Phase II Environmental Site Assessment

12192 Chinguacousy Road Caledon, Ontario

Prepared For:

Argo Mayfield West V Limited 4900 Palladium Way, Unit 105 Burlington, Ontario L7M 0W7

DS Project No: 24-371-600

Date: 2025-02-04

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

TABLE OF CONTENTS

1.0	Executive Summary	1
2.0	Introduction	5
2.1	Site Description	
2.2	Property Ownership	6
2.3	Current and Proposed Future Use	
2.4	Applicable Site Condition Standards	6
3.0	Background Information	
3.1	Physical Setting	7
	3.1.1 Water Bodies and Areas of Natural Significance	7
	3.1.2 Topography and Surface Water Draining Features	7
3.2	Past Investigations	
	3.2.1 Previous Report Summary	
4.0	Scope of the Investigation	
4.1	Overview of Site Investigation	
4.2	Media Investigated	
	4.2.1 Rationale for Inclusion or Exclusion of Media	9
	4.2.2 Overview of Field Investigation of Media	9
5.0	Investigation Method	9
5.1	General	9
5.2	Drilling and Excavating	
5.3	Soil Sampling	
5.4	Field Screening Measurements	
5.5	Groundwater Monitoring Well Installation	
5.6	Groundwater Field Measurement of Water Quality Parameters	
5.7 5.8	Groundwater SamplingSediment Sampling	
5.6 5.9	Analytical Testing	
5.10	Residue Management Procedures	
0.10	5.10.1 Soil Cuttings From Drilling and Excavations	
	5.10.2 Fluids from Equipment Cleaning	
5.11	Elevation Surveying	
5.12	Quality Assurance and Quality Control Measures	14
6.0	Review and Evaluation	
6.1	Geology	
6.2	Ground Water Elevations and Flow Direction	
	6.2.1 Rationale for Monitoring Well Location and Well Screen Intervals	16
	6.2.2 Results of Interface Probe Measurements	16
	6.2.3 Product Thickness and Free Flowing Product	16

8.0	References			
7.3	Limitations			
7.2	Signatures			
7.1	Qualifications of the Assessors			
7.0	Conclusions	21		
6.8	Quality Assurance and Quality Control Results	19		
6.7	Sediment Quality	19		
	6.6.2 Polycyclic Aromatic Hydrocarbons (PAHs)	19		
	6.6.1 Volatile Organic Compounds (VOCs)			
	6.6.4 Petroleum Hydrocarbons (PHCs)			
	6.6.1 Metals and Other Regulated Parameters (ORPs)			
6.6	Ground Water Quality	18		
	6.5.6 Polychlorinated Biphenyls (PCBs)			
	6.5.5 Organochlorine Pesticides (OCPs)			
	6.5.4 Polycyclic Aromatic Hydrocarbons (PAHs)	18		
	6.5.3 Volatile Organic Compounds (VOCs)	17		
	6.5.2 Petroleum Hydrocarbons (PHCs)			
	6.5.1 Metals and Other Regulated Parameters (ORPs)	17		
6.5	Soil Quality			
6.4	Soil Field Screening			
6.3	Fine-Medium Soil Texture			
	6.2.4 Groundwater Elevation and Flow Direction	16		

Enclosures

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Phase II Property Site Plan
- Figure 3 Phase II Study Area
- Figure 4 PCA within Phase II Study Area
- Figure 5 Borehole/Monitoring Well Location Plan with APECs
- Figure 6 Groundwater Contours and Flow Direction
- Figure 7 Summary of Impacts in Soils
- Figure 8 Summary of Impacts in Groundwater

TABLES

- Table 1 Summary of Monitoring Well Installation and Groundwater Data
- Table 2 Summary of Soil Samples Submitted for Chemical Analysis
- Table 3 Summary of Groundwater Samples Submitted for Chemical Analysis
- Table 4 Summary of APECs Identified
- Table 5 Summary of Metals and ORPs in Soil
- Tabe 6 Summary of PHCs and BTEX in Soil
- Table 7 Summary of VOCs in Soil
- Table 8 Summary of PAHs in Soil
- Table 9 Summary of OCPs in Soil
- Table 10 Summary of PCBs in Soil
- Table 11 Summary of Metals and ORPs in Groundwater
- Table 12 Summary of PHCs and BTEX in Groundwater
- Table 13 Summary of VOCs in Groundwater
- Table 14 Summary of PAHs in Groundwater
- Table 15 Summary of Maximum Concentrations in Soil
- Table 16 Summary of Maximum Concentrations in Groundwater
- Notes for Soil and Groundwater Summary Tables

APPENDICES

- Appendix A Plan of Survey
- Appendix B Borehole Logs
- Appendix C Certificates of Analysis

1.0 Executive Summary

DS Consultants Ltd. (DS) was retained by Argo Mayfield West V Limited (the "Client") to conduct a Phase II Environmental Site Assessment (ESA) of the Property located at 12192 Chinguacousy Road, Caledon, Ontario, herein referred to as the "Site". DS understands that this work has been requested for due diligence purposes in association with the proposed acquisition and redevelopment of the Site for residential purposes.

This Phase II ESA was conducted in general accordance with the CSA Standards Association protocols outlined in the document "Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2013)" dated 2000, and reaffirmed in 2013. It should be noted that the CSA methodology is sufficient for due diligence purposes but cannot be used to support the filing of a Record of Site Condition for the Site. The objective of this Phase II ESA is to confirm whether contaminants are present, and at what concentration are they present on the Site, as related to the issues of potential environmental concern identified in the Phase I ESA.

The Phase II Property is a 6.05-hectare (14.95 acres) parcel of land situated within a rural setting in the Town of Caledon, Ontario. The Site is located approximately 510 m northwest of the intersection of Chinguacousy Road and Mayfield Road. The Site is currently occupied by a residential house, three (3) paddocks, two (2) barns, two (2) storage sheds, a parking area, and a grass field. Note that one of the storage sheds has attached animal enclosures.

The Phase I ESA completed in January 2025 indicated that the Site was first developed for agricultural purposes from at least 1860 to present day. The Property is currently used as a hobby farm and for residential purposes. A total of five (5) Potentially Contaminating Activities (PCAs) were identified in the Phase I ESA, of which four (4) were considered to be contributing to four (4) APECs on the Site. A summary of the APECs, associated PCAs, and Contaminants of Potential Concern (COPC) identified is presented in the table below:

Table 1-1: Summary of APECs

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase I Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC-1	West of the Residential House	#28 - Gasoline and associated products stored in a fixed tank	On-Site PCA-1	PHCs, BTEX, VOCs, PAHs	Soil, Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase I Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC-2	Entire Property	#40 - Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-Site PCA-2	OCPs, Metals, As, Sb, Se, Hg, CN-	Soil
APEC-3	Driveway and Parking Area on Property	#N/S - Inferred application of de- icing agents	On-Site PCA-3	EC, SAR	Soil
				Na, Cl-	Groundwater
APEC-4	Northeast of the Residential House	#55 – Transformer Manufacturing, Processing and Use	On-Site PCA-4	PCBs, PHCs, BTEX	Soil

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

During the site reconnaissance, DS observed a parking area on the Property that would likely have de-icing salts applied during the winter months for safety purposes. As such, a Potentially Contaminating Activity (PCA) for de-icing activities applies to this portion of the Property. However, it is the opinion of the Qualified Person that the contaminants of potential concern associated with the PCA (including electrical conductivity and sodium adsorption ratio in soil and chloride and sodium in ground water) do not require further investigation since exceedances of these parameters would be deemed not to exceed based on paragraph 1 of section 49.1 of O.Reg.153/04.

Based on the findings of the Phase I ESA it was concluded that a Phase II ESA is warranted to assess the soil and groundwater conditions on the Site.

This Phase II ESA was completed concurrently with the geotechnical investigation which involved the advancement of seven (7) boreholes, which were completed on December 6 and December 9, 2024. The boreholes were advanced to a maximum depth of 7 metres below ground surface (mbgs) under the supervision of DS personnel. Groundwater monitoring wells were installed in three (3) of the boreholes to allow for an assessment of groundwater

flow direction and groundwater conditions. The borehole locations were determined based on the findings of the Phase I ESA. Soil and groundwater samples were collected and submitted for analysis of all COPCs, including: Petroleum Hydrocarbons (PHCs), Benzene, Toluene, Ethylbenzene, Xylene (BTEX), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Metals, hydride forming metals (Arsenic (As), Antimony (Sb), Selenium (Se)) and Other Regulated Parameters (ORPs: Mercury (Hg), Cyanide (CN-)), and Polychlorinated Biphenyls (PCBs).

The soil and groundwater analytical results were compared to the "Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse-textured soils" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (MECP Table 2 SCS) for coarse-textured soils and residential/parkland/institutional property use.

Based on the findings of the Phase II ESA, DS presents the following findings:

- ♦ A surficial layer of topsoil, ranging in thickness from 150 mm to 250 mm, was encountered in all of the boreholes advanced except for BH24-3. At BH24-3, a 180 mm thick layer of granular fill material consisting of sand and gravel mixed with asphalt was encountered at the ground surface. Fill material, consisting of sand and gravel, ranging in thickness from 0.4 to 1.3 m was encountered below the topsoil in BH24-2 and BH24-4. Clayey silt to silty clay, ranging in thickness from 0.2 to 0.6 m was encountered below the topsoil in BH24-1, BH24-5, and BH24-6, and below the fill material in BH24-3 and BH24-4. Clayey silt to silty clay till, ranging in thickness from 1.5 to 6.2 m was encountered below the clayey silt to silty clay in BH24-1, BH24-3, BH24-4, BH24-5, BH24-6, BH24-7 and below the fill material in BH24-2. Sandy silt till, ranging in thickness from 0.7 to 2.4 m was encountered at 6.0 m to borehole termination at 6.7 m in BH24-3 and below the clayey silt to silty clay till in BH24-5. Another layer of clayey silt to silty clay till was encountered from 4.7 m to borehole termination at a depth of 6.7 m in BH24-5. Bedrock was not encountered during this investigation.
- The depth to groundwater was measured in three (3) monitoring wells installed during the course of this investigation. The monitoring wells were screened to intercept the groundwater water table encountered within the clayey silt to silty clay unit. The groundwater levels were found to range between 0.68 to 3.81 mbgs, with corresponding elevations of 257.19 to 258.92 metres above sea level (masl) on

January 10, 2025. Based on the groundwater elevations recorded, the groundwater flow direction is interpreted to be southeasterly towards Fletcher's Creek. It is possible that the groundwater levels may vary seasonally. The groundwater flow direction can only be confirmed through long term monitoring.

- Soil samples were collected from the boreholes advanced on the Site and submitted for analysis of: PHCs, BTEX, VOCs, Metals, As, Sb, Se, Other Regulated Parameters (ORPs), PAHs, OCPs, pH, and PCBs. The results of the soil chemical analyses indicated that the soil samples met the MECP Table 2 SCS for the parameters analyzed at the locations tested.
- ◆ Groundwater samples were collected from one (1) monitoring well and submitted for analysis of PHCs, BTEX, VOCs, Metals, As, Sb, Se, and ORPs, and PAHs. The well was sampled on two different occasions to assess the groundwater quality. The results of the chemical analyses conducted indicated the following exceedances of the MECP Table 2 SCS:

Sample ID	Date Sampled	Well Screen Interval (mbgs)	Parameter	Units	MECP Table 2 SCS	Reported Value
BH24-2	December 18, 2024	3.10-6.10	0 Cobalt	ug/I	3.8	16
БП24-2	January 10, 2025	5.10-0.10	Cobait	μg/L	3.8	38

Table 1-2: Summary of Groundwater Impacts Identified

Based on a review of the findings of this Phase II ESA, DS presents the following conclusions and recommendations:

- The results of the chemical analyses indicated that the applicable Site Condition Standards for soil have been met, with respect to the issues of potential environmental concern identified in the Phase I ESA. No further soil investigation is recommended at this time.
- ◆ The applicable Site Condition Standards for groundwater have not been met. It is the opinion of the Qualified Person that the elevated cobalt in groundwater is likely natural occurring and not from an anthropogenic source. Consideration should be given to continuing to monitor the groundwater quality at the location of monitoring well BH24-2.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

2.0 Introduction

DS Consultants Ltd. (DS) was retained by Argo Mayfield West V Limited to complete a Phase II Environmental Site Assessment (ESA) of the Property located at 12192 Chinguacousy Road, Caledon, Ontario, herein referred to as the "Phase II Property" or "Site". It is DS's understanding that this Phase II ESA has been requested for due diligence purposes in association with the proposed acquisition and redevelopment of the Property for residential purposes.

This Phase II ESA was conducted in general accordance with the CSA Standards Association protocols outlined in the document "Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2013)" dated 2000, and reaffirmed in 2013. It should be noted that the CSA methodology is sufficient for due diligence purposes but cannot be used to support the filing of a Record of Site Condition for the Site.

The objective of this Phase II ESA is to confirm whether contaminants are present, and at what concentration are they present on the Site, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase I ESA.

2.1 Site Description

The Phase I Property is a 6.05-hectare (14.95 acres) parcel of land situated within a rural setting in the Town of Caledon, Ontario. The Phase II Property is located approximately 510 m northwest of the intersection of Chinguacousy Road and Mayfield Road. The Property was occupied by multiple paddocks, animal barns, storage sheds, a grass field, and a residential house at the time of the investigation. A Site Location Plan is provided in Figure 1.

A Plan of Survey for the Property dated December 9, 2024, and prepared by R-PE Surveying Ltd., an Ontario Land Surveyor, has been provided under Appendix A.

The Site is currently occupied by a residential house, three (3) paddocks, two (2) barns, two (2) storage sheds, a parking area, and a grass field. Note that one of the storage sheds has attached animal enclosures. A Site Plan depicting the orientation of the buildings on-site is provided in Figure 2.

Additional details regarding the Site are provided in the table below.

Table 2-1: Site Property Information

Criteria	Information	Source
Legal Description	PT LT 18 CON 3 WHS CHINGUACOUSY AS IN RO1101303; CALEDON	Land Registry Office
Property Identification Number (PIN)	14252-0037 (LT)	Land Registry Office

Criteria	Information	Source	
	Harjinder Dhaliwal		
	Kamaljit Kaur Dhaliwal	Site Reconnaissance Interview	
Current Site Occupants	Rajdeep Dhaliwal		
	Harviarinder Singh		
	Rupinder Kaur		
Site Area	6.05 hectares (14.95 acres)	Town of Caledon Address Search	
Site Area	0.03 flectales (14.95 acres)	Мар	

2.2 Property Ownership

The ownership details for the Site are provided in the table below.

Table 2-2: Site Ownership

Property Owner	Address	Contact
Harjinder Dhaliwal	12192 Chinguacousy Road Caledon, Ontario L7C 159	Harjinder Dhaliwal 647-523-3259

2.3 Current and Proposed Future Use

The Site is currently occupied by multiple tenants for agricultural and residential property use under O.Reg. 153/04 (as amended). It is DS's understanding that the Client intends to redevelop the Site for residential use.

2.4 Applicable Site Condition Standards

The applicable Site Condition Standards (SCS) for the Site are considered by the Qualified Person (QP) to be the Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse-textured soils as contained in the April 15, 2011 Ontario Ministry of Environment and Climate Change (MOECC) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", herein referred to as the "MECP Table 2 SCS".

The selection of the Table 2 SCS is considered appropriate based on the following rationale:

- The residential house on the Site obtains their water via private wells and rely on groundwater as a potable water source;
- The Site is not considered to be environmentally sensitive, as defined under O.Reg. 153/04 (as amended);
- The proposed future use of the Site will be residential;
- The Site is not located within 30 m of a water body;

- ◆ The pH of the soils analyzed during this Phase Two ESA are within the accepted range specified under O.Reg. 153/04 (as amended); and
- Bedrock was not encountered within 2 metres of the ground surface.

3.0 Background Information

3.1 Physical Setting

3.1.1 Water Bodies and Areas of Natural Significance

The nearest water body is a tributary of Fletcher's Creek, located approximately 550 m southeast of the Site.

The Natural Heritage Areas database published by the Ministry of Natural Resources and Forestry (MNRF) was reviewed in order to identify the presence/absence of areas of natural significance including provincial parks, conservation reserves, areas of natural and scientific interest, wetlands, environmentally significant areas, habitats of threatened or endangered species, and wilderness areas. The Region of Peel and Town of Caledon Official Plans were also reviewed as part of this assessment.

A review of the MNRF database indicated that the Site had not yet been surveyed by the MNRF. The MNRF database did not cover the Site.

Additionally, the Town of Caledon Official Plans were consulted to determine if the Site is located within an environmentally significant area. No areas of Natural Significance were identified on-Site or within 30 m of the Site.

3.1.2 Topography and Surface Water Draining Features

The Site is located in a rural setting, at an elevation of approximately 257 to 260 metres above sea level (masl). The topography of the Site and neighbouring properties is generally flat, with a slight slope to the southeast.

Drainage swales were observed on the property, and were used to maintain drainage across the agricultural fields. Surface flow associated with precipitation events is anticipated to run overland into the drainage swales and drain off-site.

3.2 Past Investigations

3.2.1 Previous Report Summary

No previous environmental reports were provided for review.

4.0 Scope of the Investigation

The scope of the Phase II ESA was designed to investigate the portions of the Site determined in the Phase I ESA to be Areas of Potential Environmental Concern. This Phase II ESA was conducted in general accordance with the CSA Standards Association protocols outlined in the document "Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2013)" dated 2000, and reaffirmed in 2013 The scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase I ESA.

4.1 Overview of Site Investigation

The following tasks were completed as part of the Phase II ESA:

- Prepared a Health and Safety Plan to ensure that all work was executed safely;
- Obtained clearance of public and private underground utility services prior to commencement of subsurface investigative operations;
- Prepared a Sampling and Analysis Plan (SAP);
- ♠ Retained a MECP licensed driller to advance a total of seven (7) boreholes on the Site, to depths ranging between 1.3 to 7.0 mbgs. Three (3) of the boreholes were instrumented with groundwater monitoring wells upon completion. The soil lithology was logged during drilling, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using an RKI Eagle 2 MultiGas Detector, and examined for visual and olfactory indications of soil impacts;
- Submitted "worst case" soil samples collected from the boreholes for laboratory analysis of relevant contaminants of potential environmental concern (COPCs) as identified in the Phase I ESA;
- Conducted groundwater level measurements in the monitoring wells in order to determine the groundwater elevation, and to establish the local groundwater flow direction;
- Surveyed all monitoring wells to a geodetic benchmark;
- Compared all soil analytical data to the applicable MECP SCS; and
- Prepared a Phase II ESA Report.

4.2 Media Investigated

4.2.1 Rationale for Inclusion or Exclusion of Media

Table 4-1: Rationale of Sampling Media

Media	Included or	Rationale
	Excluded	
Soil	Included	Soil was identified as a media of potential environmental concern in the Phase I ESA,
		based on the historical operations conducted on-Site.
Groundwater	Included	Groundwater was identified as a media of potential environmental concern in the Phase I ESA, based on historical operations conducted on-Site.
Sediment	Excluded	Sediment is not present on the Site.
Surface Water	Excluded	Surface water is not present on the Site.

4.2.2 Overview of Field Investigation of Media

Table 4-2: Field Investigation of Media

Media	Methodology of Investigation
Soil	A total of seven (7) boreholes were advanced on the Site, to a maximum depth of 7.0 mbgs. Soil samples were collected and submitted for analysis of all relevant COPCs.
Groundwater	A total of three (3) monitoring wells were present on the Phase Two Property at the time of the investigation. Representative groundwater samples were collected from monitoring well BH24-2 and submitted for analysis of all relevant COPCs.

5.0 Investigation Method

5.1 General

The Phase II ESA followed the methodology outlined in the following documents:

- Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol);

The methods used in the Phase II ESA investigation did not differ from the associated standard operating procedures.

5.2 Drilling and Excavating

A site visit was conducted prior to drilling in order to identify the borehole locations based on the APECs identified in the Phase I ESA. The selected borehole locations are presented on Figure 4. The borehole locations were cleared of underground public and private utility services prior to commencement of drilling. A summary of the drilling activities is provided in the table below.

Table 5-1: Summary of Drilling Activities

Parameter	Details		
Drilling Contractor	Kodiak Drilling		
Drilling Dates	December 6, 2024, and December 9, 2024		
Drilling Equipment Used	Geoprobe		
Measures taken to minimize the potential for cross contamination	 Soil sampling was conducted using a 50 mm stainless steel split spoon sampler to collect soil samples from the boreholes. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination; Use of dedicated and disposable acrylonitrile gloves for the handling of soil samples. A new set of gloves was used for each sample. 		
Sample collection frequency	Samples were collected at a frequency of every 0.6 m per 0.8 m from the ground surface to 3.1 mbgs, followed by one sample per 1.5 m to borehole termination depth.		

5.3 Soil Sampling

Soil samples were collected using a split spoon sampling system. Discrete soil samples were collected from the split-spoon samplers by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. Samples intended for VOC and the F1 fraction of petroleum hydrocarbons analysis were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. All sample jars were stored

in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of drilling and recorded on field borehole logs. The borehole logs are presented under Appendix C. Additional details regarding the lithology encountered in the boreholes is presented under Section 6.1.

5.4 Field Screening Measurements

All retrieved soil samples were screened in the field for visual and olfactory observations. No obvious visual or olfactory evidence of potential contamination was noted. No aesthetic impacts (e.g. cinders, slag, hydrocarbon odours) were encountered during this investigation. The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MOECC's 'Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace readings. A summary of the equipment used for field screening is provided below:

Table 5-2: Field Screening Equipment

Parameter	Details
Make and Model of Field Screening	RKI Eagle 2, Model 2101-P2
Instrument	Serial Number: E2G721
Chemicals the equipment can detect	VOCs with dynamic range of 0 parts per million (ppm) to
and associated detection limits	2,000 ppm PHCs with range of 0 to 50, 000 ppm
Precision of the measurements	3 significant figures
Accuracy of the measurements	VOCs: ± 10% display reading + one digit Hydrocarbons: ± 5% display reading + one digit
Calibration reference standards	PID: Isobutylene
	CGD: Hexane

Parameter	Details
Procedures for checking calibration of equipment	In-field re-calibration of the CGI was conducted (using the gas standard in accordance with the operator's manual instructions) if the calibration check indicated that the calibration had drifted by more than +/- 10%.

A summary of the soil headspace measurements are provided in the borehole logs, appended under Appendix C.

5.5 Groundwater Monitoring Well Installation

Monitoring wells were installed upon completion of three (3) of the boreholes advanced on the Site. The monitoring wells were constructed of 51-millimetre (2-inch) inner diameter (ID) flush-threaded schedule 40 polyvinyl chloride (PVC) risers, equipped with a 1.5 m length of No. 10 slot PVC screen. The well screens were sealed at the bottom using a threaded cap and at the top with a lockable J-plug.

Silica sand was placed around and up to 0.6 m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The wells were completed with protective aboveground monument casings.

Details regarding the monitoring well construction can be found in Table 1, and on the borehole logs provided in Appendix C.

Disposable nitrile gloves were used to minimize the potential for cross-contamination during well installation.

5.6 Groundwater Field Measurement of Water Quality Parameters

Field measurements of water quality parameters including temperature, specific conductivity, pH, turbidity, dissolved oxygen, oxidation-reduction potential and turbidity were collected using a flow-through cell and a YSI Water Quality Meter (YSI-556TM). The YSI Water Quality Meter was calibrated by the supplier (Maxim) in accordance with the manufacturer's specifications.

The measurements were conducted at regular intervals in order to determine whether stabilized geochemical conditions had been established in the monitoring well, indicating representative groundwater conditions.

The field measurements have been archived and can be provided upon request.

5.7 Groundwater Sampling

Groundwater samples were collected a minimum of 24 hours after the development of the monitoring wells. The monitoring wells could not be sampled using low flow methodology due to the low yield and recovery of the monitoring wells. The monitoring wells were purged to dryness at the lowest possible pumping rate. The monitoring wells were allowed to recover prior to sampling. Groundwater samples to be submitted for analysis of volatile parameters (PHC F1, and VOCs) were collected using a dedicated inertial pump. The remaining samples were collected using a peristaltic pump with dedicated 6.4 mm ID polyethylene tubing.

Groundwater samples for metals analysis were field filtered using dedicated 0.45 micro inline filters. The groundwater was transferred directly into laboratory supplied containers and preserved as appropriate using the containers supplied by the analytical laboratory. The samples were placed in coolers upon completion of sampling and stored on ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

5.8 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Site at the time of this investigation. Sediment sampling was not conducted as a result.

5.9 Analytical Testing

The soil and groundwater samples collected were submitted to Bureau Veritas (BV) Analytics under chain of custody protocols. BV is a member of the Standards Council of Canada (SCC) and meets the requirements of Section 47 of O.Reg. 153/04 (as amended) certifying that the analytical laboratory be accredited in accordance with the International Standard ISO/IEC 17025 and with standards developed by the Standards Council of Canada. BV conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

5.10 Residue Management Procedures

5.10.1 Soil Cuttings From Drilling and Excavations

The soil cuttings generated by the borehole drilling program were left on-site for disposal at the time of site redevelopment.

5.10.2 Fluids from Equipment Cleaning

Excess equipment cleaning fluids were stored in 20-L sealed plastic pails and removed by the drilling contractor.

5.11 Elevation Surveying

The ground surface elevations of the boreholes/monitoring wells were surveyed using a Sokkia GCX-2 GNSS RTK receiver.

The ground surface elevations can be found on the borehole logs presented in Appendix A.

5.12 Quality Assurance and Quality Control Measures

All soil samples were stored in laboratory-supplied sample containers in accordance with the MECP Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Table 5-3: Summary of Sample Bottle Preservatives

Media	Parameter	Sample Container
	PHCs F1	40 mL methanol preserved glass vial with septum lid.
	VOCs	
Soil	PHCs F2-F4	120 mL or 250 mL unpreserved glass jar with Teflon™-lined lid.
	metals and ORPs	
	PAHs	
	PHCs F1	40 mL glass vial with septum lid, containing sodium bisulphate
	VOCs	preservative.
	PHCs F2-F4	250 mL amber glass bottle with sodium bisulphate preservative
	PAHs	250 mL amber glass bottle (unpreserved)
	Inorganics	500 mL high density polyethylene bottle (unpreserved)
Groundwater	Metals	125 mL high density polyethylene bottle containing nitric acid
		preservative
	Hexavalent	125 mL high density polyethylene bottle containing ammonium
	Chromium	sulphate/ammonium hydroxide preservative
	Mercury	125 mL glass bottle containing hydrochloric acid preservative
	Cyanide	125 mL high density polyethylene bottle containing sodium hydroxide
		preservative

Each sample container was labelled with a unique sample identification, the project number, and the sampling date. All samples were placed in an ice-filled cooler upon completion of sampling, and kept under refrigerated conditions until the time of delivery to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination.

The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination. Dedicated equipment was used for well development and sampling to further minimize the risk of cross contamination. Non-dedicated equipment (i.e. interface probe) was cleaned before initial use and between all measurement points with a solution of AlconoxTM and distilled water. The AlconoxTM solution was rinsed off using distilled water.

Field duplicate samples were collected at the time of sampling. In accordance with O.Reg. 153/04, one duplicate sample was analyzed per ten samples submitted for analysis.

All field screening devices (i.e. RKI Eagle 2) were calibrated prior to use by the supplier. Calibration checks were completed, and re-calibrations were conducted as required.

6.0 Review and Evaluation

6.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix C.

Topsoil:

A surficial topsoil layer, ranging in thickness from 150 to 250 mm was encountered at all borehole locations except BH24-3.

Granular Fill Materials:

At BH24-3, a 180 mm thick layer of granular fill material consisting of sand and gravel mixed with asphalt was encountered at the ground surface.

Fill and Weathered/Disturbed Soils:

Below the surficial topsoil in BH24-2 and BH24-3, clayey silt to silty clay (BH24-2) and sand and gravel (BH24-3) fill materials were encountered and extended to a depth of 1.5 and 0.6 m below the existing ground surface, respectively. Inclusions of rootlets/organics were observed in the fill material in BH24-2. Below the fill material in BH24-3 and the topsoil in BH24-1 and BH24-4 to BH24-6, weathered/disturbed clayey silt to silty clay with inclusions of rootlets was encountered and extended to a depth of 0.8 m below the existing ground surface.

Clayey Silt to Silty Clay Till:

Below the fill material in boreholes BH24-2 and the weathered/disturbed soils in the remaining boreholes, clayey silt to silty clay till deposits were encountered and extended to depths ranging from 6.0 to 7.0 m below the existing ground surface, except for in BH24-3. The clayey silt to silty clay till deposits were found with trace to some gravel, some sand to sandy, fine roots in BH24-2, sandy silt layer and silt pockets in BH24-1, sand seams in BH24-4, and a silty sand layer in BH24-6. Cobbles/boulders were inferred within the till deposits during drilling.

Sandy Silt Till:

Sandy silt (till) deposits were encountered below and embedded within the clayey silt to silty clay (till) deposits in boreholes BH24-3 and BH24-5 and extended to a depth of 6.7 and 4.7 m below the existing ground surface, respectively. Borehole BH24-3 was terminated in the sandy silt (till) deposit. This deposit typically contained trace to some gravel, some clay to clayey, and occasional cobbles/boulders.

6.2 Ground Water Elevations and Flow Direction

6.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

A total of three (3) monitoring wells were installed on the Site for geotechnical purposes, including one (1) well that was also used for environmental purposes. The monitoring wells were screened to intersect the first water bearing formation encountered. The monitoring wells were screened to intercept the water table within the clayey silt to silty clay till unit encountered at an approximate depth of 0.2 to 7.0 mbgs.

6.2.2 Results of Interface Probe Measurements

A summary of the groundwater level measurements is provided in Table 1. The groundwater level measurements were collected using a Solinst Model 122 interface probe. The depth to groundwater was found to range between 0.68 to 3.81 mbgs on January 10, 2025. There was no indication of DNAPL or LNAPL in the monitoring wells at this time.

6.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

6.2.4 Groundwater Elevation and Flow Direction

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted as part of this

investigation. A summary of the groundwater elevations calculated is presented in Table 1. Generally, the groundwater elevation was found to range from 257.19 to 258.92 masl in the upper aquifer investigated. Based on the groundwater elevations recorded, the interpreted groundwater flow direction is southeasterly.

6.3 Fine-Medium Soil Texture

For the purposes of evaluating the SCS, all soils on the Phase II Property are considered to be course textured.

6.4 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection, the results of which are presented on the borehole logs in Appendix C. The soil vapour headspace readings were collected using a PID and CGD in methane elimination mode. The PID and CGD readings were all non-detectable (0ppm).

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). No visual or olfactory indicators were noted at the time of sampling.

6.5 Soil Quality

The results of the chemical analyses conducted are presented in Tables 5 through 10. A visual summary of the location of the sample locations is provided in Figure 7. The laboratory certificates of analysis have been provided under Appendix D.

6.5.1 Metals and Other Regulated Parameters (ORPs)

A total of six (6) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of metals and ORPs. Two (2) additional samples were submitted for pH. The results of the analyses are tabulated in Table 5 and presented on Figure 7. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.5.2 Petroleum Hydrocarbons (PHCs)

Three (3) samples were submitted for analysis of PHCs (incl. BTEX). The results of the analyses are tabulated in Table 6 and presented on Figure 7. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.5.3 Volatile Organic Compounds (VOCs)

Two (2) samples were submitted for analysis of VOCs. The results of the analyses are tabulated in Table 7 and presented on Figure 7. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.5.4 Polycyclic Aromatic Hydrocarbons (PAHs)

Two (2) samples were submitted for analysis of PAHs. The results of the analyses are tabulated in Table 8 and presented in Figure 7. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.5.5 Organochlorine Pesticides (OCPs)

A total of six (6) samples, including one (1) field duplicates for QA/QC purposes were submitted for analysis of OCPs. The results of the analyses are tabulated in Table 9 and presented in Figure 7. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.5.6 Polychlorinated Biphenyls (PCBs)

One (1) sample was submitted for analysis of PCBs. The results of the analyses are tabulated in Table 10 and presented in Figure 7. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.6 Ground Water Quality

The results of the chemical analyses conducted are presented in Tables 11 through 14. A visual summary of the sample locations is provided in Figure 8. The laboratory certificates of analysis have been provided under Appendix D.

6.6.1 Metals and Other Regulated Parameters (ORPs)

A total of two (2) samples were submitted for analysis of metals and ORPs. The results of the analyses are tabulated in Table 11 and presented on Figure 7. The results of the analyses indicated the following exceedances of the Table 2 SCS:

Table 6-1: Summary of Metals and ORPs Exceedances in Groundwater

Sample ID	Date Sampled	Well Screen Interval (mbgs)	Parameter	Units	Table 2 SCS	Reported Value
BH/MW24-2	December 18, 2024	210 6 10	Cobalt	ug/I	2.0	16
DIT/WW24-2	January 10, 2025	3.10-6.10	Cobait	μg/L	3.8	38

6.6.4 Petroleum Hydrocarbons (PHCs)

One (1) sample was submitted for analysis of PHCs (incl. BTEX), and one (1) trip blank for QA/QC purposes. The results of the analyses are tabulated in Table 12 and presented on Figure 8. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.6.1 Volatile Organic Compounds (VOCs)

One (1) sample was submitted for analysis of VOCs, and one (1) trip blank for QA/QC purposes. The results of the analyses are tabulated in Table 13 and presented on Figure 8. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.6.2 Polycyclic Aromatic Hydrocarbons (PAHs)

One (1) sample was submitted for analysis of PAHs. The results of the analyses are tabulated in Table 14 and presented on Figure 8. The results of the analyses indicated no exceedances of the Table 2 SCS.

6.7 Sediment Quality

The quality of sediment was not assessed as part of this investigation. No sediment was present on the Site at the time of the investigation.

6.8 Quality Assurance and Quality Control Results

Collection of soil and groundwater samples was conducted in general accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*. As described in Section 5.12, dedicated equipment was used where possible, and all non-dedicated equipment was decontaminated before and between sampling events. All soil samples were transferred directly into laboratory-supplied containers. The laboratory containers were prepared by the laboratory with suitable preservative, as required. All samples were stored and transported under refrigerated conditions. Chain of custody protocols were maintained from the time of sampling to delivery to the analytical laboratory.

The field QA/QC program involved the collection of field duplicate soil samples, analytical laboratory method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Table 6-2: Summary of QA/QC Results

Sample ID	QA/QC duplicate	Medium	Parameters Analyzed	QA/QC Result
DUP-1	BH24-1 SS1	Soil	OC Pesticides, Metals and ORPs	All results were within the analytical protocol criteria for RPD.

Based on the interpretation of the laboratory results and the QA/QC program, it is the opinion of the QP that the laboratory analytical data can be relied upon. All samples were

handled in accordance with the MECP Analytical Protocol regarding sample holding time, preservation methods, storage requirements, and type of container.

Bureau Veritas routinely conducts internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the Bureau Veritas QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix D.

With respect to subsection 47(3) of O.Reg 153/04 (as amended), all certificates of analysis or analytical reports pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis has been received for each sample submitted for analysis and has been provided (in full) in Appendix D.

A review of the QA/QC sample results indicated that no issues were identified with respect to both the field collection methodology and the laboratory reporting. It is the opinion of the QP that the analytical data obtained are representative of the soil and groundwater conditions at the Site for the purpose of assessing whether the soil and groundwater at the Phase II Property meets the applicable MECP SCS.

7.0 Conclusions

This Phase Two ESA involved the advancement of seven (7) boreholes, the installation of three (3) monitoring wells on the Site, one (1) of which was for environmental purposes, and the collection of soil and groundwater samples for analysis of the potential contaminants of concern, including: PHCs, BTEX, VOCs, PAHs, OCPs, Metals, As, Sb, Se, Hg, CN-, and PCBs.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

- ◆ The results of the chemical analyses indicated that the applicable Site Condition Standards for soil have been met, with respect to the issues of potential environmental concern identified in the Phase I ESA. No further soil investigation is recommended at this time.
- ◆ The applicable Site Condition Standards for groundwater have not been met. It is the opinion of the Qualified Person that the elevated cobalt in groundwater is likely natural occurring and not from an anthropogenic source. Consideration should be given to continuing to monitor the groundwater quality at the location of monitoring well BH24-2.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

7.1 Qualifications of the Assessors

Aisha Sharif, MEnvSc., G.I.T.

Ms. Aisha Sharif is an Environmental Specialist with DS Consultants Ltd. Ms. Sharif has an Honours Bachelor of Science degree specializing in environmental geoscience and a Master of Environmental Science degree, both from the University of Toronto. Her academic experiences include multiple publications in reputable scientific journals, providing her with strong background knowledge in environmental geoscience. Ms. Sharif is registered with the Professional Geoscientists of Ontario (PGO) as a Geoscientist in Training (G.I.T.).

Megan Bender, B.E.S, EP

Megan Bender is an Assistant Project Manager with DS Consultants Ltd. Megan holds a Bachelor's degree in Environmental Studies, specializing in environmental assessments, a minor in geography from the University of Waterloo and a Post Graduate Certificate in Environmental Engineering Applications from Conestoga College. Megan is registered as an Environmental Professional (EP) with ECO Canada. Megan has been involved with Phase One and Phase Two Environmental Site Assessments, remediation, excess soil management, data interpretation and reporting, and geotechnical projects.

Teresa Weatherhead, LEL, OPESA

Ms. Teresa Weatherhead is an Environmental Team Lead with DS Consultants Limited who has 17 years of direct experience in the consulting industry. Ms. Weatherhead has an Honours Science Degree from the University of Waterloo and a Post Graduate Diploma in Environmental Engineering Applications from Conestoga College. Ms. Weatherhead is a registered Limited Engineering Licensee (LEL) in the Province of Ontario. Ms. Weatherhead has conducted and supervised numerous Phase One and Phase Two Environmental Site Assessments for a variety of agricultural, residential, industrial, commercial and institutional properties. She also has experience in site remediation, environmental monitoring, submission of Record of Site Conditions and Excess Soil Management. Teresa is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended).

Project: 24-371-600 – Argo Mayfield West V Limited Phase II ESA-12192 Chinguacousy Road, Caledon, Ontario

23

7.2 Signatures

This Phase Two ESA was conducted under the supervision of Ms. Teresa Weatherhead, LEL, QP_{ESA} , in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

DRAFT

Aisha Sharif, H.B.Sc., MEnvSc., G.I.T.

Environmental Specialist

Megan Bender, B.E.S., EP

Assistant Project Manager - Environmental

DRAFT

Teresa Weatherhead, LEL Environmental Team Lead

7.3 Limitations

This report was prepared for the sole use of Argo Mayfield West V Limited and is intended to provide an assessment of the environmental condition on the property located at 12192 Chinguacousy Road, Caledon, Ontario. The information presented in this report is based on information collected during the completion of the Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.

The conclusions drawn from the Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this site during the Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the site that was not apparent from the available information.

8.0 References

- Armstrong, D.K. and Dodge, J.E.P. Paleozoic Geology Map of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 228.
- Freeze, R. Allen and Cherry, John A., 1979. *Ground water*. Page 29.
- Ontario Ministry of the Environment, December 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.10f the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. *Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.*
- Ontario Ministry of the Environment, July 2011. *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.*
- The Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario.
- "Phase I Environmental Site Assessment, 12192 Chinguacousy Road, Caledon, Ontario", prepared for Argo Mayfield West V Limited, prepared by DS Consultants Ltd., dated January 14, 2025.

Tables

Table 1: Summary of Monitoring Well Installation and Groundwater Data

	Well ID		BH24-1	BH24-2	BH24-6
Installed By:			DS	DS	DS
Installation Date:			9-Dec-24	6-Dec-24	9-Dec-24
	Well Status:		Active	Active	Active
	EastUTM17		592508.027	592362.393	592134.817
	NorthUTM17		4841148.363	4840993.062	4840674.81
Inner Diameter		(mm)	50	50	50
Surface Elevation	n	(masl)	259.60	261.00	260.30
Bottom of Concrete Seal/Top of Bentonite Seal		mbgs	0.00	0.00	0.00
		masl	259.60	261.00	260.30
Bottom of Bentonite Seal/Top		mbgs	2.40	2.50	1.20
of Sand Pack		masl	257.20	258.50	259.10
Top of Well Scre	on	mbgs	3.10	3.10	3.10
Top of Well Scre	en	masl	256.50	257.90	257.20
Well Screen Leng	gth	m	3.00	3.00	3.00
Bottom of Well S	anoon	mbgs	6.10	6.10	6.10
Bottom of Well S	creen	masl	253.50	254.90	254.20
		GW Mor	nitoring		
18-Dec-24	Depth to GW	mbgs	NIM	5.83	2.31
18-рес-24	GW Elevation	masl	NM	255.17	257.99
10 Ion 25	Depth to GW	mbgs	0.68	3.81	1.80
10-Jan-25	GW Elevation	masl	258.92	257.19	258.50

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated
	SS1	0.0 - 0.6	Topsoil	Metals and ORPs, OCPs	APEC-2
BH24-1	DUP-1	0.0 - 0.6	Topsoil	Metals and ORPs, OCPs	APEC-2
	SS3	1.5 - 2.1	Topsoil	рН	General Investigation
	SS1	0.0 - 0.6	Topsoil	Metals and ORPs, OCPs	APEC-2
BH24-2	BH24-2 SS2		Fill - clayey silt to silty clay	PHCs, BTEX, VOCs, PAHs	APEC-1
	SS5	3.1 - 3.7	Clayey silt to silty clay till	PHCs, BTEX, VOCs, PAHs, pH	APEC-1
BH24-4	SS1	0.0 - 0.6	Topsoil	Metals and ORPs, OCPs	APEC-2
BH24-5	SS1	0.0 - 0.6	Topsoil	Metals and ORPs, OCPs	APEC-2
BH24-6	SS1	0.0 - 0.6	Topsoil	Metals and ORPs, OCPs	APEC-2
BH24-7	SS1	0.0 - 0.6	Clayey silt to silty clay	PHCs, BTEX, PCBs	APEC-4

<u>Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis</u>

Well ID	Well Screen Interval (masl)		Sample Date Parameter Analyzed		APEC Investigated	
BH24-2	254.90		257.90	18-Dec-24	PHCs, BTEX, VOCs, Metals and ORPs, PAHs	APEC-1
				10-Jan-25	Metals, As, Sb, Se	APEC-1

Table 4: Summary of APECs Investigated

APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed																								
	According to the current owners, the		Soil	BH24-2	SS2	PHCs, BTEX, VOCs, PAHs																								
APEC-1	previous owners had an oil tank in the basement of the residential houses. The	PHCs, BTEX, VOCs, PAHs	3011	B1124-2	SS5	PHCs, BTEX, VOCs, PAHs, pH																								
	basement floor where the oil tank was previously stored has minor staining.	V 0 03, 1 11113	Groundwater	ВН24-2	BH24-2	Metals and ORPs, PHCs, VOCs, PAHs																								
				BH24-1	SS1	Metals and ORPs, OCPs																								
		OCPs, Metals, As, Sb, Se, Hg, CN-	Soil	DIIZ4-1	DUP-1	Metals and ORPs, OCPs																								
APEC-2	Inferred pesticide application on a			BH24-2	SS1	Metals and ORPs, OCPs																								
APEC-2	2-2 historical agricultural field on the Property.		Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	Sb, Se, Hg, CN-	5011	BH24-4	SS1	Metals and ORPs, OCPs
				BH24-5	SS1	Metals and ORPs, OCPs																								
				BH24-6	SS1	Metals and ORPs, OCPs																								
During the site reconnaissance, DS observed a parking area on the Property that would likely have de-icing salts applied during the winter months for safety purposes. As such, a Potentially Contaminating Activity (PCA) for de-icing activities applies to this portion of the Property. However, it is the opinion of the Qualified Person that the contaminants of potential concern associated with the PCA (including electrical conductivity and sodium adsorption ratio in soil and chloride and sodium in ground water) do not require further investigation since exceedances of these parameters would be deemed not to exceed based on paragraph 1 of section 49.1 of O.Reg.153/04.																														
APEC-4	A transformer is located northeast of the residential house. PCBs, PHCs, BTEX, FHCs, BTEX, BTEX, FHCS, BTEX, FHCS, BTEX, FHCS, BTEX, FHCS, BTEX, FHCS, BTEX, FHCS, BTEX, BTEX																													

Table 5: Summary of Metals and ORPs in Soil

Parameter		BH24-1 SS1	DUP-1 (BH24-1 SS1)	BH24-1 SS3	BH24-2 SS1
Date of Collection		9-Dec-24	9-Dec-24	9-Dec-24	6-Dec-24
Date Reported	MECP Table	23-Dec-24	23-Dec-24	23-Dec-24	23-Dec-24
Sampling Depth (mbgs)	2 SCS	0.0 - 0.6	0.0 - 0.6	1.5 - 2.1	0.0 - 0.6
Analytical Report Reference No.		R8457852	R8457852	R8457852	R8457852
Antimony	7.5	<0.20	<0.20	-	<0.20
Arsenic	18	4.9	5	-	3.6
Barium	390	98	94	-	63
Beryllium	4	0.97	0.91	-	0.6
Boron	120	6.8	8	-	<5.0
Boron (Hot Water Soluble)	1.5	0.29	0.094	-	0.42
Cadmium	1.2	0.16	0.11	-	0.44
Chromium	160	27	28	-	22
Chromium VI	8	<0.18	<0.18	-	<0.18
Cobalt	22	13	14	-	7.9
Copper	140	27	29	-	19
Cyanide	0.051	< 0.01	< 0.01	-	< 0.01
Lead	120	12	12	-	13
Mercury	0.27	< 0.050	< 0.050	-	< 0.050
Molybdenum	6.9	<0.50	<0.50	-	0.52
Nickel	100	29	32	-	16
Selenium	2.4	<0.50	<0.50	-	<0.50
Silver	20	<0.20	<0.20	-	<0.20
Thallium	1	0.16	0.17	-	0.12
Uranium	23	0.67	0.74	-	0.57
Vanadium	86	37	39	-	26
Zinc	340	69	69	-	63
Electrical Conductivity (2:1)	0.7	0.37	0.31	-	0.39
Sodium Adsorption Ratio	5	1.5	1.5	-	0.16
pH, 2:1 CaCl2 Extraction	NV	7.68	7.74	7.82	7.42

Table 5: Summary of Metals and ORPs in Soil

Parameter		BH24-2 SS5	BH24-4 SS1	BH24-5 SS1	BH24-6 SS1
Date of Collection		6-Dec-24	6-Dec-24	9-Dec-24	9-Dec-24
Date Reported	MECP Table	23-Dec-24	23-Dec-24	23-Dec-24	23-Dec-24
Sampling Depth (mbgs)	2 SCS	3.1 - 3.7	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6
Analytical Report Reference No.		R8457852	R8457852	R8457852	R8457852
Antimony	7.5	-	<0.20	<0.20	<0.20
Arsenic	18	-	4.1	5.7	5.6
Barium	390	-	82	74	110
Beryllium	4	-	0.74	0.69	1
Boron	120	-	8.3	<5.0	8.2
Boron (Hot Water Soluble)	1.5	-	0.09	0.12	0.1
Cadmium	1.2	-	<0.10	0.12	0.11
Chromium	160	-	22	23	26
Chromium VI	8	-	<0.18	0.19	<0.18
Cobalt	22		11	11	13
Copper	140	ı	26	20	33
Cyanide	0.051	1	<0.01	< 0.01	< 0.01
Lead	120	-	8.5	9.2	9.2
Mercury	0.27	-	< 0.050	< 0.050	< 0.050
Molybdenum	6.9	-	<0.50	<0.50	< 0.50
Nickel	100	-	24	20	32
Selenium	2.4	-	<0.50	<0.50	< 0.50
Silver	20	-	<0.20	<0.20	< 0.20
Thallium	1	-	0.12	0.13	0.15
Uranium	23	1	0.47	0.54	0.55
Vanadium	86	-	30	32	36
Zinc	340	-	51	57	62
Electrical Conductivity (2:1)	0.7	-	0.21	0.27	0.59
Sodium Adsorption Ratio	5	-	0.88	0.87	0.49
pH, 2:1 CaCl2 Extraction	NV	7.85	7.56	7.03	7.69

Table 6: Summary of PHCs and BTEX in Soil

Parameter		BH24-2 SS2	BH24-2 SS5	BH24-7 SS1
Date of Collection	MECP Table	9-Dec-24	31-Jul-20	31-Jul-20
Date Reported	2 SCS	9-Dec-24	9-Dec-24	6-Dec-24
Sampling Depth (mbgs)		0.8 - 1.4	3.1 - 3.7	0.0 - 0.6
Analytical Report Reference No.		R8457852	R8457852	R8457852
Benzene	0.21	<0.0060	<0.0060	< 0.020
Ethylbenzene	1.1	< 0.010	< 0.010	< 0.020
Toluene	2.3	< 0.020	<0.020	<0.020
Xylenes (Total)	3.1	< 0.020	< 0.020	< 0.040
F1 (C6-C10) -BTEX	55	<10	<10	<10
F2 (C10-C16)	98	<7.0	<7.0	<7.0
F3 (C16-C34)	300	<50	<50	<50
F4 (C34-C50)	2800	<50	<50	<50

Table 7: Summary of VOCs in Soil

Parameter		BH24-2 SS2	BH24-2 SS5
Date of Collection	MECP	9-Dec-24	31-Jul-20
Date Reported	Table 2	9-Dec-24	9-Dec-24
Sampling Depth (mbgs)	SCS	0.8 - 1.4	3.1 - 3.7
Analytical Report Reference No.		R8457852	R8457852
Acetone	16	< 0.49	< 0.49
Bromomethane	0.05	< 0.040	< 0.040
Carbon Tetrachloride	0.05	< 0.040	< 0.040
Chlorobenzene	2.4	< 0.040	< 0.040
Chloroform	0.05	< 0.040	< 0.040
Dichlorobenzene, 1,2-	1.2	< 0.040	< 0.040
Dichlorobenzene, 1,3-	4.8	< 0.040	< 0.040
Dichlorobenzene, 1,4-	0.083	< 0.040	< 0.040
Dichlorodifluoromethane	2.3	< 0.040	< 0.040
Dichloroethane, 1,1-	0.47	< 0.040	< 0.040
Dichloroethane, 1,2-	0.05	<0.049	< 0.049
Dichloroethylene, 1,1-	0.05	< 0.040	< 0.040
Dichloroethylene, 1,2-cis-	1.9	< 0.040	< 0.040
Dichloroethylene, 1,2-trans-	0.084	< 0.040	< 0.040
Dichloropropane, 1,2-	0.05	< 0.040	< 0.040
Dichloropropene, 1,3-	0.05	< 0.050	< 0.050
Ethylene dibromide	0.05	< 0.040	< 0.040
Hexane (n)	2.8	< 0.040	< 0.040
Methyl Ethyl Ketone	16	< 0.40	< 0.40
Methyl Isobutyl Ketone	1.7	< 0.40	< 0.40
Methyl tert-Butyl Ether (MTBE)	0.75	< 0.040	< 0.040
Methylene Chloride	0.1	< 0.049	< 0.049
Styrene	0.7	< 0.040	< 0.040
Tetrachloroethane, 1,1,1,2-	0.058	< 0.040	< 0.040
Tetrachloroethane, 1,1,2,2-	0.05	< 0.040	< 0.040
Tetrachloroethylene	0.28	< 0.040	< 0.040
Trichloroethane, 1,1,1-	0.38	< 0.040	< 0.040
Trichloroethane, 1,1,2-	0.05	< 0.040	< 0.040
Trichloroethylene	0.061	< 0.010	< 0.010
Trichlorofluoromethane	4	< 0.040	<0.040
Vinyl Chloride	0.02	< 0.019	< 0.019

Table 8: Summary of PAHs in Soil

Parameter		BH24-2 SS2	BH24-2 SS5
Date of Collection	MECP Table	9-Dec-24	31-Jul-20
Date Reported	2 SCS	9-Dec-24	9-Dec-24
Sampling Depth (mbgs)		0.8 - 1.4	3.1 - 3.7
Analytical Report Reference No.		R8457852	R8457852
Methylnaphthalene, 2-(1-)	0.99	< 0.0071	< 0.0071
Acenaphthene	7.9	< 0.0050	<0.0050
Acenaphthylene	0.15	< 0.0050	< 0.0050
Anthracene	0.67	< 0.0050	< 0.0050
Benz(a)anthracene	0.5	< 0.0050	< 0.0050
Benzo(a)pyrene	0.3	< 0.0050	<0.0050
Benzo(b+j)fluoranthene	0.78	< 0.0050	<0.0050
Benzo(g,h,i)perylene	6.6	< 0.0050	< 0.0050
Benzo(k)fluoranthene	0.78	< 0.0050	<0.0050
Chrysene	7	< 0.0050	< 0.0050
Dibenz(a,h)anthracene	0.1	< 0.0050	<0.0050
Fluoranthene	0.69	< 0.0050	< 0.0050
Fluorene	62	<0.0050	< 0.0050
Indeno(1,2,3-cd)pyrene	0.38	<0.0050	< 0.0050
Naphthalene	0.6	<0.0050	< 0.0050
Phenanthrene	6.2	< 0.0050	< 0.0050
Pyrene	78	< 0.0050	< 0.0050

Table 9: Summary of OCPs in Soil

Parameter		BH24-1 SS1	DUP-1 (BH24- 1 SS1	BH24-2 SS1	BH24-4 SS1	BH24-5 SS1	BH24-6 SS1
Date of Collection	MECP Table 2	9-Dec-24	9-Dec-24	6-Dec-24	6-Dec-24	9-Dec-24	9-Dec-24
Date Reported	SCS	23-Dec-24	23-Dec-24	23-Dec-24	23-Dec-24	23-Dec-24	23-Dec-24
Screen Interval (mbgs)		0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6
Analytical Report Reference No.		R8457852	R8457852	R8457852	R8457852	R8457852	R8457852
Aldrin	0.05	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chlordane	0.05	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
DDD	3.3	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
DDE	0.26	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
DDT	1.4	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Dieldrin	0.05	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Endosulfan	0.04	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020
Endrin	0.04	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020
Hexachlorocyclohexane Gamma-	0.056	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020
Heptachlor	0.15	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020
Heptachlor Epoxide	0.05	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Hexachlorobenzene	0.52	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Hexachlorobutadiene	0.012	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	<0.0020
Hexachloroethane	0.089	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Methoxychlor	0.13	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050

Table 10: Summary of PCBs in Soil

Parameter		BH24-7 SS1
Date of Collection	MECP Table	31-Jul-20
Date Reported	2 SCS	6-Dec-24
Sampling Depth (mbgs)		0.0 - 0.6
Analytical Report Reference No.		R8457852
Total PCBs	0.21	< 0.010

Table 11: Summary of Metals and ORPs in Groundwater

Table 11. Summary of Freday and C				
Parameter			BH24-2	BH24-2
Date of Collection	MECP Table 2	Units	18-Dec-24	10-Jan-25
Date Reported	SCS	Ullits	30-Dec-24	15-Jan-25
Screen Interval (mbgs)			3.1 - 6.1	3.1 - 6.1
Analytical Report Reference No.			R8463892	R8471161
Antimony	6	μg/L	0.77	0.56
Arsenic	25	μg/L	<1.0	<1.0
Barium	1000	μg/L	24	22
Beryllium	4	μg/L	<0.40	<0.40
Boron (total)	5000	μg/L	350	300
Cadmium	2.7	μg/L	0.13	0.45
Chromium Total	50	μg/L	<5.0	<5.0
Cobalt	3.8	μg/L	16	38
Copper	87	μg/L	1	2.3
Lead	10	μg/L	<0.50	<0.50
Molybdenum	70	μg/L	7.4	5
Nickel	100	μg/L	21	45
Selenium	10	μg/L	<2.0	2.5
Silver	1.5	μg/L	<0.090	<0.090
Sodium	490000	μg/L	99000	140000
Thallium	2	μg/L	<0.050	<0.050
Uranium	20	μg/L	5.9	11
Vanadium	6.2	μg/L	<0.50	<0.50
Zinc	1100	μg/L	23	27

Table 12: Summary of PHCs in Groundwater

Parameter		ВН24-2	Trip Blank
Date of Collection	MECP	18-Dec-24	18-Dec-24
Date Reported	Table 2 SCS	30-Dec-24	30-Dec-24
Screen Interval (mbgs)	5 05	3.1 - 6.1	-
Analytical Report Reference No.		R8463892	R8463892
Benzene	5	<0.17	<0.17
Ethylbenzene	2.4	<0.20	<0.20
Toluene	24	<0.20	<0.20
Xylenes (Total)	300	<0.20	<0.20
F1 (C6 to C10) minus BTEX	750	<25	<25
F2 (C10 to C16)	150	<90	-
F3 (C16 to C34)	500	<200	-
F4 (C34 to C50) minus PAHs	500	<200	-

Table 13: Summary of VOCs in Groundwater

Parameter		BH24-2	Trip Blank			
Date of Collection	MECP	18-Dec-24	18-Dec-24			
Date Reported	Table 2 SCS	30-Dec-24	30-Dec-24			
Screen Interval (mbgs)	363	3.1 - 6.1	-			
Analytical Report Reference No.		R8463892	R8463892			
Acetone	2700	<10	<10			
Bromomethane	0.89	<0.50	<0.50			
Carbon Tetrachloride	0.79	<0.20	<0.20			
Chlorobenzene	30	<0.20	<0.20			
Chloroform	2.4	<0.20	<0.20			
Dichlorobenzene, 1,2-	3	<0.50	<0.50			
Dichlorobenzene, 1,3-	59	<0.50	<0.50			
Dichlorobenzene, 1,4-	1	<0.50	<0.50			
Dichlorodifluoromethane	590	<1.0	<1.0			
Dichloroethane, 1,1-	5	<0.20	<0.20			
Dichloroethane, 1,2-	1.6	<0.50	<0.50			
Dichloroethylene, 1,1-	1.6	<0.20	<0.20			
Dichloroethylene, 1,2-cis-	1.6	<0.50	<0.50			
Dichloroethylene, 1,2-trans-	1.6	<0.50	<0.50			
Dichloropropane, 1,2-	5	<0.20	<0.20			
Dichloropropene, 1,3-	0.5	<0.50	<0.50			
Ethylene dibromide	0.2	<0.20	<0.20			
Hexane (n)	51	<1.0	<1.0			
Methyl Ethyl Ketone	1800	<10	<10			
Methyl Isobutyl Ketone	640	<5.0	<5.0			
Methyl tert-Butyl Ether (MTBE)	15	<0.50	<0.50			
Methylene Chloride	50	<2.0	<2.0			
Styrene	5.4	<0.50	<0.50			
Tetrachloroethane, 1,1,1,2-	1.1	<0.50	<0.50			
Tetrachloroethane, 1,1,2,2-	1	<0.50	<0.50			
Tetrachloroethylene	1.6	<0.20	<0.20			
Trichloroethane, 1,1,1-	200	<0.20	<0.20			
Trichloroethane, 1,1,2-	4.7	<0.50	<0.50			
Trichloroethylene	1.6	<0.20	<0.20			
Trichlorofluoromethane	150	<0.50	<0.50			
Vinyl Chloride	0.5	<0.20	<0.20			

Table 14: Summary of PAHs in Groundwater

Parameter		BH24-2
Date of Collection		18-Dec-24
Date Reported	Table 2 SCS	30-Dec-24
Screen Interval (mbgs)		3.1-6.1
Analytical Report Reference No.		R8463892
Acenaphthene	4.1	< 0.050
Acenaphthylene	1	< 0.050
Anthracene	2.4	< 0.050
Benzo(a)anthracene	1	< 0.050
Benzo(a)pyrene	0.01	<0.0090
Benzo(b/j)fluoranthene	0.1	< 0.050
Benzo(ghi)perylene	0.2	< 0.050
Benzo(k)fluoranthene	0.1	< 0.050
Chrysene	0.1	< 0.050
Dibenzo(a,h)anthracene	0.2	< 0.050
Fluoranthene	0.41	< 0.050
Fluorene	120	< 0.050
Indeno(1,2,3-cd)pyrene	0.2	< 0.050
1-Methylnaphthalene	3.2	< 0.050
2-Methylnaphthalene	3.2	< 0.050
Naphthalene	11	< 0.050
Phenanthrene	1	< 0.030
Pyrene	4.1	< 0.050
Methylnaphthalene, 2-(1-)	3.2	0.071

Table 15: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	Antimony	7.5	<0.20	All Samples
	Arsenic	18	5.7	BH24-5 SS1
	Barium	390	110	BH24-6 SS1
	Beryllium	4	1	BH24-6 SS1
	Boron	120	8.3	BH24-4 SS1
	Boron (Hot Water Soluble)	1.5	0.42	BH24-2 SS1
	Cadmium	1.2	0.44	BH24-2 SS1
	Chromium	160	28	DUP-1(BH24-1 SS1)
	Chromium VI	8	0.19	BH24-5 SS1
	Cobalt	22	14	DUP-1(BH24-1 SS1)
Metals and ORPs	Copper	140	33	BH24-6 SS1
1 OF	Cyanide	0.051	<0.01	All Samples
anc	Lead	120	13	BH24-2 SS1
tals	Mercury	0.27	<0.050	All Samples
Met	Molybdenum	6.9	0.52	BH24-2 SS1
	Nickel	100	32	DUP-1(BH24-1 SS1)
	Selenium	2.4	<0.50	All Samples
	Silver	20	<0.20	All Samples
	Thallium	1	0.17	DUP-1(BH24-1 SS1)
	Uranium	23	0.74	DUP-1(BH24-1 SS1)
	Vanadium	86	39	DUP-1(BH24-1 SS1)
	Zinc	340	69	BH24-1 SS1
	Electrical Conductivity (2:1)	0.7	0.59	BH24-6 SS1
	Sodium Adsorption Ratio	5	1.5	BH24-1 SS1
	pH, 2:1 CaCl2 Extraction	NV	7.85	BH24-2 SS5
	Benzene	0.21	<0.0060	All Samples
	Ethylbenzene	1.1	<0.010	All Samples
	Toluene	2.3	<0.020	All Samples
PHCs	Xylenes (Total)	3.1	<0.020	All Samples
PF	F1 (C6-C10) -BTEX	55	<10	All Samples
	F2 (C10-C16)	98	<7.0	All Samples
	F3 (C16-C34)	300	<50	All Samples
	F4 (C34-C50)	2800	<50	All Samples
	Acetone	16	<0.49	All Samples
	Bromomethane	0.05	<0.040	All Samples
	Carbon Tetrachloride	0.05	<0.040	All Samples
	Chlorobenzene	2.4	<0.040	All Samples
	Chloroform	0.05	<0.040	All Samples
	Dichlorobenzene, 1,2-	1.2	<0.040	All Samples
	Dichlorobenzene, 1,3-	4.8	<0.040	All Samples
	Dichlorobenzene, 1,4-	0.083	<0.040	All Samples
	Dichlorodifluoromethane	2.3	<0.040	All Samples
	Dichloroethane, 1,1-	0.47	<0.040	All Samples
	Dichloroethane, 1,2-	0.05	<0.049	All Samples
	Dichloroethylene, 1,1-	0.05	<0.040	All Samples

Table 15: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	Dichloroethylene, 1,2-cis-	1.9	<0.040	All Samples
	Dichloroethylene, 1,2-trans-	0.084	<0.040	All Samples
	Dichloropropane, 1,2-	0.05	<0.040	All Samples
VOCs	Dichloropropene, 1,3-	0.05	<0.050	All Samples
>	Ethylene dibromide	0.05	<0.040	All Samples
	Hexane (n)	2.8	<0.040	All Samples
	Methyl Ethyl Ketone	16	<0.40	All Samples
	Methyl Isobutyl Ketone	1.7	<0.40	All Samples
	Methyl tert-Butyl Ether (MTBE)	0.75	<0.040	All Samples
	Methylene Chloride	0.1	<0.049	All Samples
	Styrene	0.7	<0.040	All Samples
	Tetrachloroethane, 1,1,1,2-	0.058	<0.040	All Samples
	Tetrachloroethane, 1,1,2,2-	0.05	<0.040	All Samples
	Tetrachloroethylene	0.28	<0.040	All Samples
	Trichloroethane, 1,1,1-	0.38	<0.040	All Samples
	Trichloroethane, 1,1,2-	0.05	<0.040	All Samples
	Trichloroethylene	0.061	< 0.010	All Samples
	Trichlorofluoromethane	4	<0.040	All Samples
	Vinyl Chloride	0.02	< 0.019	All Samples
	Methylnaphthalene, 2-(1-)	0.99	<0.0071	All Samples
	Acenaphthene	7.9	<0.0050	All Samples
	Acenaphthylene	0.15	<0.0050	All Samples
	Anthracene	0.67	<0.0050	All Samples
	Benz(a)anthracene	0.5	<0.0050	All Samples
	Benzo(a)pyrene	0.3	<0.0050	All Samples
	Benzo(b+j)fluoranthene	0.78	<0.0050	All Samples
,,	Benzo(g,h,i)perylene	6.6	<0.0050	All Samples
PAHs	Benzo(k)fluoranthene	0.78	<0.0050	All Samples
Ь	Chrysene	7	<0.0050	All Samples
	Dibenz(a,h)anthracene	0.1	<0.0050	All Samples
	Fluoranthene	0.69	<0.0050	All Samples
	Fluorene	62	<0.0050	All Samples
	Indeno(1,2,3-cd)pyrene	0.38	<0.0050	All Samples
	Naphthalene	0.6	<0.0050	All Samples
	Phenanthrene	6.2	<0.0050	All Samples
	Pyrene	78	<0.0050	All Samples
	Aldrin	0.05	<0.0020	All Samples
	Chlordane	0.05	<0.0020	All Samples
	DDD	3.3	<0.0020	All Samples
	DDE	0.26	<0.0020	All Samples
	DDT	1.4	<0.0020	All Samples
	Dieldrin	0.05	<0.0020	All Samples
S	Endosulfan	0.04	<0.0020	All Samples
OCPs	Endrin	0.04	<0.0020	All Samples
Ι	Hexachlorocyclohexane Gamma-	0.056	<0.0020	All Samples

Table 15: Summary of Maximum Concentrations in Soil

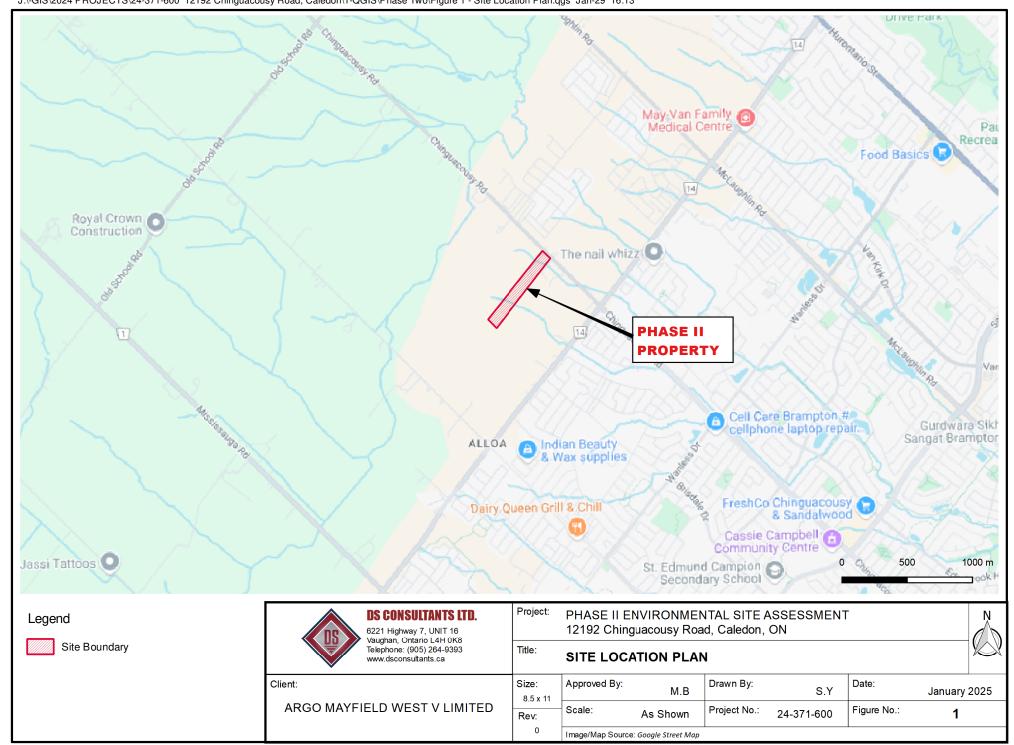
	Parameter	Standard	Maximum Concentration	Location
	Heptachlor	0.15	<0.0020	All Samples
	Heptachlor Epoxide	0.05	<0.0020	All Samples
	Hexachlorobenzene	0.52	<0.0020	All Samples
	Hexachlorobutadiene	0.012	<0.0020	All Samples
	Hexachloroethane	0.089	<0.0020	All Samples
	Methoxychlor	0.13	<0.0050	All Samples
PCBs	Total PCBs	0.21	<0.010	BH24-7 SS1

Table 16: Summary of Maximum Concentrations in Groundwater

Parameter	Standard	Maximum Concentration	Location
Antimony	6	0.77	BH24-2
Arsenic	25	<1.0	All Samples
Barium	1000	24	BH24-2
Beryllium	4	<0.40	All Samples
Boron (total)	5000	350	BH24-2
Cadmium	2.7	0.45	BH24-2
Chromium Total	50	<5.0	All Samples
∑ Cobalt	3.8	38	BH24-2
Molybdenum Cobalt Copper Lead Molybdenum	87	2.3	BH24-2
u Lead	10	<0.50	All Samples
्र ह्य Molybdenum	70	7.4	BH24-2
Nickel	100	45	BH24-2
Selenium	10	2.5	BH24-2
Silver	1.5	<0.090	All Samples
Sodium	490000	140000	BH24-2
Thallium	2	<0.050	All Samples
Uranium	20	11	BH24-2
Vanadium	6.2	<0.50	All Samples
	1100	27	BH24-2
Zinc Benzene	5	<0.17	
			All Samples
Ethylbenzene	2.4	<0.20	All Samples
Toluene	24	<0.20	All Samples
Xylenes (Total) F1 (C6 to C10) minus RTFX	300	<0.20	All Samples
TT (co to cro) minus billy	750	<25	All Samples
F2 (C10 to C16)	150	<90	All Samples
F3 (C16 to C34)	500	<200	All Samples
F4 (C34 to C50) minus PAHs	500	<200	All Samples
Acetone	2700	<10	All Samples
Bromomethane	0.89	<0.50	All Samples
Carbon Tetrachloride	0.79	<0.20	All Samples
Chlorobenzene	30	<0.20	All Samples
Chloroform	2.4	<0.20	All Samples
Dichlorobenzene, 1,2-	3	<0.50	All Samples
Dichlorobenzene, 1,3-	59	<0.50	All Samples
Dichlorobenzene, 1,4-	1	<0.50	All Samples
Dichlorodifluoromethane	590	<1.0	All Samples
Dichloroethane, 1,1-	5	<0.20	All Samples
Dichloroethane, 1,2-	1.6	<0.50	All Samples
Dichloroethylene, 1,1-	1.6	<0.20	All Samples
Dichloroethylene, 1,2-cis-	1.6	<0.50	All Samples
Dichloroethylene, 1,2-trans-	1.6	<0.50	All Samples
Dichloropropane, 1,2-	5	<0.20	All Samples
Dichloropropene, 1,3-	0.5	<0.50	All Samples
Ethylene dibromide	0.2	<0.20	All Samples
Hexane (n)	51	<1.0	All Samples

<u>Table 16: Summary of Maximum Concentrations in Groundwater</u>

	Parameter	Standard	Maximum Concentration	Location
	Methyl Ethyl Ketone	1800	<10	All Samples
	Methyl Isobutyl Ketone	640	<5.0	All Samples
	Methyl tert-Butyl Ether (MTBE)	15	<0.50	All Samples
	Methylene Chloride	50	<2.0	All Samples
	Styrene	5.4	<0.50	All Samples
	Tetrachloroethane, 1,1,1,2-	1.1	<0.50	All Samples
	Tetrachloroethane, 1,1,2,2-	1	<0.50	All Samples
	Tetrachloroethylene	1.6	<0.20	All Samples
	Trichloroethane, 1,1,1-	200	<0.20	All Samples
	Trichloroethane, 1,1,2-	4.7	<0.50	All Samples
	Trichloroethylene	1.6	<0.20	All Samples
	Trichlorofluoromethane	150	<0.50	All Samples
	Vinyl Chloride	0.5	<0.20	All Samples
	Acenaphthene	4.1	<0.050	All Samples
	Acenaphthylene	1	<0.050	All Samples
	Anthracene	2.4	<0.050	All Samples
	Benzo(a)anthracene	1	<0.050	All Samples
	Benzo(a)pyrene	0.01	<0.0090	All Samples
	Benzo(b/j)fluoranthene	0.1	<0.050	All Samples
	Benzo(ghi)perylene	0.2	<0.050	All Samples
	Benzo(k)fluoranthene	0.1	<0.050	All Samples
PAHs	Chrysene	0.1	<0.050	All Samples
PA	Dibenzo(a,h)anthracene	0.2	<0.050	All Samples
	Fluoranthene	0.41	<0.050	All Samples
	Fluorene	120	<0.050	All Samples
	Indeno(1,2,3-cd)pyrene	0.2	<0.050	All Samples
	1-Methylnaphthalene	3.2	<0.050	All Samples
	2-Methylnaphthalene	3.2	<0.050	All Samples
	Naphthalene	11	<0.050	All Samples
	Phenanthrene	1	<0.030	All Samples
	Pyrene	4.1	<0.050	All Samples



Notes for Soil and Groundwater Summary Tables

	For soil and groundwater analytical results, concentration exceeds the applicable Standards.
	For soil and groundwater analytical results, laboratory detection limits exceed the applicable Standards.
MECP Table 2 SCS	Generic Condition Standards in a Potable Groundwater Condition for Use for Residential/Parkland/Institutional Use and Coarse Textured soils as contained in Table 2 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MECP on April 15, 2011.
masl	Meters above sea level
mbgs	Meters below ground surface
NM	Not Monitored
NA	Not Available
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
VOCs	Volatile Organic Compounds
ORPs	Other Regulated Parameters
PCBs	Polychlorinated Biphenyl
OCPs	Organochlorine Pesticides
PAH	Polyaromatic Hydrocarbon
PHC	Petroluem Hydrocarbon
Units	Units for all soil analyses are in µg/g (ppm) unless otherwise indicated
Units	Units for all groundwater analyses are in µg/L (ppb) unless otherwise indicated

Figures

Image/Map Source: Esri Satellite Image

Site Boundary

Residential Use

Agricultural or Other Use

Woodlot

Community (Road)

6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

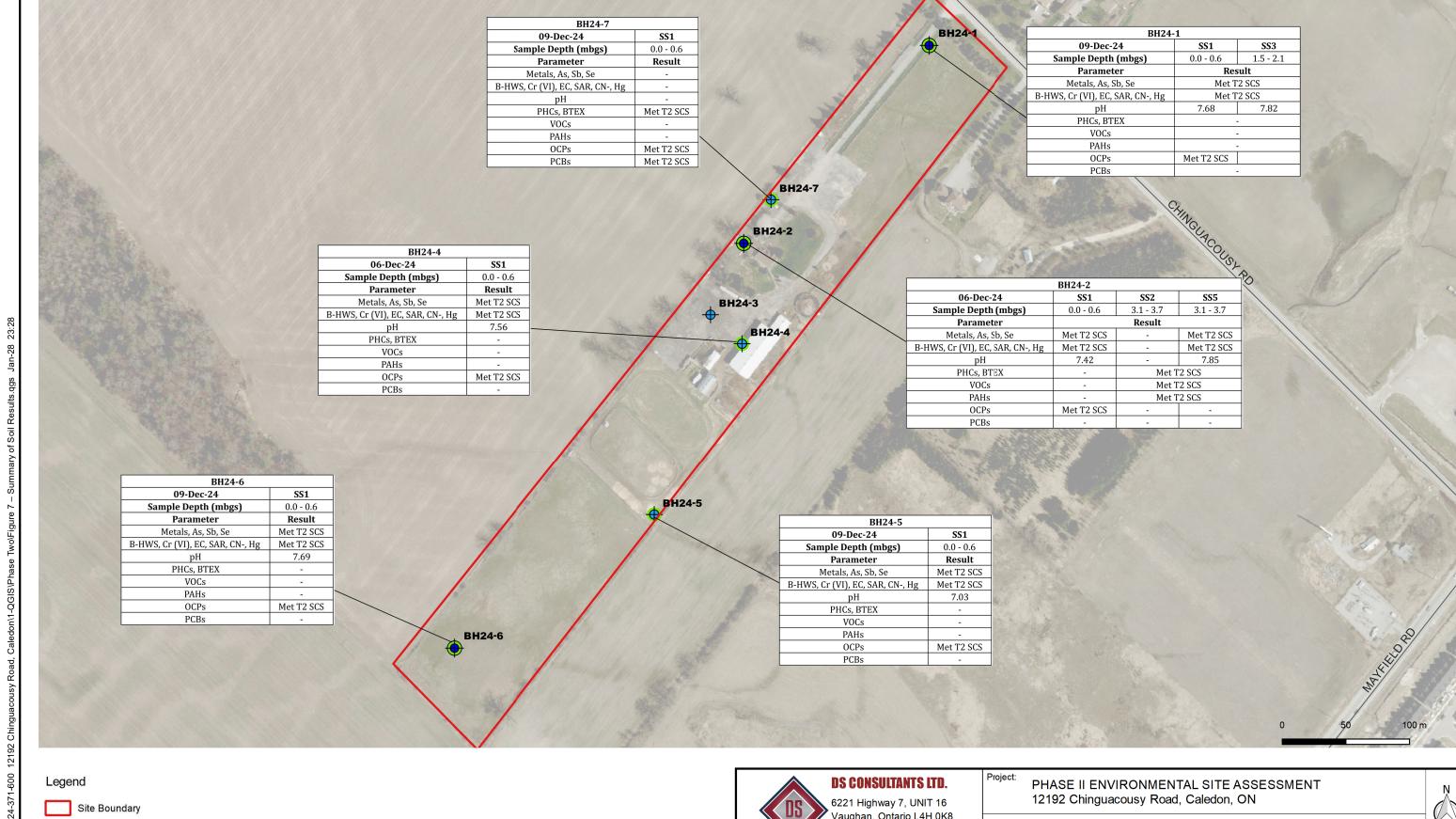
Client:

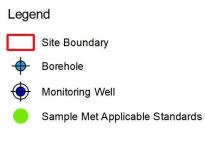
ARGO MAYFIELD WEST V LIMITED

DILACE	CTUDY	ADEA
PHASE	STUDY	AKEA

Size: 11x17	Approved By:	M.B	Drawn By:	S.Y	Date:	Janua	ry 2025
Rev.	Scale:	As Shown	Project No.:	24-371-600	Figure No.:	3	
0	Image/Map Source	e: Esri Satellite Image	2				

Groundwater Flow Direction


24-371-600


As Shown

Image/Map Source: Esri Satellite Image

Rev.

6

Client:

Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

ARGO MAYFIELD WEST V LIMITED

SUMMARY OF SOIL RESULTS

Size:	Approved By:	M.B	Drawn By:	S.Y	Date:	Janua	ry 2025
Rev.	Scale:	As Shown	Project No.:	24-371-600	Figure No.:	7	
0	Image/Map Sour	C e : Esri Satellite Imag	e				

Site Boundary

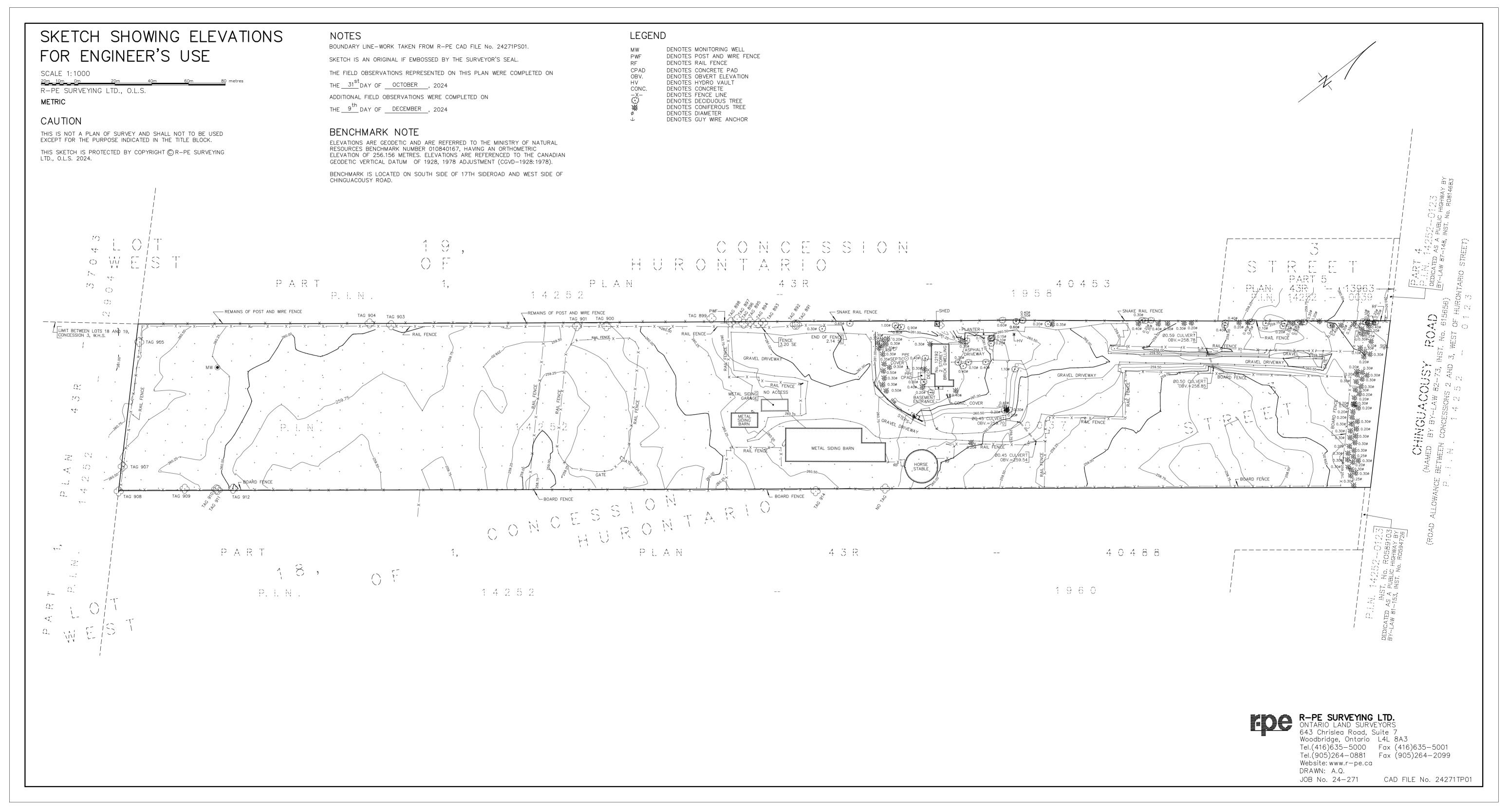
Sample Exceeds Applicable Standards

DS CONSULTANTS LTD.

6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

ARGO MAYFIELD WEST V LIMITED

Title:


12192 Chinguacousy Road, Caledon, ON

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Size:	Approved By:	M.B	Drawn By:	S.Y	Date:	Janua	ry 202
Rev.	- Scale:	As Shown	Project No.:	24-371-600	Figure No.:	8	
0	Image/Map Sour	'Ce': Esri Satellite Imaa	е				

Appendix A

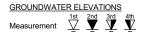
Appendix B

PROJECT: Phase II Environmental Site Assessment

CLIENT: Argo Mayfield West V Limited

PROJECT LOCATION: 12192 Chinguacousy Road, Caledon, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 24-371-600

Date: Dec/09/2024 ENCL NO.: 2

	SOIL PROFILE		S	AMPL	ES.				Head Sp				PLASTIC N	NATURAL	LIQUID		₌	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	Ä	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	PID (ppm	1)		CGD ppm) ≥	ľ	W _P	ONTENT W O CONTE	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%)
259.6			Š	TYPE	ż	88	EE	10 20 3	0 40	10 2	20 30 4	0	10	20	30		- 1	GR SA SI
0.3	TOPSOIL: 250mm CLAYEY SILT TO SILTY CLAY:		1	SS	3		1	- 1		•					5			Metals and ORPs, OCF
0.8	trace sand, trace gravel, trace rootlets, brown, moist, soft (weathered/disturbed) CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace		2	SS	15	⊻	259 W. L. 2	58.6 masl		,				o .				DUP-1
	gravel, brown to grey, moist, stiff to hard		3	ss	20		Dec 23	, 2024		,				,				pН
								: -										PΠ
	grey below 3.1m		4	SS	29		2570	• · · · · · · · · · · · · · · · · · · ·		•			-					
	grey below 3. IIII		5	SS	23		256		e	•				Φ	1			2 22 45
								- - - - -										
	100mm wet sandy silt layer at 4.6m		6	SS	11		255	·	•	,				0				
							254											
:			_		0.4			· · · -										
252.9 6.7	with sandy silt layers and silt pockets at 6.4m END OF BOREHOLE:		7	SS	31		253			,			0				_	
0.7	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																	
	Date: Water Level(mbgs): Dec. 23, 2024 1.0																	

PROJECT: Phase II Environmental Site Assessment

CLIENT: Argo Mayfield West V Limited

PROJECT LOCATION: 12192 Chinguacousy Road, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 24-371-600

Date: Dec/06/2024 ENCL NO.: 3

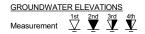
	SOIL PROFILE		s	AMPL	.ES	r				Hea	d Sp	ace				PLAS	TIC, NA	TURAL	LIQUIT		Ş	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	3ER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		PII (ppr	n)		4	(pp	GD om) ≥•	_	W _P		TURAL STURE NTENT W	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%)
261.0		STRA	NUMBER	TYPE	į.	SROU	ELEV.	10	20	30 4	0	10	20	30	40			ONTEN 20 :			≱	GR SA SI
269:8	TOPSOIL: 200mm	<u>111/</u>			-			-								+						ort ort or
0.2	FILL: clayey silt to silty clay, trace rootlets, trace organics, dark brown to brown, moist, firm to stiff		1	SS	5		1	-														Metals and ORPs, OCI
			2	SS	10		260	- 1			•						0					PHCs, BTE VOCs, PAI
259.5 1.5	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, grey, moist, stiff to very stiff		3	SS	25		2 59	- - - - 1			•						0					,
	fine roots at 2.3m		4	SS	17		209	- - - -									0					
	grey below 3.1m				11		258	: - -			$\frac{1}{2}$											
	g. 5, 2010 ii 0		5	SS	29		1	- 1 - -			•						0					PHCs, BTI VOCs, PAI pH
							257	- - - -														
			6	SS	20		256	- - - 1			•						ф —	- I				5 21 54
							W. L. 2 Dec 23	55.3 n	nasl											-		
254.3			7	SS	13		D	- - 1 - -									0					
6.7	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgs): Dec. 23, 2024 5.7																					

PROJECT: Phase II Environmental Site Assessment

CLIENT: Argo Mayfield West V Limited

PROJECT LOCATION: 12192 Chinguacousy Road, Caledon, ON

DATUM: Geodetic


DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 24-371-600

Date: Dec/06/2024 ENCL NO.: 4

	SOIL PROFILE		S	AMPL	ES				Soi	l He	ad S	Spac	e Va	apor	S	DI ACTI	_ NAT	URAL	HOUR		L	RE	MARK	(S
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10		m) ≖	■ 40	1	() •	DGE ppm		W _P WAT	ER CO	W O ONTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GR/ DISTI	AND AIN SI RIBUT (%)	IZE FION
26 0.9 0.2	GRANULAR FILL: sand and gravel nixed with asphalt, 180mm CLAYEY SILT TO SILTY CLAY: trace sand, trace gravel, trace rootlets, brown, moist, very stiff		1	SS	19		261	1				•				0							71 01	
0.8	(weathered/disturbed) CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown to grey, moist, stiff to very stiff		2	SS	12		2602	- - - - - -	+			-					0							
			3	SS	21	-	259	- 1 1 -				•					∘ ⊢					0 1	4 47	,
			4	SS	24		<u> </u>	- - - - - - -									0							
			5	SS	18		258					•					0							
							257	- - - - -	+															
	grey below 4.6m		6	SS	8		256	- - 1 1 - -	+			•					0							
255.1 6.0	SANDY SILT TILL: some clay to						255	-																
254.4 6.7	clayey, trace gravel, grey, very moist, compact END OF BOREHOLE:	φ	7	SS	12		255	- - 3 - -	_			<u> </u>				C)							_
	Notes: 1) Water not encountered during drilling.																							

PROJECT: Phase II Environmental Site Assessment

CLIENT: Argo Mayfield West V Limited

PROJECT LOCATION: 12192 Chinguacousy Road, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 24-371-600

Date: Dec/06/2024 ENCL NO.: 5

	SOIL PROFILE		s	AMPL	.ES						d Sp	ace '				PLASTI	c.NATI	URAL	LIQUID		ΤΛ	REMARKS
(m) ELEV EPTH 260.8	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION		PIE (ppn	n)		10	CG (ppi	m)	,	W _P	CON' V ER CC	TENT	LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
26 0 .Ø 0.2	TOPSOIL: 150mm FILL: sand and gravel, dark brown, moist, loose	<u> </u>	1	ss	6						•						0					Metals and ORPs, OCI
260.2 269:9 0.8			2	SS	10		260	 -									0					ORFS, OC
	very stiff sand seams at 1.8m		3	SS	16		2592	-			-						•					
			4	SS	17		258	- I			•						0					
			5	SS	27			ī														
							257	-														
	grey below 4.6m		6	SS	15		256	ı			•						0					
							255	-														
254.1	some gravel at 6.4m		7	SS	16			Ī			•						0					
6.7	END OF BOREHOLE: Notes: 1) Water encountered at 2.3 mbgs during drilling.																					

PROJECT: Phase II Environmental Site Assessment

CLIENT: Argo Mayfield West V Limited

PROJECT LOCATION: 12192 Chinguacousy Road, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 24-371-600

Date: Dec/09/2024 ENCL NO.: 6

	SOIL PROFILE		S	AMPL	ES.						lead	l Sp	ace				PI ASTI	_C NAT	URAL	LIQUIE		5	REN	/ARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10		PID pm)		10	(t	OGE opm)	W _P 	ER CO	W O ONTEN	LIQUIE LIMIT W _L IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA DISTR	AND IN SIZI LIBUTIO (%)
258.6 25 9 .4	TOPSOIL: 180mm	7/1/2	-		-	00	ш	=	1	1	1	\dashv	Ť			 \dashv	Ť						GR 3F	\ JI
0.2 257.8	CLAYEY SILT TO SILTY CLAY: trace sand, trace gravel, trace rootlets, brown, moist, firm (weathered/disturbed)		1	SS	7		258	3				•	,					0	0				Metals ORPs	and OCP
0.8	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, occasional cobble, brown, moist, stiff to very stiff		2	SS	9			- - - - - -				¢	•					0						
FC 2			3	SS	18		257	-				e	,					0						
256.3	SANDY SILT TILL: some clay, some gravel, occasional cobble, brown to grey, moist, compact to very dense		4	SS	24		2562	- - - -				-4	_					0					16 33	3 40
			\vdash					-																
			. 5	SS	50/ 25mm		255] - - -				4	,											
253.9		0					254	-																
4.7	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, grey, moist, stiff to hard		6	SS	8		<u> </u>	- - - - -				e	,					0						
<u>ì</u>							253	-																
251.9			7	SS	37		252	- - -				e	,					0						
6.7	END OF BOREHOLE: Notes: 1) Water encountered at 4.6 mbgs during drilling,																							
												- 1												

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Phase II Environmental Site Assessment

CLIENT: Argo Mayfield West V Limited

PROJECT LOCATION: 12192 Chinguacousy Road, Caledon, ON

DATUM: Geodetic

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm REF. NO.: 24-371-600

Date: Dec/09/2024 ENCL NO.: 7

	SOIL PROFILE	\dashv	S	AMPL	ES	ι Ε						l Sp	Space Vapors CGD					PLAST	IC NAT	URAL	IRAL FURE LIQUII TENT LIMI		TW	REMARKS
m) LEV PTH	DESCRIPTION	STRATA PLOT	띪		BLOWS 0.3 m	GROUND WATER	NOIL			PID pm >■)				CGE ppm →			LIMIT W _P I——		TENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTION
60.3			NUMBER	TYPE	<u>™</u> .	GROUI	ELEVATION	10	20	30) 40)	1(0 2	20 3	0 40	,			ONTEN 20 :	IT (%) 30	<u>a</u> -	NA.	(%) GR SA SI (
0.2	TOPSOIL: 180mm CLAYEY SILT TO SILTY CLAY: trace sand, trace gravel, trace rootlets, brown, moist, stiff		1	SS	10		260	- - -				-	,						0	•				Metals and ORPs, OCP
0.8	(weathered/disturbed) CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, brown to grey, moist, stiff to very stiff		2	SS	15		259	- - - - -				4	,							Φ				
	very sun		3	SS	20		מ	- - - - -				٥	,						0					
			4	SS	28	∷.¥ï	258 W. L. 2 Dec 23			sl		4	,						0			-		
	grey below 3.1m		5	SS	16		257	-					,						a -					3 21 48 2
								-																
							256	- - - -																
			6	SS	12		255	-					,						0					
								- - - - -																
	wet silty sand layer at 6.4m		7	SS	19		254	- 3 - -					,						0	>		-		
53.3 7.0	END OF BOREHOLE:							-	+			\dashv												
	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																							
	Date: Water Level(mbgs): Dec. 23, 2024 2.5																							

DRILLING DATA

Diameter:

Method: Direct Push

PROJECT: Phase II Environmental Site Assessment

CLIENT: Argo Mayfield West V Limited

PROJECT LOCATION: 12192 Chinguacousy Road, Caledon, ON

REF. NO.: 24-371-600

	SOIL PROFILE		S	SAMPL	.ES			5	Soil I	Head	Spa	ce V	apor	s			NATI	RΔI				REMARKS
(m) ELEV DEPTH 260.6	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	(2	PID ppm)		(CGE ppm)	W _P	WATER	ATER CONTENT (%)		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI	
0.0	CLAYEY SILT TO SILTY CLAY: trace sand, trace gravel, trace rootlets, brown, moist (weathered/disturbed)		1	SS			260	- 1			•											PHCs, BTE PCBs
59.8 0.8 59.3	CLAYEY SILT TO SILTY CLAY TILL: some sand to sandy, trace gravel, some cobble, grey, moist		2	SS		_	200	: : 1			•											
1.3	END OF BOREHOLE: Notes: 1) Borehole backfilled with bentonite upon completion																					

Appendix C

Your Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Your C.O.C. #: N/A

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/12/23

Report #: R8457852 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BD399 Received: 2024/12/10, 18:38

Sample Matrix: Soil # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	2	N/A	2024/12/17	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	5	2024/12/16	2024/12/18	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron	1	2024/12/17	2024/12/18	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	2	N/A	2024/12/17		EPA 8260C m
Free (WAD) Cyanide	5	2024/12/16	2024/12/17	CAM SOP-00457	OMOE E3015 m
Free (WAD) Cyanide	1	2024/12/17	2024/12/17	CAM SOP-00457	OMOE E3015 m
Conductivity	6	2024/12/17	2024/12/17	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2024/12/17	2024/12/17	CAM SOP-00436	EPA 3060A/7199 m
Hexavalent Chromium in Soil by IC (1)	5	2024/12/18	2024/12/18	CAM SOP-00436	EPA 3060A/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2024/12/13	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	2	2024/12/17	2024/12/17	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2024/12/17	2024/12/18	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	5	2024/12/16	2024/12/17	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS	1	2024/12/17	2024/12/17	CAM SOP-00447	EPA 6020B m
Moisture	3	N/A	2024/12/12	CAM SOP-00445	Carter 2nd ed 70.2 m
Moisture	1	N/A	2024/12/14	CAM SOP-00445	Carter 2nd ed 70.2 m
Moisture	5	N/A	2024/12/16	CAM SOP-00445	Carter 2nd ed 70.2 m
OC Pesticides (Selected) & PCB (4)	6	2024/12/18	2024/12/19	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	1	N/A	2024/12/16	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	5	N/A	2024/12/17	CAM SOP-00307	EPA 8081B/ 8082A
PAH Compounds in Soil by GC/MS (SIM)	2	2024/12/16	2024/12/17	CAM SOP-00318	EPA 8270E
Polychlorinated Biphenyl in Soil	1	2024/12/17	2024/12/18	CAM SOP-00309	EPA 8082A m
pH CaCl2 EXTRACT	5	2024/12/16	2024/12/16	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	3	2024/12/17	2024/12/17	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	5	N/A	2024/12/17	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR)	1	N/A	2024/12/18	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	2	N/A	2024/12/16	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

Your Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Your C.O.C. #: N/A

Attention: Megan Bender
DS Consultants Limited
6221 Highway 7, Unit 16
Vaughan, ON
CANADA L4H 0K8

Report Date: 2024/12/23

Report #: R8457852 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BD399 Received: 2024/12/10, 18:38

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- st RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.
- (2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
- (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
- (4) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Your Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Your C.O.C. #: N/A

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/12/23

Report #: R8457852 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BD399 Received: 2024/12/10, 18:38

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: ashton.gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas Job #: C4BD399 DS Consultants Limited
Report Date: 2024/12/23 Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		ALKL24	ALKL26	ALKL29	ALKL30	ALKL31			
Sampling Date		2024/12/09	2024/12/06	2024/12/06	2024/12/09	2024/12/09			
COC Number		N/A	N/A	N/A	N/A	N/A			
	UNITS	BH24-1 SS1	BH24-2 SS1	BH24-4 SS1	BH24-5 SS1	BH24-6 SS1	RDL	MDL	QC Batch
Calculated Parameters									
Sodium Adsorption Ratio	N/A	1.5	0.16 (1)	0.88	0.87	0.49			9822029
Inorganics	•				•		•		•
Conductivity	mS/cm	0.37	0.39	0.21	0.27	0.59	0.002	0.0005	9831232
Available (CaCl2) pH	рН	7.68	7.42	7.56	7.03	7.69			9830653
WAD Cyanide (Free)	ug/g	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.0019	9830978
Chromium (VI)	ug/g	<0.18	<0.18	<0.18	0.19	<0.18	0.18	0.050	9833982
Metals									
Hot Water Ext. Boron (B)	ug/g	0.29	0.42	0.090	0.12	0.10	0.050	0.030	9829810
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.10	9829591
Acid Extractable Arsenic (As)	ug/g	4.9	3.6	4.1	5.7	5.6	1.0	0.10	9829591
Acid Extractable Barium (Ba)	ug/g	98	63	82	74	110	0.50	0.30	9829591
Acid Extractable Beryllium (Be)	ug/g	0.97	0.60	0.74	0.69	1.0	0.20	0.020	9829591
Acid Extractable Boron (B)	ug/g	6.8	<5.0	8.3	<5.0	8.2	5.0	1.0	9829591
Acid Extractable Cadmium (Cd)	ug/g	0.16	0.44	<0.10	0.12	0.11	0.10	0.030	9829591
Acid Extractable Chromium (Cr)	ug/g	27	22	22	23	26	1.0	0.20	9829591
Acid Extractable Cobalt (Co)	ug/g	13	7.9	11	11	13	0.10	0.020	9829591
Acid Extractable Copper (Cu)	ug/g	27	19	26	20	33	0.50	0.20	9829591
Acid Extractable Lead (Pb)	ug/g	12	13	8.5	9.2	9.2	1.0	0.10	9829591
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.52	<0.50	<0.50	<0.50	0.50	0.10	9829591
Acid Extractable Nickel (Ni)	ug/g	29	16	24	20	32	0.50	0.20	9829591
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	0.10	9829591
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.040	9829591
Acid Extractable Thallium (TI)	ug/g	0.16	0.12	0.12	0.13	0.15	0.050	0.010	9829591
Acid Extractable Uranium (U)	ug/g	0.67	0.57	0.47	0.54	0.55	0.050	0.030	9829591
Acid Extractable Vanadium (V)	ug/g	37	26	30	32	36	5.0	0.50	9829591
Acid Extractable Zinc (Zn)	ug/g	69	63	51	57	62	5.0	0.50	9829591
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	0.030	9829591

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		ALOP83			
Sampling Date		2024/12/09			
COC Number		N/A			
	UNITS	DUP-1	RDL	MDL	QC Batch
Calculated Parameters					
Sodium Adsorption Ratio	N/A	1.5			9824366
Inorganics					
Conductivity	mS/cm	0.31	0.002	0.0005	9831578
Available (CaCl2) pH	рН	7.74			9831449
WAD Cyanide (Free)	ug/g	<0.01	0.01	0.0019	9831153
Chromium (VI)	ug/g	<0.18	0.18	0.050	9831194
Metals	•			•	
Hot Water Ext. Boron (B)	ug/g	0.094	0.050	0.030	9831358
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	0.10	9831637
Acid Extractable Arsenic (As)	ug/g	5.0	1.0	0.10	9831637
Acid Extractable Barium (Ba)	ug/g	94	0.50	0.30	9831637
Acid Extractable Beryllium (Be)	ug/g	0.91	0.20	0.020	9831637
Acid Extractable Boron (B)	ug/g	8.0	5.0	1.0	9831637
Acid Extractable Cadmium (Cd)	ug/g	0.11	0.10	0.030	9831637
Acid Extractable Chromium (Cr)	ug/g	28	1.0	0.20	9831637
Acid Extractable Cobalt (Co)	ug/g	14	0.10	0.020	9831637
Acid Extractable Copper (Cu)	ug/g	29	0.50	0.20	9831637
Acid Extractable Lead (Pb)	ug/g	12	1.0	0.10	9831637
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	0.10	9831637
Acid Extractable Nickel (Ni)	ug/g	32	0.50	0.20	9831637
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	0.10	9831637
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	0.040	9831637
Acid Extractable Thallium (TI)	ug/g	0.17	0.050	0.010	9831637
Acid Extractable Uranium (U)	ug/g	0.74	0.050	0.030	9831637
Acid Extractable Vanadium (V)	ug/g	39	5.0	0.50	9831637
Acid Extractable Zinc (Zn)	ug/g	69	5.0	0.50	9831637
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	0.030	9831637
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID		ALKL24	ALKL26	ALKL29				ALKL29			
Sampling Date		2024/12/09	2024/12/06	2024/12/06				2024/12/06			
COC Number		N/A	N/A	N/A				N/A			
	UNITS	BH24-1 SS1	BH24-2 SS1	BH24-4 SS1	RDL	MDL	QC Batch	BH24-4 SS1 Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters											
Chlordane (Total)	ug/g	<0.0020	<0.0020	<0.0020	0.0020	N/A	9819764				
o,p-DDD + p,p-DDD	ug/g	<0.0020	<0.0020	<0.0020	0.0020	N/A	9819764				
o,p-DDE + p,p-DDE	ug/g	<0.0020	<0.0020	<0.0020	0.0020	N/A	9819764				
o,p-DDT + p,p-DDT	ug/g	<0.0020	<0.0020	<0.0020	0.0020	N/A	9819764				
Total Endosulfan	ug/g	<0.0020	<0.0020	<0.0020	0.0020	N/A	9819764				
Total PCB	ug/g	<0.015	<0.015	<0.015	0.015	N/A	9819764				
Pesticides & Herbicides											
Aldrin	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
a-Chlordane	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
g-Chlordane	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
o,p-DDD	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
p,p-DDD	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
o,p-DDE	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
p,p-DDE	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
o,p-DDT	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
p,p-DDT	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Dieldrin	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Lindane	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Endosulfan I (alpha)	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Endosulfan II (beta)	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Endrin	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Heptachlor	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Heptachlor epoxide	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Hexachlorobenzene	ug/g	<0.0020	<0.0020	<0.0020	0.0020	0.00040	9835583	<0.0020	0.0020	0.00040	9835583
Hexachlorobutadiene	ug/g	<0.0020	<0.0020	<0.0020	0.0020	N/A	9835583	<0.0020	0.0020	N/A	9835583
Hexachloroethane	ug/g	<0.0020	<0.0020	<0.0020	0.0020	N/A	9835583	<0.0020	0.0020	N/A	9835583
Methoxychlor	ug/g	<0.0050	<0.0050	<0.0050	0.0050	0.0016	9835583	<0.0050	0.0050	0.0016	9835583
Aroclor 1242	ug/g	<0.015	<0.015	<0.015	0.015	0.0030	9835583	<0.015	0.015	0.0030	9835583
Aroclor 1248	ug/g	<0.015	<0.015	<0.015	0.015	0.0030	9835583	<0.015	0.015	0.0030	9835583

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Bureau Veritas Job #: C4BD399 Report Date: 2024/12/23 DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID		ALKL24	ALKL26	ALKL29				ALKL29			
Sampling Date		2024/12/09	2024/12/06	2024/12/06				2024/12/06			
COC Number		N/A	N/A	N/A				N/A			
	UNITS	BH24-1 SS1	BH24-2 SS1	BH24-4 SS1	RDL	MDL	QC Batch	BH24-4 SS1 Lab-Dup	RDL	MDL	QC Batch
Aroclor 1254	ug/g	<0.015	<0.015	<0.015	0.015	0.0030	9835583	<0.015	0.015	0.0030	9835583
Aroclor 1260	,										
ATUCIUI 1200	ug/g	<0.015	<0.015	<0.015	0.015	0.0030	9835583	<0.015	0.015	0.0030	9835583
Surrogate Recovery (%)	ug/g	<0.015	<0.015	<0.015	0.015	0.0030	9835583	<0.015	0.015	0.0030	9835583
	ug/g %	<0.015 97	<0.015	<0.015 90	0.015	0.0030	9835583 9835583	<0.015 91	0.015	0.0030	9835583 9835583

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID		ALKL30	ALKL31		ALOP83			
Sampling Date		2024/12/09	2024/12/09		2024/12/09			
COC Number		N/A	N/A		N/A			
	UNITS	BH24-5 SS1	BH24-6 SS1	QC Batch	DUP-1	RDL	MDL	QC Batch
Calculated Parameters								
Chlordane (Total)	ug/g	<0.0020	<0.0020	9819764	<0.0020	0.0020	N/A	9823520
o,p-DDD + p,p-DDD	ug/g	<0.0020	<0.0020	9819764	<0.0020	0.0020	N/A	9823520
o,p-DDE + p,p-DDE	ug/g	<0.0020	<0.0020	9819764	<0.0020	0.0020	N/A	9823520
o,p-DDT + p,p-DDT	ug/g	<0.0020	<0.0020	9819764	<0.0020	0.0020	N/A	9823520
Total Endosulfan	ug/g	<0.0020	<0.0020	9819764	<0.0020	0.0020	N/A	9823520
Total PCB	ug/g	<0.015	<0.015	9819764	<0.015	0.015	N/A	9823520
Pesticides & Herbicides								
Aldrin	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
a-Chlordane	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
g-Chlordane	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
o,p-DDD	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
p,p-DDD	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
o,p-DDE	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
p,p-DDE	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
o,p-DDT	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
p,p-DDT	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Dieldrin	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Lindane	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Endosulfan I (alpha)	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Endosulfan II (beta)	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Endrin	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Heptachlor	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Heptachlor epoxide	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Hexachlorobenzene	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	0.00040	9835583
Hexachlorobutadiene	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	N/A	9835583
Hexachloroethane	ug/g	<0.0020	<0.0020	9835583	<0.0020	0.0020	N/A	9835583
Methoxychlor	ug/g	<0.0050	<0.0050	9835583	<0.0050	0.0050	0.0016	9835583
Aroclor 1242	ug/g	<0.015	<0.015	9835583	<0.015	0.015	0.0030	9835583
Aroclor 1248	ug/g	<0.015	<0.015	9835583	<0.015	0.015	0.0030	9835583
Aroclor 1254	ug/g	<0.015	<0.015	9835583	<0.015	0.015	0.0030	9835583

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID		ALKL30	ALKL31		ALOP83			
Sampling Date		2024/12/09	2024/12/09		2024/12/09			
COC Number		N/A	N/A		N/A			
	UNITS	BH24-5 SS1	BH24-6 SS1	QC Batch	DUP-1	RDL	MDL	QC Batch
Aroclor 1260	ug/g	<0.015	<0.015	9835583	<0.015	0.015	0.0030	9835583
Surrogate Recovery (%)	•			-			•	•
2,4,5,6-Tetrachloro-m-xylene	%	100	78	9835583	93			9835583
Decachlorobiphenyl	%	77	80	9835583	64			9835583
RDL = Reportable Detection Lir								
QC Batch = Quality Control Bat	:ch							

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 PAHS (SOIL)

Bureau Veritas ID		ALKL27	ALKL28			
Sampling Date		2024/12/06	2024/12/06			
COC Number		N/A	N/A			
	UNITS	BH24-2 SS2	BH24-2 SS5	RDL	MDL	QC Batch
Calculated Parameters						
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	0.0071	N/A	9821962
Polyaromatic Hydrocarbons						
Acenaphthene	ug/g	<0.0050	<0.0050	0.0050	0.00050	9829881
Acenaphthylene	ug/g	<0.0050	<0.0050	0.0050	0.00060	9829881
Anthracene	ug/g	<0.0050	<0.0050	0.0050	0.00040	9829881
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	0.0050	0.00040	9829881
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	0.0050	0.00040	9829881
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	0.00060	9829881
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	0.0050	0.00050	9829881
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	0.0050	0.00030	9829881
Chrysene	ug/g	<0.0050	<0.0050	0.0050	0.00030	9829881
Dibenzo(a,h)anthracene	ug/g	<0.0050	<0.0050	0.0050	0.00030	9829881
Fluoranthene	ug/g	<0.0050	<0.0050	0.0050	0.00060	9829881
Fluorene	ug/g	<0.0050	<0.0050	0.0050	0.00050	9829881
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	0.0050	0.00030	9829881
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	0.0050	0.00060	9829881
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	0.0050	0.00070	9829881
Naphthalene	ug/g	<0.0050	<0.0050	0.0050	0.00040	9829881
Phenanthrene	ug/g	<0.0050	<0.0050	0.0050	0.00040	9829881
Pyrene	ug/g	<0.0050	<0.0050	0.0050	0.00030	9829881
Surrogate Recovery (%)						
D10-Anthracene	%	100	105			9829881
D14-Terphenyl (FS)	%	83	83			9829881
D8-Acenaphthylene	%	88	91			9829881
RDL = Reportable Detection						
QC Batch = Quality Control B	atch					

QC Batch = Quality Control Batch

N/A = Not Applicable

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 PCBS (SOIL)

Bureau Veritas ID		ALKL32								
Sampling Date		2024/12/06								
COC Number		N/A								
	UNITS	BH24-7 SS1	RDL	MDL	QC Batch					
PCBs										
Aroclor 1242	ug/g	<0.010	0.010	0.0070	9833770					
Aroclor 1248	ug/g	<0.010	0.010	0.0070	9833770					
Aroclor 1254	ug/g	<0.010	0.010	0.0070	9833770					
Aroclor 1260	ug/g	<0.010	0.010	0.0070	9833770					
Total PCB	ug/g	<0.010	0.010	0.0070	9833770					
Surrogate Recovery (%)	•	-								
Decachlorobiphenyl	%	117			9833770					
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Veritas ID		ALKL32			
Sampling Date		2024/12/06			
COC Number		N/A			
	UNITS	BH24-7 SS1	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/g	<0.020	0.020	0.020	9824896
Toluene	ug/g	<0.020	0.020	0.020	9824896
Ethylbenzene	ug/g	<0.020	0.020	0.020	9824896
o-Xylene	ug/g	<0.020	0.020	0.020	9824896
p+m-Xylene	ug/g	<0.040	0.040	0.040	9824896
Total Xylenes	ug/g	<0.040	0.040	0.040	9824896
F1 (C6-C10)	ug/g	<10	10	5.0	9824896
F1 (C6-C10) - BTEX	ug/g	<10	10	5.0	9824896
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	7.0	5.0	9831147
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	5.0	9831147
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	10	9831147
Reached Baseline at C50	ug/g	Yes			9831147
Surrogate Recovery (%)	•				
1,4-Difluorobenzene	%	102			9824896
4-Bromofluorobenzene	%	100			9824896
D10-o-Xylene	%	99			9824896
D4-1,2-Dichloroethane	%	97			9824896
o-Terphenyl	%	97			9831147
RDL = Reportable Detection L	imit			3	
QC Batch = Quality Control Ba	atch				

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		ALKL27				ALKL27			
Sampling Date		2024/12/06				2024/12/06			
COC Number		N/A				N/A			
	UNITS	BH24-2 SS2	RDL	MDL	QC Batch	BH24-2 SS2 Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	0.010	9822038				
Volatile Organics									
Acetone (2-Propanone)	ug/g	<0.49	0.49	0.49	9823438	<0.49	0.49	0.49	9823438
Benzene	ug/g	<0.0060	0.0060	0.0060	9823438	<0.0060	0.0060	0.0060	9823438
Bromodichloromethane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Bromoform	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Bromomethane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Carbon Tetrachloride	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Chlorobenzene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Chloroform	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Dibromochloromethane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,2-Dichlorobenzene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,3-Dichlorobenzene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,4-Dichlorobenzene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,1-Dichloroethane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,2-Dichloroethane	ug/g	<0.049	0.049	0.049	9823438	<0.049	0.049	0.049	9823438
1,1-Dichloroethylene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
cis-1,2-Dichloroethylene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
trans-1,2-Dichloroethylene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,2-Dichloropropane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	0.030	9823438	<0.030	0.030	0.030	9823438
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Ethylbenzene	ug/g	<0.010	0.010	0.010	9823438	<0.010	0.010	0.010	9823438
Ethylene Dibromide	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Hexane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Methylene Chloride(Dichloromethane)	ug/g	<0.049	0.049	0.049	9823438	<0.049	0.049	0.049	9823438
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	0.40	0.40	9823438	<0.40	0.40	0.40	9823438
Methyl Isobutyl Ketone	ug/g	<0.40	0.40	0.40	9823438	<0.40	0.40	0.40	9823438
Methyl t-butyl ether (MTBE)	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		ALKL27				ALKL27			
Sampling Date		2024/12/06				2024/12/06			
COC Number		N/A				N/A			
	UNITS	BH24-2 SS2	RDL	MDL	QC Batch	BH24-2 SS2 Lab-Dup	RDL	MDL	QC Batch
Styrene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,1,1,2-Tetrachloroethane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,1,2,2-Tetrachloroethane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Tetrachloroethylene	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Toluene	ug/g	<0.020	0.020	0.020	9823438	<0.020	0.020	0.020	9823438
1,1,1-Trichloroethane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
1,1,2-Trichloroethane	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Trichloroethylene	ug/g	<0.010	0.010	0.010	9823438	<0.010	0.010	0.010	9823438
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	0.040	0.040	9823438	<0.040	0.040	0.040	9823438
Vinyl Chloride	ug/g	<0.019	0.019	0.019	9823438	<0.019	0.019	0.019	9823438
p+m-Xylene	ug/g	<0.020	0.020	0.020	9823438	<0.020	0.020	0.020	9823438
o-Xylene	ug/g	<0.020	0.020	0.020	9823438	<0.020	0.020	0.020	9823438
Total Xylenes	ug/g	<0.020	0.020	0.020	9823438	<0.020	0.020	0.020	9823438
F1 (C6-C10)	ug/g	<10	10	2.0	9823438	<10	10	2.0	9823438
F1 (C6-C10) - BTEX	ug/g	<10	10	2.0	9823438	<10	10	2.0	9823438
F2-F4 Hydrocarbons			•						•
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	7.0	5.0	9831147				
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	5.0	9831147				
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	10	9831147				
Reached Baseline at C50	ug/g	Yes			9831147				
Surrogate Recovery (%)	*		•		•				•
o-Terphenyl	%	102			9831147				
4-Bromofluorobenzene	%	86			9823438	87			9823438
D10-o-Xylene	%	97			9823438	92			9823438
D4-1,2-Dichloroethane	%	116			9823438	120			9823438
D8-Toluene	%	94			9823438	94			9823438

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		ALKL28			
Sampling Date		2024/12/06			
COC Number		N/A			
	UNITS	BH24-2 SS5	RDL	MDL	QC Batch
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	0.010	9822038
Volatile Organics					
Acetone (2-Propanone)	ug/g	<0.49	0.49	0.49	9823438
Benzene	ug/g	<0.0060	0.0060	0.0060	9823438
Bromodichloromethane	ug/g	<0.040	0.040	0.040	9823438
Bromoform	ug/g	<0.040	0.040	0.040	9823438
Bromomethane	ug/g	<0.040	0.040	0.040	9823438
Carbon Tetrachloride	ug/g	<0.040	0.040	0.040	9823438
Chlorobenzene	ug/g	<0.040	0.040	0.040	9823438
Chloroform	ug/g	<0.040	0.040	0.040	9823438
Dibromochloromethane	ug/g	<0.040	0.040	0.040	9823438
1,2-Dichlorobenzene	ug/g	<0.040	0.040	0.040	9823438
1,3-Dichlorobenzene	ug/g	<0.040	0.040	0.040	9823438
1,4-Dichlorobenzene	ug/g	<0.040	0.040	0.040	9823438
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	0.040	0.040	9823438
1,1-Dichloroethane	ug/g	<0.040	0.040	0.040	9823438
1,2-Dichloroethane	ug/g	<0.049	0.049	0.049	9823438
1,1-Dichloroethylene	ug/g	<0.040	0.040	0.040	9823438
cis-1,2-Dichloroethylene	ug/g	<0.040	0.040	0.040	9823438
trans-1,2-Dichloroethylene	ug/g	<0.040	0.040	0.040	9823438
1,2-Dichloropropane	ug/g	<0.040	0.040	0.040	9823438
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	0.030	9823438
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	0.040	9823438
Ethylbenzene	ug/g	<0.010	0.010	0.010	9823438
Ethylene Dibromide	ug/g	<0.040	0.040	0.040	9823438
Hexane	ug/g	<0.040	0.040	0.040	9823438
Methylene Chloride(Dichloromethane)	ug/g	<0.049	0.049	0.049	9823438
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	0.40	0.40	9823438
Methyl Isobutyl Ketone	ug/g	<0.40	0.40	0.40	9823438
Methyl t-butyl ether (MTBE)	ug/g	<0.040	0.040	0.040	9823438
Styrene	ug/g	<0.040	0.040	0.040	9823438
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		ALKL28			
Sampling Date		2024/12/06			
COC Number		N/A			
	UNITS	BH24-2 SS5	RDL	MDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/g	<0.040	0.040	0.040	9823438
1,1,2,2-Tetrachloroethane	ug/g	<0.040	0.040	0.040	9823438
Tetrachloroethylene	ug/g	<0.040	0.040	0.040	9823438
Toluene	ug/g	<0.020	0.020	0.020	9823438
1,1,1-Trichloroethane	ug/g	<0.040	0.040	0.040	9823438
1,1,2-Trichloroethane	ug/g	<0.040	0.040	0.040	9823438
Trichloroethylene	ug/g	<0.010	0.010	0.010	9823438
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	0.040	0.040	9823438
Vinyl Chloride	ug/g	<0.019	0.019	0.019	9823438
p+m-Xylene	ug/g	<0.020	0.020	0.020	9823438
o-Xylene	ug/g	<0.020	0.020	0.020	9823438
Total Xylenes	ug/g	<0.020	0.020	0.020	9823438
F1 (C6-C10)	ug/g	<10	10	2.0	9823438
F1 (C6-C10) - BTEX	ug/g	<10	10	2.0	9823438
F2-F4 Hydrocarbons	•		•	•	•
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	7.0	5.0	9831147
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	5.0	9831147
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	10	9831147
Reached Baseline at C50	ug/g	Yes			9831147
Surrogate Recovery (%)	•		•	•	•
o-Terphenyl	%	100			9831147
4-Bromofluorobenzene	%	85			9823438
D10-o-Xylene	%	94			9823438
D4-1,2-Dichloroethane	%	127			9823438
D8-Toluene	%	94			9823438
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		ALKL24				ALKL25			ALKL26			
Sampling Date		2024/12/09				2024/12/09			2024/12/06			
COC Number		N/A				N/A			N/A			
	UNITS	BH24-1 SS1	RDL	MDL	QC Batch	BH24-1 SS3	MDL	QC Batch	BH24-2 SS1	RDL	MDL	QC Batch
Inorganics												
Moisture	%	18	1.0	0.50	9829599				21	1.0	0.50	9829599
Available (CaCl2) pH	рН					7.82		9831449				
RDL = Reportable Detection Limit												
RDL = Reportable Detection Limit QC Batch = Quality Control Batch												

	ALKL27		ALKL28		ALKL29	ALKL30	ALKL31			
	2024/12/06		2024/12/06		2024/12/06	2024/12/09	2024/12/09			
	N/A		N/A		N/A	N/A	N/A			
UNITS	BH24-2 SS2	QC Batch	BH24-2 SS5	QC Batch	BH24-4 SS1	BH24-5 SS1	BH24-6 SS1	RDL	MDL	QC Batch
%	13	9824472	13	9824472	18	15	17	1.0	0.50	9829599
На			7.85	9831449						
	%	2024/12/06 N/A UNITS BH24-2 SS2 % 13	2024/12/06 N/A UNITS BH24-2 SS2 QC Batch % 13 9824472	2024/12/06 2024/12/06 N/A N/A N/A UNITS BH24-2 SS2 QC Batch BH24-2 SS5	2024/12/06 2024/12/06 N/A N/A	2024/12/06 2024/12/06 2024/12/06 N/A N/A N/A N/A N/A UNITS BH24-2 SS2 QC Batch BH24-2 SS5 QC Batch BH24-4 SS1	2024/12/06 2024/12/06 2024/12/06 2024/12/09 N/A N/A	2024/12/06 2024/12/06 2024/12/06 2024/12/09 2024/12/09 N/A N/A	2024/12/06 2024/12/06 2024/12/06 2024/12/09 2024/12/09 N/A N/A	2024/12/06 2024/12/06 2024/12/06 2024/12/09 2024/12/09

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Bureau Veritas ID		ALKL32		ALOP83					
Sampling Date		2024/12/06		2024/12/09					
COC Number		N/A		N/A					
	UNITS	BH24-7 SS1	QC Batch	DUP-1	RDL	MDL	QC Batch		
Inorganics									
Moisture	%	18	9824472	25	1.0	0.50	9827992		
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: ALKL24

Collected:

2024/12/09

Sample ID: BH24-1 SS1 Matrix: Soil

Shipped:

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9829810	2024/12/16	2024/12/18	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9830978	2024/12/16	2024/12/17	Prgya Panchal
Conductivity	AT	9831232	2024/12/17	2024/12/17	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9833982	2024/12/18	2024/12/18	Rupinder Sihota
Acid Extractable Metals by ICPMS	ICP/MS	9829591	2024/12/16	2024/12/17	Viviana Canzonieri
Moisture	BAL	9829599	N/A	2024/12/16	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	9835583	2024/12/18	2024/12/19	Akruti Patel
OC Pesticides Summed Parameters	CALC	9819764	N/A	2024/12/17	Automated Statchk
pH CaCl2 EXTRACT	AT	9830653	2024/12/16	2024/12/16	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9822029	N/A	2024/12/17	Automated Statchk

Bureau Veritas ID: ALKL25

Collected: 2024/12/09

Sample ID: BH24-1 SS3 Matrix: Soil

Shipped:

Received: 2024/12/10

_	Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
	pH CaCl2 EXTRACT	AT	9831449	2024/12/17	2024/12/17	Kien Tran

Bureau Veritas ID: ALKL26

Matrix: Soil

Sample ID: BH24-2 SS1

Matrix: Soil

Collected: Shipped:

2024/12/06

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9829810	2024/12/16	2024/12/18	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9830978	2024/12/16	2024/12/17	Prgya Panchal
Conductivity	AT	9831232	2024/12/17	2024/12/17	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9833982	2024/12/18	2024/12/18	Rupinder Sihota
Acid Extractable Metals by ICPMS	ICP/MS	9829591	2024/12/16	2024/12/17	Viviana Canzonieri
Moisture	BAL	9829599	N/A	2024/12/16	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	9835583	2024/12/18	2024/12/19	Akruti Patel
OC Pesticides Summed Parameters	CALC	9819764	N/A	2024/12/17	Automated Statchk
pH CaCl2 EXTRACT	AT	9830653	2024/12/16	2024/12/16	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9822029	N/A	2024/12/17	Automated Statchk

Bureau Veritas ID: ALKL27 Collected: 2024/12/06 Sample ID: BH24-2 SS2

Shipped:

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9821962	N/A	2024/12/17	Automated Statchk
1,3-Dichloropropene Sum	CALC	9822038	N/A	2024/12/17	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9831147	2024/12/17	2024/12/18	(Kent) Maolin Li
Moisture	BAL	9824472	N/A	2024/12/12	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9829881	2024/12/16	2024/12/17	Mitesh Raj

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: ALKL27

Sample ID:

Sample ID: BH24-2 SS2

Matrix: Soil

Collected: 2024/12/06

Shipped:

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9823438	N/A	2024/12/16	Denis Reid

2024/12/06 Bureau Veritas ID: Collected: ALKL27 Dup

BH24-2 SS2 Shipped:

Matrix: Received: 2024/12/10 Soil

Instrumentation **Date Analyzed Test Description** Batch **Extracted Analyst** Volatile Organic Compounds and F1 PHCs GC/MSFD 9823438 2024/12/16 N/A Denis Reid

Bureau Veritas ID: ALKL28 Collected: 2024/12/06

Sample ID: BH24-2 SS5 Shipped:

Matrix: Soil Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9821962	N/A	2024/12/17	Automated Statchk
1,3-Dichloropropene Sum	CALC	9822038	N/A	2024/12/17	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9831147	2024/12/17	2024/12/17	(Kent) Maolin Li
Moisture	BAL	9824472	N/A	2024/12/12	Muhammad Chhaidan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	9829881	2024/12/16	2024/12/17	Mitesh Raj
pH CaCl2 EXTRACT	AT	9831449	2024/12/17	2024/12/17	Kien Tran
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9823438	N/A	2024/12/16	Denis Reid

Bureau Veritas ID: ALKL29 Collected: 2024/12/06

Shipped: Sample ID: BH24-4 SS1 Matrix: Soil Received: 2024/12/10

Test Description Instrumentation **Batch Extracted Date Analyzed** Analyst

Hot Water Extractable Boron	ICP	9829810	2024/12/16	2024/12/18	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9830978	2024/12/16	2024/12/17	Prgya Panchal
Conductivity	AT	9831232	2024/12/17	2024/12/17	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9833982	2024/12/18	2024/12/18	Rupinder Sihota
Acid Extractable Metals by ICPMS	ICP/MS	9829591	2024/12/16	2024/12/17	Viviana Canzonieri
Moisture	BAL	9829599	N/A	2024/12/16	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	9835583	2024/12/18	2024/12/19	Akruti Patel
OC Pesticides Summed Parameters	CALC	9819764	N/A	2024/12/17	Automated Statchk
pH CaCl2 EXTRACT	AT	9830653	2024/12/16	2024/12/16	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9822029	N/A	2024/12/17	Automated Statchk

Collected: Bureau Veritas ID: ALKL29 Dup 2024/12/06 Sample ID: BH24-4 SS1 Shipped: Matrix: Soil

Received: 2024/12/10

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst OC Pesticides (Selected) & PCB GC/ECD 9835583 2024/12/19 Akruti Patel 2024/12/18

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: ALKL30 Sample ID: BH24-5 SS1

Matrix: Soil

Collected: 2024/12/09

Shipped:

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9829810	2024/12/16	2024/12/18	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9830978	2024/12/16	2024/12/17	Prgya Panchal
Conductivity	AT	9831232	2024/12/17	2024/12/17	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9833982	2024/12/18	2024/12/18	Rupinder Sihota
Acid Extractable Metals by ICPMS	ICP/MS	9829591	2024/12/16	2024/12/17	Viviana Canzonieri
Moisture	BAL	9829599	N/A	2024/12/16	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	9835583	2024/12/18	2024/12/19	Akruti Patel
OC Pesticides Summed Parameters	CALC	9819764	N/A	2024/12/17	Automated Statchk
pH CaCl2 EXTRACT	AT	9830653	2024/12/16	2024/12/16	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9822029	N/A	2024/12/17	Automated Statchk

Bureau Veritas ID: ALKL31 Sample ID: BH24-6 SS1

Matrix: Soil

Collected: 2024/12/09

Shipped:

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9829810	2024/12/16	2024/12/18	Aswathy Neduveli Suresh
Free (WAD) Cyanide	TECH	9830978	2024/12/16	2024/12/17	Prgya Panchal
Conductivity	AT	9831232	2024/12/17	2024/12/17	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9833982	2024/12/18	2024/12/18	Rupinder Sihota
Acid Extractable Metals by ICPMS	ICP/MS	9829591	2024/12/16	2024/12/17	Viviana Canzonieri
Moisture	BAL	9829599	N/A	2024/12/16	Joe Thomas
OC Pesticides (Selected) & PCB	GC/ECD	9835583	2024/12/18	2024/12/19	Akruti Patel
OC Pesticides Summed Parameters	CALC	9819764	N/A	2024/12/17	Automated Statchk
pH CaCl2 EXTRACT	AT	9830653	2024/12/16	2024/12/16	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9822029	N/A	2024/12/17	Automated Statchk

Bureau Veritas ID: ALKL32 Sample ID: BH24-7 SS1 Matrix: Soil

Collected: 2024/12/06

Shipped:

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	9824896	N/A	2024/12/13	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9831147	2024/12/17	2024/12/17	(Kent) Maolin Li
Moisture	BAL	9824472	N/A	2024/12/12	Muhammad Chhaidan
Polychlorinated Biphenyl in Soil	GC/ECD	9833770	2024/12/17	2024/12/18	Farag Mansour

Bureau Veritas ID: ALOP83 Sample ID: DUP-1

Collected: 2024/12/09 Shipped:

Matrix: Soil

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9831358	2024/12/17	2024/12/18	Medhat Nasr
Free (WAD) Cyanide	TECH	9831153	2024/12/17	2024/12/17	Prgya Panchal

Matrix: Soil

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: ALOP83 **Collected:** 2024/12/09 Sample ID: DUP-1

Shipped:

Received: 2024/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	9831578	2024/12/17	2024/12/17	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	9831194	2024/12/17	2024/12/17	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	9831637	2024/12/17	2024/12/17	Daniel Teclu
Moisture	BAL	9827992	N/A	2024/12/14	Muhammad Chhaidan
OC Pesticides (Selected) & PCB	GC/ECD	9835583	2024/12/18	2024/12/19	Akruti Patel
OC Pesticides Summed Parameters	CALC	9823520	N/A	2024/12/16	Automated Statchk
pH CaCl2 EXTRACT	AT	9831449	2024/12/17	2024/12/17	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9824366	N/A	2024/12/18	Automated Statchk

eau Veritas Job #: C4BD399 DS Consultants Limited ort Date: 2024/12/23 Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 4.0°C

Sample ALKL32 [BH24-7 SS1]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

Bureau Veritas Job #: C4BD39 Report Date: 2024/12/23

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

			Matrix Spike % Recovery OC Limits %		SPIKED	BLANK	Method I	Blank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
9823438	4-Bromofluorobenzene	2024/12/16	89	60 - 140	89	60 - 140	88	%			
9823438	D10-o-Xylene	2024/12/16	109	60 - 130	102	60 - 130	94	%			
9823438	D4-1,2-Dichloroethane	2024/12/16	117	60 - 140	119	60 - 140	117	%			
9823438	D8-Toluene	2024/12/16	106	60 - 140	104	60 - 140	96	%			
9824896	1,4-Difluorobenzene	2024/12/13	104	60 - 140	101	60 - 140	102	%			
9824896	4-Bromofluorobenzene	2024/12/13	99	60 - 140	102	60 - 140	101	%			
9824896	D10-o-Xylene	2024/12/13	103	60 - 140	91	60 - 140	91	%			
9824896	D4-1,2-Dichloroethane	2024/12/13	91	60 - 140	92	60 - 140	97	%			
9829881	D10-Anthracene	2024/12/16	106	50 - 130	112	50 - 130	115	%			
9829881	D14-Terphenyl (FS)	2024/12/16	82	50 - 130	96	50 - 130	95	%			
9829881	D8-Acenaphthylene	2024/12/16	94	50 - 130	97	50 - 130	93	%			
9831147	o-Terphenyl	2024/12/17	100	60 - 140	103	60 - 140	105	%			
9833770	Decachlorobiphenyl	2024/12/18	63	60 - 130	110	60 - 130	96	%			
9835583	2,4,5,6-Tetrachloro-m-xylene	2024/12/19	90	50 - 130	86	50 - 130	89	%			
9835583	Decachlorobiphenyl	2024/12/19	68	50 - 130	68	50 - 130	66	%			
9823438	1,1,1,2-Tetrachloroethane	2024/12/16	106	60 - 140	101	60 - 130	<0.040	ug/g	NC	50	
9823438	1,1,1-Trichloroethane	2024/12/16	100	60 - 140	97	60 - 130	<0.040	ug/g	NC	50	
9823438	1,1,2,2-Tetrachloroethane	2024/12/16	95	60 - 140	97	60 - 130	<0.040	ug/g	NC	50	
9823438	1,1,2-Trichloroethane	2024/12/16	114	60 - 140	111	60 - 130	<0.040	ug/g	NC	50	
9823438	1,1-Dichloroethane	2024/12/16	95	60 - 140	92	60 - 130	<0.040	ug/g	NC	50	
9823438	1,1-Dichloroethylene	2024/12/16	99	60 - 140	94	60 - 130	<0.040	ug/g	NC	50	
9823438	1,2-Dichlorobenzene	2024/12/16	102	60 - 140	100	60 - 130	<0.040	ug/g	NC	50	
9823438	1,2-Dichloroethane	2024/12/16	116	60 - 140	116	60 - 130	< 0.049	ug/g	NC	50	
9823438	1,2-Dichloropropane	2024/12/16	98	60 - 140	93	60 - 130	<0.040	ug/g	NC	50	
9823438	1,3-Dichlorobenzene	2024/12/16	104	60 - 140	100	60 - 130	<0.040	ug/g	NC	50	
9823438	1,4-Dichlorobenzene	2024/12/16	104	60 - 140	100	60 - 130	<0.040	ug/g	NC	50	
9823438	Acetone (2-Propanone)	2024/12/16	109	60 - 140	117	60 - 140	<0.49	ug/g	NC	50	
9823438	Benzene	2024/12/16	96	60 - 140	93	60 - 130	<0.0060	ug/g	NC	50	
9823438	Bromodichloromethane	2024/12/16	103	60 - 140	101	60 - 130	<0.040	ug/g	NC	50	
9823438	Bromoform	2024/12/16	91	60 - 140	92	60 - 130	<0.040	ug/g	NC	50	
9823438	Bromomethane	2024/12/16	88	60 - 140	81	60 - 140	<0.040	ug/g	NC	50	

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	<u> </u>
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9823438	Carbon Tetrachloride	2024/12/16	107	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
9823438	Chlorobenzene	2024/12/16	92	60 - 140	88	60 - 130	<0.040	ug/g	NC	50
9823438	Chloroform	2024/12/16	102	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
9823438	cis-1,2-Dichloroethylene	2024/12/16	101	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
9823438	cis-1,3-Dichloropropene	2024/12/16	97	60 - 140	92	60 - 130	<0.030	ug/g	NC	50
9823438	Dibromochloromethane	2024/12/16	105	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
9823438	Dichlorodifluoromethane (FREON 12)	2024/12/16	74	60 - 140	70	60 - 140	<0.040	ug/g	NC	50
9823438	Ethylbenzene	2024/12/16	100	60 - 140	94	60 - 130	<0.010	ug/g	NC	50
9823438	Ethylene Dibromide	2024/12/16	104	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9823438	F1 (C6-C10) - BTEX	2024/12/16					<10	ug/g	NC	30
9823438	F1 (C6-C10)	2024/12/16	86	60 - 140	95	80 - 120	<10	ug/g	NC	30
9823438	Hexane	2024/12/16	107	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
9823438	Methyl Ethyl Ketone (2-Butanone)	2024/12/16	101	60 - 140	112	60 - 140	<0.40	ug/g	NC	50
9823438	Methyl Isobutyl Ketone	2024/12/16	113	60 - 140	123	60 - 130	<0.40	ug/g	NC	50
9823438	Methyl t-butyl ether (MTBE)	2024/12/16	99	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
9823438	Methylene Chloride(Dichloromethane)	2024/12/16	104	60 - 140	102	60 - 130	<0.049	ug/g	NC	50
9823438	o-Xylene	2024/12/16	111	60 - 140	105	60 - 130	<0.020	ug/g	NC	50
9823438	p+m-Xylene	2024/12/16	102	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
9823438	Styrene	2024/12/16	102	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
9823438	Tetrachloroethylene	2024/12/16	88	60 - 140	82	60 - 130	<0.040	ug/g	NC	50
9823438	Toluene	2024/12/16	103	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
9823438	Total Xylenes	2024/12/16					<0.020	ug/g	NC	50
9823438	trans-1,2-Dichloroethylene	2024/12/16	100	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
9823438	trans-1,3-Dichloropropene	2024/12/16	120	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
9823438	Trichloroethylene	2024/12/16	95	60 - 140	91	60 - 130	<0.010	ug/g	NC	50
9823438	Trichlorofluoromethane (FREON 11)	2024/12/16	95	60 - 140	89	60 - 130	<0.040	ug/g	NC	50
9823438	Vinyl Chloride	2024/12/16	72	60 - 140	71	60 - 130	<0.019	ug/g	NC	50
9824472	Moisture	2024/12/12							1.6	20
9824896	Benzene	2024/12/13	91	50 - 140	76	50 - 140	<0.020	ug/g	NC	50
9824896	Ethylbenzene	2024/12/13	100	50 - 140	84	50 - 140	<0.020	ug/g	NC	50
9824896	F1 (C6-C10) - BTEX	2024/12/13					<10	ug/g	NC	30

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

			Matrix	Spike	SPIKED BLANK		Method I	Blank	RPI	<u>D</u>
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9824896	F1 (C6-C10)	2024/12/13	95	60 - 140	82	80 - 120	<10	ug/g	NC	30
9824896	o-Xylene	2024/12/13	95	50 - 140	80	50 - 140	<0.020	ug/g	NC	50
9824896	p+m-Xylene	2024/12/13	94	50 - 140	79	50 - 140	<0.040	ug/g	NC	50
9824896	Toluene	2024/12/13	88	50 - 140	73	50 - 140	<0.020	ug/g	NC	50
9824896	Total Xylenes	2024/12/13					<0.040	ug/g	NC	50
9827992	Moisture	2024/12/14							8.2	20
9829591	Acid Extractable Antimony (Sb)	2024/12/17	79	75 - 125	104	80 - 120	<0.20	ug/g	7.9	30
9829591	Acid Extractable Arsenic (As)	2024/12/17	93	75 - 125	102	80 - 120	<1.0	ug/g	3.6	30
9829591	Acid Extractable Barium (Ba)	2024/12/17	NC	75 - 125	98	80 - 120	<0.50	ug/g	2.6	30
9829591	Acid Extractable Beryllium (Be)	2024/12/17	91	75 - 125	100	80 - 120	<0.20	ug/g	4.1	30
9829591	Acid Extractable Boron (B)	2024/12/17	78	75 - 125	97	80 - 120	<5.0	ug/g	6.3	30
9829591	Acid Extractable Cadmium (Cd)	2024/12/17	93	75 - 125	99	80 - 120	<0.10	ug/g	NC	30
9829591	Acid Extractable Chromium (Cr)	2024/12/17	NC	75 - 125	98	80 - 120	<1.0	ug/g	3.2	30
9829591	Acid Extractable Cobalt (Co)	2024/12/17	87	75 - 125	99	80 - 120	<0.10	ug/g	2.6	30
9829591	Acid Extractable Copper (Cu)	2024/12/17	83	75 - 125	94	80 - 120	<0.50	ug/g	3.2	30
9829591	Acid Extractable Lead (Pb)	2024/12/17	85	75 - 125	94	80 - 120	<1.0	ug/g	0.54	30
9829591	Acid Extractable Mercury (Hg)	2024/12/17	91	75 - 125	97	80 - 120	<0.050	ug/g	NC	30
9829591	Acid Extractable Molybdenum (Mo)	2024/12/17	87	75 - 125	95	80 - 120	<0.50	ug/g	3.0	30
9829591	Acid Extractable Nickel (Ni)	2024/12/17	NC	75 - 125	96	80 - 120	<0.50	ug/g	3.3	30
9829591	Acid Extractable Selenium (Se)	2024/12/17	92	75 - 125	100	80 - 120	<0.50	ug/g	NC	30
9829591	Acid Extractable Silver (Ag)	2024/12/17	93	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
9829591	Acid Extractable Thallium (TI)	2024/12/17	88	75 - 125	96	80 - 120	<0.050	ug/g	1.1	30
9829591	Acid Extractable Uranium (U)	2024/12/17	90	75 - 125	96	80 - 120	<0.050	ug/g	0.34	30
9829591	Acid Extractable Vanadium (V)	2024/12/17	NC	75 - 125	98	80 - 120	<5.0	ug/g	3.2	30
9829591	Acid Extractable Zinc (Zn)	2024/12/17	NC	75 - 125	102	80 - 120	<5.0	ug/g	2.0	30
9829599	Moisture	2024/12/16							0.58	20
9829810	Hot Water Ext. Boron (B)	2024/12/18	104	75 - 125	97	75 - 125	<0.050	ug/g	7.4	40
9829881	1-Methylnaphthalene	2024/12/16	93	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
9829881	2-Methylnaphthalene	2024/12/16	92	50 - 130	90	50 - 130	<0.0050	ug/g	107 (1)	40
9829881	Acenaphthene	2024/12/16	95	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
9829881	Acenaphthylene	2024/12/16	97	50 - 130	96	50 - 130	<0.0050	ug/g	NC	40

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

			Matrix Spike		SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9829881	Anthracene	2024/12/16	102	50 - 130	107	50 - 130	<0.0050	ug/g	NC	40
9829881	Benzo(a)anthracene	2024/12/16	106	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
9829881	Benzo(a)pyrene	2024/12/16	98	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
9829881	Benzo(b/j)fluoranthene	2024/12/16	91	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
9829881	Benzo(g,h,i)perylene	2024/12/16	99	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
9829881	Benzo(k)fluoranthene	2024/12/16	97	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
9829881	Chrysene	2024/12/16	104	50 - 130	102	50 - 130	<0.0050	ug/g	13	40
9829881	Dibenzo(a,h)anthracene	2024/12/16	100	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
9829881	Fluoranthene	2024/12/16	95	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
9829881	Fluorene	2024/12/16	97	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
9829881	Indeno(1,2,3-cd)pyrene	2024/12/16	98	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
9829881	Naphthalene	2024/12/16	89	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
9829881	Phenanthrene	2024/12/16	95	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40
9829881	Pyrene	2024/12/16	101	50 - 130	110	50 - 130	<0.0050	ug/g	NC	40
9830653	Available (CaCl2) pH	2024/12/16			99	97 - 103			0.57	N/A
9830978	WAD Cyanide (Free)	2024/12/17	95	75 - 125	102	80 - 120	<0.01	ug/g	NC	35
9831147	F2 (C10-C16 Hydrocarbons)	2024/12/17	98	60 - 140	101	80 - 120	<7.0	ug/g	NC	30
9831147	F3 (C16-C34 Hydrocarbons)	2024/12/17	100	60 - 140	103	80 - 120	<50	ug/g	NC	30
9831147	F4 (C34-C50 Hydrocarbons)	2024/12/17	98	60 - 140	100	80 - 120	<50	ug/g	NC	30
9831153	WAD Cyanide (Free)	2024/12/17	105	75 - 125	98	80 - 120	<0.01	ug/g	NC	35
9831194	Chromium (VI)	2024/12/17	87	70 - 130	93	80 - 120	<0.18	ug/g	NC	35
9831232	Conductivity	2024/12/17			104	90 - 110	< 0.002	mS/cm	1.9	10
9831358	Hot Water Ext. Boron (B)	2024/12/18	103	75 - 125	105	75 - 125	<0.050	ug/g	NC	40
9831449	Available (CaCl2) pH	2024/12/17			101	97 - 103			0.93	N/A
9831578	Conductivity	2024/12/17			103	90 - 110	<0.002	mS/cm	3.0	10
9831637	Acid Extractable Antimony (Sb)	2024/12/17	125	75 - 125	119	80 - 120	<0.20	ug/g		
9831637	Acid Extractable Arsenic (As)	2024/12/17	108	75 - 125	103	80 - 120	<1.0	ug/g	NC	30
9831637	Acid Extractable Barium (Ba)	2024/12/17	98	75 - 125	97	80 - 120	<0.50	ug/g		
9831637	Acid Extractable Beryllium (Be)	2024/12/17	101	75 - 125	98	80 - 120	<0.20	ug/g		
9831637	Acid Extractable Boron (B)	2024/12/17	95	75 - 125	93	80 - 120	<5.0	ug/g		
9831637	Acid Extractable Cadmium (Cd)	2024/12/17	106	75 - 125	101	80 - 120	<0.10	ug/g		

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

			Matrix	Spike	SPIKED BLANK		Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9831637	Acid Extractable Chromium (Cr)	2024/12/17	109	75 - 125	104	80 - 120	<1.0	ug/g		
9831637	Acid Extractable Cobalt (Co)	2024/12/17	108	75 - 125	104	80 - 120	<0.10	ug/g		
9831637	Acid Extractable Copper (Cu)	2024/12/17	103	75 - 125	100	80 - 120	<0.50	ug/g		
9831637	Acid Extractable Lead (Pb)	2024/12/17	107	75 - 125	106	80 - 120	<1.0	ug/g		
9831637	Acid Extractable Mercury (Hg)	2024/12/17	109	75 - 125	110	80 - 120	<0.050	ug/g		
9831637	Acid Extractable Molybdenum (Mo)	2024/12/17	107	75 - 125	101	80 - 120	<0.50	ug/g		
9831637	Acid Extractable Nickel (Ni)	2024/12/17	109	75 - 125	105	80 - 120	<0.50	ug/g		
9831637	Acid Extractable Selenium (Se)	2024/12/17	106	75 - 125	104	80 - 120	<0.50	ug/g		
9831637	Acid Extractable Silver (Ag)	2024/12/17	106	75 - 125	101	80 - 120	<0.20	ug/g		
9831637	Acid Extractable Thallium (TI)	2024/12/17	108	75 - 125	106	80 - 120	<0.050	ug/g		
9831637	Acid Extractable Uranium (U)	2024/12/17	116	75 - 125	112	80 - 120	<0.050	ug/g	0.22	30
9831637	Acid Extractable Vanadium (V)	2024/12/17	115	75 - 125	105	80 - 120	<5.0	ug/g		
9831637	Acid Extractable Zinc (Zn)	2024/12/17	114	75 - 125	115	80 - 120	<5.0	ug/g		
9833770	Aroclor 1242	2024/12/18					<0.010	ug/g	NC	50
9833770	Aroclor 1248	2024/12/18					<0.010	ug/g	NC	50
9833770	Aroclor 1254	2024/12/18					<0.010	ug/g	NC	50
9833770	Aroclor 1260	2024/12/18	60	30 - 130	119	30 - 130	<0.010	ug/g	NC	50
9833770	Total PCB	2024/12/18	60	30 - 130	119	30 - 130	<0.010	ug/g	NC	50
9833982	Chromium (VI)	2024/12/18	76	70 - 130	88	80 - 120	<0.18	ug/g	NC	35
9835583	a-Chlordane	2024/12/19	87	50 - 130	87	50 - 130	<0.0020	ug/g	NC	40
9835583	Aldrin	2024/12/19	78	50 - 130	86	50 - 130	<0.0020	ug/g	NC	40
9835583	Aroclor 1242	2024/12/19					<0.015	ug/g	NC	40
9835583	Aroclor 1248	2024/12/19					<0.015	ug/g	NC	40
9835583	Aroclor 1254	2024/12/19					<0.015	ug/g	NC	40
9835583	Aroclor 1260	2024/12/19					<0.015	ug/g	NC	40
9835583	Dieldrin	2024/12/19	73	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
9835583	Endosulfan I (alpha)	2024/12/19	77	50 - 130	91	50 - 130	<0.0020	ug/g	NC	40
9835583	Endosulfan II (beta)	2024/12/19	75	50 - 130	77	50 - 130	<0.0020	ug/g	NC	40
9835583	Endrin	2024/12/19	80	50 - 130	92	50 - 130	<0.0020	ug/g	NC	40
9835583	g-Chlordane	2024/12/19	86	50 - 130	86	50 - 130	<0.0020	ug/g	NC	40
9835583	Heptachlor epoxide	2024/12/19	71	50 - 130	81	50 - 130	<0.0020	ug/g	NC	40

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9835583	Heptachlor	2024/12/19	78	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
9835583	Hexachlorobenzene	2024/12/19	72	50 - 130	82	50 - 130	<0.0020	ug/g	NC	40
9835583	Hexachlorobutadiene	2024/12/19	56	50 - 130	88	50 - 130	<0.0020	ug/g	NC	40
9835583	Hexachloroethane	2024/12/19	44 (2)	50 - 130	71	50 - 130	<0.0020	ug/g	NC	40
9835583	Lindane	2024/12/19	77	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
9835583	Methoxychlor	2024/12/19	90	50 - 130	85	50 - 130	<0.0050	ug/g	NC	40
9835583	o,p-DDD	2024/12/19	95	50 - 130	99	50 - 130	<0.0020	ug/g	NC	40
9835583	o,p-DDE	2024/12/19	92	50 - 130	92	50 - 130	<0.0020	ug/g	NC	40
9835583	o,p-DDT	2024/12/19	103	50 - 130	98	50 - 130	<0.0020	ug/g	NC	40
9835583	p,p-DDD	2024/12/19	105	50 - 130	107	50 - 130	<0.0020	ug/g	NC	40
9835583	p,p-DDE	2024/12/19	89	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
9835583	p,p-DDT	2024/12/19	109	50 - 130	92	50 - 130	<0.0020	ug/g	NC	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (2) Matrix spike exceeds acceptance limits, sample inhomogeneity suspected.

au Veritas Job #: C4BD399 DS Consultants Limited rt Date: 2024/12/23 Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD, CALEDON

Sampler Initials: AS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuistin	Canine	
Cristina Carrie	re, Senior Scientific Specialist	

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C4BD399 2024/12/10 18:38

www.BVNA.com

6740 Campobello Road, Mississauga, Ontario L5N 2L8
Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

age of

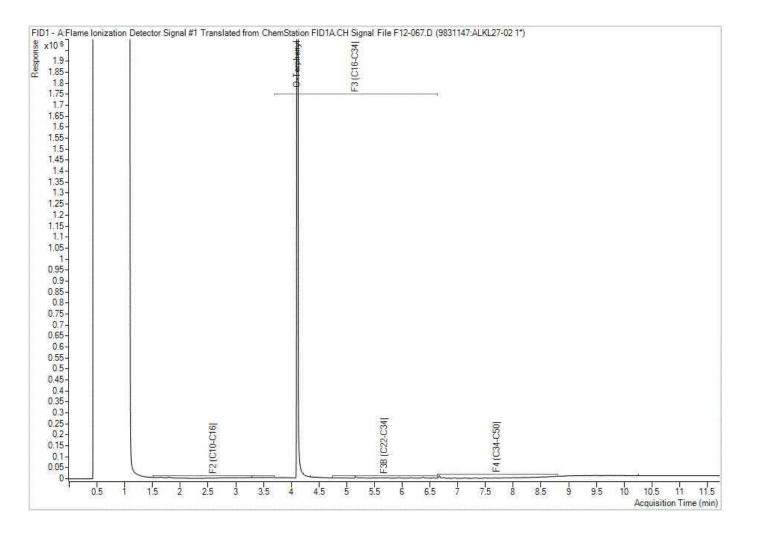
Invoice Information Invoice to (requires report) Report Information (if differs from invoice) Project Information Sw DS Consultants Ltd. Company DS Consultants Ltd. Quotation #: Company Contact Contact Accounts Payable Megan Bender P.O. #/ AFE#: Name: Name: Street Street 6221 Hwy Unit 16 125 McGovern Drive Unit 3-4 Project #: 24-371-600 Address NONT-2024-12-2099 Postal Vaughan Prov: ON L4H OK8 City: Cambridge N3H4R7 Site #: City: 905-264-9393 519-588-9513 12192 Chinguacousy Road, Caledon hone Phone: Site Location: Site Location Email: mbender@dsconsultants.ca Email: Accounts Payable ON Province: asharif@dsconsultants.ca asharif@dsconsultants.ca Copies: Copies: Sampled By: Aisha Sharif 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 **Regulatory Criteria** Regular Turnaround Time (TAT) Table 1 Res/Park Med/Fine CCME Reg 406, Table: ☑ 5 to 7 Day ☐ 10 Day Reg 558* ☐ Ind/Comm ☐ Coarse ☐ Sanitary Sewer Bylaw Table 2 Table 3 Agri/other ☐ For RSC *min 3 day TAT

Storm Sewer Bylaw Rush Turnaround Time (TAT) Table MISA Municipality ☐ Other: Surcharges apply PWQO CONTAINERS SUBMITTED Include Criteria on Certificate of Analysis (check if yes): ☐ Same Day ☐ 1 Day ANALYZE SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS 2 Day ☐ 3 Day NOT 4 Day Date Sampled (24hr) 00 YYYY MM DD Sample Identification Date Matrix (Please print or Type) Required: 2 - F4 YYYY MM DD нн MM PAH # 0F Comments BH24-1 SS1 2024 12 3 09 Soil BH24-1 SS3 24 12 09 Soil 1 BH24-2 SS1 24 12 06 Soil 3 BH24-2 SS2 24 12 06 Soil X X 4 BH24-2 SS5 24 12 06 Soil X X 5 BH24-4 SS1 24 12 06 Soil 3 BH24-5 SS1 24 12 09 Soil 3 BH24-6 SS1 24 12 09 Soil 3 BH24-7 SS1 24 12 06 Soil 4 X X 10 11 12 *UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BVNA.COM/TERMS-AND-CONDITIONS OR BY CALLING THE LABORATORY LISTED ABOVE TO OBTAIN A COPY Temperature LAB USE ONLY LAB USE ONLY Yes LAB USE ONLY Yes reading by: 2 Seal present °C Seal present °C Seal present °C Seal intact eal intact Seal intact Cooling media present Cooling media present Cooling media present Relinquished by: (Signature/ Print) Received by: (Signature/ Print) Special instructions YYYY MM DD MM YYYY MM MM SULAR SAWAR 18 2024 20 2024 12 2 10 10 06 (1) THE PERSON

www.BVNA.com

6740 Campobello Road, Mississauga, Ontario LSN 218 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

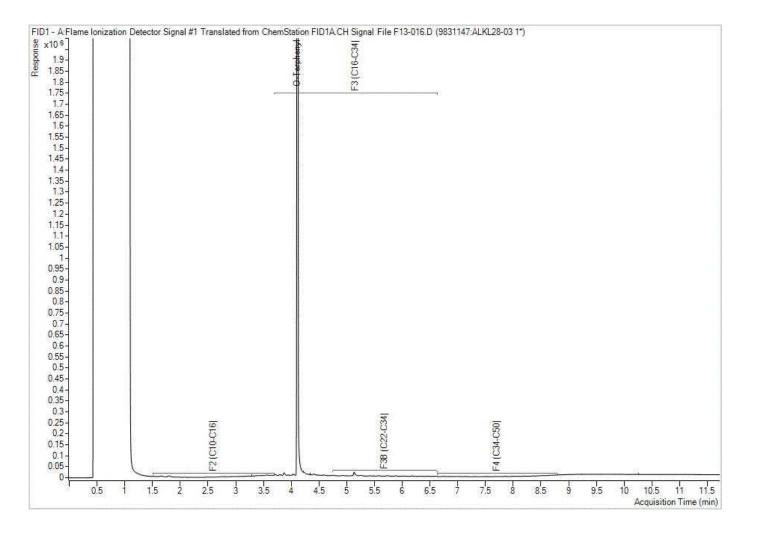

Invoice Infor	rmation Invoice to (requires report)	r —	F	teport in	nformat	tion (if d	iffers from invo	oice)	_	_	Т	_	_			Pr	oject I	nform	ation													
Company:	DS Consultants Ltd.	Company:			_		sultants Ltd				c	Quotai	tion #																			
Contact	Accounts Payable	Contact					an Bender				-	***	/ AFE#	-			_							_				LAB U	JSE ONLY -	PLACE S	TICKER HE	RE
Name: Street	6221 Hwy 7, Unit 16	Name: Street			622	S0002.84	ıway 7. Uni	_			\rightarrow	rojec	_	+	_			24-	371	-600)											
Address	1 1 15 15 15	Address:		augha	_	Pr		Posta	-	ALL	OK85		21010	+				TESAS	30.0					-								
City:	Vaughan, Prov. ON Code: L4H 0K8	Phone:	, v	augna	0	Pr	ov: OIV	Code		-411	-		ocation		-	1219	12 Ch	ingu	acoi	ISV R	d C	aledo	on						Rush Cor	nfirmatio	on #: -	
Phone:		Email:	_		mha	ndor@	dsconsulta	nte en		_	5	ite Lo	ocation			44.4.	2 0		nta		,	2007-022	7535		\vdash							
Email:	accounting@dsconsultants.ca	Coples:			2002/100		Isconsultan	A 65055	_	_	-	rovin	ice: led By:	+					Aish				_									
Copies:	Regulatory Crite	955 A TOO 10			dolle	aringo	isconsultan	1	2	3	_	5		-	8	9 1	11		01/2012	14	15	16	17	18	19	20	21	22	Re	gular Tu	maround	Time (TAT)
Tab Tab		CCME Reg 558 *min 3 day MISA PWQO	* [TAT [Storn	ary Sev n Sewe Municij	ver Bylav r Bylaw	w			03				ganics		HW5 - B)	5										иттер	3	5 to	ush Tur Sur	naround T charges ap	
	SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMP	LING UNTIL I	DELIVERY	у то ви				0	/ED	N REQUIR				s and inor	S metals	MS metals											VERS SUBN	OT ANALYZE	☐ 2 Da		D	3 Day
Sample Id	dentification (Ple		te Samp	DD	Tir (24 HH		Matrix	HELD FILTERED	FIELD PRESERVED	LAB FILTRATION REQUIRED	BTEX/ FJ	F2 - F4	1003	Reg 153 metals and inorganics	Reg 153 ICPMS metals Reg 153 metals	Cr VI, ICP		P Metals	Ps								# OF CONTAINERS SUBMITTED	HOLD - DO NOT A	Date Required:		YYYY	MM DD
1	DUP-1	24	12	09	AM		Soil	HE	35	LAR	BILE	F2	8		20 20	HR. C	Ha	SPLP	X OCPs		-	-					3	H	Please		COC C4	
						+					\dashv	\forall	_	x		+	$^{+}$			+	t			t								
2		-			H	+				/	-	+	\dashv	-	+	+	+	+	+	+	+	+	\vdash	\vdash	\vdash					_		
3			_	-		\vdash					-	-	-	\dashv	-	-	+	+	-	+	+	-	+	├	-				-	5		
4								100	-					J			1				1	1_	L	_					_			
5										1								to ren									Ē.					
6										0					0 - D			18	:38	3												
7													_t	on	Gil	oso	1															
8		+	1	1	\vdash	\vdash									1111				į.									E				
		+-	-	+-	\vdash	+					\vdash	-	احــا	41	3D	399	,						18			-						
9			_	-	⊢	\vdash							L.,		E	VV.	76	0								÷		-	-			
10			8												ΙĨ		1	1	1	+	1	1	1	1	1				_		-	
11																												4	1			
12																											2	1	1			
*UNLESS O	OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON TH	IS CHAIN OF	CUSTOD	Y IS SUB	UECT TO	BUREA	U VERITAS STA	NDARD	TERM	IS ANI	CON	DITIO	NS. S	GNIN	G OF T	HIS CH	AIN O	CUST	ODY	DOCU	MENT	IS AC	KNOV	VLEDG	MENT	AND	ACCE	PTAN	ICE OF OUR	TERMS	AND CON	OITIONS WHICH A
Seal preser Seal intact		- 8' -J	Seal p	LAB US	E ONLY		Yes	No No		ondii c	1	JR BY	2	NG I	3	S	eal pre	LA	B US	E ONL		AQUI		Yes		No	7	•c	1	2	3	Temperature reading by:
		Date MM	DD	нн	Time N	ИM		Reco	eived l	by: (S	ignatu	ire/ Pi	rint)			E	Y	YY	T	Date M	М	T	DD		НН	_	M	+		Specia	i instructi	ons
1	Luisa 202	12	12	16	5	0	/		_	1	n	7	2		_	+	Ć	ماد	-	11	1		IL		16	j	7	3			ų.	0
2			Ç/II			1 2	Ł	_	- 1	-	-	-					-	-		_		-1-	_	_		-	_			_		e

Bureau Veritas Job #: C4BD399 Report Date: 2024/12/23 Bureau Veritas Sample: ALKL27 DS Consultants Limited Client Project #: 24-371-600

Project name: 12192 CHINGUACOUSY ROAD, CALEDON

Client ID: BH24-2 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

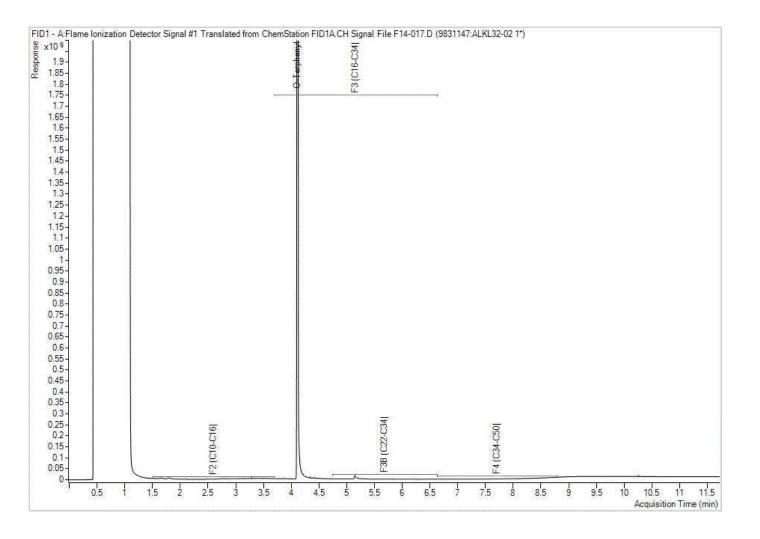

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C4BD399 Report Date: 2024/12/23 Bureau Veritas Sample: ALKL28 DS Consultants Limited Client Project #: 24-371-600

Project name: 12192 CHINGUACOUSY ROAD, CALEDON

Client ID: BH24-2 SS5

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Bureau Veritas Job #: C4BD399 Report Date: 2024/12/23 Bureau Veritas Sample: ALKL32 DS Consultants Limited Client Project #: 24-371-600

Project name: 12192 CHINGUACOUSY ROAD, CALEDON

Client ID: BH24-7 SS1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Your C.O.C. #: N/A

Attention: Megan Bender
DS Consultants Limited
6221 Highway 7, Unit 16
Vaughan, ON

L4H 0K8

Report Date: 2024/12/30

Report #: R8463892 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BM121 Received: 2024/12/18, 15:22

CANADA

Sample Matrix: Water # Samples Received: 2

		Date	Date			
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method	
Methylnaphthalene Sum	1	N/A	2024/12/22	CAM SOP-00301	EPA 8270D m	
1,3-Dichloropropene Sum	2	N/A	2024/12/27		EPA 8260C m	
Chloride by Automated Colourimetry	1	N/A	2024/12/27	CAM SOP-00463	SM 24 4500-Cl E m	
Chromium (VI) in Water	1	N/A	2024/12/23	CAM SOP-00436	EPA 7199 m	
Free (WAD) Cyanide	1	N/A	2024/12/24	CAM SOP-00457	OMOE E3015 m	
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2024/12/21	2024/12/22	CAM SOP-00316	CCME PHC-CWS m	
Mercury	1	2024/12/23	2024/12/27	CAM SOP-00453	EPA 7470A m	
Lab Filtered Metals by ICPMS	1	2024/12/23	2024/12/24	CAM SOP-00447	EPA 6020B m	
PAH Compounds in Water by GC/MS (SIM)	1	2024/12/21	2024/12/21	CAM SOP-00318	EPA 8270E	
Volatile Organic Compounds and F1 PHCs	2	N/A	2024/12/24	CAM SOP-00230	EPA 8260C m	

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Your C.O.C. #: N/A

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2024/12/30

Report #: R8463892 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BM121

Received: 2024/12/18, 15:22

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: ashton.gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID			AMDI20					
Sampling Date			2024/12/18					
COC Number			N/A					
	UNITS	Criteria	TRIP BLANK	RDL	MDL	QC Batch		
Volatile Organics								
Acetone (2-Propanone)	ug/L	2700	<10	10	1.0	9843263		
Benzene	ug/L	5.0	<0.17	0.17	0.020	9843263		
Bromodichloromethane	ug/L	16.0	<0.50	0.50	0.050	9843263		
Bromoform	ug/L	25.0	<1.0	1.0	0.10	9843263		
Bromomethane	ug/L	0.89	<0.50	0.50	0.10	9843263		
Carbon Tetrachloride	ug/L	5.0	<0.20	0.20	0.050	9843263		
Chlorobenzene	ug/L	30	<0.20	0.20	0.010	9843263		
Chloroform	ug/L	22	<0.20	0.20	0.050	9843263		
Dibromochloromethane	ug/L	25.0	<0.50	0.50	0.050	9843263		
1,2-Dichlorobenzene	ug/L	3.0	<0.50	0.50	0.050	9843263		
1,3-Dichlorobenzene	ug/L	59	<0.50	0.50	0.050	9843263		
1,4-Dichlorobenzene	ug/L	1.0	<0.50	0.50	0.050	9843263		
Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	1.0	0.050	9843263		
1,1-Dichloroethane	ug/L	5	<0.20	0.20	0.050	9843263		
1,2-Dichloroethane	ug/L	5	<0.50	0.50	0.020	9843263		
1,1-Dichloroethylene	ug/L	14	<0.20	0.20	0.050	9843263		
cis-1,2-Dichloroethylene	ug/L	17	<0.50	0.50	0.050	9843263		
trans-1,2-Dichloroethylene	ug/L	17	<0.50	0.50	0.050	9843263		
1,2-Dichloropropane	ug/L	5.0	<0.20	0.20	0.050	9843263		
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	0.30	0.050	9843263		
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	0.40	0.050	9843263		
Ethylbenzene	ug/L	2.4	<0.20	0.20	0.010	9843263		
Ethylene Dibromide	ug/L	0.2	<0.20	0.20	0.050	9843263		
Hexane	ug/L	520	<1.0	1.0	0.10	9843263		
Methylene Chloride(Dichloromethane)	ug/L	50	<2.0	2.0	0.10	9843263		
Methyl Ethyl Ketone (2-Butanone)	ug/L	1800	<10	10	0.50	9843263		
Methyl Isobutyl Ketone	ug/L	640	<5.0	5.0	0.10	9843263		
N. Fill. No Freedom								

No Fill No Exceedance
Grey Exceeds 1 criter

Exceeds 1 criteria policy/level
Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Black

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID			AMDI20			
Sampling Date			2024/12/18			
COC Number			N/A			
	UNITS	Criteria	TRIP BLANK	RDL	MDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	0.50	0.050	9843263
Styrene	ug/L	5.4	<0.50	0.50	0.050	9843263
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	0.50	0.050	9843263
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	0.50	0.050	9843263
Tetrachloroethylene	ug/L	17	<0.20	0.20	0.050	9843263
Toluene	ug/L	24	<0.20	0.20	0.010	9843263
1,1,1-Trichloroethane	ug/L	200	<0.20	0.20	0.050	9843263
1,1,2-Trichloroethane	ug/L	5	<0.50	0.50	0.050	9843263
Trichloroethylene	ug/L	5	<0.20	0.20	0.050	9843263
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	0.50	0.10	9843263
Vinyl Chloride	ug/L	1.7	<0.20	0.20	0.050	9843263
p+m-Xylene	ug/L	-	<0.20	0.20	0.010	9843263
o-Xylene	ug/L	-	<0.20	0.20	0.010	9843263
Total Xylenes	ug/L	300	<0.20	0.20	0.010	9843263
F1 (C6-C10)	ug/L	750	<25	25	20	9843263
F1 (C6-C10) - BTEX	ug/L	750	<25	25	20	9843263
Surrogate Recovery (%)	•					
4-Bromofluorobenzene	%	-	98			9843263
D4-1,2-Dichloroethane	%	-	102			9843263
D8-Toluene	%	-	98			9843263

No Fill No Exceed

Grey Exceed

Black Exceed

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

O.REG 153 INORGANICS PKG (LAB FILTERED)

Bureau Veritas ID			AMDI19				AMDI19			
Sampling Date			2024/12/18				2024/12/18			
COC Number			N/A				N/A			
	UNITS	Criteria	BH24-2	RDL	MDL	QC Batch	BH24-2 Lab-Dup	RDL	MDL	QC Batch
Inorganics										
WAD Cyanide (Free)	ug/L	66	<1	1	0.2	9845500				
Dissolved Chloride (Cl-)	mg/L	790	11	1.0	0.66	9842715				
Metals										
Chromium (VI)	ug/L	25	<0.50	0.50	0.30	9843227	<0.50	0.50	0.30	9843227
Mercury (Hg)	ug/L	1	<0.10	0.10	0.020	9843704				
Dissolved Antimony (Sb)	ug/L	6.0	0.77	0.50	N/A	9844553				
Dissolved Arsenic (As)	ug/L	25	<1.0	1.0	N/A	9844553				
Dissolved Barium (Ba)	ug/L	1000	24	2.0	2.0	9844553				
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	0.40	9844553				
Dissolved Boron (B)	ug/L	5000	350	10	N/A	9844553				
Dissolved Cadmium (Cd)	ug/L	2.7	0.13	0.090	0.081	9844553				
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	N/A	9844553				
Dissolved Cobalt (Co)	ug/L	3.8	16	0.50	N/A	9844553				
Dissolved Copper (Cu)	ug/L	87	1.0	0.90	0.90	9844553				
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	N/A	9844553				
Dissolved Molybdenum (Mo)	ug/L	70	7.4	0.50	0.50	9844553				
Dissolved Nickel (Ni)	ug/L	100	21	1.0	N/A	9844553				
Dissolved Selenium (Se)	ug/L	10	<2.0	2.0	N/A	9844553				
Dissolved Silver (Ag)	ug/L	1.5	<0.090	0.090	0.081	9844553				
Dissolved Sodium (Na)	ug/L	490000	99000	100	N/A	9844553				
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	N/A	9844553				
Dissolved Uranium (U)	ug/L	20	5.9	0.10	N/A	9844553				
Dissolved Vanadium (V)	ug/L	6.2	<0.50	0.50	0.50	9844553				
Dissolved Zinc (Zn)	ug/L	1100	23	5.0	N/A	9844553				

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil

N/A = Not Applicable

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

O.REG 153 PAHS (WATER)

		1				
Bureau Veritas ID			AMDI19			
Sampling Date			2024/12/18			
COC Number			N/A			
	UNITS	Criteria	BH24-2	RDL	MDL	QC Batch
Calculated Parameters						
Methylnaphthalene, 2-(1-)	ug/L	3.2	<0.071	0.071	N/A	9840231
Polyaromatic Hydrocarbons						
Acenaphthene	ug/L	4.1	<0.050	0.050	0.0030	9842294
Acenaphthylene	ug/L	1	<0.050	0.050	0.0030	9842294
Anthracene	ug/L	2.4	<0.050	0.050	0.0030	9842294
Benzo(a)anthracene	ug/L	1.0	<0.050	0.050	0.0030	9842294
Benzo(a)pyrene	ug/L	0.01	<0.0090	0.0090	0.0030	9842294
Benzo(b/j)fluoranthene	ug/L	0.1	<0.050	0.050	0.0030	9842294
Benzo(g,h,i)perylene	ug/L	0.2	<0.050	0.050	0.0030	9842294
Benzo(k)fluoranthene	ug/L	0.1	<0.050	0.050	0.0030	9842294
Chrysene	ug/L	0.1	<0.050	0.050	0.0030	9842294
Dibenzo(a,h)anthracene	ug/L	0.2	<0.050	0.050	0.0030	9842294
Fluoranthene	ug/L	0.41	<0.050	0.050	0.0030	9842294
Fluorene	ug/L	120	<0.050	0.050	0.0030	9842294
Indeno(1,2,3-cd)pyrene	ug/L	0.2	<0.050	0.050	0.0030	9842294
1-Methylnaphthalene	ug/L	3.2	<0.050	0.050	0.0030	9842294
2-Methylnaphthalene	ug/L	3.2	<0.050	0.050	0.0030	9842294
Naphthalene	ug/L	11	<0.050	0.050	0.0030	9842294
Phenanthrene	ug/L	1	<0.030	0.030	0.0030	9842294
Pyrene	ug/L	4.1	<0.050	0.050	0.0030	9842294
Surrogate Recovery (%)						
D10-Anthracene	%	-	98			9842294
D14-Terphenyl (FS)	%	-	92			9842294
D8-Acenaphthylene	%	-	91			9842294

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil

N/A = Not Applicable

Report Date: 2024/12/30

DS Consultants Limited Client Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Calculated Parameters	Bureau Veritas ID			AMDI19				AMDI19			
Calculated Parameters	Sampling Date			2024/12/18				2024/12/18			
Calculated Parameters	COC Number			N/A				N/A			
1,3-Dichloropropene (cis+trans) ug/L 0.5 <0.50 0.50 0.50 9841807		UNITS	Criteria	BH24-2	RDL	MDL	QC Batch		RDL	MDL	QC Batch
Volatile Organics Acetone (2-Propanone) ug/L 2700 <10 10 1.0 9843263 <10 10 1.0 9843263 Benzene ug/L 5.0 <0.17	Calculated Parameters										
Acetone (2-Propanone)	1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	0.50	0.50	9841807				
Benzene	Volatile Organics										
Bromodichloromethane	Acetone (2-Propanone)	ug/L	2700	<10	10	1.0	9843263	<10	10	1.0	9843263
Bromoform	Benzene	ug/L	5.0	<0.17	0.17	0.020	9843263	<0.17	0.17	0.020	9843263
Bromomethane	Bromodichloromethane	ug/L	16.0	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
Carbon Tetrachloride ug/L 5.0 <0.20 0.20 0.050 9843263 <0.20 0.20 0.050 9843263 <0.20 0.20 0.050 9843263 <0.20 0.20 0.010 9843263 <0.20 0.20 0.010 9843263 <0.20 0.00 0.050 9843263 <0.20 0.00 0.050 9843263 <0.20 0.00 0.050 9843263 <0.20 0.00 0.050 9843263 <0.20 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050 9843263 <0.00 0.050	Bromoform	ug/L	25.0	<1.0	1.0	0.10	9843263	<1.0	1.0	0.10	9843263
Chlorobenzene ug/L 30 <0.20 0.20 0.010 9843263 <0.20 0.20 0.010 9843. Chloroform ug/L 22 <0.20 0.20 0.050 9843263 <0.20 0.20 0.050 9843263 Dibromochloromethane ug/L 25.0 <0.50 0.50 0.50 0.50 9843263 <0.20 0.20 0.050 9843. Dibromochloromethane ug/L 25.0 <0.50 0.50 0.50 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,2-Dichlorobenzene ug/L 3.0 <0.50 0.50 0.50 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,3-Dichlorobenzene ug/L 59 <0.50 0.50 0.50 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,4-Dichlorobenzene ug/L 1.0 <0.50 0.50 0.50 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,4-Dichlorodifluoromethane (FREON 12) ug/L 590 <1.0 1.0 0.050 9843263 <0.50 0.50 0.50 0.50 9843. L,1-Dichloroethane ug/L 5 <0.20 0.20 0.50 9843263 <0.20 0.20 0.50 9843. L,2-Dichloroethylene ug/L 14 <0.20 0.20 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,2-Dichloroethylene ug/L 17 <0.50 0.50 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,2-Dichloroethylene ug/L 5.0 <0.20 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,2-Dichloroethylene ug/L 5.0 <0.20 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,3-Dichloroethylene ug/L 5.0 <0.50 0.50 0.50 9843263 <0.50 0.50 0.50 0.50 9843. L,3-Dichloroethylene ug/L 5.0 <0.50 0.50 0.50 9843263 <0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Bromomethane	ug/L	0.89	<0.50	0.50	0.10	9843263	<0.50	0.50	0.10	9843263
Chloroform ug/L 22 <0.20 0.20 0.050 9843263 <0.20 0.050 9843. Dibromochloromethane ug/L 25.0 <0.50	Carbon Tetrachloride	ug/L	5.0	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
Dibromochloromethane	Chlorobenzene	ug/L	30	<0.20	0.20	0.010	9843263	<0.20	0.20	0.010	9843263
1,2-Dichlorobenzene ug/L 3.0 <0.50 0.50 0.50 9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.50 0.50 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.9843263 <0.20 0.20 0.050<	Chloroform	ug/L	22	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
1,3-Dichlorobenzene ug/L 59 <0.50 0.50 0.050 9843263 <0.50 0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.50 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.20 0.050 9843263 <0.050 0.050 9843263	Dibromochloromethane	ug/L	25.0	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
1,4-Dichlorobenzene ug/L 1.0 <0.50 0.50 0.050 9843263 <0.50 0.50 0.050 98431 Dichlorodifluoromethane (FREON 12) ug/L 590 <1.0	1,2-Dichlorobenzene	ug/L	3.0	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
Dichlorodifluoromethane (FREON 12) ug/L 590 <1.0 1.0 0.050 9843263 <1.0 1.0 0.050 9843 1,1-Dichloroethane ug/L 5 <0.20	1,3-Dichlorobenzene	ug/L	59	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
1,1-Dichloroethane ug/L 5 <0.20 0.20 0.050 9843263 <0.20 0.050 9843263 1,2-Dichloroethane ug/L 5 <0.50		ug/L	1.0	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
1,2-Dichloroethane ug/L 5 <0.50 0.50 0.020 9843263 <0.50 0.50 0.020 9843263 1,1-Dichloroethylene ug/L 14 <0.20	Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	1.0	0.050	9843263	<1.0	1.0	0.050	9843263
1,1-Dichloroethylene ug/L 14 <0.20 0.20 0.050 9843263 <0.20 0.050 9843263 cis-1,2-Dichloroethylene ug/L 17 <0.50	1,1-Dichloroethane	ug/L	5	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
cis-1,2-Dichloroethylene ug/L 17 <0.50 0.50 0.050 9843263 <0.50 0.50 0.050 9843263 trans-1,2-Dichloroethylene ug/L 17 <0.50	1,2-Dichloroethane	ug/L	5	<0.50	0.50	0.020	9843263	<0.50	0.50	0.020	9843263
trans-1,2-Dichloroethylene ug/L 17 <0.50 0.50 0.050 9843263 <0.50 0.50 0.050 9843263 1,2-Dichloropropane ug/L 5.0 <0.20	1,1-Dichloroethylene	ug/L	14	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
1,2-Dichloropropane ug/L 5.0 <0.20 0.20 0.050 9843263 <0.20 0.20 0.050 9843263 cis-1,3-Dichloropropene ug/L 0.5 <0.30	cis-1,2-Dichloroethylene	ug/L	17	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
cis-1,3-Dichloropropene ug/L 0.5 <0.30 0.30 0.050 9843263 <0.30 0.050 9843263 trans-1,3-Dichloropropene ug/L 0.5 <0.40	trans-1,2-Dichloroethylene	ug/L	17	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
trans-1,3-Dichloropropene ug/L 0.5 <0.40 0.40 0.050 9843263 <0.40 0.40 0.050 9843263 Ethylbenzene ug/L 2.4 <0.20	1,2-Dichloropropane	ug/L	5.0	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
Ethylbenzene ug/L 2.4 <0.20 0.20 0.010 9843263 <0.20 0.20 0.010 9843263 Ethylene Dibromide ug/L 0.2 <0.20	cis-1,3-Dichloropropene	ug/L	0.5	<0.30	0.30	0.050	9843263	<0.30	0.30	0.050	9843263
Ethylene Dibromide ug/L 0.2 <0.20 0.20 0.050 9843263 <0.20 0.050 9843263 Hexane ug/L 520 <1.0	trans-1,3-Dichloropropene	ug/L	0.5	<0.40	0.40	0.050	9843263	<0.40	0.40	0.050	9843263
Hexane ug/L 520 <1.0 1.0 0.10 9843263 <1.0 1.0 0.10 9843263 Methylene Chloride(Dichloromethane) ug/L 50 <2.0	Ethylbenzene	ug/L	2.4	<0.20	0.20	0.010	9843263	<0.20	0.20	0.010	9843263
Methylene Chloride(Dichloromethane) ug/L 50 <2.0 2.0 0.10 9843263 <2.0 2.0 0.10 9843263	Ethylene Dibromide	ug/L	0.2	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
	Hexane	ug/L	520	<1.0	1.0	0.10	9843263	<1.0	1.0	0.10	9843263
Methyl Ethyl Ketone (2-Butanone) ug/l 1800 <10 10 0.50 9843263 <10 10 0.50 9843	Methylene Chloride(Dichloromethane)	ug/L	50	<2.0	2.0	0.10	9843263	<2.0	2.0	0.10	9843263
10 10 10 10 10 10 10 10	Methyl Ethyl Ketone (2-Butanone)	ug/L	1800	<10	10	0.50	9843263	<10	10	0.50	9843263

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			AMDI19				AMDI19			
Sampling Date			2024/12/18				2024/12/18			
COC Number			N/A				N/A			
	UNITS	Criteria	BH24-2	RDL	MDL	QC Batch	BH24-2 Lab-Dup	RDL	MDL	QC Batch
Methyl Isobutyl Ketone	ug/L	640	<5.0	5.0	0.10	9843263	<5.0	5.0	0.10	9843263
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
Styrene	ug/L	5.4	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
Tetrachloroethylene	ug/L	17	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
Toluene	ug/L	24	<0.20	0.20	0.010	9843263	<0.20	0.20	0.010	9843263
1,1,1-Trichloroethane	ug/L	200	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
1,1,2-Trichloroethane	ug/L	5	<0.50	0.50	0.050	9843263	<0.50	0.50	0.050	9843263
Trichloroethylene	ug/L	5	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	0.50	0.10	9843263	<0.50	0.50	0.10	9843263
Vinyl Chloride	ug/L	1.7	<0.20	0.20	0.050	9843263	<0.20	0.20	0.050	9843263
p+m-Xylene	ug/L	-	<0.20	0.20	0.010	9843263	<0.20	0.20	0.010	9843263
o-Xylene	ug/L	-	<0.20	0.20	0.010	9843263	<0.20	0.20	0.010	9843263
Total Xylenes	ug/L	300	<0.20	0.20	0.010	9843263	<0.20	0.20	0.010	9843263
F1 (C6-C10)	ug/L	750	<25	25	20	9843263	<25	25	20	9843263
F1 (C6-C10) - BTEX	ug/L	750	<25	25	20	9843263	<25	25	20	9843263
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	150	<90	90	50	9842285				
F3 (C16-C34 Hydrocarbons)	ug/L	500	<200	200	70	9842285				
F4 (C34-C50 Hydrocarbons)	ug/L	500	<200	200	50	9842285				
Reached Baseline at C50	ug/L	-	Yes			9842285				
Surrogate Recovery (%)										
o-Terphenyl	%	-	96			9842285				
4-Bromofluorobenzene	%	-	98			9843263	98			9843263
D4-1,2-Dichloroethane	%	-	104			9843263	101			9843263
D8-Toluene	%	-	97			9843263	98			9843263

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil

Report Date: 2024/12/30

DS Consultants Limited Client Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas	s ID			AMDI20			
Sampling Date				2024/12/18			
COC Number				N/A			
		UNITS	Criteria	TRIP BLANK	RDL	MDL	QC Batch
Calculated Par	ameters						
1,3-Dichloropr	ug/L	0.5	<0.50	0.50	0.50	9841807	
No Fill	No Exceedance	•			•		
Grey	Exceeds 1 criteria polic	y/level					
Black	Exceeds both criteria/le	evels					
RDL = Reporta	ole Detection Limit						
QC Batch = Quality Control Batch							
Criteria: Ontar	o Reg. 153/04 (Amended	April 15	, 2011)				

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Potable Ground Water- All Types of Property Uses - Medium and Fine Textured Soil

Bureau Veritas Job #: C4BM121 Report Date: 2024/12/30

DS Consultants Limited Client Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

TEST SUMMARY

Bureau Veritas ID: AMDI19

Sample ID: BH24-2 Matrix: Water

Collected: 2024/12/18

Shipped:

Received: 2024/12/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	9840231	N/A	2024/12/22	Automated Statchk
1,3-Dichloropropene Sum	CALC	9841807	N/A	2024/12/27	Automated Statchk
Chloride by Automated Colourimetry	SKAL	9842715	N/A	2024/12/27	Massarat Jan
Chromium (VI) in Water	IC	9843227	N/A	2024/12/23	Rupinder Sihota
Free (WAD) Cyanide	SKAL/CN	9845500	N/A	2024/12/24	Prgya Panchal
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	9842285	2024/12/21	2024/12/22	Mohammed Abdul Nafay Shoeb
Mercury	CV/AA	9843704	2024/12/23	2024/12/27	Maitri PATIL
Lab Filtered Metals by ICPMS	ICP/MS	9844553	2024/12/23	2024/12/24	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9842294	2024/12/21	2024/12/21	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9843263	N/A	2024/12/24	Cheng-Yu Sha

Bureau Veritas ID: AMDI19 Dup

Sample ID: BH24-2

Matrix: Water

Collected: 2024/12/18

Shipped:

Collected:

Received: 2024/12/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	9843227	N/A	2024/12/23	Rupinder Sihota
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9843263	N/A	2024/12/24	Cheng-Yu Sha

Bureau Veritas ID: AMDI20 Sample ID: TRIP BLANK Matrix: Water

Shipped:

Received: 2024/12/18

2024/12/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	9841807	N/A	2024/12/27	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9843263	N/A	2024/12/24	Cheng-Yu Sha

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	5.3°C	
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9842285	o-Terphenyl	2024/12/22			102	60 - 140	99	%		
9842294	D10-Anthracene	2024/12/21			89	50 - 130	94	%		
9842294	D14-Terphenyl (FS)	2024/12/21			91	50 - 130	96	%		
9842294	D8-Acenaphthylene	2024/12/21			88	50 - 130	89	%		
9843263	4-Bromofluorobenzene	2024/12/24	97	70 - 130	100	70 - 130	97	%		
9843263	D4-1,2-Dichloroethane	2024/12/24	107	70 - 130	96	70 - 130	96	%		
9843263	D8-Toluene	2024/12/24	98	70 - 130	105	70 - 130	99	%		
9842285	F2 (C10-C16 Hydrocarbons)	2024/12/22			102	60 - 140	<90	ug/L	1.9	30
9842285	F3 (C16-C34 Hydrocarbons)	2024/12/22			106	60 - 140	<200	ug/L	2.5	30
9842285	F4 (C34-C50 Hydrocarbons)	2024/12/22			97	60 - 140	<200	ug/L	3.0	30
9842294	1-Methylnaphthalene	2024/12/21			87	50 - 130	<0.050	ug/L	2.6	30
9842294	2-Methylnaphthalene	2024/12/21			85	50 - 130	<0.050	ug/L	2.6	30
9842294	Acenaphthene	2024/12/21			90	50 - 130	<0.050	ug/L	3.3	30
9842294	Acenaphthylene	2024/12/21			92	50 - 130	<0.050	ug/L	4.8	30
9842294	Anthracene	2024/12/21			91	50 - 130	<0.050	ug/L	5.2	30
9842294	Benzo(a)anthracene	2024/12/21			95	50 - 130	<0.050	ug/L	5.8	30
9842294	Benzo(a)pyrene	2024/12/21			97	50 - 130	<0.0090	ug/L	4.1	30
9842294	Benzo(b/j)fluoranthene	2024/12/21			94	50 - 130	<0.050	ug/L	3.8	30
9842294	Benzo(g,h,i)perylene	2024/12/21			108	50 - 130	<0.050	ug/L	6.0	30
9842294	Benzo(k)fluoranthene	2024/12/21			93	50 - 130	<0.050	ug/L	2.4	30
9842294	Chrysene	2024/12/21			91	50 - 130	<0.050	ug/L	5.1	30
9842294	Dibenzo(a,h)anthracene	2024/12/21			98	50 - 130	<0.050	ug/L	6.3	30
9842294	Fluoranthene	2024/12/21			93	50 - 130	<0.050	ug/L	7.3	30
9842294	Fluorene	2024/12/21			94	50 - 130	<0.050	ug/L	2.9	30
9842294	Indeno(1,2,3-cd)pyrene	2024/12/21			111	50 - 130	<0.050	ug/L	5.9	30
9842294	Naphthalene	2024/12/21			81	50 - 130	<0.050	ug/L	2.9	30
9842294	Phenanthrene	2024/12/21			91	50 - 130	<0.030	ug/L	4.9	30
9842294	Pyrene	2024/12/21			90	50 - 130	<0.050	ug/L	11	30
9842715	Dissolved Chloride (Cl-)	2024/12/27	NC	80 - 120	100	80 - 120	<1.0	mg/L	0.11	20
9843227	Chromium (VI)	2024/12/23	103	80 - 120	101	80 - 120	<0.50	ug/L	NC	20
9843263	1,1,1,2-Tetrachloroethane	2024/12/24	102	70 - 130	105	70 - 130	<0.50	ug/L	NC	30

Bureau Veritas Job #: C4BM121 Report Date: 2024/12/30

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9843263	1,1,1-Trichloroethane	2024/12/24	89	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
9843263	1,1,2,2-Tetrachloroethane	2024/12/24	100	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
9843263	1,1,2-Trichloroethane	2024/12/24	103	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
9843263	1,1-Dichloroethane	2024/12/24	98	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
9843263	1,1-Dichloroethylene	2024/12/24	97	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
9843263	1,2-Dichlorobenzene	2024/12/24	95	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
9843263	1,2-Dichloroethane	2024/12/24	108	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
9843263	1,2-Dichloropropane	2024/12/24	107	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
9843263	1,3-Dichlorobenzene	2024/12/24	93	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
9843263	1,4-Dichlorobenzene	2024/12/24	94	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
9843263	Acetone (2-Propanone)	2024/12/24	116	60 - 140	98	60 - 140	<10	ug/L	NC	30
9843263	Benzene	2024/12/24	104	70 - 130	103	70 - 130	<0.17	ug/L	NC	30
9843263	Bromodichloromethane	2024/12/24	101	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
9843263	Bromoform	2024/12/24	101	70 - 130	97	70 - 130	<1.0	ug/L	NC	30
9843263	Bromomethane	2024/12/24	98	60 - 140	95	60 - 140	<0.50	ug/L	NC	30
9843263	Carbon Tetrachloride	2024/12/24	94	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
9843263	Chlorobenzene	2024/12/24	89	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
9843263	Chloroform	2024/12/24	98	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
9843263	cis-1,2-Dichloroethylene	2024/12/24	104	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
9843263	cis-1,3-Dichloropropene	2024/12/24	102	70 - 130	97	70 - 130	<0.30	ug/L	NC	30
9843263	Dibromochloromethane	2024/12/24	102	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
9843263	Dichlorodifluoromethane (FREON 12)	2024/12/24	123	60 - 140	126	60 - 140	<1.0	ug/L	NC	30
9843263	Ethylbenzene	2024/12/24	92	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
9843263	Ethylene Dibromide	2024/12/24	103	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
9843263	F1 (C6-C10) - BTEX	2024/12/24					<25	ug/L	NC	30
9843263	F1 (C6-C10)	2024/12/24	83	60 - 140	88	60 - 140	<25	ug/L	NC	30
9843263	Hexane	2024/12/24	108	70 - 130	110	70 - 130	<1.0	ug/L	NC	30
9843263	Methyl Ethyl Ketone (2-Butanone)	2024/12/24	124	60 - 140	105	60 - 140	<10	ug/L	NC	30
9843263	Methyl Isobutyl Ketone	2024/12/24	114	70 - 130	99	70 - 130	<5.0	ug/L	NC	30
9843263	Methyl t-butyl ether (MTBE)	2024/12/24	105	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
9843263	Methylene Chloride(Dichloromethane)	2024/12/24	112	70 - 130	105	70 - 130	<2.0	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9843263	o-Xylene	2024/12/24	98	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
9843263	p+m-Xylene	2024/12/24	91	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
9843263	Styrene	2024/12/24	94	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
9843263	Tetrachloroethylene	2024/12/24	84	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
9843263	Toluene	2024/12/24	95	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
9843263	Total Xylenes	2024/12/24					<0.20	ug/L	NC	30
9843263	trans-1,2-Dichloroethylene	2024/12/24	99	70 - 130	100	70 - 130	<0.50	ug/L	NC	30
9843263	trans-1,3-Dichloropropene	2024/12/24	108	70 - 130	107	70 - 130	<0.40	ug/L	NC	30
9843263	Trichloroethylene	2024/12/24	94	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
9843263	Trichlorofluoromethane (FREON 11)	2024/12/24	87	70 - 130	90	70 - 130	<0.50	ug/L	NC	30
9843263	Vinyl Chloride	2024/12/24	106	70 - 130	108	70 - 130	<0.20	ug/L	NC	30
9843704	Mercury (Hg)	2024/12/27	88	75 - 125	103	80 - 120	<0.10	ug/L	NC	20
9844553	Dissolved Antimony (Sb)	2024/12/30	103	80 - 120	99	80 - 120	<0.50	ug/L	1.0	20
9844553	Dissolved Arsenic (As)	2024/12/30	NC	80 - 120	99	80 - 120	<1.0	ug/L	2.3	20
9844553	Dissolved Barium (Ba)	2024/12/30	97	80 - 120	98	80 - 120	<2.0	ug/L	2.5	20
9844553	Dissolved Beryllium (Be)	2024/12/30	100	80 - 120	106	80 - 120	<0.40	ug/L	NC	20
9844553	Dissolved Boron (B)	2024/12/30	NC	80 - 120	99	80 - 120	<10	ug/L	5.9	20
9844553	Dissolved Cadmium (Cd)	2024/12/30	99	80 - 120	97	80 - 120	<0.090	ug/L	NC	20
9844553	Dissolved Chromium (Cr)	2024/12/30	102	80 - 120	100	80 - 120	<5.0	ug/L	NC	20
9844553	Dissolved Cobalt (Co)	2024/12/30	100	80 - 120	99	80 - 120	<0.50	ug/L	2.4	20
9844553	Dissolved Copper (Cu)	2024/12/30	99	80 - 120	100	80 - 120	<0.90	ug/L	1.9	20
9844553	Dissolved Lead (Pb)	2024/12/30	95	80 - 120	94	80 - 120	<0.50	ug/L	NC	20
9844553	Dissolved Molybdenum (Mo)	2024/12/30	NC	80 - 120	100	80 - 120	<0.50	ug/L	2.4	20
9844553	Dissolved Nickel (Ni)	2024/12/30	94	80 - 120	95	80 - 120	<1.0	ug/L	0.27	20
9844553	Dissolved Selenium (Se)	2024/12/30	99	80 - 120	97	80 - 120	<2.0	ug/L	NC	20
9844553	Dissolved Silver (Ag)	2024/12/30	81	80 - 120	96	80 - 120	<0.090	ug/L	NC	20
9844553	Dissolved Sodium (Na)	2024/12/30	NC	80 - 120	100	80 - 120	<100	ug/L	0.97	20
9844553	Dissolved Thallium (TI)	2024/12/30	98	80 - 120	99	80 - 120	<0.050	ug/L	2.9	20
9844553	Dissolved Uranium (U)	2024/12/30	NC	80 - 120	99	80 - 120	<0.10	ug/L	3.2	20
9844553	Dissolved Vanadium (V)	2024/12/30	100	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
9844553	Dissolved Zinc (Zn)	2024/12/30	95	80 - 120	98	80 - 120	<5.0	ug/L	0.75	20

Bureau Veritas Job #: C4BM121 Report Date: 2024/12/30

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 24-371-600

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9845500	WAD Cyanide (Free)	2024/12/24	101	80 - 120	100	80 - 120	<1	ug/L	NC	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

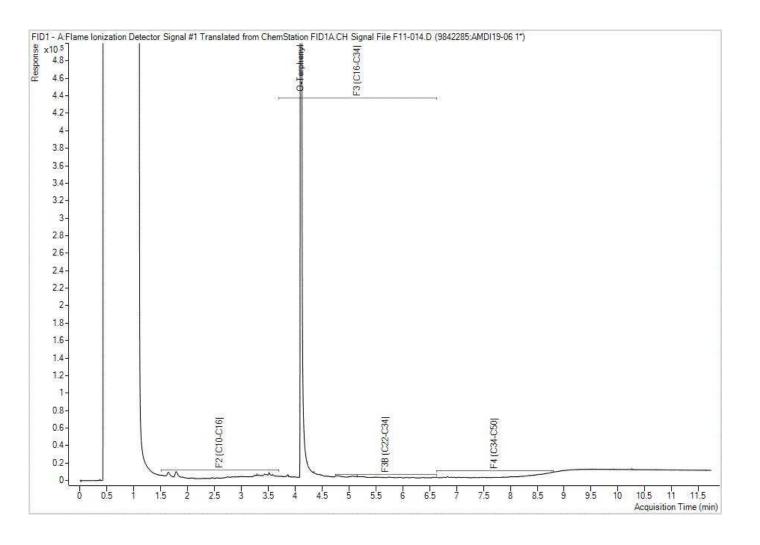
Cuistina	Canine	
Cristina Carrie	re, Senior Scientific Specialist	_

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v6

Page 1 of 1


DS Company: DS Quotation #: Contact Name: Name			_								_		_		-		Total Co.					_				
Accounting	oice Information	Invoice to (requires report)		T	Report I	nformation		oice)			+				Proje	ct Informa	ation			_						
	npany:			-		10	(27)70				Quo	tation	#:													
Proce ON	ntact ne:	Accounting	Name:	Me	copy	1 13	neel				P.O.	#/ AFE	#:				1 110									
Process Proc	eet Iress:	1			1						Proje	ect #:		24	- 3	71-	600)				14				
Email:	rs .		City:	Car	mbrid	ge	Prov: ON				Site	#:										4		NON	-2024	1-12-
Sample Genetic Paper P	one:		Phone:								10000		02.17	Chi	المراد	امرن	US-1,	Cai	e 200	\						
Sample Genetic Paper P	ail:		Email:	Mb	end	seie	is cons	2	tal	e.(a	Site		on		1		ON					and the same of	a a m.m maga			
1 1 1 1 1 1 1 1 1 1	ies:		Copies:	Un	Yw.	ecs "				"	Sam	pled By														
SAMPLES MUST BE REPT COOL (CHO'D FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS) Sample Identification (Please print or Type) The property of the pr	Table 1 Table 2 Table 3 Table	Res (Park Med/Fine	CCME Reg 558 *min 3 day MISA	YTAT	Sanita Storm	ary Sewer By Sewer Byla Municipality	w	1	2 3	3 4	5	6			8)	11 12	13 14	15	16 17	18 19			5 to 7 Day	urnaround	10 Day	
Trip Blank 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	WINDS WAS A DATE OF	Include Criteria on Certificate							6	3		Ш	ganic		HW							Ë,	☐ Same Day	Е	1 Day	
BH29-2 Trip Blank 1 () () () () () () () () () (SAMPLES I	MUST BE KEPT COOL (<10°C) FROM TIME OF SAM	APLING UNTIL I	DELIVERY	TO BUI	REAU VERITA	us .		aji io				d inorg	tals	etals			11				SUBM	2 Day	С	J 3 Day	
BH29-2 Trip Blank 1 () () () () () () () () () ((2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2				Time		Q	VED				als and	15 me	WSm							VERS	Z D A Day			
BH29-2 Trip Blank 1 () () () () () () () () () (Sample Identification	Da	te Sample	d		Matrix	LTER	RESER				meta	I ICPN	M ICH							NTAII	Date	YYYY	MM	DD
Trip Blank 1 (1) 1 NO preserve due to cart of Gar		(Please print or Type)	YYYY	MM	DD	нн мм	IVIdUIX	ELD FI	ELD P	EX/F	- F4	200	g 153	eg 153	10 G							OF CO	Required:			
Trip Blowe I (I (I (I)) Filtreel Meters have NO preserve due to last dr GCU	10.1	174-7	264	19	10	OA	(-()	Œ	E 2	V	V	V	V.	8 8	V	-		++	+	-		## :				
Here's have NO preserve ive to rach at Gan	151	1010	201	16	10	PM	60			1	1	1	N		^	-		-	+			-			<u></u>	
NO puserve due to tal	100	p Blank	,	(1	(1																			
NO puserve due to tal																							* Met	ecs l	nave	
de GW															\Box				\top			1				_
de GW										+	+				11			+	+			-	1.10	Ta	1001	6
				-	-					+	+		_		+1	_			-	_		-			(all	
									-														al C	200		
								122																		
								77.45	56.	-					\Box											
									200	+	+	\vdash			+			+	+			+				
									157 BB	-	+				+	-		++	+	-		-				
										2	1				\perp			\perp				-	1-			
								1 =		9													-			
									45																	
													SUSSE											2022-17		Hot
	WENTER CO.	1 'c	2 7						°C						_			10.00 Mag 65	Te	3 14		°C			readir	ig by:
	tact g media present		3			present				1		2		3			resent				_		1 2	3		
Seal present 'C Seal present 'C Seal present 'C Seal intact Seal intact		d buy (Cinneture / Brint)			Tir	me		Recei	ved by:	Signat	ture/Pi	rint)		3			Date						Spec	ial instruction	ons	
Seal present 1 2 3 Cooling media present 1 2 3 Cooling media present Date Time Resignation (Signature/ Print) Date Time Date Date Time Resignation (Signature/ Print) Date Time Date Time Special instructions		1111									A-7		2	K	-		MN			НН	MM					
Seal present C Seal presen	00	- 11	16	0	la V		1	_		1	~	1			(Dly	12	/	18	15	n		90			OFFICE AND ADDRESS OF THE PARTY
Seal present C C Seal present C C C C C C C C C							2																			
Seal present C Seal presen																										

Bureau Veritas Job #: C4BM121 Report Date: 2024/12/30 Bureau Veritas Sample: AMDI19 DS Consultants Limited Client Project #: 24-371-600

Project name: CHINGUACOUSY, CALEDON

Client ID: BH24-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Site Location: CHINGUACOUSY, CALEDON

Sampler Initials: IB

Exceedance Summary Table – Reg153/04 T2-GW-F/M Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH24-2	AMDI19-01	Dissolved Cobalt (Co)	3.8	16	0.50	ug/L
The exceedance summary table	e is for information nurn	oses only and should not be o	onsidered a comprehe	ncive listing or	statement of	conformance to

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD

Your C.O.C. #: N/A

Attention: Megan Bender
DS Consultants Limited
6221 Highway 7, Unit 16
Vaughan, ON
CANADA L4H 0K8

Report Date: 2025/01/17

Report #: R8471899 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C502988 Received: 2025/01/10, 16:26

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	y Extracted	Analyzed	Laboratory Method	Analytical Method
Dissolved Metals by ICPMS	1	N/A	2025/01/14	4 CAM SOP-00447	EPA 6020B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD

Your C.O.C. #: N/A

Attention: Megan Bender

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2025/01/17

Report #: R8471899 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C502988 Received: 2025/01/10, 16:26

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: ashton.gibson@bureauveritas.com Phone# (416)998-5786

Rureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Site Location: 12192 CHINGUACOUSY ROAD

Sampler Initials: AS

O.REG 153 DISSOLVED ICPMS METALS (WATER)

Bureau Veritas ID			ANCP63			
Sampling Date			2025/01/10			
COC Number			N/A			
	UNITS	Criteria	MW24-2	RDL	MDL	QC Batch
Metals		·		-		
Dissolved Antimony (Sb)	ug/L	6.0	0.56	0.50	0.20	9858606
Dissolved Arsenic (As)	ug/L	25	<1.0	1.0	0.10	9858606
Dissolved Barium (Ba)	ug/L	1000	22	2.0	0.30	9858606
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	0.050	9858606
Dissolved Boron (B)	ug/L	5000	300	10	0.60	9858606
Dissolved Cadmium (Cd)	ug/L	2.7	0.45	0.090	0.090	9858606
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	0.70	9858606
Dissolved Cobalt (Co)	ug/L	3.8	38	0.50	0.040	9858606
Dissolved Copper (Cu)	ug/L	87	2.3	0.90	0.30	9858606
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	0.050	9858606
Dissolved Molybdenum (Mo)	ug/L	70	5.0	0.50	0.070	9858606
Dissolved Nickel (Ni)	ug/L	100	45	1.0	0.40	9858606
Dissolved Selenium (Se)	ug/L	10	2.5	2.0	0.20	9858606
Dissolved Silver (Ag)	ug/L	1.5	<0.090	0.090	0.020	9858606
Dissolved Sodium (Na)	ug/L	490000	140000	100	20	9858606
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	0.020	9858606
Dissolved Uranium (U)	ug/L	20	11	0.10	0.010	9858606
Dissolved Vanadium (V)	ug/L	6.2	<0.50	0.50	0.090	9858606
Dissolved Zinc (Zn)	ug/L	1100	27	5.0	1.0	9858606

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water

Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

Report Date: 2025/01/17

Matrix: Water

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD

Sampler Initials: AS

TEST SUMMARY

Bureau Veritas ID: ANCP63 Collected: 2025/01/10 Sample ID: MW24-2

Shipped:

Received: 2025/01/10

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst 2025/01/14 Dissolved Metals by ICPMS ICP/MS 9858606 N/A Indira HarryPaul

Site Location: 12192 CHINGUACOUSY ROAD

Sampler Initials: AS

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	1.9°C	
Revised	Report[1/17/202	25]: Table 2 crite	ria added to C of A
Results	relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 24-371-600

Site Location: 12192 CHINGUACOUSY ROAD

Sampler Initials: AS

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9858606	Dissolved Antimony (Sb)	2025/01/14	105	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
9858606	Dissolved Arsenic (As)	2025/01/14	94	80 - 120	96	80 - 120	<1.0	ug/L	NC	20
9858606	Dissolved Barium (Ba)	2025/01/14	99	80 - 120	98	80 - 120	<2.0	ug/L	2.1	20
9858606	Dissolved Beryllium (Be)	2025/01/14	83	80 - 120	89	80 - 120	<0.40	ug/L	NC	20
9858606	Dissolved Boron (B)	2025/01/14	85	80 - 120	88	80 - 120	<10	ug/L	1.6	20
9858606	Dissolved Cadmium (Cd)	2025/01/14	91	80 - 120	96	80 - 120	<0.090	ug/L	NC	20
9858606	Dissolved Chromium (Cr)	2025/01/14	93	80 - 120	94	80 - 120	<5.0	ug/L	NC	20
9858606	Dissolved Cobalt (Co)	2025/01/14	90	80 - 120	94	80 - 120	<0.50	ug/L	0.30	20
9858606	Dissolved Copper (Cu)	2025/01/14	93	80 - 120	94	80 - 120	<0.90	ug/L	7.2	20
9858606	Dissolved Lead (Pb)	2025/01/14	77 (1)	80 - 120	90	80 - 120	<0.50	ug/L	NC	20
9858606	Dissolved Molybdenum (Mo)	2025/01/14	101	80 - 120	95	80 - 120	<0.50	ug/L	2.8	20
9858606	Dissolved Nickel (Ni)	2025/01/14	85	80 - 120	93	80 - 120	<1.0	ug/L	6.1	20
9858606	Dissolved Selenium (Se)	2025/01/14	89	80 - 120	95	80 - 120	<2.0	ug/L	NC	20
9858606	Dissolved Silver (Ag)	2025/01/14	74 (1)	80 - 120	91	80 - 120	<0.090	ug/L	NC	20
9858606	Dissolved Sodium (Na)	2025/01/14	NC	80 - 120	95	80 - 120	<100	ug/L	3.0	20
9858606	Dissolved Thallium (TI)	2025/01/14	79 (1)	80 - 120	92	80 - 120	<0.050	ug/L	NC	20
9858606	Dissolved Uranium (U)	2025/01/14	88	80 - 120	93	80 - 120	<0.10	ug/L	0.80	20
9858606	Dissolved Vanadium (V)	2025/01/14	102	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
9858606	Dissolved Zinc (Zn)	2025/01/14	80	80 - 120	94	80 - 120	<5.0	ug/L	5.2	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Matrix Spike exceeds acceptance limits, probable matrix interference

Site Location: 12192 CHINGUACOUSY ROAD

Sampler Initials: AS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

Page _______ of ______

_								_		_	_	_		_	_	_	_		_	_		_	_	_		_			_		_							
Invo	ice Inform	ation Invoice to (requires report)				Report	Inform	ation (if differs from inve	oice)									Proje	ct Info	ormat	ion																
Senten	ipany :	DS Consultants Ltd.		Company:				DS C	onsultants Ltd	i.				Quot	ation	#:																						
Con		Accounts Payable		Contact Name:										P.O.	#/ AFE	#:													100									
Stre Add		6221 Hwy Unit 16		Street Address:			125 N	ИсGo	vern Drive, U	nit 3	-4			Proje	ct #:						24-3	71-6	00				٦		ľ		17							
City		Vaughan Prov: ON Postal Code: L4		City:	Ca	mbrio	dge		Prov: ON	Post		N31	H4R7	Site #	t:														Ī	E	Ų,	-7	1			202	F 01	1270
Pho	ne:	905-264-9393	F	Phone:				51	19-588-9513	1		_		Site L	ocatio	on:			121	92 (Ching	uac	ousy	Roa	ad		1		i	<u></u>	k.	\mathbf{r}	*	NC	11/11	-202	5-01	-1378
Ema	il:	Accounts Payable	E	mail:			mbe	ender	@dsconsultar	nts.c	a			Site L Provi	ocatio	on					(NC					T		[3	37	立					
Copi	es:	asharif@dsconsultants.ca	C	Copies:			asł	narif@	@dsconsultant	ts.ca				Samp	led By						Aisha						\exists			apresent the same								1
REG 153	Table 1 Table 2 Table 3 Table 3	1	OTHER	CCME Reg 558 min 3 day MISA PWQO	* [Sanit Store	Munici er:	wer Bylav		1	2	3	4	5	6			9 (8 - S/	10	11	12	13	14	15	16	17	18	19			22	ell arti	5 to 7 (Day sh Tur	naroun	nd Time ☐ 10 d Time (s apply	Day	
		Include Criteria on Certifi	icate of An	alysis (che	ck if yes): []						IRED				organ		Is, HV												E	ZE.		Same E	Day		□ 10	ay	
	SAI	MPLES MUST BE KEPT COOL (<10°C) FROM TIME O	OF SAMPLI		DELIVER		JREAU Tir		is .	ED	RVED	ION REQU				als and inc	MS metals	als PMS meta												NERS SUB	NOT ANALYZE	1000	2 Day 4 Day			□ 30	ay	
		Sample Identification (Please print or Type)		YYYY	мм	DD	(24 HH	hr) MM	Matrix	FIELD FILTERED	FIELD PRESERVED	LAB FILTRATION REQUIRED	BTEX/F1	F2 - F4	VOCs	Reg 153 metals and inorganics	Reg 153 ICPMS metals	Reg 153 metals (Hg, Cr VI, ICPMS metals, HWS - B)	РАН											# OF CONTAINERS SUBMITTED	HOLD - DO N	Date Requi			YYYY		MM	DD
1		MW24-2		2024	01	10			Water - Ground	X	X	4	TB B	F2	0	X	Re	E R	A A	1		1		1			1			1	H				Comme	ints		
2								П		,										7	\top	7	\neg	\exists			\forall		7	İ								
3								H			1		1	Н		_	-	\forall	+	+	+	+	+	\dashv	-	+		+	+	\dashv		_						\dashv
				-				\vdash		_	\vdash	-	\vdash		\dashv	-	-	+	+	+	+	+	+	-	-	-	-	-	+		_	_					-	_
4				-			_	\sqcup		_			_			_		_	-	4	4	4	4		_		4	_	4		_				-			_
5								Ш																														
6																																						
7																															-							
8																																						
9																																						
10																																						
11												-																										
12																																						
*U	NLESS OTH	IERWISE AGREED TO IN WRITING, WORK SUBMITTE	D ON THIS	CHAIN OF	custo	DY IS SU	BJECT T	TO BUF	REAU VERITAS STA	NDAR	D TER	MS AI	ND CO	NDITIO	ONS. S	IGNIN	IG OF	THIS C	HAIN (OF CU	STOD	/ DOC	UME	NT IS	ACKN	OWLE	DGME	NT AN	ID AC	CEPT	ANCE	OF OU	JR TERI	MS AN	D CON	DITIONS	WHICH /	ARE
	LAB USE	E ONLY Yes No	2			FOR VIE		AT WW	/W.BVNA.COM/TE Yes	RMS-	AND-0	COND	ITIONS	OR BY	CALL	ING T	HE LA	BORAT	ORY L		ABOV			IN A C	OPY	Yes	s	No									emperat	
Seal	present intact ing media p	orecent 1	20	- 0	Seal pro Seal int Cooling	act	nracor.'					c	1		,		,	9	eal pr eal in	tact		eart.								*(С	1			,			
	-	nquished by: (Signature/ Print)	Date Y M				ime MI			Rece	eived I	oy: (S	ignatu	re/ Pri	int)		_	1		YYY	na pre	Dat	e MM		DI	T	HF	Tim	e MI			14	5	pecial	instruc	tions		
1 /	1	la Shary, 200		0 10		4	2	100	1				N			2	_	+	Same.	シレ	7		2	1	1		(S	l	6							æ	3
2		8							2																												C	

Site Location: 12192 CHINGUACOUSY ROAD

Sampler Initials: AS

Exceedance Summary Table – Reg153/04 T2-GW-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
MW24-2	ANCP63-01	Dissolved Cobalt (Co)	3.8	38	0.50	ug/L
The exceedance summary table	o is for information nurn	acas anly and should not be s	ancidarad a campraha	ncivo licting or	statement of	conformance to

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.