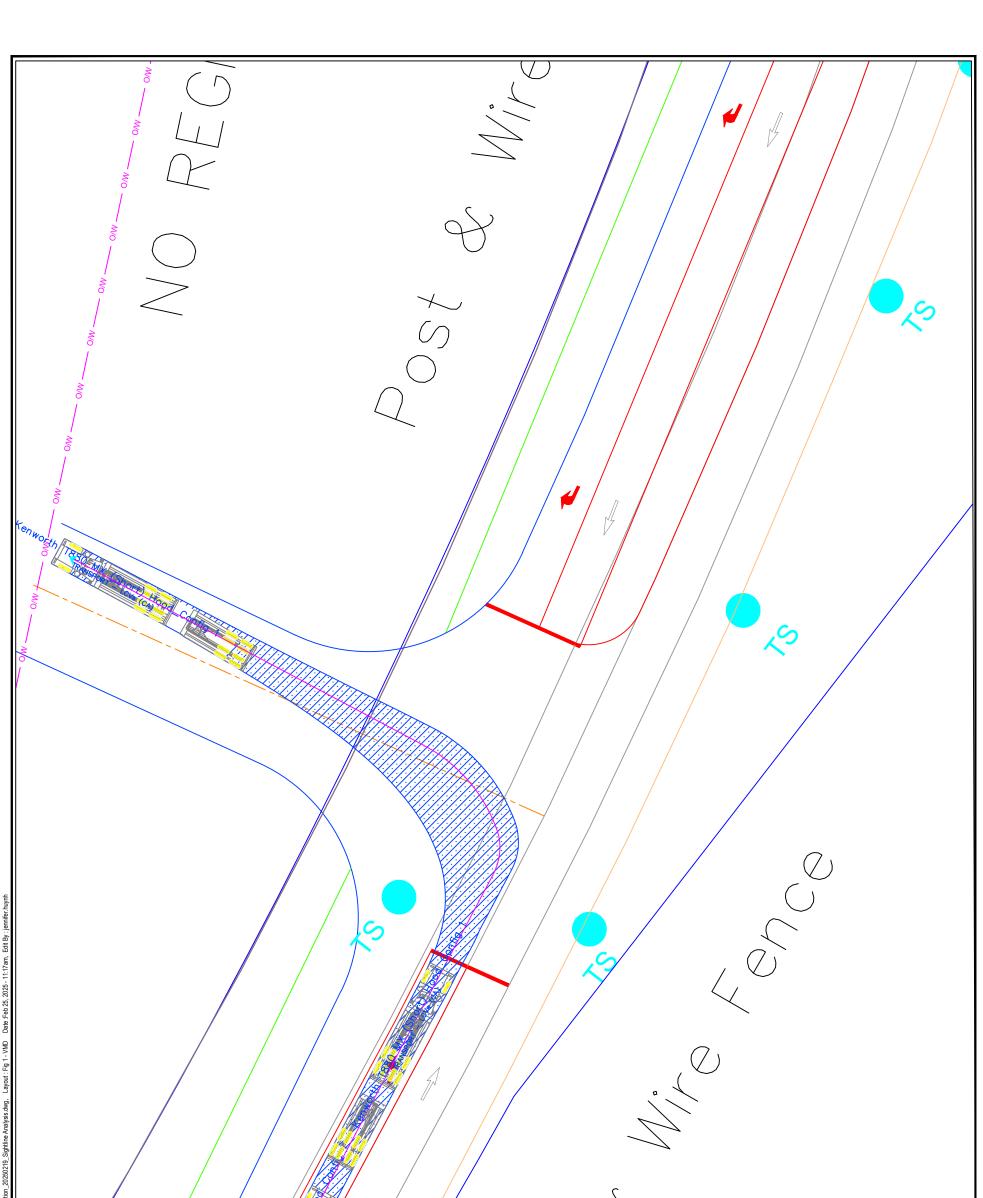
| Design Criteria<br>(metres)        |          | Rural Road        | Industrial<br>Connector | Suburban<br>Connector | Commercial<br>Connector | Rural<br>Main Street | Urban<br>Main Street |
|------------------------------------|----------|-------------------|-------------------------|-----------------------|-------------------------|----------------------|----------------------|
| Access Width (AW)                  |          | ISR               | 9.0 min                 | 9.0 min               | 9.0 min                 | ISR                  | ISR                  |
| Access Throat Length (T            | ïL)      | ISR               | i                       | i                     | i                       | ISR                  | ISR                  |
| Corner Radius, Min (CR)            |          | 5.0***            | 9.0***                  | 9.0***                | 9.0***                  | 5.0***               | 5.0***               |
| Median Barrier Length,<br>Min (BL) |          | 30.0*             | 30.0*                   | 30.0*                 | 30.0*                   | N/A                  | N/A                  |
| Left Turn Lane Transition          | n (LT)   | TAC               | TAC                     | TAC                   | TAC                     | TAC                  | TAC                  |
| Left Turn Lane Storage, I          | Min (LS) | 30.0              | 30.0/vol                | 30.0/vol              | 30.0/vol                | 30.0                 | 30.0                 |
| Right Turn Lane Transitio          | on (RT)  | TAC               | TAC                     | TAC                   | TAC                     | N/A                  | N/A                  |
| Right Turn Lane Storage<br>(RS)    | , Min    | 30.0/vol          | 30.0/vol                | 30.0/vol              | 30.0/vol                | N/A                  | N/A                  |
| Auxiliary Lane Width,              | L        | 3.5 **            | 3.5**                   | 3.5**                 | 3.5**                   | 3.5**                | 3.5**                |
| Min (AW)                           | R        | 3.25***           | 3.25***                 | 3.25***               | 3.25***                 | 3.25***              | 3.25***              |
| Pedestrians                        |          | Design of all acc | esses must consid       | ler pedestrians and   | d the continuity of e   | xisting or planned . | Active               |

Design of all accesses must consider pedestrians and the continuity of existing or planned Active Transportation facilities.

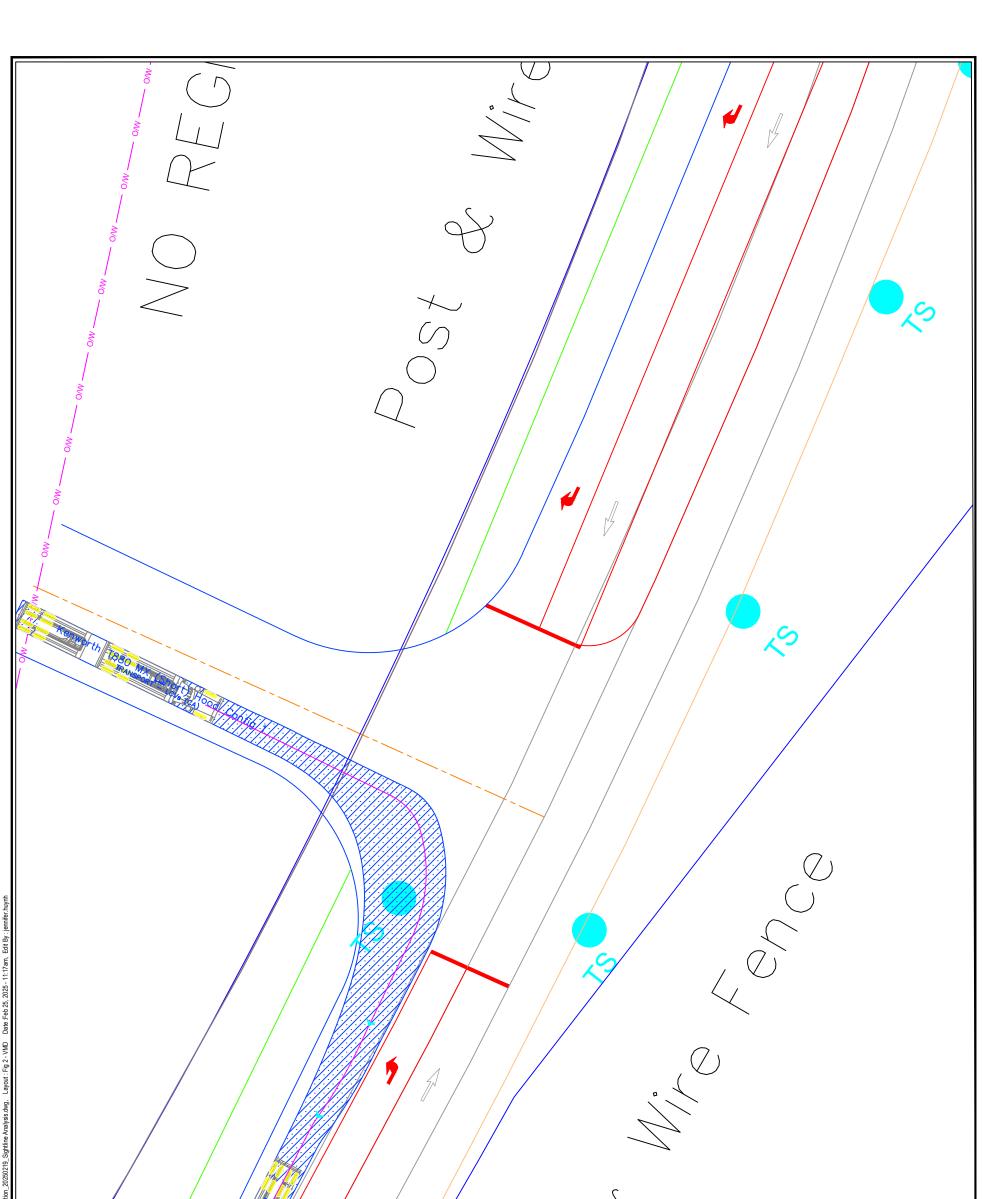
#### Table 6: Design Criteria for Access

NOTES: \* 30m on either side of access control as per current by-law.

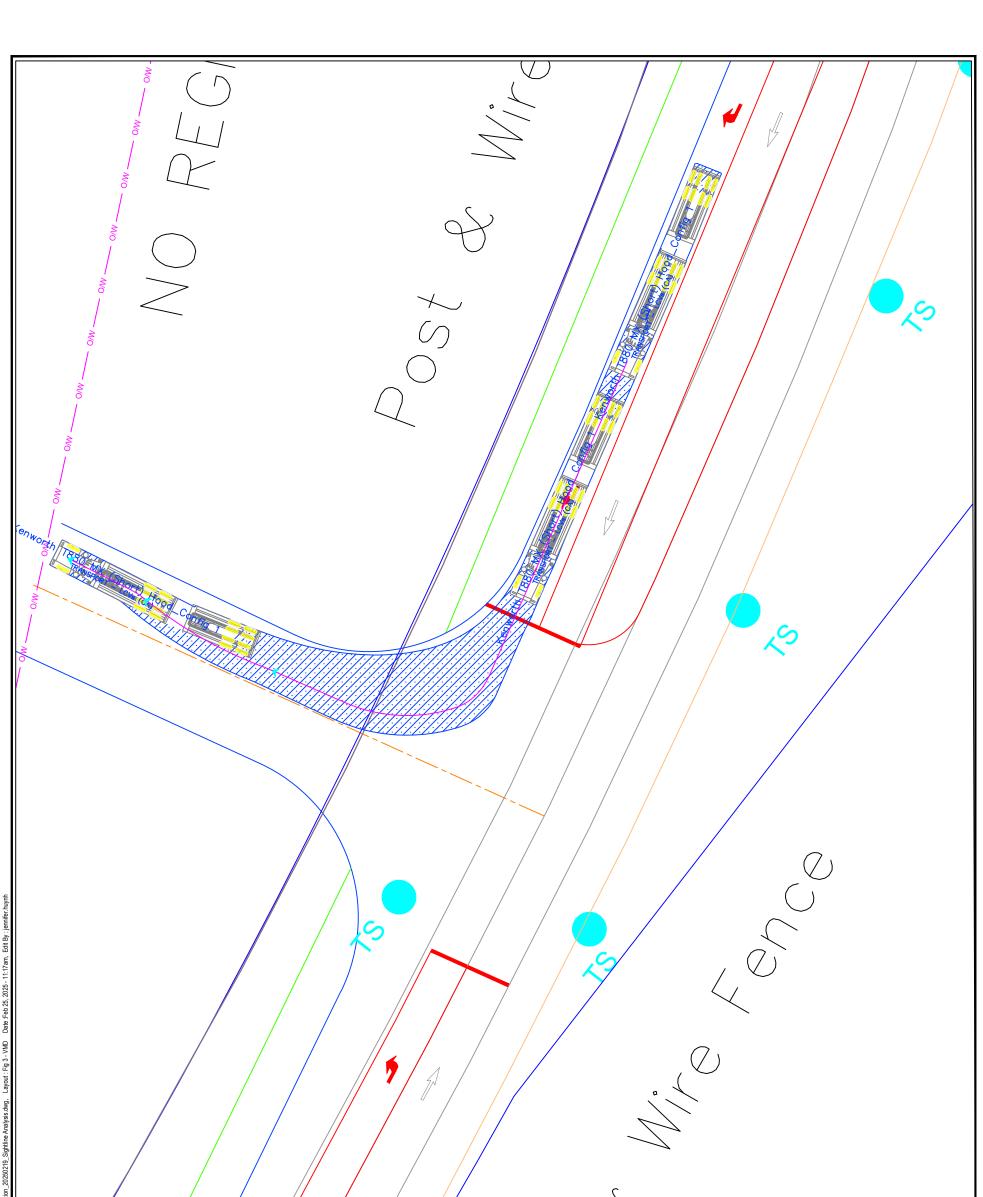
- \*\* Match through-lane if less or determined based on design vehicle needs.
- \*\*\* Pending Design Vehicle Needs.
- i ) Conditional based on needs as identified in Transportation Impact Assessment or at the discretion of the Region. Minimum 30m from curb, except for single residential lots.


LEGEND: TAC: Transition length based on design speed of roadway utilizing the TAC Manual and geometric design standards.

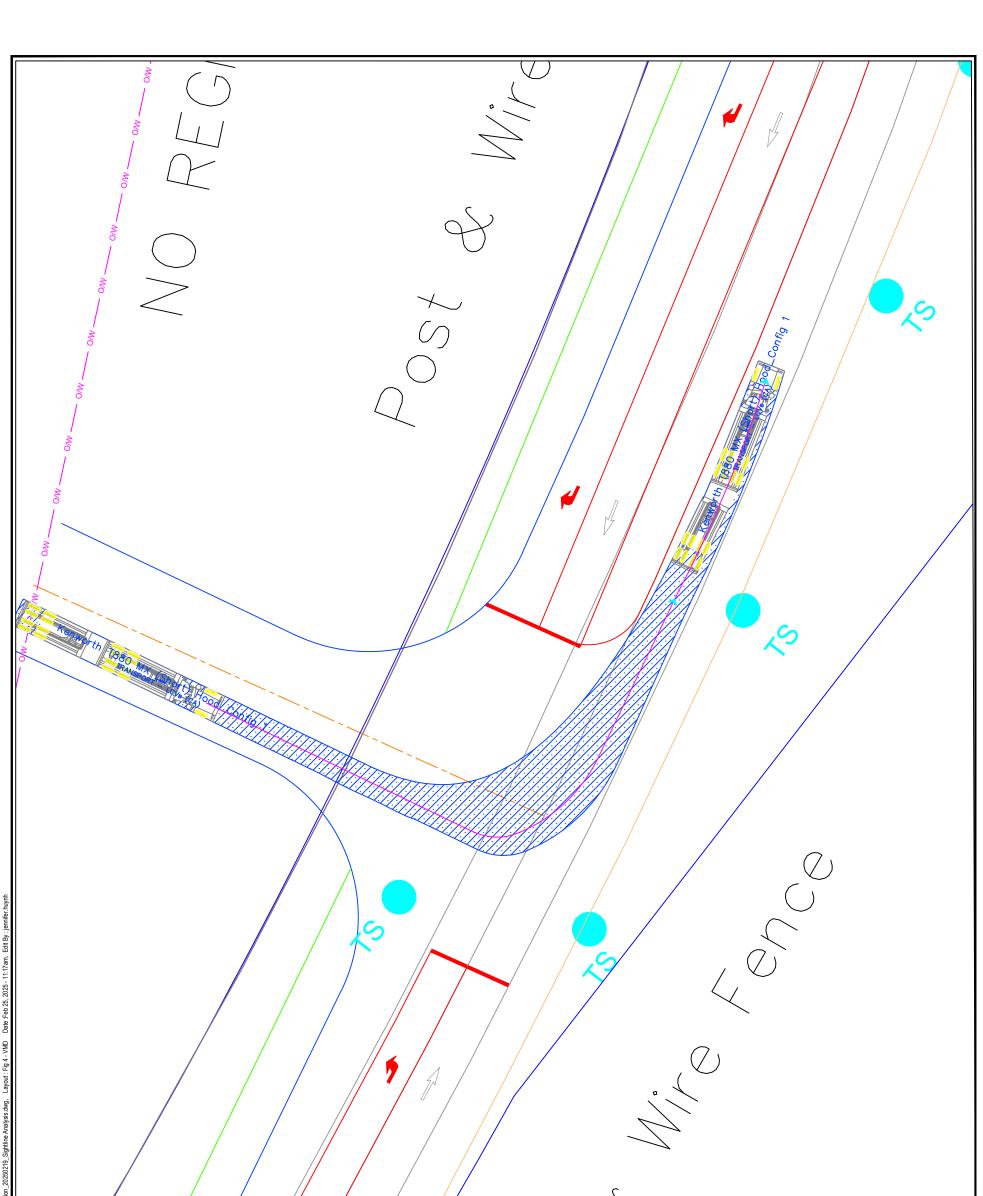
Vol: Determined based on projected turning volumes N/A: Not Applicable L: Left Turn R: Right Tur


ng volumes ISR: Individual Sight Review R: Right Turn

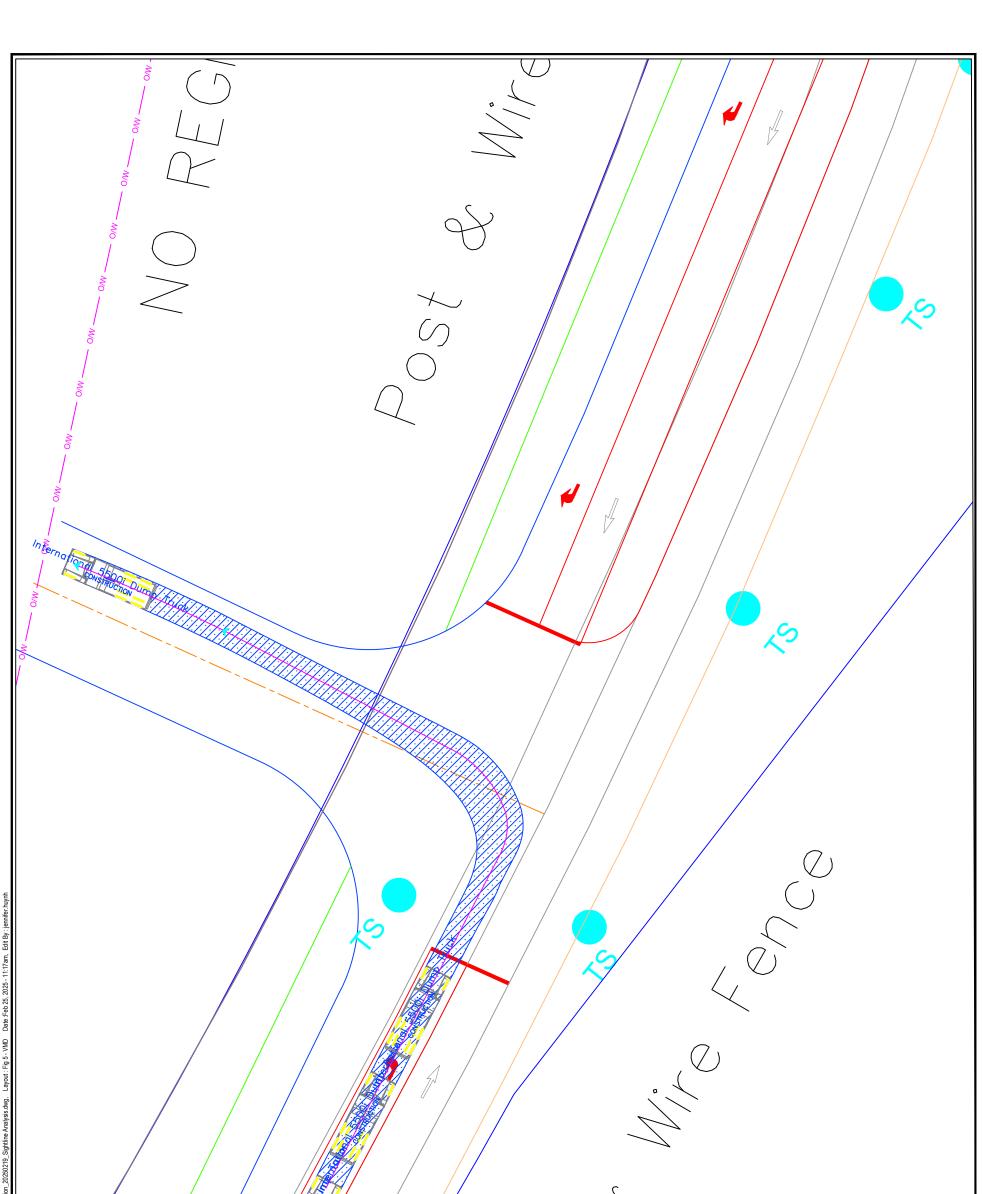
## **APPENDIX J**


Truck Swept Path Analysis at Future Site Access

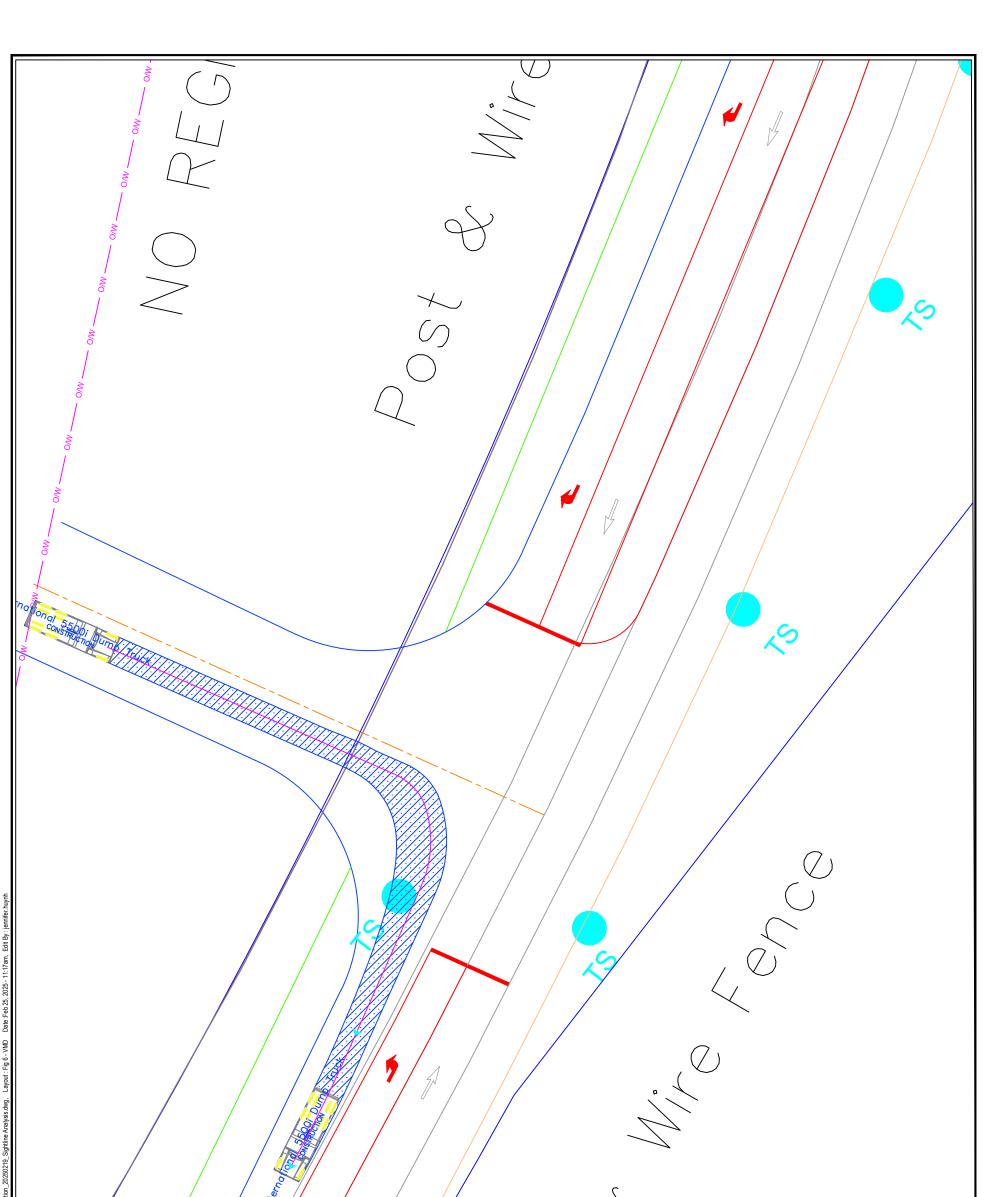



| g Par 5 Haul Route Assessment and TIS/03 Analysis/04 Conceptual Design/20250213/Charleston_Sideroad_Entrance_Location |       |                                                                         | 11.53       8.75         11.23       8.75         1.23       8.41         1.24       7.50         Kenworth T880 MX (Short) Hood_Config 3         meters         First Unit Width : 2.50         Trailer Width : 2.50       Lock to Lock Time 6.0         Steering Angle : 38.2         First Unit Track : 2.50         Trailer Track : 2.50 |
|-----------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File : G:\Projects\2020\10042 - Lo                                                                                    | TYLin | CALEDON QUARRY - SWEPT PATH ANALYSIS<br>EASTBOUND LEFT INBOUND MANEUVER | SCALE:     NTS     PROJECT NO.       DATE:     FEBRUARY 2025     10042       DESIGNED BY:     JH     FIGURE NO.       CHECKED BY:     MD     01                                                                                                                                                                                             |

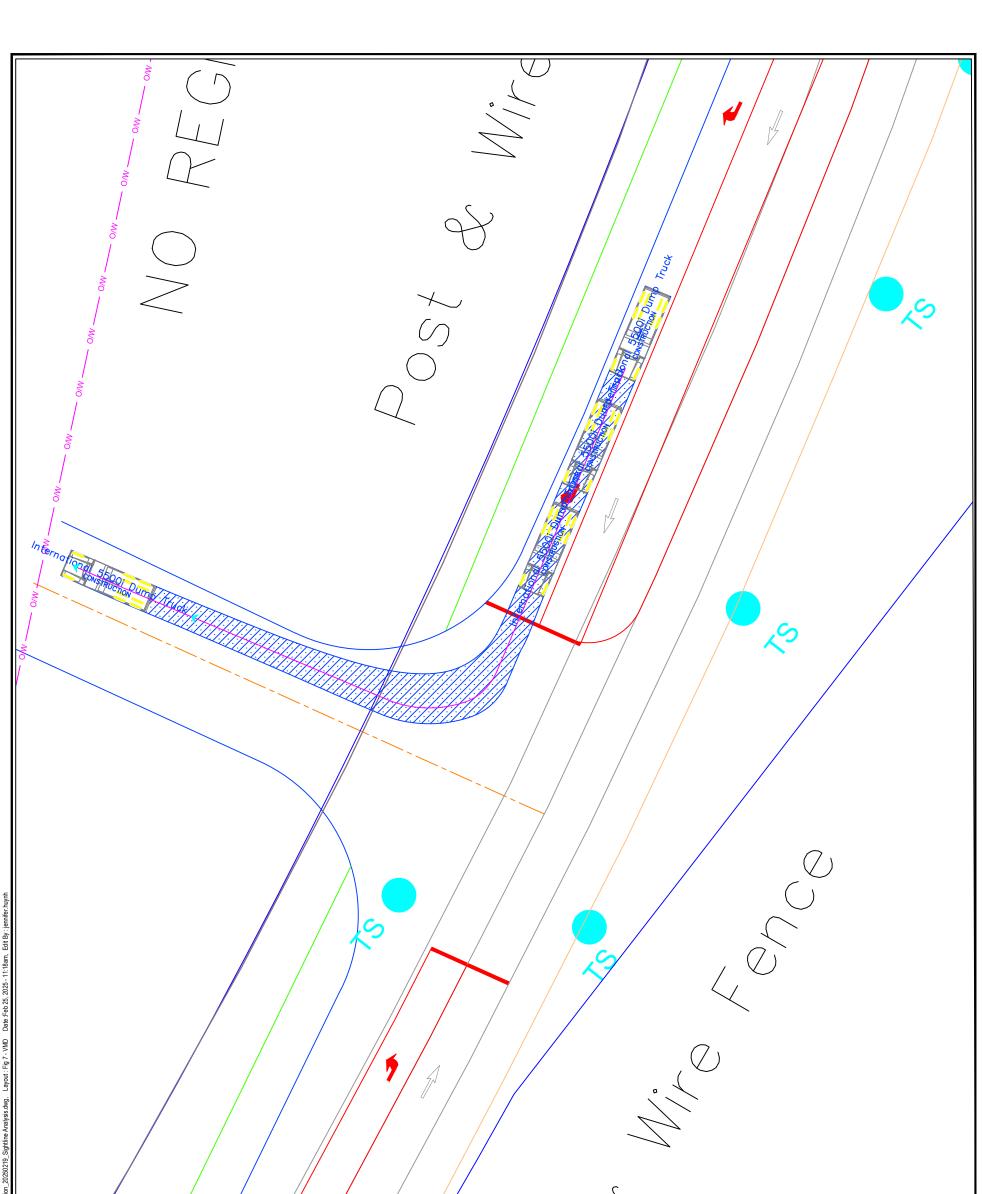



| Long Par 5 Haul Route Assessment and TIS/03 Analysis/04 Conceptual Design/2025/0213/Charleston_Sideroad_Entrance_Locatic |                                                       | Trailer Width : 2.50 S<br>First Unit Track : 2.50 A<br>Trailer Track : 2.50 | 8.75<br><br>Nood_Config 3<br>bock to Lock Time 6.0<br>teering Angle : 38.2<br>rticulating Angle : 70.0 |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| File : G:\Projects\zuzu\1004z -                                                                                          | ARRY - SWEPT PATH ANALYSIS<br>RIGHT OUTBOUND MANEUVER | SCALE: NTS<br>DATE: FEBRUARY 2025<br>DESIGNED BY: JH<br>CHECKED BY: MD      | FIGURE No.<br>02                                                                                       |

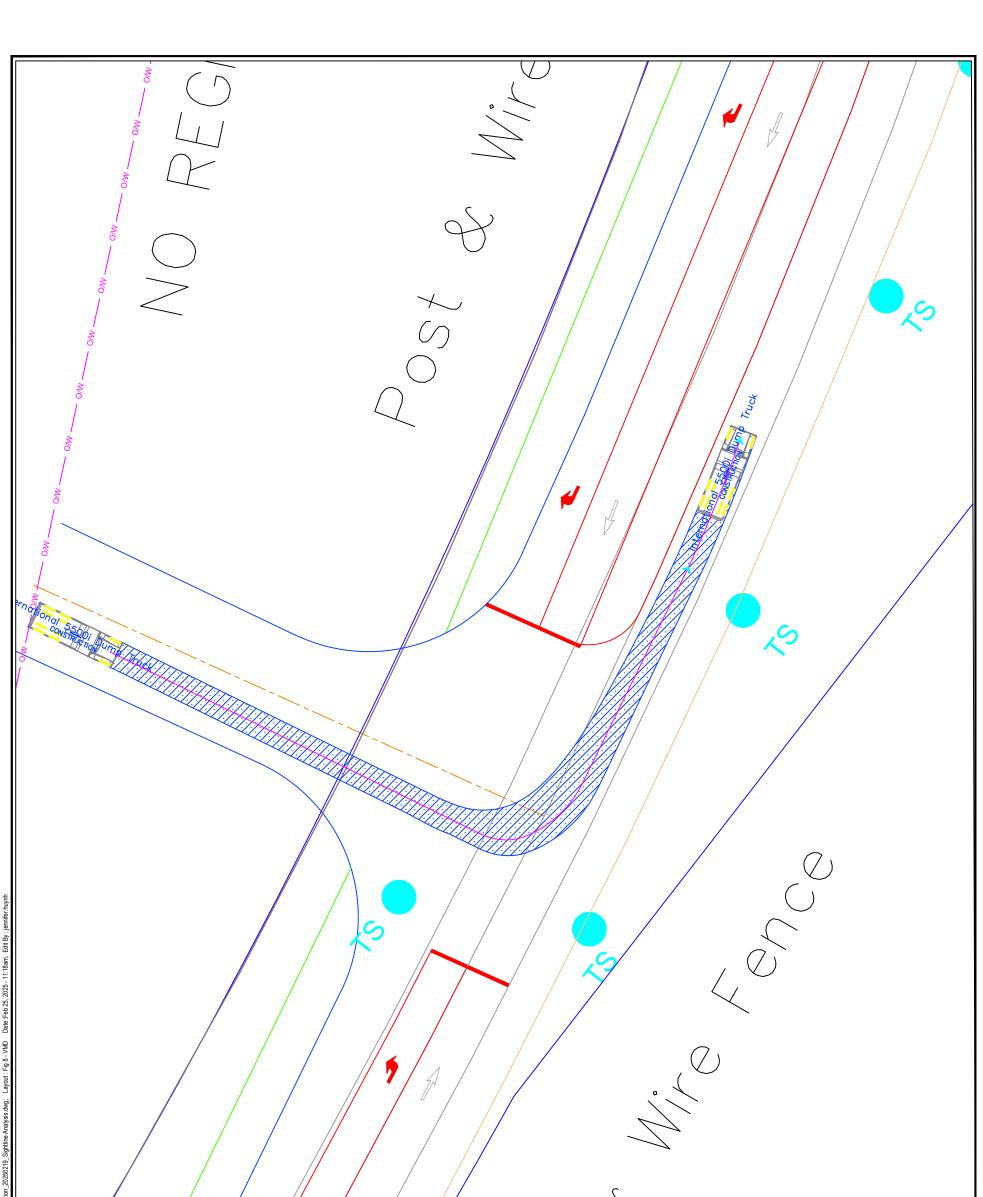



| ng Par 5 Haul Route Assessment and TIS/03 Analysis/04 Conceptual Design/2025/0213/Charleston_Sideroad_Entrance_Location |       |                                                                          | 11.53<br>8.75<br>11.53<br>8.75<br>1.74<br>7.50<br>Kenworth T880 MX (Short) Hood_Config 3<br>meters<br>First Unit Width: 2.50<br>Trailer Width: 2.50<br>First Unit Track: 2.50<br>Trailer Track: 2.50<br>Kenworth Track: 2.50 |
|-------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File : G:\Projects\2020\10042 - Lo                                                                                      | TYLin | CALEDON QUARRY - SWEPT PATH ANALYSIS<br>WESTBOUND RIGHT INBOUND MANEUVER | SCALE:     NTS     PROJECT No.       DATE:     FEBRUARY 2025     10042       DESIGNED BY:     JH     N       CHECKED BY:     MD     03                                                                                                                                                                                                                                                               |




| ng Par 5 Haul Route Assessment and TIS/03 Analysis/04 Conceptual Design10005502 13/Charlestron. Stideroad, Entranoe, Locatio |                                                                           | 11.53       8.75         Image: state stat |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Milling</b>                                                                                                               | CALEDON QUARRY - SWEPT PATH ANALYSIS<br>SOUTHBOUND LEFT OUTBOUND MANEUVER | SCALE:     NTS     PROJECT NO.       DATE:     FEBRUARY 2025     10042       DESIGNED BY:     JH     FIGURE NO.       CHECKED BY:     MD     04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |




| ig Par 5 Haul Route Assessment and TIS/03 Analysis/04 Conceptual Design/2/025/0213/Charleston_Sidercad_Entrance_Location |       |                                                                         | 8.2<br>0.71 5.6<br>Internation<br>Width<br>Track<br>Lock to Lock<br>Steering Angle | 9<br>9<br>nal 5500i Dum<br>meters<br>: 2.44<br>: 2.44<br>Time : 6.0 | np Truck                                 |
|--------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|
| ile : G:\Projects\2020\10042 - Lc                                                                                        | TYLin | CALEDON QUARRY - SWEPT PATH ANALYSIS<br>EASTBOUND LEFT INBOUND MANEUVER | SCALE: NTS<br>DATE: FEBRUARY<br>DESIGNED BY: JH<br>CHECKED BY: MD                  | ( 2025                                                              | PROJECT No.<br>10042<br>FIGURE No.<br>05 |



| ig Par 5 Haul Route Assessment and TIS/03 Analysis/04 Conceptual Design/20250213/Charleston_Sideroad_Entrance_Location |              |                                                                            | 8.21<br><b>6</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> | • Truck                                |
|------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| File : G:\Projects\2020\10042 - Lo                                                                                     | <b>TYLin</b> | CALEDON QUARRY - SWEPT PATH ANALYSIS<br>SOUTHBOUND RIGHT OUTBOUND MANEUVER | DATE: FEBRUARY 2025                                                                                              | ROJECT NO.<br>10042<br>IGURE NO.<br>06 |



| g Par 5 Haul Route Assessment and TIS/03 Analysis/04 Conceptual Design/2025/02 13/Charleston_Sideroad, E-mtanoe_Location | 5            |                                                                          | 8.2<br>0.71 5.69<br>Internation<br>Width<br>Track<br>Lock to Lock<br>Steering Angle | al 5500i Durr<br>: 2.44<br>: 2.44<br>Time : 6.0 | ıp Truck                                 |
|--------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|
| -IIe : G:\Projects\2020\10042 - Lc                                                                                       | <b>TYLin</b> | CALEDON QUARRY - SWEPT PATH ANALYSIS<br>WESTBOUND RIGHT INBOUND MANEUVER | SCALE: NTS<br>DATE: FEBRUARY<br>DESIGNED BY: JH<br>CHECKED BY: MD                   | 2025                                            | PROJECT No.<br>10042<br>FIGURE No.<br>07 |



| ig Par 5 Haul Route Assessment and TIS/03 Analysis/04 Conceptual Design/2025/213/Charleston_Sidercad_Entrance_Location |       |                                                                           | 8.21<br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> | np Truck   |
|------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|
| File : G:\Projects\2020\10042 - Lo                                                                                     | TYLin | CALEDON QUARRY - SWEPT PATH ANALYSIS<br>SOUTHBOUND LEFT OUTBOUND MANEUVER | SCALE: NTS<br>DATE: FEBRUARY 2025<br>DESIGNED BY: JH<br>CHECKED BY: MD                               | FIGURE No. |

## **APPENDIX K**

Synchro Capacity Analysis Reports

## **APPENDIX K1**

**Existing Conditions** 

|                                   | ≯          | -+     | $\mathbf{r}$ | 1           | -           | •        | 1     | Ť           | 1     | Ļ           |  |
|-----------------------------------|------------|--------|--------------|-------------|-------------|----------|-------|-------------|-------|-------------|--|
| Lane Group                        | EBL        | EBT    | EBR          | WBL         | WBT         | WBR      | NBL   | NBT         | SBL   | SBT         |  |
| Lane Configurations               | ۲          | •      | 1            | ۲           | •           | 1        | ٦     | <b>≜</b> †Ъ | ٢     | <b>≜</b> 1≽ |  |
| Traffic Volume (vph)              | 58         | 158    | 204          | 124         | 185         | 31       | 139   | 793         | 59    | 1383        |  |
| Future Volume (vph)               | 58         | 158    | 204          | 124         | 185         | 31       | 139   | 793         | 59    | 1383        |  |
| Turn Type                         | pm+pt      | NA     | Perm         | pm+pt       | NA          | Perm     | pm+pt | NA          | pm+pt | NA          |  |
| Protected Phases                  | 7          | 4      |              | 3           | 8           |          | 5     | 2           | 1     | 6           |  |
| Permitted Phases                  | 4          |        | 4            | 8           |             | 8        | 2     |             | 6     |             |  |
| Detector Phase                    | 7          | 4      | 4            | 3           | 8           | 8        | 5     | 2           | 1     | 6           |  |
| Switch Phase                      |            |        |              |             |             |          |       |             |       |             |  |
| Minimum Initial (s)               | 7.0        | 10.0   | 10.0         | 7.0         | 10.0        | 10.0     | 7.0   | 20.0        | 7.0   | 20.0        |  |
| Minimum Split (s)                 | 10.0       | 17.9   | 17.9         | 10.0        | 17.9        | 17.9     | 10.0  | 44.4        | 10.0  | 44.4        |  |
| Total Split (s)                   | 10.0       | 31.9   | 31.9         | 10.0        | 31.9        | 31.9     | 13.0  | 74.4        | 13.0  | 74.4        |  |
| Total Split (%)                   | 7.7%       | 24.7%  | 24.7%        | 7.7%        | 24.7%       | 24.7%    | 10.1% | 57.5%       | 10.1% | 57.5%       |  |
| Yellow Time (s)                   | 3.0        | 4.5    | 4.5          | 3.0         | 4.5         | 4.5      | 3.0   | 5.0         | 3.0   | 5.0         |  |
| All-Red Time (s)                  | 0.0        | 2.4    | 2.4          | 0.0         | 2.4         | 2.4      | 0.0   | 2.4         | 0.0   | 2.4         |  |
| Lost Time Adjust (s)              | 0.0        | 0.0    | 0.0          | 0.0         | 0.0         | 0.0      | 0.0   | 0.0         | 0.0   | 0.0         |  |
| Total Lost Time (s)               | 3.0        | 6.9    | 6.9          | 3.0         | 6.9         | 6.9      | 3.0   | 7.4         | 3.0   | 7.4         |  |
| Lead/Lag                          | Lead       | Lag    | Lag          | Lead        | Lag         | Lag      | Lead  | Lag         | Lead  | Lag         |  |
| Lead-Lag Optimize?                | Yes        | - 0    | - 0          |             | Yes         | Yes      | Yes   | Yes         | Yes   | Yes         |  |
| Recall Mode                       | None       | None   | None         | None        | None        | None     | None  | C-Max       | None  | C-Max       |  |
| Act Effct Green (s)               | 30.3       | 19.4   | 19.4         | 30.9        | 21.4        | 21.4     | 89.6  | 77.0        | 83.6  | 71.5        |  |
| Actuated g/C Ratio                | 0.23       | 0.15   | 0.15         | 0.24        | 0.17        | 0.17     | 0.69  | 0.60        | 0.65  | 0.55        |  |
| v/c Ratio                         | 0.25       | 0.71   | 0.56         | 0.50        | 0.70        | 0.11     | 0.72  | 0.51        | 0.18  | 0.77        |  |
| Control Delay                     | 37.9       | 67.8   | 16.0         | 45.3        | 64.5        | 0.7      | 41.2  | 17.5        | 8.7   | 26.9        |  |
| Queue Delay                       | 0.0        | 0.0    | 0.0          | 0.0         | 0.0         | 0.0      | 0.0   | 0.0         | 0.0   | 0.0         |  |
| Total Delay                       | 37.9       | 67.8   | 16.0         | 45.3        | 64.5        | 0.7      | 41.2  | 17.5        | 8.7   | 26.9        |  |
| OS                                | D          | E      | В            | D           | E           | Α        | D     | В           | А     | С           |  |
| Approach Delay                    |            | 38.5   |              |             | 51.6        |          |       | 20.7        |       | 26.2        |  |
| Approach LOS                      |            | D      |              |             | D           |          |       | С           |       | С           |  |
| Intersection Summary              |            |        |              |             |             |          |       |             |       |             |  |
| Cycle Length: 129.3               |            |        |              |             |             |          |       |             |       |             |  |
| Actuated Cycle Length: 129.3      | 3          |        |              |             |             |          |       |             |       |             |  |
| Offset: 85 (66%), Referenced      | I to phase | 2:NBTL | and 6:SB     | TL, Start o | of Green    |          |       |             |       |             |  |
| Natural Cycle: 85                 |            |        |              |             |             |          |       |             |       |             |  |
| Control Type: Actuated-Coord      | dinated    |        |              |             |             |          |       |             |       |             |  |
| Maximum v/c Ratio: 0.77           |            |        |              |             |             |          |       |             |       |             |  |
| ntersection Signal Delay: 28.     | .7         |        |              | In          | ntersection | 1 LOS: C |       |             |       |             |  |
| Intersection Capacity Utilization |            |        |              |             | CU Level    |          | e D   |             |       |             |  |
| Analysis Period (min) 15          |            |        |              |             |             |          |       |             |       |             |  |

| Ø1          | Ø2 (R) | 4    | Ø3 | 4 <sub>04</sub> |
|-------------|--------|------|----|-----------------|
| 13 s        | 74.4 s | 10 s |    | 31.9 s          |
| <b>▲</b> ø5 | Ø6 (R) | ≯    | Ø7 |                 |
| 13 s        | 74.4 s | 10 s |    | 31.9 s          |

Synchro 10 Report Page 1

|                        | ≯    | -      | $\mathbf{r}$ | 1    | -     | •    | 1     | 1     | 1    | ↓     |  |
|------------------------|------|--------|--------------|------|-------|------|-------|-------|------|-------|--|
| Lane Group             | EBL  | EBT    | EBR          | WBL  | WBT   | WBR  | NBL   | NBT   | SBL  | SBT   |  |
| Lane Group Flow (vph)  | 61   | 166    | 215          | 131  | 195   | 33   | 146   | 932   | 62   | 1517  |  |
| v/c Ratio              | 0.25 | 0.71   | 0.56         | 0.50 | 0.70  | 0.11 | 0.72  | 0.51  | 0.18 | 0.77  |  |
| Control Delay          | 37.9 | 67.8   | 16.0         | 45.3 | 64.5  | 0.7  | 41.2  | 17.5  | 8.7  | 26.9  |  |
| Queue Delay            | 0.0  | 0.0    | 0.0          | 0.0  | 0.0   | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   |  |
| Total Delay            | 37.9 | 67.8   | 16.0         | 45.3 | 64.5  | 0.7  | 41.2  | 17.5  | 8.7  | 26.9  |  |
| Queue Length 50th (m)  | 12.0 | 40.5   | 7.4          | 26.7 | 48.0  | 0.0  | 16.5  | 70.7  | 4.6  | 162.2 |  |
| Queue Length 95th (m)  | 22.2 | 61.7   | 29.7         | 41.8 | 70.8  | 0.0  | #53.1 | 100.5 | 10.4 | 197.2 |  |
| Internal Link Dist (m) |      | 1351.4 |              |      | 575.0 |      |       | 764.6 |      | 536.2 |  |
| Turn Bay Length (m)    | 80.0 |        | 65.0         | 40.0 |       | 55.0 | 85.0  |       | 40.0 |       |  |
| Base Capacity (vph)    | 245  | 304    | 447          | 261  | 328   | 338  | 206   | 1841  | 365  | 1960  |  |
| Starvation Cap Reductn | 0    | 0      | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0     |  |
| Spillback Cap Reductn  | 0    | 0      | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0     |  |
| Storage Cap Reductn    | 0    | 0      | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0     |  |
| Reduced v/c Ratio      | 0.25 | 0.55   | 0.48         | 0.50 | 0.59  | 0.10 | 0.71  | 0.51  | 0.17 | 0.77  |  |

# 95th percentile volume exceeds capacity, queue may be longe Queue shown is maximum after two cycles.

10042 - Caledon Quarry TIS TYLin

|                                                        |             |          |               |          |           |            |           |             |      |             |       | ,    |
|--------------------------------------------------------|-------------|----------|---------------|----------|-----------|------------|-----------|-------------|------|-------------|-------|------|
|                                                        | •           | →        | $\rightarrow$ | - 🗲      | -         | •          | 1         | Ť           | 1    | -           | Ŧ     | -    |
| Movement                                               | EBL         | EBT      | EBR           | WBL      | WBT       | WBR        | NBL       | NBT         | NBR  | SBL         | SBT   | SBF  |
| Lane Configurations                                    | - <b>T</b>  | <b>↑</b> | 1             | <u>۳</u> | <b>↑</b>  | 1          | ۳.        | <b>↑</b> 1≽ |      | <u>۲</u>    | A     |      |
| Traffic Volume (vph)                                   | 58          | 158      | 204           | 124      | 185       | 31         | 139       | 793         | 92   | 59          | 1383  | 58   |
| Future Volume (vph)                                    | 58          | 158      | 204           | 124      | 185       | 31         | 139       | 793         | 92   | 59          | 1383  | 5    |
| Ideal Flow (vphpl)                                     | 1900        | 1900     | 1900          | 1900     | 1900      | 1900       | 1900      | 1900        | 1900 | 1900        | 1900  | 1900 |
| Total Lost time (s)                                    | 3.0         | 6.9      | 6.9           | 3.0      | 6.9       | 6.9        | 3.0       | 7.4         |      | 3.0         | 7.4   |      |
| Lane Util. Factor                                      | 1.00        | 1.00     | 1.00          | 1.00     | 1.00      | 1.00       | 1.00      | 0.95        |      | 1.00        | 0.95  |      |
| Frt                                                    | 1.00        | 1.00     | 0.85          | 1.00     | 1.00      | 0.85       | 1.00      | 0.98        |      | 1.00        | 0.99  |      |
| Flt Protected                                          | 0.95        | 1.00     | 1.00          | 0.95     | 1.00      | 1.00       | 0.95      | 1.00        |      | 0.95        | 1.00  |      |
| Satd. Flow (prot)                                      | 1690        | 1575     | 1555          | 1772     | 1700      | 1384       | 1534      | 3086        |      | 1484        | 3539  |      |
| Flt Permitted                                          | 0.48        | 1.00     | 1.00          | 0.48     | 1.00      | 1.00       | 0.07      | 1.00        |      | 0.27        | 1.00  |      |
| Satd. Flow (perm)                                      | 858         | 1575     | 1555          | 898      | 1700      | 1384       | 118       | 3086        |      | 426         | 3539  |      |
| Peak-hour factor, PHF                                  | 0.95        | 0.95     | 0.95          | 0.95     | 0.95      | 0.95       | 0.95      | 0.95        | 0.95 | 0.95        | 0.95  | 0.95 |
| Adj. Flow (vph)                                        | 61          | 166      | 215           | 131      | 195       | 33         | 146       | 835         | 97   | 62          | 1456  | 6    |
| RTOR Reduction (vph)                                   | 0           | 0        | 154           | 0        | 0         | 28         | 0         | 6           | 0    | 0           | 2     | Ű.   |
| Lane Group Flow (vph)                                  | 61          | 166      | 61            | 131      | 195       | 5          | 146       | 926         | 0    | 62          | 1515  | (    |
| Heavy Vehicles (%)                                     | 8%          | 22%      | 5%            | 3%       | 13%       | 18%        | 19%       | 16%         | 20%  | 23%         | 2%    | 15%  |
| Turn Type                                              | pm+pt       | NA       | Perm          | pm+pt    | NA        | Perm       | pm+pt     | NA          | 2070 | pm+pt       | NA    | 107  |
| Protected Phases                                       | ριπ+ρι<br>7 | 4        | I CIIII       | 3        | 8         | I CIIII    | 5 pint+pt | 2           |      | pin+pt<br>1 | 6     |      |
| Permitted Phases                                       | 4           | т        | 4             | 8        | 0         | 8          | 2         | 2           |      | 6           | 0     |      |
| Actuated Green, G (s)                                  | 25.6        | 20.0     | 20.0          | 28.4     | 21.4      | 21.4       | 85.0      | 75.7        |      | 77.2        | 70.9  |      |
| Effective Green, g (s)                                 | 25.6        | 20.0     | 20.0          | 28.4     | 21.4      | 21.4       | 85.0      | 75.7        |      | 77.2        | 70.9  |      |
| Actuated g/C Ratio                                     | 0.20        | 0.15     | 0.15          | 0.22     | 0.17      | 0.17       | 0.66      | 0.59        |      | 0.60        | 0.55  |      |
| Clearance Time (s)                                     | 3.0         | 6.9      | 6.9           | 3.0      | 6.9       | 6.9        | 3.0       | 7.4         |      | 3.0         | 7.4   |      |
| Vehicle Extension (s)                                  | 3.0         | 3.0      | 3.0           | 3.0      | 3.0       | 3.0        | 3.0       | 4.4         |      | 3.0         | 4.4   |      |
|                                                        | 205         | 243      | 240           | 244      | 281       | 229        | 199       | 1806        |      | 305         | 1940  |      |
| Lane Grp Cap (vph)                                     |             |          | 240           |          |           | 229        |           |             |      |             |       |      |
| v/s Ratio Prot                                         | 0.01        | 0.11     | 0.04          | c0.03    | c0.11     | 0.00       | c0.06     | 0.30        |      | 0.01        | c0.43 |      |
| v/s Ratio Perm                                         | 0.05        | 0.00     | 0.04          | 0.09     | 0.00      | 0.00       | 0.42      | 0.54        |      | 0.11        | 0.70  |      |
| v/c Ratio                                              | 0.30        | 0.68     | 0.25          | 0.54     | 0.69      | 0.02       | 0.73      | 0.51        |      | 0.20        | 0.78  |      |
| Uniform Delay, d1                                      | 43.2        | 51.7     | 48.1          | 43.3     | 50.9      | 45.2       | 27.6      | 15.9        |      | 11.2        | 23.1  |      |
| Progression Factor                                     | 1.00        | 1.00     | 1.00          | 1.00     | 1.00      | 1.00       | 1.00      | 1.00        |      | 1.00        | 1.00  |      |
| Incremental Delay, d2                                  | 0.8         | 7.7      | 0.6           | 2.3      | 7.2       | 0.0        | 13.1      | 1.0         |      | 0.3         | 3.2   |      |
| Delay (s)                                              | 44.1        | 59.4     | 48.7          | 45.6     | 58.1      | 45.2       | 40.6      | 16.9        |      | 11.6        | 26.3  |      |
| Level of Service                                       | D           | E        | D             | D        | E         | D          | D         | B           |      | В           | С     |      |
| Approach Delay (s)                                     |             | 52.0     |               |          | 52.3      |            |           | 20.1        |      |             | 25.7  |      |
| Approach LOS                                           |             | D        |               |          | D         |            |           | С           |      |             | С     |      |
| ntersection Summary                                    |             |          |               |          |           |            | <u> </u>  |             |      |             |       |      |
| HCM 2000 Control Delay                                 |             |          | 30.1          | Н        | CM 2000   | Level of   | Service   |             | С    |             |       |      |
| HCM 2000 Volume to Capa                                | acity ratio |          | 0.75          |          |           |            |           |             |      |             |       |      |
| Actuated Cycle Length (s)                              |             |          | 129.3         |          | um of los |            |           |             | 20.3 |             |       |      |
| Intersection Capacity Utiliza<br>Analysis Period (min) | ation       |          | 81.9%<br>15   | IC       | CU Level  | of Service | Э         |             | D    |             |       |      |

Synchro 10 Report Page 3

|                                | ٦            | -        | 4         | +          | ×          | 1          | Ť         | 1         | Ŧ         |  |
|--------------------------------|--------------|----------|-----------|------------|------------|------------|-----------|-----------|-----------|--|
| Lane Group                     | EBL          | EBT      | WBL       | WBT        | WBR        | NBL        | NBT       | SBL       | SBT       |  |
| Lane Configurations            | <u>۳</u>     | 4        | <u>۲</u>  | <b>↑</b>   | 1          | <u>۲</u>   | 4         | <u>۲</u>  | 4         |  |
| Traffic Volume (vph)           | 38           | 328      | 6         | 313        | 43         | 6          | 6         | 52        | 9         |  |
| Future Volume (vph)            | 38           | 328      | 6         | 313        | 43         | 6          | 6         | 52        | 9         |  |
| Turn Type                      | Perm         | NA       | Perm      | NA         | Perm       | Perm       | NA        | Perm      | NA        |  |
| Protected Phases               |              | 2        |           | 2          |            |            | 4         |           | 4         |  |
| Permitted Phases               | 2            |          | 2         |            | 2          | 4          |           | 4         |           |  |
| Detector Phase                 | 2            | 2        | 2         | 2          | 2          | 4          | 4         | 4         | 4         |  |
| Switch Phase                   |              |          |           |            |            |            |           |           |           |  |
| Minimum Initial (s)            | 20.0         | 20.0     | 20.0      | 20.0       | 20.0       | 16.0       | 16.0      | 16.0      | 16.0      |  |
| Minimum Split (s)              | 30.6         | 30.6     | 30.6      | 30.6       | 30.6       | 30.6       | 30.6      | 30.6      | 30.6      |  |
| Total Split (s)                | 46.6         | 46.6     | 46.6      | 46.6       | 46.6       | 36.6       | 36.6      | 36.6      | 36.6      |  |
| Total Split (%)                | 56.0%        | 56.0%    | 56.0%     | 56.0%      | 56.0%      | 44.0%      | 44.0%     | 44.0%     | 44.0%     |  |
| Yellow Time (s)                | 4.6          | 4.6      | 4.6       | 4.6        | 4.6        | 4.6        | 4.6       | 4.6       | 4.6       |  |
| All-Red Time (s)               | 2.0          | 2.0      | 2.0       | 2.0        | 2.0        | 2.0        | 2.0       | 2.0       | 2.0       |  |
| Lost Time Adjust (s)           | 0.0          | 0.0      | 0.0       | 0.0        | 0.0        | 0.0        | 0.0       | 0.0       | 0.0       |  |
| Total Lost Time (s)            | 6.6          | 6.6      | 6.6       | 6.6        | 6.6        | 6.6        | 6.6       | 6.6       | 6.6       |  |
| Lead/Lag                       |              |          |           |            |            |            |           |           |           |  |
| Lead-Lag Optimize?             | <i></i>      |          |           | <i>.</i> . |            |            |           |           |           |  |
| Recall Mode                    | C-Min        | C-Min    | C-Min     | C-Min      | C-Min      | None       | None      | None      | None      |  |
| Act Effct Green (s)            | 59.8         | 59.8     | 59.8      | 59.8       | 59.8       | 16.0       | 16.0      | 16.0      | 16.0      |  |
| Actuated g/C Ratio             | 0.72         | 0.72     | 0.72      | 0.72       | 0.72       | 0.19       | 0.19      | 0.19      | 0.19      |  |
| v/c Ratio                      | 0.05         | 0.27     | 0.01      | 0.28       | 0.04       | 0.02       | 0.05      | 0.20      | 0.16      |  |
| Control Delay                  | 5.6          | 6.5      | 5.2       | 6.7        | 1.7        | 27.7       | 18.2      | 30.4      | 12.5      |  |
| Queue Delay                    | 0.0          | 0.0      | 0.0       | 0.0        | 0.0        | 0.0        | 0.0       | 0.0       | 0.0       |  |
| Total Delay                    | 5.6          | 6.5      | 5.2<br>A  | 6.7        | 1.7        | 27.7<br>C  | 18.2<br>B | 30.4<br>C | 12.5<br>B |  |
| LOS                            | А            | A<br>6.4 | A         | A<br>6.0   | A          | U          | В<br>20.7 | U         | в<br>21.5 |  |
| Approach Delay<br>Approach LOS |              | 6.4<br>A |           | 6.0<br>A   |            |            | 20.7<br>C |           | 21.5<br>C |  |
| Approach LOS                   |              | A        |           | A          |            |            | U         |           | U         |  |
| Intersection Summary           |              |          |           |            |            |            |           |           |           |  |
| Cycle Length: 83.2             |              |          |           |            |            |            |           |           |           |  |
| Actuated Cycle Length: 83      | 3.2          |          |           |            |            |            |           |           |           |  |
| Offset: 22.5 (27%), Refere     | nced to pha  | se 2:EBW | B and 6:, | Start of ( | Green      |            |           |           |           |  |
| Natural Cycle: 65              |              |          |           |            |            |            |           |           |           |  |
| Control Type: Actuated-Co      | oordinated   |          |           |            |            |            |           |           |           |  |
| Maximum v/c Ratio: 0.28        |              |          |           |            |            |            |           |           |           |  |
| Intersection Signal Delay:     |              |          |           |            | ntersectio |            |           |           |           |  |
| Intersection Capacity Utiliz   | zation 63.2% |          |           | 10         | CU Level   | of Service | эB        |           |           |  |
| Analysis Period (min) 15       |              |          |           |            |            |            |           |           |           |  |

13

10042 - Caledon Quarry TIS TYLin

|                        | lain Stre |        |      |        |      |      | ,     |      |        |  |
|------------------------|-----------|--------|------|--------|------|------|-------|------|--------|--|
|                        | ٦         | -      | 1    | +      | •    | 1    | 1     | 1    | Ŧ      |  |
| Lane Group             | EBL       | EBT    | WBL  | WBT    | WBR  | NBL  | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 39        | 344    | 6    | 323    | 44   | 6    | 17    | 54   | 54     |  |
| v/c Ratio              | 0.05      | 0.27   | 0.01 | 0.28   | 0.04 | 0.02 | 0.05  | 0.20 | 0.16   |  |
| Control Delay          | 5.6       | 6.5    | 5.2  | 6.7    | 1.7  | 27.7 | 18.2  | 30.4 | 12.5   |  |
| Queue Delay            | 0.0       | 0.0    | 0.0  | 0.0    | 0.0  | 0.0  | 0.0   | 0.0  | 0.0    |  |
| Total Delay            | 5.6       | 6.5    | 5.2  | 6.7    | 1.7  | 27.7 | 18.2  | 30.4 | 12.5   |  |
| Queue Length 50th (m)  | 2.0       | 20.9   | 0.3  | 19.9   | 0.0  | 0.8  | 0.8   | 7.3  | 1.2    |  |
| Queue Length 95th (m)  | 5.2       | 33.5   | 1.5  | 32.3   | 2.9  | 4.0  | 6.0   | 17.1 | 10.3   |  |
| Internal Link Dist (m) |           | 1408.9 |      | 2789.4 |      |      | 883.0 |      | 1179.5 |  |
| Turn Bay Length (m)    | 125.0     |        | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Base Capacity (vph)    | 758       | 1254   | 765  | 1142   | 1187 | 500  | 632   | 516  | 610    |  |
| Starvation Cap Reductn | 0         | 0      | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Spillback Cap Reductn  | 0         | 0      | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Storage Cap Reductn    | 0         | 0      | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Reduced v/c Ratio      | 0.05      | 0.27   | 0.01 | 0.28   | 0.04 | 0.01 | 0.03  | 0.10 | 0.09   |  |

| Heavy Vehicles (%)         3%         10%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0% <th></th> <th>≯</th> <th>-</th> <th><math>\mathbf{i}</math></th> <th>1</th> <th>+</th> <th>•</th> <th>1</th> <th>Ť</th> <th>1</th> <th>1</th> <th>Ŧ</th> <th>4</th>                                                                                                                                 |                                   | ≯          | -           | $\mathbf{i}$ | 1    | +          | •          | 1       | Ť    | 1    | 1    | Ŧ    | 4   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|-------------|--------------|------|------------|------------|---------|------|------|------|------|-----|
| Lane Configurations         Total         Total <th>Movement</th> <th>FRI</th> <th>FRT</th> <th>FRR</th> <th>WRI</th> <th>WRT</th> <th>WRR</th> <th>NRI</th> <th>NRT</th> <th>NRR</th> <th>SBI</th> <th>SBT</th> <th>SBF</th> | Movement                          | FRI        | FRT         | FRR          | WRI  | WRT        | WRR        | NRI     | NRT  | NRR  | SBI  | SBT  | SBF |
| Traffic Volume (vph)       38       328       6       6       313       43       6       6       11       52       9         Future Volume (vph)       38       328       6       6       313       43       6       6       11       52       9         Ideal Flow (vphpl)       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       100       0.0       0.85       1.00       1.00       0.95       1.00       0.05       1.00       1.00       0.75       1.00       0.75       1.00       0.75       1.00       0.75                                                                                                                                                                                                                                                                                                                                  |                                   |            |             | LUI          |      |            |            |         |      | NUN  |      |      |     |
| Future Volume (vph)         38         328         6         6         313         43         6         6         11         52         9           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         100         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97 <td< td=""><td></td><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td><td></td><td>44</td></td<>                                                                                             |                                   |            |             | 6            |      |            |            |         |      | 11   |      |      | 44  |
| Ideal Flow (vphp)       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       1900       19                                                                                                                                                                                                                                                                                                         |                                   |            |             |              |      |            |            |         |      |      |      |      | 4   |
| Total Lost time (s)         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6                                                                                                                                                                                                                                                             |                                   |            |             |              | -    |            |            |         | -    |      |      | -    | 190 |
| Lane Util. Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.95         1.00         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97 <td></td> <td></td> <td></td> <td>1000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1500</td> <td></td> <td></td> <td>100</td>                                                                       |                                   |            |             | 1000         |      |            |            |         |      | 1500 |      |      | 100 |
| Frt       1.00       1.00       1.00       1.00       0.85       1.00       0.90       1.00       0.98         FIP Protected       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.95       1.00       0.97       1.825       1735       1825       1614         FIP Permitted       0.57       1.00       0.55       1.00       1.00       0.72       1.00       0.75       1.00         Satd. Flow (perm)       1054       1745       1065       1588       1633       1387       1735       1434       1614         Peak-hour factor, PHF       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97                                                                                                                                                                                                                                                                                                                              |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Fit Protected       0.95       1.00       0.95       1.00       1.00       0.95       1.00       0.95       1.00         Satd. Flow (prot)       1772       1745       1825       1588       1633       1825       1735       1825       1614         Fit Permitted       0.57       1.00       0.55       1.00       1.00       0.72       1.00       0.75       1.00         Satd. Flow (perm)       1054       1745       1065       1588       1633       1387       1735       1434       1614         Peak-hour factor, PHF       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                       |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Satd. Flow (prot)         1772         1745         1825         1588         1633         1825         1735         1825         1614           FI Permitted         0.57         1.00         0.55         1.00         0.75         1.00           Satd. Flow (perm)         1054         1745         1065         1588         1633         1387         1735         1434         1614           Satd. Flow (perm)         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97<                                                                                                                                                                                                                               |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Fit Permitted       0.57       1.00       0.55       1.00       1.00       0.72       1.00       0.75       1.00         Satd. Flow (perm)       1054       1745       1065       1588       1633       1387       1735       1434       1614         Peak-hour factor, PHF       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Satd. Flow (perm)         1054         1745         1065         1588         1633         1387         1735         1434         1614           Peak-hour factor, PHF         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97                                                                                                                                                                                                                           |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Peak-hour factor, PHF         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97                                                                                                                                                                                                                |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Adj. Flow (vph)       39       338       6       6       323       44       6       6       11       54       9         RTOR Reduction (vph)       0       0       0       0       14       0       9       0       0       38         Lane Group Flow (vph)       39       344       0       6       323       30       6       8       0       54       16         Heavy Vehicles (%)       3%       10%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       0%       <                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                          |            |             | 0.07         |      |            |            |         |      | 0.07 |      |      | 0.9 |
| RTOR Reduction (vph)         0         0         0         0         14         0         9         0         0         38           Lane Group Flow (vph)         39         344         0         6         323         30         6         8         0         54         16           Heavy Vehicles (%)         3%         10%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%                                                                                                                                                                                                                                                                                                        |                                   |            |             |              |      |            |            |         |      |      |      |      | 0.9 |
| Lane Group Flow (vph)         39         344         0         6         323         30         6         8         0         54         16           Heary Vehicles (%)         3%         10%         0%         0%         21%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15                                                                                                                                                                                                                                                                                                   |                                   |            |             |              |      |            |            |         |      |      |      |      | 4   |
| Heavy Vehicles (%)         3%         10%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0% <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td>                                                                                                                                                          |                                   | -          | -           | -            | -    | -          |            | -       | -    | -    | -    |      |     |
| Tum Type         Perm         NA         Perm         Perm         NA         Perm         Perm         NA         Perm                                                                                                                                                                                                                                                |                                   |            |             | -            |      |            |            | -       | -    | -    |      |      | 5%  |
| Protected Phases         2         2         4         4           Permitted Phases         2         2         2         4         4           Actuated Green, G (s)         57.2         57.2         57.2         57.2         57.2         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8                                                                                                                                                                                                                                         | , ()                              |            |             | U%           |      |            |            |         |      | U%   |      |      | 57  |
| Permitted Phases         2         2         2         4         4           Actuated Green, G (s)         57.2         57.2         57.2         57.2         57.2         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8                                                                                                                                                                                                                              |                                   | Perm       |             |              | Perm |            | Perm       | Perm    |      |      | Perm |      |     |
| Actuated Green, G (s)         57.2         57.2         57.2         57.2         57.2         57.2         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8                                                                                                                                                                                                                |                                   | 0          | 2           |              | 0    | 2          | 0          | 4       | 4    |      | 4    | 4    |     |
| Effective Green, g (s)         57.2         57.2         57.2         57.2         57.2         57.2         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.8         12.                                                                                                                                                                                                                |                                   |            | <b>F7 0</b> |              |      | F7 0       |            |         | 40.0 |      |      | 40.0 |     |
| Actuated g/C Ratio         0.69         0.69         0.69         0.69         0.69         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.10         0.00         0.00         0.00         0.00         0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                |                                   |            |             |              |      | -          |            |         |      |      |      |      |     |
| Clearance Time (s)         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         9.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                              |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                           |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Lane Grp Cap (vph)         724         1199         732         1091         1122         213         266         220         248           v/s Ratio Prot         0.20         c0.20         0.00         0.01         0.01         0.02         0.00         0.01           v/s Ratio Perm         0.04         0.01         0.02         0.00         c0.04         v/c Ratio         0.05         0.29         0.01         0.30         0.03         0.03         0.25         0.06           Unform Delay, d1         4.2         5.1         4.1         5.1         4.1         29.9         31.0         30.1           Progression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                        |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| v/s Ratio Prot         0.20         c0.20         0.00         0.01           v/s Ratio Perm         0.04         0.01         0.02         0.00         c0.04           v/s Ratio Perm         0.05         0.29         0.01         0.02         0.03         0.03         0.03         0.25         0.06           Unform Delay, d1         4.2         5.1         4.1         5.1         4.1         2.99         29.9         31.0         30.1           Progression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.                                                                                                                                                                                                                                       |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| v/s Ratio Perm       0.04       0.01       0.02       0.00       c0.04         v/s Ratio Perm       0.05       0.29       0.01       0.30       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.03       0.01       0.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                                                                                   |                                   | 724        |             |              | 732  |            | 1122       | 213     |      |      | 220  |      |     |
| vic Ratio         0.05         0.29         0.01         0.30         0.03         0.03         0.03         0.25         0.06           Uniform Delay, d1         4.2         5.1         4.1         5.1         4.1         29.9         29.9         31.0         30.1           Progression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                         |                                   |            | 0.20        |              |      | c0.20      |            |         | 0.00 |      |      | 0.01 |     |
| Uniform Delay, d1         4.2         5.1         4.1         5.1         4.1         29.9         29.9         31.0         30.1           Progression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.                                                                                                                                                                                                                        |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Progression Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <td></td>                                                                                 |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Incremental Delay, d2         0.1         0.6         0.0         0.7         0.0         0.1         0.0         0.6         0.1           Delay (s)         4.4         5.7         4.1         5.8         4.2         30.0         30.0         31.5         30.2           Level of Service         A         A         A         A         C         C         C         C         Approach Delay (s)         5.5         5.6         30.0         30.9         30.9         30.9         Approach LOS         A         A         C         C         C         Intersection Summary         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C                                                                                                                                                                                                                                                                                                             |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Delay (s)         4.4         5.7         4.1         5.8         4.2         30.0         30.0         31.5         30.2           Level of Service         A         A         A         A         A         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         Image: C         C         C         C         C         Image: C         C         C         C         C         Image: C         C         C         Image: C         C         C         Image: C         C         C         C         Image: C         C         C         Image: C         C         C         Image: C         C         C         Image: C         C         Image: C         C         Image: C         C         Image: C         C         C         Image: C         C         Image: C         C         C         Image: C         C         Image: C         C         Image: C         C         Image: C         Image: C         Image: C         Image: C         Image: C         C         Image: C         Image: C         Image: C         Image: C                                                                                                                                                                                                                                                            |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Level of Service         A         A         A         A         A         C         C         C         C         Approach Delay (s)         5.5         5.6         30.0         30.9         Approach LOS         A         A         A         A         C         C         C         C         Image: C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C                                                                                                                                                                                                                                                                                                                                 |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Approach Delay (s)         5.5         5.6         30.0         30.9           Approach LOS         A         A         C         C           Intersection Summary         HCM 2000 Control Delay         9.3         HCM 2000 Level of Service         A           HCM 2000 Volume to Capacity ratio         0.29         Actuated Cycle Length (s)         83.2         Sum of lost time (s)         13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| Approach LOS     A     A     C     C       Intersection Summary       HCM 2000 Control Delay     9.3     HCM 2000 Level of Service     A       HCM 2000 Volume to Capacity ratio     0.29       Actuated Cycle Length (s)     83.2     Sum of lost time (s)     13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | A          |             |              | A    |            | A          | С       | -    |      | С    | -    |     |
| Intersection Summary           HCM 2000 Control Delay         9.3         HCM 2000 Level of Service         A           HCM 2000 Volume to Capacity ratio         0.29         Actuated Cycle Length (s)         13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |            |             |              |      |            |            |         |      |      |      |      |     |
| HCM 2000 Control Delay         9.3         HCM 2000 Level of Service         A           HCM 2000 Volume to Capacity ratio         0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Approach LOS                      |            | A           |              |      | A          |            |         | С    |      |      | С    |     |
| HCM 2000 Volume to Capacity ratio         0.29           Actuated Cycle Length (s)         83.2         Sum of lost time (s)         13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intersection Summary              |            |             |              |      |            |            |         |      |      |      |      |     |
| Actuated Cycle Length (s) 83.2 Sum of lost time (s) 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCM 2000 Control Delay            |            |             | 9.3          | H    | CM 2000    | Level of S | Service |      | A    |      |      |     |
| Actuated Cycle Length (s) 83.2 Sum of lost time (s) 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCM 2000 Volume to Capac          | city ratio |             | 0.29         |      |            |            |         |      |      |      |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |            |             | 83.2         | Si   | um of lost | time (s)   |         |      | 13.2 |      |      |     |
| Intersection Capacity Utilization 63.2% ICU Level of Service B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Intersection Capacity Utilization | tion       |             | 63.2%        | IC   | U Level o  | of Service |         |      | В    |      |      |     |

Synchro 10 Report Page 5 10042 - Caledon Quarry TIS TYLin

|                                   |      | anesic |              | illiau ( | RR 24     | )          |      |      |      |      | 01/1 | 5/2025 |
|-----------------------------------|------|--------|--------------|----------|-----------|------------|------|------|------|------|------|--------|
|                                   | ۶    | -      | $\mathbf{r}$ | 4        | +         | •          | 1    | 1    | ۲    | 1    | Ļ    | ~      |
| Movement                          | EBL  | EBT    | EBR          | WBL      | WBT       | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR    |
| Lane Configurations               | ۲    | ¢Î,    |              | ۲        | 4Î        |            |      | 4    |      |      | 4    |        |
| Traffic Volume (veh/h)            | 16   | 358    | 2            | 33       | 312       | 15         | 2    | 5    | 13   | 15   | 8    | 11     |
| Future Volume (Veh/h)             | 16   | 358    | 2            | 33       | 312       | 15         | 2    | 5    | 13   | 15   | 8    | 11     |
| Sign Control                      |      | Free   |              |          | Free      |            |      | Stop |      |      | Stop |        |
| Grade                             |      | 0%     |              |          | 0%        |            |      | 0%   |      |      | 0%   |        |
| Peak Hour Factor                  | 0.95 | 0.95   | 0.95         | 0.95     | 0.95      | 0.95       | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95   |
| Hourly flow rate (vph)            | 17   | 377    | 2            | 35       | 328       | 16         | 2    | 5    | 14   | 16   | 8    | 12     |
| Pedestrians                       |      |        |              |          |           |            |      |      |      |      |      |        |
| Lane Width (m)                    |      |        |              |          |           |            |      |      |      |      |      |        |
| Walking Speed (m/s)               |      |        |              |          |           |            |      |      |      |      |      |        |
| Percent Blockage                  |      |        |              |          |           |            |      |      |      |      |      |        |
| Right turn flare (veh)            |      |        |              |          |           |            |      |      |      |      |      |        |
| Median type                       |      | None   |              |          | None      |            |      |      |      |      |      |        |
| Median storage veh)               |      |        |              |          |           |            |      |      |      |      |      |        |
| Upstream signal (m)               |      |        |              |          |           |            |      |      |      |      |      |        |
| pX, platoon unblocked             |      |        |              |          |           |            |      |      |      |      |      |        |
| vC, conflicting volume            | 344  |        |              | 379      |           |            | 826  | 826  | 378  | 834  | 819  | 336    |
| vC1, stage 1 conf vol             | 011  |        |              | 0.0      |           |            | 020  | 020  | 0.0  |      | 0.0  | 000    |
| vC2, stage 2 conf vol             |      |        |              |          |           |            |      |      |      |      |      |        |
| vCu, unblocked vol                | 344  |        |              | 379      |           |            | 826  | 826  | 378  | 834  | 819  | 336    |
| tC, single (s)                    | 4.1  |        |              | 4.9      |           |            | 7.2  | 6.5  | 6.9  | 7.1  | 6.5  | 6.2    |
| tC, 2 stage (s)                   | 4.1  |        |              | 1.0      |           |            | 1.2  | 0.0  | 0.0  | 7.1  | 0.0  | 0.2    |
| tF (s)                            | 2.2  |        |              | 2.9      |           |            | 3.6  | 4.0  | 3.9  | 3.5  | 4.0  | 3.3    |
| p0 queue free %                   | 99   |        |              | 96       |           |            | 99   | 98   | 97   | 94   | 97   | 98     |
| cM capacity (veh/h)               | 1226 |        |              | 868      |           |            | 257  | 293  | 550  | 268  | 296  | 711    |
|                                   |      |        |              |          |           |            | 201  | 200  | 000  | 200  | 200  |        |
| Direction, Lane #                 | EB 1 | EB 2   | WB 1         | WB 2     | NB 1      | SB 1       |      |      |      |      |      |        |
| Volume Total                      | 17   | 379    | 35           | 344      | 21        | 36         |      |      |      |      |      |        |
| Volume Left                       | 17   | 0      | 35           | 0        | 2         | 16         |      |      |      |      |      |        |
| Volume Right                      | 0    | 2      | 0            | 16       | 14        | 12         |      |      |      |      |      |        |
| cSH                               | 1226 | 1700   | 868          | 1700     | 417       | 347        |      |      |      |      |      |        |
| Volume to Capacity                | 0.01 | 0.22   | 0.04         | 0.20     | 0.05      | 0.10       |      |      |      |      |      |        |
| Queue Length 95th (m)             | 0.3  | 0.0    | 1.0          | 0.0      | 1.2       | 2.6        |      |      |      |      |      |        |
| Control Delay (s)                 | 8.0  | 0.0    | 9.3          | 0.0      | 14.1      | 16.6       |      |      |      |      |      |        |
| Lane LOS                          | Α    |        | А            |          | В         | С          |      |      |      |      |      |        |
| Approach Delay (s)                | 0.3  |        | 0.9          |          | 14.1      | 16.6       |      |      |      |      |      |        |
| Approach LOS                      |      |        |              |          | В         | С          |      |      |      |      |      |        |
| Intersection Summary              |      |        |              |          |           |            |      |      |      |      |      | _      |
| Average Delay                     |      |        | 1.6          |          |           |            |      |      |      |      |      |        |
| Intersection Capacity Utilization | n    |        | 37.9%        | IC       | U Level o | of Service |      |      | А    |      |      |        |
|                                   |      |        | 15           |          |           |            |      |      |      |      |      |        |

| 1: Hurontario Stree           | •            |        | `        | ~        | +           |          |       | t          | 1     | 1          |  |
|-------------------------------|--------------|--------|----------|----------|-------------|----------|-------|------------|-------|------------|--|
|                               |              | -      | •        | •        |             | `        | 7     | •          | -     | *          |  |
| Lane Group                    | EBL          | EBT    | EBR      | WBL      | WBT         | WBR      | NBL   | NBT        | SBL   | SBT        |  |
| Lane Configurations           | ሻ            | •      | 1        | ሻ        | <b>↑</b>    | 1        | ٦     | <b>≜</b> ⊅ | 1     | <b>↑</b> ⊅ |  |
| Traffic Volume (vph)          | 75           | 254    | 151      | 113      | 269         | 84       | 181   | 1397       | 52    | 863        |  |
| Future Volume (vph)           | 75           | 254    | 151      | 113      | 269         | 84       | 181   | 1397       | 52    | 863        |  |
| Turn Type                     | pm+pt        | NA     | Perm     | pm+pt    | NA          | Perm     | pm+pt | NA         | pm+pt | NA         |  |
| Protected Phases              | 7            | 4      |          | 3        | 8           |          | 5     | 2          | 1     | 6          |  |
| Permitted Phases              | 4            |        | 4        | 8        |             | 8        | 2     |            | 6     |            |  |
| Detector Phase                | 7            | 4      | 4        | 3        | 8           | 8        | 5     | 2          | 1     | 6          |  |
| Switch Phase                  |              |        |          |          |             |          |       |            |       |            |  |
| Minimum Initial (s)           | 7.0          | 10.0   | 10.0     | 7.0      | 10.0        | 10.0     | 7.0   | 20.0       | 7.0   | 20.0       |  |
| Minimum Split (s)             | 10.0         | 17.9   | 17.9     | 10.0     | 17.9        | 17.9     | 10.0  | 44.4       | 10.0  | 44.4       |  |
| Total Split (s)               | 10.0         | 31.9   | 31.9     | 10.0     | 31.9        | 31.9     | 13.0  | 74.4       | 13.0  | 74.4       |  |
| Total Split (%)               | 7.7%         | 24.7%  | 24.7%    | 7.7%     | 24.7%       | 24.7%    | 10.1% | 57.5%      | 10.1% | 57.5%      |  |
| Yellow Time (s)               | 3.0          | 4.5    | 4.5      | 3.0      | 4.5         | 4.5      | 3.0   | 5.0        | 3.0   | 5.0        |  |
| All-Red Time (s)              | 0.0          | 2.4    | 2.4      | 0.0      | 2.4         | 2.4      | 0.0   | 2.4        | 0.0   | 2.4        |  |
| Lost Time Adjust (s)          | 0.0          | 0.0    | 0.0      | 0.0      | 0.0         | 0.0      | 0.0   | 0.0        | 0.0   | 0.0        |  |
| Total Lost Time (s)           | 3.0          | 6.9    | 6.9      | 3.0      | 6.9         | 6.9      | 3.0   | 7.4        | 3.0   | 7.4        |  |
| Lead/Lag                      | Lead         | Lag    | Lag      | Lead     | Lag         | Lag      | Lead  | Lag        | Lead  | Lag        |  |
| Lead-Lag Optimize?            | Yes          |        |          |          | Yes         | Yes      | Yes   | Yes        | Yes   | Yes        |  |
| Recall Mode                   | None         | None   | None     | None     | None        | None     | None  | C-Max      | None  | C-Max      |  |
| Act Effct Green (s)           | 34.3         | 23.4   | 23.4     | 34.9     | 25.4        | 25.4     | 85.4  | 73.1       | 81.2  | 69.2       |  |
| Actuated g/C Ratio            | 0.27         | 0.18   | 0.18     | 0.27     | 0.20        | 0.20     | 0.66  | 0.57       | 0.63  | 0.54       |  |
| v/c Ratio                     | 0.36         | 0.88   | 0.39     | 0.59     | 0.82        | 0.24     | 0.53  | 0.82       | 0.37  | 0.55       |  |
| Control Delay                 | 38.7         | 79.8   | 9.5      | 49.1     | 69.8        | 10.3     | 14.0  | 28.1       | 17.5  | 21.5       |  |
| Queue Delay                   | 0.0          | 0.0    | 0.0      | 0.0      | 0.0         | 0.0      | 0.0   | 0.0        | 0.0   | 0.0        |  |
| Total Delay                   | 38.7         | 79.8   | 9.5      | 49.1     | 69.8        | 10.3     | 14.0  | 28.1       | 17.5  | 21.5       |  |
| LOS                           | D            | E      | А        | D        | E           | В        | В     | С          | В     | С          |  |
| Approach Delay                |              | 51.3   |          |          | 54.1        |          |       | 26.7       |       | 21.3       |  |
| Approach LOS                  |              | D      |          |          | D           |          |       | С          |       | С          |  |
| Intersection Summary          |              |        |          |          |             |          |       |            |       |            |  |
| Cycle Length: 129.3           |              |        |          |          |             |          |       |            |       |            |  |
| Actuated Cycle Length: 129    | .3           |        |          |          |             |          |       |            |       |            |  |
| Offset: 85 (66%), Reference   |              | 2.NBTI | and 6.SB | TI Start | of Green    |          |       |            |       |            |  |
| Natural Cycle: 95             | - 10 pr. 400 |        |          | , otart  | 0.0011      |          |       |            |       |            |  |
| Control Type: Actuated-Coc    | ordinated    |        |          |          |             |          |       |            |       |            |  |
| Maximum v/c Ratio: 0.88       |              |        |          |          |             |          |       |            |       |            |  |
| ntersection Signal Delay: 3   | 1.9          |        |          | Ir       | ntersection | n LOS: C |       |            |       |            |  |
| Intersection Capacity Utiliza |              |        |          |          | CU Level    |          | ۶F    |            |       |            |  |
| Analysis Period (min) 15      |              |        |          | K        |             | 0.001100 |       |            |       |            |  |

| Ø1          | <sup>™</sup> Ø2 (R) | 🖌 Ø3 | <b>↓</b> <sub>Ø4</sub> |
|-------------|---------------------|------|------------------------|
| 13 s        | 74.4 s              | 10 s | 31.9 s                 |
| <b>▲</b> Ø5 | Ø6 (R)              |      |                        |
| 13 s        | 74.4 s              | 10 s | 31.9 s                 |

Synchro 10 Report Page 1

|                        |      |        |          |      | -      |      |      |       | 1    | 1     |  |
|------------------------|------|--------|----------|------|--------|------|------|-------|------|-------|--|
|                        | ∕    | -      | <b>A</b> | -    |        |      |      | T     |      | ÷     |  |
| Lane Group             | EBL  | EBT    | EBR      | WBL  | WBT    | WBR  | NBL  | NBT   | SBL  | SBT   |  |
| Lane Group Flow (vph)  | 79   | 267    | 159      | 119  | 283    | 88   | 191  | 1631  | 55   | 977   |  |
| v/c Ratio              | 0.36 | 0.88   | 0.39     | 0.59 | 0.82   | 0.24 | 0.53 | 0.82  | 0.37 | 0.55  |  |
| Control Delay          | 38.7 | 79.8   | 9.5      | 49.1 | 69.8   | 10.3 | 14.0 | 28.1  | 17.5 | 21.5  |  |
| Queue Delay            | 0.0  | 0.0    | 0.0      | 0.0  | 0.0    | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   |  |
| Total Delay            | 38.7 | 79.8   | 9.5      | 49.1 | 69.8   | 10.3 | 14.0 | 28.1  | 17.5 | 21.5  |  |
| Queue Length 50th (m)  | 14.7 | 65.9   | 0.0      | 22.8 | 70.0   | 0.0  | 17.6 | 178.8 | 4.7  | 85.8  |  |
| Queue Length 95th (m)  | 27.1 | #108.6 | 18.0     | 38.9 | #114.1 | 13.9 | 27.3 | 221.8 | 11.6 | 105.5 |  |
| Internal Link Dist (m) |      | 1351.4 |          |      | 575.0  |      |      | 764.6 |      | 536.2 |  |
| Turn Bay Length (m)    | 80.0 |        | 65.0     | 40.0 |        | 55.0 | 85.0 |       | 40.0 |       |  |
| Base Capacity (vph)    | 217  | 325    | 423      | 200  | 349    | 376  | 367  | 1991  | 180  | 1775  |  |
| Starvation Cap Reductn | 0    | 0      | 0        | 0    | 0      | 0    | 0    | 0     | 0    | 0     |  |
| Spillback Cap Reductn  | 0    | 0      | 0        | 0    | 0      | 0    | 0    | 0     | 0    | 0     |  |
| Storage Cap Reductn    | 0    | 0      | 0        | 0    | 0      | 0    | 0    | 0     | 0    | 0     |  |
| Reduced v/c Ratio      | 0.36 | 0.82   | 0.38     | 0.59 | 0.81   | 0.23 | 0.52 | 0.82  | 0.31 | 0.55  |  |

Queue shown is maximum after two cycles.

10042 - Caledon Quarry TIS TYLin

| 1: Hurontario Stree          |               |        |              |            |            |               |         |       |      |       |      |      |
|------------------------------|---------------|--------|--------------|------------|------------|---------------|---------|-------|------|-------|------|------|
|                              | ٦             | -      | $\mathbf{r}$ | •          | -          | •             | 1       | 1     | 1    | 1     | Ŧ    | ~    |
| Movement                     | EBL           | EBT    | EBR          | WBL        | WBT        | WBR           | NBL     | NBT   | NBR  | SBL   | SBT  | SBR  |
| Lane Configurations          | 2             | •      | 1            | ľ          | •          | 1             | 1       | A     |      | ľ     | A1⊅  |      |
| Traffic Volume (vph)         | 75            | 254    | 151          | 113        | 269        | 84            | 181     | 1397  | 152  | 52    | 863  | 66   |
| Future Volume (vph)          | 75            | 254    | 151          | 113        | 269        | 84            | 181     | 1397  | 152  | 52    | 863  | 66   |
| Ideal Flow (vphpl)           | 1900          | 1900   | 1900         | 1900       | 1900       | 1900          | 1900    | 1900  | 1900 | 1900  | 1900 | 1900 |
| Total Lost time (s)          | 3.0           | 6.9    | 6.9          | 3.0        | 6.9        | 6.9           | 3.0     | 7.4   |      | 3.0   | 7.4  |      |
| Lane Util. Factor            | 1.00          | 1.00   | 1.00         | 1.00       | 1.00       | 1.00          | 1.00    | 0.95  |      | 1.00  | 0.95 |      |
| Frpb, ped/bikes              | 1.00          | 1.00   | 0.98         | 1.00       | 1.00       | 0.98          | 1.00    | 1.00  |      | 1.00  | 1.00 |      |
| Flpb, ped/bikes              | 1.00          | 1.00   | 1.00         | 1.00       | 1.00       | 1.00          | 1.00    | 1.00  |      | 1.00  | 1.00 |      |
| Frt                          | 1.00          | 1.00   | 0.85         | 1.00       | 1.00       | 0.85          | 1.00    | 0.99  |      | 1.00  | 0.99 |      |
| Fit Protected                | 0.95          | 1.00   | 1.00         | 0.95       | 1.00       | 1.00          | 0.95    | 1.00  |      | 0.95  | 1.00 |      |
| Satd. Flow (prot)            | 1753          | 1685   | 1527         | 1658       | 1762       | 1544          | 1771    | 3516  |      | 1601  | 3312 |      |
| Flt Permitted                | 0.32          | 1.00   | 1.00         | 0.29       | 1.00       | 1.00          | 0.21    | 1.00  |      | 0.06  | 1.00 |      |
| Satd. Flow (perm)            | 582           | 1685   | 1527         | 513        | 1762       | 1544          | 394     | 3516  |      | 100   | 3312 |      |
| Peak-hour factor, PHF        | 0.95          | 0.95   | 0.95         | 0.95       | 0.95       | 0.95          | 0.95    | 0.95  | 0.95 | 0.95  | 0.95 | 0.95 |
| Adj. Flow (vph)              | 79            | 267    | 159          | 119        | 283        | 88            | 191     | 1471  | 160  | 55    | 908  | 69   |
| RTOR Reduction (vph)         | 0             | 0      | 129          | 0          | 0          | 71            | 0       | 6     | 0    | 0     | 4    | C    |
| Lane Group Flow (vph)        | 79            | 267    | 30           | 119        | 283        | 17            | 191     | 1625  | 0    | 55    | 973  | C    |
| Confl. Peds. (#/hr)          | 5             |        | 6            | 6          |            | 5             | 7       |       | 5    | 5     |      | 7    |
| Heavy Vehicles (%)           | 4%            | 14%    | 5%           | 10%        | 9%         | 4%            | 3%      | 2%    | 2%   | 14%   | 9%   | 6%   |
| Turn Type                    | pm+pt         | NA     | Perm         | pm+pt      | NA         | Perm          | pm+pt   | NA    |      | pm+pt | NA   |      |
| Protected Phases             | 7             | 4      |              | 3          | 8          |               | 5       | 2     |      | 1     | 6    |      |
| Permitted Phases             | 4             |        | 4            | 8          |            | 8             | 2       |       |      | 6     |      |      |
| Actuated Green, G (s)        | 29.6          | 24.0   | 24.0         | 32.4       | 25.4       | 25.4          | 81.0    | 71.8  |      | 74.7  | 68.5 |      |
| Effective Green, g (s)       | 29.6          | 24.0   | 24.0         | 32.4       | 25.4       | 25.4          | 81.0    | 71.8  |      | 74.7  | 68.5 |      |
| Actuated g/C Ratio           | 0.23          | 0.19   | 0.19         | 0.25       | 0.20       | 0.20          | 0.63    | 0.56  |      | 0.58  | 0.53 |      |
| Clearance Time (s)           | 3.0           | 6.9    | 6.9          | 3.0        | 6.9        | 6.9           | 3.0     | 7.4   |      | 3.0   | 7.4  |      |
| Vehicle Extension (s)        | 3.0           | 3.0    | 3.0          | 3.0        | 3.0        | 3.0           | 3.0     | 4.4   |      | 3.0   | 4.4  |      |
| Lane Grp Cap (vph)           | 183           | 312    | 283          | 190        | 346        | 303           | 347     | 1952  |      | 129   | 1754 |      |
| v/s Ratio Prot               | 0.02          | 0.16   | 200          | c0.03      | c0.16      | 000           | c0.04   | c0.46 |      | 0.02  | 0.29 |      |
| v/s Ratio Perm               | 0.08          | 0.10   | 0.02         | 0.12       | 00.10      | 0.01          | 0.30    | 00.10 |      | 0.22  | 0.20 |      |
| v/c Ratio                    | 0.43          | 0.86   | 0.10         | 0.63       | 0.82       | 0.06          | 0.55    | 0.83  |      | 0.43  | 0.55 |      |
| Uniform Delay, d1            | 40.8          | 51.0   | 43.7         | 40.6       | 49.7       | 42.2          | 12.5    | 23.8  |      | 20.5  | 20.2 |      |
| Progression Factor           | 1.00          | 1.00   | 1.00         | 1.00       | 1.00       | 1.00          | 1.00    | 1.00  |      | 1.00  | 1.00 |      |
| Incremental Delay, d2        | 1.6           | 19.9   | 0.2          | 6.3        | 13.9       | 0.1           | 1.00    | 4.3   |      | 2.3   | 1.3  |      |
| Delay (s)                    | 42.4          | 70.9   | 43.9         | 46.9       | 63.6       | 42.3          | 14.4    | 28.1  |      | 22.8  | 21.5 |      |
| Level of Service             | 1 <u>2</u> .1 | F 10.0 | -10.0<br>D   | -10.0<br>D | 60.0<br>E  | 4 <u>2</u> .0 | B       | C     |      | C     | C    |      |
| Approach Delay (s)           | U             | 57.9   | U            | 5          | 55.7       | U             | 5       | 26.7  |      | Ŭ     | 21.6 |      |
| Approach LOS                 |               | E      |              |            | E          |               |         | C     |      |       | C    |      |
| Intersection Summary         |               |        |              |            |            |               |         |       |      |       |      |      |
| HCM 2000 Control Delay       |               |        | 33.1         | Н          | CM 2000    | Level of      | Service |       | С    |       |      |      |
| HCM 2000 Volume to Capa      | acity ratio   |        | 0.82         |            |            |               |         |       |      |       |      |      |
| Actuated Cycle Length (s)    | ,             |        | 129.3        | S          | um of lost | t time (s)    |         |       | 20.3 |       |      |      |
| Intersection Capacity Utiliz | ation         |        | 91.0%        |            | CU Level o |               | Э       |       | F    |       |      |      |
| Analysis Period (min)        |               |        | 15           |            |            |               |         |       |      |       |      |      |

Lane Group EBL EBT WBL WBT WBR NBL NBT SBL SBT Lane Configurations ħ î. Þ Traffic Volume (vph) 73 411 398 62 17 85 Future Volume (vph) 73 411 4 398 85 12 11 62 17 Turn Type Perm NA Perm NA Perm Perm NA Perm NA Protected Phases 2 2 4 4 Permitted Phases 2 2 2 Detector Phase 2 2 2 2 2 4 4 4 4 Switch Phase Minimum Initial (s) 20.0 20.0 20.0 20.0 20.0 16.0 16.0 16.0 16.0 Minimum Split (s) 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6 Total Split (s) 36.6 36.6 46.6 46.6 46.6 46.6 46.6 36.6 36.6 Total Split (%) 56.0% 56.0% 56.0% 56.0% 56.0% 44.0% 44.0% 44 0% 44.0% Yellow Time (s) 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Lead/Lag Lead-Lag Optimize? Recall Mode None C-Min C-Min C-Min C-Min C-Min None None None Act Effct Green (s) 59.8 59.8 59.8 59.8 59.8 16.0 16.0 16.0 16.0 Actuated g/C Ratio 0.72 0.72 0.72 0.72 0.72 0.19 0.19 0.19 0.19 v/c Ratio 0.10 0.35 0.01 0.33 0.08 0.05 0.06 0.23 0.21 Control Delay 6.0 7.2 5.2 6.9 28.2 20.5 31.0 12.9 1.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.9 28.2 20.5 31.0 12.9 6.0 7.2 5.2 1.5 LOS С С С В Δ А А А Α Approach Delay 7.0 6.0 23.4 21.1 Approach LOS А А С С Intersection Summary Cycle Length: 83.2 Actuated Cycle Length: 83.2 Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.35 Intersection Signal Delay: 8.7 Intersection LOS: A Intersection Capacity Utilization 68.8% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24) Ø2 (R) M<sub>Ø4</sub>

۰.

•

2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)

٠

10042 - Caledon Quarry TIS TYLin

Timings

Synchro 10 Report Page 4

Existing 2023 PM Peak Hour

∕∽

01/15/2025

10042 - Caledon Quarry TIS TYLin

Synchro 10 Report

Page 3

|                        | lain Str | 001 (14) | ( 100) |        | 1100101 | - erae |       |      | /      |  |
|------------------------|----------|----------|--------|--------|---------|--------|-------|------|--------|--|
|                        | ٦        | -        | 1      | -      | •       | ٩      | 1     | 1    | Ŧ      |  |
| Lane Group             | EBL      | EBT      | WBL    | WBT    | WBR     | NBL    | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 74       | 430      | 4      | 406    | 87      | 12     | 20    | 63   | 76     |  |
| v/c Ratio              | 0.10     | 0.35     | 0.01   | 0.33   | 0.08    | 0.05   | 0.06  | 0.23 | 0.21   |  |
| Control Delay          | 6.0      | 7.2      | 5.2    | 6.9    | 1.5     | 28.2   | 20.5  | 31.0 | 12.9   |  |
| Queue Delay            | 0.0      | 0.0      | 0.0    | 0.0    | 0.0     | 0.0    | 0.0   | 0.0  | 0.0    |  |
| Total Delay            | 6.0      | 7.2      | 5.2    | 6.9    | 1.5     | 28.2   | 20.5  | 31.0 | 12.9   |  |
| Queue Length 50th (m)  | 3.9      | 28.1     | 0.2    | 26.0   | 0.0     | 1.6    | 1.5   | 8.5  | 2.2    |  |
| Queue Length 95th (m)  | 8.7      | 44.1     | 1.2    | 40.8   | 4.3     | 5.9    | 6.9   | 19.1 | 12.9   |  |
| nternal Link Dist (m)  |          | 1408.9   |        | 2789.4 |         |        | 883.0 |      | 1179.5 |  |
| Turn Bay Length (m)    | 125.0    |          | 60.0   |        | 90.0    | 70.0   |       | 85.0 |        |  |
| Base Capacity (vph)    | 711      | 1221     | 688    | 1245   | 1142    | 458    | 651   | 515  | 631    |  |
| Starvation Cap Reductn | 0        | 0        | 0      | 0      | 0       | 0      | 0     | 0    | 0      |  |
| Spillback Cap Reductn  | 0        | 0        | 0      | 0      | 0       | 0      | 0     | 0    | 0      |  |
| Storage Cap Reductn    | 0        | 0        | 0      | 0      | 0       | 0      | 0     | 0    | 0      |  |
| Reduced v/c Ratio      | 0.10     | 0.35     | 0.01   | 0.33   | 0.08    | 0.03   | 0.03  | 0.12 | 0.12   |  |

| 2: Cataract Road/Ma               | ain Stre | eet (RF | K 136)             | & Cha | riestoi    | n Sidei    | road (F | KR 24) |      |       | U1/1     | 5/202 |
|-----------------------------------|----------|---------|--------------------|-------|------------|------------|---------|--------|------|-------|----------|-------|
|                                   | ۶        | -       | $\mathbf{\hat{v}}$ | 4     | -          | ×          | 1       | Ť      | ۲    | 1     | Ļ        | ~     |
| Movement                          | EBL      | EBT     | EBR                | WBL   | WBT        | WBR        | NBL     | NBT    | NBR  | SBL   | SBT      | SBI   |
| Lane Configurations               | ľ        | ¢Î      |                    | ľ     | •          | 1          | ľ       | ¢Î     |      | ľ     | el<br>el |       |
| Traffic Volume (vph)              | 73       | 411     | 11                 | 4     | 398        | 85         | 12      | 11     | 9    | 62    | 17       | 5     |
| Future Volume (vph)               | 73       | 411     | 11                 | 4     | 398        | 85         | 12      | 11     | 9    | 62    | 17       | 5     |
| deal Flow (vphpl)                 | 1900     | 1900    | 1900               | 1900  | 1900       | 1900       | 1900    | 1900   | 1900 | 1900  | 1900     | 190   |
| Total Lost time (s)               | 6.6      | 6.6     |                    | 6.6   | 6.6        | 6.6        | 6.6     | 6.6    |      | 6.6   | 6.6      |       |
| Lane Util. Factor                 | 1.00     | 1.00    |                    | 1.00  | 1.00       | 1.00       | 1.00    | 1.00   |      | 1.00  | 1.00     |       |
| Frt                               | 1.00     | 1.00    |                    | 1.00  | 1.00       | 0.85       | 1.00    | 0.93   |      | 1.00  | 0.88     |       |
| Fit Protected                     | 0.95     | 1.00    |                    | 0.95  | 1.00       | 1.00       | 0.95    | 1.00   |      | 0.95  | 1.00     |       |
| Satd. Flow (prot)                 | 1825     | 1699    |                    | 1825  | 1731       | 1555       | 1706    | 1791   |      | 1825  | 1646     |       |
| Flt Permitted                     | 0.51     | 1.00    |                    | 0.50  | 1.00       | 1.00       | 0.71    | 1.00   |      | 0.74  | 1.00     |       |
| Satd. Flow (perm)                 | 989      | 1699    |                    | 957   | 1731       | 1555       | 1270    | 1791   |      | 1430  | 1646     |       |
| Peak-hour factor, PHF             | 0.98     | 0.98    | 0.98               | 0.98  | 0.98       | 0.98       | 0.98    | 0.98   | 0.98 | 0.98  | 0.98     | 0.9   |
| Adj. Flow (vph)                   | 74       | 419     | 11                 | 4     | 406        | 87         | 12      | 11     | 9    | 63    | 17       | 5     |
| RTOR Reduction (vph)              | 0        | 1       | 0                  | 0     | 0          | 27         | 0       | 8      | 0    | 0     | 50       |       |
| Lane Group Flow (vph)             | 74       | 429     | 0                  | 4     | 406        | 60         | 12      | 12     | 0    | 63    | 26       |       |
| Heavy Vehicles (%)                | 0%       | 13%     | 0%                 | 0%    | 11%        | 5%         | 7%      | 0%     | 0%   | 0%    | 0%       | 4     |
| Turn Type                         | Perm     | NA      |                    | Perm  | NA         | Perm       | Perm    | NA     |      | Perm  | NA       |       |
| Protected Phases                  |          | 2       |                    |       | 2          |            |         | 4      |      |       | 4        |       |
| Permitted Phases                  | 2        |         |                    | 2     |            | 2          | 4       |        |      | 4     |          |       |
| Actuated Green, G (s)             | 57.2     | 57.2    |                    | 57.2  | 57.2       | 57.2       | 12.8    | 12.8   |      | 12.8  | 12.8     |       |
| Effective Green, g (s)            | 57.2     | 57.2    |                    | 57.2  | 57.2       | 57.2       | 12.8    | 12.8   |      | 12.8  | 12.8     |       |
| Actuated g/C Ratio                | 0.69     | 0.69    |                    | 0.69  | 0.69       | 0.69       | 0.15    | 0.15   |      | 0.15  | 0.15     |       |
| Clearance Time (s)                | 6.6      | 6.6     |                    | 6.6   | 6.6        | 6.6        | 6.6     | 6.6    |      | 6.6   | 6.6      |       |
| Vehicle Extension (s)             | 3.0      | 3.0     |                    | 3.0   | 3.0        | 3.0        | 3.0     | 3.0    |      | 3.0   | 3.0      |       |
| Lane Grp Cap (vph)                | 679      | 1168    |                    | 657   | 1190       | 1069       | 195     | 275    |      | 220   | 253      |       |
| v/s Ratio Prot                    |          | c0.25   |                    |       | 0.23       |            |         | 0.01   |      |       | 0.02     |       |
| v/s Ratio Perm                    | 0.07     |         |                    | 0.00  |            | 0.04       | 0.01    |        |      | c0.04 |          |       |
| v/c Ratio                         | 0.11     | 0.37    |                    | 0.01  | 0.34       | 0.06       | 0.06    | 0.05   |      | 0.29  | 0.10     |       |
| Uniform Delay, d1                 | 4.4      | 5.4     |                    | 4.1   | 5.3        | 4.2        | 30.1    | 30.0   |      | 31.2  | 30.3     |       |
| Progression Factor                | 1.00     | 1.00    |                    | 1.00  | 1.00       | 1.00       | 1.00    | 1.00   |      | 1.00  | 1.00     |       |
| ncremental Delay, d2              | 0.3      | 0.9     |                    | 0.0   | 0.8        | 0.1        | 0.1     | 0.1    |      | 0.7   | 0.2      |       |
| Delay (s)                         | 4.7      | 6.3     |                    | 4.1   | 6.1        | 4.3        | 30.2    | 30.1   |      | 31.9  | 30.4     |       |
| Level of Service                  | A        | A       |                    | A     | A          | A          | С       | С      |      | С     | С        |       |
| Approach Delay (s)                |          | 6.1     |                    |       | 5.8        |            |         | 30.1   |      |       | 31.1     |       |
| Approach LOS                      |          | A       |                    |       | A          |            |         | С      |      |       | С        |       |
| Intersection Summary              |          |         |                    |       |            |            |         |        |      |       |          |       |
| HCM 2000 Control Delay            |          |         | 9.6                | H     | CM 2000    | Level of S | Service |        | Α    |       |          |       |
| HCM 2000 Volume to Capacit        | ty ratio |         | 0.35               |       |            |            |         |        |      |       |          |       |
| Actuated Cycle Length (s)         |          |         | 83.2               | Si    | um of lost | time (s)   |         |        | 13.2 |       |          |       |
| Intersection Capacity Utilization | on       |         | 68.8%              | IC    | U Level o  | of Service |         |        | С    |       |          |       |

Synchro 10 Report Page 5 10042 - Caledon Quarry TIS TYLin

| 3: Mississauga Roa              | d & Ch | arlesto  | on Side      | eroad ( | RR 24     | )          |      |      |      |      | 01/1 | 5/2025 |
|---------------------------------|--------|----------|--------------|---------|-----------|------------|------|------|------|------|------|--------|
|                                 | ۶      | -        | $\mathbf{r}$ | 4       | -         | •          | ٩.   | 1    | 1    | 1    | ŧ    | ~      |
| Movement                        | EBL    | EBT      | EBR          | WBL     | WBT       | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR    |
| Lane Configurations             | ľ      | el<br>el |              | ľ       | ¢Î        |            |      | \$   |      |      | \$   |        |
| Traffic Volume (veh/h)          | 14     | 453      | 8            | 12      | 451       | 12         | 3    | 14   | 21   | 21   | 4    | 14     |
| Future Volume (Veh/h)           | 14     | 453      | 8            | 12      | 451       | 12         | 3    | 14   | 21   | 21   | 4    | 14     |
| Sign Control                    |        | Free     |              |         | Free      |            |      | Stop |      |      | Stop |        |
| Grade                           |        | 0%       |              |         | 0%        |            |      | 0%   |      |      | 0%   |        |
| Peak Hour Factor                | 0.97   | 0.97     | 0.97         | 0.97    | 0.97      | 0.97       | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97   |
| Hourly flow rate (vph)          | 14     | 467      | 8            | 12      | 465       | 12         | 3    | 14   | 22   | 22   | 4    | 14     |
| Pedestrians                     |        |          |              |         |           |            |      |      |      |      |      |        |
| Lane Width (m)                  |        |          |              |         |           |            |      |      |      |      |      |        |
| Walking Speed (m/s)             |        |          |              |         |           |            |      |      |      |      |      |        |
| Percent Blockage                |        |          |              |         |           |            |      |      |      |      |      |        |
| Right turn flare (veh)          |        |          |              |         |           |            |      |      |      |      |      |        |
| Median type                     |        | None     |              |         | None      |            |      |      |      |      |      |        |
| Median storage veh)             |        |          |              |         |           |            |      |      |      |      |      |        |
| Upstream signal (m)             |        |          |              |         |           |            |      |      |      |      |      |        |
| pX, platoon unblocked           |        |          |              |         |           |            |      |      |      |      |      |        |
| vC, conflicting volume          | 477    |          |              | 475     |           |            | 1004 | 1000 | 471  | 1019 | 998  | 471    |
| vC1, stage 1 conf vol           |        |          |              |         |           |            |      |      |      |      |      |        |
| vC2, stage 2 conf vol           |        |          |              |         |           |            |      |      |      |      |      |        |
| vCu, unblocked vol              | 477    |          |              | 475     |           |            | 1004 | 1000 | 471  | 1019 | 998  | 471    |
| tC, single (s)                  | 4.2    |          |              | 4.2     |           |            | 7.2  | 6.5  | 6.3  | 7.1  | 6.5  | 6.3    |
| tC, 2 stage (s)                 |        |          |              |         |           |            |      |      |      |      |      |        |
| tF (s)                          | 2.3    |          |              | 2.3     |           |            | 3.6  | 4.0  | 3.4  | 3.5  | 4.0  | 3.4    |
| p0 queue free %                 | 99     |          |              | 99      |           |            | 99   | 94   | 96   | 89   | 98   | 98     |
| cM capacity (veh/h)             | 1055   |          |              | 1032    |           |            | 200  | 239  | 571  | 196  | 240  | 571    |
| Direction, Lane #               | EB 1   | EB 2     | WB 1         | WB 2    | NB 1      | SB 1       |      |      |      |      |      |        |
| /olume Total                    | 14     | 475      | 12           | 477     | 39        | 40         |      |      |      |      |      |        |
| Volume Left                     | 14     | 0        | 12           | 0       | 3         | 22         |      |      |      |      |      |        |
| /olume Right                    | 0      | 8        | 0            | 12      | 22        | 14         |      |      |      |      |      |        |
| cSH                             | 1055   | 1700     | 1032         | 1700    | 348       | 260        |      |      |      |      |      |        |
| Volume to Capacity              | 0.01   | 0.28     | 0.01         | 0.28    | 0.11      | 0.15       |      |      |      |      |      |        |
| Queue Length 95th (m)           | 0.3    | 0.0      | 0.3          | 0.0     | 2.9       | 4.1        |      |      |      |      |      |        |
| Control Delay (s)               | 8.5    | 0.0      | 8.5          | 0.0     | 16.6      | 21.3       |      |      |      |      |      |        |
| Lane LOS                        | A      |          | A            |         | C         | C          |      |      |      |      |      |        |
| Approach Delay (s)              | 0.2    |          | 0.2          |         | 16.6      | 21.3       |      |      |      |      |      |        |
| Approach LOS                    |        |          |              |         | С         | С          |      |      |      |      |      |        |
| Intersection Summary            |        |          |              |         |           |            |      |      |      |      |      |        |
| Average Delav                   |        |          | 1.6          |         |           |            |      |      |      |      |      |        |
| Intersection Capacity Utilizati | on     |          | 39.9%        | IC      | U Level o | of Service |      |      | А    |      |      |        |
| Analysis Period (min)           | ••••   |          | 15           |         |           |            |      |      |      |      |      |        |
|                                 |        |          | 15           |         |           |            |      |      |      |      |      |        |

|                              | ٦         | -+      | $\mathbf{r}$ | 4         | -           | •          | 1     | 1     | - <b>\</b> | Ŧ           |  |
|------------------------------|-----------|---------|--------------|-----------|-------------|------------|-------|-------|------------|-------------|--|
| Lane Group                   | EBL       | EBT     | EBR          | WBL       | WBT         | WBR        | NBL   | NBT   | SBL        | SBT         |  |
| Lane Configurations          | ۲         | 1       | 1            | ۲         | 1           | 1          | ٦     | A     | ٦          | <b>≜</b> †} |  |
| Traffic Volume (vph)         | 111       | 224     | 108          | 146       | 226         | 34         | 185   | 1126  | 60         | 920         |  |
| Future Volume (vph)          | 111       | 224     | 108          | 146       | 226         | 34         | 185   | 1126  | 60         | 920         |  |
| Turn Type                    | pm+pt     | NA      | Perm         | pm+pt     | NA          | Perm       | pm+pt | NA    | pm+pt      | NA          |  |
| Protected Phases             | 7         | 4       |              | 3         | 8           |            | 5     | 2     | 1          | 6           |  |
| Permitted Phases             | 4         |         | 4            | 8         |             | 8          | 2     |       | 6          |             |  |
| Detector Phase               | 7         | 4       | 4            | 3         | 8           | 8          | 5     | 2     | 1          | 6           |  |
| Switch Phase                 |           |         |              |           |             |            |       |       |            |             |  |
| Minimum Initial (s)          | 7.0       | 10.0    | 10.0         | 7.0       | 10.0        | 10.0       | 7.0   | 20.0  | 7.0        | 20.0        |  |
| Minimum Split (s)            | 10.0      | 17.9    | 17.9         | 10.0      | 17.9        | 17.9       | 10.0  | 44.4  | 10.0       | 44.4        |  |
| Total Split (s)              | 10.0      | 31.9    | 31.9         | 10.0      | 31.9        | 31.9       | 13.0  | 74.4  | 13.0       | 74.4        |  |
| Total Split (%)              | 7.7%      | 24.7%   | 24.7%        | 7.7%      | 24.7%       | 24.7%      | 10.1% | 57.5% | 10.1%      | 57.5%       |  |
| Yellow Time (s)              | 3.0       | 4.5     | 4.5          | 3.0       | 4.5         | 4.5        | 3.0   | 5.0   | 3.0        | 5.0         |  |
| All-Red Time (s)             | 0.0       | 2.4     | 2.4          | 0.0       | 2.4         | 2.4        | 0.0   | 2.4   | 0.0        | 2.4         |  |
| Lost Time Adjust (s)         | 0.0       | 0.0     | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0        | 0.0         |  |
| Total Lost Time (s)          | 3.0       | 6.9     | 6.9          | 3.0       | 6.9         | 6.9        | 3.0   | 7.4   | 3.0        | 7.4         |  |
| Lead/Lag                     | Lead      | Lag     | Lag          | Lead      | Lag         | Lag        | Lead  | Lag   | Lead       | Lag         |  |
| Lead-Lag Optimize?           | Yes       | Ť       | Ť            |           | Yes         | Yes        | Yes   | Yes   | Yes        | Yes         |  |
| Recall Mode                  | None      | None    | None         | None      | None        | None       | None  | C-Max | None       | C-Max       |  |
| Act Effct Green (s)          | 31.5      | 20.6    | 20.6         | 31.5      | 20.6        | 20.6       | 88.3  | 75.9  | 83.6       | 71.8        |  |
| Actuated g/C Ratio           | 0.24      | 0.16    | 0.16         | 0.24      | 0.16        | 0.16       | 0.68  | 0.59  | 0.65       | 0.56        |  |
| v/c Ratio                    | 0.53      | 0.78    | 0.32         | 0.68      | 0.78        | 0.11       | 0.54  | 0.64  | 0.24       | 0.53        |  |
| Control Delay                | 46.3      | 69.3    | 10.3         | 55.2      | 70.0        | 0.6        | 13.5  | 20.4  | 9.7        | 19.8        |  |
| Queue Delay                  | 0.0       | 0.0     | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0        | 0.0         |  |
| Total Delay                  | 46.3      | 69.3    | 10.3         | 55.2      | 70.0        | 0.6        | 13.5  | 20.4  | 9.7        | 19.8        |  |
| LOS                          | D         | E       | В            | E         | E           | А          | В     | С     | А          | В           |  |
| Approach Delay               |           | 49.1    |              |           | 58.9        |            |       | 19.6  |            | 19.3        |  |
| Approach LOS                 |           | D       |              |           | E           |            |       | В     |            | В           |  |
| Intersection Summary         |           |         |              |           |             |            |       |       |            |             |  |
| Cycle Length: 129.3          |           |         |              |           |             |            |       |       |            |             |  |
| Actuated Cycle Length: 12    | 93        |         |              |           |             |            |       |       |            |             |  |
| Offset: 85 (66%), Referen    |           | 2.NBTI  | and 6.SB     | TL Start  | of Green    |            |       |       |            |             |  |
| Natural Cycle: 85            |           | 2.11012 |              | re, otart |             |            |       |       |            |             |  |
| Control Type: Actuated-Co    | ordinated |         |              |           |             |            |       |       |            |             |  |
| Maximum v/c Ratio: 0.78      |           |         |              |           |             |            |       |       |            |             |  |
| Intersection Signal Delay:   | 28.1      |         |              | Ir        | ntersection | n LOS: C   |       |       |            |             |  |
| Intersection Capacity Utiliz |           |         |              |           | CU Level    |            | ε     |       |            |             |  |
| Analysis Period (min) 15     |           |         |              |           | 50 20101    | 0. 0011100 | -     |       |            |             |  |

| Ø1          | Ø2 (R)   | <b>√</b> Ø3 | <i>↓</i> <sub>Ø4</sub> |
|-------------|----------|-------------|------------------------|
| 13 s        | 74.4 s   | 10 s        | 31.9 s                 |
| <b>▲</b> ø5 | ₩ Ø6 (R) | <u>≯</u> ₀7 |                        |
| 13 s        | 74.4 s   | 10 s        | 31.9 s                 |

Synchro 10 Report Page 1

| 1: Hurontario Stree    |      |        |              |      |       |      |      |       |      |       |  |
|------------------------|------|--------|--------------|------|-------|------|------|-------|------|-------|--|
|                        | ٦    | -      | $\mathbf{r}$ | 1    | -     | •    | 1    | 1     | 1    | Ŧ     |  |
| Lane Group             | EBL  | EBT    | EBR          | WBL  | WBT   | WBR  | NBL  | NBT   | SBL  | SBT   |  |
| Lane Group Flow (vph)  | 116  | 233    | 113          | 152  | 235   | 35   | 193  | 1319  | 63   | 1037  |  |
| v/c Ratio              | 0.53 | 0.78   | 0.32         | 0.68 | 0.78  | 0.11 | 0.54 | 0.64  | 0.24 | 0.53  |  |
| Control Delay          | 46.3 | 69.3   | 10.3         | 55.2 | 70.0  | 0.6  | 13.5 | 20.4  | 9.7  | 19.8  |  |
| Queue Delay            | 0.0  | 0.0    | 0.0          | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   |  |
| Total Delay            | 46.3 | 69.3   | 10.3         | 55.2 | 70.0  | 0.6  | 13.5 | 20.4  | 9.7  | 19.8  |  |
| Queue Length 50th (m)  | 23.1 | 57.3   | 0.0          | 30.9 | 57.9  | 0.0  | 16.1 | 114.9 | 4.9  | 85.6  |  |
| Queue Length 95th (m)  | 37.4 | 82.8   | 15.7         | 47.6 | 83.3  | 0.0  | 27.7 | 152.3 | 10.5 | 110.5 |  |
| Internal Link Dist (m) |      | 1351.4 |              |      | 575.0 |      |      | 764.6 |      | 536.2 |  |
| Turn Bay Length (m)    | 80.0 |        | 65.0         | 40.0 |       | 55.0 | 85.0 |       | 40.0 |       |  |
| Base Capacity (vph)    | 217  | 364    | 398          | 222  | 364   | 381  | 366  | 2068  | 301  | 1965  |  |
| Starvation Cap Reductn | 0    | 0      | 0            | 0    | 0     | 0    | 0    | 0     | 0    | 0     |  |
| Spillback Cap Reductn  | 0    | 0      | 0            | 0    | 0     | 0    | 0    | 0     | 0    | 0     |  |
| Storage Cap Reductn    | 0    | 0      | 0            | 0    | 0     | 0    | 0    | 0     | 0    | 0     |  |
| Reduced v/c Ratio      | 0.53 | 0.64   | 0.28         | 0.68 | 0.65  | 0.09 | 0.53 | 0.64  | 0.21 | 0.53  |  |

10042 - Caledon Quarry TIS TYLin

|                                 |          |      | -     |       |            |          |         |       |      | 1     | 1    | ,   |
|---------------------------------|----------|------|-------|-------|------------|----------|---------|-------|------|-------|------|-----|
|                                 | ۶        | -    | •     | -     | -          | ~        |         | 1     | 1    | >     | Ŧ    | *   |
| Movement                        | EBL      | EBT  | EBR   | WBL   | WBT        | WBR      | NBL     | NBT   | NBR  | SBL   | SBT  | SB  |
| Lane Configurations             | ٦        | •    | 7     | ሻ     | •          | 1        | ٦       | A1⊅   |      | ٦     | A    |     |
| Traffic Volume (vph)            | 111      | 224  | 108   | 146   | 226        | 34       | 185     | 1126  | 140  | 60    | 920  | 7   |
| Future Volume (vph)             | 111      | 224  | 108   | 146   | 226        | 34       | 185     | 1126  | 140  | 60    | 920  | 7   |
| Ideal Flow (vphpl)              | 1900     | 1900 | 1900  | 1900  | 1900       | 1900     | 1900    | 1900  | 1900 | 1900  | 1900 | 190 |
| Total Lost time (s)             | 3.0      | 6.9  | 6.9   | 3.0   | 6.9        | 6.9      | 3.0     | 7.4   |      | 3.0   | 7.4  |     |
| Lane Util. Factor               | 1.00     | 1.00 | 1.00  | 1.00  | 1.00       | 1.00     | 1.00    | 0.95  |      | 1.00  | 0.95 |     |
| Frpb, ped/bikes                 | 1.00     | 1.00 | 0.98  | 1.00  | 1.00       | 0.98     | 1.00    | 1.00  |      | 1.00  | 1.00 |     |
| Flpb, ped/bikes                 | 1.00     | 1.00 | 1.00  | 1.00  | 1.00       | 1.00     | 1.00    | 1.00  |      | 1.00  | 1.00 |     |
| Frt                             | 1.00     | 1.00 | 0.85  | 1.00  | 1.00       | 0.85     | 1.00    | 0.98  |      | 1.00  | 0.99 |     |
| Flt Protected                   | 0.95     | 1.00 | 1.00  | 0.95  | 1.00       | 1.00     | 0.95    | 1.00  |      | 0.95  | 1.00 |     |
| Satd. Flow (prot)               | 1805     | 1883 | 1589  | 1824  | 1883       | 1603     | 1772    | 3513  |      | 1825  | 3531 |     |
| Flt Permitted                   | 0.33     | 1.00 | 1.00  | 0.34  | 1.00       | 1.00     | 0.20    | 1.00  |      | 0.14  | 1.00 |     |
| Satd. Flow (perm)               | 631      | 1883 | 1589  | 648   | 1883       | 1603     | 373     | 3513  |      | 273   | 3531 |     |
| Peak-hour factor, PHF           | 0.96     | 0.96 | 0.96  | 0.96  | 0.96       | 0.96     | 0.96    | 0.96  | 0.96 | 0.96  | 0.96 | 0.9 |
| Adj. Flow (vph)                 | 116      | 233  | 112   | 152   | 235        | 35       | 193     | 1173  | 146  | 62    | 958  | 7   |
| RTOR Reduction (vph)            | 0        | 0    | 95    | 0     | 0          | 29       | 0       | 6     | 0    | 0     | 4    |     |
| Lane Group Flow (vph)           | 116      | 233  | 18    | 152   | 235        | 6        | 193     | 1313  | 0    | 63    | 1033 |     |
| Confl. Peds. (#/hr)             | 5        |      | 4     | 4     |            | 5        | 2       |       | 3    | 3     |      |     |
| Confl. Bikes (#/hr)             |          |      | 1     |       |            | 1        |         |       | 1    | -     |      |     |
| Heavy Vehicles (%)              | 1%       | 2%   | 1%    | 0%    | 2%         | 0%       | 3%      | 2%    | 1%   | 0%    | 2%   | 29  |
| Turn Type                       | pm+pt    | NA   | Perm  | pm+pt | NA         | Perm     | pm+pt   | NA    | .,.  | pm+pt | NA   |     |
| Protected Phases                | 7        | 4    |       | 3     | 8          |          | 5       | 2     |      | 1     | 6    |     |
| Permitted Phases                | 4        |      | 4     | 8     | Ű          | 8        | 2       | -     |      | 6     | · ·  |     |
| Actuated Green, G (s)           | 27.6     | 20.6 | 20.6  | 27.6  | 20.6       | 20.6     | 84.4    | 75.4  |      | 77.8  | 71.8 |     |
| Effective Green, g (s)          | 27.6     | 20.6 | 20.6  | 27.6  | 20.6       | 20.6     | 84.4    | 75.4  |      | 77.8  | 71.8 |     |
| Actuated q/C Ratio              | 0.21     | 0.16 | 0.16  | 0.21  | 0.16       | 0.16     | 0.65    | 0.58  |      | 0.60  | 0.56 |     |
| Clearance Time (s)              | 3.0      | 6.9  | 6.9   | 3.0   | 6.9        | 6.9      | 3.0     | 7.4   |      | 3.0   | 7.4  |     |
| Vehicle Extension (s)           | 3.0      | 3.0  | 3.0   | 3.0   | 3.0        | 3.0      | 3.0     | 4.4   |      | 3.0   | 4.4  |     |
| Lane Grp Cap (vph)              | 198      | 299  | 253   | 201   | 299        | 255      | 347     | 2048  |      | 236   | 1960 |     |
| v/s Ratio Prot                  | 0.03     | 0.12 | 200   | c0.04 | c0.12      | 200      | c0.04   | c0.37 |      | 0.01  | 0.29 |     |
| v/s Ratio Perm                  | 0.00     | 0.12 | 0.01  | 0.12  | 00.12      | 0.00     | 0.32    | 00.01 |      | 0.01  | 0.20 |     |
| v/c Ratio                       | 0.59     | 0.78 | 0.07  | 0.76  | 0.79       | 0.02     | 0.56    | 0.64  |      | 0.27  | 0.53 |     |
| Uniform Delay, d1               | 43.1     | 52.2 | 46.2  | 46.2  | 52.2       | 45.9     | 11.4    | 17.9  |      | 13.0  | 18.1 |     |
| Progression Factor              | 1.00     | 1.00 | 1.00  | 1.00  | 1.00       | 1.00     | 1.00    | 1.00  |      | 1.00  | 1.00 |     |
| Incremental Delay, d2           | 4.4      | 12.1 | 0.1   | 14.9  | 12.7       | 0.0      | 1.9     | 1.6   |      | 0.6   | 1.0  |     |
| Delay (s)                       | 47.5     | 64.3 | 46.3  | 61.1  | 65.0       | 45.9     | 13.3    | 19.5  |      | 13.6  | 19.1 |     |
| Level of Service                | D        | E    | D     | E     | E          | D        | B       | B     |      | B     | B    |     |
| Approach Delay (s)              |          | 55.7 |       | -     | 62.0       |          |         | 18.7  |      | -     | 18.8 |     |
| Approach LOS                    |          | E    |       |       | E          |          |         | В     |      |       | В    |     |
| Intersection Summary            |          |      |       |       |            |          |         |       |      |       |      |     |
| HCM 2000 Control Delay          |          |      | 28.8  | Н     | CM 2000    | Level of | Service |       | С    |       |      |     |
| HCM 2000 Volume to Capaci       | ty ratio |      | 0.68  |       |            |          |         |       |      |       |      |     |
| Actuated Cycle Length (s)       | ,        |      | 129.3 | S     | um of losi | time (s) |         |       | 20.3 |       |      |     |
| Intersection Capacity Utilizati | on       |      | 82.5% |       | U Level    |          |         |       | E    |       |      |     |
| Analysis Period (min)           |          |      | 15    |       |            | 0.01     |         |       | _    |       |      |     |
| c Critical Lane Group           |          |      | .0    |       |            |          |         |       |      |       |      |     |

Synchro 10 Report Page 3

|                              | ٠              | -+            | 1             | -               | •             | •          | - <b>†</b> | - <b>\</b> | Ţ      |  |
|------------------------------|----------------|---------------|---------------|-----------------|---------------|------------|------------|------------|--------|--|
| Lane Group                   | EBL            | EBT           | WBL           | WBT             | WBR           | NBL        | NBT        | SBL        | SBT    |  |
| Lane Configurations          | <u> </u>       | 1.<br>1.      |               | •               | 1             |            | 1          | <u>50L</u> | 1      |  |
| Traffic Volume (vph)         | 42             | 333           | 9             | <b>T</b><br>350 | 45            | 8          | 7          | 57         | 12     |  |
| Future Volume (vph)          | 42             | 333           | 9             | 350             | 45            | 8          | 7          | 57         | 12     |  |
| Turn Type                    | Perm           | NA            | Perm          | NA              | Perm          | Perm       | NA         | Perm       | NA     |  |
| Protected Phases             | I GIIII        | 2             | I CIIII       | 2               | I GIIII       | 1 CIIII    | 4          | I GIIII    | 4      |  |
| Permitted Phases             | 2              | 2             | 2             | 2               | 2             | 4          | 4          | 4          | 4      |  |
| Detector Phase               | 2              | 2             | 2             | 2               | 2             | 4          | 4          | 4          | 4      |  |
| Switch Phase                 | 2              | 2             | 2             | 2               | 2             | 4          | 4          | 4          | 4      |  |
| Minimum Initial (s)          | 20.0           | 20.0          | 20.0          | 20.0            | 20.0          | 16.0       | 16.0       | 16.0       | 16.0   |  |
| Minimum Split (s)            | 30.6           | 30.6          | 30.6          | 30.6            | 30.6          | 30.6       | 30.6       | 30.6       | 30.6   |  |
| Total Split (s)              | 46.6           | 46.6          | 46.6          | 46.6            | 46.6          | 36.6       | 36.6       | 36.6       | 36.6   |  |
| Total Split (%)              | 56.0%          | 40.0<br>56.0% | 40.0<br>56.0% | 40.0            | 40.0<br>56.0% | 44.0%      | 44.0%      | 44.0%      | 44.0%  |  |
| Yellow Time (s)              | 4.6            | 4.6           | 4.6           | 4.6             | 4.6           | 44.0 %     | 44.0 %     | 44.0 %     | 44.0 % |  |
| All-Red Time (s)             | 2.0            | 2.0           | 2.0           | 2.0             | 2.0           | 2.0        | 2.0        | 2.0        | 2.0    |  |
| Lost Time Adjust (s)         | 0.0            | 0.0           | 0.0           | 0.0             | 0.0           | 0.0        | 0.0        | 0.0        | 0.0    |  |
| Total Lost Time (s)          | 6.6            | 6.6           | 6.6           | 6.6             | 6.6           | 6.6        | 6.6        | 6.6        | 6.6    |  |
| Lead/Lag                     | 0.0            | 0.0           | 0.0           | 0.0             | 0.0           | 0.0        | 0.0        | 0.0        | 0.0    |  |
| Lead-Lag Optimize?           |                |               |               |                 |               |            |            |            |        |  |
| Recall Mode                  | C-Min          | C-Min         | C-Min         | C-Min           | C-Min         | None       | None       | None       | None   |  |
| Act Effct Green (s)          | 59.8           | 59.8          | 59.8          | 59.8            | 59.8          | 16.0       | 16.0       | 16.0       | 16.0   |  |
| Actuated g/C Ratio           | 0.72           | 0.72          | 0.72          | 0.72            | 0.72          | 0.19       | 0.19       | 0.19       | 0.19   |  |
| v/c Ratio                    | 0.06           | 0.26          | 0.01          | 0.72            | 0.04          | 0.13       | 0.13       | 0.13       | 0.13   |  |
| Control Delay                | 5.6            | 6.3           | 5.2           | 6.4             | 1.8           | 27.8       | 25.0       | 30.7       | 13.1   |  |
| Queue Delay                  | 0.0            | 0.0           | 0.0           | 0.0             | 0.0           | 0.0        | 0.0        | 0.0        | 0.0    |  |
| Total Delay                  | 5.6            | 6.3           | 5.2           | 6.4             | 1.8           | 27.8       | 25.0       | 30.7       | 13.1   |  |
| LOS                          | A              | A             | A             | A               | A             | 27.0<br>C  | 20.0<br>C  | C          | B      |  |
| Approach Delay               | А              | 6.2           | А             | 5.8             | А             | 0          | 26.3       | 0          | 21.8   |  |
| Approach LOS                 |                | A             |               | A               |               |            | C          |            | C      |  |
| Intersection Summary         |                |               |               |                 |               |            |            |            |        |  |
| Cycle Length: 83.2           |                |               |               |                 |               |            |            |            |        |  |
| Actuated Cycle Length: 83    |                |               |               |                 |               |            |            |            |        |  |
| Offset: 22.5 (27%), Refere   | enced to phase | se 2:EBW      | B and 6:,     | Start of (      | Green         |            |            |            |        |  |
| Natural Cycle: 65            |                |               |               |                 |               |            |            |            |        |  |
| Control Type: Actuated-Co    | oordinated     |               |               |                 |               |            |            |            |        |  |
| Maximum v/c Ratio: 0.27      |                |               |               |                 |               |            |            |            |        |  |
| Intersection Signal Delay:   |                |               |               |                 | ntersectio    |            |            |            |        |  |
| Intersection Capacity Utiliz | zation 63.2%   |               |               | 10              | CU Level      | of Service | эB         |            |        |  |
| Analysis Period (min) 15     |                |               |               |                 |               |            |            |            |        |  |
| Splits and Phases: 2: C      | ataract Road   | /Main Str     | oot (DD 1     | 136) & Ch       | arlacton      | Sidorood   | (00 24)    |            |        |  |

10042 - Caledon Quarry TIS TYLin

|                        | lain Str | ,      | /    |        |      |      |       |      | ,      |  |
|------------------------|----------|--------|------|--------|------|------|-------|------|--------|--|
|                        | ≯        | -      | 1    | -      | *    | 1    | 1     | 1    | Ŧ      |  |
| Lane Group             | EBL      | EBT    | WBL  | WBT    | WBR  | NBL  | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 44       | 357    | 9    | 365    | 47   | 8    | 9     | 59   | 60     |  |
| v/c Ratio              | 0.06     | 0.26   | 0.01 | 0.27   | 0.04 | 0.03 | 0.03  | 0.21 | 0.17   |  |
| Control Delay          | 5.6      | 6.3    | 5.2  | 6.4    | 1.8  | 27.8 | 25.0  | 30.7 | 13.1   |  |
| Queue Delay            | 0.0      | 0.0    | 0.0  | 0.0    | 0.0  | 0.0  | 0.0   | 0.0  | 0.0    |  |
| Total Delay            | 5.6      | 6.3    | 5.2  | 6.4    | 1.8  | 27.8 | 25.0  | 30.7 | 13.1   |  |
| Queue Length 50th (m)  | 2.3      | 21.5   | 0.4  | 22.2   | 0.0  | 1.1  | 0.9   | 8.0  | 1.7    |  |
| Queue Length 95th (m)  | 5.7      | 33.7   | 1.9  | 34.8   | 3.2  | 4.6  | 4.6   | 18.2 | 11.3   |  |
| Internal Link Dist (m) |          | 1408.9 |      | 2789.4 |      |      | 883.0 |      | 1179.5 |  |
| Turn Bay Length (m)    | 125.0    |        | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Base Capacity (vph)    | 751      | 1350   | 757  | 1354   | 1187 | 497  | 671   | 521  | 640    |  |
| Starvation Cap Reductn | 0        | 0      | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Spillback Cap Reductn  | 0        | 0      | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Storage Cap Reductn    | 0        | 0      | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Reduced v/c Ratio      | 0.06     | 0.26   | 0.01 | 0.27   | 0.04 | 0.02 | 0.01  | 0.11 | 0.09   |  |

| 2: Cataract Road/M            |            |          | /                  |          |            |            |           | /         |      |           |           |     |
|-------------------------------|------------|----------|--------------------|----------|------------|------------|-----------|-----------|------|-----------|-----------|-----|
|                               | ٦          | -        | $\mathbf{\hat{z}}$ | 4        | +          | *          | ٩         | Ť         | 1    | 1         | ŧ         | -   |
| Movement                      | EBL        | EBT      | EBR                | WBL      | WBT        | WBR        | NBL       | NBT       | NBR  | SBL       | SBT       | SB  |
| Lane Configurations           | ۲.         | 4Î       |                    | ۲        | •          | 1          | ٦         | 4Î        |      | ٦         | ĥ         |     |
| Traffic Volume (vph)          | 42         | 333      | 10                 | 9        | 350        | 45         | 8         | 7         | 2    | 57        | 12        | 4   |
| Future Volume (vph)           | 42         | 333      | 10                 | 9        | 350        | 45         | 8         | 7         | 2    | 57        | 12        |     |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900               | 1900     | 1900       | 1900       | 1900      | 1900      | 1900 | 1900      | 1900      | 19  |
| Total Lost time (s)           | 6.6        | 6.6      |                    | 6.6      | 6.6        | 6.6        | 6.6       | 6.6       |      | 6.6       | 6.6       |     |
| Lane Util. Factor             | 1.00       | 1.00     |                    | 1.00     | 1.00       | 1.00       | 1.00      | 1.00      |      | 1.00      | 1.00      |     |
| Frt                           | 1.00       | 1.00     |                    | 1.00     | 1.00       | 0.85       | 1.00      | 0.97      |      | 1.00      | 0.88      |     |
| Flt Protected                 | 0.95       | 1.00     |                    | 0.95     | 1.00       | 1.00       | 0.95      | 1.00      |      | 0.95      | 1.00      |     |
| Satd. Flow (prot)             | 1825       | 1877     |                    | 1825     | 1883       | 1633       | 1825      | 1857      |      | 1825      | 1695      |     |
| Flt Permitted                 | 0.54       | 1.00     |                    | 0.55     | 1.00       | 1.00       | 0.72      | 1.00      |      | 0.75      | 1.00      |     |
| Satd. Flow (perm)             | 1044       | 1877     |                    | 1052     | 1883       | 1633       | 1379      | 1857      |      | 1444      | 1695      |     |
| Peak-hour factor, PHF         | 0.96       | 0.96     | 0.96               | 0.96     | 0.96       | 0.96       | 0.96      | 0.96      | 0.96 | 0.96      | 0.96      | 0.9 |
| Adj. Flow (vph)               | 44         | 347      | 10                 | 9        | 365        | 47         | 8         | 7         | 2    | 59        | 12        |     |
| RTOR Reduction (vph)          | 0          | 1        | 0                  | 0        | 0          | 15         | 0         | 2         | 0    | 0         | 40        |     |
| Lane Group Flow (vph)         | 44         | 356      | 0                  | 9        | 365        | 32         | 8         | 7         | 0    | 59        | 20        |     |
| Heavy Vehicles (%)            | 0%         | 2%       | 0%                 | 0%       | 2%         | 0%         | 0%        | 0%        | 0%   | 0%        | 0%        | C   |
| Turn Type                     | Perm       | NA       | 0,0                | Perm     | NA         | Perm       | Perm      | NA        | 0,0  | Perm      | NA        |     |
| Protected Phases              | T CIIII    | 2        |                    | 1 CIIII  | 2          | 1 Cilli    | T CHI     | 4         |      | 1 CIIII   | 4         |     |
| Permitted Phases              | 2          | -        |                    | 2        | -          | 2          | 4         | -         |      | 4         | -         |     |
| Actuated Green, G (s)         | 57.2       | 57.2     |                    | 57.2     | 57.2       | 57.2       | 12.8      | 12.8      |      | 12.8      | 12.8      |     |
| Effective Green, g (s)        | 57.2       | 57.2     |                    | 57.2     | 57.2       | 57.2       | 12.8      | 12.8      |      | 12.8      | 12.8      |     |
| Actuated g/C Ratio            | 0.69       | 0.69     |                    | 0.69     | 0.69       | 0.69       | 0.15      | 0.15      |      | 0.15      | 0.15      |     |
| Clearance Time (s)            | 6.6        | 6.6      |                    | 6.6      | 6.6        | 6.6        | 6.6       | 6.6       |      | 6.6       | 6.6       |     |
| Vehicle Extension (s)         | 3.0        | 3.0      |                    | 3.0      | 3.0        | 3.0        | 3.0       | 3.0       |      | 3.0       | 3.0       |     |
| Lane Grp Cap (vph)            | 717        | 1290     |                    | 723      | 1294       | 1122       | 212       | 285       |      | 222       | 260       |     |
| v/s Ratio Prot                | 111        | 0.19     |                    | 125      | c0.19      | 1122       | 212       | 0.00      |      | 222       | 0.01      |     |
| v/s Ratio Prot                | 0.04       | 0.19     |                    | 0.01     | CU. 19     | 0.02       | 0.01      | 0.00      |      | c0.04     | 0.01      |     |
| v/c Ratio                     | 0.04       | 0.28     |                    | 0.01     | 0.28       | 0.02       | 0.01      | 0.03      |      | 0.27      | 0.08      |     |
| Uniform Delay, d1             | 4.2        | 5.0      |                    | 4.1      | 5.0        | 4.1        | 30.0      | 29.9      |      | 31.1      | 30.1      |     |
| Progression Factor            | 4.2        | 1.00     |                    | 1.00     | 1.00       | 1.00       | 1.00      | 1.00      |      | 1.00      | 1.00      |     |
| Incremental Delay, d2         | 0.2        | 0.5      |                    | 0.0      | 0.5        | 0.0        | 0.1       | 0.0       |      | 0.6       | 0.1       |     |
|                               | 4.4        | 5.5      |                    | 4.1      | 5.6        | 4.2        | 30.0      | 29.9      |      | 31.7      | 30.3      |     |
| Delay (s)<br>Level of Service | 4.4<br>A   | 5.5<br>A |                    | 4.1<br>A | 0.C<br>A   | 4.Z<br>A   | 30.0<br>C | 29.9<br>C |      | 31.7<br>C | 30.3<br>C |     |
| Approach Delay (s)            | A          | 5.4      |                    | A        | 5.4        | A          | U         | 30.0      |      | U         | 31.0      |     |
| Approach LOS                  |            | 5.4<br>A |                    |          | 5.4<br>A   |            |           | 30.0<br>C |      |           | 31.0<br>C |     |
| Intersection Summary          |            |          |                    |          |            |            |           |           |      |           |           |     |
| HCM 2000 Control Delay        |            |          | 9.0                | H        | CM 2000    | Level of S | Service   |           | A    |           |           |     |
| HCM 2000 Volume to Capa       | citv ratio |          | 0.28               |          |            |            |           |           |      |           |           |     |
| Actuated Cycle Length (s)     | ,          |          | 83.2               | S        | um of lost | time (s)   |           |           | 13.2 |           |           |     |
| Intersection Capacity Utiliza | tion       |          | 63.2%              |          |            | of Service |           |           | B    |           |           |     |
| Analysis Period (min)         |            |          | 15                 |          | 2 201010   |            |           |           | 5    |           |           |     |
| c Critical Lane Group         |            |          | . 5                |          |            |            |           |           |      |           |           |     |

Synchro 10 Report Page 5 10042 - Caledon Quarry TIS TYLin

|                                  | ≯       | _    | <      | ~       | +          | *          | •    | ŧ    | *    | 1    | T    | 1    |
|----------------------------------|---------|------|--------|---------|------------|------------|------|------|------|------|------|------|
| M                                | -       |      | •      |         | WDT        |            | NDI  |      |      | 0.01 |      | -    |
| Movement                         | EBL     | EBT  | EBR    | WBL     | WBT        | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations              | <u></u> | 4    | 0      | <u></u> | <b>1</b> > | 40         | -    | 4    | 40   | -    | 4    |      |
| Traffic Volume (veh/h)           | 10      | 358  | 6      | 13      | 382        | 16         | 5    | 5    | 10   | 7    | 5    | 8    |
| Future Volume (Veh/h)            | 10      | 358  | 6      | 13      | 382        | 16         | 5    | 5    | 10   | 7    | 5    | 8    |
| Sign Control                     |         | Free |        |         | Free       |            |      | Stop |      |      | Stop |      |
| Grade                            | 0.04    | 0%   | 0.04   | 0.04    | 0%         | 0.04       | 0.04 | 0%   | 0.04 | 0.04 | 0%   | 0.04 |
| Peak Hour Factor                 | 0.94    | 0.94 | 0.94   | 0.94    | 0.94       | 0.94       | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Hourly flow rate (vph)           | 11      | 381  | 6      | 14      | 406        | 17         | 5    | 5    | 11   | 7    | 5    | 9    |
| Pedestrians                      |         |      |        |         |            |            |      |      |      |      |      |      |
| Lane Width (m)                   |         |      |        |         |            |            |      |      |      |      |      |      |
| Walking Speed (m/s)              |         |      |        |         |            |            |      |      |      |      |      |      |
| Percent Blockage                 |         |      |        |         |            |            |      |      |      |      |      |      |
| Right turn flare (veh)           |         |      |        |         |            |            |      |      |      |      |      |      |
| Median type                      |         | None |        |         | None       |            |      |      |      |      |      |      |
| Median storage veh)              |         |      |        |         |            |            |      |      |      |      |      |      |
| Upstream signal (m)              |         |      |        |         |            |            |      |      |      |      |      |      |
| pX, platoon unblocked            | 100     |      |        |         |            |            | 0.50 |      |      | 0.50 | 0.50 |      |
| vC, conflicting volume           | 423     |      |        | 387     |            |            | 852  | 857  | 384  | 859  | 852  | 414  |
| vC1, stage 1 conf vol            |         |      |        |         |            |            |      |      |      |      |      |      |
| vC2, stage 2 conf vol            |         |      |        |         |            |            |      |      |      |      |      |      |
| vCu, unblocked vol               | 423     |      |        | 387     |            |            | 852  | 857  | 384  | 859  | 852  | 414  |
| tC, single (s)                   | 4.1     |      |        | 4.1     |            |            | 7.1  | 6.5  | 6.2  | 7.1  | 6.5  | 6.2  |
| tC, 2 stage (s)                  |         |      |        |         |            |            |      | 4.0  |      |      |      |      |
| tF (s)                           | 2.2     |      |        | 2.2     |            |            | 3.5  | 4.0  | 3.3  | 3.5  | 4.0  | 3.3  |
| p0 queue free %                  | 99      |      |        | 99      |            |            | 98   | 98   | 98   | 97   | 98   | 99   |
| cM capacity (veh/h)              | 1147    |      |        | 1183    |            |            | 270  | 291  | 668  | 266  | 293  | 642  |
| Direction, Lane #                | EB 1    | EB 2 | WB 1   | WB 2    | NB 1       | SB 1       |      |      |      |      |      |      |
| /olume Total                     | 11      | 387  | 14     | 423     | 21         | 21         |      |      |      |      |      |      |
| Volume Left                      | 11      | 0    | 14     | 0       | 5          | 7          |      |      |      |      |      |      |
| Volume Right                     | 0       | 6    | 0      | 17      | 11         | 9          |      |      |      |      |      |      |
| cSH                              | 1147    | 1700 | 1183   | 1700    | 402        | 366        |      |      |      |      |      |      |
| Volume to Capacity               | 0.01    | 0.23 | 0.01   | 0.25    | 0.05       | 0.06       |      |      |      |      |      |      |
| Queue Length 95th (m)            | 0.2     | 0.0  | 0.3    | 0.0     | 1.3        | 1.4        |      |      |      |      |      |      |
| Control Delay (s)                | 8.2     | 0.0  | 8.1    | 0.0     | 14.4       | 15.4       |      |      |      |      |      |      |
| Lane LOS                         | Α       |      | Α      |         | В          | С          |      |      |      |      |      |      |
| Approach Delay (s)               | 0.2     |      | 0.3    |         | 14.4       | 15.4       |      |      |      |      |      |      |
| Approach LOS                     |         |      |        |         | В          | С          |      |      |      |      |      |      |
| Intersection Summary             |         |      |        |         |            |            |      |      |      |      |      |      |
| Average Delay                    |         |      | 0.9    |         |            |            |      |      |      |      |      |      |
| Intersection Capacity Utilizatio | n       |      | 31.1%  | IC      | U Level o  | of Service |      |      | А    |      |      |      |
| more out outpacity outizatio     |         |      | UI.170 | 10      | C LOVOI C  | - JOI NOE  |      |      | ~    |      |      |      |

## **APPENDIX K2**

Future Background Conditions

|                               | ٦            | <b>→</b>     | $\mathbf{r}$ | 4           | +           | •          | 1           | Ť           | 1           | Ŧ           |  |
|-------------------------------|--------------|--------------|--------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|--|
| Lane Group                    | EBL          | EBT          | EBR          | WBL         | WBT         | WBR        | NBL         | NBT         | SBL         | SBT         |  |
| Lane Configurations           | <u>۳</u>     | <b>↑</b>     | 1            | <u>۲</u>    | <b>↑</b>    | 1          | ሻ           | <b>∱</b> }  | ሻ           | A           |  |
| Traffic Volume (vph)          | 58           | 170          | 204          | 124         | 199         | 31         | 139         | 1047        | 59          | 1825        |  |
| Future Volume (vph)           | 58           | 170          | 204          | 124         | 199         | 31         | 139         | 1047        | 59          | 1825        |  |
| Turn Type                     | pm+pt        | NA           | Perm         | pm+pt       | NA          | Perm       | pm+pt       | NA          | pm+pt       | NA          |  |
| Protected Phases              | 7            | 4            |              | 3           | 8           |            | 5           | 2           | 1           | 6           |  |
| Permitted Phases              | 4            |              | 4            | 8           |             | 8          | 2           |             | 6           |             |  |
| Detector Phase                | 7            | 4            | 4            | 3           | 8           | 8          | 5           | 2           | 1           | 6           |  |
| Switch Phase                  |              |              |              |             |             |            |             |             |             |             |  |
| Minimum Initial (s)           | 7.0          | 10.0         | 10.0         | 7.0         | 10.0        | 10.0       | 7.0         | 20.0        | 7.0         | 20.0        |  |
| Minimum Split (s)             | 10.0         | 17.9         | 17.9         | 10.0        | 17.9        | 17.9       | 10.0        | 44.4        | 10.0        | 44.4        |  |
| Total Split (s)               | 10.0         | 31.9         | 31.9         | 10.0        | 31.9        | 31.9       | 13.0        | 74.4        | 13.0        | 74.4        |  |
| Total Split (%)               | 7.7%         | 24.7%        | 24.7%        | 7.7%        | 24.7%       | 24.7%      | 10.1%       | 57.5%       | 10.1%       | 57.5%       |  |
| Yellow Time (s)               | 3.0          | 4.5          | 4.5          | 3.0         | 4.5         | 4.5        | 3.0         | 5.0         | 3.0         | 5.0         |  |
| All-Red Time (s)              | 0.0          | 2.4          | 2.4          | 0.0         | 2.4         | 2.4        | 0.0         | 2.4         | 0.0         | 2.4         |  |
| ost Time Adjust (s)           | 0.0          | 0.0          | 0.0          | 0.0         | 0.0         | 0.0        | 0.0         | 0.0         | 0.0         | 0.0         |  |
| Total Lost Time (s)           | 3.0          | 6.9          | 6.9          | 3.0         | 6.9         | 6.9        | 3.0         | 7.4         | 3.0         | 7.4         |  |
| _ead/Lag                      | Lead         | Lag          | Lag          | Lead        | Lag         | Lag        | Lead        | Lag         | Lead        | Lag         |  |
| _ead-Lag Optimize?            | Yes          |              |              |             | Yes         | Yes        | Yes         | Yes         | Yes         | Yes         |  |
| Recall Mode                   | None         | None         | None         | None        | None        | None       | None        | C-Max       | None        | C-Max       |  |
| Act Effct Green (s)           | 31.1         | 20.2         | 20.2         | 31.7        | 22.2        | 22.2       | 88.8        | 76.1        | 83.0        | 70.9        |  |
| Actuated g/C Ratio            | 0.24         | 0.16         | 0.16         | 0.25        | 0.17        | 0.17       | 0.69        | 0.59        | 0.64        | 0.55        |  |
| v/c Ratio                     | 0.25<br>37.4 | 0.73<br>68.7 | 0.56         | 0.51        | 0.72        | 0.11       | 0.80        | 0.66        | 0.25        | 1.02        |  |
| Control Delay                 | 37.4<br>0.0  | 0.0          | 18.5<br>0.0  | 45.0<br>0.0 | 65.2<br>0.0 | 0.7        | 58.5<br>0.0 | 21.3<br>0.0 | 10.1<br>0.0 | 55.0<br>0.0 |  |
| Queue Delay<br>Total Delay    | 37.4         | 68.7         | 18.5         | 45.0        | 65.2        | 0.0        | 58.5        | 21.3        | 10.1        | 55.0        |  |
| _OS                           | 57.4<br>D    | 00.7<br>E    | 10.5<br>B    | 45.0<br>D   | 05.2<br>E   | 0.7<br>A   | 56.5<br>E   | 21.3<br>C   | B           | 55.0<br>E   |  |
| Approach Delay                | U            | ⊑<br>40.8    | D            | U           | 52.4        | A          | E           | 25.4        | D           | 53.7        |  |
| Approach LOS                  |              | 40.8<br>D    |              |             | 52.4<br>D   |            |             | 25.4<br>C   |             | 55.7<br>D   |  |
| Appilacii 203                 |              | U            |              |             | U           |            |             | U           |             | U           |  |
| ntersection Summary           |              |              |              |             |             |            |             |             |             |             |  |
| Cycle Length: 129.3           |              |              |              |             |             |            |             |             |             |             |  |
| Actuated Cycle Length: 129    |              |              |              |             |             |            |             |             |             |             |  |
| Offset: 85 (66%), Reference   | ed to phase  | 2:NBTL       | and 6:SB     | TL, Start   | of Green    |            |             |             |             |             |  |
| Vatural Cycle: 115            |              |              |              |             |             |            |             |             |             |             |  |
| Control Type: Actuated-Coo    | ordinated    |              |              |             |             |            |             |             |             |             |  |
| Maximum v/c Ratio: 1.02       |              |              |              |             |             |            |             |             |             |             |  |
| ntersection Signal Delay: 4   |              |              |              |             | ntersection |            |             |             |             |             |  |
| Intersection Capacity Utiliza | ation 94.9%  |              |              | IC          | CU Level    | of Service | εF          |             |             |             |  |

| Ø1          | Ø2 (R) | 🖌 Ø3 |             |
|-------------|--------|------|-------------|
| 13 s        | 74.4 s | 10 s | 31.9 s      |
| <b>1</b> Ø5 | Ø6 (R) |      | <b>∲</b> Ø8 |
| 13 s        | 74.4 s | 10 s | 31.9 s      |

Synchro 10 Report Page 1

| Queues                                                 | Future Background 2037 AM Peak Hour |
|--------------------------------------------------------|-------------------------------------|
| 1: Hurontario Street (Hwy 10) & Charleston Sideroad    | (RR 24) 01/15/2025                  |
| $\rightarrow$ $\rightarrow$ $\rightarrow$ $\leftarrow$ | <u> </u>                            |
|                                                        |                                     |

| Lane Group                                 | EBL  | EBT       | EBR          | WBL  | WBT   | WBR  | NBL   | NBT   | SBL  | SBT    |  |
|--------------------------------------------|------|-----------|--------------|------|-------|------|-------|-------|------|--------|--|
| Lane Group Flow (vph)                      | 61   | 179       | 215          | 131  | 209   | 33   | 146   | 1199  | 62   | 1982   |  |
| v/c Ratio                                  | 0.25 | 0.73      | 0.56         | 0.51 | 0.72  | 0.11 | 0.80  | 0.66  | 0.25 | 1.02   |  |
| Control Delay                              | 37.4 | 68.7      | 18.5         | 45.0 | 65.2  | 0.7  | 58.5  | 21.3  | 10.1 | 55.0   |  |
| Queue Delay                                | 0.0  | 0.0       | 0.0          | 0.0  | 0.0   | 0.0  | 0.0   | 0.0   | 0.0  | 0.0    |  |
| Total Delay                                | 37.4 | 68.7      | 18.5         | 45.0 | 65.2  | 0.7  | 58.5  | 21.3  | 10.1 | 55.0   |  |
| Queue Length 50th (m)                      | 11.8 | 43.6      | 10.7         | 26.4 | 51.4  | 0.0  | 21.8  | 106.8 | 4.8  | ~296.2 |  |
| Queue Length 95th (m)                      | 22.2 | 66.4      | 33.8         | 41.8 | 75.9  | 0.0  | #62.0 | 146.2 | 10.4 | #338.3 |  |
| Internal Link Dist (m)                     |      | 1351.4    |              |      | 575.0 |      |       | 764.6 |      | 536.2  |  |
| Turn Bay Length (m)                        | 80.0 |           | 65.0         | 40.0 |       | 55.0 | 85.0  |       | 40.0 |        |  |
| Base Capacity (vph)                        | 241  | 304       | 435          | 258  | 328   | 338  | 186   | 1829  | 275  | 1945   |  |
| Starvation Cap Reductn                     | 0    | 0         | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0      |  |
| Spillback Cap Reductn                      | 0    | 0         | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0      |  |
| Storage Cap Reductn                        | 0    | 0         | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0      |  |
| Reduced v/c Ratio                          | 0.25 | 0.59      | 0.49         | 0.51 | 0.64  | 0.10 | 0.78  | 0.66  | 0.23 | 1.02   |  |
| Intersection Summary                       |      |           |              |      |       |      |       |       |      |        |  |
| <ul> <li>Volume exceeds canacit</li> </ul> |      | theoretic | ally infinit | •    |       |      |       |       |      |        |  |

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

10042 - Caldeon Quarry TIS TYLin

|                              | ٦          | -    | $\mathbf{r}$ | 1     | -          | ×          | 1       | t           | 1    | 1     | Ŧ     | ~   |
|------------------------------|------------|------|--------------|-------|------------|------------|---------|-------------|------|-------|-------|-----|
| Movement                     | EBL        | EBT  | EBR          | WBL   | WBT        | WBR        | NBL     | NBT         | NBR  | SBL   | SBT   | SBF |
| ane Configurations           | ۲          | •    | 1            | ۲     | 1          | 1          | ۲       | <b>≜</b> î≽ |      | ۲     | t₽    |     |
| Traffic Volume (vph)         | 58         | 170  | 204          | 124   | 199        | 31         | 139     | 1047        | 92   | 59    | 1825  | 58  |
| uture Volume (vph)           | 58         | 170  | 204          | 124   | 199        | 31         | 139     | 1047        | 92   | 59    | 1825  | 5   |
| deal Flow (vphpl)            | 1900       | 1900 | 1900         | 1900  | 1900       | 1900       | 1900    | 1900        | 1900 | 1900  | 1900  | 190 |
| Total Lost time (s)          | 3.0        | 6.9  | 6.9          | 3.0   | 6.9        | 6.9        | 3.0     | 7.4         |      | 3.0   | 7.4   |     |
| ane Util. Factor             | 1.00       | 1.00 | 1.00         | 1.00  | 1.00       | 1.00       | 1.00    | 0.95        |      | 1.00  | 0.95  |     |
| rt                           | 1.00       | 1.00 | 0.85         | 1.00  | 1.00       | 0.85       | 1.00    | 0.99        |      | 1.00  | 1.00  |     |
| -It Protected                | 0.95       | 1.00 | 1.00         | 0.95  | 1.00       | 1.00       | 0.95    | 1.00        |      | 0.95  | 1.00  |     |
| Satd. Flow (prot)            | 1690       | 1575 | 1555         | 1772  | 1700       | 1384       | 1534    | 3100        |      | 1484  | 3548  |     |
| Fit Permitted                | 0.45       | 1.00 | 1.00         | 0.46  | 1.00       | 1.00       | 0.05    | 1.00        |      | 0.18  | 1.00  |     |
| Satd. Flow (perm)            | 806        | 1575 | 1555         | 851   | 1700       | 1384       | 88      | 3100        |      | 277   | 3548  |     |
| Peak-hour factor, PHF        | 0.95       | 0.95 | 0.95         | 0.95  | 0.95       | 0.95       | 0.95    | 0.95        | 0.95 | 0.95  | 0.95  | 0.9 |
| Adj. Flow (vph)              | 61         | 179  | 215          | 131   | 209        | 33         | 146     | 1102        | 97   | 62    | 1921  | 6   |
| RTOR Reduction (vph)         | 0          | 0    | 140          | 0     | 0          | 27         | 0       | 4           | 0    | 0     | 2     | (   |
| ane Group Flow (vph)         | 61         | 179  | 75           | 131   | 209        | 6          | 146     | 1195        | 0    | 62    | 1980  | (   |
| Heavy Vehicles (%)           | 8%         | 22%  | 5%           | 3%    | 13%        | 18%        | 19%     | 16%         | 20%  | 23%   | 2%    | 15% |
| Furn Type                    | pm+pt      | NA   | Perm         | pm+pt | NA         | Perm       | pm+pt   | NA          |      | pm+pt | NA    |     |
| Protected Phases             | 7          | 4    |              | 3     | 8          |            | 5       | 2           |      | 1     | 6     |     |
| Permitted Phases             | 4          |      | 4            | 8     | -          | 8          | 2       | _           |      | 6     |       |     |
| Actuated Green, G (s)        | 26.4       | 20.8 | 20.8         | 29.2  | 22.2       | 22.2       | 84.2    | 74.9        |      | 76.5  | 70.2  |     |
| Effective Green, g (s)       | 26.4       | 20.8 | 20.8         | 29.2  | 22.2       | 22.2       | 84.2    | 74.9        |      | 76.5  | 70.2  |     |
| Actuated g/C Ratio           | 0.20       | 0.16 | 0.16         | 0.23  | 0.17       | 0.17       | 0.65    | 0.58        |      | 0.59  | 0.54  |     |
| Clearance Time (s)           | 3.0        | 6.9  | 6.9          | 3.0   | 6.9        | 6.9        | 3.0     | 7.4         |      | 3.0   | 7.4   |     |
| Vehicle Extension (s)        | 3.0        | 3.0  | 3.0          | 3.0   | 3.0        | 3.0        | 3.0     | 4.4         |      | 3.0   | 4.4   |     |
| ane Grp Cap (vph)            | 202        | 253  | 250          | 242   | 291        | 237        | 180     | 1795        |      | 222   | 1926  |     |
| //s Ratio Prot               | 0.01       | 0.11 |              | c0.03 | c0.12      |            | c0.07   | 0.39        |      | 0.01  | c0.56 |     |
| /s Ratio Perm                | 0.05       | 0    | 0.05         | 0.09  | 00.12      | 0.00       | 0.46    | 0.00        |      | 0.15  | 00.00 |     |
| //c Ratio                    | 0.30       | 0.71 | 0.30         | 0.54  | 0.72       | 0.02       | 0.81    | 0.67        |      | 0.28  | 1.03  |     |
| Jniform Delay, d1            | 42.6       | 51.4 | 47.8         | 42.7  | 50.6       | 44.5       | 40.2    | 18.6        |      | 12.6  | 29.6  |     |
| Progression Factor           | 1.00       | 1.00 | 1.00         | 1.00  | 1.00       | 1.00       | 1.00    | 1.00        |      | 1.00  | 1.00  |     |
| ncremental Delay, d2         | 0.8        | 8.7  | 0.7          | 2.5   | 8.2        | 0.0        | 23.4    | 2.0         |      | 0.7   | 28.1  |     |
| Delay (s)                    | 43.5       | 60.1 | 48.5         | 45.2  | 58.8       | 44.6       | 63.7    | 20.6        |      | 13.3  | 57.6  |     |
| evel of Service              | D          | E    | D            | D     | E          | D          | E       | C           |      | В     | E     |     |
| Approach Delay (s)           |            | 52.4 |              |       | 52.8       |            |         | 25.3        |      |       | 56.3  |     |
| Approach LOS                 |            | D    |              |       | D          |            |         | С           |      |       | Е     |     |
| ntersection Summary          |            |      |              |       |            |            |         |             |      |       |       |     |
| ICM 2000 Control Delay       |            |      | 45.7         | Н     | CM 2000    | Level of   | Service |             | D    |       |       |     |
| ICM 2000 Volume to Capa      | city ratio |      | 0.92         |       |            |            |         |             |      |       |       |     |
| Actuated Cycle Length (s)    |            |      | 129.3        | S     | um of losi | time (s)   |         |             | 20.3 |       |       |     |
| ntersection Capacity Utiliza | ition      |      | 94.9%        | IC    | CU Level o | of Service | è       |             | F    |       |       |     |

| 10042 - Caldeon Quarry TIS |  |
|----------------------------|--|
| TYLin                      |  |

Synchro 10 Report Page 3

|                              | ٦              | <b>→</b> | 4          | +          | ×          | 1          | t     | 1     | ţ     |   |
|------------------------------|----------------|----------|------------|------------|------------|------------|-------|-------|-------|---|
| Lane Group                   | EBL            | EBT      | WBL        | WBT        | WBR        | NBL        | NBT   | SBL   | SBT   |   |
| Lane Configurations          | ۲              | ¢Î,      | ۲.         | •          | 1          | ۲          | ¢Î    | ۲.    | 4Î    | - |
| Traffic Volume (vph)         | 38             | 352      | 6          | 336        | 43         | 6          | 7     | 52    | 10    |   |
| Future Volume (vph)          | 38             | 352      | 6          | 336        | 43         | 6          | 7     | 52    | 10    |   |
| Turn Type                    | Perm           | NA       | Perm       | NA         | Perm       | Perm       | NA    | Perm  | NA    |   |
| Protected Phases             |                | 2        |            | 2          |            |            | 4     |       | 4     |   |
| Permitted Phases             | 2              |          | 2          |            | 2          | 4          |       | 4     |       |   |
| Detector Phase               | 2              | 2        | 2          | 2          | 2          | 4          | 4     | 4     | 4     |   |
| Switch Phase                 |                |          |            |            |            |            |       |       |       |   |
| Minimum Initial (s)          | 20.0           | 20.0     | 20.0       | 20.0       | 20.0       | 16.0       | 16.0  | 16.0  | 16.0  |   |
| Minimum Split (s)            | 30.6           | 30.6     | 30.6       | 30.6       | 30.6       | 30.6       | 30.6  | 30.6  | 30.6  |   |
| Total Split (s)              | 46.6           | 46.6     | 46.6       | 46.6       | 46.6       | 36.6       | 36.6  | 36.6  | 36.6  |   |
| Total Split (%)              | 56.0%          | 56.0%    | 56.0%      | 56.0%      | 56.0%      | 44.0%      | 44.0% | 44.0% | 44.0% |   |
| Yellow Time (s)              | 4.6            | 4.6      | 4.6        | 4.6        | 4.6        | 4.6        | 4.6   | 4.6   | 4.6   |   |
| All-Red Time (s)             | 2.0            | 2.0      | 2.0        | 2.0        | 2.0        | 2.0        | 2.0   | 2.0   | 2.0   |   |
| Lost Time Adjust (s)         | 0.0            | 0.0      | 0.0        | 0.0        | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   |   |
| Total Lost Time (s)          | 6.6            | 6.6      | 6.6        | 6.6        | 6.6        | 6.6        | 6.6   | 6.6   | 6.6   |   |
| Lead/Lag                     |                |          |            |            |            |            |       |       |       |   |
| Lead-Lag Optimize?           |                |          |            |            |            |            |       |       |       |   |
| Recall Mode                  | C-Min          | C-Min    | C-Min      | C-Min      | C-Min      | None       | None  | None  | None  |   |
| Act Effct Green (s)          | 59.8           | 59.8     | 59.8       | 59.8       | 59.8       | 16.0       | 16.0  | 16.0  | 16.0  |   |
| Actuated g/C Ratio           | 0.72           | 0.72     | 0.72       | 0.72       | 0.72       | 0.19       | 0.19  | 0.19  | 0.19  |   |
| v/c Ratio                    | 0.05           | 0.29     | 0.01       | 0.30       | 0.04       | 0.02       | 0.05  | 0.20  | 0.16  |   |
| Control Delay                | 5.6            | 6.6      | 5.2        | 6.8        | 1.7        | 27.7       | 18.7  | 30.4  | 12.8  |   |
| Queue Delay                  | 0.0            | 0.0      | 0.0        | 0.0        | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   |   |
| Total Delay                  | 5.6            | 6.6      | 5.2        | 6.8        | 1.7        | 27.7       | 18.7  | 30.4  | 12.8  |   |
| LOS                          | A              | A        | А          | A          | А          | С          | В     | С     | В     |   |
| Approach Delay               |                | 6.5      |            | 6.2        |            |            | 20.9  |       | 21.5  |   |
| Approach LOS                 |                | А        |            | А          |            |            | С     |       | С     |   |
| Intersection Summary         |                |          |            |            |            |            |       |       |       |   |
| Cycle Length: 83.2           |                |          |            |            |            |            |       |       |       |   |
| Actuated Cycle Length: 83    | 3.2            |          |            |            |            |            |       |       |       |   |
| Offset: 22.5 (27%), Refere   | enced to phase | se 2:EBW | /B and 6:, | Start of 0 | Green      |            |       |       |       |   |
| Natural Cycle: 65            |                |          |            |            |            |            |       |       |       |   |
| Control Type: Actuated-Co    | oordinated     |          |            |            |            |            |       |       |       |   |
| Maximum v/c Ratio: 0.30      |                |          |            |            |            |            |       |       |       |   |
| Intersection Signal Delay:   |                |          |            | Ir         | ntersectio | n LOS: A   |       |       |       |   |
| Intersection Capacity Utiliz | zation 63.2%   |          |            | IC         | CU Level   | of Service | Β     |       |       |   |
| Analysis Period (min) 15     |                |          |            |            |            |            |       |       |       |   |

13

10042 - Caldeon Quarry TIS TYLin

|                        |       |        |      | ) & Cha |      |      | ,     |      | /      |  |
|------------------------|-------|--------|------|---------|------|------|-------|------|--------|--|
|                        | ≯     | -      | 4    | -       | *    | 1    | 1     | 1    | Ļ      |  |
| Lane Group             | EBL   | EBT    | WBL  | WBT     | WBR  | NBL  | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 39    | 369    | 6    | 346     | 44   | 6    | 18    | 54   | 55     |  |
| v/c Ratio              | 0.05  | 0.29   | 0.01 | 0.30    | 0.04 | 0.02 | 0.05  | 0.20 | 0.16   |  |
| Control Delay          | 5.6   | 6.6    | 5.2  | 6.8     | 1.7  | 27.7 | 18.7  | 30.4 | 12.8   |  |
| Queue Delay            | 0.0   | 0.0    | 0.0  | 0.0     | 0.0  | 0.0  | 0.0   | 0.0  | 0.0    |  |
| Total Delay            | 5.6   | 6.6    | 5.2  | 6.8     | 1.7  | 27.7 | 18.7  | 30.4 | 12.8   |  |
| Queue Length 50th (m)  | 2.0   | 22.9   | 0.3  | 21.7    | 0.0  | 0.8  | 0.9   | 7.3  | 1.3    |  |
| Queue Length 95th (m)  | 5.2   | 36.2   | 1.5  | 35.0    | 2.9  | 4.0  | 6.3   | 17.1 | 10.4   |  |
| Internal Link Dist (m) |       | 1408.9 |      | 2789.4  |      |      | 883.0 |      | 1179.5 |  |
| Turn Bay Length (m)    | 125.0 |        | 60.0 |         | 90.0 | 70.0 |       | 85.0 |        |  |
| Base Capacity (vph)    | 741   | 1256   | 747  | 1142    | 1187 | 499  | 635   | 516  | 612    |  |
| Starvation Cap Reductn | 0     | 0      | 0    | 0       | 0    | 0    | 0     | 0    | 0      |  |
| Spillback Cap Reductn  | 0     | 0      | 0    | 0       | 0    | 0    | 0     | 0    | 0      |  |
| Storage Cap Reductn    | 0     | 0      | 0    | 0       | 0    | 0    | 0     | 0    | 0      |  |
| Reduced v/c Ratio      | 0.05  | 0.29   | 0.01 | 0.30    | 0.04 | 0.01 | 0.03  | 0.10 | 0.09   |  |

 HCM Signalized Intersection Capacity Analysis
 Future Background 2037 AM Peak Hour

 2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)
 01/15/2025

|                               | ٦          | -    | $\mathbf{\hat{v}}$ | 4    | ł          | •          | 1       | Ť    | ۲    | 1     | ţ    | ~    |
|-------------------------------|------------|------|--------------------|------|------------|------------|---------|------|------|-------|------|------|
| Movement                      | EBL        | EBT  | EBR                | WBL  | WBT        | WBR        | NBL     | NBT  | NBR  | SBL   | SBT  | SBR  |
| Lane Configurations           | ľ          | ę    |                    | ľ    | •          | 1          | ľ       | ¢Î   |      | ľ     | ¢Î   |      |
| Traffic Volume (vph)          | 38         | 352  | 6                  | 6    | 336        | 43         | 6       | 7    | 11   | 52    | 10   | 44   |
| Future Volume (vph)           | 38         | 352  | 6                  | 6    | 336        | 43         | 6       | 7    | 11   | 52    | 10   | 44   |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900               | 1900 | 1900       | 1900       | 1900    | 1900 | 1900 | 1900  | 1900 | 1900 |
| Total Lost time (s)           | 6.6        | 6.6  |                    | 6.6  | 6.6        | 6.6        | 6.6     | 6.6  |      | 6.6   | 6.6  |      |
| Lane Util. Factor             | 1.00       | 1.00 |                    | 1.00 | 1.00       | 1.00       | 1.00    | 1.00 |      | 1.00  | 1.00 |      |
| Frt                           | 1.00       | 1.00 |                    | 1.00 | 1.00       | 0.85       | 1.00    | 0.91 |      | 1.00  | 0.88 |      |
| Flt Protected                 | 0.95       | 1.00 |                    | 0.95 | 1.00       | 1.00       | 0.95    | 1.00 |      | 0.95  | 1.00 |      |
| Satd. Flow (prot)             | 1772       | 1745 |                    | 1825 | 1588       | 1633       | 1825    | 1745 |      | 1825  | 1619 |      |
| Flt Permitted                 | 0.55       | 1.00 |                    | 0.54 | 1.00       | 1.00       | 0.72    | 1.00 |      | 0.75  | 1.00 |      |
| Satd. Flow (perm)             | 1032       | 1745 |                    | 1039 | 1588       | 1633       | 1385    | 1745 |      | 1433  | 1619 |      |
| Peak-hour factor, PHF         | 0.97       | 0.97 | 0.97               | 0.97 | 0.97       | 0.97       | 0.97    | 0.97 | 0.97 | 0.97  | 0.97 | 0.97 |
| Adj. Flow (vph)               | 39         | 363  | 6                  | 6    | 346        | 44         | 6       | 7    | 11   | 54    | 10   | 45   |
| RTOR Reduction (vph)          | 0          | 0    | 0                  | 0    | 0          | 14         | 0       | 9    | 0    | 0     | 38   | 0    |
| Lane Group Flow (vph)         | 39         | 369  | 0                  | 6    | 346        | 30         | 6       | 9    | 0    | 54    | 17   | 0    |
| Heavy Vehicles (%)            | 3%         | 10%  | 0%                 | 0%   | 21%        | 0%         | 0%      | 0%   | 0%   | 0%    | 0%   | 5%   |
| Turn Type                     | Perm       | NA   |                    | Perm | NA         | Perm       | Perm    | NA   |      | Perm  | NA   |      |
| Protected Phases              |            | 2    |                    |      | 2          |            |         | 4    |      |       | 4    |      |
| Permitted Phases              | 2          |      |                    | 2    |            | 2          | 4       |      |      | 4     |      |      |
| Actuated Green, G (s)         | 57.2       | 57.2 |                    | 57.2 | 57.2       | 57.2       | 12.8    | 12.8 |      | 12.8  | 12.8 |      |
| Effective Green, g (s)        | 57.2       | 57.2 |                    | 57.2 | 57.2       | 57.2       | 12.8    | 12.8 |      | 12.8  | 12.8 |      |
| Actuated g/C Ratio            | 0.69       | 0.69 |                    | 0.69 | 0.69       | 0.69       | 0.15    | 0.15 |      | 0.15  | 0.15 |      |
| Clearance Time (s)            | 6.6        | 6.6  |                    | 6.6  | 6.6        | 6.6        | 6.6     | 6.6  |      | 6.6   | 6.6  |      |
| Vehicle Extension (s)         | 3.0        | 3.0  |                    | 3.0  | 3.0        | 3.0        | 3.0     | 3.0  |      | 3.0   | 3.0  |      |
| Lane Grp Cap (vph)            | 709        | 1199 |                    | 714  | 1091       | 1122       | 213     | 268  |      | 220   | 249  |      |
| v/s Ratio Prot                |            | 0.21 |                    |      | c0.22      |            |         | 0.00 |      |       | 0.01 |      |
| v/s Ratio Perm                | 0.04       |      |                    | 0.01 |            | 0.02       | 0.00    |      |      | c0.04 |      |      |
| v/c Ratio                     | 0.06       | 0.31 |                    | 0.01 | 0.32       | 0.03       | 0.03    | 0.03 |      | 0.25  | 0.07 |      |
| Uniform Delay, d1             | 4.2        | 5.2  |                    | 4.1  | 5.2        | 4.1        | 29.9    | 29.9 |      | 31.0  | 30.1 |      |
| Progression Factor            | 1.00       | 1.00 |                    | 1.00 | 1.00       | 1.00       | 1.00    | 1.00 |      | 1.00  | 1.00 |      |
| Incremental Delay, d2         | 0.1        | 0.7  |                    | 0.0  | 0.8        | 0.0        | 0.1     | 0.0  |      | 0.6   | 0.1  |      |
| Delay (s)                     | 4.4        | 5.8  |                    | 4.1  | 6.0        | 4.2        | 30.0    | 30.0 |      | 31.5  | 30.2 |      |
| Level of Service              | Α          | Α    |                    | Α    | Α          | Α          | С       | С    |      | С     | С    |      |
| Approach Delay (s)            |            | 5.7  |                    |      | 5.7        |            |         | 30.0 |      |       | 30.9 |      |
| Approach LOS                  |            | А    |                    |      | А          |            |         | С    |      |       | С    |      |
| Intersection Summary          |            |      |                    |      |            |            |         |      |      |       |      |      |
| HCM 2000 Control Delay        |            |      | 9.3                | Н    | CM 2000    | Level of   | Service |      | Α    |       |      |      |
| HCM 2000 Volume to Capa       | city ratio |      | 0.30               |      |            |            |         |      |      |       |      |      |
| Actuated Cycle Length (s)     |            |      | 83.2               | S    | um of lost | time (s)   |         |      | 13.2 |       |      |      |
| Intersection Capacity Utiliza | tion       |      | 63.2%              | IC   | CU Level o | of Service |         |      | В    |       |      |      |
| Analysis Period (min)         |            |      | 15                 |      |            |            |         |      |      |       |      |      |
| c Critical Lane Group         |            |      |                    |      |            |            |         |      |      |       |      |      |

10042 - Caldeon Quarry TIS TYLin

Synchro 10 Report Page 5

10042 - Caldeon Quarry TIS TYLin

|                                   | ≯        | -    | $\mathbf{r}$         | ∢    | -         | •          | 1    | Ť    | 1    | 1    | ţ    | ~    |
|-----------------------------------|----------|------|----------------------|------|-----------|------------|------|------|------|------|------|------|
| Movement                          | EBL      | EBT  | EBR                  | WBL  | WBT       | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations               | 5        | 1.   |                      | ۲,   | ţ,        |            |      | 4    |      |      | 4    |      |
| Traffic Volume (veh/h)            | 16       | 384  | 2                    | 33   | 335       | 15         | 2    | 7    | 13   | 15   | 11   | 11   |
| Future Volume (Veh/h)             | 16       | 384  | 2                    | 33   | 335       | 15         | 2    | 7    | 13   | 15   | 11   | 11   |
| Sign Control                      |          | Free |                      |      | Free      |            |      | Stop |      |      | Stop |      |
| Grade                             |          | 0%   |                      |      | 0%        |            |      | 0%   |      |      | 0%   |      |
| Peak Hour Factor                  | 0.95     | 0.95 | 0.95                 | 0.95 | 0.95      | 0.95       | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Hourly flow rate (vph)            | 17       | 404  | 2                    | 35   | 353       | 16         | 2    | 7    | 14   | 16   | 12   | 12   |
| Pedestrians                       |          |      |                      |      |           |            |      |      |      |      |      |      |
| Lane Width (m)                    |          |      |                      |      |           |            |      |      |      |      |      |      |
| Walking Speed (m/s)               |          |      |                      |      |           |            |      |      |      |      |      |      |
| Percent Blockage                  |          |      |                      |      |           |            |      |      |      |      |      |      |
| Right turn flare (veh)            |          |      |                      |      |           |            |      |      |      |      |      |      |
| Vedian type                       |          | None |                      |      | None      |            |      |      |      |      |      |      |
| Median storage veh)               |          |      |                      |      |           |            |      |      |      |      |      |      |
| Upstream signal (m)               |          |      |                      |      |           |            |      |      |      |      |      |      |
| pX, platoon unblocked             |          |      |                      |      |           |            |      |      |      |      |      |      |
| vC, conflicting volume            | 369      |      |                      | 406  |           |            | 880  | 878  | 405  | 886  | 871  | 361  |
| vC1, stage 1 conf vol             |          |      |                      | 100  |           |            | 000  | 0.0  |      | 000  |      |      |
| vC2, stage 2 conf vol             |          |      |                      |      |           |            |      |      |      |      |      |      |
| vCu, unblocked vol                | 369      |      |                      | 406  |           |            | 880  | 878  | 405  | 886  | 871  | 361  |
| tC, single (s)                    | 4.1      |      |                      | 4.9  |           |            | 7.2  | 6.5  | 6.9  | 7.1  | 6.5  | 6.2  |
| tC, 2 stage (s)                   |          |      |                      |      |           |            |      | 0.0  | 0.0  |      | 0.0  | 0.2  |
| tF (s)                            | 2.2      |      |                      | 2.9  |           |            | 3.6  | 4.0  | 3.9  | 3.5  | 4.0  | 3.3  |
| p0 queue free %                   | 99       |      |                      | 96   |           |            | 99   | 97   | 97   | 93   | 96   | 98   |
| cM capacity (veh/h)               | 1201     |      |                      | 845  |           |            | 233  | 273  | 529  | 244  | 275  | 688  |
| Direction, Lane #                 | EB 1     | EB 2 | WB 1                 | WB 2 | NB 1      | SB 1       |      |      |      |      |      |      |
| /olume Total                      | 17       | 406  | 35                   | 369  | 23        | 40         |      |      |      |      |      |      |
| /olume Left                       | 17       | 0    | 35                   | 0    | 2         | 16         |      |      |      |      |      |      |
| /olume Right                      | 0        | 2    | 0                    | 16   | 14        | 12         |      |      |      |      |      |      |
| SH                                | 1201     | 1700 | 845                  | 1700 | 379       | 316        |      |      |      |      |      |      |
| Volume to Capacity                | 0.01     | 0.24 | 0.04                 | 0.22 | 0.06      | 0.13       |      |      |      |      |      |      |
| Queue Length 95th (m)             | 0.3      | 0.0  | 1.0                  | 0.0  | 1.5       | 3.3        |      |      |      |      |      |      |
| Control Delay (s)                 | 8.0      | 0.0  | 9.4                  | 0.0  | 15.1      | 18.0       |      |      |      |      |      |      |
| ane LOS                           | 0.0<br>A | 0.0  | э. <del>ч</del><br>А | 0.0  | C         | 10.0<br>C  |      |      |      |      |      |      |
| Approach Delay (s)                | 0.3      |      | 0.8                  |      | 15.1      | 18.0       |      |      |      |      |      |      |
| Approach LOS                      | 0.0      |      | 0.0                  |      | 13.1<br>C | 10.0<br>C  |      |      |      |      |      |      |
|                                   |          |      |                      |      | 5         |            |      |      |      |      |      |      |
| Intersection Summary              |          |      | 1.7                  |      |           |            |      |      |      |      |      |      |
| Average Delay                     |          |      | 1.7 39.6%            |      |           |            |      |      |      |      |      |      |
| Intersection Capacity Utilization |          |      |                      |      |           | of Service |      |      | A    |      |      |      |

|                                   | ٦            | -+       | $\mathbf{r}$ | 4         | -          | •          | 1     | 1     | ×     | Ŧ     |  |
|-----------------------------------|--------------|----------|--------------|-----------|------------|------------|-------|-------|-------|-------|--|
| Lane Group                        | EBL          | EBT      | EBR          | WBL       | WBT        | WBR        | NBL   | NBT   | SBL   | SBT   |  |
| Lane Configurations               | ۲            | <b>†</b> | 1            | ሻ         | <b>^</b>   | 1          | ሻ     | ¢β    | ሻ     | ¢β    |  |
| Traffic Volume (vph)              | 75           | 273      | 151          | 113       | 289        | 84         | 181   | 1844  | 52    | 1139  |  |
| Future Volume (vph)               | 75           | 273      | 151          | 113       | 289        | 84         | 181   | 1844  | 52    | 1139  |  |
| Turn Type                         | pm+pt        | NA       | Perm         | pm+pt     | NA         | Perm       | pm+pt | NA    | pm+pt | NA    |  |
| Protected Phases                  | 7            | 4        |              | 3         | 8          |            | 5     | 2     | 1     | 6     |  |
| Permitted Phases                  | 4            |          | 4            | 8         |            | 8          | 2     |       | 6     |       |  |
| Detector Phase                    | 7            | 4        | 4            | 3         | 8          | 8          | 5     | 2     | 1     | 6     |  |
| Switch Phase                      |              |          |              |           |            |            |       |       |       |       |  |
| Minimum Initial (s)               | 7.0          | 10.0     | 10.0         | 7.0       | 10.0       | 10.0       | 7.0   | 20.0  | 7.0   | 20.0  |  |
| Minimum Split (s)                 | 10.0         | 17.9     | 17.9         | 10.0      | 17.9       | 17.9       | 10.0  | 44.4  | 10.0  | 44.4  |  |
| Total Split (s)                   | 10.0         | 31.9     | 31.9         | 10.0      | 31.9       | 31.9       | 13.0  | 74.4  | 13.0  | 74.4  |  |
| Total Split (%)                   | 7.7%         | 24.7%    | 24.7%        | 7.7%      | 24.7%      | 24.7%      | 10.1% | 57.5% | 10.1% | 57.5% |  |
| Yellow Time (s)                   | 3.0          | 4.5      | 4.5          | 3.0       | 4.5        | 4.5        | 3.0   | 5.0   | 3.0   | 5.0   |  |
| All-Red Time (s)                  | 0.0          | 2.4      | 2.4          | 0.0       | 2.4        | 2.4        | 0.0   | 2.4   | 0.0   | 2.4   |  |
| Lost Time Adjust (s)              | 0.0          | 0.0      | 0.0          | 0.0       | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   |  |
| Total Lost Time (s)               | 3.0          | 6.9      | 6.9          | 3.0       | 6.9        | 6.9        | 3.0   | 7.4   | 3.0   | 7.4   |  |
| Lead/Lag                          | Lead         | Lag      | Lag          | Lead      | Lag        | Lag        | Lead  | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize?                | Yes          |          |              |           | Yes        | Yes        | Yes   | Yes   | Yes   | Yes   |  |
| Recall Mode                       | None         | None     | None         | None      | None       | None       | None  | C-Max | None  | C-Max |  |
| Act Effct Green (s)               | 35.0         | 24.1     | 24.1         | 35.6      | 26.1       | 26.1       | 84.7  | 72.3  | 80.2  | 68.2  |  |
| Actuated g/C Ratio                | 0.27         | 0.19     | 0.19         | 0.28      | 0.20       | 0.20       | 0.66  | 0.56  | 0.62  | 0.53  |  |
| v/c Ratio                         | 0.38         | 0.91     | 0.38         | 0.62      | 0.86       | 0.23       | 0.73  | 1.06  | 0.37  | 0.72  |  |
| Control Delay                     | 39.1         | 84.8     | 9.4          | 51.0      | 73.0       | 10.2       | 29.3  | 67.9  | 17.6  | 26.4  |  |
| Queue Delay                       | 0.0          | 0.0      | 0.0          | 0.0       | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   |  |
| Total Delay                       | 39.1         | 84.8     | 9.4          | 51.0      | 73.0       | 10.2       | 29.3  | 67.9  | 17.6  | 26.4  |  |
| LOS                               | D            | F        | A            | D         | E          | В          | С     | E     | В     | С     |  |
| Approach Delay                    |              | 55.1     |              |           | 57.1       |            |       | 64.6  |       | 26.1  |  |
| Approach LOS                      |              | E        |              |           | E          |            |       | E     |       | С     |  |
| Intersection Summary              |              |          |              |           |            |            |       |       |       |       |  |
| Cycle Length: 129.3               |              |          |              |           |            |            |       |       |       |       |  |
| Actuated Cycle Length: 12         | 9.3          |          |              |           |            |            |       |       |       |       |  |
| Offset: 85 (66%), Referenc        | ed to phase  | 2:NBTL   | and 6:SB     | TL, Start | of Green   |            |       |       |       |       |  |
| Natural Cycle: 145                |              |          |              |           |            |            |       |       |       |       |  |
| Control Type: Actuated-Co         | ordinated    |          |              |           |            |            |       |       |       |       |  |
| Maximum v/c Ratio: 1.06           |              |          |              |           |            |            |       |       |       |       |  |
| ntersection Signal Delay: 5       | 51.8         |          |              | Ir        | ntersectio | n LOS: D   |       |       |       |       |  |
| Intersection Capacity Utilization | ation 104.29 | %        |              | 10        | CU Level   | of Service | G     |       |       |       |  |
| Analysis Period (min) 15          |              |          |              |           |            |            |       |       |       |       |  |

| Splits and Pha | ises. I. Huroniano Street (Hwy TO) & Chaneston Sideroad (RR 24) |             |                |
|----------------|-----------------------------------------------------------------|-------------|----------------|
| Ø1             | Ø2 (R)                                                          | <b>√</b> Ø3 | 404            |
| 13 s           | 74.4 s                                                          | 10 s        | 31.9 s         |
| <b>1</b> Ø5    | ₩ Ø6 (R)                                                        |             | <b>₩</b><br>Ø8 |
| 13 s           | 74.4 s                                                          | 10 s        | 31.9 s         |

Synchro 10 Report Page 1

| Queues<br>1: Hurontario Stree | t (Hwy | 10) & C | Charles | ston S | ideroad |      |       | ackgrou | ind 20 | 37 PM | Peak Ho<br>01/15/2 |
|-------------------------------|--------|---------|---------|--------|---------|------|-------|---------|--------|-------|--------------------|
|                               | ٨      | +       | *       | 4      | Ļ       | *    | •     | 1       | *      | ţ     |                    |
| Lane Group                    | EBL    | EBT     | EBR     | WBL    | WBT     | WBR  | NBL   | NBT     | SBL    | SBT   |                    |
| Lane Group Flow (vph)         | 79     | 287     | 159     | 119    | 304     | 88   | 191   | 2101    | 55     | 1268  |                    |
| v/c Ratio                     | 0.38   | 0.91    | 0.38    | 0.62   | 0.86    | 0.23 | 0.73  | 1.06    | 0.37   | 0.72  |                    |
| Control Delay                 | 39.1   | 84.8    | 9.4     | 51.0   | 73.0    | 10.2 | 29.3  | 67.9    | 17.6   | 26.4  |                    |
| Queue Delay                   | 0.0    | 0.0     | 0.0     | 0.0    | 0.0     | 0.0  | 0.0   | 0.0     | 0.0    | 0.0   |                    |
| Total Delay                   | 39.1   | 84.8    | 9.4     | 51.0   | 73.0    | 10.2 | 29.3  | 67.9    | 17.6   | 26.4  |                    |
| Queue Length 50th (m)         | 14.7   | 71.8    | 0.0     | 22.8   | 76.3    | 0.0  | 17.6  | ~318.5  | 4.7    | 127.5 |                    |
| Queue Length 95th (m)         | 27.1   | #120.7  | 18.0    | #39.2  | #126.8  | 13.9 | #44.8 | #369.0  | 11.6   | 154.1 |                    |

764.6

55.0 85.0

536.2

0

0

0

40.0

575.0

65.0 40.0

Base Capacity (vph) 206 325 423 191 355 382 266 1979 179 1756 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.38 0.88 0.38 0.62 0.86 0.23 0.72 1.06 0.31 0.72 Intersection Summary ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer.

1351.4

80.0

Queue shown is maximum after two cycles.

Internal Link Dist (m)

Turn Bay Length (m)

10042 - Caldeon Quarry TIS TYLin

| 1: Hurontario Stree              |             | - /       | -            |            |            |            |           |             |      |       |             |     |
|----------------------------------|-------------|-----------|--------------|------------|------------|------------|-----------|-------------|------|-------|-------------|-----|
|                                  | ≯           | -         | $\mathbf{r}$ | 1          | -          | •          | 1         | 1           | 1    | 1     | Ŧ           | -   |
| Movement                         | EBL         | EBT       | EBR          | WBL        | WBT        | WBR        | NBL       | NBT         | NBR  | SBL   | SBT         | SB  |
| ane Configurations               | ۲           | •         | 1            | <u> </u>   | •          | 1          | ۲         | <b>≜</b> 1≽ |      | ۲.    | <b>≜</b> †₽ |     |
| Traffic Volume (vph)             | 75          | 273       | 151          | 113        | 289        | 84         | 181       | 1844        | 152  | 52    | 1139        | 6   |
| Future Volume (vph)              | 75          | 273       | 151          | 113        | 289        | 84         | 181       | 1844        | 152  | 52    | 1139        | 6   |
| deal Flow (vphpl)                | 1900        | 1900      | 1900         | 1900       | 1900       | 1900       | 1900      | 1900        | 1900 | 1900  | 1900        | 190 |
| Total Lost time (s)              | 3.0         | 6.9       | 6.9          | 3.0        | 6.9        | 6.9        | 3.0       | 7.4         |      | 3.0   | 7.4         |     |
| ane Util. Factor                 | 1.00        | 1.00      | 1.00         | 1.00       | 1.00       | 1.00       | 1.00      | 0.95        |      | 1.00  | 0.95        |     |
| Frpb, ped/bikes                  | 1.00        | 1.00      | 0.98         | 1.00       | 1.00       | 0.98       | 1.00      | 1.00        |      | 1.00  | 1.00        |     |
| Flpb, ped/bikes                  | 1.00        | 1.00      | 1.00         | 1.00       | 1.00       | 1.00       | 1.00      | 1.00        |      | 1.00  | 1.00        |     |
| Frt                              | 1.00        | 1.00      | 0.85         | 1.00       | 1.00       | 0.85       | 1.00      | 0.99        |      | 1.00  | 0.99        |     |
| Fit Protected                    | 0.95        | 1.00      | 1.00         | 0.95       | 1.00       | 1.00       | 0.95      | 1.00        |      | 0.95  | 1.00        |     |
| Satd. Flow (prot)                | 1754        | 1685      | 1527         | 1658       | 1762       | 1544       | 1772      | 3530        |      | 1601  | 3321        |     |
| FIt Permitted                    | 0.28        | 1.00      | 1.00         | 0.26       | 1.00       | 1.00       | 0.12      | 1.00        |      | 0.06  | 1.00        |     |
| Satd. Flow (perm)                | 517         | 1685      | 1527         | 459        | 1762       | 1544       | 224       | 3530        |      | 100   | 3321        |     |
| Peak-hour factor, PHF            | 0.95        | 0.95      | 0.95         | 0.95       | 0.95       | 0.95       | 0.95      | 0.95        | 0.95 | 0.95  | 0.95        | 0.9 |
| Adj. Flow (vph)                  | 79          | 287       | 159          | 119        | 304        | 88         | 191       | 1941        | 160  | 55    | 1199        | e   |
| RTOR Reduction (vph)             | 0           | 0         | 129          | 0          | 0          | 70         | 0         | 5           | 0    | 0     | 3           |     |
| ane Group Flow (vph)             | 79          | 287       | 30           | 119        | 304        | 18         | 191       | 2096        | 0    | 55    | 1265        |     |
| Confl. Peds. (#/hr)              | 5           |           | 6            | 6          |            | 5          | 7         |             | 5    | 5     |             |     |
| Heavy Vehicles (%)               | 4%          | 14%       | 5%           | 10%        | 9%         | 4%         | 3%        | 2%          | 2%   | 14%   | 9%          | 6   |
| Turn Type                        | pm+pt       | NA        | Perm         | pm+pt      | NA         | Perm       | pm+pt     | NA          |      | pm+pt | NA          |     |
| Protected Phases                 | 7           | 4         |              | 3          | 8          |            | 5         | 2           |      | 1     | 6           |     |
| Permitted Phases                 | 4           |           | 4            | 8          | Ŭ          | 8          | 2         | -           |      | 6     | Ű           |     |
| Actuated Green, G (s)            | 30.3        | 24.7      | 24.7         | 33.1       | 26.1       | 26.1       | 80.3      | 71.1        |      | 73.9  | 67.7        |     |
| Effective Green, g (s)           | 30.3        | 24.7      | 24.7         | 33.1       | 26.1       | 26.1       | 80.3      | 71.1        |      | 73.9  | 67.7        |     |
| Actuated g/C Ratio               | 0.23        | 0.19      | 0.19         | 0.26       | 0.20       | 0.20       | 0.62      | 0.55        |      | 0.57  | 0.52        |     |
| Clearance Time (s)               | 3.0         | 6.9       | 6.9          | 3.0        | 6.9        | 6.9        | 3.0       | 7.4         |      | 3.0   | 7.4         |     |
| Vehicle Extension (s)            | 3.0         | 3.0       | 3.0          | 3.0        | 3.0        | 3.0        | 3.0       | 4.4         |      | 3.0   | 4.4         |     |
| ane Grp Cap (vph)                | 174         | 321       | 291          | 182        | 355        | 311        | 254       | 1941        |      | 129   | 1738        |     |
| //s Ratio Prot                   | 0.02        | 0.17      | 201          | c0.04      | c0.17      | 011        | c0.06     | c0.59       |      | 0.02  | 0.38        |     |
| /s Ratio Perm                    | 0.02        | 0.17      | 0.02         | 0.13       | 00.11      | 0.01       | 0.41      | 00.00       |      | 0.22  | 0.00        |     |
| //c Ratio                        | 0.45        | 0.89      | 0.10         | 0.65       | 0.86       | 0.06       | 0.75      | 1.08        |      | 0.43  | 0.73        |     |
| Jniform Delay, d1                | 40.4        | 51.0      | 43.2         | 40.2       | 49.8       | 41.7       | 17.8      | 29.1        |      | 28.5  | 23.7        |     |
| Progression Factor               | 1.00        | 1.00      | 1.00         | 1.00       | 1.00       | 1.00       | 1.00      | 1.00        |      | 1.00  | 1.00        |     |
| ncremental Delay, d2             | 1.9         | 25.4      | 0.2          | 8.2        | 18.0       | 0.1        | 11.8      | 45.9        |      | 2.3   | 2.7         |     |
| Delay (s)                        | 42.2        | 76.5      | 43.3         | 48.3       | 67.8       | 41.7       | 29.6      | 75.0        |      | 30.8  | 26.4        |     |
| Level of Service                 | 72.2<br>D   | 10.0<br>E | 10.0<br>D    | -10.0<br>D | 67.0<br>E  | D          | 20.0<br>C | 10.0<br>E   |      | C     | C           |     |
| Approach Delay (s)               | U           | 61.3      | U            | U          | 58.8       | U          | Ũ         | 71.2        |      | Ŭ     | 26.6        |     |
| Approach LOS                     |             | E         |              |            | E          |            |           | E           |      |       | C           |     |
| ntersection Summary              |             |           |              |            |            |            |           |             |      |       |             |     |
| HCM 2000 Control Delay           |             |           | 56.0         | Н          | CM 2000    | Level of   | Service   |             | E    |       |             |     |
| HCM 2000 Volume to Capa          | acity ratio |           | 1.01         |            |            |            |           |             |      |       |             |     |
| Actuated Cycle Length (s)        | ·           |           | 129.3        | S          | um of lost | time (s)   |           |             | 20.3 |       |             |     |
| ntersection Capacity Utilization | ation       |           | 104.2%       | IC         | CU Level o | of Service | 3         |             | G    |       |             |     |

Synchro 10 Report Page 3

|                              | ≯            | -        | 1          | +          | •          | 1          | 1     | 1     | Ŧ     |   |
|------------------------------|--------------|----------|------------|------------|------------|------------|-------|-------|-------|---|
| Lane Group                   | EBL          | EBT      | WBL        | WBT        | WBR        | NBL        | NBT   | SBL   | SBT   |   |
| Lane Configurations          | ۲            | 4Î       | ۲.         | •          | 1          | ۲.         | 4Î    | ۲.    | 4Î    | - |
| Traffic Volume (vph)         | 73           | 441      | 4          | 427        | 85         | 12         | 12    | 62    | 19    |   |
| Future Volume (vph)          | 73           | 441      | 4          | 427        | 85         | 12         | 12    | 62    | 19    |   |
| Turn Type                    | Perm         | NA       | Perm       | NA         | Perm       | Perm       | NA    | Perm  | NA    |   |
| Protected Phases             |              | 2        |            | 2          |            |            | 4     |       | 4     |   |
| Permitted Phases             | 2            |          | 2          |            | 2          | 4          |       | 4     |       |   |
| Detector Phase               | 2            | 2        | 2          | 2          | 2          | 4          | 4     | 4     | 4     |   |
| Switch Phase                 |              |          |            |            |            |            |       |       |       |   |
| Minimum Initial (s)          | 20.0         | 20.0     | 20.0       | 20.0       | 20.0       | 16.0       | 16.0  | 16.0  | 16.0  |   |
| Minimum Split (s)            | 30.6         | 30.6     | 30.6       | 30.6       | 30.6       | 30.6       | 30.6  | 30.6  | 30.6  |   |
| Total Split (s)              | 46.6         | 46.6     | 46.6       | 46.6       | 46.6       | 36.6       | 36.6  | 36.6  | 36.6  |   |
| Total Split (%)              | 56.0%        | 56.0%    | 56.0%      | 56.0%      | 56.0%      | 44.0%      | 44.0% | 44.0% | 44.0% |   |
| Yellow Time (s)              | 4.6          | 4.6      | 4.6        | 4.6        | 4.6        | 4.6        | 4.6   | 4.6   | 4.6   |   |
| All-Red Time (s)             | 2.0          | 2.0      | 2.0        | 2.0        | 2.0        | 2.0        | 2.0   | 2.0   | 2.0   |   |
| Lost Time Adjust (s)         | 0.0          | 0.0      | 0.0        | 0.0        | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   |   |
| Total Lost Time (s)          | 6.6          | 6.6      | 6.6        | 6.6        | 6.6        | 6.6        | 6.6   | 6.6   | 6.6   |   |
| Lead/Lag                     |              |          |            |            |            |            |       |       |       |   |
| Lead-Lag Optimize?           |              |          |            |            |            |            |       |       |       |   |
| Recall Mode                  | C-Min        | C-Min    | C-Min      | C-Min      | C-Min      | None       | None  | None  | None  |   |
| Act Effct Green (s)          | 59.8         | 59.8     | 59.8       | 59.8       | 59.8       | 16.0       | 16.0  | 16.0  | 16.0  |   |
| Actuated g/C Ratio           | 0.72         | 0.72     | 0.72       | 0.72       | 0.72       | 0.19       | 0.19  | 0.19  | 0.19  |   |
| v/c Ratio                    | 0.11         | 0.38     | 0.01       | 0.35       | 0.08       | 0.05       | 0.06  | 0.23  | 0.21  |   |
| Control Delay                | 6.1          | 7.4      | 5.2        | 7.1        | 1.5        | 28.2       | 20.8  | 31.0  | 13.1  |   |
| Queue Delay                  | 0.0          | 0.0      | 0.0        | 0.0        | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   |   |
| Total Delay                  | 6.1          | 7.4      | 5.2        | 7.1        | 1.5        | 28.2       | 20.8  | 31.0  | 13.1  |   |
| LOS                          | A            | A        | A          | A          | A          | С          | С     | С     | В     |   |
| Approach Delay               |              | 7.2      |            | 6.2        |            |            | 23.5  |       | 21.1  |   |
| Approach LOS                 |              | A        |            | A          |            |            | С     |       | С     |   |
| Intersection Summary         |              |          |            |            |            |            |       |       |       |   |
| Cycle Length: 83.2           |              |          |            |            |            |            |       |       |       |   |
| Actuated Cycle Length: 83    | 3.2          |          |            |            |            |            |       |       |       |   |
| Offset: 22.5 (27%), Refere   |              | se 2:EBW | /B and 6:. | Start of ( | Green      |            |       |       |       |   |
| Natural Cycle: 65            |              |          |            |            |            |            |       |       |       |   |
| Control Type: Actuated-Co    | ordinated    |          |            |            |            |            |       |       |       |   |
| Maximum v/c Ratio: 0.38      |              |          |            |            |            |            |       |       |       |   |
| Intersection Signal Delay:   |              |          |            | Ir         | ntersectio | n LOS: A   |       |       |       |   |
| Intersection Capacity Utiliz | ation 70.4%  |          |            | 10         | CU Level   | of Service | эC    |       |       |   |
| Analysis Period (min) 15     |              |          |            |            |            |            |       |       |       |   |
| Splits and Phases: 2: C      | ataract Road |          |            |            |            |            |       |       |       |   |

10042 - Caldeon Quarry TIS TYLin

| 2: Cataract Road/M     |       |        | × 150) |        | 1165101 |      | uau (i | 01/15/202 |        |  |
|------------------------|-------|--------|--------|--------|---------|------|--------|-----------|--------|--|
|                        | ٦     | -      | 4      | +      | •       | ٩.   | 1      | 1         | ŧ      |  |
| Lane Group             | EBL   | EBT    | WBL    | WBT    | WBR     | NBL  | NBT    | SBL       | SBT    |  |
| Lane Group Flow (vph)  | 74    | 461    | 4      | 436    | 87      | 12   | 21     | 63        | 78     |  |
| v/c Ratio              | 0.11  | 0.38   | 0.01   | 0.35   | 0.08    | 0.05 | 0.06   | 0.23      | 0.21   |  |
| Control Delay          | 6.1   | 7.4    | 5.2    | 7.1    | 1.5     | 28.2 | 20.8   | 31.0      | 13.1   |  |
| Queue Delay            | 0.0   | 0.0    | 0.0    | 0.0    | 0.0     | 0.0  | 0.0    | 0.0       | 0.0    |  |
| Total Delay            | 6.1   | 7.4    | 5.2    | 7.1    | 1.5     | 28.2 | 20.8   | 31.0      | 13.1   |  |
| Queue Length 50th (m)  | 3.9   | 30.9   | 0.2    | 28.6   | 0.0     | 1.6  | 1.6    | 8.5       | 2.5    |  |
| Queue Length 95th (m)  | 8.7   | 48.3   | 1.2    | 44.6   | 4.3     | 5.9  | 7.3    | 19.1      | 13.5   |  |
| Internal Link Dist (m) |       | 1408.9 |        | 2789.4 |         |      | 883.0  |           | 1179.5 |  |
| Turn Bay Length (m)    | 125.0 |        | 60.0   |        | 90.0    | 70.0 |        | 85.0      |        |  |
| Base Capacity (vph)    | 682   | 1221   | 658    | 1245   | 1142    | 457  | 654    | 515       | 634    |  |
| Starvation Cap Reductn | 0     | 0      | 0      | 0      | 0       | 0    | 0      | 0         | 0      |  |
| Spillback Cap Reductn  | 0     | 0      | 0      | 0      | 0       | 0    | 0      | 0         | 0      |  |
| Storage Cap Reductn    | 0     | 0      | 0      | 0      | 0       | 0    | 0      | 0         | 0      |  |
| Reduced v/c Ratio      | 0.11  | 0.38   | 0.01   | 0.35   | 0.08    | 0.03 | 0.03   | 0.12      | 0.12   |  |

 HCM Signalized Intersection Capacity Analysis
 Future Background 2037 PM Peak Hour

 2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)
 01/15/2025

|                               | ۶          | +     | *     | 4    | Ļ          | *          | •       | 1    | 1    | *     | ţ    | -    |
|-------------------------------|------------|-------|-------|------|------------|------------|---------|------|------|-------|------|------|
| Movement                      | EBL        | EBT   | EBR   | WBL  | WBT        | WBR        | NBL     | NBT  | NBR  | SBL   | SBT  | SBR  |
| Lane Configurations           | ľ          | eî    |       | ľ    | 1          | 1          | ľ       | ¢Î   |      | ľ     | ¢Î   |      |
| Traffic Volume (vph)          | 73         | 441   | 11    | 4    | 427        | 85         | 12      | 12   | 9    | 62    | 19   | 58   |
| Future Volume (vph)           | 73         | 441   | 11    | 4    | 427        | 85         | 12      | 12   | 9    | 62    | 19   | 58   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900  | 1900 | 1900       | 1900       | 1900    | 1900 | 1900 | 1900  | 1900 | 1900 |
| Total Lost time (s)           | 6.6        | 6.6   |       | 6.6  | 6.6        | 6.6        | 6.6     | 6.6  |      | 6.6   | 6.6  |      |
| Lane Util. Factor             | 1.00       | 1.00  |       | 1.00 | 1.00       | 1.00       | 1.00    | 1.00 |      | 1.00  | 1.00 |      |
| Frt                           | 1.00       | 1.00  |       | 1.00 | 1.00       | 0.85       | 1.00    | 0.94 |      | 1.00  | 0.89 |      |
| Flt Protected                 | 0.95       | 1.00  |       | 0.95 | 1.00       | 1.00       | 0.95    | 1.00 |      | 0.95  | 1.00 |      |
| Satd. Flow (prot)             | 1825       | 1699  |       | 1825 | 1731       | 1555       | 1706    | 1798 |      | 1825  | 1653 |      |
| Flt Permitted                 | 0.49       | 1.00  |       | 0.48 | 1.00       | 1.00       | 0.71    | 1.00 |      | 0.74  | 1.00 |      |
| Satd. Flow (perm)             | 949        | 1699  |       | 917  | 1731       | 1555       | 1268    | 1798 |      | 1429  | 1653 |      |
| Peak-hour factor, PHF         | 0.98       | 0.98  | 0.98  | 0.98 | 0.98       | 0.98       | 0.98    | 0.98 | 0.98 | 0.98  | 0.98 | 0.98 |
| Adj. Flow (vph)               | 74         | 450   | 11    | 4    | 436        | 87         | 12      | 12   | 9    | 63    | 19   | 59   |
| RTOR Reduction (vph)          | 0          | 1     | 0     | 0    | 0          | 27         | 0       | 8    | 0    | 0     | 50   | 0    |
| Lane Group Flow (vph)         | 74         | 460   | 0     | 4    | 436        | 60         | 12      | 13   | 0    | 63    | 28   | 0    |
| Heavy Vehicles (%)            | 0%         | 13%   | 0%    | 0%   | 11%        | 5%         | 7%      | 0%   | 0%   | 0%    | 0%   | 4%   |
| Turn Type                     | Perm       | NA    |       | Perm | NA         | Perm       | Perm    | NA   |      | Perm  | NA   |      |
| Protected Phases              |            | 2     |       |      | 2          |            |         | 4    |      |       | 4    |      |
| Permitted Phases              | 2          |       |       | 2    |            | 2          | 4       |      |      | 4     |      |      |
| Actuated Green, G (s)         | 57.2       | 57.2  |       | 57.2 | 57.2       | 57.2       | 12.8    | 12.8 |      | 12.8  | 12.8 |      |
| Effective Green, g (s)        | 57.2       | 57.2  |       | 57.2 | 57.2       | 57.2       | 12.8    | 12.8 |      | 12.8  | 12.8 |      |
| Actuated g/C Ratio            | 0.69       | 0.69  |       | 0.69 | 0.69       | 0.69       | 0.15    | 0.15 |      | 0.15  | 0.15 |      |
| Clearance Time (s)            | 6.6        | 6.6   |       | 6.6  | 6.6        | 6.6        | 6.6     | 6.6  |      | 6.6   | 6.6  |      |
| Vehicle Extension (s)         | 3.0        | 3.0   |       | 3.0  | 3.0        | 3.0        | 3.0     | 3.0  |      | 3.0   | 3.0  |      |
| Lane Grp Cap (vph)            | 652        | 1168  |       | 630  | 1190       | 1069       | 195     | 276  |      | 219   | 254  |      |
| v/s Ratio Prot                |            | c0.27 |       |      | 0.25       |            |         | 0.01 |      |       | 0.02 |      |
| v/s Ratio Perm                | 0.08       |       |       | 0.00 |            | 0.04       | 0.01    |      |      | c0.04 |      |      |
| v/c Ratio                     | 0.11       | 0.39  |       | 0.01 | 0.37       | 0.06       | 0.06    | 0.05 |      | 0.29  | 0.11 |      |
| Uniform Delay, d1             | 4.4        | 5.6   |       | 4.1  | 5.4        | 4.2        | 30.1    | 30.0 |      | 31.2  | 30.3 |      |
| Progression Factor            | 1.00       | 1.00  |       | 1.00 | 1.00       | 1.00       | 1.00    | 1.00 |      | 1.00  | 1.00 |      |
| Incremental Delay, d2         | 0.4        | 1.0   |       | 0.0  | 0.9        | 0.1        | 0.1     | 0.1  |      | 0.7   | 0.2  |      |
| Delay (s)                     | 4.8        | 6.6   |       | 4.1  | 6.3        | 4.3        | 30.2    | 30.1 |      | 31.9  | 30.5 |      |
| Level of Service              | Α          | А     |       | А    | А          | Α          | С       | С    |      | С     | С    |      |
| Approach Delay (s)            |            | 6.3   |       |      | 6.0        |            |         | 30.1 |      |       | 31.1 |      |
| Approach LOS                  |            | A     |       |      | А          |            |         | С    |      |       | С    |      |
| Intersection Summary          |            |       |       |      |            |            |         |      |      |       |      |      |
| HCM 2000 Control Delay        |            |       | 9.6   | H    | CM 2000    | Level of   | Service |      | Α    |       |      |      |
| HCM 2000 Volume to Capa       | city ratio |       | 0.37  |      |            |            |         |      |      |       |      |      |
| Actuated Cycle Length (s)     |            |       | 83.2  | S    | um of lost | time (s)   |         | 13.2 |      |       |      |      |
| Intersection Capacity Utiliza | tion       |       | 70.4% | IC   | U Level o  | of Service |         | С    |      |       |      |      |
| Analysis Period (min)         |            |       | 15    |      |            |            |         |      |      |       |      |      |
| c Critical Lane Group         |            |       |       |      |            |            |         |      |      |       |      |      |

10042 - Caldeon Quarry TIS TYLin

Synchro 10 Report Page 5

10042 - Caldeon Quarry TIS TYLin

|                                 | ۶    | -+       | $\mathbf{r}$ | 4    | -         | •          | •    | Ť    | *    | 1    | Ļ    | 4    |
|---------------------------------|------|----------|--------------|------|-----------|------------|------|------|------|------|------|------|
| Movement                        | EBL  | EBT      | EBR          | WBL  | WBT       | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations             | 3    | <b>1</b> | 2011         | 5    | 1.        |            |      | 4    |      | 002  | 4    | 00.1 |
| Traffic Volume (veh/h)          | 14   | 486      | 8            | 12   | 484       | 12         | 3    | 19   | 21   | 21   | 6    | 14   |
| Future Volume (Veh/h)           | 14   | 486      | 8            | 12   | 484       | 12         | 3    | 19   | 21   | 21   | 6    | 14   |
| Sign Control                    |      | Free     | Ū            | 12   | Free      | 12         | Ŭ    | Stop | 21   | 21   | Stop | 14   |
| Grade                           |      | 0%       |              |      | 0%        |            |      | 0%   |      |      | 0%   |      |
| Peak Hour Factor                | 0.97 | 0.97     | 0.97         | 0.97 | 0.97      | 0.97       | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
| Hourly flow rate (vph)          | 14   | 501      | 8            | 12   | 499       | 12         | 3    | 20   | 22   | 22   | 6    | 14   |
| Pedestrians                     |      | 001      | Ŭ            | 12   | 100       | 12         | Ŭ    | 20   |      |      | Ŭ    | 11   |
| Lane Width (m)                  |      |          |              |      |           |            |      |      |      |      |      |      |
| Walking Speed (m/s)             |      |          |              |      |           |            |      |      |      |      |      |      |
| Percent Blockage                |      |          |              |      |           |            |      |      |      |      |      |      |
| Right turn flare (veh)          |      |          |              |      |           |            |      |      |      |      |      |      |
| Median type                     |      | None     |              |      | None      |            |      |      |      |      |      |      |
| Median storage veh)             |      |          |              |      |           |            |      |      |      |      |      |      |
| Jpstream signal (m)             |      |          |              |      |           |            |      |      |      |      |      |      |
| pX, platoon unblocked           |      |          |              |      |           |            |      |      |      |      |      |      |
| /C, conflicting volume          | 511  |          |              | 509  |           |            | 1073 | 1068 | 505  | 1090 | 1066 | 505  |
| /C1, stage 1 conf vol           |      |          |              |      |           |            |      |      |      |      |      |      |
| /C2, stage 2 conf vol           |      |          |              |      |           |            |      |      |      |      |      |      |
| /Cu, unblocked vol              | 511  |          |              | 509  |           |            | 1073 | 1068 | 505  | 1090 | 1066 | 505  |
| C, single (s)                   | 4.2  |          |              | 4.2  |           |            | 7.2  | 6.5  | 6.3  | 7.1  | 6.5  | 6.3  |
| C, 2 stage (s)                  |      |          |              |      |           |            |      |      |      |      |      |      |
| F (s)                           | 2.3  |          |              | 2.3  |           |            | 3.6  | 4.0  | 3.4  | 3.5  | 4.0  | 3.4  |
| 0 queue free %                  | 99   |          |              | 99   |           |            | 98   | 91   | 96   | 87   | 97   | 97   |
| cM capacity (veh/h)             | 1024 |          |              | 1002 |           |            | 178  | 218  | 546  | 170  | 218  | 546  |
| Direction. Lane #               | EB 1 | EB 2     | WB 1         | WB 2 | NB 1      | SB 1       |      |      |      |      |      |      |
| /olume Total                    | 14   | 509      | 12           | 511  | 45        | 42         |      |      |      |      |      |      |
| /olume Left                     | 14   | 0        | 12           | 0    | 3         | 22         |      |      |      |      |      |      |
| /olume Right                    | 0    | 8        | 0            | 12   | 22        | 14         |      |      |      |      |      |      |
| SH                              | 1024 | 1700     | 1002         | 1700 | 302       | 230        |      |      |      |      |      |      |
| Volume to Capacity              | 0.01 | 0.30     | 0.01         | 0.30 | 0.15      | 0.18       |      |      |      |      |      |      |
| Queue Length 95th (m)           | 0.3  | 0.0      | 0.3          | 0.0  | 3.9       | 5.0        |      |      |      |      |      |      |
| Control Delay (s)               | 8.6  | 0.0      | 8.6          | 0.0  | 19.0      | 24.1       |      |      |      |      |      |      |
| ane LOS                         | A    |          | A            |      | С         | С          |      |      |      |      |      |      |
| Approach Delay (s)              | 0.2  |          | 0.2          |      | 19.0      | 24.1       |      |      |      |      |      |      |
| Approach LOS                    |      |          |              |      | С         | С          |      |      |      |      |      |      |
| Intersection Summary            |      |          |              |      |           |            |      |      |      |      |      |      |
| Average Delay                   |      |          | 1.8          |      |           |            |      |      |      |      |      |      |
| ntersection Capacity Utilizatio | n    |          | 41.9%        | IC   | U Level o | of Service |      |      | А    |      |      |      |
| Analysis Period (min)           |      |          | 15           | 10   |           |            |      |      |      |      |      |      |

|                                   | ٦       | -      | $\mathbf{r}$ | 1         | +           | •        | 1        | 1     | 1     | Ŧ     |  |
|-----------------------------------|---------|--------|--------------|-----------|-------------|----------|----------|-------|-------|-------|--|
| Lane Group                        | EBL     | EBT    | EBR          | WBL       | WBT         | WBR      | NBL      | NBT   | SBL   | SBT   |  |
| Lane Configurations               | ۲       | •      | 1            | ۲.        | •           | 1        | <u>۲</u> | A     | ۲.    | ¢β    |  |
| Traffic Volume (vph)              | 111     | 241    | 108          | 146       | 243         | 34       | 185      | 1486  | 60    | 1214  |  |
| Future Volume (vph)               | 111     | 241    | 108          | 146       | 243         | 34       | 185      | 1486  | 60    | 1214  |  |
| Turn Type                         | pm+pt   | NA     | Perm         | pm+pt     | NA          | Perm     | pm+pt    | NA    | pm+pt | NA    |  |
| Protected Phases                  | 7       | 4      |              | 3         | 8           |          | 5        | 2     | 1     | 6     |  |
| Permitted Phases                  | 4       |        | 4            | 8         |             | 8        | 2        |       | 6     |       |  |
| Detector Phase                    | 7       | 4      | 4            | 3         | 8           | 8        | 5        | 2     | 1     | 6     |  |
| Switch Phase                      |         |        |              |           |             |          |          |       |       |       |  |
| Minimum Initial (s)               | 7.0     | 10.0   | 10.0         | 7.0       | 10.0        | 10.0     | 7.0      | 20.0  | 7.0   | 20.0  |  |
| Minimum Split (s)                 | 10.0    | 17.9   | 17.9         | 10.0      | 17.9        | 17.9     | 10.0     | 44.4  | 10.0  | 44.4  |  |
| Total Split (s)                   | 10.0    | 31.9   | 31.9         | 10.0      | 31.9        | 31.9     | 13.0     | 74.4  | 13.0  | 74.4  |  |
| Total Split (%)                   | 7.7%    | 24.7%  | 24.7%        | 7.7%      | 24.7%       | 24.7%    | 10.1%    | 57.5% | 10.1% | 57.5% |  |
| Yellow Time (s)                   | 3.0     | 4.5    | 4.5          | 3.0       | 4.5         | 4.5      | 3.0      | 5.0   | 3.0   | 5.0   |  |
| All-Red Time (s)                  | 0.0     | 2.4    | 2.4          | 0.0       | 2.4         | 2.4      | 0.0      | 2.4   | 0.0   | 2.4   |  |
| Lost Time Adjust (s)              | 0.0     | 0.0    | 0.0          | 0.0       | 0.0         | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |  |
| Total Lost Time (s)               | 3.0     | 6.9    | 6.9          | 3.0       | 6.9         | 6.9      | 3.0      | 7.4   | 3.0   | 7.4   |  |
| Lead/Lag                          | Lead    | Lag    | Lag          | Lead      | Lag         | Lag      | Lead     | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize?                | Yes     | . 3    | . 3          |           | Yes         | Yes      | Yes      | Yes   | Yes   | Yes   |  |
| Recall Mode                       | None    | None   | None         | None      | None        | None     | None     | C-Max | None  | C-Max |  |
| Act Effct Green (s)               | 32.4    | 21.5   | 21.5         | 32.4      | 21.5        | 21.5     | 87.4     | 75.0  | 82.5  | 70.5  |  |
| Actuated g/C Ratio                | 0.25    | 0.17   | 0.17         | 0.25      | 0.17        | 0.17     | 0.68     | 0.58  | 0.64  | 0.55  |  |
| v/c Ratio                         | 0.56    | 0.80   | 0.32         | 0.71      | 0.81        | 0.10     | 0.74     | 0.83  | 0.37  | 0.69  |  |
| Control Delay                     | 46.8    | 71.0   | 10.1         | 57.2      | 71.6        | 0.6      | 31.8     | 27.7  | 16.4  | 24.5  |  |
| Queue Delay                       | 0.0     | 0.0    | 0.0          | 0.0       | 0.0         | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   |  |
| Total Delay                       | 46.8    | 71.0   | 10.1         | 57.2      | 71.6        | 0.6      | 31.8     | 27.7  | 16.4  | 24.5  |  |
| LOS                               | D       | E      | В            | E         | E           | А        | С        | С     | В     | С     |  |
| Approach Delay                    |         | 50.8   |              |           | 61.0        |          |          | 28.1  |       | 24.1  |  |
| Approach LOS                      |         | D      |              |           | E           |          |          | С     |       | С     |  |
| Intersection Summary              |         |        |              |           |             |          |          |       |       |       |  |
| Cycle Length: 129.3               |         |        |              |           |             |          |          |       |       |       |  |
| Actuated Cycle Length: 129.3      | 3       |        |              |           |             |          |          |       |       |       |  |
| Offset: 85 (66%), Referenced      |         | 2:NBTL | and 6:SB     | TL. Start | of Green    |          |          |       |       |       |  |
| Natural Cycle: 85                 |         | 2      |              | , otart   | 0.0011      |          |          |       |       |       |  |
| Control Type: Actuated-Coord      | dinated |        |              |           |             |          |          |       |       |       |  |
| Maximum v/c Ratio: 0.83           |         |        |              |           |             |          |          |       |       |       |  |
| Intersection Signal Delay: 32.    | .8      |        |              | Ir        | ntersection | 1 LOS: C |          |       |       |       |  |
| Intersection Capacity Utilization |         |        |              |           | CU Level    |          | F        |       |       |       |  |
| Analysis Period (min) 15          |         |        |              |           |             |          |          |       |       |       |  |

| Ø1          | Ø2 (R) | <b>√</b> Ø3 | <b>↓</b> <sub>Ø4</sub> |
|-------------|--------|-------------|------------------------|
| 13 s        | 74.4 s | 10 s        | 31.9 s                 |
| <b>↑</b> Ø5 | Ø6 (R) |             | <b>∲</b> Ø8            |
| 13 s        | 74.4 s | 10 s        | 31.9 s                 |

Synchro 10 Report Page 1

|          |         |                |             |                            | Futu                | re Bac                                                                           | kgrour                                                                                   | nd 203                                                                                       | 7 SAT                                                                                                | Peak Hour                               |
|----------|---------|----------------|-------------|----------------------------|---------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|
| t (Hwy ´ | 10) & ( | Charles        | ston Si     | deroa                      | 1 (RR 2             | 24)                                                                              |                                                                                          |                                                                                              |                                                                                                      | 01/15/2025                              |
| ۶        | -       | $\mathbf{F}$   | 4           | +                          | •                   | •                                                                                | Ť                                                                                        | 1                                                                                            | ŧ                                                                                                    |                                         |
| EBL      | EBT     | EBR            | WBL         | WBT                        | WBR                 | NBL                                                                              | NBT                                                                                      | SBL                                                                                          | SBT                                                                                                  |                                         |
| 116      | 251     | 113            | 152         | 253                        | 35                  | 193                                                                              | 1694                                                                                     | 63                                                                                           | 1344                                                                                                 |                                         |
|          | EBL     | ✓ →<br>EBL EBT | EBL EBT EBR | ► → → ←<br>EBL EBT EBR WBL | EBL EBT EBR WBL WBT | t (Hwy 10) & Charleston Sideroad (RR :<br>→ → → ← ← ▲<br>EBL EBT EBR WBL WBT WBR | t (Hwy 10) & Charleston Sideroad (RR 24)<br>→ → → ← ← へ へ<br>EBL EBT EBR WBL WBT WBR NBL | t (Hwy 10) & Charleston Sideroad (RR 24)<br>→ → → ← ← ↑ ↑<br>EBL EBT EBR WBL WBT WBR NBL NBT | t (Hwy 10) & Charleston Sideroad (RR 24)<br>→ → → ← ← へ ↑ ↑ ↓<br>EBL EBT EBR WBL WBT WBR NBL NBT SBL | EBL EBT EBR WBL WBT WBR NBL NBT SBL SBT |

| v/c Ratio              | 0.56 | 0.80   | 0.32 | 0.71  | 0.81  | 0.10 | 0.74  | 0.83  | 0.37 | 0.69  |  |
|------------------------|------|--------|------|-------|-------|------|-------|-------|------|-------|--|
| Control Delay          | 46.8 | 71.0   | 10.1 | 57.2  | 71.6  | 0.6  | 31.8  | 27.7  | 16.4 | 24.5  |  |
| Queue Delay            | 0.0  | 0.0    | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0  | 0.0   |  |
| Total Delay            | 46.8 | 71.0   | 10.1 | 57.2  | 71.6  | 0.6  | 31.8  | 27.7  | 16.4 | 24.5  |  |
| Queue Length 50th (m)  | 22.7 | 61.7   | 0.0  | 30.4  | 62.2  | 0.0  | 16.7  | 182.7 | 5.0  | 132.6 |  |
| Queue Length 95th (m)  | 37.4 | 89.2   | 15.7 | #48.4 | 89.8  | 0.0  | #52.2 | 237.0 | 13.0 | 161.3 |  |
| Internal Link Dist (m) |      | 1351.4 |      |       | 575.0 |      |       | 764.6 |      | 536.2 |  |
| Turn Bay Length (m)    | 80.0 |        | 65.0 | 40.0  |       | 55.0 | 85.0  |       | 40.0 |       |  |
| Base Capacity (vph)    | 209  | 364    | 398  | 214   | 364   | 381  | 263   | 2050  | 204  | 1934  |  |
| Starvation Cap Reductn | 0    | 0      | 0    | 0     | 0     | 0    | 0     | 0     | 0    | 0     |  |
| Spillback Cap Reductn  | 0    | 0      | 0    | 0     | 0     | 0    | 0     | 0     | 0    | 0     |  |
| Storage Cap Reductn    | 0    | 0      | 0    | 0     | 0     | 0    | 0     | 0     | 0    | 0     |  |
| Reduced v/c Ratio      | 0.56 | 0.69   | 0.28 | 0.71  | 0.70  | 0.09 | 0.73  | 0.83  | 0.31 | 0.69  |  |
| Intersection Summary   |      |        |      |       |       |      |       |       |      |       |  |

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

10042 - Caldeon Quarry TIS TYLin

|                               | ٦          | -+   | $\mathbf{r}$ | 1     | -           | •          | •        | Ť     | 1    | 1     | Ļ           | ~    |
|-------------------------------|------------|------|--------------|-------|-------------|------------|----------|-------|------|-------|-------------|------|
| Movement                      | EBL        | EBT  | EBR          | WBL   | WBT         | WBR        | NBL      | NBT   | NBR  | SBL   | SBT         | SBF  |
| Lane Configurations           | 5          | •    | 1            | ٦     | •           | 1          | <u> </u> | A     |      | ሻ     | <b>≜</b> †} |      |
| Traffic Volume (vph)          | 111        | 241  | 108          | 146   | 243         | 34         | 185      | 1486  | 140  | 60    | 1214        | 76   |
| Future Volume (vph)           | 111        | 241  | 108          | 146   | 243         | 34         | 185      | 1486  | 140  | 60    | 1214        | 76   |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900         | 1900  | 1900        | 1900       | 1900     | 1900  | 1900 | 1900  | 1900        | 1900 |
| Total Lost time (s)           | 3.0        | 6.9  | 6.9          | 3.0   | 6.9         | 6.9        | 3.0      | 7.4   |      | 3.0   | 7.4         |      |
| Lane Util. Factor             | 1.00       | 1.00 | 1.00         | 1.00  | 1.00        | 1.00       | 1.00     | 0.95  |      | 1.00  | 0.95        |      |
| Frpb, ped/bikes               | 1.00       | 1.00 | 0.98         | 1.00  | 1.00        | 0.98       | 1.00     | 1.00  |      | 1.00  | 1.00        |      |
| Flpb, ped/bikes               | 1.00       | 1.00 | 1.00         | 1.00  | 1.00        | 1.00       | 1.00     | 1.00  |      | 1.00  | 1.00        |      |
| Frt                           | 1.00       | 1.00 | 0.85         | 1.00  | 1.00        | 0.85       | 1.00     | 0.99  |      | 1.00  | 0.99        |      |
| Flt Protected                 | 0.95       | 1.00 | 1.00         | 0.95  | 1.00        | 1.00       | 0.95     | 1.00  |      | 0.95  | 1.00        |      |
| Satd. Flow (prot)             | 1806       | 1883 | 1589         | 1824  | 1883        | 1603       | 1772     | 3527  |      | 1825  | 3542        |      |
| Flt Permitted                 | 0.30       | 1.00 | 1.00         | 0.31  | 1.00        | 1.00       | 0.11     | 1.00  |      | 0.06  | 1.00        |      |
| Satd. Flow (perm)             | 573        | 1883 | 1589         | 589   | 1883        | 1603       | 205      | 3527  |      | 109   | 3542        |      |
| Peak-hour factor, PHF         | 0.96       |      |              |       |             | 0.96       |          |       | 0.00 |       | 0.96        | 0.96 |
|                               |            | 0.96 | 0.96         | 0.96  | 0.96        |            | 0.96     | 0.96  | 0.96 | 0.96  |             |      |
| Adj. Flow (vph)               | 116        | 251  | 112          | 152   | 253         | 35         | 193      | 1548  | 146  | 62    | 1265        | 79   |
| RTOR Reduction (vph)          | 0          | 0    | 94           | 0     | 0           | 29         | 0        | 5     | 0    | 0     | 3           | (    |
| Lane Group Flow (vph)         | 116        | 251  | 19           | 152   | 253         | 6          | 193      | 1689  | 0    | 63    | 1341        | (    |
| Confl. Peds. (#/hr)           | 5          |      | 4            | 4     |             | 5          | 2        |       | 3    | 3     |             | 1    |
| Confl. Bikes (#/hr)           |            |      | 1            |       |             | 1          |          |       | 1    |       |             |      |
| Heavy Vehicles (%)            | 1%         | 2%   | 1%           | 0%    | 2%          | 0%         | 3%       | 2%    | 1%   | 0%    | 2%          | 2%   |
| Turn Type                     | pm+pt      | NA   | Perm         | pm+pt | NA          | Perm       | pm+pt    | NA    |      | pm+pt | NA          |      |
| Protected Phases              | 7          | 4    |              | 3     | 8           |            | 5        | 2     |      | 1     | 6           |      |
| Permitted Phases              | 4          |      | 4            | 8     |             | 8          | 2        |       |      | 6     |             |      |
| Actuated Green, G (s)         | 28.5       | 21.5 | 21.5         | 28.5  | 21.5        | 21.5       | 83.5     | 74.4  |      | 76.6  | 70.5        |      |
| Effective Green, g (s)        | 28.5       | 21.5 | 21.5         | 28.5  | 21.5        | 21.5       | 83.5     | 74.4  |      | 76.6  | 70.5        |      |
| Actuated g/C Ratio            | 0.22       | 0.17 | 0.17         | 0.22  | 0.17        | 0.17       | 0.65     | 0.58  |      | 0.59  | 0.55        |      |
| Clearance Time (s)            | 3.0        | 6.9  | 6.9          | 3.0   | 6.9         | 6.9        | 3.0      | 7.4   |      | 3.0   | 7.4         |      |
| Vehicle Extension (s)         | 3.0        | 3.0  | 3.0          | 3.0   | 3.0         | 3.0        | 3.0      | 4.4   |      | 3.0   | 4.4         |      |
| Lane Grp Cap (vph)            | 193        | 313  | 264          | 196   | 313         | 266        | 253      | 2029  |      | 145   | 1931        |      |
| v/s Ratio Prot                | 0.03       | 0.13 |              | c0.04 | c0.13       |            | c0.06    | c0.48 |      | 0.02  | 0.38        |      |
| v/s Ratio Perm                | 0.10       |      | 0.01         | 0.13  |             | 0.00       | 0.43     |       |      | 0.24  |             |      |
| v/c Ratio                     | 0.60       | 0.80 | 0.07         | 0.78  | 0.81        | 0.02       | 0.76     | 0.83  |      | 0.43  | 0.69        |      |
| Uniform Delay, d1             | 42.5       | 51.9 | 45.5         | 45.7  | 51.9        | 45.1       | 18.0     | 22.4  |      | 20.2  | 21.5        |      |
| Progression Factor            | 1.00       | 1.00 | 1.00         | 1.00  | 1.00        | 1.00       | 1.00     | 1.00  |      | 1.00  | 1.00        |      |
| Incremental Delay, d2         | 5.2        | 13.7 | 0.1          | 17.3  | 14.2        | 0.0        | 12.8     | 4.2   |      | 2.1   | 2.1         |      |
| Delay (s)                     | 47.7       | 65.6 | 45.6         | 63.0  | 66.1        | 45.1       | 30.8     | 26.6  |      | 22.3  | 23.6        |      |
| Level of Service              | D          | E    | D            | E     | E           | D          | С        | С     |      | C     | С           |      |
| Approach Delay (s)            |            | 56.5 |              |       | 63.4        |            |          | 27.0  |      |       | 23.5        |      |
| Approach LOS                  |            | E    |              |       | E           |            |          | С     |      |       | С           |      |
| Intersection Summary          |            |      |              |       |             |            |          |       |      |       |             |      |
| HCM 2000 Control Delay        |            |      | 33.0         | Н     | CM 2000     | Level of   | Service  |       | С    |       |             |      |
| HCM 2000 Volume to Capa       | city ratio |      | 0.84         |       |             |            |          |       |      |       |             |      |
| Actuated Cycle Length (s)     |            |      | 129.3        | S     | um of lost  | t time (s) |          |       | 20.3 |       |             |      |
| Intersection Capacity Utiliza | ation      |      | 93.2%        |       | CU Level of |            | 9        |       | F    |       |             |      |
| Analysis Period (min)         |            |      | 15           |       |             |            |          |       |      |       |             |      |

Synchro 10 Report Page 3

|                             | ٦            | -          | 4          | +          | •          | •           | Ť           | 1           | ţ           |  |
|-----------------------------|--------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|--|
| Lane Group                  | EBL          | EBT        | WBL        | WBT        | WBR        | NBL         | NBT         | SBL         | SBT         |  |
| Lane Configurations         | ሻ            | 4Î         | <u> </u>   | 1          | 1          | ۲           | 4Î          | 5           | 4Î          |  |
| Traffic Volume (vph)        | 49           | 335        | 6          | 309        | 51         | 3           | 8           | 55          | 12          |  |
| Future Volume (vph)         | 49           | 335        | 6          | 309        | 51         | 3           | 8           | 55          | 12          |  |
| Turn Type                   | Perm         | NA         | Perm       | NA         | Perm       | Perm        | NA          | Perm        | NA          |  |
| Protected Phases            |              | 2          |            | 2          |            |             | 4           |             | 4           |  |
| Permitted Phases            | 2            |            | 2          |            | 2          | 4           |             | 4           |             |  |
| Detector Phase              | 2            | 2          | 2          | 2          | 2          | 4           | 4           | 4           | 4           |  |
| Switch Phase                |              |            |            |            |            |             |             |             |             |  |
| Minimum Initial (s)         | 20.0         | 20.0       | 20.0       | 20.0       | 20.0       | 16.0        | 16.0        | 16.0        | 16.0        |  |
| Minimum Split (s)           | 30.6         | 30.6       | 30.6       | 30.6       | 30.6       | 30.6        | 30.6        | 30.6        | 30.6        |  |
| Total Split (s)             | 46.6         | 46.6       | 46.6       | 46.6       | 46.6       | 36.6        | 36.6        | 36.6        | 36.6        |  |
| Total Split (%)             | 56.0%        | 56.0%      | 56.0%      | 56.0%      | 56.0%      | 44.0%       | 44.0%       | 44.0%       | 44.0%       |  |
| Yellow Time (s)             | 4.6          | 4.6        | 4.6        | 4.6        | 4.6        | 4.6         | 4.6         | 4.6         | 4.6         |  |
| All-Red Time (s)            | 2.0          | 2.0        | 2.0        | 2.0        | 2.0        | 2.0         | 2.0         | 2.0         | 2.0         |  |
| Lost Time Adjust (s)        | 0.0          | 0.0        | 0.0        | 0.0        | 0.0        | 0.0         | 0.0         | 0.0         | 0.0         |  |
| Total Lost Time (s)         | 6.6          | 6.6        | 6.6        | 6.6        | 6.6        | 6.6         | 6.6         | 6.6         | 6.6         |  |
| Lead/Lag                    |              |            |            |            |            |             |             |             |             |  |
| Lead-Lag Optimize?          |              |            |            |            |            |             |             |             |             |  |
| Recall Mode                 | C-Min        | C-Min      | C-Min      | C-Min      | C-Min      | None        | None        | None        | None        |  |
| Act Effct Green (s)         | 59.8         | 59.8       | 59.8       | 59.8       | 59.8       | 16.0        | 16.0        | 16.0        | 16.0        |  |
| Actuated g/C Ratio          | 0.72         | 0.72       | 0.72       | 0.72       | 0.72       | 0.19        | 0.19        | 0.19        | 0.19        |  |
| v/c Ratio                   | 0.07         | 0.26       | 0.01       | 0.24       | 0.04       | 0.01        | 0.04        | 0.21        | 0.15        |  |
| Control Delay               | 5.7          | 6.3        | 5.2        | 6.1        | 1.7        | 27.3        | 22.4        | 30.6        | 13.6        |  |
| Queue Delay                 | 0.0          | 0.0<br>6.3 | 0.0        | 0.0        | 0.0<br>1.7 | 0.0<br>27.3 | 0.0<br>22.4 | 0.0<br>30.6 | 0.0<br>13.6 |  |
| Total Delay<br>LOS          | 5.7<br>A     |            | 5.2<br>A   | 6.1<br>A   | 1.7<br>A   | 27.3<br>C   | 22.4<br>C   | 30.6<br>C   | 13.0<br>B   |  |
| Approach Delay              | A            | A<br>6.2   | A          | 5.5        | A          | U           | 23.3        | U           | 22.3        |  |
| Approach LOS                |              | 0.2<br>A   |            | 5.5<br>A   |            |             | 23.3<br>C   |             | 22.3<br>C   |  |
| Approach LOS                |              | A          |            | A          |            |             | U           |             | U           |  |
| Intersection Summary        |              |            |            |            |            |             |             |             |             |  |
| Cycle Length: 83.2          |              |            |            |            |            |             |             |             |             |  |
| Actuated Cycle Length: 8    |              |            |            |            |            |             |             |             |             |  |
| Offset: 22.5 (27%), Refere  | enced to pha | se 2:EBW   | /B and 6:, | Start of ( | Green      |             |             |             |             |  |
| Natural Cycle: 65           |              |            |            |            |            |             |             |             |             |  |
| Control Type: Actuated-C    | oordinated   |            |            |            |            |             |             |             |             |  |
| Maximum v/c Ratio: 0.26     | 0.0          |            |            |            |            | - 1 00. •   |             |             |             |  |
| Intersection Signal Delay:  |              |            |            |            | ntersectio |             |             |             |             |  |
| Intersection Capacity Utili | 2au01 04.6%  |            |            | IC         | CU Level   | UI SELVICE  | 30          |             |             |  |
| Analysis Period (min) 15    |              |            |            |            |            |             |             |             |             |  |
| Splits and Phases: 2: C     | ataract Road | Main Ch    |            | 126) 0 Ch  | orlaatan ( | Videraad    | (00.04)     |             |             |  |

10042 - Caldeon Quarry TIS TYLin

| -                      |       |        |      |        |      |      | road (F |      |        |  |
|------------------------|-------|--------|------|--------|------|------|---------|------|--------|--|
|                        | ٦     | -      | 4    | -      | *    | 1    | 1       | 1    | Ŧ      |  |
| Lane Group             | EBL   | EBT    | WBL  | WBT    | WBR  | NBL  | NBT     | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 51    | 357    | 6    | 322    | 53   | 3    | 13      | 57   | 55     |  |
| v/c Ratio              | 0.07  | 0.26   | 0.01 | 0.24   | 0.04 | 0.01 | 0.04    | 0.21 | 0.15   |  |
| Control Delay          | 5.7   | 6.3    | 5.2  | 6.1    | 1.7  | 27.3 | 22.4    | 30.6 | 13.6   |  |
| Queue Delay            | 0.0   | 0.0    | 0.0  | 0.0    | 0.0  | 0.0  | 0.0     | 0.0  | 0.0    |  |
| Total Delay            | 5.7   | 6.3    | 5.2  | 6.1    | 1.7  | 27.3 | 22.4    | 30.6 | 13.6   |  |
| Queue Length 50th (m)  | 2.6   | 21.5   | 0.3  | 19.1   | 0.0  | 0.4  | 1.1     | 7.7  | 1.7    |  |
| Queue Length 95th (m)  | 6.3   | 33.6   | 1.5  | 30.2   | 3.4  | 2.6  | 5.6     | 17.7 | 10.9   |  |
| Internal Link Dist (m) |       | 1408.9 |      | 2789.4 |      |      | 883.0   |      | 1179.5 |  |
| Turn Bay Length (m)    | 125.0 |        | 60.0 |        | 90.0 | 70.0 |         | 85.0 |        |  |
| Base Capacity (vph)    | 781   | 1352   | 757  | 1354   | 1189 | 499  | 655     | 518  | 639    |  |
| Starvation Cap Reductn | 0     | 0      | 0    | 0      | 0    | 0    | 0       | 0    | 0      |  |
| Spillback Cap Reductn  | 0     | 0      | 0    | 0      | 0    | 0    | 0       | 0    | 0      |  |
| Storage Cap Reductn    | 0     | 0      | 0    | 0      | 0    | 0    | 0       | 0    | 0      |  |
| Reduced v/c Ratio      | 0.07  | 0.26   | 0.01 | 0.24   | 0.04 | 0.01 | 0.02    | 0.11 | 0.09   |  |

 HCM Signalized Intersection Capacity Analysis
 Future Background 2037 SAT Peak Hour

 2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)
 01/15/2025

|                               | ٦          | -     | $\mathbf{r}$ | 4    | -         | ×.         | 1       | Ť    | 1    | 5     | ţ    | 1    |
|-------------------------------|------------|-------|--------------|------|-----------|------------|---------|------|------|-------|------|------|
| Movement                      | EBL        | EBT   | EBR          | WBL  | WBT       | WBR        | NBL     | NBT  | NBR  | SBL   | SBT  | SBR  |
| Lane Configurations           | ٦          | 4Î    |              | ٦    | •         | 1          | ٦       | f,   |      | ٦     | 4    |      |
| Traffic Volume (vph)          | 49         | 335   | 8            | 6    | 309       | 51         | 3       | 8    | 5    | 55    | 12   | 40   |
| Future Volume (vph)           | 49         | 335   | 8            | 6    | 309       | 51         | 3       | 8    | 5    | 55    | 12   | 40   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900 | 1900      | 1900       | 1900    | 1900 | 1900 | 1900  | 1900 | 1900 |
| Total Lost time (s)           | 6.6        | 6.6   |              | 6.6  | 6.6       | 6.6        | 6.6     | 6.6  |      | 6.6   | 6.6  |      |
| Lane Util. Factor             | 1.00       | 1.00  |              | 1.00 | 1.00      | 1.00       | 1.00    | 1.00 |      | 1.00  | 1.00 |      |
| Frt                           | 1.00       | 1.00  |              | 1.00 | 1.00      | 0.85       | 1.00    | 0.94 |      | 1.00  | 0.89 |      |
| Flt Protected                 | 0.95       | 1.00  |              | 0.95 | 1.00      | 1.00       | 0.95    | 1.00 |      | 0.95  | 1.00 |      |
| Satd. Flow (prot)             | 1825       | 1878  |              | 1825 | 1883      | 1633       | 1825    | 1810 |      | 1825  | 1701 |      |
| Flt Permitted                 | 0.57       | 1.00  |              | 0.55 | 1.00      | 1.00       | 0.72    | 1.00 |      | 0.75  | 1.00 |      |
| Satd. Flow (perm)             | 1086       | 1878  |              | 1052 | 1883      | 1633       | 1385    | 1810 |      | 1439  | 1701 |      |
| Peak-hour factor, PHF         | 0.96       | 0.96  | 0.96         | 0.96 | 0.96      | 0.96       | 0.96    | 0.96 | 0.96 | 0.96  | 0.96 | 0.96 |
| Adj. Flow (vph)               | 51         | 349   | 8            | 6    | 322       | 53         | 3       | 8    | 5    | 57    | 12   | 42   |
| RTOR Reduction (vph)          | 0          | 1     | 0            | 0    | 0         | 17         | 0       | 4    | 0    | 0     | 36   | 0    |
| Lane Group Flow (vph)         | 51         | 356   | 0            | 6    | 322       | 36         | 3       | 9    | 0    | 57    | 19   | 0    |
| Heavy Vehicles (%)            | 0%         | 2%    | 0%           | 0%   | 2%        | 0%         | 0%      | 0%   | 0%   | 0%    | 0%   | 0%   |
| Turn Type                     | Perm       | NA    |              | Perm | NA        | Perm       | Perm    | NA   |      | Perm  | NA   |      |
| Protected Phases              |            | 2     |              |      | 2         |            |         | 4    |      |       | 4    |      |
| Permitted Phases              | 2          |       |              | 2    |           | 2          | 4       |      |      | 4     |      |      |
| Actuated Green, G (s)         | 57.2       | 57.2  |              | 57.2 | 57.2      | 57.2       | 12.8    | 12.8 |      | 12.8  | 12.8 |      |
| Effective Green, g (s)        | 57.2       | 57.2  |              | 57.2 | 57.2      | 57.2       | 12.8    | 12.8 |      | 12.8  | 12.8 |      |
| Actuated g/C Ratio            | 0.69       | 0.69  |              | 0.69 | 0.69      | 0.69       | 0.15    | 0.15 |      | 0.15  | 0.15 |      |
| Clearance Time (s)            | 6.6        | 6.6   |              | 6.6  | 6.6       | 6.6        | 6.6     | 6.6  |      | 6.6   | 6.6  |      |
| Vehicle Extension (s)         | 3.0        | 3.0   |              | 3.0  | 3.0       | 3.0        | 3.0     | 3.0  |      | 3.0   | 3.0  |      |
| Lane Grp Cap (vph)            | 746        | 1291  |              | 723  | 1294      | 1122       | 213     | 278  |      | 221   | 261  |      |
| v/s Ratio Prot                |            | c0.19 |              |      | 0.17      |            |         | 0.00 |      |       | 0.01 |      |
| v/s Ratio Perm                | 0.05       |       |              | 0.01 |           | 0.02       | 0.00    |      |      | c0.04 |      |      |
| v/c Ratio                     | 0.07       | 0.28  |              | 0.01 | 0.25      | 0.03       | 0.01    | 0.03 |      | 0.26  | 0.07 |      |
| Uniform Delay, d1             | 4.3        | 5.0   |              | 4.1  | 4.9       | 4.2        | 29.8    | 29.9 |      | 31.0  | 30.1 |      |
| Progression Factor            | 1.00       | 1.00  |              | 1.00 | 1.00      | 1.00       | 1.00    | 1.00 |      | 1.00  | 1.00 |      |
| Incremental Delay, d2         | 0.2        | 0.5   |              | 0.0  | 0.5       | 0.1        | 0.0     | 0.0  |      | 0.6   | 0.1  |      |
| Delay (s)                     | 4.4        | 5.5   |              | 4.1  | 5.4       | 4.2        | 29.9    | 30.0 |      | 31.6  | 30.3 |      |
| Level of Service              | A          | А     |              | А    | А         | А          | С       | С    |      | С     | С    |      |
| Approach Delay (s)            |            | 5.4   |              |      | 5.2       |            |         | 30.0 |      |       | 31.0 |      |
| Approach LOS                  |            | А     |              |      | А         |            |         | С    |      |       | С    |      |
| Intersection Summary          |            |       |              |      |           |            |         |      |      |       |      |      |
| HCM 2000 Control Delay        |            |       | 8.9          | Н    | CM 2000   | Level of   | Service |      | Α    |       |      |      |
| HCM 2000 Volume to Capa       | city ratio |       | 0.27         |      |           |            |         |      |      |       |      |      |
| Actuated Cycle Length (s)     |            |       | 83.2         |      | um of los |            |         |      | 13.2 |       |      |      |
| Intersection Capacity Utiliza | ation      |       | 64.6%        | IC   | U Level   | of Service | ;       |      | С    |       |      |      |
| Analysis Period (min)         |            |       | 15           |      |           |            |         |      |      |       |      |      |
| c Critical Lane Group         |            |       |              |      |           |            |         |      |      |       |      |      |

10042 - Caldeon Quarry TIS TYLin

Synchro 10 Report Page 5

10042 - Caldeon Quarry TIS TYLin

| - 5                                                |      | uncold |              | eroad ( |      | /          |      |      |      |      |      | 5/2025 |
|----------------------------------------------------|------|--------|--------------|---------|------|------------|------|------|------|------|------|--------|
|                                                    | ۶    | -      | $\mathbf{i}$ | 4       | ←    | •          | 1    | Ť    | ۲    | 1    | Ŧ    | ~      |
| Movement                                           | EBL  | EBT    | EBR          | WBL     | WBT  | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR    |
| ane Configurations                                 | 7    | ĥ      |              | ľ       | eî   |            |      | \$   |      |      | \$   |        |
| Fraffic Volume (veh/h)                             | 8    | 364    | 8            | 7       | 359  | 8          | 7    | 11   | 10   | 16   | 4    | 17     |
| uture Volume (Veh/h)                               | 8    | 364    | 8            | 7       | 359  | 8          | 7    | 11   | 10   | 16   | 4    | 17     |
| Sign Control                                       |      | Free   |              |         | Free |            |      | Stop |      |      | Stop |        |
| Grade                                              |      | 0%     |              |         | 0%   |            |      | 0%   |      |      | 0%   |        |
| Peak Hour Factor                                   | 0.94 | 0.94   | 0.94         | 0.94    | 0.94 | 0.94       | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94   |
| ourly flow rate (vph)                              | 9    | 387    | 9            | 7       | 382  | 9          | 7    | 12   | 11   | 17   | 4    | 18     |
| Pedestrians                                        |      |        |              |         |      |            |      |      |      |      |      |        |
| ane Width (m)                                      |      |        |              |         |      |            |      |      |      |      |      |        |
| Walking Speed (m/s)                                |      |        |              |         |      |            |      |      |      |      |      |        |
| Percent Blockage                                   |      |        |              |         |      |            |      |      |      |      |      |        |
| Right turn flare (veh)                             |      |        |              |         |      |            |      |      |      |      |      |        |
| Median type                                        |      | None   |              |         | None |            |      |      |      |      |      |        |
| Median storage veh)                                |      |        |              |         |      |            |      |      |      |      |      |        |
| Jpstream signal (m)                                |      |        |              |         |      |            |      |      |      |      |      |        |
| X, platoon unblocked                               |      |        |              |         |      |            |      |      |      |      |      |        |
| C, conflicting volume                              | 391  |        |              | 396     |      |            | 826  | 814  | 392  | 822  | 814  | 386    |
| C1, stage 1 conf vol                               |      |        |              |         |      |            |      |      |      |      |      |        |
| C2, stage 2 conf vol                               |      |        |              |         |      |            |      |      |      |      |      |        |
| Cu, unblocked vol                                  | 391  |        |              | 396     |      |            | 826  | 814  | 392  | 822  | 814  | 386    |
| C, single (s)                                      | 4.1  |        |              | 4.1     |      |            | 7.1  | 6.5  | 6.2  | 7.1  | 6.5  | 6.2    |
| C, 2 stage (s)                                     |      |        |              |         |      |            |      |      |      |      |      |        |
| F (s)                                              | 2.2  |        |              | 2.2     |      |            | 3.5  | 4.0  | 3.3  | 3.5  | 4.0  | 3.3    |
| 0 queue free %                                     | 99   |        |              | 99      |      |            | 97   | 96   | 98   | 94   | 99   | 97     |
| M capacity (veh/h)                                 | 1179 |        |              | 1174    |      |            | 280  | 310  | 662  | 279  | 310  | 666    |
| Direction, Lane #                                  | EB 1 | EB 2   | WB 1         | WB 2    | NB 1 | SB 1       |      |      |      |      |      |        |
| /olume Total                                       | 9    | 396    | 7            | 391     | 30   | 39         |      |      |      |      |      |        |
| /olume Left                                        | 9    | 0      | 7            | 0       | 7    | 17         |      |      |      |      |      |        |
| /olume Right                                       | 0    | 9      | 0            | 9       | 11   | 18         |      |      |      |      |      |        |
| SH                                                 | 1179 | 1700   | 1174         | 1700    | 373  | 386        |      |      |      |      |      |        |
| /olume to Capacity                                 | 0.01 | 0.23   | 0.01         | 0.23    | 0.08 | 0.10       |      |      |      |      |      |        |
| Queue Length 95th (m)                              | 0.2  | 0.0    | 0.1          | 0.0     | 2.0  | 2.5        |      |      |      |      |      |        |
| Control Delay (s)                                  | 8.1  | 0.0    | 8.1          | 0.0     | 15.5 | 15.4       |      |      |      |      |      |        |
| ane LOS                                            | А    |        | А            |         | С    | С          |      |      |      |      |      |        |
| Approach Delay (s)                                 | 0.2  |        | 0.1          |         | 15.5 | 15.4       |      |      |      |      |      |        |
| Approach LOS                                       |      |        |              |         | С    | С          |      |      |      |      |      |        |
| ntersection Summary                                |      |        |              |         |      |            |      |      |      |      |      |        |
| Average Delay                                      |      |        | 1.4          |         |      |            |      |      |      |      |      |        |
| Average Delay<br>Intersection Capacity Utilization | าก   |        | 1.4<br>30.0% | IC      |      | of Service |      |      | А    |      |      |        |

|                                 | ٦        | -       | $\mathbf{i}$ | 4          | +          | •          | 1     | Ť           | 1     | Ŧ     |  |
|---------------------------------|----------|---------|--------------|------------|------------|------------|-------|-------------|-------|-------|--|
| Lane Group                      | EBL      | EBT     | EBR          | WBL        | WBT        | WBR        | NBL   | NBT         | SBL   | SBT   |  |
| Lane Configurations             | ሻ        | •       | 1            | ሻ          | •          | 1          | ሻ     | <b>≜î</b> ≽ | ሻ     | A     |  |
| Traffic Volume (vph)            | 58       | 170     | 204          | 124        | 199        | 31         | 139   | 1047        | 59    | 1825  |  |
| Future Volume (vph)             | 58       | 170     | 204          | 124        | 199        | 31         | 139   | 1047        | 59    | 1825  |  |
| Turn Type                       | pm+pt    | NA      | Perm         | pm+pt      | NA         | Perm       | pm+pt | NA          | pm+pt | NA    |  |
| Protected Phases                | 7        | 4       |              | 3          | 8          |            | 5     | 2           | 1     | 6     |  |
| Permitted Phases                | 4        |         | 4            | 8          |            | 8          | 2     |             | 6     |       |  |
| Detector Phase                  | 7        | 4       | 4            | 3          | 8          | 8          | 5     | 2           | 1     | 6     |  |
| Switch Phase                    |          |         |              |            |            |            |       |             |       |       |  |
| Minimum Initial (s)             | 7.0      | 10.0    | 10.0         | 7.0        | 10.0       | 10.0       | 7.0   | 20.0        | 7.0   | 20.0  |  |
| Minimum Split (s)               | 10.0     | 17.9    | 17.9         | 10.0       | 17.9       | 17.9       | 10.0  | 44.4        | 10.0  | 44.4  |  |
| Total Split (s)                 | 10.0     | 31.0    | 31.0         | 10.0       | 31.0       | 31.0       | 22.0  | 89.0        | 10.0  | 77.0  |  |
| Total Split (%)                 | 7.1%     | 22.1%   | 22.1%        | 7.1%       | 22.1%      | 22.1%      | 15.7% | 63.6%       | 7.1%  | 55.0% |  |
| Yellow Time (s)                 | 3.0      | 4.5     | 4.5          | 3.0        | 4.5        | 4.5        | 3.0   | 5.0         | 3.0   | 5.0   |  |
| All-Red Time (s)                | 0.0      | 2.4     | 2.4          | 0.0        | 2.4        | 2.4        | 0.0   | 2.4         | 0.0   | 2.4   |  |
| Lost Time Adjust (s)            | 0.0      | 0.0     | 0.0          | 0.0        | 0.0        | 0.0        | 0.0   | 0.0         | 0.0   | 0.0   |  |
| Total Lost Time (s)             | 3.0      | 6.9     | 6.9          | 3.0        | 6.9        | 6.9        | 3.0   | 7.4         | 3.0   | 7.4   |  |
| Lead/Lag                        | Lead     | Lag     | Lag          | Lead       | Lag        | Lag        | Lead  | Lag         | Lead  | Lag   |  |
| Lead-Lag Optimize?              | Yes      |         |              |            | Yes        | Yes        | Yes   | Yes         | Yes   | Yes   |  |
| Recall Mode                     | None     | None    | None         | None       | None       | None       | None  | C-Max       | None  | C-Max |  |
| Act Effct Green (s)             | 31.7     | 20.8    | 20.8         | 32.3       | 22.8       | 22.8       | 99.3  | 86.9        | 90.1  | 78.6  |  |
| Actuated g/C Ratio              | 0.23     | 0.15    | 0.15         | 0.23       | 0.16       | 0.16       | 0.71  | 0.62        | 0.64  | 0.56  |  |
| v/c Ratio                       | 0.28     | 0.77    | 0.52         | 0.56       | 0.76       | 0.11       | 0.75  | 0.62        | 0.25  | 0.99  |  |
| Control Delay                   | 43.3     | 78.1    | 11.0         | 53.1       | 74.0       | 0.7        | 55.9  | 19.1        | 10.0  | 49.8  |  |
| Queue Delay                     | 0.0      | 0.0     | 0.0          | 0.0        | 0.0        | 0.0        | 0.0   | 0.0         | 0.0   | 0.0   |  |
| Total Delay                     | 43.3     | 78.1    | 11.0         | 53.1       | 74.0       | 0.7        | 55.9  | 19.1        | 10.0  | 49.8  |  |
| LOS                             | D        | E       | В            | D          | E          | A          | E     | В           | В     | D     |  |
| Approach Delay                  |          | 41.7    |              |            | 60.2       |            |       | 23.1        |       | 48.6  |  |
| Approach LOS                    |          | D       |              |            | E          |            |       | С           |       | D     |  |
| Intersection Summary            |          |         |              |            |            |            |       |             |       |       |  |
| Cycle Length: 140               |          |         |              |            |            |            |       |             |       |       |  |
| Actuated Cycle Length: 140      |          |         |              |            |            |            |       |             |       |       |  |
| Offset: 0 (0%), Referenced to   | phase 2: | NBTL an | d 6:SBTL     | , Start of | Green      |            |       |             |       |       |  |
| Natural Cycle: 115              |          |         |              |            |            |            |       |             |       |       |  |
| Control Type: Actuated-Coord    | dinated  |         |              |            |            |            |       |             |       |       |  |
| Maximum v/c Ratio: 0.99         |          |         |              |            |            |            |       |             |       |       |  |
| Intersection Signal Delay: 40.  | 8        |         |              | Ir         | ntersectio | n LOS: D   |       |             |       |       |  |
| Intersection Capacity Utilizati |          |         |              | 10         | CU Level   | of Service | e F   |             |       |       |  |
| Analysis Period (min) 15        |          |         |              |            |            |            |       |             |       |       |  |

| ø1 🔨 ø      | 32 (F <b>Q</b> | <b>√</b> Ø3 -     | <b>₽</b> 04 |
|-------------|----------------|-------------------|-------------|
| 10 s 89 s   |                | 10 s 31           | 1s          |
| <b>1</b> Ø5 | 🛛 🖡 🖉 Ø6 (R)   | ▶ <sub>Ø7</sub> • | Ø8          |
| 22 s        | 77 s           | 10 s 31           | 1s          |

Synchro 10 Report Page 1

| Queues                                     | Future Background 2037 AM Peak Ho | our (Opt)  |
|--------------------------------------------|-----------------------------------|------------|
| 1: Hurontario Street (Hwy 10) & Charleston | Sideroad (RR 24)                  | 01/15/2025 |
|                                            | · • • • • • •                     |            |

|                                            | -           | -         | •            | •    | -     | ~    | 7    |       | •    | +      |  |
|--------------------------------------------|-------------|-----------|--------------|------|-------|------|------|-------|------|--------|--|
| Lane Group                                 | EBL         | EBT       | EBR          | WBL  | WBT   | WBR  | NBL  | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)                      | 61          | 179       | 215          | 131  | 209   | 33   | 146  | 1199  | 62   | 1982   |  |
| v/c Ratio                                  | 0.28        | 0.77      | 0.52         | 0.56 | 0.76  | 0.11 | 0.75 | 0.62  | 0.25 | 0.99   |  |
| Control Delay                              | 43.3        | 78.1      | 11.0         | 53.1 | 74.0  | 0.7  | 55.9 | 19.1  | 10.0 | 49.8   |  |
| Queue Delay                                | 0.0         | 0.0       | 0.0          | 0.0  | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | 0.0    |  |
| Total Delay                                | 43.3        | 78.1      | 11.0         | 53.1 | 74.0  | 0.7  | 55.9 | 19.1  | 10.0 | 49.8   |  |
| Queue Length 50th (m)                      | 13.0        | 47.5      | 0.0          | 29.1 | 56.1  | 0.0  | 25.6 | 110.2 | 5.0  | ~305.6 |  |
| Queue Length 95th (m)                      | 24.6        | 72.9      | 22.0         | 46.5 | #86.6 | 0.0  | 48.0 | 136.1 | 10.0 | #374.8 |  |
| Internal Link Dist (m)                     |             | 1351.4    |              |      | 575.0 |      |      | 764.6 |      | 536.2  |  |
| Turn Bay Length (m)                        | 80.0        |           | 65.0         | 40.0 |       | 55.0 | 85.0 |       | 40.0 |        |  |
| Base Capacity (vph)                        | 215         | 271       | 445          | 233  | 292   | 324  | 253  | 1927  | 252  | 1993   |  |
| Starvation Cap Reductn                     | 0           | 0         | 0            | 0    | 0     | 0    | 0    | 0     | 0    | 0      |  |
| Spillback Cap Reductn                      | 0           | 0         | 0            | 0    | 0     | 0    | 0    | 0     | 0    | 0      |  |
| Storage Cap Reductn                        | 0           | 0         | 0            | 0    | 0     | 0    | 0    | 0     | 0    | 0      |  |
| Reduced v/c Ratio                          | 0.28        | 0.66      | 0.48         | 0.56 | 0.72  | 0.10 | 0.58 | 0.62  | 0.25 | 0.99   |  |
| Intersection Summary                       |             |           |              |      |       |      |      |       |      |        |  |
| <ul> <li>Volume exceeds capacit</li> </ul> | v. queue is | theoretic | allv infinit | e.   |       |      |      |       |      |        |  |

Volume exceeds capacity, queue is theoreti Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

10042 - Caldeon Quarry TIS TYLin

 HCM Signalized Intersection Capacity Analysis
 Future Background 2037 AM Peak Hour (Opt)

 1: Hurontario Street (Hwy 10) & Charleston Sideroad (RR 24)
 01/15/2025

|                               | ۶           | -        | $\mathbf{r}$ | 4        | +         | •          | •        | Ť    | 1    | 1     | Ŧ     | ~    |
|-------------------------------|-------------|----------|--------------|----------|-----------|------------|----------|------|------|-------|-------|------|
| Movement                      | EBL         | EBT      | EBR          | WBL      | WBT       | WBR        | NBL      | NBT  | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations           | ٦           | <b>↑</b> | 1            | <u>۲</u> | <b>↑</b>  | 1          | <u>۲</u> | A1⊅  |      | ٦     | A1≯   |      |
| Traffic Volume (vph)          | 58          | 170      | 204          | 124      | 199       | 31         | 139      | 1047 | 92   | 59    | 1825  | 58   |
| Future Volume (vph)           | 58          | 170      | 204          | 124      | 199       | 31         | 139      | 1047 | 92   | 59    | 1825  | 58   |
| Ideal Flow (vphpl)            | 1900        | 1900     | 1900         | 1900     | 1900      | 1900       | 1900     | 1900 | 1900 | 1900  | 1900  | 1900 |
| Total Lost time (s)           | 3.0         | 6.9      | 6.9          | 3.0      | 6.9       | 6.9        | 3.0      | 7.4  |      | 3.0   | 7.4   |      |
| Lane Util. Factor             | 1.00        | 1.00     | 1.00         | 1.00     | 1.00      | 1.00       | 1.00     | 0.95 |      | 1.00  | 0.95  |      |
| Frt                           | 1.00        | 1.00     | 0.85         | 1.00     | 1.00      | 0.85       | 1.00     | 0.99 |      | 1.00  | 1.00  |      |
| Flt Protected                 | 0.95        | 1.00     | 1.00         | 0.95     | 1.00      | 1.00       | 0.95     | 1.00 |      | 0.95  | 1.00  |      |
| Satd. Flow (prot)             | 1690        | 1575     | 1555         | 1772     | 1700      | 1384       | 1534     | 3100 |      | 1484  | 3548  |      |
| Flt Permitted                 | 0.42        | 1.00     | 1.00         | 0.43     | 1.00      | 1.00       | 0.05     | 1.00 |      | 0.19  | 1.00  |      |
| Satd. Flow (perm)             | 746         | 1575     | 1555         | 801      | 1700      | 1384       | 80       | 3100 |      | 299   | 3548  |      |
| Peak-hour factor, PHF         | 0.95        | 0.95     | 0.95         | 0.95     | 0.95      | 0.95       | 0.95     | 0.95 | 0.95 | 0.95  | 0.95  | 0.95 |
| Adj. Flow (vph)               | 61          | 179      | 215          | 131      | 209       | 33         | 146      | 1102 | 97   | 62    | 1921  | 61   |
| RTOR Reduction (vph)          | 0           | 0        | 182          | 0        | 0         | 28         | 0        | 4    | 0    | 0     | 1     | 0    |
| Lane Group Flow (vph)         | 61          | 179      | 33           | 131      | 209       | 5          | 146      | 1195 | 0    | 62    | 1981  | 0    |
| Heavy Vehicles (%)            | 8%          | 22%      | 5%           | 3%       | 13%       | 18%        | 19%      | 16%  | 20%  | 23%   | 2%    | 15%  |
| Turn Type                     | pm+pt       | NA       | Perm         | pm+pt    | NA        | Perm       | pm+pt    | NA   |      | pm+pt | NA    |      |
| Protected Phases              | 7           | 4        |              | 3        | 8         |            | 5        | 2    |      | 1     | 6     |      |
| Permitted Phases              | 4           |          | 4            | 8        |           | 8          | 2        |      |      | 6     |       |      |
| Actuated Green, G (s)         | 27.0        | 21.4     | 21.4         | 29.8     | 22.8      | 22.8       | 94.3     | 85.6 |      | 83.7  | 78.0  |      |
| Effective Green, g (s)        | 27.0        | 21.4     | 21.4         | 29.8     | 22.8      | 22.8       | 94.3     | 85.6 |      | 83.7  | 78.0  |      |
| Actuated g/C Ratio            | 0.19        | 0.15     | 0.15         | 0.21     | 0.16      | 0.16       | 0.67     | 0.61 |      | 0.60  | 0.56  |      |
| Clearance Time (s)            | 3.0         | 6.9      | 6.9          | 3.0      | 6.9       | 6.9        | 3.0      | 7.4  |      | 3.0   | 7.4   |      |
| Vehicle Extension (s)         | 3.0         | 3.0      | 3.0          | 3.0      | 3.0       | 3.0        | 3.0      | 4.4  |      | 3.0   | 4.4   |      |
| Lane Grp Cap (vph)            | 181         | 240      | 237          | 219      | 276       | 225        | 192      | 1895 |      | 227   | 1976  |      |
| v/s Ratio Prot                | 0.01        | 0.11     |              | c0.03    | c0.12     |            | c0.07    | 0.39 |      | 0.01  | c0.56 |      |
| v/s Ratio Perm                | 0.05        |          | 0.02         | 0.10     |           | 0.00       | 0.44     |      |      | 0.15  |       |      |
| v/c Ratio                     | 0.34        | 0.75     | 0.14         | 0.60     | 0.76      | 0.02       | 0.76     | 0.63 |      | 0.27  | 1.00  |      |
| Uniform Delay, d1             | 47.5        | 56.7     | 51.3         | 48.5     | 56.0      | 49.2       | 44.8     | 17.2 |      | 12.7  | 31.0  |      |
| Progression Factor            | 1.00        | 1.00     | 1.00         | 1.00     | 1.00      | 1.00       | 1.00     | 1.00 |      | 1.00  | 1.00  |      |
| Incremental Delay, d2         | 1.1         | 11.9     | 0.3          | 4.3      | 11.3      | 0.0        | 16.1     | 1.6  |      | 0.7   | 20.8  | _    |
| Delay (s)                     | 48.6        | 68.6     | 51.6         | 52.9     | 67.2      | 49.3       | 61.0     | 18.8 |      | 13.4  | 51.8  |      |
| Level of Service              | D           | E        | D            | D        | E         | D          | E        | В    |      | В     | D     |      |
| Approach Delay (s)            |             | 57.9     |              |          | 60.6      |            |          | 23.4 |      |       | 50.6  |      |
| Approach LOS                  |             | E        |              |          | E         |            |          | С    |      |       | D     |      |
| Intersection Summary          |             |          |              |          |           |            |          |      |      |       |       |      |
| HCM 2000 Control Delay        |             |          | 43.6         | н        | CM 2000   | Level of   | Service  |      | D    |       |       |      |
| HCM 2000 Volume to Capa       | acity ratio |          | 0.92         |          |           |            |          |      |      |       |       |      |
| Actuated Cycle Length (s)     |             |          | 140.0        |          | um of los |            |          |      | 20.3 |       |       |      |
| Intersection Capacity Utiliza | ation       |          | 94.9%        | IC       | CU Level  | of Service | 9        |      | F    |       |       |      |
| Analysis Period (min)         |             |          | 15           |          |           |            |          |      |      |       |       |      |
| c Critical Lane Group         |             |          |              |          |           |            |          |      |      |       |       |      |

10042 - Caldeon Quarry TIS TYLin Synchro 10 Report Page 3

|                                | ۶             | -        | 4          | +          | *          | 1          | t           | 1         | Ļ           |  |
|--------------------------------|---------------|----------|------------|------------|------------|------------|-------------|-----------|-------------|--|
| Lane Group                     | EBL           | EBT      | WBL        | WBT        | WBR        | NBL        | NBT         | SBL       | SBT         |  |
| Lane Configurations            | ሻ             | 4Î       | <u>۲</u>   | <b>↑</b>   | 1          | <u>۲</u>   | 4           | <u>۲</u>  | 4           |  |
| Traffic Volume (vph)           | 38            | 352      | 6          | 336        | 43         | 6          | 7           | 52        | 10          |  |
| Future Volume (vph)            | 38            | 352      | 6          | 336        | 43         | 6          | 7           | 52        | 10          |  |
| Turn Type                      | Perm          | NA       | Perm       | NA         | Perm       | Perm       | NA          | Perm      | NA          |  |
| Protected Phases               |               | 2        |            | 2          |            |            | 4           |           | 4           |  |
| Permitted Phases               | 2             |          | 2          |            | 2          | 4          |             | 4         |             |  |
| Detector Phase                 | 2             | 2        | 2          | 2          | 2          | 4          | 4           | 4         | 4           |  |
| Switch Phase                   |               |          |            |            |            |            |             |           |             |  |
| Minimum Initial (s)            | 20.0          | 20.0     | 20.0       | 20.0       | 20.0       | 16.0       | 16.0        | 16.0      | 16.0        |  |
| Minimum Split (s)              | 30.6          | 30.6     | 30.6       | 30.6       | 30.6       | 30.6       | 30.6        | 30.6      | 30.6        |  |
| Total Split (s)                | 46.6          | 46.6     | 46.6       | 46.6       | 46.6       | 36.6       | 36.6        | 36.6      | 36.6        |  |
| Total Split (%)                | 56.0%         | 56.0%    | 56.0%      | 56.0%      | 56.0%      | 44.0%      | 44.0%       | 44.0%     | 44.0%       |  |
| Yellow Time (s)                | 4.6           | 4.6      | 4.6        | 4.6        | 4.6        | 4.6        | 4.6         | 4.6       | 4.6         |  |
| All-Red Time (s)               | 2.0           | 2.0      | 2.0        | 2.0        | 2.0        | 2.0        | 2.0         | 2.0       | 2.0         |  |
| Lost Time Adjust (s)           | 0.0           | 0.0      | 0.0        | 0.0        | 0.0        | 0.0        | 0.0         | 0.0       | 0.0         |  |
| Total Lost Time (s)            | 6.6           | 6.6      | 6.6        | 6.6        | 6.6        | 6.6        | 6.6         | 6.6       | 6.6         |  |
| Lead/Lag                       |               |          |            |            |            |            |             |           |             |  |
| Lead-Lag Optimize?             | o             |          |            | <i>.</i> . |            |            |             |           |             |  |
| Recall Mode                    | C-Min         | C-Min    | C-Min      | C-Min      | C-Min      | None       | None        | None      | None        |  |
| Act Effct Green (s)            | 59.8          | 59.8     | 59.8       | 59.8       | 59.8       | 16.0       | 16.0        | 16.0      | 16.0        |  |
| Actuated g/C Ratio             | 0.72          | 0.72     | 0.72       | 0.72       | 0.72       | 0.19       | 0.19        | 0.19      | 0.19        |  |
| v/c Ratio                      | 0.05          | 0.29     | 0.01       | 0.30       | 0.04       | 0.02       | 0.05        | 0.20      | 0.16        |  |
| Control Delay                  | 5.6           | 6.6      | 5.2        | 6.8        | 1.7        | 27.7       | 18.7        | 30.4      | 12.8        |  |
| Queue Delay                    | 0.0<br>5.6    | 0.0      | 0.0<br>5.2 | 0.0        | 0.0<br>1.7 | 0.0        | 0.0<br>18.7 | 0.0       | 0.0<br>12.8 |  |
| Total Delay                    |               | 6.6      |            | 6.8        |            | 27.7       |             | 30.4<br>C | 12.8<br>B   |  |
| LOS                            | А             | A        | А          | A          | А          | С          | B           | U         | _           |  |
| Approach Delay<br>Approach LOS |               | 6.5<br>A |            | 6.2<br>A   |            |            | 20.9<br>C   |           | 21.5<br>C   |  |
| Approach LOS                   |               | А        |            | А          |            |            | U           |           | U           |  |
| Intersection Summary           |               |          |            |            |            |            |             |           |             |  |
| Cycle Length: 83.2             |               |          |            |            |            |            |             |           |             |  |
| Actuated Cycle Length: 83      | 3.2           |          |            |            |            |            |             |           |             |  |
| Offset: 22.5 (27%), Refere     | nced to phase | se 2:EBW | /B and 6:, | Start of 0 | Green      |            |             |           |             |  |
| Natural Cycle: 65              |               |          |            |            |            |            |             |           |             |  |
| Control Type: Actuated-Co      | oordinated    |          |            |            |            |            |             |           |             |  |
| Maximum v/c Ratio: 0.30        |               |          |            |            |            |            |             |           |             |  |
| Intersection Signal Delay:     |               |          |            |            | ntersectio |            |             |           |             |  |
| Intersection Capacity Utiliz   | ation 63.2%   |          |            | 10         | CU Level   | of Service | эB          |           |             |  |
| Analysis Period (min) 15       |               |          |            |            |            |            |             |           |             |  |

10042 - Caldeon Quarry TIS TYLin

|                             | ٦            | -       | $\rightarrow$ | 1          | •          | •          | 1     | <b>†</b>    | 1     | Ŧ     |  |
|-----------------------------|--------------|---------|---------------|------------|------------|------------|-------|-------------|-------|-------|--|
| ane Group                   | EBL          | EBT     | EBR           | WBL        | WBT        | WBR        | NBL   | NBT         | SBL   | SBT   |  |
| ane Configurations          | ሻ            | •       | 1             | ሻ          | •          | 1          | ሻ     | <b>≜î</b> ≽ | ሻ     | A1≱   |  |
| Fraffic Volume (vph)        | 75           | 273     | 151           | 113        | 289        | 84         | 181   | 1844        | 52    | 1139  |  |
| uture Volume (vph)          | 75           | 273     | 151           | 113        | 289        | 84         | 181   | 1844        | 52    | 1139  |  |
| Furn Type                   | pm+pt        | NA      | Perm          | pm+pt      | NA         | Perm       | pm+pt | NA          | pm+pt | NA    |  |
| Protected Phases            | 7            | 4       |               | 3          | 8          |            | 5     | 2           | 1     | 6     |  |
| Permitted Phases            | 4            |         | 4             | 8          |            | 8          | 2     |             | 6     |       |  |
| Detector Phase              | 7            | 4       | 4             | 3          | 8          | 8          | 5     | 2           | 1     | 6     |  |
| Switch Phase                |              |         |               |            |            |            |       |             |       |       |  |
| Vinimum Initial (s)         | 7.0          | 10.0    | 10.0          | 7.0        | 10.0       | 10.0       | 7.0   | 20.0        | 7.0   | 20.0  |  |
| Minimum Split (s)           | 10.0         | 17.9    | 17.9          | 10.0       | 17.9       | 17.9       | 10.0  | 44.4        | 10.0  | 44.4  |  |
| Total Split (s)             | 10.0         | 31.0    | 31.0          | 10.0       | 31.0       | 31.0       | 22.0  | 89.0        | 10.0  | 77.0  |  |
| Fotal Split (%)             | 7.1%         | 22.1%   | 22.1%         | 7.1%       | 22.1%      | 22.1%      | 15.7% | 63.6%       | 7.1%  | 55.0% |  |
| rellow Time (s)             | 3.0          | 4.5     | 4.5           | 3.0        | 4.5        | 4.5        | 3.0   | 5.0         | 3.0   | 5.0   |  |
| All-Red Time (s)            | 0.0          | 2.4     | 2.4           | 0.0        | 2.4        | 2.4        | 0.0   | 2.4         | 0.0   | 2.4   |  |
| ost Time Adjust (s)         | 0.0          | 0.0     | 0.0           | 0.0        | 0.0        | 0.0        | 0.0   | 0.0         | 0.0   | 0.0   |  |
| Fotal Lost Time (s)         | 3.0          | 6.9     | 6.9           | 3.0        | 6.9        | 6.9        | 3.0   | 7.4         | 3.0   | 7.4   |  |
| _ead/Lag                    | Lead         | Lag     | Lag           | Lead       | Lag        | Lag        | Lead  | Lag         | Lead  | Lag   |  |
| _ead-Lag Optimize?          | Yes          |         |               |            | Yes        | Yes        | Yes   | Yes         | Yes   | Yes   |  |
| Recall Mode                 | None         | None    | None          | None       | None       | None       | None  | C-Max       | None  | C-Max |  |
| Act Effct Green (s)         | 35.0         | 24.1    | 24.1          | 35.0       | 24.1       | 24.1       | 95.9  | 83.6        | 88.0  | 76.6  |  |
| Actuated g/C Ratio          | 0.25         | 0.17    | 0.17          | 0.25       | 0.17       | 0.17       | 0.68  | 0.60        | 0.63  | 0.55  |  |
| //c Ratio                   | 0.52         | 0.99    | 0.40          | 0.75       | 1.00       | 0.25       | 0.65  | 0.99        | 0.42  | 0.70  |  |
| Control Delay               | 51.9         | 107.5   | 10.4          | 71.1       | 109.7      | 7.8        | 20.6  | 46.6        | 25.0  | 26.3  |  |
| Queue Delay                 | 0.0          | 0.0     | 0.0           | 0.0        | 0.0        | 0.0        | 0.0   | 0.0         | 0.0   | 0.0   |  |
| Fotal Delay                 | 51.9         | 107.5   | 10.4          | 71.1       | 109.7      | 7.8        | 20.6  | 46.6        | 25.0  | 26.3  |  |
| LOS                         | D            | F       | В             | E          | F          | A          | С     | D           | С     | С     |  |
| Approach Delay              |              | 69.8    |               |            | 83.1       |            |       | 44.5        |       | 26.2  |  |
| Approach LOS                |              | E       |               |            | F          |            |       | D           |       | С     |  |
| ntersection Summary         |              |         |               |            |            |            |       |             |       |       |  |
| Cycle Length: 140           |              |         |               |            |            |            |       |             |       |       |  |
| Actuated Cycle Length: 14   | 0            |         |               |            |            |            |       |             |       |       |  |
| Offset: 0 (0%), Referenced  | to phase 2:  | NBTL an | d 6:SBTL      | , Start of | Green      |            |       |             |       |       |  |
| Vatural Cycle: 145          |              |         |               |            |            |            |       |             |       |       |  |
| Control Type: Actuated-Co   | ordinated    |         |               |            |            |            |       |             |       |       |  |
| Maximum v/c Ratio: 1.00     |              |         |               |            |            |            |       |             |       |       |  |
| ntersection Signal Delay: 4 | 46.4         |         |               | Ir         | ntersectio | n LOS: D   |       |             |       |       |  |
| ntersection Capacity Utiliz | ation 104.29 | %       |               | 10         | CU Level   | of Service | e G   |             |       |       |  |

| ▶ø1 ▲ ø2 (R)    | ✓ Ø3      |
|-----------------|-----------|
| 10 s 89 s       | 10 s 31 s |
| ▲ ø5 🕴 🖗 ø6 (R) | ▶ Ø7 ♥ Ø8 |
| 22 s 77 s       | 10 s 31 s |

Synchro 10 Report Page 1

| Queues                          | Future Background 2037 PM Peak Hour ( |            |  |  |  |  |
|---------------------------------|---------------------------------------|------------|--|--|--|--|
| 1: Hurontario Street (Hwy 10) 8 | Charleston Sideroad (RR 24)           | 01/15/2025 |  |  |  |  |
|                                 | $\Box \rightarrow Z \leftarrow A + A$ | <u> </u>   |  |  |  |  |

| Lane Group             | EBL  | EDT    |      |       |        |      |      |        |      |       |  |
|------------------------|------|--------|------|-------|--------|------|------|--------|------|-------|--|
|                        | LDL  | EBT    | EBR  | WBL   | WBT    | WBR  | NBL  | NBT    | SBL  | SBT   |  |
| Lane Group Flow (vph)  | 79   | 287    | 159  | 119   | 304    | 88   | 191  | 2101   | 55   | 1268  |  |
| v/c Ratio              | 0.52 | 0.99   | 0.40 | 0.75  | 1.00   | 0.25 | 0.65 | 0.99   | 0.42 | 0.70  |  |
| Control Delay          | 51.9 | 107.5  | 10.4 | 71.1  | 109.7  | 7.8  | 20.6 | 46.6   | 25.0 | 26.3  |  |
| Queue Delay            | 0.0  | 0.0    | 0.0  | 0.0   | 0.0    | 0.0  | 0.0  | 0.0    | 0.0  | 0.0   |  |
| Total Delay            | 51.9 | 107.5  | 10.4 | 71.1  | 109.7  | 7.8  | 20.6 | 46.6   | 25.0 | 26.3  |  |
| Queue Length 50th (m)  | 16.8 | 80.3   | 0.0  | 26.0  | ~85.5  | 0.0  | 17.2 | ~323.0 | 4.6  | 127.4 |  |
| Queue Length 95th (m)  | 30.4 | #137.9 | 19.4 | #52.7 | #145.0 | 10.8 | 33.1 | #364.1 | 15.3 | 172.0 |  |
| Internal Link Dist (m) |      | 1351.4 |      |       | 575.0  |      |      | 764.6  |      | 536.2 |  |
| Turn Bay Length (m)    | 80.0 |        | 65.0 | 40.0  |        | 55.0 | 85.0 |        | 40.0 |       |  |
| Base Capacity (vph)    | 153  | 290    | 394  | 158   | 303    | 351  | 371  | 2112   | 131  | 1819  |  |
| Starvation Cap Reductn | 0    | 0      | 0    | 0     | 0      | 0    | 0    | 0      | 0    | 0     |  |
| Spillback Cap Reductn  | 0    | 0      | 0    | 0     | 0      | 0    | 0    | 0      | 0    | 0     |  |
| Storage Cap Reductn    | 0    | 0      | 0    | 0     | 0      | 0    | 0    | 0      | 0    | 0     |  |
| Reduced v/c Ratio      | 0.52 | 0.99   | 0.40 | 0.75  | 1.00   | 0.25 | 0.51 | 0.99   | 0.42 | 0.70  |  |

Volume exceeds capacity, queue is theoreti Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

10042 - Caldeon Quarry TIS TYLin

 HCM Signalized Intersection Capacity Analysis
 Future Background 2037 PM Peak Hour (Opt)

 1: Hurontario Street (Hwy 10) & Charleston Sideroad (RR 24)
 01/15/2025

|                              | ۶           | +        | *      | 4        | Ļ         | *          | •        | t          | 1    | 1        | ţ    | -    |
|------------------------------|-------------|----------|--------|----------|-----------|------------|----------|------------|------|----------|------|------|
| Movement                     | EBL         | EBT      | EBR    | WBL      | WBT       | WBR        | NBL      | NBT        | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations          | ሻ           | <b>↑</b> | 1      | <u>۲</u> | <b>↑</b>  | 1          | <u>۳</u> | <b>≜</b> ⊅ |      | <u>۲</u> | A    |      |
| Traffic Volume (vph)         | 75          | 273      | 151    | 113      | 289       | 84         | 181      | 1844       | 152  | 52       | 1139 | 66   |
| Future Volume (vph)          | 75          | 273      | 151    | 113      | 289       | 84         | 181      | 1844       | 152  | 52       | 1139 | 66   |
| Ideal Flow (vphpl)           | 1900        | 1900     | 1900   | 1900     | 1900      | 1900       | 1900     | 1900       | 1900 | 1900     | 1900 | 1900 |
| Total Lost time (s)          | 3.0         | 6.9      | 6.9    | 3.0      | 6.9       | 6.9        | 3.0      | 7.4        |      | 3.0      | 7.4  |      |
| Lane Util. Factor            | 1.00        | 1.00     | 1.00   | 1.00     | 1.00      | 1.00       | 1.00     | 0.95       |      | 1.00     | 0.95 |      |
| Frpb, ped/bikes              | 1.00        | 1.00     | 0.98   | 1.00     | 1.00      | 0.98       | 1.00     | 1.00       |      | 1.00     | 1.00 |      |
| Flpb, ped/bikes              | 1.00        | 1.00     | 1.00   | 1.00     | 1.00      | 1.00       | 1.00     | 1.00       |      | 1.00     | 1.00 |      |
| Frt                          | 1.00        | 1.00     | 0.85   | 1.00     | 1.00      | 0.85       | 1.00     | 0.99       |      | 1.00     | 0.99 |      |
| Fit Protected                | 0.95        | 1.00     | 1.00   | 0.95     | 1.00      | 1.00       | 0.95     | 1.00       |      | 0.95     | 1.00 |      |
| Satd. Flow (prot)            | 1754        | 1685     | 1527   | 1658     | 1762      | 1543       | 1772     | 3530       |      | 1601     | 3320 |      |
| Flt Permitted                | 0.18        | 1.00     | 1.00   | 0.22     | 1.00      | 1.00       | 0.13     | 1.00       |      | 0.05     | 1.00 |      |
| Satd. Flow (perm)            | 328         | 1685     | 1527   | 381      | 1762      | 1543       | 240      | 3530       |      | 88       | 3320 |      |
| Peak-hour factor, PHF        | 0.95        | 0.95     | 0.95   | 0.95     | 0.95      | 0.95       | 0.95     | 0.95       | 0.95 | 0.95     | 0.95 | 0.95 |
| Adj. Flow (vph)              | 79          | 287      | 159    | 119      | 304       | 88         | 191      | 1941       | 160  | 55       | 1199 | 69   |
| RTOR Reduction (vph)         | 0           | 0        | 132    | 0        | 0         | 73         | 0        | 4          | 0    | 0        | 3    | 0    |
| Lane Group Flow (vph)        | 79          | 287      | 27     | 119      | 304       | 15         | 191      | 2097       | 0    | 55       | 1265 | 0    |
| Confl. Peds. (#/hr)          | 5           |          | 6      | 6        |           | 5          | 7        |            | 5    | 5        |      | 7    |
| Heavy Vehicles (%)           | 4%          | 14%      | 5%     | 10%      | 9%        | 4%         | 3%       | 2%         | 2%   | 14%      | 9%   | 6%   |
| Turn Type                    | pm+pt       | NA       | Perm   | pm+pt    | NA        | Perm       | pm+pt    | NA         |      | pm+pt    | NA   |      |
| Protected Phases             | 7           | 4        |        | 3        | 8         |            | 5        | 2          |      | 1        | 6    |      |
| Permitted Phases             | 4           |          | 4      | 8        |           | 8          | 2        |            |      | 6        |      |      |
| Actuated Green, G (s)        | 31.1        | 24.1     | 24.1   | 31.1     | 24.1      | 24.1       | 91.6     | 83.0       |      | 82.2     | 76.6 |      |
| Effective Green, g (s)       | 31.1        | 24.1     | 24.1   | 31.1     | 24.1      | 24.1       | 91.6     | 83.0       |      | 82.2     | 76.6 |      |
| Actuated g/C Ratio           | 0.22        | 0.17     | 0.17   | 0.22     | 0.17      | 0.17       | 0.65     | 0.59       |      | 0.59     | 0.55 |      |
| Clearance Time (s)           | 3.0         | 6.9      | 6.9    | 3.0      | 6.9       | 6.9        | 3.0      | 7.4        |      | 3.0      | 7.4  |      |
| Vehicle Extension (s)        | 3.0         | 3.0      | 3.0    | 3.0      | 3.0       | 3.0        | 3.0      | 4.4        |      | 3.0      | 4.4  |      |
| Lane Grp Cap (vph)           | 144         | 290      | 262    | 148      | 303       | 265        | 288      | 2092       |      | 112      | 1816 |      |
| v/s Ratio Prot               | 0.03        | 0.17     |        | c0.04    | c0.17     |            | c0.06    | c0.59      |      | 0.02     | 0.38 |      |
| v/s Ratio Perm               | 0.09        |          | 0.02   | 0.14     |           | 0.01       | 0.38     |            |      | 0.27     |      |      |
| v/c Ratio                    | 0.55        | 0.99     | 0.10   | 0.80     | 1.00      | 0.06       | 0.66     | 1.00       |      | 0.49     | 0.70 |      |
| Uniform Delay, d1            | 45.4        | 57.8     | 48.9   | 48.9     | 58.0      | 48.5       | 16.7     | 28.5       |      | 31.8     | 23.2 |      |
| Progression Factor           | 1.00        | 1.00     | 1.00   | 1.00     | 1.00      | 1.00       | 1.00     | 1.00       |      | 1.00     | 1.00 |      |
| Incremental Delay, d2        | 4.2         | 49.5     | 0.2    | 26.2     | 52.5      | 0.1        | 5.6      | 20.2       |      | 3.4      | 2.2  |      |
| Delay (s)                    | 49.6        | 107.3    | 49.0   | 75.0     | 110.5     | 48.5       | 22.3     | 48.7       |      | 35.2     | 25.4 |      |
| Level of Service             | D           | F        | D      | E        | F         | D          | C        | D          |      | D        | С    |      |
| Approach Delay (s)           |             | 81.0     |        |          | 91.6      |            |          | 46.5       |      |          | 25.8 |      |
| Approach LOS                 |             | F        |        |          | F         |            |          | D          |      |          | С    |      |
| Intersection Summary         |             |          |        |          |           |            |          |            |      |          |      |      |
| HCM 2000 Control Delay       |             |          | 49.5   | H        | CM 2000   | Level of   | Service  |            | D    |          |      |      |
| HCM 2000 Volume to Capa      | acity ratio |          | 0.98   |          |           |            |          |            |      |          |      |      |
| Actuated Cycle Length (s)    |             |          | 140.0  | S        | um of los | t time (s) |          |            | 20.3 |          |      |      |
| Intersection Capacity Utiliz | ation       |          | 104.2% |          | CU Level  |            | e        |            | G    |          |      |      |
| Analysis Period (min)        |             |          | 15     |          |           |            |          |            |      |          |      |      |
| c Critical Lane Group        |             |          |        |          |           |            |          |            |      |          |      |      |

| С | Critical | Lane Group |
|---|----------|------------|

10042 - Caldeon Quarry TIS TYLin Synchro 10 Report Page 3

|                              | ٦              | -        | 4          | +            | •          | 1          | t            | 6            | ŧ            |  |
|------------------------------|----------------|----------|------------|--------------|------------|------------|--------------|--------------|--------------|--|
| Lane Group                   | EBL            | EBT      | WBL        | WBT          | WBR        | NBL        | NBT          | SBL          | SBT          |  |
| Lane Configurations          | ٦              | ĥ        | ሻ          | •            | 1          | ሻ          | 4Î           | ሻ            | ĥ            |  |
| Traffic Volume (vph)         | 73             | 441      | 4          | 427          | 85         | 12         | 12           | 62           | 19           |  |
| Future Volume (vph)          | 73             | 441      | 4          | 427          | 85         | 12         | 12           | 62           | 19           |  |
| Turn Type                    | Perm           | NA       | Perm       | NA           | Perm       | Perm       | NA           | Perm         | NA           |  |
| Protected Phases             |                | 2        |            | 2            |            |            | 4            |              | 4            |  |
| Permitted Phases             | 2              |          | 2          |              | 2          | 4          |              | 4            |              |  |
| Detector Phase               | 2              | 2        | 2          | 2            | 2          | 4          | 4            | 4            | 4            |  |
| Switch Phase                 |                |          |            |              |            |            |              |              |              |  |
| Minimum Initial (s)          | 20.0           | 20.0     | 20.0       | 20.0         | 20.0       | 16.0       | 16.0         | 16.0         | 16.0         |  |
| Minimum Split (s)            | 30.6           | 30.6     | 30.6       | 30.6         | 30.6       | 30.6       | 30.6         | 30.6         | 30.6         |  |
| Total Split (s)              | 46.6           | 46.6     | 46.6       | 46.6         | 46.6       | 36.6       | 36.6         | 36.6         | 36.6         |  |
| Total Split (%)              | 56.0%          | 56.0%    | 56.0%      | 56.0%        | 56.0%      | 44.0%      | 44.0%        | 44.0%        | 44.0%        |  |
| Yellow Time (s)              | 4.6            | 4.6      | 4.6        | 4.6          | 4.6        | 4.6        | 4.6          | 4.6          | 4.6          |  |
| All-Red Time (s)             | 2.0            | 2.0      | 2.0        | 2.0          | 2.0        | 2.0        | 2.0          | 2.0          | 2.0          |  |
| Lost Time Adjust (s)         | 0.0            | 0.0      | 0.0        | 0.0          | 0.0        | 0.0        | 0.0          | 0.0          | 0.0          |  |
| Total Lost Time (s)          | 6.6            | 6.6      | 6.6        | 6.6          | 6.6        | 6.6        | 6.6          | 6.6          | 6.6          |  |
| Lead/Lag                     |                |          |            |              |            |            |              |              |              |  |
| Lead-Lag Optimize?           | 0.15           | 0.15     | 0.15       | 0.1 <i>F</i> | 0.15       |            |              |              |              |  |
| Recall Mode                  | C-Min          | C-Min    | C-Min      | C-Min        | C-Min      | None       | None         | None         | None         |  |
| Act Effct Green (s)          | 59.8           | 59.8     | 59.8       | 59.8         | 59.8       | 16.0       | 16.0         | 16.0         | 16.0         |  |
| Actuated g/C Ratio           | 0.72           | 0.72     | 0.72       | 0.72         | 0.72       | 0.19       | 0.19         | 0.19<br>0.23 | 0.19<br>0.21 |  |
| v/c Ratio                    | 0.11           | 0.38     | 0.01       | 0.35         | 1.5        | 0.05       | 0.06<br>20.8 | 0.23<br>31.0 | 13.1         |  |
| Control Delay<br>Queue Delay | 0.1            | 0.0      | 0.0        | 0.0          | 0.0        | 20.2       | 20.8         | 0.0          | 0.0          |  |
| Total Delay                  | 6.1            | 7.4      | 5.2        | 7.1          | 1.5        | 28.2       | 20.8         | 31.0         | 13.1         |  |
| LOS                          | 0.1<br>A       | 7.4<br>A | 5.Z<br>A   | 7.1<br>A     | 1.5<br>A   | 20.2<br>C  | 20.0<br>C    | 51.0<br>C    | 13.1<br>B    |  |
| Approach Delay               | A              | 7.2      | A          | 6.2          | A          | U          | 23.5         | U            | 21.1         |  |
| Approach LOS                 |                | 7.2<br>A |            | 0.2<br>A     |            |            | 23.5<br>C    |              | 21.1<br>C    |  |
|                              |                | ~        |            | ~            |            |            | U            |              | U            |  |
| Intersection Summary         |                |          |            |              |            |            |              |              |              |  |
| Cycle Length: 83.2           |                |          |            |              |            |            |              |              |              |  |
| Actuated Cycle Length: 83    |                |          |            |              |            |            |              |              |              |  |
| Offset: 22.5 (27%), Refere   | enced to phase | se 2:EBW | /B and 6:, | Start of (   | Green      |            |              |              |              |  |
| Natural Cycle: 65            |                |          |            |              |            |            |              |              |              |  |
| Control Type: Actuated-C     | oordinated     |          |            |              |            |            |              |              |              |  |
| Maximum v/c Ratio: 0.38      |                |          |            |              |            |            |              |              |              |  |
| Intersection Signal Delay:   |                |          |            |              | ntersectio |            | 0            |              |              |  |
| Intersection Capacity Utili  | zation 70.4%   |          |            | 10           | CU Level   | ot Service | ЭC           |              |              |  |
| Analysis Period (min) 15     |                |          |            |              |            |            |              |              |              |  |

10042 - Caldeon Quarry TIS TYLin

# **APPENDIX K3**

**Future Total Conditions** 

|                              | ٦           | -        | $\mathbf{r}$ | 4         | +           | •          | 1     | Ť           | 1     | Ŧ     |  |
|------------------------------|-------------|----------|--------------|-----------|-------------|------------|-------|-------------|-------|-------|--|
| Lane Group                   | EBL         | EBT      | EBR          | WBL       | WBT         | WBR        | NBL   | NBT         | SBL   | SBT   |  |
| Lane Configurations          | 5           | <b>†</b> | 1            | ۲         | •           | 1          | ሻ     | <b>≜î</b> ≽ | ۲     | A     |  |
| Traffic Volume (vph)         | 64          | 170      | 250          | 124       | 199         | 31         | 174   | 1047        | 59    | 1825  |  |
| Future Volume (vph)          | 64          | 170      | 250          | 124       | 199         | 31         | 174   | 1047        | 59    | 1825  |  |
| Turn Type                    | pm+pt       | NA       | Perm         | pm+pt     | NA          | Perm       | pm+pt | NA          | pm+pt | NA    |  |
| Protected Phases             | 7           | 4        |              | 3         | 8           |            | 5     | 2           | 1     | 6     |  |
| Permitted Phases             | 4           |          | 4            | 8         |             | 8          | 2     |             | 6     |       |  |
| Detector Phase               | 7           | 4        | 4            | 3         | 8           | 8          | 5     | 2           | 1     | 6     |  |
| Switch Phase                 |             |          |              |           |             |            |       |             |       |       |  |
| Minimum Initial (s)          | 7.0         | 10.0     | 10.0         | 7.0       | 10.0        | 10.0       | 7.0   | 20.0        | 7.0   | 20.0  |  |
| Minimum Split (s)            | 10.0        | 17.9     | 17.9         | 10.0      | 17.9        | 17.9       | 10.0  | 44.4        | 10.0  | 44.4  |  |
| Total Split (s)              | 10.0        | 31.9     | 31.9         | 10.0      | 31.9        | 31.9       | 13.0  | 74.4        | 13.0  | 74.4  |  |
| Total Split (%)              | 7.7%        | 24.7%    | 24.7%        | 7.7%      | 24.7%       | 24.7%      | 10.1% | 57.5%       | 10.1% | 57.5% |  |
| Yellow Time (s)              | 3.0         | 4.5      | 4.5          | 3.0       | 4.5         | 4.5        | 3.0   | 5.0         | 3.0   | 5.0   |  |
| All-Red Time (s)             | 0.0         | 2.4      | 2.4          | 0.0       | 2.4         | 2.4        | 0.0   | 2.4         | 0.0   | 2.4   |  |
| Lost Time Adjust (s)         | 0.0         | 0.0      | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0         | 0.0   | 0.0   |  |
| Total Lost Time (s)          | 3.0         | 6.9      | 6.9          | 3.0       | 6.9         | 6.9        | 3.0   | 7.4         | 3.0   | 7.4   |  |
| Lead/Lag                     | Lead        | Lag      | Lag          | Lead      | Lag         | Lag        | Lead  | Lag         | Lead  | Lag   |  |
| Lead-Lag Optimize?           | Yes         | Ť        |              |           | Yes         | Yes        | Yes   | Yes         | Yes   | Yes   |  |
| Recall Mode                  | None        | None     | None         | None      | None        | None       | None  | C-Max       | None  | C-Max |  |
| Act Effct Green (s)          | 31.1        | 20.2     | 20.2         | 31.7      | 22.2        | 22.2       | 88.8  | 76.1        | 79.1  | 67.0  |  |
| Actuated g/C Ratio           | 0.24        | 0.16     | 0.16         | 0.25      | 0.17        | 0.17       | 0.69  | 0.59        | 0.61  | 0.52  |  |
| v/c Ratio                    | 0.29        | 0.73     | 0.75         | 0.51      | 0.72        | 0.11       | 0.88  | 0.66        | 0.25  | 1.08  |  |
| Control Delay                | 38.3        | 68.7     | 32.1         | 45.0      | 65.2        | 0.7        | 72.3  | 21.4        | 10.2  | 78.1  |  |
| Queue Delay                  | 0.0         | 0.0      | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0         | 0.0   | 0.0   |  |
| Total Delay                  | 38.3        | 68.7     | 32.1         | 45.0      | 65.2        | 0.7        | 72.3  | 21.4        | 10.2  | 78.1  |  |
| LOS                          | D           | E        | С            | D         | E           | А          | E     | С           | В     | E     |  |
| Approach Delay               |             | 45.8     |              |           | 52.4        |            |       | 28.1        |       | 76.0  |  |
| Approach LOS                 |             | D        |              |           | D           |            |       | С           |       | E     |  |
| Intersection Summary         |             |          |              |           |             |            |       |             |       |       |  |
| Cycle Length: 129.3          |             |          |              |           |             |            |       |             |       |       |  |
| Actuated Cycle Length: 12    | 9.3         |          |              |           |             |            |       |             |       |       |  |
| Offset: 85 (66%), Reference  |             | 2:NBTL   | and 6:SB     | TL, Start | of Green    |            |       |             |       |       |  |
| Natural Cycle: 135           |             |          |              |           |             |            |       |             |       |       |  |
| Control Type: Actuated-Co    | ordinated   |          |              |           |             |            |       |             |       |       |  |
| Maximum v/c Ratio: 1.08      |             |          |              |           |             |            |       |             |       |       |  |
| Intersection Signal Delay:   | 55.1        |          |              | Ir        | ntersection | n LOS: E   |       |             |       |       |  |
| Intersection Capacity Utiliz | ation 97.0% |          |              | IC        | CU Level    | of Service | εF    |             |       |       |  |
| Analysis Period (min) 15     |             |          |              |           |             |            |       |             |       |       |  |

| Ø1          | Ø2 (R) | <b>√</b> Ø3 | <b>₩</b> Ø4    |
|-------------|--------|-------------|----------------|
| 13 s        | 74.4 s | 10 s        | 31.9 s         |
| <b>1</b> ø5 | Ø6 (R) | <u>≯</u> ₀7 | <b>∲</b><br>Ø8 |
| 13 s        | 74.4 s | 10 s        | 31.9 s         |

Synchro 10 Report Page 1

|                        | •    | →      | $\mathbf{r}$ | 1    | -     | •    | ▲     | Ť     | 1    | Ŧ      |  |
|------------------------|------|--------|--------------|------|-------|------|-------|-------|------|--------|--|
| Lane Group             | EBL  | EBT    | EBR          | WBL  | WBT   | WBR  | NBL   | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 67   | 179    | 263          | 131  | 209   | 33   | 183   | 1199  | 62   | 1989   |  |
| v/c Ratio              | 0.29 | 0.73   | 0.75         | 0.51 | 0.72  | 0.11 | 0.88  | 0.66  | 0.25 | 1.08   |  |
| Control Delay          | 38.3 | 68.7   | 32.1         | 45.0 | 65.2  | 0.7  | 72.3  | 21.4  | 10.2 | 78.1   |  |
| Queue Delay            | 0.0  | 0.0    | 0.0          | 0.0  | 0.0   | 0.0  | 0.0   | 0.0   | 0.0  | 0.0    |  |
| Total Delay            | 38.3 | 68.7   | 32.1         | 45.0 | 65.2  | 0.7  | 72.3  | 21.4  | 10.2 | 78.1   |  |
| Queue Length 50th (m)  | 13.0 | 43.6   | 23.1         | 26.4 | 51.4  | 0.0  | 33.3  | 107.1 | 4.8  | ~298.4 |  |
| Queue Length 95th (m)  | 23.9 | 66.4   | 53.0         | 41.8 | 75.9  | 0.0  | #89.9 | 146.5 | 10.4 | #340.6 |  |
| Internal Link Dist (m) |      | 1351.4 |              |      | 575.0 |      |       | 764.6 |      | 536.2  |  |
| Turn Bay Length (m)    | 80.0 |        | 65.0         | 40.0 |       | 55.0 | 85.0  |       | 40.0 |        |  |
| Base Capacity (vph)    | 235  | 304    | 397          | 258  | 328   | 336  | 208   | 1828  | 273  | 1837   |  |
| Starvation Cap Reductn | 0    | 0      | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0      |  |
| Spillback Cap Reductn  | 0    | 0      | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0      |  |
| Storage Cap Reductn    | 0    | 0      | 0            | 0    | 0     | 0    | 0     | 0     | 0    | 0      |  |
| Reduced v/c Ratio      | 0.29 | 0.59   | 0.66         | 0.51 | 0.64  | 0.10 | 0.88  | 0.66  | 0.23 | 1.08   |  |

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

10042 - Caledon Quarry TIS TYLin

|                               | •           |      |              |          |           |          |          |      |      |          |       | ,    |
|-------------------------------|-------------|------|--------------|----------|-----------|----------|----------|------|------|----------|-------|------|
|                               | ≯           | →    | $\mathbf{r}$ | 1        | -         | •        | 1        | T.   | 1    | - >      | Ŧ     | *    |
| Movement                      | EBL         | EBT  | EBR          | WBL      | WBT       | WBR      | NBL      | NBT  | NBR  | SBL      | SBT   | SBF  |
| Lane Configurations           | ሻ           | •    | 1            | <u>۲</u> | •         | 1        | <u>۲</u> | At≽  |      | <u>۲</u> | th    |      |
| Traffic Volume (vph)          | 64          | 170  | 250          | 124      | 199       | 31       | 174      | 1047 | 92   | 59       | 1825  | 65   |
| Future Volume (vph)           | 64          | 170  | 250          | 124      | 199       | 31       | 174      | 1047 | 92   | 59       | 1825  | 65   |
| Ideal Flow (vphpl)            | 1900        | 1900 | 1900         | 1900     | 1900      | 1900     | 1900     | 1900 | 1900 | 1900     | 1900  | 1900 |
| Total Lost time (s)           | 3.0         | 6.9  | 6.9          | 3.0      | 6.9       | 6.9      | 3.0      | 7.4  |      | 3.0      | 7.4   |      |
| Lane Util. Factor             | 1.00        | 1.00 | 1.00         | 1.00     | 1.00      | 1.00     | 1.00     | 0.95 |      | 1.00     | 0.95  |      |
| Frt                           | 1.00        | 1.00 | 0.85         | 1.00     | 1.00      | 0.85     | 1.00     | 0.99 |      | 1.00     | 0.99  |      |
| Flt Protected                 | 0.95        | 1.00 | 1.00         | 0.95     | 1.00      | 1.00     | 0.95     | 1.00 |      | 0.95     | 1.00  |      |
| Satd. Flow (prot)             | 1644        | 1575 | 1361         | 1772     | 1700      | 1372     | 1393     | 3100 |      | 1472     | 3542  |      |
| Flt Permitted                 | 0.45        | 1.00 | 1.00         | 0.46     | 1.00      | 1.00     | 0.06     | 1.00 |      | 0.19     | 1.00  |      |
| Satd. Flow (perm)             | 784         | 1575 | 1361         | 851      | 1700      | 1372     | 85       | 3100 |      | 290      | 3542  |      |
| Peak-hour factor, PHF         | 0.95        | 0.95 | 0.95         | 0.95     | 0.95      | 0.95     | 0.95     | 0.95 | 0.95 | 0.95     | 0.95  | 0.95 |
| Adj. Flow (vph)               | 67          | 179  | 263          | 131      | 209       | 33       | 183      | 1102 | 97   | 62       | 1921  | 68   |
| RTOR Reduction (vph)          | 0           | 0    | 140          | 0        | 0         | 27       | 0        | 4    | 0    | 0        | 2     | (    |
| ane Group Flow (vph)          | 67          | 179  | 123          | 131      | 209       | 6        | 183      | 1195 | 0    | 62       | 1987  | (    |
| Heavy Vehicles (%)            | 11%         | 22%  | 20%          | 3%       | 13%       | 19%      | 31%      | 16%  | 20%  | 24%      | 2%    | 179  |
| Turn Type                     | pm+pt       | NA   | Perm         | pm+pt    | NA        | Perm     | pm+pt    | NA   |      | pm+pt    | NA    |      |
| Protected Phases              | 7           | 4    |              | 3        | 8         |          | 5        | 2    |      | 1        | 6     |      |
| Permitted Phases              | 4           |      | 4            | 8        | -         | 8        | 2        |      |      | 6        |       |      |
| Actuated Green, G (s)         | 26.4        | 20.8 | 20.8         | 29.2     | 22.2      | 22.2     | 84.2     | 74.9 |      | 72.7     | 66.4  |      |
| Effective Green, q (s)        | 26.4        | 20.8 | 20.8         | 29.2     | 22.2      | 22.2     | 84.2     | 74.9 |      | 72.7     | 66.4  |      |
| Actuated g/C Ratio            | 0.20        | 0.16 | 0.16         | 0.23     | 0.17      | 0.17     | 0.65     | 0.58 |      | 0.56     | 0.51  |      |
| Clearance Time (s)            | 3.0         | 6.9  | 6.9          | 3.0      | 6.9       | 6.9      | 3.0      | 7.4  |      | 3.0      | 7.4   |      |
| Vehicle Extension (s)         | 3.0         | 3.0  | 3.0          | 3.0      | 3.0       | 3.0      | 3.0      | 4.4  |      | 3.0      | 4.4   |      |
| Lane Grp Cap (vph)            | 197         | 253  | 218          | 242      | 291       | 235      | 205      | 1795 |      | 220      | 1818  |      |
| v/s Ratio Prot                | 0.01        | 0.11 |              | c0.03    | c0.12     |          | c0.10    | 0.39 |      | 0.01     | c0.56 |      |
| /s Ratio Perm                 | 0.05        | 0    | 0.09         | 0.09     | 00.12     | 0.00     | 0.48     | 0.00 |      | 0.14     | 00.00 |      |
| v/c Ratio                     | 0.34        | 0.71 | 0.56         | 0.54     | 0.72      | 0.02     | 0.89     | 0.67 |      | 0.28     | 1.09  |      |
| Uniform Delay, d1             | 42.8        | 51.4 | 50.1         | 42.7     | 50.6      | 44.5     | 43.0     | 18.6 |      | 13.8     | 31.5  |      |
| Progression Factor            | 1.00        | 1.00 | 1.00         | 1.00     | 1.00      | 1.00     | 1.00     | 1.00 |      | 1.00     | 1.00  |      |
| Incremental Delay, d2         | 1.0         | 8.7  | 3.3          | 2.5      | 8.2       | 0.0      | 34.9     | 2.0  |      | 0.7      | 51.3  |      |
| Delay (s)                     | 43.9        | 60.1 | 53.4         | 45.2     | 58.8      | 44.6     | 77.9     | 20.6 |      | 14.5     | 82.8  |      |
| Level of Service              | D           | E    | D            | D        | E         | D        | E        | C    |      | В        | F     |      |
| Approach Delay (s)            |             | 54.5 |              |          | 52.8      |          |          | 28.2 |      |          | 80.7  |      |
| Approach LOS                  |             | D    |              |          | D         |          |          | C    |      |          | F     |      |
| Intersection Summary          |             |      |              |          |           |          |          |      |      |          |       |      |
| HCM 2000 Control Delay        |             |      | 58.4         | Н        | CM 2000   | Level of | Service  |      | E    |          |       |      |
| HCM 2000 Volume to Capa       | acity ratio |      | 0.97         |          |           |          |          |      |      |          |       |      |
| Actuated Cycle Length (s)     |             |      | 129.3        | S        | um of los | time (s) |          |      | 20.3 |          |       |      |
| Intersection Capacity Utiliza | ation       |      | 97.0%        |          | U Level   |          | 9        |      | F    |          |       |      |
| Analysis Period (min)         |             |      | 15           |          |           |          |          |      |      |          |       |      |

| 10042 - Caledon Quarry TIS |
|----------------------------|
| TYLin                      |

Synchro 10 Report Page 3

|                                 | ۶            | -                                       | 4          | +                                       | ×            | 1            | Ť            | 1            | ŧ         |  |
|---------------------------------|--------------|-----------------------------------------|------------|-----------------------------------------|--------------|--------------|--------------|--------------|-----------|--|
| Lane Group                      | EBL          | EBT                                     | WBL        | WBT                                     | WBR          | NBL          | NBT          | SBL          | SBT       |  |
| Lane Configurations             | ሻ            | 4                                       | <u>۲</u>   | <b>↑</b>                                | 1            | <u>۲</u>     | 4            | <u>۲</u>     | 4         |  |
| Traffic Volume (vph)            | 39           | 404                                     | 6          | 378                                     | 43           | 6            | 7            | 52           | 10        |  |
| Future Volume (vph)             | 39           | 404                                     | 6          | 378                                     | 43           | 6            | 7            | 52           | 10        |  |
| Turn Type                       | Perm         | NA                                      | Perm       | NA                                      | Perm         | Perm         | NA           | Perm         | NA        |  |
| Protected Phases                |              | 2                                       |            | 2                                       |              |              | 4            |              | 4         |  |
| Permitted Phases                | 2            |                                         | 2          |                                         | 2            | 4            |              | 4            |           |  |
| Detector Phase                  | 2            | 2                                       | 2          | 2                                       | 2            | 4            | 4            | 4            | 4         |  |
| Switch Phase                    |              |                                         |            |                                         |              |              |              |              |           |  |
| Minimum Initial (s)             | 20.0         | 20.0                                    | 20.0       | 20.0                                    | 20.0         | 16.0         | 16.0         | 16.0         | 16.0      |  |
| Minimum Split (s)               | 30.6         | 30.6                                    | 30.6       | 30.6                                    | 30.6         | 30.6         | 30.6         | 30.6         | 30.6      |  |
| Total Split (s)                 | 46.6         | 46.6                                    | 46.6       | 46.6                                    | 46.6         | 36.6         | 36.6         | 36.6         | 36.6      |  |
| Total Split (%)                 | 56.0%        | 56.0%                                   | 56.0%      | 56.0%                                   | 56.0%        | 44.0%        | 44.0%        | 44.0%        | 44.0%     |  |
| Yellow Time (s)                 | 4.6          | 4.6                                     | 4.6        | 4.6                                     | 4.6          | 4.6          | 4.6          | 4.6          | 4.6       |  |
| All-Red Time (s)                | 2.0          | 2.0                                     | 2.0        | 2.0                                     | 2.0          | 2.0          | 2.0          | 2.0          | 2.0       |  |
| Lost Time Adjust (s)            | 0.0          | 0.0                                     | 0.0        | 0.0                                     | 0.0          | 0.0          | 0.0          | 0.0          | 0.0       |  |
| Total Lost Time (s)             | 6.6          | 6.6                                     | 6.6        | 6.6                                     | 6.6          | 6.6          | 6.6          | 6.6          | 6.6       |  |
| Lead/Lag<br>Lead-Lag Optimize?  |              |                                         |            |                                         |              |              |              |              |           |  |
| Recall Mode                     | C-Min        | C-Min                                   | C-Min      | C-Min                                   | C-Min        | None         | None         | None         | None      |  |
|                                 |              |                                         | 59.8       |                                         |              |              |              |              | 16.0      |  |
| Act Effct Green (s)             | 59.8<br>0.72 | 59.8<br>0.72                            | 0.72       | 59.8<br>0.72                            | 59.8<br>0.72 | 16.0<br>0.19 | 16.0<br>0.19 | 16.0<br>0.19 | 0.19      |  |
| Actuated g/C Ratio<br>v/c Ratio | 0.72         | 0.72                                    | 0.72       | 0.72                                    | 0.72         | 0.19         | 0.19         | 0.19         | 0.19      |  |
| Control Delay                   | 5.6          | 7.3                                     | 5.3        | 7.4                                     | 1.7          | 27.7         | 18.7         | 30.4         | 12.6      |  |
| Queue Delay                     | 0.0          | 0.0                                     | 0.0        | 0.0                                     | 0.0          | 0.0          | 0.0          | 0.0          | 0.0       |  |
| Total Delay                     | 5.6          | 7.3                                     | 5.3        | 7.4                                     | 1.7          | 27.7         | 18.7         | 30.4         | 12.6      |  |
| LOS                             | 0.0<br>A     | 7.5<br>A                                | 0.0<br>A   | A                                       | A            | C            | B            | 00.4<br>C    | 12.0<br>B |  |
| Approach Delay                  | А            | 7.2                                     | А          | 6.8                                     | А            | 0            | 20.9         | 0            | 21.4      |  |
| Approach LOS                    |              | A                                       |            | 0.0<br>A                                |              |              | 20.5<br>C    |              | 21.4<br>C |  |
| P.P. S. S. S. S.                |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |              |              | Ŭ            |              | Ũ         |  |
| Intersection Summary            |              |                                         |            |                                         |              |              |              |              |           |  |
| Cycle Length: 83.2              |              |                                         |            |                                         |              |              |              |              |           |  |
| Actuated Cycle Length: 83       |              |                                         |            |                                         |              |              |              |              |           |  |
| Offset: 22.5 (27%), Refere      | nced to pha  | se 2:EBW                                | /B and 6:, | Start of (                              | Green        |              |              |              |           |  |
| Natural Cycle: 65               |              |                                         |            |                                         |              |              |              |              |           |  |
| Control Type: Actuated-Co       | oordinated   |                                         |            |                                         |              |              |              |              |           |  |
| Maximum v/c Ratio: 0.36         | 0.0          |                                         |            |                                         |              | 100.1        |              |              |           |  |
| Intersection Signal Delay:      |              |                                         |            |                                         | tersectio    |              | . D          |              |           |  |
| Intersection Capacity Utiliz    | ation 63.2%  |                                         |            | 10                                      | CU Level     | or Service   | 98           |              |           |  |
| Analysis Period (min) 15        |              |                                         |            |                                         |              |              |              |              |           |  |

13

10042 - Caledon Quarry TIS TYLin

|                        | Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24) |       |      |        |      |      |       |      |        |  |  |  |
|------------------------|------------------------------------------------------------------|-------|------|--------|------|------|-------|------|--------|--|--|--|
|                        | ٦                                                                | -     | 1    | +      | •    | 1    | 1     | 1    | Ŧ      |  |  |  |
| Lane Group             | EBL                                                              | EBT   | WBL  | WBT    | WBR  | NBL  | NBT   | SBL  | SBT    |  |  |  |
| Lane Group Flow (vph)  | 40                                                               | 422   | 6    | 390    | 44   | 6    | 18    | 54   | 56     |  |  |  |
| v/c Ratio              | 0.06                                                             | 0.36  | 0.01 | 0.36   | 0.04 | 0.02 | 0.05  | 0.20 | 0.16   |  |  |  |
| Control Delay          | 5.6                                                              | 7.3   | 5.3  | 7.4    | 1.7  | 27.7 | 18.7  | 30.4 | 12.6   |  |  |  |
| Queue Delay            | 0.0                                                              | 0.0   | 0.0  | 0.0    | 0.0  | 0.0  | 0.0   | 0.0  | 0.0    |  |  |  |
| Total Delay            | 5.6                                                              | 7.3   | 5.3  | 7.4    | 1.7  | 27.7 | 18.7  | 30.4 | 12.6   |  |  |  |
| Queue Length 50th (m)  | 2.1                                                              | 28.0  | 0.3  | 25.8   | 0.0  | 0.8  | 0.9   | 7.3  | 1.3    |  |  |  |
| Queue Length 95th (m)  | 5.3                                                              | 44.3  | 1.5  | 41.6   | 2.9  | 4.0  | 6.3   | 17.1 | 10.5   |  |  |  |
| Internal Link Dist (m) |                                                                  | 750.9 |      | 2789.4 |      |      | 883.0 |      | 1179.5 |  |  |  |
| Turn Bay Length (m)    | 125.0                                                            |       | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |  |  |
| Base Capacity (vph)    | 705                                                              | 1161  | 696  | 1087   | 1187 | 498  | 635   | 516  | 617    |  |  |  |
| Starvation Cap Reductn | 0                                                                | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |  |  |
| Spillback Cap Reductn  | 0                                                                | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |  |  |
| Storage Cap Reductn    | 0                                                                | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |  |  |
| Reduced v/c Ratio      | 0.06                                                             | 0.36  | 0.01 | 0.36   | 0.04 | 0.01 | 0.03  | 0.10 | 0.09   |  |  |  |

Lane Configurations ъ î. Traffic Volume (vph) 404 378 52 45 39 43 Future Volume (vph) 39 404 6 6 378 43 6 7 11 52 10 45 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 1.00 1.00 1.00 0.85 1.00 0.91 1.00 0.88 Flt Protected 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1772 1615 1825 1513 1633 1825 1745 1825 1631 Flt Permitted 0.53 1.00 0.50 1.00 1.00 0.72 1.00 0.75 1.00 Satd. Flow (perm) 981 1615 968 1513 1633 1384 1745 1433 1631 0.97 Peak-hour factor, PHF 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 Adj. Flow (vph) 40 416 390 44 11 54 10 46 6 6 6 7 RTOR Reduction (vph) 0 0 0 0 14 0 0 39 0 0 Lane Group Flow (vph) 40 422 0 6 390 30 6 9 54 17 0 0 Heavy Vehicles (%) 19% 0% 0% 27% 0% 0% 0% 0% 4% 3% 0% 0% NA Turn Type Perm NA Perm NA Perm Perm NA Perm Protected Phases 2 4 Permitted Phases 2 2 2 4 4 12.8 12.8 Actuated Green, G (s) 57.2 57.2 57.2 57.2 57.2 12.8 12.8 Effective Green, g (s) 57.2 57.2 57.2 12.8 12.8 12.8 57.2 57.2 12.8 Actuated g/C Ratio 0.69 0.69 0.69 0.69 0.69 0.15 0.15 0.15 0.15 Clearance Time (s) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 212 Lane Grp Cap (vph) 674 1110 665 1040 1122 268 220 250 v/s Ratio Prot c0.26 0.00 0.01 0.26 v/s Ratio Perm 0.04 0.01 0.02 0.00 c0.04 v/c Ratio 0.06 0.38 0.01 0.38 0.03 0.03 0.03 0.25 0.07 Uniform Delay, d1 4.2 5.5 4.1 5.5 4.1 29.9 29.9 31.0 30.1 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.2 1.0 0.0 1.0 0.0 0.1 0.0 0.6 0.1 Delay (s) 4.4 6.5 4.1 6.5 4.2 30.0 30.0 31.5 30.2 Level of Service А Α А Α А С С С С Approach Delay (s) 30.0 6.3 6.2 30.9 Approach LOS А А С С Intersection Summary HCM 2000 Control Delay HCM 2000 Level of Service 9.4 А HCM 2000 Volume to Capacity ratio 0.36 Actuated Cycle Length (s) 83.2 Sum of lost time (s) 13.2 Intersection Capacity Utilization 63.2% ICU Level of Service В Analysis Period (min) 15 c Critical Lane Group

1 1

WBR

NBL

NBT

HCM Signalized Intersection Capacity Analysis

٦

EBL

Movement

2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)

EBR

WBL

WBT

→ `¥

EBT

10042 - Caledon Quarry TIS TYLin Synchro 10 Report Page 5 10042 - Caledon Quarry TIS TYLin Synchro 10 Report Page 6

Future Total 2037 AM Peak Hour

SBL

NBR

01/15/2025

SBT SBF

⋞

|                               | ≯    | -    | $\mathbf{i}$ | 1    | +         | •          | •    | Ť    | 1    | 1    | .↓   | ~    |
|-------------------------------|------|------|--------------|------|-----------|------------|------|------|------|------|------|------|
| Movement                      | EBL  | EBT  | EBR          | WBL  | WBT       | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBF  |
| Lane Configurations           | ٢    | ¢,   |              | ۲    | 1         |            |      | 4    |      |      | 4    |      |
| Traffic Volume (veh/h)        | 16   | 390  | 2            | 34   | 341       | 15         | 2    | 7    | 15   | 15   | 11   | 1    |
| Future Volume (Veh/h)         | 16   | 390  | 2            | 34   | 341       | 15         | 2    | 7    | 15   | 15   | 11   | 1    |
| Sign Control                  |      | Free | -            |      | Free      |            | -    | Stop | 10   | 10   | Stop |      |
| Grade                         |      | 0%   |              |      | 0%        |            |      | 0%   |      |      | 0%   |      |
| Peak Hour Factor              | 0.95 | 0.95 | 0.95         | 0.95 | 0.95      | 0.95       | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Hourly flow rate (vph)        | 17   | 411  | 2            | 36   | 359       | 16         | 2    | 7    | 16   | 16   | 12   | 12   |
| Pedestrians                   |      |      |              |      |           |            |      |      |      |      | .=   |      |
| Lane Width (m)                |      |      |              |      |           |            |      |      |      |      |      |      |
| Walking Speed (m/s)           |      |      |              |      |           |            |      |      |      |      |      |      |
| Percent Blockage              |      |      |              |      |           |            |      |      |      |      |      |      |
| Right turn flare (veh)        |      |      |              |      |           |            |      |      |      |      |      |      |
| Median type                   |      | None |              |      | None      |            |      |      |      |      |      |      |
| Median storage veh)           |      |      |              |      |           |            |      |      |      |      |      |      |
| Upstream signal (m)           |      |      |              |      |           |            |      |      |      |      |      |      |
| pX, platoon unblocked         |      |      |              |      |           |            |      |      |      |      |      |      |
| vC, conflicting volume        | 375  |      |              | 413  |           |            | 895  | 893  | 412  | 904  | 886  | 36   |
| vC1, stage 1 conf vol         |      |      |              |      |           |            |      |      |      |      |      |      |
| vC2, stage 2 conf vol         |      |      |              |      |           |            |      |      |      |      |      |      |
| vCu, unblocked vol            | 375  |      |              | 413  |           |            | 895  | 893  | 412  | 904  | 886  | 367  |
| tC, single (s)                | 4.1  |      |              | 4.8  |           |            | 7.1  | 6.5  | 6.8  | 7.1  | 6.5  | 6.2  |
| tC, 2 stage (s)               |      |      |              |      |           |            |      |      |      |      |      |      |
| tF (s)                        | 2.2  |      |              | 2.9  |           |            | 3.5  | 4.0  | 3.8  | 3.5  | 4.0  | 3.3  |
| p0 queue free %               | 99   |      |              | 96   |           |            | 99   | 97   | 97   | 93   | 96   | 98   |
| cM capacity (veh/h)           | 1195 |      |              | 846  |           |            | 240  | 267  | 537  | 237  | 270  | 683  |
| Direction, Lane #             | EB 1 | EB 2 | WB 1         | WB 2 | NB 1      | SB 1       |      |      |      |      |      |      |
| Volume Total                  | 17   | 413  | 36           | 375  | 25        | 40         |      |      |      |      |      |      |
| Volume Left                   | 17   | 0    | 36           | 0    | 2         | 16         |      |      |      |      |      |      |
| Volume Right                  | 0    | 2    | 0            | 16   | 16        | 12         |      |      |      |      |      |      |
| cSH                           | 1195 | 1700 | 846          | 1700 | 388       | 309        |      |      |      |      |      |      |
| Volume to Capacity            | 0.01 | 0.24 | 0.04         | 0.22 | 0.06      | 0.13       |      |      |      |      |      |      |
| Queue Length 95th (m)         | 0.3  | 0.0  | 1.0          | 0.0  | 1.6       | 3.4        |      |      |      |      |      |      |
| Control Delay (s)             | 8.1  | 0.0  | 9.4          | 0.0  | 14.9      | 18.4       |      |      |      |      |      |      |
| Lane LOS                      | А    |      | Α            |      | В         | С          |      |      |      |      |      |      |
| Approach Delay (s)            | 0.3  |      | 0.8          |      | 14.9      | 18.4       |      |      |      |      |      |      |
| Approach LOS                  |      |      |              |      | В         | С          |      |      |      |      |      |      |
| Intersection Summary          |      |      |              |      |           |            |      |      |      |      |      |      |
| Average Delay                 |      |      | 1.8          |      |           |            |      |      |      |      |      |      |
| Intersection Capacity Utiliza | tion |      | 40.2%        | IC   | U Level o | of Service |      |      | А    |      |      |      |
| Analysis Period (min)         |      |      | 15           |      |           |            |      |      |      |      |      |      |

| 10042 - Caledon Quarry TIS |  |
|----------------------------|--|
| TYLin                      |  |

Synchro 10 Report Page 7

| Control Type: Actuated-Coordinated Maximum V/c Ratio: 0.55 Intersection Signal Delay: 16.0 Intersection LOS: B Intersection Capacity Utilization 35.5% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |             |        |          | te Acc     |                     |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|--------|----------|------------|---------------------|-----|
| Lane Configurations 7 4 7 7 7<br>Traffic Volume (vph) 5 417 390 40 53<br>Future Volume (vph) 5 417 390 40 53<br>Future Volume (vph) 5 417 390 40 53<br>Tum Type Perm NA NA Perm Prot<br>Protected Phases 2 6 4<br>Permitted Phase 2 6 6<br>Detector Phase 2 2 6 6 4<br>Switch Phase 2 6 6<br>Detector Phase 2 2 6 6 4<br>Switch Phase 2 2 6 6 0<br>Detector Phase 2 2 6 6 0<br>Switch Phase 2 2 8 0 0<br>Total Split (\$ 0.2 0.2 0.2 0.2 0 2.0 2.0 0<br>Total Split (\$ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | ٦           | -      | +        | •          | 1                   |     |
| Traffic Volume (vph)       5       417       390       40       53         Future Volume (vph)       5       417       390       40       53         Future Volume (vph)       5       417       390       40       53         Tum Type       Perm       NA       NA       Permited       Prote         Protected Phases       2       6       4       4         Permited Phase       2       6       6       4         Switch Phase       2       6       6       4         Switch Phase       2       0       6       4         Minimum Split (s)       30.2       30.2       30.2       30.0       50.2%         Total Split (s)       30.2       30.2       30.2       30.0       50.2%         Follow Time (s)       4.2       4.2       4.2       4.0         All-Red Time (s)       0.0       0.0       0.0       0.0         Lead Lag Optimize?       7       7       7         Recall Mode       C-Max       C-Max       C-Max       Max         ActL Effet Green (s)       24.0       24.0       24.0       24.0         Actl Effet Green (s)       24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lane Group                   | EBL         | EBT    | WBT      | WBR        |                     |     |
| Future Volume (vph)         5         417         390         40         53           Tum Type         Perm         NA         Perm         Protected Phases         2         6         4           Permitted Phases         2         6         4         4         4         4           Permitted Phases         2         6         6         4         4         4           Permitted Phase         2         2         6         6         4         4           Switch Phase         2         2         6         6         4         5           Switch Phase         30.2         30.2         30.2         30.0         5         5           Minimum Initial (s)         30.2         30.2         30.2         30.0         5         5           Total Split (s)         30.2         30.2         30.2         30.0         5         5         5         1         1         5         1         1         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lane Configurations          | ľ           | •      | 1        | 1          | Y                   |     |
| Turn Type         Perm         NA         NA         Perm         Prot           Protected Phases         2         6         4         Permitted Phases         2         6         December 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Traffic Volume (vph)         | 5           | 417    | 390      | 40         | 53                  |     |
| Protected Phases       2       6       4         Permitted Phases       2       6       6         Detector Phase       2       2       6       6         Winimum Initial (s)       12.0       12.0       12.0       1.0         Minimum Split (s)       30.2       30.2       30.2       30.0       Total Split (s)       50.2%       50.2%       50.2%       49.8%         Yellow Time (s)       4.2       4.2       4.2       4.0       All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Future Volume (vph)          | 5           | 417    | 390      | 40         | 53                  |     |
| Permitted Phases         2         6           Detector Phase         2         2         6         6         4           Switch Phase         Minimum Initial (s)         12.0         12.0         1.0         10           Minimum Initial (s)         30.2         30.2         30.2         30.0         30.0         30.0           Total Split (s)         30.2         30.2         30.2         30.0         30.0         30.0           Total Split (s)         50.2%         50.2%         50.2%         49.8%         Yellow Time (s)         4.2         4.2         4.0           All-Red Time (s)         2.0         2.0         2.0         2.0         2.0         2.0           Lost Time Adjust (s)         0.0         0.0         0.0         0.0         1.0         1.0           Lead/Lag         Deteine (s)         2.4.0         24.0         24.0         24.0         24.0           Actuated g/C Ratio         0.40         0.40         0.40         0.40         0.40         0.40           Queue Delay         11.4         17.2         16.6         5.1         11.7         1.1           Log         B         B         A         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Turn Type                    | Perm        | NA     | NA       | Perm       | Prot                |     |
| Detector Phase         2         2         6         6         4           Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |             | 2      | 6        |            | 4                   |     |
| Switch Phase         Image: Constraint of the second s |                              |             |        |          |            |                     |     |
| Minimum Initial (s)       12.0       12.0       12.0       12.0       10         Minimum Split (s)       30.2       30.2       30.2       30.0       30.0         Total Split (s)       30.2       30.2       30.2       30.0       30.0         Total Split (s)       30.2       30.2       30.2       30.0       30.0         Total Split (s)       50.2%       50.2%       50.2%       48.8%         Yellow Time (s)       4.2       4.2       4.2       4.0         All-Red Time (s)       0.0       0.0       0.0       0.0         Lost Time Adjust (s)       0.0       0.0       0.0       0.0         Total Lost Time (s)       6.2       6.2       6.0       6.0         Lead/Lag       Lead-Lag Optimize?       Recall Mode       C-Max       C-Max       Max         Acted G/C Ratio       0.40       0.40       0.40       0.40       0.40         V/c Ratio       0.02       0.55       0.51       1.17       0.0         Queue Delay       11.4       17.2       16.6       5.1       11.7         LOS       B       B       B       B       B       B         Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector Phase               | 2           | 2      | 6        | 6          | 4                   |     |
| Minimum Split (s)       30.2       30.2       30.2       30.2       30.0         Total Split (s)       30.2       30.2       30.2       30.0       30.0         Total Split (s)       50.2%       50.2%       50.2%       49.8%         Yellow Time (s)       4.2       4.2       4.2       4.0         All-Red Time (s)       2.0       2.0       2.0       2.0         Lost Time Adjust (s)       0.0       0.0       0.0       0.0         Total Lost Time (s)       6.2       6.2       6.2       6.0         Lead/Lag       Optimize?       Recall Mode       C-Max       C-Max       C-Max         Actific Green (s)       24.0       24.0       24.0       24.0       24.0         Actuated g/C Ratio       0.40       0.40       0.40       0.40       0.40         Queue Delay       11.4       17.2       16.6       5.1       11.7         LOS       B       B       A       B       A       B         Approach LOS       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |             |        |          |            |                     |     |
| Total Split (s)       30.2       30.2       30.2       30.2       30.0         Total Split (%)       50.2%       50.2%       50.2%       49.8%         Yellow Time (s)       4.2       4.2       4.2       4.0         All-Red Time (s)       2.0       2.0       2.0       2.0         Lost Time Adjust (s)       0.0       0.0       0.0       0.0         Total Split (%)       6.2       6.2       6.2       6.0         Lead/Lag       Lead-Lag Optimize?       Ead-Lag Optimize?       Ead-Lag Optimize?         Recall Mode       C-Max       C-Max       C-Max       Max         Act Effct Green (s)       24.0       24.0       24.0       24.0         Ve Ratio       0.40       0.40       0.40       0.40         Ve Ratio       0.0       0.0       0.0       0.0         Queue Delay       11.4       17.2       16.6       5.1       11.7         Queue Delay       17.2       15.5       11.7       Approach LOS       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |             |        |          |            |                     |     |
| Total Spiit (%)       50.2%       50.2%       50.2%       49.8%         Yellow Time (s)       4.2       4.2       4.2       4.2       4.0         All-Red Time (s)       2.0       2.0       2.0       2.0       2.0         Lost Time A(just (s)       0.0       0.0       0.0       0.0       0.0         Lost Time A(just (s)       6.2       6.2       6.2       6.0         Lead-Lag Optimize?       Recall Mode       C-Max       C-Max       C-Max       Max         Act Effct Green (s)       24.0       24.0       24.0       24.0       24.0         Actuated g/C Ratio       0.40       0.40       0.40       0.40       0.40         V/c Ratio       0.02       0.55       0.10       0.14       Control Delay       11.4       17.2       16.6       5.1       11.7         Queue Delay       11.4       17.2       16.6       5.1       11.7       Approach Delay       17.2       15.5       11.7         Approach LOS       B       B       A       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum Split (s)            |             |        |          |            |                     |     |
| Yellow Time (s) 4.2 4.2 4.2 4.2 4.2 4.0<br>All-Red Time (s) 2.0 2.0 2.0 2.0 2.0<br>Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0<br>Total Lost Time (s) 6.2 6.2 6.2 6.2 6.0<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode C-Max C-Max C-Max Max<br>Act Effct Green (s) 24.0 24.0 24.0 24.0<br>Actuated g/C Ratio 0.40 0.40 0.40 0.40<br>w/c Ratio 0.02 0.55 0.51 0.10 0.14<br>Control Delay 11.4 17.2 16.6 5.1 11.7<br>Control Delay 11.4 17.2 16.6 5.1 11.7<br>LOS B B B A B<br>Approach Delay 11.4 17.2 15.5 11.7<br>Approach LOS B B B B A<br>Delay 17.2 15.5 11.7<br>Approach LOS B B B C<br>Intersection Summary<br>Cycle Length: 60.2<br>Actuated Cycle Length: 60.2<br>Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green<br>Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.55<br>Intersection Signal Delay: 16.0<br>Intersection Signal Delay: 16.0<br>Intersection Capacity Utilization 35.5%<br>ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |             |        |          |            |                     |     |
| All-Red Time (s)       2.0       2.0       2.0       2.0         Lost Time Adjust (s)       0.0       0.0       0.0       0.0         Total Lost Time (s)       6.2       6.2       6.2       6.0         Lead/Lag       Ead/Lag       Ead/Lag       Ead/Lag         Lead-lag Optimize?       Recall Mode       C-Max       C-Max       C-Max         Act Effct Green (s)       24.0       24.0       24.0       24.0         Actuated g/C Ratio       0.40       0.40       0.40       0.40       0.40         Vic Ratio       0.02       0.55       0.51       0.10       0.14         Control Delay       11.4       17.2       16.6       5.1       11.7         Queue Delay       0.0       0.0       0.0       0.0       0.0         Queue Delay       11.4       17.2       16.6       5.1       11.7         LOS       B       B       A       B       B       A         Approach LOS       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |             |        |          |            |                     |     |
| Lost Time Adjust (s)         0.0         0.0         0.0         0.0           Total Lost Time (s)         6.2         6.2         6.2         6.0           Lead/Lag         Lead-Lag Optimize?         Ead-Lag Optimize?         Ead-Lag Optimize?           Recall Mode         C-Max         C-Max         C-Max         Max           Act Effct Green (s)         24.0         24.0         24.0         24.0           Actuated g/C Ratio         0.40         0.40         0.40         0.40         0.40           Ve Ratio         0.02         0.55         0.51         0.10         0.14         Control Delay         11.4         17.2         16.6         5.1         11.7           Queue Delay         0.0         0.0         0.0         0.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         0.0         0.0         0.0         0.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |             |        | =        |            |                     |     |
| Total Lost Time (s)         6.2         6.2         6.2         6.2         6.0           Lead/Lag Optimize?         Recall Mode         C-Max         C-Max         C-Max         Max           Act Effct Green (s)         24.0         24.0         24.0         24.0         24.0           Actuated g/C Ratio         0.40         0.40         0.40         0.40         0.40           Control Delay         11.4         17.2         16.6         5.1         11.7           Queue Delay         0.0         0.0         0.0         0.0         0.0           Control Delay         11.4         17.2         16.6         5.1         11.7           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0           Total Lost         B         B         A         B         Approach Delay         17.2         15.5         11.7           Approach LOS         B         B         B         B         B         Custed Cycle Length: 60.2         Cycle Length: 60.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |             |        |          |            |                     |     |
| Lead/Lag         Du         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |             |        |          |            | ••••                |     |
| Lead-Lag Optimize?           Recall Mode         C-Max         C-Max         C-Max         Max           Act Effct Green (s)         24.0         24.0         24.0         24.0           Act Effct Green (s)         0.40         0.40         0.40         0.40           Act Effct Green (s)         0.40         0.40         0.40         0.40           Actuated g/C Ratio         0.02         0.55         0.51         0.10         0.14           Control Delay         11.4         17.2         16.6         5.1         11.7           Queue Delay         0.0         0.0         0.0         0.0         0.0           Queue Delay         11.4         17.2         16.6         5.1         11.7           LOS         B         B         A         B         A           Approach LOS         B         B         B         B         B           Approach LOS         B         B         B         B         B         B         Colored Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | 6.2         | 6.2    | 6.2      | 6.2        | 6.0                 |     |
| Recall Mode         C-Max         C-Max         C-Max         C-Max         Max           Act Effc Green (s)         24.0         24.0         24.0         24.0         24.0           Actuated g/C Ratio         0.40         0.40         0.40         0.40         0.40           Ver Ratio         0.02         0.55         0.51         0.10         0.14           Control Delay         11.4         17.2         16.6         5.1         11.7           Queue Delay         0.0         0.0         0.0         0.0         10.0           Total Delay         11.4         17.2         15.5         11.7           LOS         B         B         A         B           Approach Delay         17.2         15.5         11.7           Approach LOS         B         B         B         B           Intersection Summary         Cycle Length: 60.2         Cycle Length: 60.2         Cycle Length: 60.2           Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green         Natural Cycle: 65         Control Type: Actuated-Coordinated           Maximum v/c Ratio: 0.55         Intersection LOS: B         Intersection Signal Delay: 16.0         Intersection LOS: B           Intersection Capacity Utili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |             |        |          |            |                     |     |
| Act Effct Green (s)       24.0       24.0       24.0       24.0         Actuated g/C Ratio       0.40       0.40       0.40       0.40         Actuated g/C Ratio       0.02       0.55       0.51       0.10       0.14         Control Delay       11.4       17.2       16.6       5.1       11.7         Queue Delay       0.0       0.0       0.0       0.0       1.4         Control Delay       11.4       17.2       16.6       5.1       11.7         LOS       B       B       A       B       Approach Delay       17.2       15.5       11.7         Approach LOS       B       B       B       B       B       B       B       B         Intersection Summary       Cycle Length: 60.2       Cycle Length: 60.2       Cycle Length: 60.2       Control Type: Actuated-Coordinated       Maximum V/c Ratio: 0.55       Intersection LOS: 6       Intersection Signal Delay: 16.0       Intersection LOS: B       Intersection LOS: B       Intersection LOS: B       Intersection Capacity Utilization 35.5%       ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |             |        |          |            |                     |     |
| Actuated g/C Ratio         0.40         0.40         0.40         0.40         0.40           Wc Ratio         0.02         0.55         0.51         0.10         0.14           Control Delay         11.4         17.2         16.6         5.1         11.7           Queue Delay         0.0         0.0         0.0         0.0         11.4           Queue Delay         0.0         0.0         0.0         0.0         0.0           Total Delay         11.4         17.2         16.6         5.1         11.7           LOS         B         B         A         B         A         B           Approach Delay         17.2         15.5         11.7         Approach LOS         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         Cole Length: 60.2         Cotated Cycle Length: 60.2         Cotated Cycle Length: 60.2         Cotated Cycle: 65         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.55         Intersection LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |             |        |          |            |                     |     |
| v/c Ratio       0.02       0.55       0.51       0.10       0.14         Control Delay       11.4       17.2       16.6       5.1       11.7         Queue Delay       0.0       0.0       0.0       0.0       0.0         Total Delay       11.4       17.2       16.6       5.1       11.7         LOS       B       B       A       B         Approach Delay       17.2       15.5       11.7         Approach LOS       B       B       B         Intersection Summary       Cycle Length: 60.2         Actuated Cycle Length: 60.2       Actuated Cycle Coordinated         Natural Cycle: 65       Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.55       Intersection LOS: B         Intersection Signal Delay: 16.0       Intersection LOS: B         Intersection Capacity Utilization 35.5%       ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 24.0        |        |          |            |                     |     |
| Control Delay         11.4         17.2         16.6         5.1         11.7           Queue Delay         0.0         0.0         0.0         0.0         10.0           Total Delay         11.4         17.2         16.6         5.1         11.7           LOS         B         B         A         B         A         B           Approach Delay         17.2         15.5         11.7         Approach Delay         17.2         15.5         11.7           Approach LOS         B         B         A         B         B         Intersection Summary           Cycle Length: 60.2         Actuated Cycle Length: 60.2         Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green         Natural Cycle: 65           Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.55         Intersection LOS: B         Intersection Signal Delay: 16.0         Intersection LOS: B           Intersection Capacity Utilization 35.5%         ICU Level of Service A         ICU Level of Service A         ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |        |          |            |                     |     |
| Queue Delay         0.0         0.0         0.0         0.0         0.0           Total Delay         11.4         17.2         16.6         5.1         11.7           LOS         B         B         A         B         A         B           Approach Delay         17.2         15.5         11.7         Composition of the second of the                                                                                                                                                                                                                                                           | v/c Ratio                    |             |        |          |            |                     |     |
| Total Delay         11.4         17.2         16.6         5.1         11.7           LOS         B         B         A         B         A         B           Approach Delay         17.2         15.5         11.7         Approach LOS         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |             |        |          |            |                     |     |
| LOS         B         B         A         B           Approach Delay         17.2         15.5         11.7           Approach LOS         B         B         B           Intersection Summary         Cycle Length: 60.2         Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green           Natural Cycle: 65         Control Type: Actuated-Coordinated           Maximum v/c Ratio: 0.55         Intersection LOS: B           Intersection Capacity Utilization 35.5%         ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |        |          |            |                     |     |
| Approach Delay 17.2 15.5 11.7<br>Approach LOS B B B B<br>Intersection Summary<br>Cycle Length: 60.2<br>Actuated Cycle Length: 60.2<br>Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green<br>Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.55<br>Intersection Signal Delay: 16.0 Intersection LOS: B<br>Intersection Capacity Utilization 35.5% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |             |        |          |            |                     |     |
| Approach LOS     B     B       Intersection Summary       Cycle Length: 60.2       Actuated Cycle Length: 60.2       Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green       Natural Cycle: 65       Control Type: Actuated-Coordinated       Maximum v/c Ratio: 0.55       Intersection Signal Delay: 16.0       Intersection Capacity Utilization 35.5%       ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | В           |        |          | A          |                     |     |
| Intersection Summary<br>Cycle Length: 60.2<br>Actuated Cycle Length: 60.2<br>Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green<br>Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.55<br>Intersection Signal Delay: 16.0<br>Intersection LOS: B<br>Intersection Capacity Utilization 35.5%<br>ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |             |        |          |            |                     |     |
| Cycle Length: 60.2<br>Actuated Cycle Length: 60.2<br>Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green<br>Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.55<br>Intersection Signal Delay: 16.0<br>Intersection Capacity Utilization 35.5%<br>ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Approach LOS                 |             | В      | В        |            | В                   |     |
| Oycle Length: 60.2         Actuated Cycle Length: 60.2         Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green         Natural Cycle: 65         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.55         Intersection Signal Delay: 16.0         Intersection Capacity Utilization 35.5%         ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intersection Summary         |             |        |          |            |                     |     |
| Actuated Cycle Length: 60.2         Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green         Natural Cycle: 65         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.55         Intersection Signal Delay: 16.0         Intersection Capacity Utilization 35.5%         ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |             |        |          |            |                     |     |
| Offset: 37 (61%), Referenced to phase 2:EBTL and 6:WBT, Start of Green         Natural Cycle: 65         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.55         Intersection Signal Delay: 16.0         Intersection Capacity Utilization 35.5%         ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | .2          |        |          |            |                     |     |
| Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.55<br>Intersection Signal Delay: 16.0 Intersection LOS: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |             | 2:EBTL | and 6:WB | T. Start o | f Green             |     |
| Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.55 Intersection Signal Delay: 16.0 Intersection Capacity Utilization 35.5% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |             |        |          | ,          |                     |     |
| Intersection Signal Delay: 16.0 Intersection LOS: B Intersection Capacity Utilization 35.5% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | ordinated   |        |          |            |                     |     |
| Intersection Capacity Utilization 35.5% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum v/c Ratio: 0.55      |             |        |          |            |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intersection Signal Delay: " | 16.0        |        |          | lr         | ntersection LOS: B  |     |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intersection Capacity Utiliz | ation 35.5% |        |          | IC         | CU Level of Service | e A |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis Period (min) 15     |             |        |          |            |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |        |          |            |                     |     |

| ø₂ (R)                | Ø4   |  |
|-----------------------|------|--|
| 30.2 s                | 30 s |  |
| <u>+</u> <sup>≜</sup> |      |  |
| Ø6 (R)                |      |  |
| 30.2 s                |      |  |

10042 - Caledon Quarry TIS TYLin

| Queues                 |        |        |         |        |       | Future Total 2037 AM Peak Hour<br>01/15/2025 |
|------------------------|--------|--------|---------|--------|-------|----------------------------------------------|
| 101: Charleston Si     | deroad | (RR 24 | i) & Si | le Acc | ess   | 01/15/2025                                   |
|                        | ٦      | -      | +       | •      | 1     |                                              |
| Lane Group             | EBL    | EBT    | WBT     | WBR    | SBL   |                                              |
| Lane Group Flow (vph)  | 5      | 417    | 390     | 40     | 60    |                                              |
| v/c Ratio              | 0.02   | 0.55   | 0.51    | 0.10   | 0.14  |                                              |
| Control Delay          | 11.4   | 17.2   | 16.6    | 5.1    | 11.7  |                                              |
| Queue Delay            | 0.0    | 0.0    | 0.0     | 0.0    | 0.0   |                                              |
| Total Delay            | 11.4   | 17.2   | 16.6    | 5.1    | 11.7  |                                              |
| Queue Length 50th (m)  | 0.3    | 34.0   | 31.3    | 0.0    | 3.6   |                                              |
| Queue Length 95th (m)  | 2.0    | 56.9   | 52.7    | 4.7    | 10.0  |                                              |
| Internal Link Dist (m) |        | 610.5  | 750.9   |        | 106.2 |                                              |
| Turn Bay Length (m)    | 130.0  |        |         | 75.0   |       |                                              |
| Base Capacity (vph)    | 285    | 765    | 765     | 400    | 416   |                                              |
| Starvation Cap Reductn | 0      | 0      | 0       | 0      | 0     |                                              |
| Spillback Cap Reductn  | 0      | 0      | 0       | 0      | 0     |                                              |
| Storage Cap Reductn    | 0      | 0      | 0       | 0      | 0     |                                              |
| Reduced v/c Ratio      | 0.02   | 0.55   | 0.51    | 0.10   | 0.14  |                                              |
| Intersection Summary   |        |        |         |        |       |                                              |

Synchro 10 Report Page 9 HCM Signalized Intersection Capacity Analysis 101: Charleston Sideroad (RR 24) & Site Access Future Total 2037 AM Peak Hour 01/15/2025

|                                | ≯          | -     | +     | •    | 1          | 1                |      |  |
|--------------------------------|------------|-------|-------|------|------------|------------------|------|--|
| Movement                       | EBL        | EBT   | WBT   | WBR  | SBL        | SBR              |      |  |
| Lane Configurations            | ٦          | •     | •     | 1    | Y          |                  |      |  |
| Traffic Volume (vph)           | 5          | 417   | 390   | 40   | 53         | 7                |      |  |
| Future Volume (vph)            | 5          | 417   | 390   | 40   | 53         | 7                |      |  |
| Ideal Flow (vphpl)             | 1900       | 1900  | 1900  | 1900 | 1900       | 1900             |      |  |
| Total Lost time (s)            | 6.2        | 6.2   | 6.2   | 6.2  | 6.0        |                  |      |  |
| Lane Util. Factor              | 1.00       | 1.00  | 1.00  | 1.00 | 1.00       |                  |      |  |
| Frt                            | 1.00       | 1.00  | 1.00  | 0.85 | 0.98       |                  |      |  |
| Flt Protected                  | 0.95       | 1.00  | 1.00  | 1.00 | 0.96       |                  |      |  |
| Satd. Flow (prot)              | 1521       | 1921  | 1921  | 944  | 1035       |                  |      |  |
| Flt Permitted                  | 0.45       | 1.00  | 1.00  | 1.00 | 0.96       |                  |      |  |
| Satd. Flow (perm)              | 716        | 1921  | 1921  | 944  | 1035       |                  |      |  |
| Peak-hour factor, PHF          | 1.00       | 1.00  | 1.00  | 1.00 | 1.00       | 1.00             |      |  |
| Adj. Flow (vph)                | 5          | 417   | 390   | 40   | 53         | 7                |      |  |
| RTOR Reduction (vph)           | 0          | 0     | 0     | 24   | 4          | 0                |      |  |
| Lane Group Flow (vph)          | 5          | 417   | 390   | 16   | 56         | 0                |      |  |
| Heavy Vehicles (%)             | 20%        | 0%    | 0%    | 73%  | 81%        | 29%              |      |  |
| Turn Type                      | Perm       | NA    | NA    | Perm | Prot       |                  |      |  |
| Protected Phases               |            | 2     | 6     |      | 4          |                  |      |  |
| Permitted Phases               | 2          |       |       | 6    |            |                  |      |  |
| Actuated Green, G (s)          | 24.0       | 24.0  | 24.0  | 24.0 | 24.0       |                  |      |  |
| Effective Green, g (s)         | 24.0       | 24.0  | 24.0  | 24.0 | 24.0       |                  |      |  |
| Actuated q/C Ratio             | 0.40       | 0.40  | 0.40  | 0.40 | 0.40       |                  |      |  |
| Clearance Time (s)             | 6.2        | 6.2   | 6.2   | 6.2  | 6.0        |                  |      |  |
| Vehicle Extension (s)          | 5.0        | 5.0   | 5.0   | 5.0  | 5.0        |                  |      |  |
| Lane Grp Cap (vph)             | 285        | 765   | 765   | 376  | 412        |                  |      |  |
| v/s Ratio Prot                 |            | c0.22 | 0.20  |      | c0.05      |                  |      |  |
| v/s Ratio Perm                 | 0.01       |       |       | 0.02 |            |                  |      |  |
| v/c Ratio                      | 0.02       | 0.55  | 0.51  | 0.04 | 0.14       |                  |      |  |
| Uniform Delay, d1              | 11.0       | 13.9  | 13.7  | 11.1 | 11.5       |                  |      |  |
| Progression Factor             | 1.00       | 1.00  | 1.00  | 1.00 | 1.00       |                  |      |  |
| Incremental Delay, d2          | 0.1        | 2.8   | 2.4   | 0.2  | 0.7        |                  |      |  |
| Delay (s)                      | 11.1       | 16.7  | 16.1  | 11.3 | 12.2       |                  |      |  |
| Level of Service               | В          | В     | В     | В    | В          |                  |      |  |
| Approach Delay (s)             |            | 16.6  | 15.6  | -    | 12.2       |                  |      |  |
| Approach LOS                   |            | В     | В     |      | В          |                  |      |  |
| Intersection Summary           |            |       |       |      |            |                  |      |  |
| HCM 2000 Control Delay         |            |       | 15.9  | H    | CM 2000    | Level of Service | В    |  |
| HCM 2000 Volume to Capac       | city ratio |       | 0.34  |      |            |                  |      |  |
| Actuated Cycle Length (s)      |            |       | 60.2  | S    | um of lost | time (s)         | 12.2 |  |
| Intersection Capacity Utilizat | tion       |       | 35.5% | IC   | U Level o  | of Service       | A    |  |
| Analysis Period (min)          |            |       | 15    |      |            |                  |      |  |
| c Critical Lane Group          |            |       |       |      |            |                  |      |  |

10042 - Caledon Quarry TIS TYLin

|                              | ٦            | -      | $\mathbf{r}$ | 4         | +           | ×          | 1     | t     | 1     | Ļ           |  |
|------------------------------|--------------|--------|--------------|-----------|-------------|------------|-------|-------|-------|-------------|--|
| Lane Group                   | EBL          | EBT    | EBR          | WBL       | WBT         | WBR        | NBL   | NBT   | SBL   | SBT         |  |
| Lane Configurations          | ۲            | 1      | 1            | ۲         | •           | 1          | ሻ     | ¢β    | ሻ     | <b>≜</b> 1≽ |  |
| Traffic Volume (vph)         | 94           | 273    | 192          | 113       | 289         | 84         | 224   | 1844  | 52    | 1139        |  |
| Future Volume (vph)          | 94           | 273    | 192          | 113       | 289         | 84         | 224   | 1844  | 52    | 1139        |  |
| Turn Type                    | pm+pt        | NA     | Perm         | pm+pt     | NA          | Perm       | pm+pt | NA    | pm+pt | NA          |  |
| Protected Phases             | 7            | 4      |              | 3         | 8           |            | 5     | 2     | 1     | 6           |  |
| Permitted Phases             | 4            |        | 4            | 8         |             | 8          | 2     |       | 6     |             |  |
| Detector Phase               | 7            | 4      | 4            | 3         | 8           | 8          | 5     | 2     | 1     | 6           |  |
| Switch Phase                 |              |        |              |           |             |            |       |       |       |             |  |
| Minimum Initial (s)          | 7.0          | 10.0   | 10.0         | 7.0       | 10.0        | 10.0       | 7.0   | 20.0  | 7.0   | 20.0        |  |
| Minimum Split (s)            | 10.0         | 17.9   | 17.9         | 10.0      | 17.9        | 17.9       | 10.0  | 44.4  | 10.0  | 44.4        |  |
| Total Split (s)              | 10.0         | 31.9   | 31.9         | 10.0      | 31.9        | 31.9       | 13.0  | 74.4  | 13.0  | 74.4        |  |
| Total Split (%)              | 7.7%         | 24.7%  | 24.7%        | 7.7%      | 24.7%       | 24.7%      | 10.1% | 57.5% | 10.1% | 57.5%       |  |
| Yellow Time (s)              | 3.0          | 4.5    | 4.5          | 3.0       | 4.5         | 4.5        | 3.0   | 5.0   | 3.0   | 5.0         |  |
| All-Red Time (s)             | 0.0          | 2.4    | 2.4          | 0.0       | 2.4         | 2.4        | 0.0   | 2.4   | 0.0   | 2.4         |  |
| Lost Time Adjust (s)         | 0.0          | 0.0    | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0         |  |
| Total Lost Time (s)          | 3.0          | 6.9    | 6.9          | 3.0       | 6.9         | 6.9        | 3.0   | 7.4   | 3.0   | 7.4         |  |
| Lead/Lag                     | Lead         | Lag    | Lag          | Lead      | Lag         | Lag        | Lead  | Lag   | Lead  | Lag         |  |
| Lead-Lag Optimize?           | Yes          | Ť      |              |           | Yes         | Yes        | Yes   | Yes   | Yes   | Yes         |  |
| Recall Mode                  | None         | None   | None         | None      | None        | None       | None  | C-Max | None  | C-Max       |  |
| Act Effct Green (s)          | 35.1         | 24.2   | 24.2         | 35.1      | 24.2        | 24.2       | 84.6  | 72.2  | 79.0  | 67.0        |  |
| Actuated g/C Ratio           | 0.27         | 0.19   | 0.19         | 0.27      | 0.19        | 0.19       | 0.65  | 0.56  | 0.61  | 0.52        |  |
| v/c Ratio                    | 0.54         | 0.91   | 0.49         | 0.62      | 0.92        | 0.24       | 0.96  | 1.06  | 0.37  | 0.74        |  |
| Control Delay                | 45.5         | 84.1   | 11.6         | 50.9      | 85.0        | 10.4       | 69.0  | 68.4  | 17.0  | 27.4        |  |
| Queue Delay                  | 0.0          | 0.0    | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0         |  |
| Total Delay                  | 45.5         | 84.1   | 11.6         | 50.9      | 85.0        | 10.4       | 69.0  | 68.4  | 17.0  | 27.4        |  |
| LOS                          | D            | F      | В            | D         | F           | В          | E     | E     | В     | С           |  |
| Approach Delay               |              | 52.7   |              |           | 64.2        |            |       | 68.5  |       | 27.0        |  |
| Approach LOS                 |              | D      |              |           | E           |            |       | E     |       | С           |  |
| Intersection Summary         |              |        |              |           |             |            |       |       |       |             |  |
| Cycle Length: 129.3          |              |        |              |           |             |            |       |       |       |             |  |
| Actuated Cycle Length: 12    | 9.3          |        |              |           |             |            |       |       |       |             |  |
| Offset: 85 (66%), Reference  | ced to phase | 2:NBTL | and 6:SB     | TL, Start | of Green    |            |       |       |       |             |  |
| Natural Cycle: 145           |              |        |              |           |             |            |       |       |       |             |  |
| Control Type: Actuated-Co    | ordinated    |        |              |           |             |            |       |       |       |             |  |
| Maximum v/c Ratio: 1.06      |              |        |              |           |             |            |       |       |       |             |  |
| Intersection Signal Delay:   |              |        |              |           | ntersection |            |       |       |       |             |  |
| Intersection Capacity Utiliz | ation 104.2  | %      |              | IC        | CU Level    | of Service | G     |       |       |             |  |
| Analysis Period (min) 15     |              |        |              |           |             |            |       |       |       |             |  |

| Ø1          | ■ 1 0 2 (R) | <b>√</b> ø3 |        |
|-------------|-------------|-------------|--------|
| 13 s        | 74.4 s      | 10 s        | 31.9 s |
| <b>▲</b> ø₅ | Ø6 (R)      | ∕ م         | Ø8     |
| 13 s        | 74.4 s      | 10 s        | 31.9 s |

Synchro 10 Report Page 1

| Queues<br>1: Hurontario Stree | t (Hwy | 10) & ( | Charles | ston S | ideroad | d (RR |       |        | Jai 20 | ST PIVI I | 01/15/2 |
|-------------------------------|--------|---------|---------|--------|---------|-------|-------|--------|--------|-----------|---------|
|                               | ٦      | +       | *       | 4      | Ļ       | •     | •     | †      | 1      | Ļ         |         |
| Lane Group                    | EBL    | EBT     | EBR     | WBL    | WBT     | WBR   | NBL   | NBT    | SBL    | SBT       |         |
| Lane Group Flow (vph)         | 99     | 287     | 202     | 119    | 304     | 88    | 236   | 2101   | 55     | 1271      |         |
| v/c Ratio                     | 0.54   | 0.91    | 0.49    | 0.62   | 0.92    | 0.24  | 0.96  | 1.06   | 0.37   | 0.74      |         |
| Control Delay                 | 45.5   | 84.1    | 11.6    | 50.9   | 85.0    | 10.4  | 69.0  | 68.4   | 17.0   | 27.4      |         |
| Queue Delay                   | 0.0    | 0.0     | 0.0     | 0.0    | 0.0     | 0.0   | 0.0   | 0.0    | 0.0    | 0.0       |         |
| Total Delay                   | 45.5   | 84.1    | 11.6    | 50.9   | 85.0    | 10.4  | 69.0  | 68.4   | 17.0   | 27.4      |         |
| Queue Length 50th (m)         | 18.7   | 71.8    | 2.1     | 22.8   | 76.3    | 0.0   | 29.9  | ~318.5 | 4.7    | 128.2     |         |
| Queue Length 95th (m)         | 33.0   | #120.7  | 23.6    | 38.9   | #126.8  | 13.9  | #84.6 | #369.0 | 11.2   | 154.8     |         |
| Internal Link Dist (m)        |        | 1351.4  |         |        | 575.0   |       |       | 764.6  |        | 536.2     |         |
| Turn Bay Length (m)           | 80.0   |         | 65.0    | 40.0   |         | 55.0  | 85.0  |        | 40.0   |           |         |
| Base Capacity (vph)           | 185    | 325     | 417     | 191    | 340     | 369   | 246   | 1976   | 181    | 1721      |         |
| Starvation Cap Reductn        | 0      | 0       | 0       | 0      | 0       | 0     | 0     | 0      | 0      | 0         |         |
| Spillback Cap Reductn         | 0      | 0       | 0       | 0      | 0       | 0     | 0     | 0      | 0      | 0         |         |
| Storage Cap Reductn           | 0      | 0       | 0       | 0      | 0       | 0     | 0     | 0      | 0      | 0         |         |
| Reduced v/c Ratio             | 0.54   | 0.88    | 0.48    | 0.62   | 0.89    | 0.24  | 0.96  | 1.06   | 0.30   | 0.74      |         |

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

10042 - Caledon Quarry TIS TYLin

|                              | *           |          | ,      |          | +           | *        | 4       | *          |      | 5        | 1    | 1    |
|------------------------------|-------------|----------|--------|----------|-------------|----------|---------|------------|------|----------|------|------|
|                              | _           | -        | •      | 1        | •           |          |         | 1          | -    | *        | ÷    | *    |
| Movement                     | EBL         | EBT      | EBR    | WBL      | WBT         | WBR      | NBL     | NBT        | NBR  | SBL      | SBT  | SBF  |
| Lane Configurations          | ሻ           | <b>↑</b> | 1      | <u> </u> | <b>↑</b>    | 1        | ٦.      | <b>≜</b> ⊅ |      | <u> </u> | A    |      |
| Traffic Volume (vph)         | 94          | 273      | 192    | 113      | 289         | 84       | 224     | 1844       | 152  | 52       | 1139 | 68   |
| Future Volume (vph)          | 94          | 273      | 192    | 113      | 289         | 84       | 224     | 1844       | 152  | 52       | 1139 | 68   |
| Ideal Flow (vphpl)           | 1900        | 1900     | 1900   | 1900     | 1900        | 1900     | 1900    | 1900       | 1900 | 1900     | 1900 | 1900 |
| Total Lost time (s)          | 3.0         | 6.9      | 6.9    | 3.0      | 6.9         | 6.9      | 3.0     | 7.4        |      | 3.0      | 7.4  |      |
| Lane Util. Factor            | 1.00        | 1.00     | 1.00   | 1.00     | 1.00        | 1.00     | 1.00    | 0.95       |      | 1.00     | 0.95 |      |
| Frpb, ped/bikes              | 1.00        | 1.00     | 0.98   | 1.00     | 1.00        | 0.98     | 1.00    | 1.00       |      | 1.00     | 1.00 |      |
| Flpb, ped/bikes              | 1.00        | 1.00     | 1.00   | 1.00     | 1.00        | 1.00     | 1.00    | 1.00       |      | 1.00     | 1.00 |      |
| Frt                          | 1.00        | 1.00     | 0.85   | 1.00     | 1.00        | 0.85     | 1.00    | 0.99       |      | 1.00     | 0.99 |      |
| Flt Protected                | 0.95        | 1.00     | 1.00   | 0.95     | 1.00        | 1.00     | 0.95    | 1.00       |      | 0.95     | 1.00 |      |
| Satd. Flow (prot)            | 1737        | 1685     | 1359   | 1658     | 1762        | 1544     | 1601    | 3530       |      | 1615     | 3314 |      |
| Flt Permitted                | 0.23        | 1.00     | 1.00   | 0.27     | 1.00        | 1.00     | 0.12    | 1.00       |      | 0.06     | 1.00 |      |
| Satd. Flow (perm)            | 423         | 1685     | 1359   | 470      | 1762        | 1544     | 198     | 3530       |      | 101      | 3314 |      |
| Peak-hour factor, PHF        | 0.95        | 0.95     | 0.95   | 0.95     | 0.95        | 0.95     | 0.95    | 0.95       | 0.95 | 0.95     | 0.95 | 0.9  |
| Adj. Flow (vph)              | 99          | 287      | 202    | 119      | 304         | 88       | 236     | 1941       | 160  | 55       | 1199 | 72   |
| RTOR Reduction (vph)         | 0           | 0        | 156    | 0        | 0           | 72       | 0       | 4          | 0    | 0        | 3    | (    |
| Lane Group Flow (vph)        | 99          | 287      | 46     | 119      | 304         | 16       | 236     | 2097       | 0    | 55       | 1268 | (    |
| Confl. Peds. (#/hr)          | 5           |          | 6      | 6        |             | 5        | 7       |            | 5    | 5        |      | 7    |
| Heavy Vehicles (%)           | 5%          | 14%      | 18%    | 10%      | 9%          | 4%       | 14%     | 2%         | 2%   | 13%      | 9%   | 9%   |
| Turn Type                    | pm+pt       | NA       | Perm   | pm+pt    | NA          | Perm     | pm+pt   | NA         |      | pm+pt    | NA   |      |
| Protected Phases             | 7           | 4        |        | 3        | 8           |          | 5       | 2          |      | 1        | 6    |      |
| Permitted Phases             | 4           |          | 4      | 8        |             | 8        | 2       |            |      | 6        |      |      |
| Actuated Green, G (s)        | 31.2        | 24.2     | 24.2   | 31.2     | 24.2        | 24.2     | 80.8    | 71.6       |      | 73.2     | 67.0 |      |
| Effective Green, g (s)       | 31.2        | 24.2     | 24.2   | 31.2     | 24.2        | 24.2     | 80.8    | 71.6       |      | 73.2     | 67.0 |      |
| Actuated g/C Ratio           | 0.24        | 0.19     | 0.19   | 0.24     | 0.19        | 0.19     | 0.62    | 0.55       |      | 0.57     | 0.52 |      |
| Clearance Time (s)           | 3.0         | 6.9      | 6.9    | 3.0      | 6.9         | 6.9      | 3.0     | 7.4        |      | 3.0      | 7.4  |      |
| Vehicle Extension (s)        | 3.0         | 3.0      | 3.0    | 3.0      | 3.0         | 3.0      | 3.0     | 4.4        |      | 3.0      | 4.4  |      |
| Lane Grp Cap (vph)           | 173         | 315      | 254    | 177      | 329         | 288      | 240     | 1954       |      | 129      | 1717 |      |
| v/s Ratio Prot               | 0.03        | 0.17     |        | c0.04    | c0.17       |          | c0.08   | c0.59      |      | 0.02     | 0.38 |      |
| v/s Ratio Perm               | 0.11        |          | 0.03   | 0.13     |             | 0.01     | 0.53    |            |      | 0.22     |      |      |
| v/c Ratio                    | 0.57        | 0.91     | 0.18   | 0.67     | 0.92        | 0.06     | 0.98    | 1.07       |      | 0.43     | 0.74 |      |
| Uniform Delay, d1            | 40.4        | 51.5     | 44.2   | 41.7     | 51.6        | 43.2     | 26.2    | 28.9       |      | 28.5     | 24.3 |      |
| Progression Factor           | 1.00        | 1.00     | 1.00   | 1.00     | 1.00        | 1.00     | 1.00    | 1.00       |      | 1.00     | 1.00 |      |
| Incremental Delay, d2        | 4.5         | 29.0     | 0.3    | 9.6      | 30.6        | 0.1      | 53.1    | 43.1       |      | 2.3      | 2.9  |      |
| Delay (s)                    | 44.9        | 80.5     | 44.6   | 51.3     | 82.3        | 43.3     | 79.3    | 72.0       |      | 30.7     | 27.2 |      |
| Level of Service             | D           | F        | D      | D        | F           | D        | E       | E          |      | С        | С    |      |
| Approach Delay (s)           |             | 62.2     |        |          | 68.3        |          |         | 72.7       |      |          | 27.3 |      |
| Approach LOS                 |             | Е        |        |          | Е           |          |         | E          |      |          | С    |      |
| Intersection Summary         |             |          |        |          |             |          |         |            |      |          |      |      |
| HCM 2000 Control Delay       |             |          | 58.3   | Н        | CM 2000     | Level of | Service |            | E    |          |      |      |
| HCM 2000 Volume to Capa      | acity ratio |          | 1.03   |          |             |          |         |            |      |          |      |      |
| Actuated Cycle Length (s)    | ,           |          | 129.3  | S        | um of lost  | time (s) |         |            | 20.3 |          |      |      |
| Intersection Capacity Utiliz | ation       |          | 104.2% |          | CU Level of | (.)      | Э       |            | G    |          |      |      |
| Analysis Period (min)        |             |          | 15     |          |             |          |         |            |      |          |      |      |

Synchro 10 Report Page 3

| Traffic Volume (vph)       74       501       4       472       85       12       12       62       19         Future Volume (vph)       74       501       4       472       85       12       12       62       19         Future Volume (vph)       74       501       4       472       85       12       12       62       19         Tum Type       Perm NA       Perm NA       Perm NA       Perm NA       Perm NA       Perm NA         Permited Phases       2       2       2       4       4       4         Detector Phase       2       2       2       4       4       4         Switch Phase       0.0       20.0       20.0       16.0       16.0       16.0       16.0         Minimum Split (s)       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6                                                                                                                                                                                                                                                                        |                           | ٦           | -        | 1          | +          | ×        | 1          | 1   | 1    | ŧ   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|----------|------------|------------|----------|------------|-----|------|-----|--|
| Traffic Volume (vph)       74       501       4       472       85       12       12       62       19         Future Volume (vph)       74       501       4       472       85       12       12       62       19         Tum Type       Perm       NA       Perm       NA       Perm       NA       Perm       NA         Protected Phases       2       2       2       4       4       4         Detector Phase       2       2       2       4       4       4         Detector Phase       2       2       2       4       4       4         Switch Phase       0       20.0       20.0       20.0       16.0       16.0       16.0       16.0         Minimum Split (s)       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6                                                                                                                                                                                                                                                                                   | Lane Group                | EBL         | EBT      | WBL        | WBT        | WBR      | NBL        | NBT | SBL  | SBT |  |
| Future Volume (vph)         74         501         4         472         85         12         12         62         19           Tum Type         Perm         NA                                                                                                                                                                          |                           | 1           | ĥ        | ሻ          | •          | 1        | ሻ          | 4Î  | ሻ    | ĥ   |  |
| Turn Type         Perm         NA         Perm         NA         Perm         NA         Perm         NA         Perm         NA           Protected Phases         2         2         2         4         4         4           Permitted Phases         2         2         2         4         4         4           Switch Phase         2         2         2         4         4         4           Switch Phase         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6 <td>Traffic Volume (vph)</td> <td>74</td> <td>501</td> <td>4</td> <td>472</td> <td>85</td> <td>12</td> <td>12</td> <td>62</td> <td>19</td> <td></td>                 | Traffic Volume (vph)      | 74          | 501      | 4          | 472        | 85       | 12         | 12  | 62   | 19  |  |
| Protected Phases       2       2       2       2       4       4         Permitted Phases       2       2       2       2       4       4       4         Switch Phase       2       2       2       2       4       4       4         Switch Phase       2       2       2       2       4       4       4         Switch Phase       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6<                                                                                                                                                                                                                                                                                                     |                           | 74          | 501      | 4          | 472        | 85       | 12         | 12  | 62   | 19  |  |
| Permitted Phases       2       2       2       2       4       4         Detector Phase       2       2       2       2       4       4       4         Switch Phase       Minimum Initial (s)       20.0       20.0       20.0       20.0       16.0       16.0       16.0       16.0         Minimum Initial (s)       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       <                                                                                                                                                                                                                             |                           | Perm        |          | Perm       |            | Perm     | Perm       |     | Perm |     |  |
| Detector Phase         2         2         2         2         2         4         4         4           Switch Phase         Minimum Shital (s)         20.0         20.0         20.0         20.0         16.0         16.0         16.0         16.0           Minimum Spit (s)         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.6         30.2 <td>Protected Phases</td> <td></td> <td>2</td> <td></td> <td>2</td> <td></td> <td></td> <td>4</td> <td></td> <td>4</td> <td></td> | Protected Phases          |             | 2        |            | 2          |          |            | 4   |      | 4   |  |
| Switch Phase         Minimum Initial (s)       20.0       20.0       20.0       20.0       16.0       16.0       16.0       16.0         Minimum Split (s)       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       3                                                                                                                                                                                                                | Permitted Phases          |             |          | _          |            | _        | 4          |     | 4    |     |  |
| Minimum Initial (s)       20.0       20.0       20.0       20.0       20.0       16.0       16.0       16.0       16.0         Minimum Split (s)       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6 <td></td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>4</td> <td>4</td> <td>4</td> <td>4</td> <td></td>                                                                                     |                           | 2           | 2        | 2          | 2          | 2        | 4          | 4   | 4    | 4   |  |
| Minimum Split (s)       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30.6       30                                                                                                                                                                                                         | Switch Phase              |             |          |            |            |          |            |     |      |     |  |
| Total Split (s)       46.6       46.6       46.6       46.6       36.6       36.6       36.6       36.6         Total Split (%)       56.0%       56.0%       56.0%       56.0%       44.0%       44.0%       44.0%         Yellow Time (s)       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6                                                                                                                                                                                                                                                           |                           |             |          |            |            |          |            |     |      |     |  |
| Total Split (%)       56.0%       56.0%       56.0%       56.0%       56.0%       44.0%       44.0%       44.0%       44.0%         Yellow Time (s)       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       <                                                                                                                                                                                                                                                 |                           |             |          |            |            |          |            |     |      |     |  |
| Yellow Time (s)       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6                                                                                                                                                                                                                                                           |                           |             |          |            |            |          |            |     |      |     |  |
| All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       7.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <td></td>                                                                                                                                            |                           |             |          |            |            |          |            |     |      |     |  |
| Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                            |                           |             |          |            |            |          |            |     |      |     |  |
| Total Lost Time (s)         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.7         7                                                                                                                                                               |                           |             |          |            |            |          |            |     |      |     |  |
| Lead/Lag       Optimize?         Recall Mode       C-Min       C-Min       C-Min       C-Min       None       None       None       None         Act Effct Green (s)       59.8       59.8       59.8       59.8       59.8       16.0       16.0       16.0         Act Effct Green (s)       0.72       0.72       0.72       0.72       0.72       0.19       0.19       0.19       0.19       0.19         v/c Ratio       0.12       0.45       0.01       0.41       0.08       0.05       0.06       0.23       0.22         Control Delay       6.2       8.3       5.2       7.8       1.5       28.2       20.9       31.1       13.1         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       <                                                                                                                                                                                                                                                     |                           |             |          |            |            |          |            |     |      |     |  |
| Lead-Lag Optimize?         Recall Mode       C-Min       C-Min       C-Min       C-Min       C-Min       None       None       None       None       None       None       Acter Effet Green (s)       59.8       59.8       59.8       59.8       16.0       16.0       16.0       16.0       Actuated g/C Ratio       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72       0.72 <td< td=""><td></td><td>6.6</td><td>6.6</td><td>6.6</td><td>6.6</td><td>6.6</td><td>6.6</td><td>6.6</td><td>6.6</td><td>6.6</td><td></td></td<>                                                     |                           | 6.6         | 6.6      | 6.6        | 6.6        | 6.6      | 6.6        | 6.6 | 6.6  | 6.6 |  |
| Recall Mode         C-Min         C-Min         C-Min         C-Min         C-Min         None         None         None         None         None           Act Efft Green (s)         59.8         59.8         59.8         59.8         59.8         59.8         16.0         16.0         16.0         16.0           Actuated g/C Ratio         0.72         0.72         0.72         0.72         0.72         0.72         0.19         0.19         0.19         0.19         0.19         0.19         0.19         0.19         0.19         0.19         0.19         0.12         0.45         0.01         0.41         0.08         0.05         0.06         0.23         0.22           Control Delay         6.2         8.3         5.2         7.8         1.5         28.2         20.9         31.1         13.1           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                      |                           |             |          |            |            |          |            |     |      |     |  |
| Act Effct Green (s)       59.8       59.8       59.8       59.8       59.8       16.0       16.0       16.0         Actuated g/C Ratio       0.72       0.72       0.72       0.72       0.72       0.72       0.79       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.19       0.12       0.23       0.22       0.73       1.1       13.1       13.1       13.1       13.1       13.1       13.1       13.1 <td></td>                                                                                              |                           |             |          |            |            |          |            |     |      |     |  |
| Actuated g/C Ratio       0.72       0.72       0.72       0.72       0.72       0.19       0.19       0.19       0.19         v/c Ratio       0.12       0.45       0.01       0.41       0.08       0.05       0.06       0.23       0.22         Control Delay       6.2       8.3       5.2       7.8       1.5       28.2       20.9       31.1       13.1         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       6.2       8.3       5.2       7.8       1.5       28.2       20.9       31.1       13.1         LOS       A       A       A       A       C       C       C       B         Approach Delay       8.0       6.8       23.5       21.1       Approach LOS       A       A       C       C       C         Intersection Summary       C       C       C       C       C       C       C         VGP Length: 83.2       Actuated Cycle Length: 83.2       Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green       Natural Cycle: 65       Control Type: Actuated-Coordinated         Maximum v/c Ratio: 0.45       Intersection LOS: A                                                                                                                                                                                                                 |                           |             |          |            |            |          |            |     |      |     |  |
| vic Ratio 0.12 0.45 0.01 0.41 0.08 0.05 0.06 0.23 0.22<br>Control Delay 6.2 8.3 5.2 7.8 1.5 28.2 20.9 31.1 13.1<br>Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<br>Total Delay 6.2 8.3 5.2 7.8 1.5 28.2 20.9 31.1 13.1<br>LOS A A A A A A A C C C B<br>Approach Delay 8.0 6.8 23.5 21.1<br>Approach LOS A A A A A C C C C B<br>Intersection Summary<br>Cycle Length: 83.2<br>Actuated Cycle Length: 83.2<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.45<br>Intersection Signal Delay: 9.3<br>Intersection Capacity Utilization 73.5%<br>ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |             |          |            |            |          |            |     |      |     |  |
| Control Delay         6.2         8.3         5.2         7.8         1.5         28.2         20.9         31.1         13.1           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                 |                           |             |          |            |            |          |            |     |      |     |  |
| Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                |                           |             |          |            |            |          |            |     |      |     |  |
| Total Delay       6.2       8.3       5.2       7.8       1.5       28.2       20.9       31.1       13.1         LOS       A       A       A       A       A       C       C       B         Approach Delay       8.0       6.8       23.5       21.1       Approach LOS       A       A       C       C         Intersection Summary       Cycle Length: 83.2       A       A       C       C       C         Actuated Cycle Length: 83.2       Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green       Natural Cycle: 65       C       C         Control Type: Actuated-Coordinated       Maximum v/c Ratio: 0.45       Intersection LOS: A       Intersection Signal Delay: 9.3       Intersection LOS: A         Intersection Capacity Utilization 73.5%       ICU Level of Service D       C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |             |          |            |            |          |            |     |      |     |  |
| LOS A A A A A A A C C C B<br>Approach Delay 8.0 6.8 23.5 21.1<br>Approach LOS A A A C C C<br>Intersection Summary<br>Cycle Length: 83.2<br>Actuated Cycle Length: 83.2<br>Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green<br>Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.45<br>Intersection Signal Delay: 9.3<br>Intersection LOS: A<br>Intersection Capacity Utilization 73.5%<br>ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |             |          |            |            |          |            |     |      |     |  |
| Approach Delay     8.0     6.8     23.5     21.1       Approach LOS     A     A     C     C       Intersection Summary     Cycle Length: 83.2     C     C       Actuated Cycle Length: 83.2     Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green     Natural Cycle: 65       Control Type: Actuated-Coordinated     Maximum v/c Ratio: 0.45     Intersection LOS: A       Intersection Capacity Utilization 73.5%     ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |             |          |            |            |          |            |     |      |     |  |
| Approach LOS A A C C C Intersection Summary Cycle Length: 83.2 Actuated Cycle Length: 83.2 Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.45 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | A           |          | A          |            | A        | C          | -   | C    |     |  |
| Intersection Summary Cycle Length: 83.2 Actuated Cycle Length: 83.2 Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.45 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |             |          |            |            |          |            |     |      |     |  |
| Cycle Length: 83.2<br>Actuated Cycle Length: 83.2<br>Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green<br>Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.45<br>Intersection Signal Delay: 9.3<br>Intersection Capacity Utilization 73.5%<br>ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Approach LOS              |             | A        |            | A          |          |            | C   |      | С   |  |
| Actuated Cycle Length: 83.2 Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.45 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Intersection Summary      |             |          |            |            |          |            |     |      |     |  |
| Offset: 22.5 (27%), Referenced to phase 2:EBWB and 6:, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.45 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cycle Length: 83.2        |             |          |            |            |          |            |     |      |     |  |
| Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.45<br>Intersection Signal Delay: 9.3 Intersection LOS: A<br>Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Actuated Cycle Length: 83 | 3.2         |          |            |            |          |            |     |      |     |  |
| Natural Cycle: 65<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 0.45<br>Intersection Signal Delay: 9.3 Intersection LOS: A<br>Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |             | se 2:EBW | /B and 6:. | Start of ( | Green    |            |     |      |     |  |
| Maximum v/c Ratio: 0.45<br>Intersection Signal Delay: 9.3 Intersection LOS: A<br>Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |             |          |            |            |          |            |     |      |     |  |
| Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control Type: Actuated-Co | ordinated   |          |            |            |          |            |     |      |     |  |
| Intersection Capacity Utilization 73.5% ICU Level of Service D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum v/c Ratio: 0.45   |             |          |            |            |          |            |     |      |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |             |          |            |            |          |            |     |      |     |  |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | ation 73.5% |          |            | 10         | CU Level | of Service | e D |      |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis Period (min) 15  |             |          |            |            |          |            |     |      |     |  |

10042 - Caledon Quarry TIS TYLin

|                        |       |       | (    |        |      |      |       |      |        |  |
|------------------------|-------|-------|------|--------|------|------|-------|------|--------|--|
|                        | ≯     | -     | 1    | +      | •    | 1    | 1     | 1    | ↓      |  |
| Lane Group             | EBL   | EBT   | WBL  | WBT    | WBR  | NBL  | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 76    | 527   | 4    | 487    | 88   | 12   | 21    | 64   | 80     |  |
| v/c Ratio              | 0.12  | 0.45  | 0.01 | 0.41   | 0.08 | 0.05 | 0.06  | 0.23 | 0.22   |  |
| Control Delay          | 6.2   | 8.3   | 5.2  | 7.8    | 1.5  | 28.2 | 20.9  | 31.1 | 13.1   |  |
| Queue Delay            | 0.0   | 0.0   | 0.0  | 0.0    | 0.0  | 0.0  | 0.0   | 0.0  | 0.0    |  |
| Total Delay            | 6.2   | 8.3   | 5.2  | 7.8    | 1.5  | 28.2 | 20.9  | 31.1 | 13.1   |  |
| Queue Length 50th (m)  | 4.1   | 37.9  | 0.2  | 33.8   | 0.0  | 1.6  | 1.6   | 8.7  | 2.6    |  |
| Queue Length 95th (m)  | 9.1   | 59.3  | 1.2  | 52.9   | 4.3  | 5.9  | 7.3   | 19.4 | 13.6   |  |
| Internal Link Dist (m) |       | 750.9 |      | 2789.4 |      |      | 883.0 |      | 1179.5 |  |
| Turn Bay Length (m)    | 125.0 |       | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Base Capacity (vph)    | 635   | 1181  | 600  | 1190   | 1143 | 452  | 654   | 515  | 639    |  |
| Starvation Cap Reductn | 0     | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Spillback Cap Reductn  | 0     | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Storage Cap Reductn    | 0     | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Reduced v/c Ratio      | 0.12  | 0.45  | 0.01 | 0.41   | 0.08 | 0.03 | 0.03  | 0.12 | 0.13   |  |

Lane Configurations ъ î. Traffic Volume (vph) 501 472 12 62 58 74 85 19 Future Volume (vph) 74 501 11 4 472 85 12 12 9 62 19 58 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 1.00 1.00 1.00 0.85 1.00 0.94 1.00 0.89 Flt Protected 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1825 1642 1825 1656 1555 1690 1798 1825 1667 Flt Permitted 0.46 1.00 0.43 1.00 1.00 0.70 1.00 0.74 1.00 Satd. Flow (perm) 884 1642 834 1656 1555 1254 1798 1429 1667 0.97 Peak-hour factor, PHF 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 Adj. Flow (vph) 60 76 516 11 487 88 12 12 64 20 4 9 RTOR Reduction (vph) 0 0 27 0 0 0 51 0 Lane Group Flow (vph) 76 526 0 4 487 61 12 13 0 64 29 0 Heavy Vehicles (%) 17% 0% 0% 16% 5% 0% 0% 8% 0% 0% 0% 3% Turn Type Perm NA Perm NA Perm Perm NA NA Perm Protected Phases 2 4 Permitted Phases 2 2 2 4 4 12.8 12.8 Actuated Green, G (s) 57.2 57.2 57.2 57.2 57.2 12.8 12.8 Effective Green, g (s) 57.2 57.2 57.2 12.8 12.8 12.8 57.2 57.2 12.8 Actuated g/C Ratio 0.69 0.69 0.69 0.69 0.69 0.15 0.15 0.15 0.15 Clearance Time (s) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 607 1128 573 1138 1069 192 276 219 256 v/s Ratio Prot c0.32 0.29 0.01 0.02 v/s Ratio Perm 0.09 0.00 0.04 0.01 c0.04 v/c Ratio 0.13 0.47 0.01 0.43 0.06 0.06 0.05 0.29 0.11 Uniform Delay, d1 4.4 6.0 4.1 5.8 4.2 30.1 30.0 31.2 30.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 1.4 0.0 1.2 0.1 0.1 0.1 0.7 0.2 Delay (s) 4.9 7.4 4.1 6.9 4.3 30.2 30.1 31.9 30.5 Level of Service А Α А Α А С С С С Approach Delay (s) 30.1 7.1 6.5 31.1 Approach LOS А А С С Intersection Summary HCM 2000 Control Delay HCM 2000 Level of Service 9.9 А HCM 2000 Volume to Capacity ratio 0.43 Actuated Cycle Length (s) 83.2 Sum of lost time (s) 13.2 Intersection Capacity Utilization 73.5% ICU Level of Service D Analysis Period (min) 15 c Critical Lane Group

1 1

WBR

NBL

NBT

WBT

HCM Signalized Intersection Capacity Analysis

٦

EBL

Movement

2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)

 $\mathbf{i}$ 

EBR WBL

EBT

10042 - Caledon Quarry TIS TYLin Synchro 10 Report Page 5 10042 - Caledon Quarry TIS TYLin Synchro 10 Report Page 6

Future Total 2037 PM Peak Hour

SBL

NBR

01/15/2025

SBT SBF

┛

|                               | ٦        |      | 、<br>、 |          | +         | ¥.        |      | *    |      | 7    | 1    | 1    |
|-------------------------------|----------|------|--------|----------|-----------|-----------|------|------|------|------|------|------|
|                               | -        | -    | ¥.     | €        | •         | ~         |      |      | 1    | *    | +    | *    |
| Movement                      | EBL      | EBT  | EBR    | WBL      | WBT       | WBR       | NBL  | NBT  | NBR  | SBL  | SBT  | SBF  |
| Lane Configurations           | <u>۲</u> | 4    |        | <u>۲</u> | 4Î        |           |      | 4    |      |      | 4    |      |
| Traffic Volume (veh/h)        | 14       | 491  | 8      | 15       | 491       | 12        | 3    | 19   | 26   | 21   | 6    | 14   |
| Future Volume (Veh/h)         | 14       | 491  | 8      | 15       | 491       | 12        | 3    | 19   | 26   | 21   | 6    | 14   |
| Sign Control                  |          | Free |        |          | Free      |           |      | Stop |      |      | Stop |      |
| Grade                         |          | 0%   |        |          | 0%        |           |      | 0%   |      |      | 0%   |      |
| Peak Hour Factor              | 0.95     | 0.95 | 0.95   | 0.95     | 0.95      | 0.95      | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Hourly flow rate (vph)        | 15       | 517  | 8      | 16       | 517       | 13        | 3    | 20   | 27   | 22   | 6    | 15   |
| Pedestrians                   |          |      |        |          |           |           |      |      |      |      |      |      |
| Lane Width (m)                |          |      |        |          |           |           |      |      |      |      |      |      |
| Walking Speed (m/s)           |          |      |        |          |           |           |      |      |      |      |      |      |
| Percent Blockage              |          |      |        |          |           |           |      |      |      |      |      |      |
| Right turn flare (veh)        |          |      |        |          |           |           |      |      |      |      |      |      |
| Median type                   |          | None |        |          | None      |           |      |      |      |      |      |      |
| Median storage veh)           |          |      |        |          |           |           |      |      |      |      |      |      |
| Upstream signal (m)           |          |      |        |          |           |           |      |      |      |      |      |      |
| pX, platoon unblocked         |          |      |        |          |           |           |      |      |      |      |      |      |
| vC, conflicting volume        | 530      |      |        | 525      |           |           | 1118 | 1113 | 521  | 1140 | 1110 | 524  |
| vC1, stage 1 conf vol         |          |      |        |          |           |           |      |      |      |      |      |      |
| vC2, stage 2 conf vol         |          |      |        |          |           |           |      |      |      |      |      |      |
| vCu, unblocked vol            | 530      |      |        | 525      |           |           | 1118 | 1113 | 521  | 1140 | 1110 | 524  |
| tC, single (s)                | 4.2      |      |        | 4.2      |           |           | 7.1  | 6.5  | 6.3  | 7.1  | 6.5  | 6.3  |
| tC, 2 stage (s)               |          |      |        |          |           |           |      |      |      |      |      |      |
| tF (s)                        | 2.3      |      |        | 2.3      |           |           | 3.5  | 4.0  | 3.4  | 3.5  | 4.0  | 3.4  |
| p0 queue free %               | 99       |      |        | 98       |           |           | 98   | 90   | 95   | 86   | 97   | 97   |
| cM capacity (veh/h)           | 1012     |      |        | 983      |           |           | 173  | 204  | 536  | 154  | 204  | 531  |
| Direction, Lane #             | EB 1     | EB 2 | WB 1   | WB 2     | NB 1      | SB 1      |      |      |      |      |      |      |
| Volume Total                  | 15       | 525  | 16     | 530      | 50        | 43        |      |      |      |      |      |      |
| Volume Left                   | 15       | 0    | 16     | 0        | 3         | 22        |      |      |      |      |      |      |
| Volume Right                  | 0        | 8    | 0      | 13       | 27        | 15        |      |      |      |      |      |      |
| cSH                           | 1012     | 1700 | 983    | 1700     | 301       | 215       |      |      |      |      |      |      |
| Volume to Capacity            | 0.01     | 0.31 | 0.02   | 0.31     | 0.17      | 0.20      |      |      |      |      |      |      |
| Queue Length 95th (m)         | 0.3      | 0.0  | 0.4    | 0.0      | 4.5       | 5.5       |      |      |      |      |      |      |
| Control Delay (s)             | 8.6      | 0.0  | 8.7    | 0.0      | 19.3      | 25.9      |      |      |      |      |      |      |
| Lane LOS                      | А        |      | А      |          | С         | D         |      |      |      |      |      |      |
| Approach Delay (s)            | 0.2      |      | 0.3    |          | 19.3      | 25.9      |      |      |      |      |      |      |
| Approach LOS                  |          |      |        |          | С         | D         |      |      |      |      |      |      |
| Intersection Summary          |          |      |        |          |           |           |      |      |      |      |      |      |
| Average Delay                 |          |      | 2.0    |          |           |           |      |      |      |      |      |      |
| Intersection Capacity Utiliza | tion     |      | 42.2%  | IC       | U Level o | f Service |      |      | А    |      |      |      |
| Analysis Period (min)         |          |      | 15     | 10       |           |           |      |      |      |      |      |      |

| 10042 - Caledon Quarry TIS |  |
|----------------------------|--|
| TYLin                      |  |

Synchro 10 Report Page 7

|                                          | ≯             |               | -               | •             | <b>\</b>              |   |
|------------------------------------------|---------------|---------------|-----------------|---------------|-----------------------|---|
| Lane Group                               | EBL           | EBT           | WBT             | WBR           | SBL                   |   |
|                                          |               |               |                 |               | SBL V                 |   |
| Lane Configurations                      |               | <b>†</b>      | <b>↑</b><br>505 | 45            | <b>'1'</b><br>58      |   |
| Traffic Volume (vph)                     | 10<br>10      | 531<br>531    | 505             | 45<br>45      | 58<br>58              |   |
| Future Volume (vph)                      | Perm          | NA            | 505<br>NA       | 45<br>Perm    | Prot                  |   |
| Turn Type<br>Protected Phases            | Pellili       | 2             | NA<br>6         | Penn          | 4                     |   |
| Protected Phases                         | 2             | 2             | 0               | 6             | 4                     |   |
| Detector Phases                          | 2             | 2             | 6               | 6             | 4                     |   |
| Switch Phase                             | 2             | 2             | 0               | 0             | 4                     |   |
|                                          | 12.0          | 12.0          | 5.0             | 5.0           | 12.0                  |   |
| Minimum Initial (s)<br>Minimum Split (s) | 30.2          | 30.2          | 5.0<br>30.2     | 5.0<br>30.2   | 30.0                  |   |
|                                          | 30.2          | 30.2          | 30.2            | 30.2<br>30.2  | 30.0                  |   |
| Total Split (s)<br>Total Split (%)       | 30.2<br>50.2% | 30.2<br>50.2% | 30.2<br>50.2%   | 30.2<br>50.2% | 49.8%                 |   |
|                                          | 50.2%<br>4.2  | 50.2%<br>4.2  | 50.2%<br>4.2    | 50.2%<br>4.2  | 49.0%                 |   |
| Yellow Time (s)<br>All-Red Time (s)      | 4.2           | 4.2           | 4.2             | 4.2           | 2.0                   |   |
| Lost Time Adjust (s)                     | 2.0           | 2.0           | 2.0             | 2.0           | 2.0                   |   |
| Total Lost Time (s)                      | 6.2           | 6.2           | 6.2             | 6.2           | 6.0                   |   |
|                                          | 0.2           | 0.2           | 0.2             | 0.2           | 0.0                   |   |
| Lead/Lag<br>Lead-Lag Optimize?           |               |               |                 |               |                       |   |
| Recall Mode                              | C-Max         | C-Max         | C-Max           | C-Max         | Мах                   |   |
| Act Effct Green (s)                      | 24.0          | 24.0          | 24.0            | 24.0          | 24.0                  |   |
| Actuated g/C Ratio                       | 0.40          | 0.40          | 0.40            | 0.40          | 0.40                  |   |
| v/c Ratio                                | 0.40          | 0.40          | 0.40            | 0.40          | 0.14                  |   |
| Control Delay                            | 11.9          | 20.9          | 19.9            | 4.9           | 11.6                  |   |
| Queue Delay                              | 0.0           | 20.9          | 0.0             | 4.9           | 0.0                   |   |
| Total Delay                              | 11.9          | 20.9          | 19.9            | 4.9           | 11.6                  |   |
| LOS                                      | H.3           | 20.9<br>C     | 13.3<br>B       | 4.5<br>A      | B                     |   |
| Approach Delay                           | D             | 20.7          | 18.6            | A             | 11.6                  |   |
| Approach LOS                             |               | 20.7<br>C     | 10.0<br>B       |               | B                     |   |
| Approach LOS                             |               | U             | D               |               | D                     |   |
| Intersection Summary                     |               |               |                 |               |                       |   |
| Cycle Length: 60.2                       |               |               |                 |               |                       |   |
| Actuated Cycle Length: 60.2              |               |               |                 |               |                       |   |
| Offset: 34 (56%), Referenced             | I to phase    | 2:EBTL        | and 6:WB        | T, Start o    | f Green               |   |
| Natural Cycle: 65                        |               |               |                 |               |                       |   |
| Control Type: Actuated-Coor              | dinated       |               |                 |               |                       |   |
| Maximum v/c Ratio: 0.69                  |               |               |                 |               |                       |   |
| Intersection Signal Delay: 19            | .2            |               |                 | lr            | tersection LOS: B     |   |
| Intersection Capacity Utilizati          | on 48.1%      |               |                 | IC            | CU Level of Service A | 1 |
| Analysis Period (min) 15                 |               |               |                 |               |                       |   |

| → <sub>Ø2 (R)</sub> | Ø4   |  |
|---------------------|------|--|
| 30.2 s              | 30 s |  |
| +                   |      |  |
| Ø6 (R)              |      |  |

10042 - Caledon Quarry TIS TYLin

| Queues                 |        |        |         |        |       | Future Total 2037 PM Peak Hour |
|------------------------|--------|--------|---------|--------|-------|--------------------------------|
| 101: Charleston Si     | deroad | (RR 24 | 1) & Si | te Acc | ess   | 01/15/2025                     |
|                        | ٦      | -      | +       | ×      | 1     |                                |
| Lane Group             | EBL    | EBT    | WBT     | WBR    | SBL   |                                |
| Lane Group Flow (vph)  | 10     | 531    | 505     | 45     | 70    |                                |
| v/c Ratio              | 0.05   | 0.69   | 0.66    | 0.11   | 0.14  |                                |
| Control Delay          | 11.9   | 20.9   | 19.9    | 4.9    | 11.6  |                                |
| Queue Delay            | 0.0    | 0.0    | 0.0     | 0.0    | 0.0   |                                |
| Total Delay            | 11.9   | 20.9   | 19.9    | 4.9    | 11.6  |                                |
| Queue Length 50th (m)  | 0.7    | 46.8   | 43.8    | 0.0    | 4.2   |                                |
| Queue Length 95th (m)  | 3.1    | 77.1   | 72.2    | 5.0    | 11.0  |                                |
| Internal Link Dist (m) |        | 610.5  | 750.9   |        | 106.2 |                                |
| Turn Bay Length (m)    | 130.0  |        |         | 75.0   |       |                                |
| Base Capacity (vph)    | 222    | 765    | 765     | 424    | 497   |                                |
| Starvation Cap Reductn | 0      | 0      | 0       | 0      | 0     |                                |
| Spillback Cap Reductn  | 0      | 0      | 0       | 0      | 0     |                                |
| Storage Cap Reductn    | 0      | 0      | 0       | 0      | 0     |                                |
| Reduced v/c Ratio      | 0.05   | 0.69   | 0.66    | 0.11   | 0.14  |                                |
| Intersection Summary   |        |        |         |        |       |                                |

| 10042 - Caledon Quarry TIS |  |
|----------------------------|--|
| TYLin                      |  |

Synchro 10 Report Page 9 HCM Signalized Intersection Capacity Analysis 101: Charleston Sideroad (RR 24) & Site Access Future Total 2037 PM Peak Hour 01/15/2025

|                               | ≯          | -        | +        | •    | 1          | 1                |      |  |
|-------------------------------|------------|----------|----------|------|------------|------------------|------|--|
| Movement                      | EBL        | EBT      | WBT      | WBR  | SBL        | SBR              |      |  |
| Lane Configurations           | ٦          | <b>↑</b> | <b>↑</b> | 1    | Y          |                  |      |  |
| Traffic Volume (vph)          | 10         | 531      | 505      | 45   | 58         | 7                |      |  |
| Future Volume (vph)           | 10         | 531      | 505      | 45   | 58         | 7                |      |  |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900     | 1900 | 1900       | 1900             |      |  |
| Total Lost time (s)           | 6.2        | 6.2      | 6.2      | 6.2  | 6.0        |                  |      |  |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00     | 1.00 | 1.00       |                  |      |  |
| Frt                           | 1.00       | 1.00     | 1.00     | 0.85 | 0.99       |                  |      |  |
| Flt Protected                 | 0.95       | 1.00     | 1.00     | 1.00 | 0.96       |                  |      |  |
| Satd. Flow (prot)             | 1659       | 1921     | 1921     | 996  | 1239       |                  |      |  |
| Flt Permitted                 | 0.32       | 1.00     | 1.00     | 1.00 | 0.96       |                  |      |  |
| Satd. Flow (perm)             | 559        | 1921     | 1921     | 996  | 1239       |                  |      |  |
| Peak-hour factor, PHF         | 1.00       | 1.00     | 1.00     | 1.00 | 0.92       | 1.00             |      |  |
| Adj. Flow (vph)               | 10         | 531      | 505      | 45   | 63         | 7                |      |  |
| RTOR Reduction (vph)          | 0          | 0        | 0        | 27   | 4          | 0                |      |  |
| Lane Group Flow (vph)         | 10         | 531      | 505      | 18   | 66         | 0                |      |  |
| Heavy Vehicles (%)            | 10%        | 0%       | 0%       | 64%  | 50%        | 14%              |      |  |
| Turn Type                     | Perm       | NA       | NA       | Perm | Prot       |                  |      |  |
| Protected Phases              |            | 2        | 6        |      | 4          |                  |      |  |
| Permitted Phases              | 2          |          |          | 6    |            |                  |      |  |
| Actuated Green, G (s)         | 24.0       | 24.0     | 24.0     | 24.0 | 24.0       |                  |      |  |
| Effective Green, g (s)        | 24.0       | 24.0     | 24.0     | 24.0 | 24.0       |                  |      |  |
| Actuated g/C Ratio            | 0.40       | 0.40     | 0.40     | 0.40 | 0.40       |                  |      |  |
| Clearance Time (s)            | 6.2        | 6.2      | 6.2      | 6.2  | 6.0        |                  |      |  |
| Vehicle Extension (s)         | 5.0        | 5.0      | 5.0      | 5.0  | 5.0        |                  |      |  |
| Lane Grp Cap (vph)            | 222        | 765      | 765      | 397  | 493        |                  |      |  |
| v/s Ratio Prot                |            | c0.28    | 0.26     |      | c0.05      |                  |      |  |
| v/s Ratio Perm                | 0.02       |          |          | 0.02 |            |                  |      |  |
| v/c Ratio                     | 0.05       | 0.69     | 0.66     | 0.05 | 0.13       |                  |      |  |
| Uniform Delay, d1             | 11.1       | 15.0     | 14.8     | 11.1 | 11.5       |                  |      |  |
| Progression Factor            | 1.00       | 1.00     | 1.00     | 1.00 | 1.00       |                  |      |  |
| Incremental Delay, d2         | 0.4        | 5.1      | 4.4      | 0.2  | 0.6        |                  |      |  |
| Delay (s)                     | 11.5       | 20.2     | 19.2     | 11.3 | 12.1       |                  |      |  |
| Level of Service              | B          | C        | B        | B    | B          |                  |      |  |
| Approach Delay (s)            | 5          | 20.0     | 18.6     | U    | 12.1       |                  |      |  |
| Approach LOS                  |            | C        | B        |      | B          |                  |      |  |
| Intersection Summary          |            |          |          |      |            |                  |      |  |
| HCM 2000 Control Delay        |            |          | 18.9     | H    | CM 2000    | Level of Service | В    |  |
| HCM 2000 Volume to Capa       | city ratio |          | 0.41     |      |            |                  |      |  |
| Actuated Cycle Length (s)     |            |          | 60.2     | Si   | um of lost | time (s)         | 12.2 |  |
| Intersection Capacity Utiliza | ation      |          | 48.1%    | IC   | U Level o  | f Service        | А    |  |
| Analysis Period (min)         |            |          | 15       |      |            |                  |      |  |
| c Critical Lane Group         |            |          |          |      |            |                  |      |  |

10042 - Caledon Quarry TIS TYLin

|                              | ٦           | -      | $\mathbf{r}$ | 4         | +           | •          | 1     | Ť     | 1     | Ŧ           |  |
|------------------------------|-------------|--------|--------------|-----------|-------------|------------|-------|-------|-------|-------------|--|
| Lane Group                   | EBL         | EBT    | EBR          | WBL       | WBT         | WBR        | NBL   | NBT   | SBL   | SBT         |  |
| Lane Configurations          | ň           | 1      | 1            | <u> </u>  | 1           | 1          | ሻ     | đħ    | ۲     | <b>≜</b> †₽ |  |
| Traffic Volume (vph)         | 115         | 241    | 136          | 146       | 243         | 34         | 216   | 1486  | 60    | 1214        |  |
| Future Volume (vph)          | 115         | 241    | 136          | 146       | 243         | 34         | 216   | 1486  | 60    | 1214        |  |
| Turn Type                    | pm+pt       | NA     | Perm         | pm+pt     | NA          | Perm       | pm+pt | NA    | pm+pt | NA          |  |
| Protected Phases             | 7           | 4      |              | 3         | 8           |            | 5     | 2     |       | 6           |  |
| Permitted Phases             | 4           |        | 4            | 8         |             | 8          | 2     |       | 6     |             |  |
| Detector Phase               | 7           | 4      | 4            | 3         | 8           | 8          | 5     | 2     | 1     | 6           |  |
| Switch Phase                 |             |        |              |           |             |            |       |       |       |             |  |
| Minimum Initial (s)          | 7.0         | 10.0   | 10.0         | 7.0       | 10.0        | 10.0       | 7.0   | 20.0  | 7.0   | 20.0        |  |
| Minimum Split (s)            | 10.0        | 17.9   | 17.9         | 10.0      | 17.9        | 17.9       | 10.0  | 44.4  | 10.0  | 44.4        |  |
| Total Split (s)              | 10.0        | 31.9   | 31.9         | 10.0      | 31.9        | 31.9       | 13.0  | 74.4  | 13.0  | 74.4        |  |
| Total Split (%)              | 7.7%        | 24.7%  | 24.7%        | 7.7%      | 24.7%       | 24.7%      | 10.1% | 57.5% | 10.1% | 57.5%       |  |
| Yellow Time (s)              | 3.0         | 4.5    | 4.5          | 3.0       | 4.5         | 4.5        | 3.0   | 5.0   | 3.0   | 5.0         |  |
| All-Red Time (s)             | 0.0         | 2.4    | 2.4          | 0.0       | 2.4         | 2.4        | 0.0   | 2.4   | 0.0   | 2.4         |  |
| Lost Time Adjust (s)         | 0.0         | 0.0    | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0         |  |
| Total Lost Time (s)          | 3.0         | 6.9    | 6.9          | 3.0       | 6.9         | 6.9        | 3.0   | 7.4   | 3.0   | 7.4         |  |
| Lead/Lag                     | Lead        | Lag    | Lag          | Lead      | Lag         | Lag        | Lead  | Lag   | Lead  | Lag         |  |
| Lead-Lag Optimize?           | Yes         | Ŭ      | Ŭ            |           | Yes         | Yes        | Yes   | Yes   | Yes   | Yes         |  |
| Recall Mode                  | None        | None   | None         | None      | None        | None       | None  | C-Max | None  | C-Max       |  |
| Act Effct Green (s)          | 33.6        | 22.7   | 22.7         | 33.6      | 22.7        | 22.7       | 85.9  | 73.4  | 79.2  | 67.0        |  |
| Actuated g/C Ratio           | 0.26        | 0.18   | 0.18         | 0.26      | 0.18        | 0.18       | 0.66  | 0.57  | 0.61  | 0.52        |  |
| v/c Ratio                    | 0.56        | 0.85   | 0.41         | 0.73      | 0.82        | 0.10       | 0.93  | 0.84  | 0.41  | 0.78        |  |
| Control Delay                | 46.5        | 76.6   | 10.8         | 59.7      | 72.1        | 0.6        | 68.0  | 29.4  | 19.5  | 29.2        |  |
| Queue Delay                  | 0.0         | 0.0    | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0         |  |
| Total Delay                  | 46.5        | 76.6   | 10.8         | 59.7      | 72.1        | 0.6        | 68.0  | 29.4  | 19.5  | 29.2        |  |
| LOS                          | D           | E      | В            | E         | E           | А          | E     | С     | В     | С           |  |
| Approach Delay               |             | 51.4   |              |           | 62.2        |            |       | 34.0  |       | 28.7        |  |
| Approach LOS                 |             | D      |              |           | E           |            |       | С     |       | С           |  |
| Intersection Summary         |             |        |              |           |             |            |       |       |       |             |  |
| Cycle Length: 129.3          |             |        |              |           |             |            |       |       |       |             |  |
| Actuated Cycle Length: 12    | 9.3         |        |              |           |             |            |       |       |       |             |  |
| Offset: 85 (66%), Reference  |             | 2:NBTL | and 6:SB     | TL, Start | of Green    |            |       |       |       |             |  |
| Natural Cycle: 95            |             |        |              |           |             |            |       |       |       |             |  |
| Control Type: Actuated-Co    | ordinated   |        |              |           |             |            |       |       |       |             |  |
| Maximum v/c Ratio: 0.93      |             |        |              |           |             |            |       |       |       |             |  |
| Intersection Signal Delay:   | 37.2        |        |              | Ir        | ntersection | 1 LOS: D   |       |       |       |             |  |
| Intersection Capacity Utiliz | ation 93.2% |        |              | IC        | CU Level    | of Service | e F   |       |       |             |  |
| Analysis Period (min) 15     |             |        |              |           |             |            |       |       |       |             |  |

| Ø1          | Ø2 (R) | <b>4</b> | <b>0</b> 3 | <i>€</i> Ø4 |  |
|-------------|--------|----------|------------|-------------|--|
| 13 s        | 74.4 s | 10 s     |            | 31.9 s      |  |
| <b>1</b> Ø5 | Ø6 (R) | ∕        | 37         |             |  |
| 13 s        | 74.4 s | 10 s     |            | 31.9 s      |  |

Synchro 10 Report Page 1

|                        | ≯    | -      | $\mathbf{i}$ | 1     | +     | •    | 1     | 1      | 1    | . ↓   |  |
|------------------------|------|--------|--------------|-------|-------|------|-------|--------|------|-------|--|
| Lane Group             | EBL  | EBT    | EBR          | WBL   | WBT   | WBR  | NBL   | NBT    | SBL  | SBT   |  |
| Lane Group Flow (vph)  | 120  | 251    | 142          | 152   | 253   | 35   | 225   | 1694   | 63   | 1348  |  |
| v/c Ratio              | 0.56 | 0.85   | 0.41         | 0.73  | 0.82  | 0.10 | 0.93  | 0.84   | 0.41 | 0.78  |  |
| Control Delay          | 46.5 | 76.6   | 10.8         | 59.7  | 72.1  | 0.6  | 68.0  | 29.4   | 19.5 | 29.2  |  |
| Queue Delay            | 0.0  | 0.0    | 0.0          | 0.0   | 0.0   | 0.0  | 0.0   | 0.0    | 0.0  | 0.0   |  |
| Total Delay            | 46.5 | 76.6   | 10.8         | 59.7  | 72.1  | 0.6  | 68.0  | 29.4   | 19.5 | 29.2  |  |
| Queue Length 50th (m)  | 23.0 | 61.3   | 0.0          | 29.9  | 61.4  | 0.0  | ~36.7 | 192.6  | 5.4  | 141.2 |  |
| Queue Length 95th (m)  | 38.9 | #99.0  | 17.6         | #52.9 | #96.2 | 0.0  | #90.0 | #245.5 | 14.1 | 170.5 |  |
| Internal Link Dist (m) |      | 1351.4 |              |       | 575.0 |      |       | 764.6  |      | 536.2 |  |
| Turn Bay Length (m)    | 80.0 |        | 65.0         | 40.0  |       | 55.0 | 85.0  |        | 40.0 |       |  |
| Base Capacity (vph)    | 215  | 325    | 364          | 207   | 340   | 372  | 241   | 2006   | 181  | 1721  |  |
| Starvation Cap Reductn | 0    | 0      | 0            | 0     | 0     | 0    | 0     | 0      | 0    | 0     |  |
| Spillback Cap Reductn  | 0    | 0      | 0            | 0     | 0     | 0    | 0     | 0      | 0    | 0     |  |
| Storage Cap Reductn    | 0    | 0      | 0            | 0     | 0     | 0    | 0     | 0      | 0    | 0     |  |
| Reduced v/c Ratio      | 0.56 | 0.77   | 0.39         | 0.73  | 0.74  | 0.09 | 0.93  | 0.84   | 0.35 | 0.78  |  |

# 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

10042 - Caledon Quarry TIS TYLin

|                                | ≯         | _        | $\sim$ | 1        | -          | •          | •        | ŧ          | *    | 5       | T          | 1    |
|--------------------------------|-----------|----------|--------|----------|------------|------------|----------|------------|------|---------|------------|------|
|                                |           | FDT      | •      |          | WDT        |            | NDI      | NDT        |      | 0.01    |            | 000  |
| Movement                       | EBL       | EBT      | EBR    | WBL      | WBT        | WBR        | NBL      | NBT        | NBR  | SBL     | SBT        | SBF  |
| Lane Configurations            | <u> </u>  | <b>^</b> | 1      | <u> </u> | 1          | 1          | <u> </u> | <b>†</b> ] |      | <u></u> | <b>†</b> ₽ |      |
| Traffic Volume (vph)           | 115       | 241      | 136    | 146      | 243        | 34         | 216      | 1486       | 140  | 60      | 1214       | 80   |
| Future Volume (vph)            | 115       | 241      | 136    | 146      | 243        | 34         | 216      | 1486       | 140  | 60      | 1214       | 80   |
| Ideal Flow (vphpl)             | 1900      | 1900     | 1900   | 1900     | 1900       | 1900       | 1900     | 1900       | 1900 | 1900    | 1900       | 1900 |
| Total Lost time (s)            | 3.0       | 6.9      | 6.9    | 3.0      | 6.9        | 6.9        | 3.0      | 7.4        |      | 3.0     | 7.4        |      |
| Lane Util. Factor              | 1.00      | 1.00     | 1.00   | 1.00     | 1.00       | 1.00       | 1.00     | 0.95       |      | 1.00    | 0.95       |      |
| Frpb, ped/bikes                | 1.00      | 1.00     | 0.98   | 1.00     | 1.00       | 0.98       | 1.00     | 1.00       |      | 1.00    | 1.00       |      |
| Flpb, ped/bikes                | 1.00      | 1.00     | 1.00   | 1.00     | 1.00       | 1.00       | 1.00     | 1.00       |      | 1.00    | 1.00       |      |
| Frt                            | 1.00      | 1.00     | 0.85   | 1.00     | 1.00       | 0.85       | 1.00     | 0.99       |      | 1.00    | 0.99       |      |
| Fit Protected                  | 0.95      | 1.00     | 1.00   | 0.95     | 1.00       | 1.00       | 0.95     | 1.00       |      | 0.95    | 1.00       |      |
| Satd. Flow (prot)              | 1737      | 1685     | 1294   | 1658     | 1762       | 1557       | 1573     | 3524       |      | 1615    | 3313       |      |
| Fit Permitted                  | 0.32      | 1.00     | 1.00   | 0.33     | 1.00       | 1.00       | 0.10     | 1.00       |      | 0.06    | 1.00       |      |
| Satd. Flow (perm)              | 590       | 1685     | 1294   | 572      | 1762       | 1557       | 162      | 3524       |      | 101     | 3313       |      |
| Peak-hour factor, PHF          | 0.96      | 0.96     | 0.96   | 0.96     | 0.96       | 0.96       | 0.96     | 0.96       | 0.96 | 0.96    | 0.96       | 0.96 |
| Adj. Flow (vph)                | 120       | 251      | 142    | 152      | 253        | 35         | 225      | 1548       | 146  | 62      | 1265       | 83   |
| RTOR Reduction (vph)           | 0         | 0        | 117    | 0        | 0          | 29         | 0        | 5          | 0    | 0       | 4          | (    |
| Lane Group Flow (vph)          | 120       | 251      | 25     | 152      | 253        | 6          | 225      | 1689       | 0    | 63      | 1344       | (    |
| Confl. Peds. (#/hr)            | 5         |          | 4      | 4        |            | 5          | 2        |            | 3    | 3       |            | 2    |
| Confl. Bikes (#/hr)            |           |          | 1      |          |            | 1          |          |            | 1    |         |            | 1    |
| Heavy Vehicles (%)             | 5%        | 14%      | 24%    | 10%      | 9%         | 3%         | 16%      | 2%         | 2%   | 13%     | 9%         | 9%   |
| Turn Type                      | pm+pt     | NA       | Perm   | pm+pt    | NA         | Perm       | pm+pt    | NA         |      | pm+pt   | NA         |      |
| Protected Phases               | 7         | 4        |        | 3        | 8          |            | 5        | 2          |      | 1       | 6          |      |
| Permitted Phases               | 4         |          | 4      | 8        |            | 8          | 2        |            |      | 6       | 07.0       |      |
| Actuated Green, G (s)          | 29.7      | 22.7     | 22.7   | 29.7     | 22.7       | 22.7       | 82.3     | 72.9       |      | 73.4    | 67.0       |      |
| Effective Green, g (s)         | 29.7      | 22.7     | 22.7   | 29.7     | 22.7       | 22.7       | 82.3     | 72.9       |      | 73.4    | 67.0       |      |
| Actuated g/C Ratio             | 0.23      | 0.18     | 0.18   | 0.23     | 0.18       | 0.18       | 0.64     | 0.56       |      | 0.57    | 0.52       |      |
| Clearance Time (s)             | 3.0       | 6.9      | 6.9    | 3.0      | 6.9        | 6.9        | 3.0      | 7.4        |      | 3.0     | 7.4        |      |
| Vehicle Extension (s)          | 3.0       | 3.0      | 3.0    | 3.0      | 3.0        | 3.0        | 3.0      | 4.4        |      | 3.0     | 4.4        |      |
| Lane Grp Cap (vph)             | 197       | 295      | 227    | 190      | 309        | 273        | 237      | 1986       |      | 132     | 1716       |      |
| v/s Ratio Prot                 | 0.03      | c0.15    |        | c0.04    | 0.14       |            | c0.09    | 0.48       |      | 0.02    | 0.41       |      |
| v/s Ratio Perm                 | 0.11      |          | 0.02   | 0.14     |            | 0.00       | c0.51    |            |      | 0.25    |            |      |
| v/c Ratio                      | 0.61      | 0.85     | 0.11   | 0.80     | 0.82       | 0.02       | 0.95     | 0.85       |      | 0.48    | 0.78       |      |
| Uniform Delay, d1              | 42.2      | 51.7     | 44.8   | 45.8     | 51.3       | 44.1       | 30.9     | 23.6       |      | 21.5    | 25.3       |      |
| Progression Factor             | 1.00      | 1.00     | 1.00   | 1.00     | 1.00       | 1.00       | 1.00     | 1.00       |      | 1.00    | 1.00       |      |
| Incremental Delay, d2          | 5.3       | 20.3     | 0.2    | 20.9     | 15.4       | 0.0        | 44.0     | 4.8        |      | 2.7     | 3.7        |      |
| Delay (s)                      | 47.4      | 72.0     | 45.0   | 66.7     | 66.7       | 44.2       | 74.8     | 28.4       |      | 24.2    | 28.9       |      |
| Level of Service               | D         | E        | D      | E        | E          | D          | E        | С          |      | С       | С          |      |
| Approach Delay (s)             |           | 58.8     |        |          | 64.9       |            |          | 33.9       |      |         | 28.7       |      |
| Approach LOS                   |           | E        |        |          | E          |            |          | С          |      |         | С          |      |
| Intersection Summary           |           |          |        |          |            |            |          |            |      |         |            |      |
| HCM 2000 Control Delay         |           |          | 38.3   | H        | CM 2000    | Level of   | Service  |            | D    |         |            |      |
| HCM 2000 Volume to Capac       | ity ratio |          | 0.94   |          |            |            |          |            |      |         |            |      |
| Actuated Cycle Length (s)      |           |          | 129.3  | Si       | um of lost | t time (s) |          |            | 20.3 |         |            |      |
| Intersection Capacity Utilizat | ion       |          | 93.2%  | IC       | U Level o  | of Service | 9        |            | F    |         |            |      |
| Analysis Period (min)          |           |          | 15     |          |            |            |          |            |      |         |            |      |

Synchro 10 Report Page 3

|                                             | ٦              |              |          | -               | •              | •             | t t           | ×             | Ţ              |  |
|---------------------------------------------|----------------|--------------|----------|-----------------|----------------|---------------|---------------|---------------|----------------|--|
| Lane Group                                  | EBL            | EBT          | WBL      | WBT             | WBR            | NBL           | NBT           | SBL           | SBT            |  |
|                                             | <u> </u>       | 1.           |          | •               | 1              |               |               | <u>, 30L</u>  | <u>الان</u>    |  |
| Lane Configurations<br>Traffic Volume (vph) | <b>1</b><br>49 | <b>3</b> 67  | 1<br>6   | <b>T</b><br>341 | <b>r</b><br>51 | <b>1</b><br>3 | <b>∳</b><br>8 | ר<br>55       | <b>₽</b><br>12 |  |
| Future Volume (vph)                         | 49             | 367          | 6        | 341             | 51             | 3             | 0<br>8        | 55            | 12             |  |
| Turn Type                                   | Perm           | NA           | Perm     | NA              | Perm           | Perm          | o<br>NA       | Perm          | NA             |  |
| Protected Phases                            | Penn           | 2            | Penn     | 2               | Penn           | Penn          | 4             | Penn          | NA<br>4        |  |
| Permitted Phases                            | 2              | 2            | 2        | 2               | 2              | 4             | 4             | 4             | 4              |  |
| Detector Phase                              | 2              | 2            | 2        | 2               | 2              | 4             | 4             | 4             | 4              |  |
|                                             | 2              | 2            | 2        | 2               | 2              | 4             | 4             | 4             | 4              |  |
| Switch Phase                                | 20.0           | 20.0         | 20.0     | 20.0            | 20.0           | 16.0          | 16.0          | 16.0          | 16.0           |  |
| Minimum Initial (s)                         |                | 20.0         | 20.0     | 20.0            | 20.0           | 30.6          | 16.0<br>30.6  | 30.6          | 16.0<br>30.6   |  |
| Minimum Split (s)                           | 30.6           | 30.6<br>46.6 |          |                 | 30.6<br>46.6   |               |               | 30.6<br>36.6  | 30.6<br>36.6   |  |
| Total Split (s)                             | 46.6           |              | 46.6     | 46.6            | 46.6<br>56.0%  | 36.6          | 36.6<br>44.0% | 36.6<br>44.0% | 36.6<br>44.0%  |  |
| Total Split (%)                             | 56.0%          | 56.0%        | 56.0%    | 56.0%<br>4.6    | 56.0%<br>4.6   | 44.0%         | 44.0%         | 44.0%         | 44.0%<br>4.6   |  |
| Yellow Time (s)                             | 4.6            | 4.6          | 4.6      |                 |                | 4.6           |               |               |                |  |
| All-Red Time (s)                            | 2.0            | 2.0          | 2.0      | 2.0             | 2.0            | 2.0           | 2.0           | 2.0           | 2.0            |  |
| Lost Time Adjust (s)                        | 0.0            | 0.0          | 0.0      | 0.0             | 0.0            | 0.0           | 0.0           | 0.0           | 0.0            |  |
| Total Lost Time (s)                         | 6.6            | 6.6          | 6.6      | 6.6             | 6.6            | 6.6           | 6.6           | 6.6           | 6.6            |  |
| Lead/Lag                                    |                |              |          |                 |                |               |               |               |                |  |
| Lead-Lag Optimize?                          | 0.145-         | 0.16-        | 0.16-    | 0.16-           | 0.16-          | News          | Mana          | News          | Nezz           |  |
| Recall Mode                                 | C-Min          | C-Min        | C-Min    | C-Min           | C-Min          | None          | None          | None          | None           |  |
| Act Effct Green (s)                         | 59.8           | 59.8         | 59.8     | 59.8            | 59.8           | 16.0          | 16.0          | 16.0          | 16.0           |  |
| Actuated g/C Ratio                          | 0.72           | 0.72         | 0.72     | 0.72            | 0.72           | 0.19          | 0.19          | 0.19          | 0.19           |  |
| v/c Ratio                                   | 0.07           | 0.34         | 0.01     | 0.30            | 0.05           | 0.01          | 0.04          | 0.21          | 0.16           |  |
| Control Delay                               | 5.7            | 7.1          | 5.3      | 6.8             | 1.7            | 27.7          | 22.4          | 30.6          | 13.7           |  |
| Queue Delay                                 | 0.0            | 0.0          | 0.0      | 0.0             | 0.0            | 0.0           | 0.0           | 0.0           | 0.0            |  |
| Total Delay                                 | 5.7            | 7.1          | 5.3      | 6.8             | 1.7            | 27.7<br>C     | 22.4          | 30.6<br>C     | 13.7<br>B      |  |
| LOS                                         | A              | A            | А        | A               | А              | C             | C             | C             |                |  |
| Approach Delay                              |                | 6.9          |          | 6.1             |                |               | 23.4          |               | 22.3           |  |
| Approach LOS                                |                | A            |          | A               |                |               | С             |               | С              |  |
| Intersection Summary                        |                |              |          |                 |                |               |               |               |                |  |
| Cycle Length: 83.2                          |                |              |          |                 |                |               |               |               |                |  |
| Actuated Cycle Length: 83                   | .2             |              |          |                 |                |               |               |               |                |  |
| Offset: 22.5 (27%), Refere                  |                | se 2:EBW     | B and 6: | Start of 0      | Green          |               |               |               |                |  |
| Natural Cycle: 65                           | and the price  |              |          |                 |                |               |               |               |                |  |
| Control Type: Actuated-Co                   | ordinated      |              |          |                 |                |               |               |               |                |  |
| Maximum v/c Ratio: 0.34                     |                |              |          |                 |                |               |               |               |                |  |
| Intersection Signal Delay:                  | 8.6            |              |          | Ir              | ntersectio     | n LOS: A      |               |               |                |  |
| Intersection Capacity Utiliz                |                |              |          |                 | CU Level       |               | эC            |               |                |  |
| Analysis Period (min) 15                    |                |              |          |                 |                |               |               |               |                |  |
| Splits and Phases: 2: C                     | ataract Road   |              |          |                 |                |               |               |               |                |  |

10042 - Caledon Quarry TIS TYLin

|                        | ≯     | -     | 1    | +      | •    | 1    | 1     | 1    | Ŧ      |  |
|------------------------|-------|-------|------|--------|------|------|-------|------|--------|--|
| Lane Group             | EBL   | EBT   | WBL  | WBT    | WBR  | NBL  | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 51    | 390   | 6    | 355    | 53   | 3    | 13    | 57   | 55     |  |
| v/c Ratio              | 0.07  | 0.34  | 0.01 | 0.30   | 0.05 | 0.01 | 0.04  | 0.21 | 0.16   |  |
| Control Delay          | 5.7   | 7.1   | 5.3  | 6.8    | 1.7  | 27.7 | 22.4  | 30.6 | 13.7   |  |
| Queue Delay            | 0.0   | 0.0   | 0.0  | 0.0    | 0.0  | 0.0  | 0.0   | 0.0  | 0.0    |  |
| Total Delay            | 5.7   | 7.1   | 5.3  | 6.8    | 1.7  | 27.7 | 22.4  | 30.6 | 13.7   |  |
| Queue Length 50th (m)  | 2.6   | 25.1  | 0.3  | 22.2   | 0.0  | 0.4  | 1.1   | 7.7  | 1.7    |  |
| Queue Length 95th (m)  | 6.3   | 40.1  | 1.5  | 35.5   | 3.4  | 2.6  | 5.6   | 17.7 | 10.9   |  |
| Internal Link Dist (m) |       | 750.9 |      | 2789.4 |      |      | 883.0 |      | 1179.5 |  |
| Turn Bay Length (m)    | 125.0 |       | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Base Capacity (vph)    | 758   | 1152  | 727  | 1180   | 1144 | 442  | 655   | 518  | 621    |  |
| Starvation Cap Reductn | 0     | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Spillback Cap Reductn  | 0     | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Storage Cap Reductn    | 0     | 0     | 0    | 0      | 0    | 0    | 0     | 0    | 0      |  |
| Reduced v/c Ratio      | 0.07  | 0.34  | 0.01 | 0.30   | 0.05 | 0.01 | 0.02  | 0.11 | 0.09   |  |

|                                              | ≯            | -+           | $\mathbf{r}$ | 1            | -            |              | •            | Ť       | -    | 1     | Ļ       | 4    |
|----------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|------|-------|---------|------|
| Movement                                     | EBL          | EBT          | EBR          | WBL          | WBT          | WBR          | NBL          | NBT     | NBR  | SBL   | SBT     | SBF  |
| Lane Configurations                          | 3            | 1            | LDIX         | 1            | 1            | 1            | 100          | 12      | HER  | 5000  | 1       | 001  |
| Traffic Volume (vph)                         | 49           | 367          | 8            | 6            | 341          | 51           | 3            | 8       | 5    | 55    | 12      | 4(   |
| Future Volume (vph)                          | 49           | 367          | 8            | 6            | 341          | 51           | 3            | 8       | 5    | 55    | 12      | 40   |
| Ideal Flow (vphpl)                           | 1900         | 1900         | 1900         | 1900         | 1900         | 1900         | 1900         | 1900    | 1900 | 1900  | 1900    | 190  |
| Total Lost time (s)                          | 6.6          | 6.6          | 1000         | 6.6          | 6.6          | 6.6          | 6.6          | 6.6     | 1000 | 6.6   | 6.6     | 1001 |
| Lane Util. Factor                            | 1.00         | 1.00         |              | 1.00         | 1.00         | 1.00         | 1.00         | 1.00    |      | 1.00  | 1.00    |      |
| Frt                                          | 1.00         | 1.00         |              | 1.00         | 1.00         | 0.85         | 1.00         | 0.94    |      | 1.00  | 0.89    |      |
| Fit Protected                                | 0.95         | 1.00         |              | 0.95         | 1.00         | 1.00         | 0.95         | 1.00    |      | 0.95  | 1.00    |      |
| Satd. Flow (prot)                            | 1825         | 1601         |              | 1825         | 1642         | 1570         | 1615         | 1810    |      | 1825  | 1651    |      |
| Flt Permitted                                | 0.55         | 1.00         |              | 0.53         | 1.00         | 1.00         | 0.72         | 1.00    |      | 0.75  | 1.00    |      |
| Satd. Flow (perm)                            | 1054         | 1601         |              | 1010         | 1642         | 1570         | 1226         | 1810    |      | 1439  | 1651    |      |
| Peak-hour factor. PHF                        | 0.96         | 0.96         | 0.96         | 0.96         | 0.96         | 0.96         | 0.96         | 0.96    | 0.96 | 0.96  | 0.96    | 0.9  |
| Adj. Flow (vph)                              | 0.90<br>51   | 382          | 0.90         | 0.90         | 355          | 53           | 0.90         | 0.90    | 0.90 | 57    | 12      | 42   |
| RTOR Reduction (vph)                         | 0            | 1            | 0            | 0            | 0            | 17           | 0            | 4       | 0    | 0     | 36      | 4,   |
| Lane Group Flow (vph)                        | 51           | 389          | 0            | 6            | 355          | 36           | 3            | 4<br>9  | 0    | 57    | 19      | (    |
| Heavy Vehicles (%)                           | 0%           | 20%          | 0%           | 0%           | 17%          | 4%           | 13%          | 0%      | 0%   | 0%    | 0%      | 4%   |
|                                              | Perm         | 20 %         | 0 /0         | Perm         | NA           | Perm         | Perm         | NA      | 0 /0 | Perm  | NA      | 4/   |
| Turn Type<br>Protected Phases                | Perm         | NA<br>2      |              | Perm         | NA<br>2      | Perm         | Perm         | NA<br>4 |      | Perm  | NA<br>4 |      |
| Protected Phases<br>Permitted Phases         | 2            | 2            |              | 2            | 2            | 2            | 4            | 4       |      | 4     | 4       |      |
|                                              |              | 57.0         |              |              | F7 0         | 57.2         |              | 12.8    |      | 12.8  | 12.8    |      |
| Actuated Green, G (s)                        | 57.2<br>57.2 | 57.2<br>57.2 |              | 57.2<br>57.2 | 57.2<br>57.2 | 57.2         | 12.8<br>12.8 | 12.0    |      | 12.0  | 12.0    |      |
| Effective Green, g (s)<br>Actuated g/C Ratio | 0.69         | 57.2<br>0.69 |              | 57.2<br>0.69 | 57.2<br>0.69 | 57.2<br>0.69 | 0.15         | 0.15    |      | 0.15  | 0.15    |      |
| Clearance Time (s)                           | 6.6          | 6.6          |              | 6.6          | 6.6          | 6.6          | 6.6          | 6.6     |      | 6.6   | 6.6     |      |
| Vehicle Extension (s)                        | 3.0          | 3.0          |              | 3.0          | 3.0          | 3.0          | 3.0          | 3.0     |      | 3.0   | 3.0     |      |
|                                              |              |              |              |              |              |              |              |         |      |       |         |      |
| Lane Grp Cap (vph)                           | 724          | 1100         |              | 694          | 1128         | 1079         | 188          | 278     |      | 221   | 254     |      |
| v/s Ratio Prot                               | 0.05         | c0.24        |              | 0.04         | 0.22         | 0.00         | 0.00         | 0.00    |      | 0.04  | 0.01    |      |
| v/s Ratio Perm                               | 0.05         | 0.05         |              | 0.01         | 0.04         | 0.02         | 0.00         | 0.00    |      | c0.04 |         |      |
| v/c Ratio                                    | 0.07         | 0.35         |              | 0.01         | 0.31         | 0.03         | 0.02         | 0.03    |      | 0.26  | 0.08    |      |
| Uniform Delay, d1                            | 4.3          | 5.4          |              | 4.1          | 5.2          | 4.2          | 29.9         | 29.9    |      | 31.0  | 30.1    |      |
| Progression Factor                           | 1.00         | 1.00         |              | 1.00         | 1.00         | 1.00         | 1.00         | 1.00    |      | 1.00  | 1.00    |      |
| Incremental Delay, d2                        | 0.2          | 0.9          |              | 0.0          | 0.7          | 0.1          | 0.0          | 0.0     |      | 0.6   | 0.1     |      |
| Delay (s)                                    | 4.5          | 6.3          |              | 4.1          | 5.9          | 4.2          | 29.9         | 30.0    |      | 31.6  | 30.3    |      |
| Level of Service                             | A            | A            |              | A            | A            | A            | С            | C       |      | С     | C       |      |
| Approach Delay (s)                           |              | 6.1          |              |              | 5.7          |              |              | 30.0    |      |       | 31.0    |      |
| Approach LOS                                 |              | A            |              |              | A            |              |              | С       |      |       | С       |      |
| Intersection Summary                         |              |              |              |              |              |              |              |         |      |       |         |      |
| HCM 2000 Control Delay                       |              |              | 9.1          | H            | CM 2000      | Level of S   | Service      |         | Α    |       |         |      |
| HCM 2000 Volume to Capacity                  | ratio        |              | 0.34         |              |              |              |              |         |      |       |         |      |
| Actuated Cycle Length (s)                    |              |              | 83.2         |              | um of lost   |              |              |         | 13.2 |       |         |      |
| Intersection Capacity Utilization            | 1            |              | 65.1%        | IC           | U Level o    | of Service   |              |         | С    |       |         |      |
| Analysis Period (min)                        |              |              | 15           |              |              |              |              |         |      |       |         |      |

Synchro 10 Report Page 5 10042 - Caledon Quarry TIS TYLin

|                               | ≯    | -    | $\mathbf{i}$ | 1    | ←         | •          | •    | 1    | 1                                       | 1    | Ŧ    | ~    |
|-------------------------------|------|------|--------------|------|-----------|------------|------|------|-----------------------------------------|------|------|------|
| Movement                      | EBL  | EBT  | EBR          | WBL  | WBT       | WBR        | NBL  | NBT  | NBR                                     | SBL  | SBT  | SBR  |
| Lane Configurations           | ۲    | f,   |              | ۲    | 4Î        |            |      | 4    |                                         |      | 4    |      |
| Traffic Volume (veh/h)        | 8    | 367  | 8            | 8    | 362       | 8          | 7    | 11   | 11                                      | 16   | 4    | 17   |
| Future Volume (Veh/h)         | 8    | 367  | 8            | 8    | 362       | 8          | 7    | 11   | 11                                      | 16   | 4    | 17   |
| Sign Control                  |      | Free |              |      | Free      |            |      | Stop |                                         |      | Stop |      |
| Grade                         |      | 0%   |              |      | 0%        |            |      | 0%   |                                         |      | 0%   |      |
| Peak Hour Factor              | 0.94 | 0.94 | 0.94         | 0.94 | 0.94      | 0.94       | 0.94 | 0.94 | 0.94                                    | 0.94 | 0.94 | 0.94 |
| Hourly flow rate (vph)        | 9    | 390  | 9            | 9    | 385       | 9          | 7    | 12   | 12                                      | 17   | 4    | 18   |
| Pedestrians                   |      |      |              |      |           |            |      |      |                                         |      |      |      |
| Lane Width (m)                |      |      |              |      |           |            |      |      |                                         |      |      |      |
| Walking Speed (m/s)           |      |      |              |      |           |            |      |      |                                         |      |      |      |
| Percent Blockage              |      |      |              |      |           |            |      |      |                                         |      |      |      |
| Right turn flare (veh)        |      |      |              |      |           |            |      |      |                                         |      |      |      |
| Median type                   |      | None |              |      | None      |            |      |      |                                         |      |      |      |
| Median storage veh)           |      |      |              |      |           |            |      |      |                                         |      |      |      |
| Upstream signal (m)           |      |      |              |      |           |            |      |      |                                         |      |      |      |
| pX, platoon unblocked         |      |      |              |      |           |            |      |      |                                         |      |      |      |
| vC, conflicting volume        | 394  |      |              | 399  |           |            | 836  | 824  | 394                                     | 834  | 824  | 390  |
| vC1, stage 1 conf vol         |      |      |              |      |           |            |      |      |                                         |      |      |      |
| vC2, stage 2 conf vol         |      |      |              |      |           |            |      |      |                                         |      |      |      |
| vCu, unblocked vol            | 394  |      |              | 399  |           |            | 836  | 824  | 394                                     | 834  | 824  | 390  |
| tC, single (s)                | 4.2  |      |              | 4.2  |           |            | 7.3  | 6.5  | 6.3                                     | 7.1  | 6.5  | 6.3  |
| tC, 2 stage (s)               |      |      |              |      |           |            |      |      |                                         |      |      |      |
| tF (s)                        | 2.3  |      |              | 2.3  |           |            | 3.7  | 4.0  | 3.4                                     | 3.5  | 4.0  | 3.4  |
| p0 queue free %               | 99   |      |              | 99   |           |            | 97   | 96   | 98                                      | 94   | 99   | 97   |
| cM capacity (veh/h)           | 1122 |      |              | 1093 |           |            | 254  | 305  | 637                                     | 273  | 305  | 635  |
| Direction, Lane #             | EB 1 | EB 2 | WB 1         | WB 2 | NB 1      | SB 1       |      |      |                                         |      |      |      |
| Volume Total                  | 9    | 399  | 9            | 394  | 31        | 39         |      |      |                                         |      |      |      |
| Volume Left                   | 9    | 0    | 9            | 0    | 7         | 17         |      |      |                                         |      |      |      |
| Volume Right                  | 0    | 9    | 0            | 9    | 12        | 18         |      |      |                                         |      |      |      |
| cSH                           | 1122 | 1700 | 1093         | 1700 | 362       | 376        |      |      |                                         |      |      |      |
| Volume to Capacity            | 0.01 | 0.23 | 0.01         | 0.23 | 0.09      | 0.10       |      |      |                                         |      |      |      |
| Queue Length 95th (m)         | 0.2  | 0.0  | 0.2          | 0.0  | 2.1       | 2.6        |      |      |                                         |      |      |      |
| Control Delay (s)             | 8.2  | 0.0  | 8.3          | 0.0  | 15.9      | 15.7       |      |      |                                         |      |      |      |
| Lane LOS                      | А    |      | А            |      | С         | С          |      |      |                                         |      |      |      |
| Approach Delay (s)            | 0.2  |      | 0.2          |      | 15.9      | 15.7       |      |      |                                         |      |      |      |
| Approach LOS                  |      |      |              |      | С         | С          |      |      |                                         |      |      |      |
| Intersection Summary          |      |      |              |      |           |            |      |      |                                         |      |      |      |
| Average Delay                 |      |      | 1.4          |      |           |            |      |      |                                         |      |      |      |
| Intersection Capacity Utiliza | tion |      | 30.2%        | IC   | U Level o | of Service |      |      | А                                       |      |      |      |
| Analysis Period (min)         |      |      | 15           |      | 5 201010  |            |      |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |      |      |      |

Synchro 10 Report Page 7

| Timings<br>101: Charleston S | Sideroad      | (RR 2    | 4) & Si       | te Acc     | <b>6</b> 55         | Future Total 2037 SAT Peak Hou<br>01/15/20 |
|------------------------------|---------------|----------|---------------|------------|---------------------|--------------------------------------------|
| To T. Onuneston e            | <u>,</u>      | <u></u>  | <u>+) a o</u> | <u> </u>   | <b>\</b>            |                                            |
| Lane Group                   | EBL           | EBT      | WBT           | WBR        | SBL                 |                                            |
| Lane Configurations          | ľ             | •        | •             | 1          | Y                   |                                            |
| Traffic Volume (vph)         | 1             | 395      | 358           | 29         | 29                  |                                            |
| Future Volume (vph)          | 1             | 395      | 358           | 29         | 29                  |                                            |
| Turn Type                    | Perm          | NA       | NA            | Perm       | Prot                |                                            |
| Protected Phases             |               | 2        | 6             |            | 4                   |                                            |
| Permitted Phases             | 2             |          |               | 6          |                     |                                            |
| Detector Phase               | 2             | 2        | 6             | 6          | 4                   |                                            |
| Switch Phase                 |               |          |               |            |                     |                                            |
| Minimum Initial (s)          | 12.0          | 12.0     | 12.0          | 12.0       | 12.0                |                                            |
| Minimum Split (s)            | 30.2          | 30.2     | 30.2          | 30.2       | 30.0                |                                            |
| Total Split (s)              | 30.2          | 30.2     | 30.2          | 30.2       | 30.0                |                                            |
| Total Split (%)              | 50.2%         | 50.2%    | 50.2%         | 50.2%      | 49.8%               |                                            |
| Yellow Time (s)              | 4.2           | 4.2      | 4.2           | 4.2        | 4.0                 |                                            |
| All-Red Time (s)             | 2.0           | 2.0      | 2.0           | 2.0        | 2.0                 |                                            |
| Lost Time Adjust (s)         | 0.0           | 0.0      | 0.0           | 0.0        | 0.0                 |                                            |
| Total Lost Time (s)          | 6.2           | 6.2      | 6.2           | 6.2        | 6.0                 |                                            |
| Lead/Lag                     |               |          |               |            |                     |                                            |
| Lead-Lag Optimize?           |               |          |               |            |                     |                                            |
| Recall Mode                  | C-Max         | C-Max    | C-Max         | C-Max      | Max                 |                                            |
| Act Effct Green (s)          | 24.0          | 24.0     | 24.0          | 24.0       | 24.0                |                                            |
| Actuated g/C Ratio           | 0.40          | 0.40     | 0.40          | 0.40       | 0.40                |                                            |
| v/c Ratio                    | 0.01          | 0.52     | 0.47          | 0.08       | 0.08                |                                            |
| Control Delay                | 11.0          | 16.7     | 15.9          | 5.6        | 11.8                |                                            |
| Queue Delay                  | 0.0           | 0.0      | 0.0           | 0.0        | 0.0                 |                                            |
| Total Delay                  | 11.0          | 16.7     | 15.9          | 5.6        | 11.8                |                                            |
| LOS                          | В             | В        | В             | А          | В                   |                                            |
| Approach Delay               |               | 16.7     | 15.1          |            | 11.8                |                                            |
| Approach LOS                 |               | В        | В             |            | В                   |                                            |
| Intersection Summary         |               |          |               |            |                     |                                            |
| Cycle Length: 60.2           |               |          |               |            |                     |                                            |
| Actuated Cycle Length: 6     |               |          |               |            |                     |                                            |
| Offset: 33 (55%), Referen    | nced to phase | 2:EBTL   | and 6:WE      | T, Start o | f Green             |                                            |
| Natural Cycle: 65            |               |          |               |            |                     |                                            |
| Control Type: Actuated-C     | oordinated    |          |               |            |                     |                                            |
| Maximum v/c Ratio: 0.52      | 45.0          |          |               |            | 1 1 1 0 C T         |                                            |
| Intersection Signal Delay    |               |          |               |            | tersection LOS: B   |                                            |
| Intersection Capacity Utili  | ization 41.0% |          |               | IC         | CU Level of Service | A                                          |
| Analysis Period (min) 15     |               |          |               |            |                     |                                            |
| Splits and Phases: 101       | : Charleston  | Sideroad | (RR 24)       | & Site Acc | cess                |                                            |
| Ø2 (R)                       |               |          | ,             |            | Ø4                  |                                            |
| 30.2 s                       |               |          |               |            | 30 s                |                                            |

10042 - Caledon Quarry TIS TYLin

📣 🖉 Ø6 (R)

| Queues<br>101: Charleston Si | deroad | (RR 24 | 1) & Sit | te Aco | ess         | Future Total 2037 SAT Peak Hour<br>01/15/2025 |
|------------------------------|--------|--------|----------|--------|-------------|-----------------------------------------------|
|                              | •      |        | <u></u>  | •      | <b>&gt;</b> |                                               |
| Lane Group                   | EBL    | EBT    | WBT      | WBR    | SBL         |                                               |
| Lane Group Flow (vph)        | 1      | 395    | 358      | 29     | 30          |                                               |
| v/c Ratio                    | 0.01   | 0.52   | 0.47     | 0.08   | 0.08        |                                               |
| Control Delay                | 11.0   | 16.7   | 15.9     | 5.6    | 11.8        |                                               |
| Queue Delay                  | 0.0    | 0.0    | 0.0      | 0.0    | 0.0         |                                               |
| Total Delay                  | 11.0   | 16.7   | 15.9     | 5.6    | 11.8        |                                               |
| Queue Length 50th (m)        | 0.1    | 31.7   | 28.1     | 0.0    | 1.9         |                                               |
| Queue Length 95th (m)        | 0.9    | 53.4   | 47.9     | 4.1    | 6.3         |                                               |
| Internal Link Dist (m)       |        | 610.5  | 750.9    |        | 106.2       |                                               |
| Turn Bay Length (m)          | 130.0  |        |          | 75.0   |             |                                               |
| Base Capacity (vph)          | 185    | 765    | 765      | 342    | 364         |                                               |
| Starvation Cap Reductn       | 0      | 0      | 0        | 0      | 0           |                                               |
| Spillback Cap Reductn        | 0      | 0      | 0        | 0      | 0           |                                               |
| Storage Cap Reductn          | 0      | 0      | 0        | 0      | 0           |                                               |
| Reduced v/c Ratio            | 0.01   | 0.52   | 0.47     | 0.08   | 0.08        |                                               |
| Intersection Summary         |        |        |          |        |             |                                               |

| 10042 - Caledon Quarry TIS |  |
|----------------------------|--|
| TYLin                      |  |

Synchro 10 Report Page 9 HCM Signalized Intersection Capacity Analysis 101: Charleston Sideroad (RR 24) & Site Access Future Total 2037 SAT Peak Hour 01/15/2025

|                               | ٦           | -     | -     | •    | 1         | 4                |      |  |
|-------------------------------|-------------|-------|-------|------|-----------|------------------|------|--|
| Movement                      | EBL         | EBT   | WBT   | WBR  | SBL       | SBR              |      |  |
| Lane Configurations           | ľ           | •     | •     | 1    | Y         |                  |      |  |
| Traffic Volume (vph)          | 1           | 395   | 358   | 29   | 29        | 1                |      |  |
| Future Volume (vph)           | 1           | 395   | 358   | 29   | 29        | 1                |      |  |
| Ideal Flow (vphpl)            | 1900        | 1900  | 1900  | 1900 | 1900      | 1900             |      |  |
| Total Lost time (s)           | 6.2         | 6.2   | 6.2   | 6.2  | 6.0       |                  |      |  |
| Lane Util. Factor             | 1.00        | 1.00  | 1.00  | 1.00 | 1.00      |                  |      |  |
| Frt                           | 1.00        | 1.00  | 1.00  | 0.85 | 1.00      |                  |      |  |
| Flt Protected                 | 0.95        | 1.00  | 1.00  | 1.00 | 0.95      |                  |      |  |
| Satd. Flow (prot)             | 913         | 1921  | 1921  | 816  | 912       |                  |      |  |
| Flt Permitted                 | 0.48        | 1.00  | 1.00  | 1.00 | 0.95      |                  |      |  |
| Satd. Flow (perm)             | 465         | 1921  | 1921  | 816  | 912       |                  |      |  |
| Peak-hour factor, PHF         | 1.00        | 1.00  | 1.00  | 1.00 | 1.00      | 0.92             |      |  |
| Adj. Flow (vph)               | 1           | 395   | 358   | 29   | 29        | 1                |      |  |
| RTOR Reduction (vph)          | 0           | 0     | 0     | 17   | 1         | 0                |      |  |
| Lane Group Flow (vph)         | 1           | 395   | 358   | 12   | 29        | 0                |      |  |
| Heavy Vehicles (%)            | 100%        | 0%    | 0%    | 100% | 100%      | 100%             |      |  |
| Turn Type                     | Perm        | NA    | NA    | Perm | Prot      |                  |      |  |
| Protected Phases              |             | 2     | 6     |      | 4         |                  |      |  |
| Permitted Phases              | 2           |       |       | 6    |           |                  |      |  |
| Actuated Green, G (s)         | 24.0        | 24.0  | 24.0  | 24.0 | 24.0      |                  |      |  |
| Effective Green, g (s)        | 24.0        | 24.0  | 24.0  | 24.0 | 24.0      |                  |      |  |
| Actuated q/C Ratio            | 0.40        | 0.40  | 0.40  | 0.40 | 0.40      |                  |      |  |
| Clearance Time (s)            | 6.2         | 6.2   | 6.2   | 6.2  | 6.0       |                  |      |  |
| Vehicle Extension (s)         | 5.0         | 5.0   | 5.0   | 5.0  | 5.0       |                  |      |  |
| Lane Grp Cap (vph)            | 185         | 765   | 765   | 325  | 363       |                  |      |  |
| v/s Ratio Prot                |             | c0.21 | 0.19  |      | c0.03     |                  |      |  |
| v/s Ratio Perm                | 0.00        |       |       | 0.01 |           |                  |      |  |
| v/c Ratio                     | 0.01        | 0.52  | 0.47  | 0.04 | 0.08      |                  |      |  |
| Uniform Delay, d1             | 10.9        | 13.7  | 13.4  | 11.0 | 11.2      |                  |      |  |
| Progression Factor            | 1.00        | 1.00  | 1.00  | 1.00 | 1.00      |                  |      |  |
| Incremental Delay, d2         | 0.1         | 2.5   | 2.1   | 0.2  | 0.4       |                  |      |  |
| Delay (s)                     | 11.0        | 16.2  | 15.4  | 11.2 | 11.7      |                  |      |  |
| Level of Service              | В           | В     | В     | В    | В         |                  |      |  |
| Approach Delay (s)            |             | 16.2  | 15.1  |      | 11.7      |                  |      |  |
| Approach LOS                  |             | В     | В     |      | В         |                  |      |  |
| Intersection Summary          |             |       |       |      |           |                  |      |  |
| HCM 2000 Control Delay        |             |       | 15.5  | H    | CM 2000   | Level of Service | В    |  |
| HCM 2000 Volume to Capa       | acity ratio |       | 0.30  |      |           |                  |      |  |
| Actuated Cycle Length (s)     |             |       | 60.2  |      | um of los |                  | 12.2 |  |
| Intersection Capacity Utiliza | ation       |       | 41.0% | IC   | U Level   | of Service       | А    |  |
| Analysis Period (min)         |             |       | 15    |      |           |                  |      |  |
| c Critical Lane Group         |             |       |       |      |           |                  |      |  |

10042 - Caledon Quarry TIS TYLin

|                               | ٦        | -        | $\mathbf{r}$ | 4          | -           | ×          | 1     | 1     | ×     | Ŧ           |  |
|-------------------------------|----------|----------|--------------|------------|-------------|------------|-------|-------|-------|-------------|--|
| Lane Group                    | EBL      | EBT      | EBR          | WBL        | WBT         | WBR        | NBL   | NBT   | SBL   | SBT         |  |
| Lane Configurations           | ሻ        | •        | 1            | 5          | •           | 1          | ሻ     | ¢γ    | ሻ     | <b>≜</b> †} |  |
| Traffic Volume (vph)          | 64       | 170      | 250          | 124        | 199         | 31         | 174   | 1047  | 59    | 1825        |  |
| Future Volume (vph)           | 64       | 170      | 250          | 124        | 199         | 31         | 174   | 1047  | 59    | 1825        |  |
| Turn Type                     | pm+pt    | NA       | Perm         | pm+pt      | NA          | Perm       | pm+pt | NA    | pm+pt | NA          |  |
| Protected Phases              | 7        | 4        |              | 3          | 8           |            | 5     | 2     | 1     | 6           |  |
| Permitted Phases              | 4        |          | 4            | 8          |             | 8          | 2     |       | 6     |             |  |
| Detector Phase                | 7        | 4        | 4            | 3          | 8           | 8          | 5     | 2     | 1     | 6           |  |
| Switch Phase                  |          |          |              |            |             |            |       |       |       |             |  |
| Minimum Initial (s)           | 7.0      | 10.0     | 10.0         | 7.0        | 10.0        | 10.0       | 7.0   | 20.0  | 7.0   | 20.0        |  |
| Minimum Split (s)             | 10.0     | 17.9     | 17.9         | 10.0       | 17.9        | 17.9       | 10.0  | 44.4  | 10.0  | 44.4        |  |
| Total Split (s)               | 10.0     | 26.0     | 26.0         | 10.0       | 26.0        | 26.0       | 18.0  | 94.0  | 10.0  | 86.0        |  |
| Total Split (%)               | 7.1%     | 18.6%    | 18.6%        | 7.1%       | 18.6%       | 18.6%      | 12.9% | 67.1% | 7.1%  | 61.4%       |  |
| Yellow Time (s)               | 3.0      | 4.5      | 4.5          | 3.0        | 4.5         | 4.5        | 3.0   | 5.0   | 3.0   | 5.0         |  |
| All-Red Time (s)              | 0.0      | 2.4      | 2.4          | 0.0        | 2.4         | 2.4        | 0.0   | 2.4   | 0.0   | 2.4         |  |
| Lost Time Adjust (s)          | 0.0      | 0.0      | 0.0          | 0.0        | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0         |  |
| Total Lost Time (s)           | 3.0      | 6.9      | 6.9          | 3.0        | 6.9         | 6.9        | 3.0   | 7.4   | 3.0   | 7.4         |  |
| Lead/Lag                      | Lead     | Lag      | Lag          | Lead       | Lag         | Lag        | Lead  | Lag   | Lead  | Lag         |  |
| Lead-Lag Optimize?            | Yes      | - 0      | - 0          |            | Yes         | Yes        | Yes   | Yes   | Yes   | Yes         |  |
| Recall Mode                   | None     | None     | None         | None       | None        | None       | None  | C-Max | None  | C-Max       |  |
| Act Effct Green (s)           | 29.2     | 18.3     | 18.3         | 29.8       | 20.3        | 20.3       | 101.8 | 89.4  | 90.9  | 79.5        |  |
| Actuated g/C Ratio            | 0.21     | 0.13     | 0.13         | 0.21       | 0.14        | 0.14       | 0.73  | 0.64  | 0.65  | 0.57        |  |
| v/c Ratio                     | 0.36     | 0.87     | 0.83         | 0.63       | 0.85        | 0.11       | 0.95  | 0.60  | 0.24  | 0.99        |  |
| Control Delay                 | 48.9     | 96.4     | 45.0         | 60.6       | 88.0        | 0.8        | 92.4  | 16.9  | 8.4   | 47.5        |  |
| Queue Delay                   | 0.0      | 0.0      | 0.0          | 0.0        | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0         |  |
| Total Delay                   | 48.9     | 96.4     | 45.0         | 60.6       | 88.0        | 0.8        | 92.4  | 16.9  | 8.4   | 47.5        |  |
| LOS                           | D        | F        | D            | Е          | F           | А          | F     | В     | А     | D           |  |
| Approach Delay                |          | 63.6     |              |            | 70.7        |            |       | 26.9  |       | 46.4        |  |
| Approach LOS                  |          | Е        |              |            | Е           |            |       | С     |       | D           |  |
| Intersection Summary          |          |          |              |            |             |            |       |       |       |             |  |
| Cycle Length: 140             |          |          |              |            |             |            |       |       |       |             |  |
| Actuated Cycle Length: 140    |          |          |              |            |             |            |       |       |       |             |  |
| Offset: 0 (0%), Referenced    |          | NBTL and | d 6:SBTL     | , Start of | Green       |            |       |       |       |             |  |
| Natural Cycle: 135            |          |          |              |            |             |            |       |       |       |             |  |
| Control Type: Actuated-Coc    | rdinated |          |              |            |             |            |       |       |       |             |  |
| Maximum v/c Ratio: 0.99       |          |          |              |            |             |            |       |       |       |             |  |
| Intersection Signal Delay: 4  | 4.3      |          |              | Ir         | ntersection | 1 LOS: D   |       |       |       |             |  |
| Intersection Capacity Utiliza |          |          |              | IC         | CU Level    | of Service | εF    |       |       |             |  |
| Analysis Period (min) 15      |          |          |              |            |             |            |       |       |       |             |  |

|           | <b>√</b> Ø3 | 404  |
|-----------|-------------|------|
| 10 s 94 s | 10 s        | 26 s |
|           | <u>م</u>    |      |
| 18 s 86 s | 10 s        | 26 s |

Synchro 10 Report Page 1

|                        | ≯    |        | $\mathbf{x}$ | 1    | ←      | •    | •     | † 1   | 1    | Ţ      |  |
|------------------------|------|--------|--------------|------|--------|------|-------|-------|------|--------|--|
| _                      |      |        | •            | •    |        |      | ,     | '     |      | •      |  |
| Lane Group             | EBL  | EBT    | EBR          | WBL  | WBT    | WBR  | NBL   | NBT   | SBL  | SBT    |  |
| Lane Group Flow (vph)  | 67   | 179    | 263          | 131  | 209    | 33   | 183   | 1199  | 62   | 1989   |  |
| v/c Ratio              | 0.36 | 0.87   | 0.83         | 0.63 | 0.85   | 0.11 | 0.95  | 0.60  | 0.24 | 0.99   |  |
| Control Delay          | 48.9 | 96.4   | 45.0         | 60.6 | 88.0   | 0.8  | 92.4  | 16.9  | 8.4  | 47.5   |  |
| Queue Delay            | 0.0  | 0.0    | 0.0          | 0.0  | 0.0    | 0.0  | 0.0   | 0.0   | 0.0  | 0.0    |  |
| Total Delay            | 48.9 | 96.4   | 45.0         | 60.6 | 88.0   | 0.8  | 92.4  | 16.9  | 8.4  | 47.5   |  |
| Queue Length 50th (m)  | 14.9 | 49.0   | 28.5         | 30.2 | 57.8   | 0.0  | 37.9  | 101.9 | 4.5  | 278.7  |  |
| Queue Length 95th (m)  | 28.1 | #88.8  | #72.1        | 48.9 | #104.0 | 0.0  | #84.8 | 123.0 | 8.7  | #341.8 |  |
| Internal Link Dist (m) |      | 1351.4 |              |      | 575.0  |      |       | 764.6 |      | 536.2  |  |
| Turn Bay Length (m)    | 80.0 |        | 65.0         | 40.0 |        | 55.0 | 85.0  |       | 40.0 |        |  |
| Base Capacity (vph)    | 186  | 214    | 323          | 208  | 245    | 287  | 193   | 1984  | 261  | 2012   |  |
| Starvation Cap Reductn | 0    | 0      | 0            | 0    | 0      | 0    | 0     | 0     | 0    | 0      |  |
| Spillback Cap Reductn  | 0    | 0      | 0            | 0    | 0      | 0    | 0     | 0     | 0    | 0      |  |
| Storage Cap Reductn    | 0    | 0      | 0            | 0    | 0      | 0    | 0     | 0     | 0    | 0      |  |
| Reduced v/c Ratio      | 0.36 | 0.84   | 0.81         | 0.63 | 0.85   | 0.11 | 0.95  | 0.60  | 0.24 | 0.99   |  |

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

10042 - Caledon Quarry TIS TYLin

|                               | ≯          |      | $\mathbf{i}$ | -        | -          | •          | •       | - †         | -    | · `+     | . ↓         | -   |
|-------------------------------|------------|------|--------------|----------|------------|------------|---------|-------------|------|----------|-------------|-----|
| lovement                      | EBL        | EBT  | EBR          | WBL      | WBT        | WBR        | NBL     | NBT         | NBR  | SBL      | SBT         | SBF |
| ane Configurations            | 3          | 1    | 1            | <u> </u> | <u> </u>   | 1          | 1       | <b>≜</b> î≽ |      | <u> </u> | <b>≜î</b> ⊧ | 00. |
| raffic Volume (vph)           | 64         | 170  | 250          | 124      | 199        | 31         | 174     | 1047        | 92   | 59       | 1825        | 6   |
| Future Volume (vph)           | 64         | 170  | 250          | 124      | 199        | 31         | 174     | 1047        | 92   | 59       | 1825        | 6   |
| deal Flow (vphpl)             | 1900       | 1900 | 1900         | 1900     | 1900       | 1900       | 1900    | 1900        | 1900 | 1900     | 1900        | 190 |
| otal Lost time (s)            | 3.0        | 6.9  | 6.9          | 3.0      | 6.9        | 6.9        | 3.0     | 7.4         |      | 3.0      | 7.4         |     |
| ane Util. Factor              | 1.00       | 1.00 | 1.00         | 1.00     | 1.00       | 1.00       | 1.00    | 0.95        |      | 1.00     | 0.95        |     |
| Frt                           | 1.00       | 1.00 | 0.85         | 1.00     | 1.00       | 0.85       | 1.00    | 0.99        |      | 1.00     | 0.99        |     |
| It Protected                  | 0.95       | 1.00 | 1.00         | 0.95     | 1.00       | 1.00       | 0.95    | 1.00        |      | 0.95     | 1.00        |     |
| Satd. Flow (prot)             | 1644       | 1575 | 1361         | 1772     | 1700       | 1372       | 1393    | 3100        |      | 1472     | 3542        |     |
| It Permitted                  | 0.38       | 1.00 | 1.00         | 0.39     | 1.00       | 1.00       | 0.05    | 1.00        |      | 0.20     | 1.00        |     |
| Satd. Flow (perm)             | 659        | 1575 | 1361         | 736      | 1700       | 1372       | 72      | 3100        |      | 312      | 3542        |     |
| Peak-hour factor, PHF         | 0.95       | 0.95 | 0.95         | 0.95     | 0.95       | 0.95       | 0.95    | 0.95        | 0.95 | 0.95     | 0.95        | 0.9 |
| dj. Flow (vph)                | 67         | 179  | 263          | 131      | 209        | 33         | 183     | 1102        | 97   | 62       | 1921        | 6   |
| RTOR Reduction (vph)          | 0          | 0    | 138          | 0        | 0          | 28         | 0       | 4           | 0    | 0        | 2           | ,   |
| ane Group Flow (vph)          | 67         | 179  | 125          | 131      | 209        | 5          | 183     | 1195        | 0    | 62       | 1987        |     |
| leavy Vehicles (%)            | 11%        | 22%  | 20%          | 3%       | 13%        | 19%        | 31%     | 16%         | 20%  | 24%      | 2%          | 179 |
| urn Type                      | pm+pt      | NA   | Perm         | pm+pt    | NA         | Perm       | pm+pt   | NA          | 2070 | pm+pt    | NA          | ,   |
| Protected Phases              | 7          | 4    | T OILI       | 3        | 8          | 1 Onn      | 5       | 2           |      | 1        | 6           |     |
| Permitted Phases              | 4          |      | 4            | 8        | Ū          | 8          | 2       | -           |      | 6        | Ū           |     |
| Actuated Green, G (s)         | 24.5       | 18.9 | 18.9         | 27.3     | 20.3       | 20.3       | 96.8    | 88.2        |      | 84.4     | 78.8        |     |
| Effective Green, g (s)        | 24.5       | 18.9 | 18.9         | 27.3     | 20.3       | 20.3       | 96.8    | 88.2        |      | 84.4     | 78.8        |     |
| Actuated g/C Ratio            | 0.18       | 0.13 | 0.13         | 0.20     | 0.15       | 0.15       | 0.69    | 0.63        |      | 0.60     | 0.56        |     |
| Clearance Time (s)            | 3.0        | 6.9  | 6.9          | 3.0      | 6.9        | 6.9        | 3.0     | 7.4         |      | 3.0      | 7.4         |     |
| /ehicle Extension (s)         | 3.0        | 3.0  | 3.0          | 3.0      | 3.0        | 3.0        | 3.0     | 4.4         |      | 3.0      | 4.4         |     |
| ane Grp Cap (vph)             | 154        | 212  | 183          | 195      | 246        | 198        | 191     | 1953        |      | 234      | 1993        |     |
| /s Ratio Prot                 | 0.02       | 0.11 | 100          | c0.03    | c0.12      |            | c0.10   | 0.39        |      | 0.01     | c0.56       |     |
| /s Ratio Perm                 | 0.02       | 0.11 | 0.09         | 0.10     | 00.12      | 0.00       | 0.56    | 0.00        |      | 0.15     | 00.00       |     |
| /c Ratio                      | 0.44       | 0.84 | 0.68         | 0.67     | 0.85       | 0.02       | 0.96    | 0.61        |      | 0.26     | 1.00        |     |
| Jniform Delay, d1             | 49.9       | 59.1 | 57.7         | 50.9     | 58.4       | 51.4       | 50.1    | 15.6        |      | 12.1     | 30.5        |     |
| Progression Factor            | 1.00       | 1.00 | 1.00         | 1.00     | 1.00       | 1.00       | 1.00    | 1.00        |      | 1.00     | 1.00        |     |
| ncremental Delay, d2          | 2.0        | 25.2 | 10.0         | 8.8      | 23.0       | 0.0        | 52.4    | 1.4         |      | 0.6      | 19.5        |     |
| Delay (s)                     | 51.8       | 84.3 | 67.6         | 59.7     | 81.3       | 51.4       | 102.6   | 17.0        |      | 12.7     | 50.0        |     |
| evel of Service               | D          | F    | E            | E        | F          | D          |         | B           |      |          | D           |     |
| Approach Delay (s)            |            | 71.4 |              |          | 71.1       |            |         | 28.4        |      |          | 48.9        |     |
| Approach LOS                  |            | E    |              |          | E          |            |         | С           |      |          | D           |     |
| ntersection Summary           |            |      |              |          |            |            |         |             |      |          |             |     |
| ICM 2000 Control Delay        |            |      | 46.9         | Н        | CM 2000    | Level of   | Service |             | D    |          |             |     |
| ICM 2000 Volume to Capac      | city ratio |      | 0.96         |          |            |            |         |             |      |          |             |     |
| Actuated Cycle Length (s)     |            |      | 140.0        | S        | um of lost | time (s)   |         |             | 20.3 |          |             |     |
| ntersection Capacity Utilizat | tion       |      | 97.0%        | IC       | CU Level o | of Service | 9       |             | F    |          |             |     |

| 10042 - Caledon Quarry TIS |  |
|----------------------------|--|
| TYLin                      |  |

Synchro 10 Report Page 3

|                              | ٦            | -        | 4          | +          | •        | 1          | Ť     | 1        | ţ     |  |
|------------------------------|--------------|----------|------------|------------|----------|------------|-------|----------|-------|--|
| Lane Group                   | EBL          | EBT      | WBL        | WBT        | WBR      | NBL        | NBT   | SBL      | SBT   |  |
| Lane Configurations          | <u>۳</u>     | 4Î       | <u>۲</u>   | <b>↑</b>   | 1        | <u>۲</u>   | 4     | <u>۲</u> | 4     |  |
| Traffic Volume (vph)         | 39           | 404      | 6          | 378        | 43       | 6          | 7     | 52       | 10    |  |
| Future Volume (vph)          | 39           | 404      | 6          | 378        | 43       | 6          | 7     | 52       | 10    |  |
| Turn Type                    | Perm         | NA       | Perm       | NA         | Perm     | Perm       | NA    | Perm     | NA    |  |
| Protected Phases             |              | 2        |            | 2          |          |            | 4     |          | 4     |  |
| Permitted Phases             | 2            |          | 2          |            | 2        | 4          |       | 4        |       |  |
| Detector Phase               | 2            | 2        | 2          | 2          | 2        | 4          | 4     | 4        | 4     |  |
| Switch Phase                 |              |          |            |            |          |            |       |          |       |  |
| Minimum Initial (s)          | 20.0         | 20.0     | 20.0       | 20.0       | 20.0     | 16.0       | 16.0  | 16.0     | 16.0  |  |
| Minimum Split (s)            | 30.6         | 30.6     | 30.6       | 30.6       | 30.6     | 30.6       | 30.6  | 30.6     | 30.6  |  |
| Total Split (s)              | 46.6         | 46.6     | 46.6       | 46.6       | 46.6     | 36.6       | 36.6  | 36.6     | 36.6  |  |
| Total Split (%)              | 56.0%        | 56.0%    | 56.0%      | 56.0%      | 56.0%    | 44.0%      | 44.0% | 44.0%    | 44.0% |  |
| Yellow Time (s)              | 4.6          | 4.6      | 4.6        | 4.6        | 4.6      | 4.6        | 4.6   | 4.6      | 4.6   |  |
| All-Red Time (s)             | 2.0          | 2.0      | 2.0        | 2.0        | 2.0      | 2.0        | 2.0   | 2.0      | 2.0   |  |
| Lost Time Adjust (s)         | 0.0          | 0.0      | 0.0        | 0.0        | 0.0      | 0.0        | 0.0   | 0.0      | 0.0   |  |
| Total Lost Time (s)          | 6.6          | 6.6      | 6.6        | 6.6        | 6.6      | 6.6        | 6.6   | 6.6      | 6.6   |  |
| Lead/Lag                     |              |          |            |            |          |            |       |          |       |  |
| Lead-Lag Optimize?           |              |          |            |            |          |            |       |          |       |  |
| Recall Mode                  | C-Min        | C-Min    | C-Min      | C-Min      | C-Min    | None       | None  | None     | None  |  |
| Act Effct Green (s)          | 59.8         | 59.8     | 59.8       | 59.8       | 59.8     | 16.0       | 16.0  | 16.0     | 16.0  |  |
| Actuated g/C Ratio           | 0.72         | 0.72     | 0.72       | 0.72       | 0.72     | 0.19       | 0.19  | 0.19     | 0.19  |  |
| v/c Ratio                    | 0.06         | 0.36     | 0.01       | 0.36       | 0.04     | 0.02       | 0.05  | 0.20     | 0.16  |  |
| Control Delay                | 5.6          | 7.3      | 5.3        | 7.4        | 1.7      | 27.7       | 18.7  | 30.4     | 12.6  |  |
| Queue Delay                  | 0.0          | 0.0      | 0.0        | 0.0        | 0.0      | 0.0        | 0.0   | 0.0      | 0.0   |  |
| Total Delay                  | 5.6          | 7.3      | 5.3        | 7.4        | 1.7      | 27.7       | 18.7  | 30.4     | 12.6  |  |
| LOS                          | A            | A        | A          | A          | A        | С          | В     | С        | В     |  |
| Approach Delay               |              | 7.2      |            | 6.8        |          |            | 20.9  |          | 21.4  |  |
| Approach LOS                 |              | A        |            | A          |          |            | С     |          | С     |  |
| Intersection Summary         |              |          |            |            |          |            |       |          |       |  |
| Cycle Length: 83.2           |              |          |            |            |          |            |       |          |       |  |
| Actuated Cycle Length: 83    |              |          |            |            |          |            |       |          |       |  |
| Offset: 22.5 (27%), Refere   | enced to pha | se 2:EBW | /B and 6:, | Start of ( | Green    |            |       |          |       |  |
| Natural Cycle: 65            |              |          |            |            |          |            |       |          |       |  |
| Control Type: Actuated-Co    | pordinated   |          |            |            |          |            |       |          |       |  |
| Maximum v/c Ratio: 0.36      |              |          |            |            |          |            |       |          |       |  |
| Intersection Signal Delay:   |              |          |            |            |          | n LOS: A   |       |          |       |  |
| Intersection Capacity Utiliz | zation 63.2% |          |            | 10         | CU Level | of Service | эB    |          |       |  |
| Analysis Period (min) 15     |              |          |            |            |          |            |       |          |       |  |

36.6

10042 - Caledon Quarry TIS TYLin

|                              | ٦           | <b>→</b> | $\mathbf{r}$ | 4        | +           | ×          | •     | Ť           | 1     | ţ           |  |
|------------------------------|-------------|----------|--------------|----------|-------------|------------|-------|-------------|-------|-------------|--|
| Lane Group                   | EBL         | EBT      | EBR          | WBL      | WBT         | WBR        | NBL   | NBT         | SBL   | SBT         |  |
| Lane Configurations          | ľ           | •        | 1            | ľ        | •           | 1          | ľ     | <b>≜î</b> ≽ | ľ     | <b>∱1</b> } |  |
| Traffic Volume (vph)         | 94          | 273      | 192          | 113      | 289         | 84         | 224   | 1844        | 52    | 1139        |  |
| Future Volume (vph)          | 94          | 273      | 192          | 113      | 289         | 84         | 224   | 1844        | 52    | 1139        |  |
| Turn Type                    | pm+pt       | NA       | Perm         | pm+pt    | NA          | Perm       | pm+pt | NA          | pm+pt | NA          |  |
| Protected Phases             | 7           | 4        |              | 3        | 8           |            | 5     | 2           | 1     | 6           |  |
| Permitted Phases             | 4           |          | 4            | 8        |             | 8          | 2     |             | 6     |             |  |
| Detector Phase               | 7           | 4        | 4            | 3        | 8           | 8          | 5     | 2           | 1     | 6           |  |
| Switch Phase                 |             |          |              |          |             |            |       |             |       |             |  |
| Minimum Initial (s)          | 7.0         | 10.0     | 10.0         | 7.0      | 10.0        | 10.0       | 7.0   | 20.0        | 7.0   | 20.0        |  |
| Minimum Split (s)            | 10.0        | 17.9     | 17.9         | 10.0     | 17.9        | 17.9       | 10.0  | 44.4        | 10.0  | 44.4        |  |
| Total Split (s)              | 10.0        | 31.0     | 31.0         | 10.0     | 31.0        | 31.0       | 22.0  | 89.0        | 10.0  | 77.0        |  |
| Total Split (%)              | 7.1%        | 22.1%    | 22.1%        | 7.1%     | 22.1%       | 22.1%      | 15.7% | 63.6%       | 7.1%  | 55.0%       |  |
| Yellow Time (s)              | 3.0         | 4.5      | 4.5          | 3.0      | 4.5         | 4.5        | 3.0   | 5.0         | 3.0   | 5.0         |  |
| All-Red Time (s)             | 0.0         | 2.4      | 2.4          | 0.0      | 2.4         | 2.4        | 0.0   | 2.4         | 0.0   | 2.4         |  |
| Lost Time Adjust (s)         | 0.0         | 0.0      | 0.0          | 0.0      | 0.0         | 0.0        | 0.0   | 0.0         | 0.0   | 0.0         |  |
| Total Lost Time (s)          | 3.0         | 6.9      | 6.9          | 3.0      | 6.9         | 6.9        | 3.0   | 7.4         | 3.0   | 7.4         |  |
| Lead/Lag                     | Lead        | Lag      | Lag          | Lead     | Lag         | Lag        | Lead  | Lag         | Lead  | Lag         |  |
| Lead-Lag Optimize?           | Yes         | Ŭ        | Ŭ            |          | Yes         | Yes        | Yes   | Yes         | Yes   | Yes         |  |
| Recall Mode                  | None        | None     | None         | None     | None        | None       | None  | C-Max       | None  | C-Max       |  |
| Act Effct Green (s)          | 35.0        | 24.1     | 24.1         | 35.0     | 24.1        | 24.1       | 96.0  | 83.6        | 84.4  | 73.0        |  |
| Actuated q/C Ratio           | 0.25        | 0.17     | 0.17         | 0.25     | 0.17        | 0.17       | 0.69  | 0.60        | 0.60  | 0.52        |  |
| v/c Ratio                    | 0.66        | 0.99     | 0.51         | 0.75     | 1.00        | 0.25       | 0.81  | 0.99        | 0.42  | 0.73        |  |
| Control Delay                | 61.6        | 107.5    | 11.1         | 71.1     | 109.7       | 7.8        | 41.0  | 46.6        | 24.7  | 29.6        |  |
| Queue Delay                  | 0.0         | 0.0      | 0.0          | 0.0      | 0.0         | 0.0        | 0.0   | 0.0         | 0.0   | 0.0         |  |
| Total Delay                  | 61.6        | 107.5    | 11.1         | 71.1     | 109.7       | 7.8        | 41.0  | 46.6        | 24.7  | 29.6        |  |
| LOS                          | E           | F        | В            | E        | F           | А          | D     | D           | С     | С           |  |
| Approach Delay               |             | 66.7     |              |          | 83.1        |            |       | 46.1        |       | 29.4        |  |
| Approach LOS                 |             | E        |              |          | F           |            |       | D           |       | С           |  |
| Intersection Summary         |             |          |              |          |             |            |       |             |       |             |  |
| Cycle Length: 140            |             |          |              |          |             |            |       |             |       |             |  |
| Actuated Cycle Length: 14    |             |          |              |          |             |            |       |             |       |             |  |
| Offset: 0 (0%), Referenced   | to phase 2  | NBTL an  | d 6:SBTL     | Start of | Green       |            |       |             |       |             |  |
| Natural Cycle: 145           |             |          |              |          |             |            |       |             |       |             |  |
| Control Type: Actuated-Co    | ordinated   |          |              |          |             |            |       |             |       |             |  |
| Maximum v/c Ratio: 1.00      |             |          |              |          |             |            |       |             |       |             |  |
| Intersection Signal Delay:   |             |          |              |          | ntersection |            |       |             |       |             |  |
| Intersection Capacity Utiliz | ation 104.2 | %        |              | IC       | CU Level    | of Service | G     |             |       |             |  |
| Analysis Period (min) 15     |             |          |              |          |             |            |       |             |       |             |  |

| ▶ø1 ¶ø2 (R    | 🖌 Ø3 📥 Ø4 |  |
|---------------|-----------|--|
| 10 s 89 s     | 10 s 31 s |  |
| ▲ Ø5 🔮 Ø6 (R) |           |  |
| 22 s 77 s     | 10 s 31 s |  |

Synchro 10 Report Page 1

| Queues<br>1: Hurontario Stree | t (Hwv | 10) & ( | Charles      | ston S | ideroa |      |       | otal 20 | 37 PN | 1 Peak |
|-------------------------------|--------|---------|--------------|--------|--------|------|-------|---------|-------|--------|
|                               | Ì      | -       | $\mathbf{i}$ | 4      | +      | •    | 1     | 1       | 1     | ţ      |
| Lane Group                    | EBL    | EBT     | EBR          | WBL    | WBT    | WBR  | NBL   | NBT     | SBL   | SBT    |
| Lane Group Flow (vph)         | 99     | 287     | 202          | 119    | 304    | 88   | 236   | 2101    | 55    | 1271   |
| v/c Ratio                     | 0.66   | 0.99    | 0.51         | 0.75   | 1.00   | 0.25 | 0.81  | 0.99    | 0.42  | 0.73   |
| Control Delay                 | 61.6   | 107.5   | 11.1         | 71.1   | 109.7  | 7.8  | 41.0  | 46.6    | 24.7  | 29.6   |
| Queue Delay                   | 0.0    | 0.0     | 0.0          | 0.0    | 0.0    | 0.0  | 0.0   | 0.0     | 0.0   | 0.0    |
| Total Delay                   | 61.6   | 107.5   | 11.1         | 71.1   | 109.7  | 7.8  | 41.0  | 46.6    | 24.7  | 29.6   |
| Queue Length 50th (m)         | 21.3   | 80.3    | 0.0          | 26.0   | ~85.5  | 0.0  | 29.8  | ~323.0  | 4.6   | 142.2  |
| Queue Length 95th (m)         | #40.4  | #137.9  | 22.4         | #52.7  | #145.0 | 10.8 | #60.8 | #364.1  | 14.4  | 175.0  |
| Internal Link Dist (m)        |        | 1351.4  |              |        | 575.0  |      |       | 764.6   |       | 536.2  |

40.0

Turn Bay Length (m) 80.0 65.0 40.0 55.0 85.0 Base Capacity (vph) 151 290 400 158 303 351 325 2112 132 1731 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 Ō Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.66 0.99 0.51 0.75 1.00 0.25 0.73 0.99 0.42 0.73 Intersection Summary ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

10042 - Caledon Quarry TIS TYLin

| 1: Hurontario Street              | (Hwy    | 10)α( | Jilane             | 31011 01 | ueroa      | <u>, (i (i (i (</u> | 24)     |       |      |       | 01/1        | 5/2024 |
|-----------------------------------|---------|-------|--------------------|----------|------------|---------------------|---------|-------|------|-------|-------------|--------|
|                                   | ۶       | -     | $\mathbf{\hat{z}}$ | 4        | +          | *                   | •       | Ť     | 1    | 1     | ŧ           | 4      |
| Movement                          | EBL     | EBT   | EBR                | WBL      | WBT        | WBR                 | NBL     | NBT   | NBR  | SBL   | SBT         | SBR    |
| Lane Configurations               | ۲       | •     | 1                  | ۲        | •          | 1                   | ۲       | A12   |      | ň     | <b>≜</b> †} |        |
| Traffic Volume (vph)              | 94      | 273   | 192                | 113      | 289        | 84                  | 224     | 1844  | 152  | 52    | 1139        | 68     |
| Future Volume (vph)               | 94      | 273   | 192                | 113      | 289        | 84                  | 224     | 1844  | 152  | 52    | 1139        | 68     |
| deal Flow (vphpl)                 | 1900    | 1900  | 1900               | 1900     | 1900       | 1900                | 1900    | 1900  | 1900 | 1900  | 1900        | 1900   |
| Total Lost time (s)               | 3.0     | 6.9   | 6.9                | 3.0      | 6.9        | 6.9                 | 3.0     | 7.4   |      | 3.0   | 7.4         |        |
| ane Util. Factor                  | 1.00    | 1.00  | 1.00               | 1.00     | 1.00       | 1.00                | 1.00    | 0.95  |      | 1.00  | 0.95        |        |
| Frpb, ped/bikes                   | 1.00    | 1.00  | 0.98               | 1.00     | 1.00       | 0.98                | 1.00    | 1.00  |      | 1.00  | 1.00        |        |
| Flpb, ped/bikes                   | 1.00    | 1.00  | 1.00               | 1.00     | 1.00       | 1.00                | 1.00    | 1.00  |      | 1.00  | 1.00        |        |
| Frt                               | 1.00    | 1.00  | 0.85               | 1.00     | 1.00       | 0.85                | 1.00    | 0.99  |      | 1.00  | 0.99        |        |
| Fit Protected                     | 0.95    | 1.00  | 1.00               | 0.95     | 1.00       | 1.00                | 0.95    | 1.00  |      | 0.95  | 1.00        |        |
| Satd. Flow (prot)                 | 1737    | 1685  | 1358               | 1658     | 1762       | 1543                | 1601    | 3530  |      | 1615  | 3314        |        |
| Flt Permitted                     | 0.18    | 1.00  | 1.00               | 0.22     | 1.00       | 1.00                | 0.12    | 1.00  |      | 0.05  | 1.00        |        |
| Satd. Flow (perm)                 | 325     | 1685  | 1358               | 381      | 1762       | 1543                | 198     | 3530  |      | 93    | 3314        |        |
| Peak-hour factor, PHF             | 0.95    | 0.95  | 0.95               | 0.95     | 0.95       | 0.95                | 0.95    | 0.95  | 0.95 | 0.95  | 0.95        | 0.95   |
| Adj. Flow (vph)                   | 99      | 287   | 202                | 119      | 304        | 88                  | 236     | 1941  | 160  | 55    | 1199        | 72     |
| RTOR Reduction (vph)              | 0       | 0     | 167                | 0        | 0          | 73                  | 0       | 4     | 0    | 0     | 3           | 0      |
| ane Group Flow (vph)              | 99      | 287   | 35                 | 119      | 304        | 15                  | 236     | 2097  | 0    | 55    | 1268        | 0      |
| Confl. Peds. (#/hr)               | 5       |       | 6                  | 6        |            | 5                   | 7       |       | 5    | 5     |             | 7      |
| Heavy Vehicles (%)                | 5%      | 14%   | 18%                | 10%      | 9%         | 4%                  | 14%     | 2%    | 2%   | 13%   | 9%          | 9%     |
| Furn Type                         | pm+pt   | NA    | Perm               | pm+pt    | NA         | Perm                | pm+pt   | NA    |      | pm+pt | NA          |        |
| Protected Phases                  | 7       | 4     |                    | 3        | 8          |                     | 5       | 2     |      | 1     | 6           |        |
| Permitted Phases                  | 4       |       | 4                  | 8        |            | 8                   | 2       |       |      | 6     |             |        |
| Actuated Green, G (s)             | 31.1    | 24.1  | 24.1               | 31.1     | 24.1       | 24.1                | 91.6    | 83.0  |      | 78.6  | 73.0        |        |
| Effective Green, g (s)            | 31.1    | 24.1  | 24.1               | 31.1     | 24.1       | 24.1                | 91.6    | 83.0  |      | 78.6  | 73.0        |        |
| Actuated g/C Ratio                | 0.22    | 0.17  | 0.17               | 0.22     | 0.17       | 0.17                | 0.65    | 0.59  |      | 0.56  | 0.52        |        |
| Clearance Time (s)                | 3.0     | 6.9   | 6.9                | 3.0      | 6.9        | 6.9                 | 3.0     | 7.4   |      | 3.0   | 7.4         |        |
| /ehicle Extension (s)             | 3.0     | 3.0   | 3.0                | 3.0      | 3.0        | 3.0                 | 3.0     | 4.4   |      | 3.0   | 4.4         |        |
| ane Grp Cap (vph)                 | 142     | 290   | 233                | 148      | 303        | 265                 | 285     | 2092  |      | 113   | 1728        |        |
| //s Ratio Prot                    | 0.03    | 0.17  |                    | c0.04    | c0.17      |                     | c0.09   | c0.59 |      | 0.02  | 0.38        |        |
| //s Ratio Perm                    | 0.12    |       | 0.03               | 0.14     |            | 0.01                | 0.45    |       |      | 0.25  |             |        |
| //c Ratio                         | 0.70    | 0.99  | 0.15               | 0.80     | 1.00       | 0.06                | 0.83    | 1.00  |      | 0.49  | 0.73        |        |
| Jniform Delay, d1                 | 46.0    | 57.8  | 49.2               | 48.9     | 58.0       | 48.5                | 26.3    | 28.5  |      | 31.5  | 26.0        |        |
| Progression Factor                | 1.00    | 1.00  | 1.00               | 1.00     | 1.00       | 1.00                | 1.00    | 1.00  |      | 1.00  | 1.00        |        |
| ncremental Delay, d2              | 13.9    | 49.5  | 0.3                | 26.2     | 52.5       | 0.1                 | 17.6    | 20.2  |      | 3.3   | 2.8         |        |
| Delay (s)                         | 59.9    | 107.3 | 49.5               | 75.0     | 110.5      | 48.5                | 43.9    | 48.7  |      | 34.8  | 28.8        |        |
| _evel of Service                  | E       | F     | D                  | E        | F          | D                   | D       | D     |      | С     | С           |        |
| Approach Delay (s)                |         | 79.5  |                    |          | 91.6       |                     |         | 48.3  |      |       | 29.0        |        |
| Approach LOS                      |         | E     |                    |          | F          |                     |         | D     |      |       | С           |        |
| ntersection Summary               |         |       |                    |          |            |                     |         |       |      |       |             |        |
| HCM 2000 Control Delay            |         |       | 51.4               | Н        | CM 2000    | Level of            | Service |       | D    |       |             |        |
| HCM 2000 Volume to Capacit        | y ratio |       | 0.99               |          |            |                     |         |       |      |       |             |        |
| Actuated Cycle Length (s)         |         |       | 140.0              | S        | um of lost | time (s)            |         |       | 20.3 |       |             |        |
|                                   |         |       |                    |          |            |                     |         |       | -    |       |             |        |
| Intersection Capacity Utilization | on      |       | 104.2%             | IC       | U Level o  | of Service          | Э       |       | G    |       |             |        |

# **APPENDIX K4**

**Unsignalized Site Access** 

|                              | ٦           | -    | ←        | •    | 1         | ∢         |
|------------------------------|-------------|------|----------|------|-----------|-----------|
| Movement                     | EBL         | EBT  | WBT      | WBR  | SBL       | SBR       |
| Lane Configurations          | ۲           | 1    | <b>†</b> | 1    | Y         |           |
| Traffic Volume (veh/h)       | 5           | 417  | 390      | 40   | 53        | 7         |
| Future Volume (Veh/h)        | 5           | 417  | 390      | 40   | 53        | 7         |
| Sign Control                 |             | Free | Free     |      | Stop      |           |
| Grade                        |             | 0%   | 0%       |      | 0%        |           |
| Peak Hour Factor             | 1.00        | 1.00 | 1.00     | 1.00 | 1.00      | 1.00      |
| Hourly flow rate (vph)       | 5           | 417  | 390      | 40   | 53        | 7         |
| Pedestrians                  |             |      |          |      |           |           |
| Lane Width (m)               |             |      |          |      |           |           |
| Walking Speed (m/s)          |             |      |          |      |           |           |
| Percent Blockage             |             |      |          |      |           |           |
| Right turn flare (veh)       |             |      |          |      |           |           |
| Median type                  |             | None | None     |      |           |           |
| Median storage veh)          |             |      |          |      |           |           |
| Upstream signal (m)          |             |      |          |      |           |           |
| pX, platoon unblocked        |             |      |          |      |           |           |
| vC, conflicting volume       | 430         |      |          |      | 817       | 390       |
| vC1, stage 1 conf vol        | 100         |      |          |      | 011       | 000       |
| vC2, stage 2 conf vol        |             |      |          |      |           |           |
| vCu, unblocked vol           | 430         |      |          |      | 817       | 390       |
| tC, single (s)               | 4.3         |      |          |      | 7.2       | 6.5       |
| tC, 2 stage (s)              | <b>V</b> .F |      |          |      | <i></i>   | 0.0       |
| tF (s)                       | 2.4         |      |          |      | 4.2       | 3.6       |
| p0 queue free %              | 100         |      |          |      | 79        | 99        |
| cM capacity (veh/h)          | 1040        |      |          |      | 257       | 603       |
|                              |             |      |          |      |           | 000       |
| Direction, Lane #            | EB 1        | EB 2 | WB 1     | WB 2 | SB 1      |           |
| Volume Total                 | 5           | 417  | 390      | 40   | 60        |           |
| Volume Left                  | 5           | 0    | 0        | 0    | 53        |           |
| Volume Right                 | 0           | 0    | 0        | 40   | 7         |           |
| cSH                          | 1040        | 1700 | 1700     | 1700 | 275       |           |
| Volume to Capacity           | 0.00        | 0.25 | 0.23     | 0.02 | 0.22      |           |
| Queue Length 95th (m)        | 0.1         | 0.0  | 0.0      | 0.0  | 6.2       |           |
| Control Delay (s)            | 8.5         | 0.0  | 0.0      | 0.0  | 21.7      |           |
| Lane LOS                     | А           |      |          |      | С         |           |
| Approach Delay (s)           | 0.1         |      | 0.0      |      | 21.7      |           |
| Approach LOS                 |             |      |          |      | С         |           |
| Intersection Summary         |             |      |          |      |           |           |
| Average Delay                |             |      | 1.5      |      |           |           |
| Intersection Capacity Utiliz | zation      |      | 32.0%    | IC   | U Level c | f Service |
| Analysis Period (min)        |             |      | 15       |      |           |           |
|                              |             |      | 10       |      |           |           |

|                               | ٦     | -        | +        | •    | \$        | -          |
|-------------------------------|-------|----------|----------|------|-----------|------------|
| Movement                      | EBL   | EBT      | WBT      | WBR  | SBL       | SBR        |
| Lane Configurations           | ۲     | <b>↑</b> | <b>†</b> | 1    | Y         |            |
| Traffic Volume (veh/h)        | 10    | 531      | 505      | 45   | 58        | 7          |
| Future Volume (Veh/h)         | 10    | 531      | 505      | 45   | 58        | 7          |
| Sign Control                  |       | Free     | Free     |      | Stop      |            |
| Grade                         |       | 0%       | 0%       |      | 0%        |            |
| Peak Hour Factor              | 1.00  | 1.00     | 1.00     | 1.00 | 0.92      | 1.00       |
| Hourly flow rate (vph)        | 10    | 531      | 505      | 45   | 63        | 7          |
| Pedestrians                   |       |          |          |      |           |            |
| Lane Width (m)                |       |          |          |      |           |            |
| Walking Speed (m/s)           |       |          |          |      |           |            |
| Percent Blockage              |       |          |          |      |           |            |
| Right turn flare (veh)        |       |          |          |      |           |            |
| Median type                   |       | None     | None     |      |           |            |
| Median storage veh)           |       |          |          |      |           |            |
| Upstream signal (m)           |       |          |          |      |           |            |
| pX, platoon unblocked         |       |          |          |      |           |            |
| vC, conflicting volume        | 550   |          |          |      | 1056      | 505        |
| vC1, stage 1 conf vol         |       |          |          |      |           |            |
| vC2, stage 2 conf vol         |       |          |          |      |           |            |
| vCu, unblocked vol            | 550   |          |          |      | 1056      | 505        |
| tC, single (s)                | 4.2   |          |          |      | 6.9       | 6.3        |
| tC, 2 stage (s)               |       |          |          |      | 0.0       | 0.0        |
| tF (s)                        | 2.3   |          |          |      | 4.0       | 3.4        |
| p0 queue free %               | 99    |          |          |      | 69        | 99         |
| cM capacity (veh/h)           | 981   |          |          |      | 201       | 544        |
| ,                             |       |          |          |      |           | 011        |
| Direction, Lane #             | EB 1  | EB 2     | WB 1     | WB 2 | SB 1      |            |
| Volume Total                  | 10    | 531      | 505      | 45   | 70        |            |
| Volume Left                   | 10    | 0        | 0        | 0    | 63        |            |
| Volume Right                  | 0     | 0        | 0        | 45   | 7         |            |
| cSH                           | 981   | 1700     | 1700     | 1700 | 215       |            |
| Volume to Capacity            | 0.01  | 0.31     | 0.30     | 0.03 | 0.33      |            |
| Queue Length 95th (m)         | 0.2   | 0.0      | 0.0      | 0.0  | 10.3      |            |
| Control Delay (s)             | 8.7   | 0.0      | 0.0      | 0.0  | 29.7      |            |
| Lane LOS                      | А     |          |          |      | D         |            |
| Approach Delay (s)            | 0.2   |          | 0.0      |      | 29.7      |            |
| Approach LOS                  |       |          |          |      | D         |            |
| Intersection Summary          |       |          |          |      |           |            |
| Average Delay                 |       |          | 1.9      |      |           |            |
| Intersection Capacity Utiliza | ation |          | 38.3%    | IC   | U Level c | of Service |
| Analysis Period (min)         |       |          | 15       |      |           |            |
|                               |       |          |          |      |           |            |

|                               | ٦     | -    | -       | •    | 1         | ∢         |
|-------------------------------|-------|------|---------|------|-----------|-----------|
| Movement                      | EBL   | EBT  | WBT     | WBR  | SBL       | SBR       |
| Lane Configurations           | 5     | *    | <u></u> | 1    | Y         |           |
| Traffic Volume (veh/h)        | 1     | 395  | 358     | 29   | 29        | 1         |
| Future Volume (Veh/h)         | 1     | 395  | 358     | 29   | 29        | 1         |
| Sign Control                  |       | Free | Free    |      | Stop      |           |
| Grade                         |       | 0%   | 0%      |      | 0%        |           |
| Peak Hour Factor              | 1.00  | 1.00 | 1.00    | 1.00 | 1.00      | 0.92      |
| Hourly flow rate (vph)        | 1     | 395  | 358     | 29   | 29        | 1         |
| Pedestrians                   |       |      |         |      |           |           |
| Lane Width (m)                |       |      |         |      |           |           |
| Walking Speed (m/s)           |       |      |         |      |           |           |
| Percent Blockage              |       |      |         |      |           |           |
| Right turn flare (veh)        |       |      |         |      |           |           |
| Median type                   |       | None | None    |      |           |           |
| Median storage veh)           |       |      |         |      |           |           |
| Upstream signal (m)           |       |      |         |      |           |           |
| pX, platoon unblocked         |       |      |         |      |           |           |
| vC, conflicting volume        | 387   |      |         |      | 755       | 358       |
| vC1, stage 1 conf vol         |       |      |         |      |           |           |
| vC2, stage 2 conf vol         |       |      |         |      |           |           |
| vCu, unblocked vol            | 387   |      |         |      | 755       | 358       |
| tC, single (s)                | 5.1   |      |         |      | 7.4       | 7.2       |
| tC, 2 stage (s)               |       |      |         |      |           |           |
| tF (s)                        | 3.1   |      |         |      | 4.4       | 4.2       |
| p0 queue free %               | 100   |      |         |      | 89        | 100       |
| cM capacity (veh/h)           | 789   |      |         |      | 265       | 512       |
| Direction, Lane #             | EB 1  | EB 2 | WB 1    | WB 2 | SB 1      |           |
| Volume Total                  | 1     | 395  | 358     | 29   | 30        |           |
| Volume Left                   | 1     | 0    | 0       | 0    | 29        |           |
| Volume Right                  | 0     | 0    | 0       | 29   | 1         |           |
| cSH                           | 789   | 1700 | 1700    | 1700 | 269       |           |
| Volume to Capacity            | 0.00  | 0.23 | 0.21    | 0.02 | 0.11      |           |
| Queue Length 95th (m)         | 0.0   | 0.0  | 0.0     | 0.0  | 2.8       |           |
| Control Delay (s)             | 9.6   | 0.0  | 0.0     | 0.0  | 20.0      |           |
| Lane LOS                      | A     | 0.0  | 0.0     | 0.0  | C         |           |
| Approach Delay (s)            | 0.0   |      | 0.0     |      | 20.0      |           |
| Approach LOS                  | 0.0   |      | 0.0     |      | C         |           |
| Intersection Summary          |       |      |         |      |           |           |
| Average Delay                 |       |      | 0.8     |      |           |           |
| Intersection Capacity Utiliza | ation |      | 30.8%   | IC   | U Level c | f Service |
| Analysis Period (min)         |       |      | 15      | 10   |           |           |
|                               |       |      | 10      |      |           |           |

# **APPENDIX L**

SimTraffic Queueing Analysis Reports

| SimTraffic Simulation Summary |
|-------------------------------|
| Existing 2023 AM Peak Hour    |

Existing 2023 AM Peak Hour

Summary of All Intervals

| Run Number              | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|
| Start Time              | 6:50  | 6:50  | 6:50  | 6:50  | 6:50  | 6:50  | 6:50  |
| End Time                | 8:00  | 8:00  | 8:00  | 8:00  | 8:00  | 8:00  | 8:00  |
| Total Time (min)        | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| Time Recorded (min)     | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| # of Intervals          | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| # of Recorded Intervals | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Vehs Entered            | 3404  | 3439  | 3503  | 3437  | 3433  | 3497  | 3456  |
| Vehs Exited             | 3404  | 3444  | 3492  | 3453  | 3411  | 3501  | 3469  |
| Starting Vehs           | 174   | 202   | 178   | 206   | 165   | 195   | 208   |
| Ending Vehs             | 174   | 197   | 189   | 190   | 187   | 191   | 195   |
| Travel Distance (km)    | 8687  | 8935  | 8901  | 9021  | 9007  | 9056  | 8990  |
| Travel Time (hr)        | 184.4 | 191.8 | 192.1 | 192.3 | 191.0 | 194.0 | 192.3 |
| Total Delay (hr)        | 35.5  | 38.7  | 39.2  | 38.3  | 37.4  | 38.9  | 38.3  |
| Total Stops             | 2300  | 2348  | 2475  | 2340  | 2371  | 2418  | 2354  |
| Fuel Used (I)           | 617.1 | 638.5 | 637.8 | 642.4 | 644.3 | 650.1 | 645.1 |

#### Summary of All Intervals

| Run Number              | 8     | 9     | 10    | Avg   |  |
|-------------------------|-------|-------|-------|-------|--|
|                         |       | -     |       |       |  |
| Start Time              | 6:50  | 6:50  | 6:50  | 6:50  |  |
| End Time                | 8:00  | 8:00  | 8:00  | 8:00  |  |
| Total Time (min)        | 70    | 70    | 70    | 70    |  |
| Time Recorded (min)     | 60    | 60    | 60    | 60    |  |
| # of Intervals          | 2     | 2     | 2     | 2     |  |
| # of Recorded Intervals | 1     | 1     | 1     | 1     |  |
| Vehs Entered            | 3408  | 3544  | 3503  | 3462  |  |
| Vehs Exited             | 3426  | 3525  | 3479  | 3460  |  |
| Starting Vehs           | 202   | 187   | 176   | 188   |  |
| Ending Vehs             | 184   | 206   | 200   | 189   |  |
| Travel Distance (km)    | 9030  | 9128  | 9001  | 8976  |  |
| Travel Time (hr)        | 191.4 | 197.6 | 193.4 | 192.0 |  |
| Total Delay (hr)        | 37.4  | 40.8  | 39.3  | 38.4  |  |
| Total Stops             | 2367  | 2478  | 2402  | 2384  |  |
| Fuel Used (I)           | 644.2 | 659.3 | 643.1 | 642.2 |  |

#### Interval #0 Information Seeding

| Start Time            | 6:50            |  |  |
|-----------------------|-----------------|--|--|
| End Time              | 7:00            |  |  |
| Total Time (min)      | 10              |  |  |
| Volumes adjusted by   | Growth Factors. |  |  |
| No data recorded this | s interval.     |  |  |

Existing 2023 AM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 1

01/16/2025

## SimTraffic Simulation Summary

Existing 2023 AM Peak Hour

### Interval #1 Information Recording

| Start Time                 | 7:00     |       |       |       |       |       |       |       |
|----------------------------|----------|-------|-------|-------|-------|-------|-------|-------|
| End Time                   | 8:00     |       |       |       |       |       |       |       |
| Total Time (min)           | 60       |       |       |       |       |       |       |       |
| Volumes adjusted by Growth | Factors. |       |       |       |       |       |       |       |
| Run Number                 |          | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| Vehs Entered               |          | 3404  | 3439  | 3503  | 3437  | 3433  | 3497  | 3456  |
| Vehs Exited                |          | 3404  | 3444  | 3492  | 3453  | 3411  | 3501  | 3469  |
| Starting Vehs              |          | 174   | 202   | 178   | 206   | 165   | 195   | 208   |
| Ending Vehs                |          | 174   | 197   | 189   | 190   | 187   | 191   | 195   |
| Travel Distance (km)       |          | 8687  | 8935  | 8901  | 9021  | 9007  | 9056  | 8990  |
| Travel Time (hr)           |          | 184.4 | 191.8 | 192.1 | 192.3 | 191.0 | 194.0 | 192.3 |
| Total Delay (hr)           |          | 35.5  | 38.7  | 39.2  | 38.3  | 37.4  | 38.9  | 38.3  |
| Total Stops                |          | 2300  | 2348  | 2475  | 2340  | 2371  | 2418  | 2354  |

638.5

637.8

617.1

#### Interval #1 Information Recording

Fuel Used (I)

| Start Time                 | 7:00     |       |       |       |       |  |
|----------------------------|----------|-------|-------|-------|-------|--|
| End Time                   | 8:00     |       |       |       |       |  |
| Total Time (min)           | 60       |       |       |       |       |  |
| Volumes adjusted by Growth | Factors. |       |       |       |       |  |
| Run Number                 |          | 8     | 9     | 10    | Avg   |  |
| Vehs Entered               |          | 3408  | 3544  | 3503  | 3462  |  |
| Vehs Exited                |          | 3426  | 3525  | 3479  | 3460  |  |
| Starting Vehs              |          | 202   | 187   | 176   | 188   |  |
| Ending Vehs                |          | 184   | 206   | 200   | 189   |  |
| Travel Distance (km)       |          | 9030  | 9128  | 9001  | 8976  |  |
| Travel Time (hr)           |          | 191.4 | 197.6 | 193.4 | 192.0 |  |
| Total Delay (hr)           |          | 37.4  | 40.8  | 39.3  | 38.4  |  |
| Total Stops                |          | 2367  | 2478  | 2402  | 2384  |  |
| Fuel Used (I)              |          | 644.2 | 659.3 | 643.1 | 642.2 |  |

Existing 2023 AM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 2

01/16/2025

645.1

644.3

650.1

642.4

| Queuing and Block     | • •     |        |                   |         |         |         |       |       |       |      | 044   | 0.0005  |
|-----------------------|---------|--------|-------------------|---------|---------|---------|-------|-------|-------|------|-------|---------|
| Existing 2023 AM F    | Peak Ho | our    |                   |         |         |         |       |       |       |      | 01/   | 16/2025 |
| Intersection: 1: Hur  | ontario | Street | (Hwy <sup>-</sup> | 10) & ( | Charles | ston Si | deroa | d (RR | 24)   |      |       |         |
| Movement              | EB      | EB     | EB                | WB      | WB      | WB      | NB    | NB    | NB    | SB   | SB    | SB      |
| Directions Served     | L       | Т      | R                 | L       | Т       | R       | L     | Т     | TR    | L    | Т     | TR      |
| Maximum Queue (m)     | 59.7    | 104.9  | 80.3              | 62.1    | 98.9    | 21.1    | 55.7  | 92.2  | 100.1 | 39.9 | 160.6 | 159.7   |
| Average Queue (m)     | 13.4    | 44.5   | 34.1              | 26.2    | 43.9    | 6.4     | 26.8  | 43.0  | 51.3  | 14.4 | 93.1  | 94.3    |
| 95th Queue (m)        | 39.2    | 81.7   | 64.3              | 48.8    | 77.3    | 16.8    | 50.2  | 75.3  | 84.6  | 37.2 | 137.1 | 138.6   |
| Link Distance (m)     |         | 1355.9 |                   |         | 586.1   |         |       | 774.3 | 774.3 |      | 547.3 | 547.3   |
| Upstream Blk Time (%) |         |        |                   |         |         |         |       |       |       |      |       |         |
| Queuing Penalty (veh) |         |        |                   |         |         |         |       |       |       |      |       |         |
| Storage Bay Dist (m)  | 80.0    |        | 65.0              | 40.0    |         | 55.0    | 85.0  |       |       | 40.0 |       |         |
| Storage Blk Time (%)  | 0       | 3      | 1                 | 4       | 17      |         |       | 0     |       | 0    | 27    |         |
| Queuing Penalty (veh) | 0       | 9      | 1                 | 8       | 26      |         |       | 0     |       | 1    | 16    |         |

| Movement              | EB    | EB     | WB   | WB     | WB   | NB   | NB    | SB   | SB     |  |
|-----------------------|-------|--------|------|--------|------|------|-------|------|--------|--|
| Directions Served     | L     | TR     | L    | Т      | R    | L    | TR    | L    | TR     |  |
| Maximum Queue (m)     | 17.5  | 61.3   | 7.2  | 71.9   | 12.7 | 9.1  | 12.4  | 22.6 | 18.1   |  |
| Average Queue (m)     | 4.5   | 19.8   | 0.5  | 19.2   | 2.3  | 1.0  | 3.1   | 8.9  | 5.7    |  |
| 95th Queue (m)        | 13.0  | 43.7   | 3.5  | 51.5   | 8.6  | 5.4  | 9.8   | 18.7 | 13.1   |  |
| Link Distance (m)     |       | 1418.7 |      | 2799.0 |      |      | 898.9 |      | 1191.1 |  |
| Upstream Blk Time (%) |       |        |      |        |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      |        |      |      |       |      |        |  |
| Storage Bay Dist (m)  | 125.0 |        | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Storage Blk Time (%)  |       |        |      | 0      |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      | 0      |      |      |       |      |        |  |

### Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | WB   | NB     | SB    |
|-----------------------|------|------|--------|-------|
| Directions Served     | L    | L    | LTR    | LTR   |
| Maximum Queue (m)     | 6.7  | 19.9 | 20.0   | 14.8  |
| Average Queue (m)     | 0.7  | 3.7  | 6.4    | 5.2   |
| 95th Queue (m)        | 4.1  | 14.2 | 17.4   | 11.9  |
| Link Distance (m)     |      |      | 1222.3 | 609.3 |
| Upstream Blk Time (%) |      |      |        |       |
| Queuing Penalty (veh) |      |      |        |       |
| Storage Bay Dist (m)  | 30.0 | 30.0 |        |       |
| Storage Blk Time (%)  |      |      |        |       |
| Queuing Penalty (veh) |      |      |        |       |
|                       |      |      |        |       |
| Network Summary       |      |      |        |       |

Network wide Queuing Penalty: 62

Existing 2023 AM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 3

| SimTraffic Simulation Summary |
|-------------------------------|
| Existing 2023 PM Peak Hour    |

Existing 2023 PM Peak Hour

Summary of All Intervals

| Run Number              | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|
| Start Time              | 4:50  | 4:50  | 4:50  | 4:50  | 4:50  | 4:50  | 4:50  |
| End Time                | 6:00  | 6:00  | 6:00  | 6:00  | 6:00  | 6:00  | 6:00  |
| Total Time (min)        | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| Time Recorded (min)     | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| # of Intervals          | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| # of Recorded Intervals | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Vehs Entered            | 3901  | 3863  | 3926  | 3918  | 3959  | 3878  | 3965  |
| Vehs Exited             | 3886  | 3820  | 3876  | 3894  | 3876  | 3870  | 3936  |
| Starting Vehs           | 239   | 245   | 240   | 272   | 231   | 252   | 255   |
| Ending Vehs             | 254   | 288   | 290   | 296   | 314   | 260   | 284   |
| Travel Distance (km)    | 10732 | 10719 | 10864 | 10842 | 10933 | 10776 | 10798 |
| Travel Time (hr)        | 246.0 | 243.7 | 246.2 | 255.0 | 270.6 | 264.0 | 256.0 |
| Total Delay (hr)        | 64.3  | 62.7  | 62.9  | 72.0  | 85.8  | 82.8  | 73.9  |
| Total Stops             | 3114  | 3075  | 2965  | 2959  | 3290  | 3398  | 3123  |
| Fuel Used (I)           | 775.3 | 774.4 | 778.4 | 789.9 | 804.3 | 790.0 | 788.9 |

#### Summary of All Intervals

| Run Number              | 8     | 9     | 10    | Avg   |  |
|-------------------------|-------|-------|-------|-------|--|
| Start Time              | 4:50  | 4:50  | 4:50  | 4:50  |  |
| End Time                | 6:00  | 6:00  | 6:00  | 6:00  |  |
| Total Time (min)        | 70    | 70    | 70    | 70    |  |
| Time Recorded (min)     | 60    | 60    | 60    | 60    |  |
| # of Intervals          | 2     | 2     | 2     | 2     |  |
| # of Recorded Intervals | 1     | 1     | 1     | 1     |  |
| Vehs Entered            | 3909  | 3905  | 3942  | 3917  |  |
| Vehs Exited             | 3846  | 3872  | 3919  | 3880  |  |
| Starting Vehs           | 220   | 215   | 238   | 241   |  |
| Ending Vehs             | 283   | 248   | 261   | 275   |  |
| Travel Distance (km)    | 10757 | 10647 | 10942 | 10801 |  |
| Travel Time (hr)        | 250.4 | 247.5 | 265.8 | 254.5 |  |
| Total Delay (hr)        | 68.6  | 66.2  | 81.0  | 72.0  |  |
| Total Stops             | 3137  | 2982  | 3424  | 3151  |  |
| Fuel Used (I)           | 784.8 | 769.0 | 807.9 | 786.3 |  |

#### Interval #0 Information Seeding

| Start Time            | 4:50            |
|-----------------------|-----------------|
| End Time              | 5:00            |
| Total Time (min)      | 10              |
| Volumes adjusted by   | Growth Factors. |
| No data recorded this | s interval.     |

Existing 2023 PM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 1

01/16/2025

### SimTraffic Simulation Summary

Existing 2023 PM Peak Hour

Interval #1 Information Recording

| Interval #1 Interna       |            | ing   |       |       |       |       |       |       |
|---------------------------|------------|-------|-------|-------|-------|-------|-------|-------|
| Start Time                | 5:00       |       |       |       |       |       |       |       |
| End Time                  | 6:00       |       |       |       |       |       |       |       |
| Total Time (min)          | 60         |       |       |       |       |       |       |       |
| Volumes adjusted by Growt | h Factors. |       |       |       |       |       |       |       |
| Run Number                |            | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| Vehs Entered              |            | 3901  | 3863  | 3926  | 3918  | 3959  | 3878  | 3965  |
| Vehs Exited               |            | 3886  | 3820  | 3876  | 3894  | 3876  | 3870  | 3936  |
| Starting Vehs             |            | 239   | 245   | 240   | 272   | 231   | 252   | 255   |
| Ending Vehs               |            | 254   | 288   | 290   | 296   | 314   | 260   | 284   |
| Travel Distance (km)      |            | 10732 | 10719 | 10864 | 10842 | 10933 | 10776 | 10798 |
| Travel Time (hr)          |            | 246.0 | 243.7 | 246.2 | 255.0 | 270.6 | 264.0 | 256.0 |
| Total Delay (hr)          |            | 64.3  | 62.7  | 62.9  | 72.0  | 85.8  | 82.8  | 73.9  |
| Total Stops               |            | 3114  | 3075  | 2965  | 2959  | 3290  | 3398  | 3123  |
|                           |            |       |       |       |       |       |       |       |

774.4

778.4

789.9

804.3

790.0

775.3

#### Interval #1 Information Recording

Fuel Used (I)

| Start Time                 | 5:00       |       |       |       |       |  |
|----------------------------|------------|-------|-------|-------|-------|--|
| End Time                   | 6:00       |       |       |       |       |  |
| Total Time (min)           | 60         |       |       |       |       |  |
| Volumes adjusted by Growth | n Factors. |       |       |       |       |  |
| Run Number                 |            | 8     | 9     | 10    | Avg   |  |
| Vehs Entered               |            | 3909  | 3905  | 3942  | 3917  |  |
| Vehs Exited                |            | 3846  | 3872  | 3919  | 3880  |  |
| Starting Vehs              |            | 220   | 215   | 238   | 241   |  |
| Ending Vehs                |            | 283   | 248   | 261   | 275   |  |
| Travel Distance (km)       |            | 10757 | 10647 | 10942 | 10801 |  |
| Travel Time (hr)           |            | 250.4 | 247.5 | 265.8 | 254.5 |  |
| Total Delay (hr)           |            | 68.6  | 66.2  | 81.0  | 72.0  |  |
| Total Stops                |            | 3137  | 2982  | 3424  | 3151  |  |
| Fuel Used (I)              |            | 784.8 | 769.0 | 807.9 | 786.3 |  |

Existing 2023 PM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 2

01/16/2025

788.9

| Intersection: 1: Hur  | ontario | Street | (Hwy  | 10) & ( | Charle | ston Si | deroa | d (RR | 24)   |      |       |       |
|-----------------------|---------|--------|-------|---------|--------|---------|-------|-------|-------|------|-------|-------|
| Movement              | EB      | EB     | EB    | WB      | WB     | WB      | NB    | NB    | NB    | SB   | SB    | SB    |
| Directions Served     | L       | Т      | R     | L       | Т      | R       | L     | Т     | TR    | L    | Т     | TR    |
| Maximum Queue (m)     | 79.9    | 342.5  | 85.0  | 105.0   | 317.1  | 110.0   | 91.5  | 163.0 | 165.3 | 39.8 | 127.0 | 124.0 |
| Average Queue (m)     | 35.7    | 165.0  | 45.7  | 71.0    | 159.2  | 36.8    | 24.0  | 79.3  | 85.9  | 13.8 | 55.9  | 56.9  |
| 95th Queue (m)        | 84.4    | 330.5  | 100.3 | 123.8   | 309.8  | 106.7   | 57.3  | 155.1 | 161.6 | 33.3 | 111.3 | 112.3 |
| ink Distance (m)      |         | 1355.9 |       |         | 586.1  |         |       | 774.3 | 774.3 |      | 547.3 | 547.3 |
| Jpstream Blk Time (%) |         |        |       |         |        |         |       |       |       |      |       |       |
| Queuing Penalty (veh) |         |        |       |         |        |         |       |       |       |      |       |       |
| Storage Bay Dist (m)  | 80.0    |        | 65.0  | 40.0    |        | 55.0    | 85.0  |       |       | 40.0 |       |       |
| Storage Blk Time (%)  | 0       | 51     | 0     | 56      | 66     |         |       | 8     |       | 0    | 16    |       |
| Queuing Penalty (veh) | 1       | 115    | 1     | 198     | 130    |         |       | 14    |       | 1    | 8     |       |

| Maximum Queue (m)     | 21.8  | 60.2   | 5.3  | 68.3   | 16.2 | 14.2 | 12.5  | 26.0 | 23.6   |  |
|-----------------------|-------|--------|------|--------|------|------|-------|------|--------|--|
| Average Queue (m)     | 7.6   | 24.6   | 0.4  | 24.2   | 4.9  | 2.5  | 3.1   | 10.0 | 8.2    |  |
| 95th Queue (m)        | 17.4  | 51.1   | 2.9  | 58.4   | 13.1 | 9.6  | 10.0  | 21.5 | 17.8   |  |
| Link Distance (m)     |       | 1418.7 |      | 2799.0 |      |      | 898.9 |      | 1191.1 |  |
| Upstream Blk Time (%) |       |        |      |        |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      |        |      |      |       |      |        |  |
| Storage Bay Dist (m)  | 125.0 |        | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Storage Blk Time (%)  |       |        |      | 1      |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      | 0      |      |      |       |      |        |  |
|                       |       |        |      |        |      |      |       |      |        |  |

#### Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | WB   | WB     | NB     | SB    |
|-----------------------|------|------|--------|--------|-------|
| Directions Served     | L    | L    | TR     | LTR    | LTR   |
| Maximum Queue (m)     | 10.3 | 9.5  | 2.0    | 19.0   | 16.2  |
| Average Queue (m)     | 1.1  | 1.2  | 0.1    | 6.9    | 6.1   |
| 95th Queue (m)        | 5.9  | 6.0  | 1.1    | 15.4   | 13.2  |
| Link Distance (m)     |      |      | 1418.7 | 1222.3 | 609.3 |
| Upstream Blk Time (%) |      |      |        |        |       |
| Queuing Penalty (veh) |      |      |        |        |       |
| Storage Bay Dist (m)  | 30.0 | 30.0 |        |        |       |
| Storage Blk Time (%)  |      |      |        |        |       |
| Queuing Penalty (veh) |      |      |        |        |       |
|                       |      |      |        |        |       |
| Network Summary       |      |      |        |        |       |

Network wide Queuing Penalty: 469

Existing 2023 PM 10042 - Caledon Quarry TIS TYLin

| SimTraffic Simulation Summary |
|-------------------------------|
| Existing 2023 SAT Peak Hour   |

of All Intonvola

| Run Number              | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|
| Start Time              | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 |
| End Time                | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  |
| Total Time (min)        | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| Time Recorded (min)     | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| # of Intervals          | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| # of Recorded Intervals | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Vehs Entered            | 3483  | 3440  | 3621  | 3458  | 3523  | 3540  | 3503  |
| Vehs Exited             | 3475  | 3481  | 3645  | 3518  | 3492  | 3555  | 3533  |
| Starting Vehs           | 187   | 234   | 247   | 265   | 185   | 205   | 229   |
| Ending Vehs             | 195   | 193   | 223   | 205   | 216   | 190   | 199   |
| Travel Distance (km)    | 9261  | 9378  | 9881  | 9365  | 9361  | 9625  | 9652  |
| Travel Time (hr)        | 207.8 | 206.0 | 223.5 | 238.6 | 211.1 | 216.8 | 209.1 |
| Total Delay (hr)        | 49.2  | 46.6  | 55.3  | 79.0  | 52.2  | 53.1  | 45.7  |
| Total Stops             | 2419  | 2357  | 2590  | 2710  | 2549  | 2590  | 2304  |
| Fuel Used (I)           | 656.5 | 662.6 | 699.2 | 688.4 | 666.1 | 686.3 | 678.3 |

#### Summary of All Intervals

|                         | •     | •     | 10    |       |  |
|-------------------------|-------|-------|-------|-------|--|
| Run Number              | 8     | 9     | 10    | Avg   |  |
| Start Time              | 12:50 | 12:50 | 12:50 | 12:50 |  |
| End Time                | 2:00  | 2:00  | 2:00  | 2:00  |  |
| Total Time (min)        | 70    | 70    | 70    | 70    |  |
| Time Recorded (min)     | 60    | 60    | 60    | 60    |  |
| # of Intervals          | 2     | 2     | 2     | 2     |  |
| # of Recorded Intervals | 1     | 1     | 1     | 1     |  |
| Vehs Entered            | 3505  | 3492  | 3527  | 3510  |  |
| Vehs Exited             | 3429  | 3455  | 3556  | 3514  |  |
| Starting Vehs           | 213   | 205   | 223   | 219   |  |
| Ending Vehs             | 289   | 242   | 194   | 211   |  |
| Travel Distance (km)    | 9165  | 9376  | 9403  | 9447  |  |
| Travel Time (hr)        | 239.1 | 213.1 | 203.0 | 216.8 |  |
| Total Delay (hr)        | 82.9  | 53.4  | 42.5  | 56.0  |  |
| Total Stops             | 2545  | 2383  | 2455  | 2488  |  |
| Fuel Used (I)           | 674.4 | 664.2 | 660.7 | 673.7 |  |

#### Interval #0 Information Seeding

| Start Time           | 12:50             |  |  |
|----------------------|-------------------|--|--|
| End Time             | 1:00              |  |  |
| Total Time (min)     | 10                |  |  |
| Volumes adjusted by  | y Growth Factors. |  |  |
| No data recorded thi | is interval.      |  |  |

Existing 2023 SAT 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 1

01/16/2025

#### SimTraffic Simulation Summary Existing 2023 SAT Peak Hour

#### Interval #1 Information Recording

| Start Time                 | 1:00       |       |       |       |       |       |       |       |
|----------------------------|------------|-------|-------|-------|-------|-------|-------|-------|
| End Time                   | 2:00       |       |       |       |       |       |       |       |
| Total Time (min)           | 60         |       |       |       |       |       |       |       |
| Volumes adjusted by Growth | n Factors. |       |       |       |       |       |       |       |
| Run Number                 |            | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| Vehs Entered               |            | 3483  | 3440  | 3621  | 3458  | 3523  | 3540  | 3503  |
| Vehs Exited                |            | 3475  | 3481  | 3645  | 3518  | 3492  | 3555  | 3533  |
| Starting Vehs              |            | 187   | 234   | 247   | 265   | 185   | 205   | 229   |
| Ending Vehs                |            | 195   | 193   | 223   | 205   | 216   | 190   | 199   |
| Travel Distance (km)       |            | 9261  | 9378  | 9881  | 9365  | 9361  | 9625  | 9652  |
| Travel Time (hr)           |            | 207.8 | 206.0 | 223.5 | 238.6 | 211.1 | 216.8 | 209.1 |
| Total Delay (hr)           |            | 49.2  | 46.6  | 55.3  | 79.0  | 52.2  | 53.1  | 45.7  |
| Total Stops                |            | 2419  | 2357  | 2590  | 2710  | 2549  | 2590  | 2304  |

662.6

699.2

688.4

666.1

686.3

656.5

#### Interval #1 Information Recording

Fuel Used (I)

| Start Time                | 1:00       |       |       |       |       |  |
|---------------------------|------------|-------|-------|-------|-------|--|
| End Time                  | 2:00       |       |       |       |       |  |
| Total Time (min)          | 60         |       |       |       |       |  |
| Volumes adjusted by Growt | h Factors. |       |       |       |       |  |
| Run Number                |            | 8     | 9     | 10    | Avg   |  |
| Vehs Entered              |            | 3505  | 3492  | 3527  | 3510  |  |
| Vehs Exited               |            | 3429  | 3455  | 3556  | 3514  |  |
| Starting Vehs             |            | 213   | 205   | 223   | 219   |  |
| Ending Vehs               |            | 289   | 242   | 194   | 211   |  |
| Travel Distance (km)      |            | 9165  | 9376  | 9403  | 9447  |  |
| Travel Time (hr)          |            | 239.1 | 213.1 | 203.0 | 216.8 |  |
| Total Delay (hr)          |            | 82.9  | 53.4  | 42.5  | 56.0  |  |
| Total Stops               |            | 2545  | 2383  | 2455  | 2488  |  |
| Fuel Used (I)             |            | 674.4 | 664.2 | 660.7 | 673.7 |  |

Existing 2023 SAT 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 2

01/16/2025

678.3

| Existing 2023 SAT                                                                                                                                                                        | Peak H                   | our                  |                   |                      |                    |                    |             |             |             |        | 01/1  | 6/2025 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-------------------|----------------------|--------------------|--------------------|-------------|-------------|-------------|--------|-------|--------|
|                                                                                                                                                                                          |                          |                      |                   | 10) 0 /              | Charles            | ton C              | idoroo      |             | 24)         |        |       |        |
| Intersection: 1: Hu                                                                                                                                                                      | Untano                   | Slieel               | (Hwy              | 10) & (              | Glianes            | SION 3             | lueroa      |             | 24)         |        |       |        |
| Movement                                                                                                                                                                                 | EB                       | EB                   | EB                | WB                   | WB                 | WB                 | NB          | NB          | NB          | SB     | SB    | SB     |
| Directions Served                                                                                                                                                                        | L                        | Т                    | R                 | L                    | Т                  | R                  | L           | Т           | TR          | L      | Т     | TR     |
| Maximum Queue (m)                                                                                                                                                                        | 79.7                     | 173.2                | 84.6              | 104.9                | 273.0              | 90.6               | 53.2        | 125.2       | 129.5       | 39.8   | 116.1 | 115.5  |
| Average Queue (m)                                                                                                                                                                        | 38.7                     | 75.9                 | 24.2              | 63.0                 | 124.8              | 14.3               | 23.1        | 58.5        | 65.2        | 13.8   | 56.3  | 57.1   |
| 95th Queue (m)                                                                                                                                                                           | 80.0                     | 159.0                | 66.9              | 116.4                | 313.2              | 61.6               | 43.5        | 111.4       | 120.5       | 34.1   | 104.8 | 105.7  |
| Link Distance (m)                                                                                                                                                                        |                          | 1355.9               |                   |                      | 586.1              |                    |             | 774.3       | 774.3       |        | 547.3 | 547.3  |
| Upstream Blk Time (%)                                                                                                                                                                    |                          |                      |                   |                      | 1                  |                    |             |             |             |        |       |        |
| Queuing Penalty (veh)                                                                                                                                                                    |                          |                      |                   |                      | 0                  |                    |             |             |             |        |       |        |
| Storage Bay Dist (m)                                                                                                                                                                     | 80.0                     |                      | 65.0              | 40.0                 |                    | 55.0               | 85.0        |             |             | 40.0   |       |        |
| Storage Blk Time (%)                                                                                                                                                                     | 1                        | 20                   |                   | 50                   | 51                 |                    | 0           | 2           |             | 0      | 16    |        |
| Queuing Penalty (veh)                                                                                                                                                                    | 2                        | 44                   |                   | 131                  | 92                 |                    | 0           | 4           |             | 1      | 10    |        |
|                                                                                                                                                                                          |                          |                      |                   |                      | -                  |                    |             | <u>.</u>    |             |        |       |        |
| Intersection: 2: Cat                                                                                                                                                                     | aract R                  | oad/IVIa             | iin Str           | eet (R               | R 136)             | & Cha              | arlesto     | n Side      | eroad (F    | KR 24) |       |        |
| Mayamant                                                                                                                                                                                 | EB                       | EB                   | WB                | WB                   | WB                 | NB                 | NB          | SB          | SB          |        |       |        |
| wovernent                                                                                                                                                                                | ED                       |                      |                   | -                    | R                  | 1                  | TR          | L           | TR          |        |       |        |
|                                                                                                                                                                                          | L                        | TR                   | L                 | Т                    | 11                 | L .                |             |             | 04 -        |        |       |        |
| Directions Served                                                                                                                                                                        |                          | TR<br>41.6           | L<br>7.2          | Т<br>61.4            | 12.1               | 12.7               | 10.2        | 23.7        | 21.7        |        |       |        |
| Directions Served<br>Maximum Queue (m)                                                                                                                                                   | L                        |                      | -                 |                      |                    | -                  | 10.2<br>2.0 | 23.7<br>9.8 | 21.7<br>6.3 |        |       |        |
| Directions Served<br>Maximum Queue (m)<br>Average Queue (m)                                                                                                                              | L<br>21.1                | 41.6                 | 7.2               | 61.4                 | 12.1               | 12.7               |             |             |             |        |       |        |
| Directions Served<br>Maximum Queue (m)<br>Average Queue (m)<br>95th Queue (m)                                                                                                            | L<br>21.1<br>5.1         | 41.6<br>17.2         | 7.2<br>0.7        | 61.4<br>18.1         | 12.1<br>2.3        | 12.7<br>2.2        | 2.0         | 9.8         | 6.3         |        |       |        |
| Directions Served<br>Maximum Queue (m)<br>Average Queue (m)<br>95th Queue (m)<br>Link Distance (m)                                                                                       | L<br>21.1<br>5.1         | 41.6<br>17.2<br>35.6 | 7.2<br>0.7        | 61.4<br>18.1<br>46.0 | 12.1<br>2.3        | 12.7<br>2.2        | 2.0<br>7.7  | 9.8         | 6.3<br>15.3 |        |       |        |
| Directions Served<br>Maximum Queue (m)<br>Average Queue (m)<br>95th Queue (m)<br>Link Distance (m)<br>Upstream Blk Time (%)                                                              | L<br>21.1<br>5.1         | 41.6<br>17.2<br>35.6 | 7.2<br>0.7        | 61.4<br>18.1<br>46.0 | 12.1<br>2.3        | 12.7<br>2.2        | 2.0<br>7.7  | 9.8         | 6.3<br>15.3 |        |       |        |
| Movement<br>Directions Served<br>Maximum Queue (m)<br>Average Queue (m)<br>95th Queue (m)<br>Link Distance (m)<br>Upstream Blk Time (%)<br>Queuing Penalty (veh)<br>Storage Bay Dist (m) | L<br>21.1<br>5.1         | 41.6<br>17.2<br>35.6 | 7.2<br>0.7        | 61.4<br>18.1<br>46.0 | 12.1<br>2.3        | 12.7<br>2.2        | 2.0<br>7.7  | 9.8         | 6.3<br>15.3 |        |       |        |
| Directions Served<br>Maximum Queue (m)<br>Average Queue (m)<br>95th Queue (m)<br>Link Distance (m)<br>Upstream Blk Time (%)<br>Queuing Penalty (veh)                                     | L<br>21.1<br>5.1<br>14.9 | 41.6<br>17.2<br>35.6 | 7.2<br>0.7<br>4.1 | 61.4<br>18.1<br>46.0 | 12.1<br>2.3<br>8.4 | 12.7<br>2.2<br>8.5 | 2.0<br>7.7  | 9.8<br>20.6 | 6.3<br>15.3 |        |       |        |

#### Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | WB   | WB     | NB     | SB    |
|-----------------------|------|------|--------|--------|-------|
| Directions Served     | L    | L    | TR     | LTR    | LTR   |
| Maximum Queue (m)     | 6.6  | 8.8  | 0.7    | 10.0   | 10.5  |
| Average Queue (m)     | 0.5  | 0.7  | 0.0    | 3.7    | 3.4   |
| 95th Queue (m)        | 3.4  | 4.6  | 0.7    | 9.9    | 9.4   |
| Link Distance (m)     |      |      | 1418.7 | 1222.3 | 609.3 |
| Upstream Blk Time (%) |      |      |        |        |       |
| Queuing Penalty (veh) |      |      |        |        |       |
| Storage Bay Dist (m)  | 30.0 | 30.0 |        |        |       |
| Storage Blk Time (%)  |      |      |        |        |       |
| Queuing Penalty (veh) |      |      |        |        |       |
|                       |      |      |        |        |       |
| Network Summary       |      |      |        |        |       |

Network wide Queuing Penalty: 284

Existing 2023 SAT 10042 - Caledon Quarry TIS TYLin

| SimTraffic Simulation Summary             |  |
|-------------------------------------------|--|
| Future Background 2037 AM Peak Hour (Opt) |  |

01/16/2025

| · · · · · ·             |       |       |       |       |       |       |       |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|
| Run Number              | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| Start Time              | 6:50  | 6:50  | 6:50  | 6:50  | 6:50  | 6:50  | 6:50  |
| End Time                | 8:00  | 8:00  | 8:00  | 8:00  | 8:00  | 8:00  | 8:00  |
| Total Time (min)        | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| Time Recorded (min)     | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| # of Intervals          | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| # of Recorded Intervals | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Vehs Entered            | 4137  | 4298  | 4261  | 4210  | 4190  | 4215  | 4271  |
| Vehs Exited             | 4147  | 4232  | 4187  | 4168  | 4179  | 4156  | 4254  |
| Starting Vehs           | 234   | 203   | 195   | 211   | 222   | 209   | 233   |
| Ending Vehs             | 224   | 269   | 269   | 253   | 233   | 268   | 250   |
| Travel Distance (km)    | 10037 | 10568 | 10492 | 10226 | 10251 | 10159 | 10250 |
| Travel Time (hr)        | 237.9 | 258.3 | 259.4 | 247.6 | 235.6 | 232.8 | 249.4 |
| Total Delay (hr)        | 63.3  | 75.6  | 78.2  | 69.6  | 58.1  | 56.8  | 71.1  |
| Total Stops             | 3214  | 3629  | 3823  | 3417  | 3099  | 3087  | 3715  |
| Fuel Used (I)           | 733.7 | 782.1 | 776.6 | 754.2 | 749.8 | 739.9 | 755.1 |

#### Summary of All Intervals

Summary of All Intervals

| Run Number              | 8     | 9     | 10    | Avg   |  |
|-------------------------|-------|-------|-------|-------|--|
| Start Time              | 6:50  | 6:50  | 6:50  | 6:50  |  |
| End Time                | 8:00  | 8:00  | 8:00  | 8:00  |  |
| Total Time (min)        | 70    | 70    | 70    | 70    |  |
| Time Recorded (min)     | 60    | 60    | 60    | 60    |  |
| # of Intervals          | 2     | 2     | 2     | 2     |  |
| # of Recorded Intervals | 1     | 1     | 1     | 1     |  |
| Vehs Entered            | 4159  | 4077  | 4314  | 4211  |  |
| Vehs Exited             | 4156  | 4093  | 4234  | 4181  |  |
| Starting Vehs           | 214   | 230   | 222   | 212   |  |
| Ending Vehs             | 217   | 214   | 302   | 247   |  |
| Travel Distance (km)    | 10282 | 9866  | 10333 | 10246 |  |
| Travel Time (hr)        | 246.2 | 228.1 | 260.6 | 245.6 |  |
| Total Delay (hr)        | 68.7  | 56.2  | 81.0  | 67.9  |  |
| Total Stops             | 3391  | 2995  | 4098  | 3446  |  |
| Fuel Used (I)           | 759.2 | 721.4 | 767.7 | 754.0 |  |

#### Interval #0 Information Seeding

| Start Time                          | 6:50        |  |  |  |  |
|-------------------------------------|-------------|--|--|--|--|
| End Time                            | 7:00        |  |  |  |  |
| Total Time (min)                    | 10          |  |  |  |  |
| Volumes adjusted by Growth Factors. |             |  |  |  |  |
| No data recorded thi                | s interval. |  |  |  |  |

Future Background 2037 AM 10042 - Caldeon Quarry TIS TYLin

SimTraffic Report Page 1

SimTraffic Simulation Summary Future Background 2037 AM Peak Hour (Opt)

| Start Time                 | 7:00     |       |       |       |       |       |       |      |
|----------------------------|----------|-------|-------|-------|-------|-------|-------|------|
| End Time                   | 8:00     |       |       |       |       |       |       |      |
| Total Time (min)           | 60       |       |       |       |       |       |       |      |
| Volumes adjusted by Growth | Factors. |       |       |       |       |       |       |      |
| Run Number                 |          | 1     | 2     | 3     | 4     | 5     | 6     |      |
| Vehs Entered               |          | 4137  | 4298  | 4261  | 4210  | 4190  | 4215  | 427  |
| Vehs Exited                |          | 4147  | 4232  | 4187  | 4168  | 4179  | 4156  | 425  |
| Starting Vehs              |          | 234   | 203   | 195   | 211   | 222   | 209   | 23   |
| Ending Vehs                |          | 224   | 269   | 269   | 253   | 233   | 268   | 25   |
| Travel Distance (km)       |          | 10037 | 10568 | 10492 | 10226 | 10251 | 10159 | 1025 |
| Travel Time (hr)           |          | 237.9 | 258.3 | 259.4 | 247.6 | 235.6 | 232.8 | 249. |
| Total Delay (hr)           |          | 63.3  | 75.6  | 78.2  | 69.6  | 58.1  | 56.8  | 71.  |
| Total Stops                |          | 3214  | 3629  | 3823  | 3417  | 3099  | 3087  | 371  |
| Fuel Used (I)              |          | 733.7 | 782.1 | 776.6 | 754.2 | 749.8 | 739.9 | 755  |

#### Interval #1 Information Recording

| Start Time                 | 7:00     |       |       |       |       |  |
|----------------------------|----------|-------|-------|-------|-------|--|
| End Time                   | 8:00     |       |       |       |       |  |
| Total Time (min)           | 60       |       |       |       |       |  |
| Volumes adjusted by Growth | Factors. |       |       |       |       |  |
| Run Number                 |          | 8     | 9     | 10    | Avg   |  |
| Vehs Entered               |          | 4159  | 4077  | 4314  | 4211  |  |
| Vehs Exited                |          | 4156  | 4093  | 4234  | 4181  |  |
| Starting Vehs              |          | 214   | 230   | 222   | 212   |  |
| Ending Vehs                |          | 217   | 214   | 302   | 247   |  |
| Travel Distance (km)       |          | 10282 | 9866  | 10333 | 10246 |  |
| Travel Time (hr)           |          | 246.2 | 228.1 | 260.6 | 245.6 |  |
| Total Delay (hr)           |          | 68.7  | 56.2  | 81.0  | 67.9  |  |
| Total Stops                |          | 3391  | 2995  | 4098  | 3446  |  |
| Fuel Used (I)              |          | 759.2 | 721.4 | 767.7 | 754.0 |  |

Future Background 2037 AM 10042 - Caldeon Quarry TIS TYLin

SimTraffic Report Page 2

01/16/2025

| EB    |                                |                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                        | ston Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | deroa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d (RR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|--------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | EB                             | EB                                                                      | WB                                                                                                                                                                                                                                                                    | WB                                                                                                                                                                                                                                                                                                                                                                                                                                     | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L     | Т                              | R                                                                       | L                                                                                                                                                                                                                                                                     | T                                                                                                                                                                                                                                                                                                                                                                                                                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 66.0  | 165.2                          | 87.5                                                                    | 59.9                                                                                                                                                                                                                                                                  | 184.1                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 273.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 278.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20.1  | 71.4                           | 47.0                                                                    | 43.6                                                                                                                                                                                                                                                                  | 91.7                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 172.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 172.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 56.3  | 152.2                          | 86.6                                                                    | 70.8                                                                                                                                                                                                                                                                  | 182.4                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 278.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 277.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 1355.9                         |                                                                         |                                                                                                                                                                                                                                                                       | 586.1                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 774.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 774.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 547.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 547.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                |                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                |                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 80.0  |                                | 65.0                                                                    | 40.0                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0     | 16                             | 3                                                                       | 28                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0     | 43                             | 7                                                                       | 64                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ot P  | ood/Ma                         | in Str                                                                  | oot (Pl                                                                                                                                                                                                                                                               | P 136)                                                                                                                                                                                                                                                                                                                                                                                                                                 | & Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rlecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Sida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | road (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0     |                                | 3                                                                       | 28                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ict R | oad/Ma                         | in Stre                                                                 | eet (RI                                                                                                                                                                                                                                                               | R 136)                                                                                                                                                                                                                                                                                                                                                                                                                                 | & Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rlesto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | road (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RR 24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 20.1<br>56.3<br>80.0<br>0<br>0 | 20.1 71.4<br>56.3 152.2<br>1355.9<br>80.0<br>0 16<br>0 43<br>ct Road/Ma | 66.0         165.2         87.5           20.1         71.4         47.0           56.3         152.2         86.6           1355.9         1355.9           80.0         65.0           0         16           0         43           7         rct Road/Main Street | 66.0         165.2         87.5         59.9           20.1         71.4         47.0         43.6           56.3         152.2         86.6         70.8           1355.9         1355.9         1355.9         1355.9           80.0         65.0         40.0         0           0         16         3         28           0         43         7         64           tct Road/Main Street (R)         16         16         16 | 66.0         165.2         87.5         59.9         184.1           20.1         71.4         47.0         43.6         91.7           56.3         152.2         86.6         70.8         182.4           1355.9         586.1         586.1           80.0         65.0         40.0         0           0         16         3         28         40           0         43         7         64         63           act Road/Main Street (RR 136)         136)         136) | 66.0         165.2         87.5         59.9         184.1         83.7           20.1         71.4         47.0         43.6         91.7         17.7           56.3         152.2         86.6         70.8         182.4         67.0           1355.9         586.1         586.1         586.1         586.1           80.0         65.0         40.0         55.0         55.0           0         16         3         28         40           0         43         7         64         63           ct Road/Main Street (RR 136) & Char         64         64         64 | 66.0         165.2         87.5         59.9         184.1         83.7         82.1           20.1         71.4         47.0         43.6         91.7         17.7         35.6           56.3         152.2         86.6         70.8         182.4         67.0         66.3           1355.9         586.1         586.1         586.1         586.1         586.1         586.1           80.0         65.0         40.0         55.0         85.0         0         1           0         16         3         28         40         1         0         43         7         64         63         4           ct Road/Main Street (RR 136) & Charlesto         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3         56.3< | 66.0         165.2         87.5         59.9         184.1         83.7         82.1         108.5           20.1         71.4         47.0         43.6         91.7         17.7         35.6         59.2           56.3         152.2         86.6         70.8         182.4         67.0         66.3         98.7           1355.9         586.1         774.3           80.0         65.0         40.0         55.0         85.0           0         16         3         28         40         1         1           0         43         7         64         63         4         2           ct Road/Main Street (RR 136) & Charleston Side         136         14         2 | 66.0         165.2         87.5         59.9         184.1         83.7         82.1         108.5         116.9           20.1         71.4         47.0         43.6         91.7         17.7         35.6         59.2         66.2           56.3         152.2         86.6         70.8         182.4         67.0         66.3         98.7         103.6           1355.9         586.1         774.3         774.3         774.3           80.0         65.0         40.0         55.0         85.0         0           0         16         3         28         40         1         1           0         43         7         64         63         4         2           tct Road/Main Street (RR 136) & Charleston Sideroad (F         136)         136)         136)         136) | 66.0         165.2         87.5         59.9         184.1         83.7         82.1         108.5         116.9         74.8           20.1         71.4         47.0         43.6         91.7         17.7         35.6         59.2         66.2         20.0           56.3         152.2         86.6         70.8         182.4         67.0         66.3         98.7         103.6         59.2           1355.9         586.1         774.3         774.3         774.3           80.0         65.0         40.0         55.0         85.0         40.0           0         16         3         28         40         1         1         0           0         43         7         64         63         4         2         0           tct Road/Main Street (RR 136) & Charleston Sideroad (RR 24)         1         1         0         1         1         0 | 66.0         165.2         87.5         59.9         184.1         83.7         82.1         108.5         116.9         74.8         273.4           20.1         71.4         47.0         43.6         91.7         17.7         35.6         59.2         66.2         20.0         172.1           56.3         152.2         86.6         70.8         182.4         67.0         66.3         98.7         103.6         59.2         278.2           1355.9         586.1         774.3         774.3         547.3         547.3           80.0         65.0         40.0         55.0         85.0         40.0         0         35         0         40.0         0         35         0         21         10         35         9         21         10         10         35         0         21         10         35         0         21         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3         547.3 |

| Directions Served     | L     | TR     | L    | T      | R    | L    | TR    | L    | TR     |  |
|-----------------------|-------|--------|------|--------|------|------|-------|------|--------|--|
| Maximum Queue (m)     | 18.0  | 55.6   | 7.3  | 81.8   | 11.2 | 9.1  | 12.0  | 26.2 | 18.9   |  |
| Average Queue (m)     | 4.7   | 18.3   | 0.7  | 21.1   | 2.2  | 1.2  | 3.6   | 8.9  | 5.9    |  |
| 95th Queue (m)        | 13.3  | 40.6   | 4.1  | 57.8   | 8.2  | 5.8  | 10.4  | 20.2 | 14.1   |  |
| Link Distance (m)     |       | 1418.7 |      | 2799.0 |      |      | 898.9 |      | 1191.1 |  |
| Upstream Blk Time (%) |       |        |      |        |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      |        |      |      |       |      |        |  |
| Storage Bay Dist (m)  | 125.0 |        | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Storage Blk Time (%)  |       |        |      | 1      |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      | 0      |      |      |       |      |        |  |
|                       |       |        |      |        |      |      |       |      |        |  |

#### Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | EB    | WB   | NB     | SB    |  |
|-----------------------|------|-------|------|--------|-------|--|
| Directions Served     | L    | TR    | L    | LTR    | LTR   |  |
| Maximum Queue (m)     | 7.6  | 1.2   | 21.1 | 21.4   | 14.5  |  |
| Average Queue (m)     | 1.1  | 0.0   | 5.2  | 6.0    | 5.4   |  |
| 95th Queue (m)        | 5.2  | 0.8   | 17.3 | 16.8   | 11.8  |  |
| Link Distance (m)     |      | 662.7 |      | 1222.3 | 609.3 |  |
| Upstream Blk Time (%) |      |       |      |        |       |  |
| Queuing Penalty (veh) |      |       |      |        |       |  |
| Storage Bay Dist (m)  | 30.0 |       | 30.0 |        |       |  |
| Storage Blk Time (%)  |      |       | 0    |        |       |  |
| Queuing Penalty (veh) |      |       | 0    |        |       |  |
|                       |      |       |      |        |       |  |
| Network Summary       |      |       |      |        |       |  |

Network wide Queuing Penalty: 204

Future Background 2037 AM 10042 - Caldeon Quarry TIS TYLin

| SimTraffic Simulation Summary             |  |
|-------------------------------------------|--|
| Future Background 2037 PM Peak Hour (Opt) |  |

Summary of All Intervals

| Run Number              | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|
| Start Time              | 4:50  | 4:50  | 4:50  | 4:50  | 4:50  | 4:50  | 4:50  |
| End Time                | 6:00  | 6:00  | 6:00  | 6:00  | 6:00  | 6:00  | 6:00  |
| Total Time (min)        | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| Time Recorded (min)     | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| # of Intervals          | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| # of Recorded Intervals | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Vehs Entered            | 4623  | 4752  | 4851  | 4716  | 4560  | 4793  | 4705  |
| Vehs Exited             | 4495  | 4607  | 4764  | 4615  | 4390  | 4711  | 4598  |
| Starting Vehs           | 271   | 280   | 300   | 274   | 278   | 262   | 283   |
| Ending Vehs             | 399   | 425   | 387   | 375   | 448   | 344   | 390   |
| Travel Distance (km)    | 11861 | 12129 | 12340 | 12392 | 10946 | 11949 | 11886 |
| Travel Time (hr)        | 349.6 | 376.6 | 374.1 | 357.2 | 419.3 | 346.2 | 382.0 |
| Total Delay (hr)        | 147.5 | 170.2 | 163.3 | 147.1 | 230.4 | 141.5 | 178.2 |
| Total Stops             | 4526  | 4547  | 5287  | 4942  | 3661  | 5141  | 4535  |
| Fuel Used (I)           | 921.6 | 961.1 | 970.8 | 955.7 | 928.6 | 929.9 | 951.1 |

#### Summary of All Intervals

|                         |       | -     |       |       |  |
|-------------------------|-------|-------|-------|-------|--|
| Run Number              | 8     | 9     | 10    | Avg   |  |
| Start Time              | 4:50  | 4:50  | 4:50  | 4:50  |  |
| End Time                | 6:00  | 6:00  | 6:00  | 6:00  |  |
| Total Time (min)        | 70    | 70    | 70    | 70    |  |
| Time Recorded (min)     | 60    | 60    | 60    | 60    |  |
| # of Intervals          | 2     | 2     | 2     | 2     |  |
| # of Recorded Intervals | 1     | 1     | 1     | 1     |  |
| Vehs Entered            | 4608  | 4708  | 4733  | 4703  |  |
| Vehs Exited             | 4438  | 4638  | 4700  | 4594  |  |
| Starting Vehs           | 266   | 288   | 251   | 272   |  |
| Ending Vehs             | 436   | 358   | 284   | 382   |  |
| Travel Distance (km)    | 11634 | 11906 | 12192 | 11923 |  |
| Travel Time (hr)        | 386.1 | 326.9 | 304.3 | 362.2 |  |
| Total Delay (hr)        | 186.7 | 122.9 | 96.0  | 158.4 |  |
| Total Stops             | 4525  | 5266  | 4356  | 4678  |  |
| Fuel Used (I)           | 945.5 | 910.6 | 905.9 | 938.1 |  |

#### Interval #0 Information Seeding

| Start Time              | 4:50            |  |  |
|-------------------------|-----------------|--|--|
| End Time                | 5:00            |  |  |
| Total Time (min)        | 10              |  |  |
| Volumes adjusted by G   | Browth Factors. |  |  |
| No data recorded this i | nterval.        |  |  |

Future Background 2037 PM 10042 - Caldeon Quarry TIS TYLin

SimTraffic Report Page 1

01/16/2025

### SimTraffic Simulation Summary

Future Background 2037 PM Peak Hour (Opt)

| Start Time                | 5:00       |       |       |       |       |       |       |       |
|---------------------------|------------|-------|-------|-------|-------|-------|-------|-------|
| End Time                  | 6:00       |       |       |       |       |       |       |       |
| Total Time (min)          | 60         |       |       |       |       |       |       |       |
| Volumes adjusted by Growt | n Factors. |       |       |       |       |       |       |       |
| Run Number                |            | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| Vehs Entered              |            | 4623  | 4752  | 4851  | 4716  | 4560  | 4793  | 4705  |
| Vehs Exited               |            | 4495  | 4607  | 4764  | 4615  | 4390  | 4711  | 4598  |
| Starting Vehs             |            | 271   | 280   | 300   | 274   | 278   | 262   | 283   |
| Ending Vehs               |            | 399   | 425   | 387   | 375   | 448   | 344   | 390   |
| Travel Distance (km)      |            | 11861 | 12129 | 12340 | 12392 | 10946 | 11949 | 11886 |
| Travel Time (hr)          |            | 349.6 | 376.6 | 374.1 | 357.2 | 419.3 | 346.2 | 382.0 |
| Total Delay (hr)          |            | 147.5 | 170.2 | 163.3 | 147.1 | 230.4 | 141.5 | 178.2 |
| Total Stops               |            | 4526  | 4547  | 5287  | 4942  | 3661  | 5141  | 4535  |
| Fuel Used (I)             |            | 921.6 | 961.1 | 970.8 | 955.7 | 928.6 | 929.9 | 951.1 |

#### Interval #1 Information Recording

| Start Time                | 5:00       |       |       |       |       |  |
|---------------------------|------------|-------|-------|-------|-------|--|
| End Time                  | 6:00       |       |       |       |       |  |
| Total Time (min)          | 60         |       |       |       |       |  |
| Volumes adjusted by Growt | h Factors. |       |       |       |       |  |
| Run Number                |            | 8     | 9     | 10    | Avg   |  |
| Vehs Entered              |            | 4608  | 4708  | 4733  | 4703  |  |
| Vehs Exited               |            | 4438  | 4638  | 4700  | 4594  |  |
| Starting Vehs             |            | 266   | 288   | 251   | 272   |  |
| Ending Vehs               |            | 436   | 358   | 284   | 382   |  |
| Travel Distance (km)      |            | 11634 | 11906 | 12192 | 11923 |  |
| Travel Time (hr)          |            | 386.1 | 326.9 | 304.3 | 362.2 |  |
| Total Delay (hr)          |            | 186.7 | 122.9 | 96.0  | 158.4 |  |
| Total Stops               |            | 4525  | 5266  | 4356  | 4678  |  |
| Fuel Used (I)             |            | 945.5 | 910.6 | 905.9 | 938.1 |  |

Future Background 2037 PM 10042 - Caldeon Quarry TIS TYLin

SimTraffic Report Page 2

01/16/2025

| Queuing and Block<br>Future Background | 0 1     |        | ak Hou  | r (Ont | <b>`</b> |        |         |          |         |        | 01/*  | 16/2025 |
|----------------------------------------|---------|--------|---------|--------|----------|--------|---------|----------|---------|--------|-------|---------|
| Intersection: 1: Hur                   |         |        |         |        |          | ston S | ideroa  | d (RR    | 24)     |        |       |         |
| Movement                               | EB      | EB     | EB      | WB     | WB       | WB     | NB      | NB       | NB      | SB     | SB    | SB      |
| Directions Served                      | 1       | T      | R       |        | T        | R      | 1       | T        | TR      | 1      | T     | TR      |
| Maximum Queue (m)                      | 82.4    | 715.1  | 90.0    | 60.0   | 546.5    | 100.0  | 114.9   | 347.7    | 347.2   | 71.7   | 159.5 | 153.6   |
| Average Queue (m)                      | 40.3    | 423.7  | 53.1    | 46.2   | 384.9    | 50.3   | 53.6    | 161.2    | 167.6   | 21.1   | 79.3  | 77.6    |
| 95th Queue (m)                         | 93.3    | 809.5  | 113.3   | 74.7   | 658.2    | 122.5  | 123.6   | 343.7    | 345.3   | 56.8   | 149.1 | 147.9   |
| Link Distance (m)                      |         | 1355.9 |         |        | 586.1    |        |         | 774.3    | 774.3   |        | 547.3 | 547.3   |
| Upstream Blk Time (%)                  |         |        |         |        | 20       |        |         |          |         |        |       | •       |
| Queuing Penalty (veh)                  |         |        |         |        | 0        |        |         |          |         |        |       |         |
| Storage Bay Dist (m)                   | 80.0    |        | 65.0    | 40.0   |          | 55.0   | 85.0    |          |         | 40.0   |       |         |
| Storage Blk Time (%)                   | 0       | 73     | 1       | 45     | 71       | 0      | 0       | 19       |         | 1      | 21    |         |
| Queuing Penalty (veh)                  | 1       | 165    | 2       | 167    | 140      | 2      | 1       | 35       |         | 8      | 11    |         |
|                                        |         |        |         |        |          |        |         |          |         |        |       |         |
| Intersection: 2: Cat                   | aract R | oad/M  | ain Str | eet (R | R 136)   | & Cha  | arlesto | n Side   | road (F | RR 24) |       |         |
| Movement                               | EB      | EB     | WB      | WB     | WB       | NB     | NB      | SB       | SB      |        |       |         |
|                                        | ED      | ED     | VVD     | VVD    | VVD      | IND    |         | <u> </u> |         |        |       |         |

| Directions Served     | L     | TR     | L    | Т      | R    | L    | TR    | L    | TR     |  |
|-----------------------|-------|--------|------|--------|------|------|-------|------|--------|--|
| Maximum Queue (m)     | 22.8  | 76.6   | 5.4  | 74.1   | 15.9 | 16.5 | 14.5  | 26.5 | 29.0   |  |
| Average Queue (m)     | 8.4   | 27.7   | 0.4  | 23.0   | 4.2  | 2.9  | 3.8   | 10.4 | 8.3    |  |
| 95th Queue (m)        | 18.9  | 57.5   | 2.8  | 58.4   | 12.1 | 11.2 | 11.4  | 22.1 | 19.6   |  |
| Link Distance (m)     |       | 1418.7 |      | 2799.0 |      |      | 898.9 |      | 1191.1 |  |
| Upstream Blk Time (%) |       |        |      |        |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      |        |      |      |       |      |        |  |
| Storage Bay Dist (m)  | 125.0 |        | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Storage Blk Time (%)  |       | 0      |      | 1      |      |      |       |      |        |  |
| Queuing Penalty (veh) |       | 0      |      | 1      |      |      |       |      |        |  |
|                       |       |        |      |        |      |      |       |      |        |  |

#### Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | WB   | NB     | SB    |
|-----------------------|------|------|--------|-------|
| Directions Served     | L    | L    | LTR    | LTR   |
| Maximum Queue (m)     | 6.7  | 10.8 | 20.8   | 21.7  |
| Average Queue (m)     | 0.9  | 1.1  | 7.1    | 6.7   |
| 95th Queue (m)        | 4.5  | 6.1  | 15.1   | 15.4  |
| Link Distance (m)     |      |      | 1222.3 | 609.3 |
| Upstream Blk Time (%) |      |      |        |       |
| Queuing Penalty (veh) |      |      |        |       |
| Storage Bay Dist (m)  | 30.0 | 30.0 |        |       |
| Storage Blk Time (%)  |      |      |        |       |
| Queuing Penalty (veh) |      |      |        |       |
|                       |      |      |        |       |
| Network Summary       |      |      |        |       |

Network wide Queuing Penalty: 532

Future Background 2037 PM 10042 - Caldeon Quarry TIS TYLin

| SimTraffic Simulation Su<br>Future Background 2037 | ,     | ır    |       |       |       |       |
|----------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Summary of All Intervals                           |       |       |       |       |       |       |
| Run Number                                         | 1     | 2     | 3     | 4     | 5     | 6     |
| Start Time                                         | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 |
|                                                    |       |       |       |       |       |       |

| Start Time              | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|
| End Time                | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  |
| Total Time (min)        | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| Time Recorded (min)     | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| # of Intervals          | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| # of Recorded Intervals | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Vehs Entered            | 4163  | 4233  | 4268  | 4236  | 4219  | 4410  | 4274  |
| Vehs Exited             | 4198  | 4154  | 4206  | 4242  | 4190  | 4389  | 4237  |
| Starting Vehs           | 233   | 240   | 220   | 250   | 203   | 234   | 263   |
| Ending Vehs             | 198   | 319   | 282   | 244   | 232   | 255   | 300   |
| Travel Distance (km)    | 10253 | 10374 | 10521 | 10097 | 10112 | 10687 | 10377 |
| Travel Time (hr)        | 246.2 | 290.8 | 258.3 | 256.5 | 245.5 | 254.6 | 295.2 |
| Total Delay (hr)        | 68.7  | 111.8 | 76.7  | 81.1  | 70.1  | 68.8  | 115.6 |
| Total Stops             | 2994  | 3436  | 3322  | 3212  | 3197  | 3508  | 3481  |
| Fuel Used (I)           | 743.2 | 789.0 | 763.7 | 745.5 | 733.5 | 772.0 | 791.6 |

#### Summary of All Intervals

| Dura Murahan            | 0     | 0     | 40    | A     |  |
|-------------------------|-------|-------|-------|-------|--|
| Run Number              | 8     | 9     | 10    | Avg   |  |
| Start Time              | 12:50 | 12:50 | 12:50 | 12:50 |  |
| End Time                | 2:00  | 2:00  | 2:00  | 2:00  |  |
| Total Time (min)        | 70    | 70    | 70    | 70    |  |
| Time Recorded (min)     | 60    | 60    | 60    | 60    |  |
| # of Intervals          | 2     | 2     | 2     | 2     |  |
| # of Recorded Intervals | 1     | 1     | 1     | 1     |  |
| Vehs Entered            | 4210  | 4277  | 4277  | 4257  |  |
| Vehs Exited             | 4175  | 4197  | 4210  | 4220  |  |
| Starting Vehs           | 238   | 221   | 218   | 227   |  |
| Ending Vehs             | 273   | 301   | 285   | 269   |  |
| Travel Distance (km)    | 10176 | 10115 | 9990  | 10270 |  |
| Travel Time (hr)        | 270.3 | 264.1 | 287.6 | 266.9 |  |
| Total Delay (hr)        | 94.2  | 88.0  | 112.6 | 88.7  |  |
| Total Stops             | 3453  | 3235  | 3596  | 3344  |  |
| Fuel Used (I)           | 762.4 | 752.8 | 766.0 | 762.0 |  |

#### Interval #0 Information Seeding

| Start Time           | 12:50             |  |  |
|----------------------|-------------------|--|--|
| End Time             | 1:00              |  |  |
| Total Time (min)     | 10                |  |  |
| Volumes adjusted by  | y Growth Factors. |  |  |
| No data recorded thi | is interval.      |  |  |

Future Background 2037 SAT 10042 - Caldeon Quarry TIS TYLin

SimTraffic Report Page 1

01/16/2025

7

### SimTraffic Simulation Summary

Future Background 2037 SAT Peak Hour

#### Interval #1 Information Recording

| Interval #1 Informa      | ation Recordin | ıg    |       |       |       |       |       |       |
|--------------------------|----------------|-------|-------|-------|-------|-------|-------|-------|
| Start Time               | 1:00           |       |       |       |       |       |       |       |
| End Time                 | 2:00           |       |       |       |       |       |       |       |
| Total Time (min)         | 60             |       |       |       |       |       |       |       |
| Volumes adjusted by Grow | th Factors.    |       |       |       |       |       |       |       |
| Run Number               |                | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| Vehs Entered             |                | 4163  | 4233  | 4268  | 4236  | 4219  | 4410  | 4274  |
| Vehs Exited              |                | 4198  | 4154  | 4206  | 4242  | 4190  | 4389  | 4237  |
| Starting Vehs            |                | 233   | 240   | 220   | 250   | 203   | 234   | 263   |
| Ending Vehs              |                | 198   | 319   | 282   | 244   | 232   | 255   | 300   |
| Travel Distance (km)     |                | 10253 | 10374 | 10521 | 10097 | 10112 | 10687 | 10377 |

#### Travel Distance (km) Travel Time (hr) 10253 246.2 290.8 258.3 256.5 Total Delay (hr) 68.7 111.8 76.7 81.1 Total Stops 2994 3436 3322 3212 Fuel Used (I) 743.2 789.0 763.7 745.5

#### Interval #1 Information Recording

| Start Time                 | 1:00       |       |       |       |       |  |
|----------------------------|------------|-------|-------|-------|-------|--|
| End Time                   | 2:00       |       |       |       |       |  |
| Total Time (min)           | 60         |       |       |       |       |  |
| Volumes adjusted by Growth | n Factors. |       |       |       |       |  |
| Run Number                 |            | 8     | 9     | 10    | Avg   |  |
| Vehs Entered               |            | 4210  | 4277  | 4277  | 4257  |  |
| Vehs Exited                |            | 4175  | 4197  | 4210  | 4220  |  |
| Starting Vehs              |            | 238   | 221   | 218   | 227   |  |
| Ending Vehs                |            | 273   | 301   | 285   | 269   |  |
| Travel Distance (km)       |            | 10176 | 10115 | 9990  | 10270 |  |
| Travel Time (hr)           |            | 270.3 | 264.1 | 287.6 | 266.9 |  |
| Total Delay (hr)           |            | 94.2  | 88.0  | 112.6 | 88.7  |  |
| Total Stops                |            | 3453  | 3235  | 3596  | 3344  |  |
| Fuel Used (I)              |            | 762.4 | 752.8 | 766.0 | 762.0 |  |

Future Background 2037 SAT 10042 - Caldeon Quarry TIS TYLin

SimTraffic Report Page 2

01/16/2025

295.2

115.6

3481

791.6

245.5

70.1

3197

733.5

254.6

68.8

3508

772.0

| Queuing and Block     | • •     |        | -1-11    |         |        |        |         |        |         |        | 01/4  | 16/2025 |
|-----------------------|---------|--------|----------|---------|--------|--------|---------|--------|---------|--------|-------|---------|
| Future Background     |         |        |          |         |        |        |         |        |         |        | 01/   | 0/2025  |
| Intersection: 1: Hur  | ontario | Street | (Hwy '   | 10) & ( | Charle | ston S | ideroa  | d (RR  | 24)     |        |       |         |
| Movement              | EB      | EB     | EB       | WB      | WB     | WB     | NB      | NB     | NB      | SB     | SB    | SB      |
| Directions Served     | L       | Т      | R        | L       | Т      | R      | L       | Т      | TR      | L      | Т     | TR      |
| Maximum Queue (m)     | 82.4    | 233.5  | 90.0     | 60.0    | 431.1  | 100.0  | 114.9   | 195.9  | 196.2   | 74.8   | 147.6 | 149.8   |
| Average Queue (m)     | 42.7    | 101.9  | 34.9     | 52.7    | 272.2  | 26.6   | 43.8    | 97.0   | 102.9   | 18.1   | 80.1  | 81.6    |
| 95th Queue (m)        | 88.0    | 206.4  | 88.2     | 73.6    | 569.6  | 91.7   | 101.4   | 184.1  | 189.2   | 53.8   | 143.1 | 143.6   |
| ink Distance (m)      |         | 1355.9 |          |         | 586.1  |        |         | 774.3  | 774.3   |        | 547.3 | 547.3   |
| Upstream Blk Time (%) |         |        |          |         | 3      |        |         |        |         |        |       |         |
| Queuing Penalty (veh) |         |        |          |         | 0      |        |         |        |         |        |       |         |
| Storage Bay Dist (m)  | 80.0    |        | 65.0     | 40.0    |        | 55.0   | 85.0    |        |         | 40.0   |       |         |
| Storage Blk Time (%)  | 3       | 32     |          | 61      | 55     |        | 1       | 12     |         | 0      | 24    |         |
| Queuing Penalty (veh) | 10      | 71     |          | 169     | 98     |        | 4       | 22     |         | 0      | 14    |         |
|                       |         |        |          |         |        |        |         |        |         |        |       |         |
| ntersection: 2: Cat   | aract R | oad/Ma | ain Stre | eet (R  | R 136) | & Cha  | arlesto | n Side | road (F | RR 24) |       |         |
| Movement              | EB      | EB     | WB       | WB      | WB     | NB     | NB      | SB     | SB      |        |       |         |
| Directions Served     | 1       | TR     | 1        | т       | R      | 1      | TR      | 1      | TR      |        |       |         |

| Directions Served     | L     | TR     | L    | Т      | R    | L    | TR    | L    | TR     |  |
|-----------------------|-------|--------|------|--------|------|------|-------|------|--------|--|
| Maximum Queue (m)     | 16.2  | 42.4   | 6.7  | 53.8   | 13.6 | 8.1  | 11.0  | 23.4 | 17.3   |  |
| Average Queue (m)     | 4.8   | 16.6   | 0.7  | 15.4   | 2.9  | 0.7  | 2.4   | 9.0  | 5.8    |  |
| 95th Queue (m)        | 13.1  | 34.3   | 3.9  | 39.0   | 9.7  | 4.6  | 8.7   | 19.4 | 13.1   |  |
| Link Distance (m)     |       | 1418.7 |      | 2799.0 |      |      | 898.9 |      | 1191.1 |  |
| Upstream Blk Time (%) |       |        |      |        |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      |        |      |      |       |      |        |  |
| Storage Bay Dist (m)  | 125.0 |        | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Storage Blk Time (%)  |       |        |      | 0      |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |        |      | 0      |      |      |       |      |        |  |

#### Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | WB   | NB     | SB    |
|-----------------------|------|------|--------|-------|
| Directions Served     | L    | L    | LTR    | LTR   |
| Maximum Queue (m)     | 6.1  | 6.8  | 10.9   | 12.6  |
| Average Queue (m)     | 0.4  | 0.4  | 4.4    | 4.7   |
| 95th Queue (m)        | 2.9  | 3.2  | 10.7   | 10.8  |
| Link Distance (m)     |      |      | 1222.3 | 609.3 |
| Upstream Blk Time (%) |      |      |        |       |
| Queuing Penalty (veh) |      |      |        |       |
| Storage Bay Dist (m)  | 30.0 | 30.0 |        |       |
| Storage Blk Time (%)  |      |      |        |       |
| Queuing Penalty (veh) |      |      |        |       |
|                       |      |      |        |       |
| Network Summary       |      |      |        |       |

Network wide Queuing Penalty: 388

Future Background 2037 SAT 10042 - Caldeon Quarry TIS TYLin

| SimTraffic Simulation Sum<br>Future Total 2037 AM Pea |      |      |      |      |      | 0    | 1/16/2025 |
|-------------------------------------------------------|------|------|------|------|------|------|-----------|
| Summary of All Intervals                              |      |      |      |      |      |      |           |
| Run Number                                            | 1    | 2    | 3    | 4    | 5    | 6    | 7         |
| Start Time                                            | 6:50 | 6:50 | 6:50 | 6:50 | 6:50 | 6:50 | 6:50      |
| End Time                                              | 8:00 | 8:00 | 8:00 | 8:00 | 8:00 | 8:00 | 8:00      |
| Total Time (min)                                      | 70   | 70   | 70   | 70   | 70   | 70   | 70        |
| Time Recorded (min)                                   | 60   | 60   | 60   | 60   | 60   | 60   | 60        |
| # of Intervals                                        | 2    | 2    | 2    | 2    | 2    | 2    | 2         |
| # of Recorded Intervals                               | 1    | 1    | 1    | 1    | 1    | 1    | 1         |
| Vehs Entered                                          | 4496 | 4470 | 4483 | 4440 | 4522 | 4457 | 4635      |
| Vehs Exited                                           | 4485 | 4413 | 4469 | 4414 | 4416 | 4409 | 4581      |

4635 4581 257 Starting Vehs Ending Vehs 244 233 289 223 234 230 255 290 303 256 329 282 311 Travel Distance (km) 10674 11070 10875 10710 10634 10552 10997 Travel Time (hr) 264.3 296.1 273.5 258.3 292.0 263.9 281.3 79.3 Total Delay (hr) 106.0 85.9 73.4 107.9 81.8 91.4 Total Stops 4143 5142 4494 4029 4403 4636 5472 Fuel Used (I) 810.5 861.2 830.9 803.6 828.9 806.5 845.6

#### Summary of All Intervals

| Run Number              | 8     | 9     | 10    | Avg   |  |
|-------------------------|-------|-------|-------|-------|--|
| Start Time              | 6:50  | 6:50  | 6:50  | 6:50  |  |
| End Time                | 8:00  | 8:00  | 8:00  | 8:00  |  |
| Total Time (min)        | 70    | 70    | 70    | 70    |  |
| Time Recorded (min)     | 60    | 60    | 60    | 60    |  |
| # of Intervals          | 2     | 2     | 2     | 2     |  |
| # of Recorded Intervals | 1     | 1     | 1     | 1     |  |
| Vehs Entered            | 4482  | 4407  | 4535  | 4493  |  |
| Vehs Exited             | 4396  | 4428  | 4461  | 4447  |  |
| Starting Vehs           | 234   | 270   | 249   | 243   |  |
| Ending Vehs             | 320   | 249   | 323   | 288   |  |
| Travel Distance (km)    | 10758 | 10769 | 10739 | 10778 |  |
| Travel Time (hr)        | 261.3 | 254.7 | 303.2 | 274.9 |  |
| Total Delay (hr)        | 76.1  | 69.1  | 117.4 | 88.8  |  |
| Total Stops             | 4154  | 3908  | 5069  | 4542  |  |
| Fuel Used (I)           | 815.6 | 808.2 | 835.2 | 824.6 |  |

#### Interval #0 Information Seeding

| Start Time            | 6:50            |
|-----------------------|-----------------|
| End Time              | 7:00            |
| Total Time (min)      | 10              |
| Volumes adjusted by   | Growth Factors. |
| No data recorded this | interval.       |

Future Total 2037 AM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 1

#### SimTraffic Simulation Summary

Future Total 2037 AM Peak Hour (Opt)

| Recording |                                                                        |                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |
|-----------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:00      |                                                                        |                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |
| 8:00      |                                                                        |                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |
| 60        |                                                                        |                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |
| ors.      |                                                                        |                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |
| 1         | 2                                                                      | 3                                                                                                               | 4                                                                                                                                               | 5                                                                                                                                                                               | 6                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                               |
| 4496      | 4470                                                                   | 4483                                                                                                            | 4440                                                                                                                                            | 4522                                                                                                                                                                            | 4457                                                                                                                                                                                                             | 4635                                                                                                                                                                                                                                            |
| 4485      | 4413                                                                   | 4469                                                                                                            | 4414                                                                                                                                            | 4416                                                                                                                                                                            | 4409                                                                                                                                                                                                             | 4581                                                                                                                                                                                                                                            |
| 244       | 233                                                                    | 289                                                                                                             | 230                                                                                                                                             | 223                                                                                                                                                                             | 234                                                                                                                                                                                                              | 257                                                                                                                                                                                                                                             |
| 255       | 290                                                                    | 303                                                                                                             | 256                                                                                                                                             | 329                                                                                                                                                                             | 282                                                                                                                                                                                                              | 311                                                                                                                                                                                                                                             |
| 10674     | 11070                                                                  | 10875                                                                                                           | 10710                                                                                                                                           | 10634                                                                                                                                                                           | 10552                                                                                                                                                                                                            | 10997                                                                                                                                                                                                                                           |
| 264.3     | 296.1                                                                  | 273.5                                                                                                           | 258.3                                                                                                                                           | 292.0                                                                                                                                                                           | 263.9                                                                                                                                                                                                            | 281.3                                                                                                                                                                                                                                           |
| 79.3      | 106.0                                                                  | 85.9                                                                                                            | 73.4                                                                                                                                            | 107.9                                                                                                                                                                           | 81.8                                                                                                                                                                                                             | 91.4                                                                                                                                                                                                                                            |
|           | 8:00<br>60<br>ors.<br>1<br>4496<br>4485<br>244<br>255<br>10674<br>2653 | 7:00<br>8:00<br>60<br>ors.<br>1 2<br>4496 4470<br>4485 4413<br>244 233<br>255 290<br>10674 11070<br>264.3 296.1 | 7:00<br>8:00<br>60<br>ors.<br>1 2 3<br>1496 4470 4483<br>4485 4413 4469<br>244 233 289<br>255 290 303<br>10674 11070 10875<br>264.3 296.1 273.5 | 7:00<br>8:00<br>60<br>ors.<br>1 2 3 4<br>1496 4470 4483 4440<br>4485 4413 4469 4414<br>244 233 289 230<br>255 290 303 256<br>10674 11070 10875 10710<br>264.3 296.1 273.5 258.3 | 7:00<br>8:00<br>60<br>ors.<br>1 2 3 4 5<br>1 496 4470 4483 4440 4522<br>4485 4413 4469 4414 4416<br>244 233 289 230 223<br>255 290 303 256 329<br>10674 11070 10875 10710 10634<br>264.3 296.1 273.5 258.3 292.0 | 7:00<br>8:00<br>60<br>yrs.<br>1 2 3 4 5 6<br>1496 4470 4483 4440 4522 4457<br>4485 4413 4469 4414 4416 4409<br>244 233 289 230 223 234<br>255 290 303 256 329 282<br>10674 11070 10875 10710 10634 10552<br>264.3 296.1 273.5 258.3 292.0 263.9 |

5142

861.2

4494

830.9

4029

803.6

5472

828.9

4403

806.5

4143

810.5

#### Interval #1 Information Recording

Total Stops

Fuel Used (I)

| Start Time                 | 7:00       |       |       |       |       |  |
|----------------------------|------------|-------|-------|-------|-------|--|
| End Time                   | 8:00       |       |       |       |       |  |
| Total Time (min)           | 60         |       |       |       |       |  |
| Volumes adjusted by Growth | n Factors. |       |       |       |       |  |
| Run Number                 |            | 8     | 9     | 10    | Avg   |  |
| Vehs Entered               |            | 4482  | 4407  | 4535  | 4493  |  |
| Vehs Exited                |            | 4396  | 4428  | 4461  | 4447  |  |
| Starting Vehs              |            | 234   | 270   | 249   | 243   |  |
| Ending Vehs                |            | 320   | 249   | 323   | 288   |  |
| Travel Distance (km)       |            | 10758 | 10769 | 10739 | 10778 |  |
| Travel Time (hr)           |            | 261.3 | 254.7 | 303.2 | 274.9 |  |
| Total Delay (hr)           |            | 76.1  | 69.1  | 117.4 | 88.8  |  |
| Total Stops                |            | 4154  | 3908  | 5069  | 4542  |  |
| Fuel Used (I)              |            | 815.6 | 808.2 | 835.2 | 824.6 |  |

Future Total 2037 AM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 2

01/16/2025

4636

845.6

| Queuing and Block<br>Future Total 2037 / | AM Pea  | k Hour | <u> </u> |         |         |        |        |       |       |      | 01/   | 16/2025 |
|------------------------------------------|---------|--------|----------|---------|---------|--------|--------|-------|-------|------|-------|---------|
| Intersection: 1: Hur                     | ontario | Street | (Hwy     | 10) & ( | Charles | ston S | ideroa | d (RR | 24)   |      |       |         |
| Movement                                 | EB      | EB     | EB       | WB      | WB      | WB     | NB     | NB    | NB    | SB   | SB    | SB      |
| Directions Served                        | L       | Т      | R        | L       | Т       | R      | L      | Т     | TR    | L    | Т     | TR      |
| Maximum Queue (m)                        | 78.1    | 192.5  | 85.0     | 54.9    | 182.4   | 96.8   | 106.0  | 171.5 | 169.7 | 74.8 | 352.1 | 346.4   |
| Average Queue (m)                        | 20.4    | 79.9   | 62.8     | 39.0    | 96.1    | 13.7   | 64.2   | 77.6  | 81.7  | 22.6 | 220.7 | 219.3   |
| 95th Queue (m)                           | 51.4    | 168.1  | 96.9     | 66.6    | 227.5   | 63.2   | 113.4  | 184.6 | 181.8 | 64.9 | 366.7 | 359.2   |
| Link Distance (m)                        |         | 1355.9 |          |         | 586.1   |        |        | 774.3 | 774.3 |      | 547.3 | 547.3   |
| Upstream Blk Time (%)                    |         |        |          |         |         |        |        |       |       |      |       |         |
| Queuing Penalty (veh)                    |         |        |          |         |         |        |        |       |       |      |       |         |
| Storage Bay Dist (m)                     | 80.0    |        | 65.0     | 40.0    |         | 55.0   | 85.0   |       |       | 40.0 |       |         |
| Storage Blk Time (%)                     | 0       | 9      | 17       | 23      | 39      | 0      | 14     | 2     |       | 0    | 39    |         |
| Queuing Penalty (veh)                    | 0       | 30     | 39       | 53      | 61      | 0      | 73     | 3     |       | 1    | 23    |         |

Intersection: 2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)

| Movement              | EB    | EB    | WB   | WB     | WB   | NB   | NB    | SB   | SB     |  |
|-----------------------|-------|-------|------|--------|------|------|-------|------|--------|--|
| Directions Served     | L     | TR    | L    | Т      | R    | L    | TR    | L    | TR     |  |
| Maximum Queue (m)     | 16.4  | 57.8  | 5.3  | 92.3   | 11.9 | 9.6  | 9.9   | 26.6 | 21.3   |  |
| Average Queue (m)     | 3.5   | 22.1  | 0.5  | 25.7   | 2.3  | 1.0  | 2.2   | 9.1  | 6.6    |  |
| 95th Queue (m)        | 10.5  | 48.4  | 3.2  | 68.0   | 8.5  | 5.4  | 7.2   | 19.7 | 15.8   |  |
| Link Distance (m)     |       | 753.6 |      | 2799.0 |      |      | 895.6 |      | 1191.1 |  |
| Upstream Blk Time (%) |       |       |      |        |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |       |      |        |      |      |       |      |        |  |
| Storage Bay Dist (m)  | 125.0 |       | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Storage Blk Time (%)  |       |       |      | 1      |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |       |      | 1      |      |      |       |      |        |  |

#### Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | WB   | NB     | SB    |  |
|-----------------------|------|------|--------|-------|--|
| Directions Served     | L    | L    | LTR    | LTR   |  |
| Maximum Queue (m)     | 7.8  | 20.4 | 20.3   | 13.0  |  |
| Average Queue (m)     | 1.3  | 4.0  | 5.5    | 4.8   |  |
| 95th Queue (m)        | 5.7  | 14.5 | 15.8   | 10.5  |  |
| Link Distance (m)     |      |      | 1222.3 | 607.7 |  |
| Upstream Blk Time (%) |      |      |        |       |  |
| Queuing Penalty (veh) |      |      |        |       |  |
| Storage Bay Dist (m)  | 30.0 | 30.0 |        |       |  |
| Storage Blk Time (%)  |      | 0    |        |       |  |
| Queuing Penalty (veh) |      | 0    |        |       |  |

Future Total 2037 AM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 3

### Queuing and Blocking Report Future Total 2037 AM Peak Hour (Opt)

Intersection: 101: Charleston Sideroad (RR 24) & Site Access

| Movement              | EB    | EB    | WB    | WB   | SB    |
|-----------------------|-------|-------|-------|------|-------|
| Directions Served     | L     | Т     | Т     | R    | LR    |
| Maximum Queue (m)     | 8.3   | 65.3  | 75.1  | 25.8 | 37.6  |
| Average Queue (m)     | 1.0   | 34.1  | 38.1  | 8.3  | 11.2  |
| 95th Queue (m)        | 5.3   | 55.7  | 64.6  | 22.0 | 28.6  |
| Link Distance (m)     |       | 623.7 | 753.6 |      | 117.2 |
| Upstream Blk Time (%) |       |       |       |      |       |
| Queuing Penalty (veh) |       |       |       |      |       |
| Storage Bay Dist (m)  | 130.0 |       |       | 75.0 |       |
| Storage Blk Time (%)  |       |       | 0     |      |       |
| Queuing Penalty (veh) |       |       | 0     |      |       |

Network Summary

Network wide Queuing Penalty: 284

Future Total 2037 AM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 4

01/16/2025

| SimTraffic Simulation Su<br>Future Total 2037 PM Pe | ,     |       |       |       |       |       | 01/16/2025 |
|-----------------------------------------------------|-------|-------|-------|-------|-------|-------|------------|
| Summary of All Intervals                            |       |       |       |       |       |       |            |
| Run Number                                          | 1     | 2     | 3     | 4     | 5     | 6     | 7          |
| Start Time                                          | 4:50  | 4:50  | 4:50  | 4:50  | 4:50  | 4:50  | 4:50       |
| End Time                                            | 6:00  | 6:00  | 6:00  | 6:00  | 6:00  | 6:00  | 6:00       |
| Total Time (min)                                    | 70    | 70    | 70    | 70    | 70    | 70    | 70         |
| Time Recorded (min)                                 | 60    | 60    | 60    | 60    | 60    | 60    | 60         |
| # of Intervals                                      | 2     | 2     | 2     | 2     | 2     | 2     | 2          |
| # of Recorded Intervals                             | 1     | 1     | 1     | 1     | 1     | 1     | 1          |
| Vehs Entered                                        | 4970  | 4871  | 5044  | 4954  | 4966  | 4950  | 5013       |
| Vehs Exited                                         | 4750  | 4786  | 4877  | 4857  | 4705  | 4757  | 4944       |
| Starting Vehs                                       | 305   | 282   | 278   | 300   | 276   | 260   | 315        |
| Ending Vehs                                         | 525   | 367   | 445   | 397   | 537   | 453   | 384        |
| Travel Distance (km)                                | 12368 | 12155 | 12737 | 12345 | 12203 | 12200 | 12478      |
| Travel Time (hr)                                    | 450.8 | 412.9 | 373.1 | 386.6 | 465.5 | 401.8 | 374.5      |
| Total Delay (hr)                                    | 240.2 | 205.4 | 156.6 | 176.0 | 258.2 | 194.4 | 161.2      |
| Total Stops                                         | 5420  | 5621  | 5819  | 5515  | 5300  | 5205  | 5185       |
|                                                     |       |       |       |       |       |       |            |

5420 5621 5819 5515 5300 5205 1051.5 1009.7 1009.6 1000.0 1057.6 1010.2 Summary of All Intervals

| Run Number              | 8     | 9     | 10     | Avg    |  |
|-------------------------|-------|-------|--------|--------|--|
| Start Time              | 4:50  | 4:50  | 4:50   | 4:50   |  |
| End Time                | 6:00  | 6:00  | 6:00   | 6:00   |  |
| Total Time (min)        | 70    | 70    | 70     | 70     |  |
| Time Recorded (min)     | 60    | 60    | 60     | 60     |  |
| # of Intervals          | 2     | 2     | 2      | 2      |  |
| # of Recorded Intervals | 1     | 1     | 1      | 1      |  |
| Vehs Entered            | 5013  | 4998  | 4976   | 4976   |  |
| Vehs Exited             | 4893  | 4852  | 4898   | 4832   |  |
| Starting Vehs           | 285   | 295   | 311    | 288    |  |
| Ending Vehs             | 405   | 441   | 389    | 430    |  |
| Travel Distance (km)    | 12313 | 12311 | 12343  | 12345  |  |
| Travel Time (hr)        | 362.6 | 385.6 | 401.6  | 401.5  |  |
| Total Delay (hr)        | 151.8 | 174.6 | 190.6  | 190.9  |  |
| Total Stops             | 5325  | 6148  | 4813   | 5434   |  |
| Fuel Used (I)           | 984.5 | 998.0 | 1011.2 | 1013.2 |  |

#### Interval #0 Information Seeding

Fuel Used (I)

| Start Time               | 4:50           |  |
|--------------------------|----------------|--|
| End Time                 | 5:00           |  |
| Total Time (min)         | 10             |  |
| Volumes adjusted by G    | rowth Factors. |  |
| No data recorded this in | nterval.       |  |

Future Total 2037 PM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 1

999.6

### SimTraffic Simulation Summary

Future Total 2037 PM Peak Hour (Opt)

| Interval #1 Informa       | tion Recordi | ng    |       |       |       |       |       |       |
|---------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|
| Start Time                | 5:00         |       |       |       |       |       |       |       |
| End Time                  | 6:00         |       |       |       |       |       |       |       |
| Total Time (min)          | 60           |       |       |       |       |       |       |       |
| Volumes adjusted by Growt | h Factors.   |       |       |       |       |       |       |       |
| Run Number                |              | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
| Vehs Entered              |              | 4970  | 4871  | 5044  | 4954  | 4966  | 4950  | 5013  |
| Vehs Exited               |              | 4750  | 4786  | 4877  | 4857  | 4705  | 4757  | 4944  |
| Starting Vehs             |              | 305   | 282   | 278   | 300   | 276   | 260   | 315   |
| Ending Vehs               |              | 525   | 367   | 445   | 397   | 537   | 453   | 384   |
| Travel Distance (km)      |              | 12368 | 12155 | 12737 | 12345 | 12203 | 12200 | 12478 |
| Travel Time (hr)          |              | 450.8 | 412.9 | 373.1 | 386.6 | 465.5 | 401.8 | 374.5 |
|                           |              |       |       |       |       |       |       |       |

205.4

5621

1009.7

156.6

5819

1009.6

176.0

5515

1000.0

258.2

5300

1057.6

194.4

5205

1010.2

240.2

5420

1051.5

#### Interval #1 Information Recording

Total Delay (hr)

Total Stops

Fuel Used (I)

| Start Time                 | 5:00     |       |       |        |        |  |
|----------------------------|----------|-------|-------|--------|--------|--|
| End Time                   | 6:00     |       |       |        |        |  |
| Total Time (min)           | 60       |       |       |        |        |  |
| Volumes adjusted by Growth | Factors. |       |       |        |        |  |
| Run Number                 |          | 8     | 9     | 10     | Avg    |  |
| Vehs Entered               |          | 5013  | 4998  | 4976   | 4976   |  |
| Vehs Exited                |          | 4893  | 4852  | 4898   | 4832   |  |
| Starting Vehs              |          | 285   | 295   | 311    | 288    |  |
| Ending Vehs                |          | 405   | 441   | 389    | 430    |  |
| Travel Distance (km)       |          | 12313 | 12311 | 12343  | 12345  |  |
| Travel Time (hr)           |          | 362.6 | 385.6 | 401.6  | 401.5  |  |
| Total Delay (hr)           |          | 151.8 | 174.6 | 190.6  | 190.9  |  |
| Total Stops                |          | 5325  | 6148  | 4813   | 5434   |  |
| Fuel Used (I)              |          | 984.5 | 998.0 | 1011.2 | 1013.2 |  |

Future Total 2037 PM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 2

01/16/2025

161.2

5185

999.6

| Queuing and Block<br>Future Total 2037 I | • •     |        | · (Opt) | )       |        |        |        |       |       |       | 01/1 | 16/2025 |
|------------------------------------------|---------|--------|---------|---------|--------|--------|--------|-------|-------|-------|------|---------|
| Intersection: 1: Hur                     | ontario | Street | (Hwy    | 10) & ( | Charle | ston S | ideroa | d (RR | 24)   |       |      |         |
| Movement                                 | EB      | EB     | EB      | B500    | WB     | WB     | WB     | NB    | NB    | NB    | SB   | SB      |
| Directions Served                        | L       | Т      | R       | Т       | L      | Т      | R      | L     | Т     | TR    | L    | T       |
| Maximum Queue (m)                        | 82.4    | 791.0  | 85.0    | 8.8     | 54.9   | 602.0  | 130.0  | 114.9 | 383.5 | 333.6 | 74.8 | 162.6   |
| Average Queue (m)                        | 46.1    | 456.6  | 61.4    | 0.3     | 42.3   | 480.4  | 61.6   | 61.2  | 152.0 | 153.9 | 23.0 | 81.6    |
| 95th Queue (m)                           | 93.3    | 953.1  | 110.3   | 6.6     | 68.8   | 730.0  | 156.3  | 122.5 | 322.7 | 311.0 | 59.3 | 154.2   |
| Link Distance (m)                        |         | 1355.9 |         | 2799.0  |        | 586.1  |        |       | 774.3 | 774.3 |      | 547.3   |
| Upstream Blk Time (%)                    |         | 0      |         |         |        | 45     |        |       | 0     |       |      |         |

Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (m) Storage Blk Time (%) Queuing Penalty (veh) 2 0 0 40.0 80.0 65.0 85.0 55.0 40.0 69 19 40 149 78 3 5 0 2 1 12 198 19 153 17 42 1

Intersection: 1: Hurontario Street (Hwy 10) & Charleston Sideroad (RR 24)

| Movement              | SB    |
|-----------------------|-------|
| Directions Served     | TR    |
| Maximum Queue (m)     | 164.6 |
| Average Queue (m)     | 81.6  |
| 95th Queue (m)        | 154.4 |
| Link Distance (m)     | 547.3 |
| Upstream Blk Time (%) |       |
| Queuing Penalty (veh) |       |
| Storage Bay Dist (m)  |       |
| Storage Blk Time (%)  |       |
| Queuing Penalty (veh) |       |

Intersection: 2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)

| Movement              | EB    | EB    | WB   | WB     | WB   | NB   | NB    | SB   | SB     |  |
|-----------------------|-------|-------|------|--------|------|------|-------|------|--------|--|
| Directions Served     | L     | TR    | L    | Т      | R    | L    | TR    | L    | TR     |  |
| Maximum Queue (m)     | 25.0  | 71.9  | 6.2  | 88.3   | 16.5 | 12.1 | 9.7   | 26.4 | 25.7   |  |
| Average Queue (m)     | 7.9   | 28.7  | 0.6  | 28.1   | 4.4  | 2.1  | 2.5   | 10.3 | 8.7    |  |
| 95th Queue (m)        | 19.0  | 57.9  | 3.6  | 67.6   | 12.7 | 8.3  | 7.9   | 21.9 | 19.1   |  |
| Link Distance (m)     |       | 753.6 |      | 2799.0 |      |      | 895.6 |      | 1191.1 |  |
| Upstream Blk Time (%) |       |       |      |        |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |       |      |        |      |      |       |      |        |  |
| Storage Bay Dist (m)  | 125.0 |       | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Storage Blk Time (%)  |       |       |      | 1      |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |       |      | 1      |      |      |       |      |        |  |

Queuing and Blocking Report

Future Total 2037 PM Peak Hour (Opt)

Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | EB    | WB   | NB     | SB    |
|-----------------------|------|-------|------|--------|-------|
| Directions Served     | L    | TR    | L    | LTR    | LTR   |
| Maximum Queue (m)     | 8.9  | 0.6   | 9.7  | 20.1   | 16.8  |
| Average Queue (m)     | 1.5  | 0.0   | 1.5  | 7.6    | 5.5   |
| 95th Queue (m)        | 6.4  | 0.6   | 6.6  | 15.8   | 11.9  |
| Link Distance (m)     |      | 662.7 |      | 1222.3 | 607.7 |
| Upstream Blk Time (%) |      |       |      |        |       |
| Queuing Penalty (veh) |      |       |      |        |       |
| Storage Bay Dist (m)  | 30.0 |       | 30.0 |        |       |
| Storage Blk Time (%)  |      |       |      |        |       |
| Queuing Penalty (veh) |      |       |      |        |       |
|                       |      |       |      |        |       |

Intersection: 101: Charleston Sideroad (RR 24) & Site Access

| Movement              | EB    | EB    | WB    | WB   | SB    |
|-----------------------|-------|-------|-------|------|-------|
| Directions Served     | L     | Т     | Т     | R    | LR    |
| Maximum Queue (m)     | 14.4  | 83.2  | 92.6  | 22.8 | 33.2  |
| Average Queue (m)     | 2.4   | 43.7  | 49.7  | 7.0  | 10.7  |
| 95th Queue (m)        | 9.4   | 70.9  | 82.6  | 19.5 | 26.2  |
| Link Distance (m)     |       | 623.7 | 753.6 |      | 117.2 |
| Upstream Blk Time (%) |       |       |       |      |       |
| Queuing Penalty (veh) |       |       |       |      |       |
| Storage Bay Dist (m)  | 130.0 |       |       | 75.0 |       |
| Storage Blk Time (%)  |       |       | 2     |      |       |
| Queuing Penalty (veh) |       |       | 1     |      |       |
| Queuing Penaity (ven) |       |       |       |      |       |

Network Summary

Network wide Queuing Penalty: 614

Future Total 2037 PM 10042 - Caledon Quarry TIS TYLin SimTraffic Report Page 3

24

12

Future Total 2037 PM 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 4

01/16/2025

| SimTraffic Simulation Summary   |
|---------------------------------|
| Future Total 2037 SAT Peak Hour |

01/16/2025

#### Summary of All Intervals

| Run Number              | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|
| Start Time              | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 | 12:50 |
| End Time                | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  | 2:00  |
| Total Time (min)        | 70    | 70    | 70    | 70    | 70    | 70    | 70    |
| Time Recorded (min)     | 60    | 60    | 60    | 60    | 60    | 60    | 60    |
| # of Intervals          | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| # of Recorded Intervals | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Vehs Entered            | 4321  | 4496  | 4600  | 4422  | 4443  | 4207  | 4372  |
| Vehs Exited             | 4268  | 4411  | 4523  | 4399  | 4385  | 4119  | 4334  |
| Starting Vehs           | 254   | 233   | 255   | 261   | 234   | 231   | 255   |
| Ending Vehs             | 307   | 318   | 332   | 284   | 292   | 319   | 293   |
| Travel Distance (km)    | 10267 | 10582 | 10715 | 10423 | 10630 | 10008 | 10210 |
| Travel Time (hr)        | 293.0 | 300.9 | 316.2 | 279.9 | 273.6 | 271.0 | 336.3 |
| Total Delay (hr)        | 115.1 | 116.7 | 130.4 | 99.2  | 89.4  | 98.6  | 159.0 |
| Total Stops             | 4118  | 4120  | 4217  | 3899  | 4152  | 3291  | 3651  |
| Fuel Used (I)           | 800.2 | 834.5 | 850.6 | 806.4 | 815.1 | 777.2 | 842.1 |

#### Summary of All Intervals

|                         | •     | •     | 10    |       |  |
|-------------------------|-------|-------|-------|-------|--|
| Run Number              | 8     | 9     | 10    | Avg   |  |
| Start Time              | 12:50 | 12:50 | 12:50 | 12:50 |  |
| End Time                | 2:00  | 2:00  | 2:00  | 2:00  |  |
| Total Time (min)        | 70    | 70    | 70    | 70    |  |
| Time Recorded (min)     | 60    | 60    | 60    | 60    |  |
| # of Intervals          | 2     | 2     | 2     | 2     |  |
| # of Recorded Intervals | 1     | 1     | 1     | 1     |  |
| Vehs Entered            | 4465  | 4437  | 4564  | 4431  |  |
| Vehs Exited             | 4379  | 4398  | 4491  | 4370  |  |
| Starting Vehs           | 235   | 283   | 252   | 245   |  |
| Ending Vehs             | 321   | 322   | 325   | 311   |  |
| Travel Distance (km)    | 10727 | 10349 | 10676 | 10459 |  |
| Travel Time (hr)        | 334.2 | 308.1 | 281.5 | 299.5 |  |
| Total Delay (hr)        | 148.4 | 128.1 | 96.0  | 118.1 |  |
| Total Stops             | 4266  | 3749  | 4601  | 4005  |  |
| Fuel Used (I)           | 870.7 | 827.9 | 822.4 | 824.7 |  |

#### Interval #0 Information Seeding

| Start Time            | 12:50           |  |  |
|-----------------------|-----------------|--|--|
| End Time              | 1:00            |  |  |
| Total Time (min)      | 10              |  |  |
| Volumes adjusted by   | Growth Factors. |  |  |
| No data recorded this | s interval.     |  |  |

Future Total 2037 SAT 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 1

#### SimTraffic Simulation Summary Future Total 2037 SAT Peak Hour

#### 01/16/2025

#### Interval #1 Information Recording

| Start Time               | 1:00         |      |      |      |      |      |      |      |
|--------------------------|--------------|------|------|------|------|------|------|------|
| End Time                 | 2:00         |      |      |      |      |      |      |      |
| Total Time (min)         | 60           |      |      |      |      |      |      |      |
| Volumes adjusted by Grow | vth Factors. |      |      |      |      |      |      |      |
| Run Number               |              | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
| Vehs Entered             |              | 4321 | 4496 | 4600 | 4422 | 4443 | 4207 | 4372 |
| Vehs Exited              |              | 4268 | 4411 | 4523 | 4399 | 4385 | 4119 | 4334 |
| Ctarting Value           |              | 0E 4 | 000  | 055  | 001  | 004  | 001  | 255  |

| Vehs Exited          | 4268  | 4411  | 4523  | 4399  | 4385  | 4119  | 4334  |
|----------------------|-------|-------|-------|-------|-------|-------|-------|
| Starting Vehs        | 254   | 233   | 255   | 261   | 234   | 231   | 255   |
| Ending Vehs          | 307   | 318   | 332   | 284   | 292   | 319   | 293   |
| Travel Distance (km) | 10267 | 10582 | 10715 | 10423 | 10630 | 10008 | 10210 |
| Travel Time (hr)     | 293.0 | 300.9 | 316.2 | 279.9 | 273.6 | 271.0 | 336.3 |
| Total Delay (hr)     | 115.1 | 116.7 | 130.4 | 99.2  | 89.4  | 98.6  | 159.0 |
| Total Stops          | 4118  | 4120  | 4217  | 3899  | 4152  | 3291  | 3651  |
| Fuel Used (I)        | 800.2 | 834.5 | 850.6 | 806.4 | 815.1 | 777.2 | 842.1 |
|                      |       |       |       |       |       |       |       |

#### Interval #1 Information Recording

| Start Time         1:00           End Time         2:00           Total Time (min)         60           Volumes adjusted by Growth Factors.         8         9         10         Avg           Run Number         8         9         10         Avg           Vehs Entered         4465         4437         4564         4431           Vehs Exited         4379         4398         4491         4370           Starting Vehs         235         283         252         245           Ending Vehs         321         322         325         311           Travel Distance (km)         10727         10349         10676         10459           Travel Distance (km)         10727         10349         10676         10459           Travel Distance (km)         10727         10349         10676         10459           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005           Fuel Used (I)         870.7         827.9         822.4         824.7 |                            |          |       |       |       |       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------|-------|-------|-------|--|
| Bit         9         10         Avg           Volumes adjusted by Growth Factors.         Run Number         8         9         10         Avg           Vehs Entered         4465         4437         4564         4431           Vehs Exited         4379         4398         4491         4370           Starting Vehs         235         283         252         245           Ending Vehs         321         322         325         311           Travel Distance (km)         10727         10349         10676         10459           Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                  | Start Time                 | 1:00     |       |       |       |       |  |
| But Number         8         9         10         Avg           Vehs Entered         4465         4437         4564         4431           Vehs Entered         4465         4437         4564         4431           Vehs Entered         4379         4398         4491         4370           Starting Vehs         235         283         252         245           Ending Vehs         321         322         325         311           Travel Distance (km)         10727         10349         10676         10459           Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                 | End Time                   | 2:00     |       |       |       |       |  |
| Run Number         8         9         10         Avg           Vehs Entered         4465         4437         4564         4431           Vehs Entered         4379         4398         4491         4370           Starting Vehs         235         283         252         245           Ending Vehs         321         322         325         311           Travel Distance (km)         10727         10349         10676         10459           Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                                                                                            | Total Time (min)           | 60       |       |       |       |       |  |
| Vehs Entered         4465         4437         4564         4431           Vehs Exited         4379         4398         4491         4370           Starting Vehs         235         283         252         245           Ending Vehs         321         322         325         311           Travel Distance (km)         10727         10349         10676         10459           Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                                                                                                                                                             | Volumes adjusted by Growth | Factors. |       |       |       |       |  |
| Vehs Exited         4379         4398         4491         4370           Starting Vehs         235         283         252         245           Ending Vehs         321         322         325         311           Travel Distance (km)         10727         10349         10676         10459           Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run Number                 |          | 8     | 9     | 10    | Avg   |  |
| Starting Vehs         235         283         252         245           Ending Vehs         321         322         325         311           Travel Distance (km)         10727         10349         10676         10459           Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vehs Entered               |          | 4465  | 4437  | 4564  | 4431  |  |
| Ending Vehs         321         322         325         311           Travel Distance (km)         10727         10349         10676         10459           Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vehs Exited                |          | 4379  | 4398  | 4491  | 4370  |  |
| Travel Distance (km)         10727         10349         10676         10459           Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Starting Vehs              |          | 235   | 283   | 252   | 245   |  |
| Travel Time (hr)         334.2         308.1         281.5         299.5           Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ending Vehs                |          | 321   | 322   | 325   | 311   |  |
| Total Delay (hr)         148.4         128.1         96.0         118.1           Total Stops         4266         3749         4601         4005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Travel Distance (km)       |          | 10727 | 10349 | 10676 | 10459 |  |
| Total Stops 4266 3749 4601 4005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Travel Time (hr)           |          | 334.2 | 308.1 | 281.5 | 299.5 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Delay (hr)           |          | 148.4 | 128.1 | 96.0  | 118.1 |  |
| Fuel Used (I) 870.7 827.9 822.4 824.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Stops                |          | 4266  | 3749  | 4601  | 4005  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fuel Used (I)              |          | 870.7 | 827.9 | 822.4 | 824.7 |  |

Future Total 2037 SAT 10042 - Caledon Quarry TIS TYLin

| Queuing and Block<br>Future Total 2037 S | 0 1     |        | r    |       |        |        |        |       |       |      | 01/*  | 16/2025 |
|------------------------------------------|---------|--------|------|-------|--------|--------|--------|-------|-------|------|-------|---------|
| Intersection: 1: Hur                     | ontario | Street | (Hwy | 10) & | Charle | ston S | ideroa | d (RR | 24)   |      |       |         |
| Movement                                 | EB      | EB     | EB   | WB    | WB     | WB     | NB     | NB    | NB    | SB   | SB    | SB      |
| Directions Served                        | L       | Т      | R    | L     | Т      | R      | L      | Т     | TR    | L    | Т     | TR      |
| Maximum Queue (m)                        | 82.3    | 346.2  | 85.0 | 55.0  | 565.8  | 130.0  | 114.9  | 196.1 | 199.6 | 74.8 | 191.5 | 186.6   |
| Average Queue (m)                        | 45.8    | 158.7  | 45.0 | 50.6  | 372.5  | 43.2   | 65.8   | 100.8 | 106.2 | 22.1 | 96.7  | 95.1    |
| 95th Queue (m)                           | 88.3    | 363.5  | 95.8 | 65.5  | 687.1  | 137.9  | 122.6  | 194.3 | 197.4 | 61.4 | 173.8 | 168.7   |
| Link Distance (m)                        |         | 1355.9 |      |       | 586.1  |        |        | 774.3 | 774.3 |      | 547.3 | 547.3   |
| Upstream Blk Time (%)                    |         |        |      |       | 22     |        |        |       |       |      |       |         |
| Queuing Penalty (veh)                    |         |        |      |       | 0      |        |        |       |       |      |       |         |
| Storage Bay Dist (m)                     | 80.0    |        | 65.0 | 40.0  |        | 55.0   | 85.0   |       |       | 40.0 |       |         |
| Storage Blk Time (%)                     | 2       | 39     | 1    | 72    | 46     |        | 10     | 11    |       | 0    | 27    |         |
| Queuing Penalty (veh)                    | 6       | 97     | 4    | 198   | 82     |        | 71     | 24    |       | 2    | 16    |         |
|                                          |         |        |      |       |        |        |        |       |       |      |       |         |

198 Intersection: 2: Cataract Road/Main Street (RR 136) & Charleston Sideroad (RR 24)

| Movement              | EB    | EB    | WB   | WB     | WB   | NB   | NB    | SB   | SB     |  |
|-----------------------|-------|-------|------|--------|------|------|-------|------|--------|--|
| Directions Served     | L     | TR    | L    | Т      | R    | L    | TR    | L    | TR     |  |
| Maximum Queue (m)     | 18.5  | 59.9  | 6.5  | 63.9   | 13.9 | 7.4  | 10.2  | 28.7 | 18.4   |  |
| Average Queue (m)     | 3.8   | 19.9  | 0.5  | 16.1   | 2.3  | 0.6  | 1.8   | 9.3  | 6.0    |  |
| 95th Queue (m)        | 11.9  | 47.0  | 3.2  | 45.2   | 9.0  | 3.7  | 6.7   | 21.4 | 13.9   |  |
| Link Distance (m)     |       | 753.6 |      | 2799.0 |      |      | 895.6 |      | 1191.1 |  |
| Upstream Blk Time (%) |       |       |      |        |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |       |      |        |      |      |       |      |        |  |
| Storage Bay Dist (m)  | 125.0 |       | 60.0 |        | 90.0 | 70.0 |       | 85.0 |        |  |
| Storage Blk Time (%)  |       |       |      | 0      |      |      |       |      |        |  |
| Queuing Penalty (veh) |       |       |      | 0      |      |      |       |      |        |  |

#### Intersection: 3: Mississauga Road & Charleston Sideroad (RR 24)

| Movement              | EB   | WB   | NB     | SB    | 3 |
|-----------------------|------|------|--------|-------|---|
| Directions Served     | L    | L    | LTR    | LTR   | { |
| Maximum Queue (m)     | 6.4  | 6.4  | 18.8   | 13.8  | 3 |
| Average Queue (m)     | 0.5  | 0.5  | 5.6    | 4.9   | ) |
| 95th Queue (m)        | 3.3  | 3.4  | 13.9   | 10.9  | ) |
| Link Distance (m)     |      |      | 1222.3 | 607.7 | 1 |
| Upstream Blk Time (%) |      |      |        |       |   |
| Queuing Penalty (veh) |      |      |        |       |   |
| Storage Bay Dist (m)  | 30.0 | 30.0 |        |       |   |
| Storage Blk Time (%)  |      |      |        |       |   |
| Queuing Penalty (veh) |      |      |        |       |   |

Future Total 2037 SAT 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 3 Queuing and Blocking Report Future Total 2037 SAT Peak Hour

Intersection: 101: Charleston Sideroad (RR 24) & Site Access

| Movement              | EB    | EB    | WB    | WB   | SB    |
|-----------------------|-------|-------|-------|------|-------|
| Directions Served     | L     | Т     | Т     | R    | LR    |
| Maximum Queue (m)     | 6.2   | 55.8  | 72.3  | 21.9 | 31.6  |
| Average Queue (m)     | 0.3   | 29.4  | 29.2  | 5.3  | 7.5   |
| 95th Queue (m)        | 3.6   | 46.8  | 55.8  | 18.0 | 23.0  |
| Link Distance (m)     |       | 623.7 | 753.6 |      | 117.2 |
| Upstream Blk Time (%) |       |       |       |      |       |
| Queuing Penalty (veh) |       |       |       |      |       |
| Storage Bay Dist (m)  | 130.0 |       |       | 75.0 |       |
| Storage Blk Time (%)  |       |       | 0     |      |       |
| Queuing Penalty (veh) |       |       | 0     |      |       |

Network Summary

Network wide Queuing Penalty: 501

Future Total 2037 SAT 10042 - Caledon Quarry TIS TYLin

SimTraffic Report Page 4

01/16/2025

### **APPENDIX M**

**Collision Data** 

| Agency | LHRS OS Combo | Location   | MTO COL F | COL REPORT # | Year | Date       | Time  | Day |
|--------|---------------|------------|-----------|--------------|------|------------|-------|-----|
| MTO    | 16470.01932   | Hurontario | 4523644   | E210170985   | 2021 | 04/06/2021 | 17:11 | Fri |
| MTO    | 16460.13267   | Hurontario | 2979426   | OP19080010   | 2019 | 28/02/2019 | 15:41 | Thu |
| MTO    | 16460.13628   | Hurontario | 3284524   | OP19234144   | 2019 | 07/06/2019 | 15:45 | Fri |
| MTO    | 16460.12576   | Hurontario | 3169343   | OP19377285   | 2019 | 26/08/2019 | 11:20 | Mon |
| MTO    | 16470.00036   | Hurontario | 3251228   | OP19418980   | 2019 | 20/09/2019 | 05:32 | Fri |

| Agency | Geo ID | Accident N | Accident Y | Accident Date | Accident T | Accident Location     | Municipali Impact Loc |
|--------|--------|------------|------------|---------------|------------|-----------------------|-----------------------|
| PEEL   | 850    | 20333870   | 2020       | 8/14/2020     | 11:45      | 01 - Non intersection | 02 - Thru la          |
| PEEL   | 149    | 210014713  | 2021       | 4/6/2021      | 16:23      | 01 - Non intersection | 02 - Thru la          |

| Classification       | Fatalities at Col | Veh # | Fatalities b | Ramp # | Impact Location |
|----------------------|-------------------|-------|--------------|--------|-----------------|
| Property Damage Only | 0                 | 1     | 0            |        | Thru Lane       |
| Non-Fatal Injury     | 0                 | 1     | 0            |        | Thru Lane       |
| Property Damage Only | 0                 | 1     | 0            |        | Thru Lane       |
| Property Damage Only | 0                 | 1     | 0            |        | Thru Lane       |
| Non-Fatal Injury     | 0                 | 1     | 0            |        | Thru Lane       |

| Location                                                      | Environment Cond. 1 | Environme | Same Type Light | Traffic Control (A) |
|---------------------------------------------------------------|---------------------|-----------|-----------------|---------------------|
| CHARLESTON SR btwn MAIN ST/CATARACT RD & MCLAREN RD (850)     | 01 - Clear          |           | 0 01 - Daylig   | 10 - No control     |
| CHARLESTON SR btwn MAIN ST/CATARACT RD & MISSISSAUGA RD (149) | 01 - Clear          |           | 0 01 - Daylig   | 10 - No control     |

| <b>Road Characteristic</b> | Initial Impact               | Light    | Collision Location                    | Travel Dir | Road Alignment    |
|----------------------------|------------------------------|----------|---------------------------------------|------------|-------------------|
| Undivided Two-Way          | Sideswipe                    | Daylight | Non Intersection (on highway)         | South      | Straight on Level |
| Undivided Two-Way          | Rear End                     | Daylight | At or Near Private Drive (on highway) | South      | Straight on Level |
| Undivided Two-Way          | Turning Movement             | Daylight | Intersection Related (on highway)     | North      | Straight on Level |
| Undivided Two-Way          | Single Motor Vehicle - Other | Daylight | Non Intersection (on highway)         | North      | Straight on Level |
| Undivided Two-Way          | Sideswipe                    | Dark     | Intersection Related (on highway)     | North      | Straight on Level |

| Traffic Ctrl Condition (A) | Road 1 Character         | Road 2 Cha Traffic Control (B) | Road 1 Surface | <b>Road 1 Surface Condition</b> |
|----------------------------|--------------------------|--------------------------------|----------------|---------------------------------|
|                            | 02 - Undivided - two-way |                                | 01 - Asphalt   | 01 - Dry                        |
|                            | 02 - Undivided - two-way |                                | 01 - Asphalt   | 01 - Dry                        |

| Environment 1 Environme Road Surfa Driver Action |  |     |                     | <b>Driver Condition</b> | Vehicle Type | Vehicle Manoeuvre |
|--------------------------------------------------|--|-----|---------------------|-------------------------|--------------|-------------------|
| Clear                                            |  | Dry | Driving Properly    | Normal                  | Truck - Dump | Going Ahead       |
| Clear                                            |  | Dry | Following too Close | Normal                  | Truck - Dump | Going Ahead       |
| Clear                                            |  | Dry | Unknown             | Unknown                 | Truck - Dump | Turning Left      |
| Clear                                            |  | Dry | Driving Properly    | Normal                  | Truck - Dump | Going Ahead       |
| Clear                                            |  | Dry | Lost Control        | Other Driver Condition  | Truck - Dump | Going Ahead       |

| Traffic Control (C) | Road 2 Sur Road 2 Su | r Road 1 Condition | Traffic Ctrl Condition (B) | <b>Road 2 Condition</b> | Traffic Ctrl Condition ( |
|---------------------|----------------------|--------------------|----------------------------|-------------------------|--------------------------|
|                     |                      | 01 - Good          |                            |                         |                          |
|                     |                      | 01 - Good          |                            |                         |                          |

| Sequence of Events 1                   | Sequence | Sequence | RD1 - LAT | RD1 - LONG |
|----------------------------------------|----------|----------|-----------|------------|
| Moveable Objects - Other Motor Vehicle |          |          | ########  | ########   |
| Moveable Objects - Other Motor Vehicle |          |          | ########  | ########   |
| Moveable Objects - Other Motor Vehicle |          |          | ########  | ########   |
| Other Events - Other                   |          |          | ########  | ########   |
| Moveable Objects - Other Motor Vehicle | Moveable | Moveable | ########  | ########   |
|                                        |          |          |           |            |

| Road 1 Alignment       | Road 2 Ali <sub></sub> Road 1 Pav | Road 2 Pav Vehicle 1 T | Vehicle 2 T | Vehicle 1 L | Vehicle 2 L | Towed Veh | Towed Vel | Trailer Typ |
|------------------------|-----------------------------------|------------------------|-------------|-------------|-------------|-----------|-----------|-------------|
| 02 - Straight on hill  | 01 - Exist                        | 11 - Truck -           | 01 - Autom  | FALSE       | FALSE       |           |           |             |
| 01 - Straight on level | 01 - Exist                        | 11 - Truck -           | 01 - Autom  | FALSE       | FALSE       |           |           |             |

| Trailer Typ | o Trailer Con | Trailer Con | Vehicle 1 Condition     | Vehicle 2 Condition     | Apparent Driver 1 Action (A) | Apparent Driver 2 Action (A) |
|-------------|---------------|-------------|-------------------------|-------------------------|------------------------------|------------------------------|
|             |               |             | 01 - No apparent defect | 01 - No apparent defect | 09 - Improper passing        | 01 - Driving properly        |
|             |               |             | 99 - Defect             | 01 - No apparent defect | 01 - Driving properly        | 01 - Driving properly        |

| Driver 1 Condition (A) | Driver 2 Condition (A) | Pedestrian | Cyclist Invo | Pedestrian | Pedestrian | Pedestrian | Pedestrian | <b>Road Juris</b> | Classificati | Vehicle 1 lı | Vehicle 2 II |
|------------------------|------------------------|------------|--------------|------------|------------|------------|------------|-------------------|--------------|--------------|--------------|
| 01 - Normal            | 01 - Normal            | FALSE      | FALSE        |            |            |            |            | 05 - Regior       | 03 - P.D. or | 04 - West    | 04 - West    |
| 08 - Inattentive       | 01 - Normal            | FALSE      | FALSE        |            |            |            |            | 05 - Regior       | 03 - P.D. or | 04 - West    | 04 - West    |

| Initial Imp، Vehicle 1 N Vehicle 2 N Vehicle 1 F Vehicle 1 S | Vehicle 1 T Vehicle 2 F Vehicle 2 S | Vehicle 2 T Vehicle 1 F Vehicle 1 | S Vehicle 2 F Vehicle 2 S Vehicle 1 F |
|--------------------------------------------------------------|-------------------------------------|-----------------------------------|---------------------------------------|
| 04 - Sidesw 14 - Pulling 10 - Stoppe 01 - Other 60 - Ditch   | 01 - Other                          | 08 - Left re                      | 04 - Right r                          |
| 99 - Other 01 - Going 01 - Going 28 - Debris                 | 28 - Debris                         | 19 - No cor                       | 17 - Тор                              |

| Vehicle 2 F | Vehicle 1 D | Vehicle 2 D | Xml Impor  | Validated | Latitude  | Longitude | X-Coordina | Y-Coordina | Self Report |
|-------------|-------------|-------------|------------|-----------|-----------|-----------|------------|------------|-------------|
|             |             |             | Road 1: CH | TRUE      | 43.840203 | ########  | ########   | ########   | FALSE       |
|             |             |             | Road 1: CH | TRUE      | 43.830167 | ########  | ########   | ########   | FALSE       |

### **APPENDIX N**

**Transportation Study Submission Summary** 

# Summary of the changes made to the "Revised July 2023" and the "Revised March 2025" Caledon Quarry Transportation Impact Study and Haul Route Assessment

### Introduction

Town of Caledon comments were received on TYLin's initial report entitled 'Caledon Quarry Transportation Impact Study and Haul Route Assessment' (Transportation Study) dated December 2022. A revised Transportation Study was prepared in July 2023 (referred as #1 listed below) to address; site plan updates, adoption of updated traffic counts, and Town of Caledon request to prepare a 'Collision History Review' letter.

HDR was retained by the Town of Caledon to undertake peer review of the Transportation Study prepared by TYLin dated December 2022 (Revised July 2023). A draft peer review was submitted to the Town, dated July 2, 2024 based on their review.

The Town of Caledon and the Region of Peel reviewed the draft peer review as well as the TYLin Transportation Study and provided comments which were incorporated into the HDR peer review memorandum, dated October 2024 (item #2 below).

In acknowledgement of the peer reviewer's comments, TYLin provides a summary of changes addressed in the Revised July 2023 Transportation Study, and itemized responses to comments below for the Revied March 2025 Transportation Study.

- 1. Transportation Impact Study and Haul Route Assessment prepared by TYLin dated December 2022 (Revised July 2023)
- 2. Town of Caledon IFRQ #23-142 Peer Review of the Transportation Impact Study and Haul Route Assessment prepared by HDR dated October 8, 2024

| Report<br>Section | Updates/Revisions                                                                                                                                                                                                                                                                                                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General           | Town of Caledon Comment:                                                                                                                                                                                                                                                                                                                 |
|                   | While the Town will reserve its main comments related to traffic and transportation impact until                                                                                                                                                                                                                                         |
|                   | issuance of comments under the Planning Act, please note the following.                                                                                                                                                                                                                                                                  |
|                   | 1. During pre-submission consultation with the Town, the proponent's traffic consultant completed Terms of Reference for the Transportation Impact Assessment which included a requirement related to reviewing available collision data. The Town reiterates its concerns related to safety along the proposed haul route, particularly |

### July 2023 Revision

| Report          | Updates/Revisions                                                                                                                                                                                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section         | the adequacy of the intersection of Charleston Sideroad and Highway 10. Further review of the safety and adequacy of the haul route is required in this regard.                                          |
|                 | <u>TYLin Response:</u><br>Acknowledged and addressed. A 'Collision History Review' letter dated August 13, 2024, and submitted under separate cover was prepared by TYLin.                               |
|                 | (A revised 'Collision History Review' has been incorporated into the March 2025<br>Transportation Impact Study and Haul Route Assessment for submission.)                                                |
| General         | Address site plan updates; subject site land size, extraction area                                                                                                                                       |
| Section 3.2     | Updated (2023) turning movement counts collected at the study intersections and adopted for the revision and used without adjustment factors applied for COVID-related reductions.                       |
| Section 4.8     | Consider the heritage property currently located at 1420 Charleston Sideroad with a single driveway access and provide a summary on its expected operation and nominal traffic impact to the study area. |
| Section<br>10.1 | Update the baseline capacity analysis and recalibrate the traffic model with adopted new traffic data.                                                                                                   |
| Section<br>10.2 | Update the future background capacity analysis.                                                                                                                                                          |
| Section<br>10.3 | Update the future total capacity analysis.                                                                                                                                                               |
| Section 11      | Update the queueing analysis.                                                                                                                                                                            |

### March 2025 Revision

| Comment<br>Number | Report<br>Section       | Peer Review Comment                                                                                                                                                                                                                                       | TYLin Response                                                                                                        |
|-------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1.                | Page 9,<br>Section 3.2  | The Saturday peak hour<br>counts in the report do not<br>match the counts presented in<br>Appendix B.<br>Clarification/explanation of<br>why the counts in the main<br>body of report does not match<br>the counts in the appendix<br>should be provided. | Appendix B has been updated<br>to match the 2023 counts<br>aligning with the AM, PM and<br>Saturday traffic analysis. |
| 2.                | Page 10,<br>Section 4.1 | A graphic showing the existing<br>truck restrictions and haul<br>routes would be supportive.<br>Figure 4-3 shows roads with<br>truck restrictions in Section 4.7<br>and may be more appropriate<br>in this section.                                       | Section 4.1 and Section 4.7 has been updated accordingly.                                                             |
| 3.                | Page 11,<br>Section 4.2 | TAC Geometric Design Guide<br>for Canadian Roads (GDG) is<br>200 metres. However, this                                                                                                                                                                    | TYLin recommends the<br>proposed site access be<br>located approximately 500                                          |

| Comment<br>Number | Report<br>Section                      | Peer Review Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TYLin Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                        | spacing is more appropriate<br>for signal spacing in urban<br>conditions, while for suburban<br>conditions a minimum<br>intersection spacing of 400<br>metres would be desirable<br>according to TAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | metres east of Mississauga<br>Road, 160 metres west of the<br>Peel Region snow storage<br>access. Section 4.2 has been<br>updated accordingly.                                                                                                                                                                                                                                                                                                                                                                        |
| 4.                | Page 11,<br>Section<br>4.2             | Based on the Peel Region<br>Road Characterization Study<br>spacing of 600m, a midblock<br>entrance on Charleston Side<br>Road for the subject quarry is<br>preferred. The proposed<br>driveway design could impact<br>the snow storage facility. The<br>location should be evaluated<br>against other criteria in<br>addition to intersection<br>spacing, such as sightlines<br>and the design of the<br>proposed entrance. If other<br>criteria suggest a location<br>outside of the midblock<br>segment may be preferable for<br>an access, then a spacing that<br>is less than 600 metres away<br>may be acceptable based on a<br>comparison of the trade-offs<br>between meeting intersection<br>spacing and avoiding design<br>and operations conflicts with<br>adjacent driveways. | See response to Comment 3<br>above.<br>The revised access location<br>satisfies TAC minimum<br>intersection spacing and will<br>ensure that storage and taper<br>lengths of the proposed<br>auxiliary turn lanes do not<br>impact the existing accesses,<br>specifically the Charleston<br>Sideroad Peel Region snow<br>storage access.<br>Intersection spacing,<br>sightlines, and the design of<br>the proposed entrance have<br>also been revaluated and<br>updated accordingly to support<br>the access location. |
| 5.                | Page 12,<br>Section 4.4                | The "Left/Right-Turn SSD"<br>should be characterized as<br>Stopping Sight Distance only<br>as it is not related to turning<br>vehicles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | This has been revised to<br>clarify the SSD is measured<br>for a vehicle approaching the<br>intersection.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.                | Table 4-1<br>on Page 12<br>Section 4.4 | For a more conservative<br>sightline analysis, the 100<br>km/h design speed should be<br>selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acknowledged. A 100 km/h<br>design speed was selected for<br>sightline analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.                | Table 4-1<br>on page<br>12             | The note under the table<br>should be revised mentioning<br>this assertion is not applicable<br>in environments with very little<br>vertical deflection. We do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acknowledged. The note<br>under Table 4-1 has been<br>revised accordingly.                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Comment<br>Number | Report<br>Section           | Peer Review Comment                                                                                                                                                                                                                                                                                                                                                    | TYLin Response                                                                                                                                                                                                   |
|-------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                             | agree that the use of regular<br>passenger vehicle stopping<br>sight distance requirements is<br>appropriate.                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |
| 8.                | Page 12,<br>Section<br>4.4  | In our opinion, a range of<br>locations for sight<br>measurements should have<br>been tested to identify all<br>locations within the midblock<br>segment that provide<br>acceptable sight distances,<br>independent of other selection<br>criteria.                                                                                                                    | TYLin determined this range<br>based on our site visit<br>conducted on December 10,<br>2024.                                                                                                                     |
| 9.                | Figure 4-1<br>on page<br>13 | The purpose of the figure is unclear. A legend is required.                                                                                                                                                                                                                                                                                                            | Figure 4-1 has been updated to include a legend.                                                                                                                                                                 |
| 10.               | Page 12,<br>Section<br>4.4  | It is unclear why left-turn ISD<br>at the Mississauga Road<br>entrance was not captured,<br>since the majority of trucks will<br>be turning left on to<br>Mississauga Road to continue<br>south towards Charleston<br>Sideroad.                                                                                                                                        | The left-turn ISD has been<br>captured in the revised study.<br>The December 10, 2024 site<br>visit assessed this movement<br>and observed an available<br>intersection sight distance of<br>approximately 200m. |
| 11.               | Page 12,<br>Section<br>4.4  | The sightline requirements in<br>addition to the available sight<br>distances should be better<br>documented and additional<br>figures and/or tables may be<br>beneficial to better document<br>the sight distances observed<br>in the field in relation to the<br>required sight distance.                                                                            | Sightline Analysis has been<br>included in Appendix D.                                                                                                                                                           |
| 12.               | Page 12,<br>Section<br>4.4  | The sight distances measured<br>in the field should use the<br>existing property line as an<br>obstruction to reflect that in<br>future conditions which can be<br>roughly estimated as being in<br>the same location as the<br>existing fence which runs<br>along the north side of<br>Charleston Sideroad i.e. on<br>the south side of the subject<br>site property. | Acknowledged. Sightline<br>distances measured in the<br>field on December 10, 2024<br>uses the existing property line.                                                                                           |

| Comment<br>Number | Report<br>Section           | Peer Review Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TYLin Response                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13.               | Page 14,<br>Section<br>4.6  | The purpose of providing the<br>available turn lanes and<br>existing driveways at<br>Charleston Sideroad and Main<br>Street does not appear<br>relevant to the discussion<br>related to the proposed<br>entrance. Its suggests that an<br>access to Mississauga Road<br>has already been disqualified.<br>The purpose of this section<br>should be better documented<br>as it appears to be a repeat of<br>Section 4.2 but includes<br>discussion on existing left-turn<br>lanes. | Section 4.2 has been revised<br>to better document the<br>proposed Charleston Sideroad<br>access location and its design<br>in relation to the existing<br>accesses, specifically the<br>Charleston Sideroad Peel<br>Region snow storage access.<br>As a result, Section 4.6 has<br>been removed from the TIS.                                                         |
| 14.               | Figure 4-2<br>on page<br>15 | Figure 4-2 depicts locations<br>where the site access is not<br>recommended but requires<br>more details and<br>measurements to describe the<br>purpose and provide more<br>guidance to the reader on the<br>selection criteria.                                                                                                                                                                                                                                                  | Section 4.2 and Section 4.1<br>has been updated accordingly.<br>Text: The revised access<br>location satisfies TAC<br>minimum intersection spacing<br>and will ensure that storage<br>and taper lengths of the<br>proposed auxiliary turn lanes<br>do not impact the existing<br>accesses, specifically the<br>Charleston Sideroad Peel<br>Region snow storage access. |
| 15.               | Page 16,<br>Section<br>4.7  | This report section would be<br>better suited with a graphic<br>that captures all the criteria<br>which were considered in the<br>selection of the preferring<br>access location: sightlines,<br>physical constraints, vehicular<br>conflicts, traffic operations,<br>haul routes, roadway<br>classifications. Figure 4-3<br>appears to be more<br>appropriate for Section 4.1.                                                                                                   | Figure has been moved to<br>Section 4.1                                                                                                                                                                                                                                                                                                                                |
| 16.               | Page 16,<br>Section<br>4.7  | The traffic generated from staff<br>working at 1420 Charleston<br>Sideroad (6 employees)<br>should be considered as a<br>component of site traffic.                                                                                                                                                                                                                                                                                                                               | 1420 Charleston SR staff trips<br>have been added as a<br>component of site traffic and<br>assigned to study intersections<br>accordingly. Section 4.7<br>relocated to Section 6.1.1 -                                                                                                                                                                                 |

| Comment<br>Number | Report<br>Section            | Peer Review Comment                                                                                                                                                                                                                                                              | TYLin Response                                                                                                                                                                                                                                                                                                                                             |
|-------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                              |                                                                                                                                                                                                                                                                                  | Passenger Car Peak Hour<br>Trips                                                                                                                                                                                                                                                                                                                           |
| 17.               | Page 17,<br>Section<br>5.1   | The horizon year should be<br>adjusted to represent 10-years<br>post build-out as opposed to<br>10-years beyond existing<br>conditions.                                                                                                                                          | Traffic analysis has been<br>updated to 10 year-post build<br>out (2037).                                                                                                                                                                                                                                                                                  |
| 18.               | Page 20,<br>Section<br>6.1   | Correspondence details<br>relating to the background<br>growth assumptions are<br>missing in Appendix A.                                                                                                                                                                         | Correspondence details<br>relating to background growth<br>have added to Appendix A.                                                                                                                                                                                                                                                                       |
| 19.               | Page 20,<br>Section<br>6.1.2 | Section 6.1.2 refers to truck<br>data which is not presented in<br>the report. Available weigh<br>scale data or similar data from<br>a proxy site should be<br>provided in greater detail, if<br>available.                                                                      | The calculated AM peak hour<br>truck traffic was further<br>increased by 50% to reflect<br>the morning surge in truck<br>traffic (please see updated<br>Section 6.1.2 of the Traffic<br>Impact study). This<br>methodology has been used<br>by TYLin for multiple quarry<br>applications and have been<br>approved by multiple agencies<br>across Ontario. |
| 20.               | Page 21,<br>Section<br>6.1.2 | More details on the time-of-<br>day distribution of truck trips<br>will be beneficial as opposed<br>to assuming even distribution<br>of trucks throughout the week /<br>year with an arbitrary<br>adjustment factor of a 50%<br>increase applied to the<br>weekday AM peak hour. | See response to Comment 19<br>above. Furthermore, Section<br>6.1.2 provide more details on<br>the expected average monthly<br>breakdown of material<br>extraction based on archived<br>historical data from existing<br>quarry operations in southern<br>Ontario shipped per month for<br>2019 and 2020.                                                   |
| 21.               | Page 23,<br>Section<br>6.2   | The queries used to support<br>the employee (passenger car)<br>distribution shown in Table 6-4<br>should be provided in the<br>appendices for review.                                                                                                                            | Appendix F has been added to include queries used.                                                                                                                                                                                                                                                                                                         |
| 22.               | Figure 6-1<br>on page<br>24  | It is preferrable to provide<br>separate site traffic for trucks<br>and passenger cars in Figure<br>6-1.                                                                                                                                                                         | Separate site traffic for<br>passenger cars and trucks are<br>shown in Error! Reference<br>source not found. and Error!<br>Reference source not<br>found., respectively.                                                                                                                                                                                   |

| Comment<br>Number | Report<br>Section           | Peer Review Comment                                                                                                                                                                                                                                                                                                       | TYLin Response                                                                                                                                                           |
|-------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                             |                                                                                                                                                                                                                                                                                                                           | A separate site traffic figure for<br>the Heritage House (1420<br>Charleston SR) has been<br>shown in Figure 6-4.                                                        |
| 23.               | Page 29,<br>Section<br>9.1  | The storage requirements<br>should be revisited to ensure<br>that at least one truck length<br>can be accommodated in the<br>proposed storage for all turn<br>lanes at the site access.                                                                                                                                   | Noted. Each storage lane is to<br>be designed to accommodate<br>a minimum of one truck length.<br>Text: Refer to Appendix J for<br>updated Truck Swept Path<br>Analysis. |
| 24.               | Page 30,<br>Section<br>9.2  | Access location should be<br>reconsidered towards west of<br>the proposed access as the<br>design elements overlap with<br>snow storage access. Spacing<br>criteria of 600m as advised in<br>Road Characterization Study<br>may not be satisfied but it<br>should not be used as the only<br>criteria.                    | See response to Comment 3<br>and Comment 4 above.                                                                                                                        |
| 25.               | Page 30,<br>Section<br>9.3  | It would be more appropriate<br>to use an articulated dump<br>truck that accurately reflects<br>the largest design vehicles<br>anticipated to enter the site.                                                                                                                                                             | Noted. The vehicle<br>maneuvering assessment has<br>been revised to assess the<br>largest design vehicle. See<br>Appendix I for updated Truck<br>Swept Path Analysis.    |
| 26.               | Figure 9-1<br>on page<br>30 | The figure does not show<br>edge of the existing pavement.<br>The graphic should also<br>indicate the required widening<br>through the section of the<br>roadway where the access is<br>proposed.                                                                                                                         | Noted. The figure has been<br>updated based on the latest<br>topographic survey.                                                                                         |
| 27.               | Page 32,<br>Section<br>10.1 | Lost time adjustment should<br>only be applied if the existing<br>operations are indicating over-<br>capacity operations when the<br>demand is known and can be<br>supported through field<br>observations. Operations<br>without calibration should be<br>showed first for comparison<br>with the calibrated operations. | Lost time adjustment has been removed from all scenarios.                                                                                                                |

| Comment<br>Number | Report<br>Section           | Peer Review Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TYLin Response                                                                                                                                                           |
|-------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28.               | Table 10-2<br>on Page<br>33 | Table 10-2 indicates storage<br>for the intersection of<br>Hurontario Street and<br>Charleston Sideroad only and<br>is not accurately<br>representative of existing<br>conditions. The calculation of<br>effective storage should be<br>revisited so that none of the<br>taper or deceleration<br>components of the turn lanes<br>are reproportioned as storage.                                                                                                                                                                                                                                                                                                                                                                                            | Update table in section 10.<br>Move to Section 11.                                                                                                                       |
| 29.               | Table 10-4<br>on Page<br>35 | Analyze proposed site access<br>under stop control prior to<br>analysis under signal control<br>to provide for comparison with<br>signalized operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Warrant and analysis updated<br>in Section 10 accordingly                                                                                                                |
| 30.               | Page 38,<br>Section 11      | It may be beneficial to include<br>a comparison of 95th<br>percentile queues from<br>Synchro in addition to the<br>SimTraffic queues.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Capacity analysis tables has been updated in Section 11.                                                                                                                 |
| 31.               | General                     | Site truck traffic is expected to<br>use the available haul routes<br>(Charleston Sideroad and<br>Highway 10) without cutting<br>through side streets or other<br>minor roadways unless there<br>are roadway blockages or<br>conditions which render the<br>haul routes unusable.<br>Congestion and typical delays<br>does not constitute an<br>acceptable reason for trucks to<br>divert from the haul routes<br>along Charleston Sideroad<br>and Highway 10. The report<br>should include discussion<br>about the surrounding non-<br>haul route road network, why it<br>would be used (road closures,<br>local trips, or<br>employee/passenger vehicle<br>traffic), and should provide<br>rationale why the side streets<br>would not be utilized during | Separate site traffic for<br>passenger cars and trucks are<br>shown in Error! Reference<br>source not found. and Error!<br>Reference source not<br>found., respectively. |

| Comment<br>Number | Report<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                     | Peer Review Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TYLin Response                                                                                  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                       | typical operations (truck<br>restrictions, indirect routing<br>etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |
| 32.               | Attachment<br>D of<br>Response<br>to the Town<br>of Caledon<br>and Cuesta<br>Planning<br>Consultants<br>Inc. –<br>Aggregate<br>Resources<br>Act<br>Comments<br>of<br>November<br>17, 2023 -<br>St. Marys<br>Cement<br>Inc.<br>(Canada) -<br>Proposed<br>Caledon<br>Pit/Quarry<br>Class A<br>Licence<br>#626600<br>OUR FILE<br>8816AF –<br>Attachment<br>D (Collision<br>History<br>Review by<br>TYLin)<br>dated<br>August 13,<br>2024 | Collision Analysis – should be<br>updated to capture 5 years<br>before/after the Covid-19<br>period to ensure the analysis<br>is based on typical conditions.<br>The analysis should also focus<br>on specific turning movements<br>and intersections to identify<br>'hotspots' and to identify<br>potential mitigation. The<br>analysis should be extended<br>to include all intersections<br>along the haul route from the<br>site entrance to Highway 10,<br>as well as the midblock<br>segments. | Collision Memo has been<br>updated to include 5 years<br>before/after Covid-19 (2015-<br>2023). |