## HYDROGEOLOGICAL INVESTIGATION REPORT

## **15441 MOUNT PLEASANT ROAD**

TOWN OF CALEDON REGION OF PEEL

PREPARED FOR:

2818963 ONTARIO INC.

**PREPARED BY:** 

## C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

**JULY 2024** 

## CFCA FILE NO. 2227-6259

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.



| Revision Number | Date         | Comments                     |
|-----------------|--------------|------------------------------|
| Rev.0           | July 5, 2024 | Issued for First Submission. |

## TABLE OF CONTENTS

| 1.0 |                                                                    | Introduction                                                                                                                                    | 1                                |
|-----|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2.0 |                                                                    | Geology                                                                                                                                         | 1                                |
|     | 2.1<br>2.2<br>2.3<br>2.4                                           | Physiography, Topography & Drainage<br>Regional Geology<br>Local Geology<br>Source Water Protection Information                                 | 1<br>2                           |
| 3.0 |                                                                    | Hydrogeology                                                                                                                                    | 2                                |
|     | 3.1<br>3.2<br>3.3<br>3.4                                           | MECP Well Records<br>Hydrostratigraphy<br>Groundwater Levels<br>Groundwater Quality                                                             | 3<br>3                           |
| 4.0 |                                                                    | Field Work                                                                                                                                      | 4                                |
|     | 4.1<br>4.2<br>4.3<br>4.4<br>4.5                                    | Monitoring Well Installation<br>Groundwater Monitoring<br>Groundwater Quality Sampling<br>Hydraulic Conductivity Testing<br>Door-to-Door Survey | 4<br>5<br>5                      |
| 5.0 |                                                                    | Results                                                                                                                                         | 5                                |
|     | 5.1<br>5.2<br>5.3<br>5.4                                           | Groundwater Levels<br>Groundwater Quality<br>Hydraulic Conductivity Testing<br>Door-to-Door Survey Results                                      | 6<br>7                           |
| 6.0 |                                                                    | Design Considerations                                                                                                                           | 8                                |
|     | <b>6.1</b><br>6.1.<br>6.1.<br>6.1.<br>6.1.<br>6.1.<br>6.1.<br>6.1. | <ul> <li>Precipitation (P)</li></ul>                                                                                                            | .8<br>.8<br>.9<br>.9<br>10<br>10 |
|     | 6.2<br>6.3                                                         | Short-Term & Long Term Dewatering<br>Contingency Plan for Well Complaints1                                                                      |                                  |
| 7.0 |                                                                    | Conclusions & Recommendations                                                                                                                   | 2                                |
| 8.0 |                                                                    | References                                                                                                                                      | 3                                |

## LIST OF TABLES

- Table 1:
   Hydrostratigraphy of the Humber River Watershed (TRCA, 2008)
- Table 2:Monitoring Well Details
- Table 3:Groundwater Levels (April 2024 June 2024)
- Table 4:
   In-Situ Hydraulic Conductivity Testing Results
- Table 5:
   Summary of Water Balance Analysis
- Table 6:
   Climate Data (1981 2010) for Albion Field Centre Climate Station

## LIST OF APPENDICES

- Appendix A: Monitoring Well Logs
- Appendix B: MECP Well Summary
- Appendix C: Groundwater Quality Results
- Appendix D: Hydraulic Conductivity Testing
- Appendix E: Door-To-Door Survey
- Appendix F: Hydrographs
- Appendix G: Water Balance Assessment

## LIST OF FIGURES

- Figure 1: Site Location Plan
- Figure 2: Physiography
- Figure 3: Bedrock Geology
- Figure 4: Surficial Geology
- Figure 5: MECP Well Location Plan
- Figure 6: Door-to-Door Survey Locations
- Figure 7: Interpreted Groundwater Flow Direction

## 1.0 Introduction

C.F. Crozier & Associates Inc. (Crozier) has been retained by Design Plan Services Inc. to prepare a comprehensive Hydrogeological Investigation Report to support the proposed residential development located at 15441 Mount Pleasant Road in the Town of Caledon. The following report has been prepared to summarize existing conditions, characterize the hydrogeological system, and describe hydrogeological driven constraints for the development. The scope of this report was designed to meet the relevant Town of Caledon (Town), Region of Peel, and Toronto and Region Conservation Authority (TRCA) criteria.

Located at 15441 Mount Pleasant Road, in the Town of Caledon, Region of Peel, the development site (herein referred to as the Site) currently consists of trees, greenspace, ponds, and landscaped/forested areas (**Figure 1**). The Site is approximately 22.9 ha and is bounded by Mount Pleasant Road to the west, residential estate properties to the north and south, and wetlands to the east. The surrounding area consists mostly of rural residential lands.

According to the Draft Plan of Subdivision prepared by Design Plan Services Inc. dated April 12, 2024, the key elements envisioned for this development include:

- Five (5) estate residential lots.
- An internal roadway with Site access from Mount Pleasant Road.

## 2.0 Geology

The following sections below outline the existing conditions of the Study area based on literature review and field observations.

## 2.1 Physiography, Topography & Drainage

As shown in **Figure 2**, the Site is in the Oak Ridges Moraine physiographic region according to Chapman and Putnam (1984). The Oak Ridges Moraine extends from the Niagara Escarpment in the west to the Trent River in the East. The Oak Ridges Moraine is bounded by the South Slope in the south and covers an area of approximately 1295 km<sup>2</sup>. The Oak Ridges Moraine is characterized as a hilly terrain that predominantly consists of sand and gravel soils.

The Site area is situated in the Black Creek – Humber River Outlet watershed. Surface drainage is interpreted to follow topography and drain roughly southeast. The nearest surface water feature to the Site is a tributary of the Humber River, which flows towards the main branch of the Humber River and ultimately, reaches Lake Ontario.

## 2.2 Regional Geology

According to Ontario Geological Survey (OGS) Mapping, the Site sits atop a bedrock basement of the Georgian Bay Formation. The Georgian Bay Formation is characterized as grey to green shale, siltstone, and limestone. Across the Site area, depth to bedrock is estimated to be approximately 70.3 meters below ground surface (mbgs) to 135.34 mbgs. Bedrock is overlain by clay to silt-textured till, derived from glaciolacustrine deposits or shale. North of the Site sandy, gravelly material is mapped where the Oak Ridges Moraine is located.

The bedrock and surficial geology of the Study Area are displayed in Figures 3 and 4, respectively.

#### 2.3 Local Geology

A Geotechnical Investigation was completed on the Site to characterize the existing geological conditions and determine design constraints by AllRock Consulting Ltd. (AllRock). In November of 2023, ten (10) boreholes were advanced, and three (3) were converted into monitoring wells across the Site. In general, the following stratigraphy was encountered:

- 0-0.1 m dark brown sandy silt/silty sand topsoil
- 0.1 4.6 m brown to grey clayey silt with traces of sand and some gravel

According to nearby MECP well records, the primary overburden materials encountered near the Site include clay and sandy clay. The results of the geotechnical investigation performed by AllRock are consistent with MECP well records. For further details regarding the geotechnical investigation, please refer to the Geotechnical Investigation prepared by AllRock, submitted under separate cover. The borehole logs are appended to this report as Appendix A.

#### 2.4 Source Water Protection Information

According to the Ministry of Environment, Conservation and Parks (MECP) Source Protection Information Atlas, the Site is located within the Toronto Source Protection Area and is governed by the CTC (Credit Valley-Toronto and Region-Central Lake Ontario) Source Protection Plan under the Clean Water Act (2006).

The Site Area is located atop of Highly Vulnerable Aquifer (HVA). The HVA below the Site area is noted to have a vulnerability score of 6. No significant drinking water threats and source protection policies related to the HVA are identified for the Site area under the Clean Drinking Water Act (2006).

Despite no **significant** drinking water threats being identified for the Site area, a number of low to moderate drinking water threats are identified for the future use of the property, including the following:

- 1) The application of road salt
- 2) The handling and storage of road salt.
- 3) The storage of snow.
- 4) An activity that reduces the recharge of an aquifer.

Best management strategies should be employed such that the prescribed low to moderate drinking water threats above will not become significant drinking water threats in the future.

## 3.0 Hydrogeology

The following sections below detail the existing hydrogeological conditions of the Site area based on regional studies, local studies, and relevant background information.

#### 3.1 MECP Well Records

A review of the MECP well record database was completed for wells within 500 m of the Site area boundary (**Figure 5**). There are 19 identified well records within 500 m of the Site and the records are be summarized below.

- In stratigraphic order, the majority of well records encountered brown to grey clay, sand, grey to blue clay and shale.
- Of the nineteen (19) well records, thirteen (13) were identified for domestic use, two (2) were constructed for monitoring/observational purposes, one (1) abandoned and three (3) had an unspecified use.
- Of the fourteen (14) wells where pumping test were completed in, there was a maximum reported pumping rate of 75.71 litres per minute (LPM), and a minimum reported pumping rate of 0.95 LPM. The average pumping rate was 17.24 LPM.
- Static water levels range from 1.52 mbgs to 12.19 mbgs.

A summary table of the well records has been appended to this report as Appendix B.

## 3.2 Hydrostratigraphy

The hydrostratigraphic framework of the Humber River Watershed has been outlined in the Humber River Watershed, Scenario Modelling and Analysis Report prepared by the TRCA. There are eight (8) hydrostratigraphic units in the Humber River Watershed. The hydrostratigraphic units are summarized in Table 1 below.

| 101          | ble 1. Hydrosirdligidpily of the holliber | kivel Muleislieu (i | KCA, 2000j           |
|--------------|-------------------------------------------|---------------------|----------------------|
| Unit         | Hydrostratigraphic Unit Name              | Function            | System               |
| Youngest – 1 | Halton Aquitard                           | Aquitard            | Overburden           |
| 2            | Oak Ridges Aquifer                        | Aquifer             | Overburden           |
| 3            | Newmarket Aquitard                        | Aquitard            | Overburden           |
| 4            | Meltwater Channel Aquifers                | Aquifer             | Overburden           |
| 5            | Thorncliffe Aquifer                       | Aquifer             | Overburden           |
| 6            | Sunnybrook Aquitard                       | Aquitard            | Overburden           |
| 7            | Scarborough Aquifer                       | Aquifer             | Overburden           |
| 8            | Upper Bedrock Aquitard                    | Aquitard            | Bedrock Contact Zone |

#### Table 1: Hydrostratigraphy of the Humber River Watershed (TRCA, 2008)

As shown in **Figure 4**, the edge of the Oak Ridges Moraine aquifer is located in the northern portion of the Site. The Oak Ridges Moraine is primarily sand and gravel and provides localized domestic water supplies in the community. The southern portion of the Site is overlain by silty clay to clayey silt glacial till defined as the Halton Till. The Halton Till is a regionally extensive aquitard however, sandy lens may provide water to local water users.

#### 3.3 Groundwater Levels

Regional shallow and deep groundwater flow direction is interpreted to follow surface and bedrock topography and flow south towards the Humber River and Lake Ontario. According to the Oak Ridges Moraine Groundwater Program Mapping, regional groundwater elevations range approximately from 300 meters above sea level (masl) at Old Church Road to 250 at the Humber River branch to the south.

#### 3.4 Groundwater Quality

Groundwater quality within the Humber River Watershed is obtained from monitoring wells within the Provincial Groundwater Monitoring Network (PGMN) and municipal data. Groundwater sampling results are compared to the Ontario Drinking Water Quality Standards (ODWQS) and any exceedances are flagged and investigated to determine the potential source and impact of the exceedance. According to the Humber River Watershed Report Card (2018), groundwater quality within the Humber River Watershed received an overall grading of "C" meaning the groundwater quality is fair. In general, exceedance of the guideline for chloride is noted in areas where excessive road salt application is occurring.

Localized groundwater quality sampling was conducted on the property and results are presented in Section 6.0 below.

## 4.0 Field Work

The following section outlines the field investigation conducted by Crozier staff and others to characterize the hydrogeologic regime and define hydrogeologic constraints for development.

#### 4.1 Monitoring Well Installation

On November 24<sup>th</sup> – 28<sup>th</sup> 2023, ten (10) boreholes were advanced across the property to depths of approximately 8.5 mbgs to 9.1 mbgs. Soil sampling was conducted at regular intervals during drilling to classify the soils. Three (3) boreholes were converted into monitoring wells for hydrogeological purposes. A summary of the monitoring wells is provided in Table 2.

| Monitoring<br>Well Name | Total Depth<br>(mbgs) | Screened<br>Interval (mbgs) | Screened Material                                 |
|-------------------------|-----------------------|-----------------------------|---------------------------------------------------|
| MW 23-3                 | 9.14                  | 6.14 - 9.14                 | Grey silt, with traces of sand and clay.          |
| MW 23-5                 | 9.14                  | 6.14 - 9.14                 | Grey to brown silt, with traces of sand and clay. |
| MW 23-10                | 9.14                  | 6.14 - 9.14                 | Grey to brown silt, with traces of sand and clay. |

#### Table 2: Monitoring Well Details

All monitoring wells were completed as 50 mm PVC pipe wells with 3.0 m, No.18 slotted well screen. The wells were installed to a total depth of 9.14 mbgs within the first water bearing unit encountered during drilling. Please refer to Appendix A for detailed borehole logs and **Figure 6** for a map of the monitoring well locations.

#### 4.2 Groundwater Monitoring

Manual groundwater measurements were collected using an electronic water level meter and automatic level loggers were deployed in select monitoring wells across the Site. The water level loggers were set to measure water levels on an hourly basis to collect a more comprehensive dataset for a greater understanding of the shallow groundwater system. Results of groundwater monitoring to date is covered in Section 6.0 below.

#### 4.3 Groundwater Quality Sampling

Groundwater quality sampling was conducted on May 30, 2024, within one (1) monitoring well, (MW 23-3). Three (3) well volumes were removed prior to sampling using hand purging methods. The raw, unfiltered sample was sent to a third-party laboratory for analysis. The resultant concentrations were compared to Provincial Water Quality Objectives (PWQO). Results are presented in Appendix C.

#### 4.4 Hydraulic Conductivity Testing

In-situ hydraulic conductivity testing was performed at select monitoring wells to estimate the shallow infiltration rates of the soils. A falling head test was conducted at MW 23 - 3 and MW 23 – 10 and results were analyzed using Aqtesolv – Aquifer Test Analysis Software. A discussion of the results is presented in Section 5.3 below.

#### 4.5 Door-to-Door Survey

As per the Region of Peel guidelines, a door-to-door well survey was conducted to evaluate the condition of and location of water supply wells nearby the Site. The survey was conducted in May 2024 via hand delivery to properties within 500 m of the Site boundary. The questionnaire was used to address the following about the wells on adjacent properties:

- Property address
- Existence of a well on the property
- Well use, age, depth
- History of water quantity and quality

A copy of the questionnaire and obtained responses are included in Appendix E. A map of the properties visited is included as **Figure 6**.

#### 5.0 Results

#### 5.1 Groundwater Levels

Two (2) manual groundwater measurements have been collected to date and are summarized in Table 3 below. Note that groundwater monitoring is ongoing on the property and additional results can be provided following additional monitoring.

|                 | Table 0. Oroonam |               |                    |               |
|-----------------|------------------|---------------|--------------------|---------------|
| Monitoring Wall | IcalD            |               | Water Level (mbgs) |               |
| Monitoring Well | Tag ID           | April 4, 2024 | May 30, 2024       | June 28, 2024 |
| MW 23-3         | A394140          | 5.66          | 5.36               | 6.09          |
| MW 23-5         | A394125          | 5.75          | 5.10               | 5.29          |
| MW 23-10        | A394139          | 6.55          | 5.83               | 5.89          |

| Table 3: Groundwater Levels (April 2024 – June 2024) | ) |
|------------------------------------------------------|---|
|------------------------------------------------------|---|

Automatic level loggers were deployed in each monitoring well to capture continuous water levels. Hydrographs of the water level within each monitoring well are presented in Appendix F. As shown in Appendix F, water levels have ranged from 6.69 mbgs to 5.10 mbgs. Minor fluctuations in water level appear to occur following precipitation events. MW 23 - 3 appears to respond more than MW 23 - 5 and MW 23 - 10 to precipitation events; following rainfall, water level gradually increases over a few hours. Water level subsequently decreases gradually.

The monitoring wells are installed within a grey silt unit located 4.57 m below ground surface. This unit is representative of a leaky confined unit as demonstrated by the minor fluctuations recorded by the automatic level loggers. Therefore, the water bearing silt unit is slightly responsive to seasonal change. It is interpreted that the water level recorded in April 2024 is representative of seasonally high-water levels (**Figure 7**). It is anticipated that water levels will drop into the drier season and rise again next spring.

#### 5.2 Groundwater Quality

As noted above, one (1) representative groundwater sample was collected from MW 23-3 and submitted to ALS Laboratories for analysis. Resultant concentrations were compared to Provincial Water Quality Objectives (PWQO) to determine if raw groundwater on the Site meets the provincial objectives. The detailed laboratory results are provided in Appendix C.

In summary, the following exceedances of the PWQO were reported:

- E. coli: <10 mg/L
- Total Coliforms: <1000 mg/L
- Total Aluminium: 90.1 mg/L
- Total Cadmium: 0.000852 mg/L
- Total Cobalt: 0.0898 mg/L
- Total Copper: 0.214 mg/L
- Total Iron: 171 mg/L
- Total Lead: 0.0925 mg/L
- Total Nickel: 0.164 mg/L
- Total Phosphorus: 9.81 mg/L
- Total Silver: 0.000368 mg/L
- Total Thallium: 0.000951 mg/L
- Total Uranium: 0.00724 mg/L
- Total Vanadium: 0.159 mg/L
- Total Zinc: 0.414 mg/L

Based on the results, filtration is recommended to meet the PWQO. Please note that design of treatment systems is beyond the scope of this report.

The laboratory results mention that the sample submitted contained a high concentration of solids and dilution was required. The elevated presence of solids is expected with the method of sampling used. Hand purging methods can stir settled sediments at the base of a monitoring well and/or pull in additional sediments through the screen. Crozier recommends additional sampling to occur prior to dewatering (if required) to determine if filtration and/or treatment is required prior to discharge Low flow sampling methods are suggested to eliminate potential high concentrations of solids within the groundwater sample.

#### 5.3 Hydraulic Conductivity Testing

In-situ hydraulic conductivity testing was conducted at MW 23 - 3 and MW 23 - 10. A falling head test was performed at each location using a 3-ft standard slug. Water levels were monitored manually and automatically using a level logger.

It should be noted that both MW 23 - 3 and MW 23 - 10 were screened from 6.10 - 9.15 m (20 - 30 ft) in silt with traces of sand and clay.

The data was analyzed using Hvorslev and Bouwer-Rice methods. The Hvorslev method is used to analyze data within unconfined or confined aquifers, assuming quasi-steady-state flow conditions and neglecting aquifer storativity. Similarly, the Bouwer-Rice method assumes the same conditions as Hvorslev and is used to analyze data within unconfined conditions or leaky confined conditions.

The summary of the analysis results is presented below in Table 4 and calculations are provided in Appendix D.

| Equation    | MW 23 - 3               | MW 23 - 10              |  |
|-------------|-------------------------|-------------------------|--|
| Hvorslev    | 5.56 x 10 <sup>-3</sup> | 4.96 x 10 <sup>-3</sup> |  |
| Bouwer-Rice | 5.56 x 10 <sup>-3</sup> | 4.96 x 10 <sup>-3</sup> |  |
| Geomet      | ric Mean                | 5.26 x 10 <sup>-3</sup> |  |

#### Table 4: In-Situ Hydraulic Conductivity Testing Results

The measured hydraulic conductivity values ranged from  $4.96 \times 10^{-3}$  to  $5.26 \times 10^{-3}$  m/s with a geometric mean of  $5.26 \times 10^{-3}$  m/s. These values are considered high compared to literature values for silts however, this is likely due to the traces of sand mentioned within the geotechnical investigation. It should be noted that the results of the hydraulic conductivity testing are representative of the hydraulic conductivity of the soils immediately around the well screen, approximately 6 meters below surface.

A hydraulic conductivity of 5.26 x 10<sup>-3</sup> m/s corresponds to an infiltration rate of roughly 75 mm/hr based on Table C1 in the Low Impact Development Stormwater Management Planning and Design Guide. This is a reasonable estimate of infiltration rate given the large quantities of sand in the shallow surface material. Note that it is recommended that in-situ infiltration testing (using a Guelph permeameter) be completed in the areas of proposed infiltration features prior to construction to ensure any low impact development features function as designed.

#### 5.4 Door-to-Door Survey Results

At the time of this report, only one (1) response has been received. The response shared has been appended to this report as Appendix E.

The resident indicated that they have a dug well onsite, installed at a depth of approximately 30 feet. The well is estimated to be roughly 50 years old. No water quantity or quality issues have been reported. The homeowner has a water softener treatment system in place.

It is not anticipated that the development will have an impact on any water supply wells within 500 m of the property. The proposed development is residential and only minimal dewatering may be required for construction purposes. Any temporary dewatering will occur within the upper silt unit and not within the domestic water supply unit. It is not anticipated that permanent dewatering will be required as long as the buildings are constructed above the water table.

## 6.0 Design Considerations

#### 6.1 Water Balance

A water balance assessment was conducted to assess potential impacts of the proposed development on the local groundwater conditions. The water balance was conducted under existing (pre-development) and proposed (post-development) conditions. The water balance assessment was conducted in accordance with accepted site condition values from Table 6.3 of the Urban Storm Drainage Criteria Manual: Volume 1 (Urban Drainage and Flood Control District, 2016) and Table 3.1 of the MECP Stormwater Management Planning and Design Manual (MECP, 2003). The appropriate reference tables are provided in Appendix G.

The results of the water balance assessment are presented in Table 5 below.

|                 | s. sommary of Water balance An |              |
|-----------------|--------------------------------|--------------|
| Pre-Development | Post-Development Infiltration  | Infiltration |
| Infiltration    | without Mitigation             | Deficit      |
| (mm/yr)         | (mm/yr)                        | (mm/yr)      |
| 175.64          | 158.64                         | 17.01        |

#### Table 5: Summary of Water Balance Analysis

#### 6.1.1 Methodology

The water balance on a site can be estimated from the following equation described in Thornthwaite and Mather 1957:

$$\mathsf{P} = \mathsf{S} + \mathsf{R} + \mathsf{I} + \mathsf{ET}$$

Where: P = precipitation

- S = change in groundwater storage
- R = surface water runoff
- I = infiltration
- ET = evapotranspiration/evaporation

The components of the water balance equation can be estimated using field observations of drainage conditions, land cover, soil types, groundwater conditions and local climate records.

## 6.1.2 Precipitation (P)

The nearest climate station to the Site is located approximately 5.79 km southwest of the Site and is known as Albion Field Centre Climate Station Number 6150103 (43°55'00.000" N, 79°50'00.000" W, elevation of 281.90 masl). Monthly average precipitation and climate data from 1981 – 2010 was used to complete the water balance calculations for the Site. The long-term monthly average for precipitation and climate is shown in Table 6 below.

| Parameter             | Jan  | Feb  | Mar  | Apr | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Total              |
|-----------------------|------|------|------|-----|------|------|------|------|------|------|------|------|--------------------|
| Precipitation<br>(mm) | 60.4 | 50.2 | 50.3 | 67  | 76.1 | 75.5 | 81.8 | 77.4 | 75.0 | 68.3 | 81.7 | 57.7 | 821.4 <sup>1</sup> |
| Temperature<br>(°C)   | -7.0 | -5.9 | -1.4 | 6.1 | 12.4 | 17.3 | 19.9 | 19.1 | 14.3 | 8.1  | 2.1  | -3.9 | 6.7 <sup>2</sup>   |

#### Table 6: Climate Data (1981 – 2010) for Albion Field Centre Climate Station

Total average annual precipitation from 1981-2010
 Average annual temperature from 1981-2010

2. Average annual temperature from 1981-2010

Therefore, based on the data above, the long-term annual average precipitation for the area is 821.4 mm/year and the long-term average temperature for the Site area is 6.7 °C.

## 6.1.3 Storage (S)

Long-term groundwater storage (S) is assumed to be negligible as no evidence of groundwater impact on significant groundwater pumping or withdrawal is noted in regional studies of the area. The seasonal changes in water levels are expected to balance annually.

#### 6.1.4 Evapotranspiration (ET)

The rate of evapotranspiration is a function of the water holding capacity of the soil, soil and vegetation type and land cover. Through the Thornthwaite and Mather method or a soil moisture balance approach and local climate data, the Potential Evapotranspiration (PET) and the Actual Evapotranspiration (AET) can be calculated (see Appendix G) using the following equations:

$$PET = 16 \times \left(\frac{10Ta}{H_i}\right)^a$$

Where: Ta = average daily temperature, 0 degrees for negative temperature months

Hi = heat index value, assuming 12 hours per day, 30 days a month of daylight

The average heat index value is estimated using the following equation:

$$Hi = \sum_{i=1}^{12} \left(\frac{10Ta}{5}\right)^{1.514}$$

The evapotranspiration factor ( $\alpha$ ) is determined using the following equation:

 $\alpha = 0.49 + (0.0179 \times H_i) - (0.0000771 \times H_i^2) + (0.000000675 \times H_i^3)$ 

PET is adjusted to account for the average number of hours of daylight per month for a given location. The adjustment factor is dependent on the subject property's latitude and is presented in Appendix D (Thornthwaite and Mather, 1957). The PET is multiplied by the adjustment factor per month to determine the Adjusted Potential Evapotranspiration (PET<sub>adj</sub>).

The Actual Evapotranspiration (AET) is determined using the following equation:

$$AET = PET_{adj} - \Delta S$$

The Change in Soil Storage ( $\Delta$ S) is depended on the types of soil on the property and the Accumulated Potential Water Loss (APWL) per month. The Change in Soil Storage and Accumulated Potential Water Loss can be calculated using the following equations:

$$\Delta S = S_{mc} \mathbf{x}$$

Where: S<sub>mc</sub> = soil moisture capacity

APWL = accumulated potential water loss

For 
$$\Delta P < 0$$
:  $APWL = -\Sigma_{i=0}^{12} PET_i$ 

For 
$$\Delta P < 0$$
:  $APWL = \frac{ln(\frac{|AET-PET|}{S_{mc}})}{S_{mc}}$ 

According to the Ministry of Agricultural, Food and Rural Affairs (OMAFRA), AgMaps mapping tool, the soil type on the property was identified as silt loam known as Type C Soil. Using the Ministry Environment, Conservation and Parks (MECP) Stormwater Management and Design Manual Table 3.1. (2003), the soil moisture capacity was estimated to be 200 mm for Soil Type B/C, under pasture and shrubs landscape conditions.

Therefore, based on local climate conditions the Actual Evapotranspiration (AET) is calculated to be 581.5 mm/year.

6.1.5 Water Surplus (R + I)

The difference between mean annual P and mean annual ET outputs the amount of water surplus for the Site. The water surplus either infiltrates (I) into the soil or travels across the site as runoff I.

The distribution of water that infiltrates into the soil is a function of an infiltration factor as described in Table 3.1 of the MECP Stormwater Management Planning and Design Manual (MECP, 2003). The infiltration factor for the Site is assumed to be 0.70 based on topographic factor of 0.3 flat land, a soils factor of 0.3 was for a Soil Type B/C, and a land cover factor of 0.1 for open area.

The calculated water surplus available for infiltration or runoff is 240 mm/year. Using MECP methodology, the water balance components, independent of temperature, infiltration and runoff are calculated to be 168 mm/year and 72 mm/year respectively.

The water balance components were used to estimate the pre-development and postdevelopment water balance scenarios. Detailed water balance calculations for the subject property can be seen in Appendix G.

## 6.1.6 Pre-Development Infiltration

The pre-development water balance calculations are presented in Appendix G. Under existing conditions, the infiltration for the Site is calculated to be 175.64 mm/yr.

#### 6.1.7 Post-Development Infiltration

To complete the post-development infiltration calculation, the proposed development was separated by land use and assigned a percent imperviousness. Based on the water balance components, the calculated post-development infiltration volumes are estimated to be 158.64 mm/yr. In comparing the pre and post development infiltration volumes, the proposed development has the potential to decrease by 9%.

#### 6.1.8 Water Balance Impact Assessment

Based on the results of the water balance, the proposed development has the potential to decrease infiltration by 17.01 mm/yr. Low impact development features should be designed to infiltrate 17.01 mm/yr to achieve water balance.

#### 6.2 Short-Term & Long Term Dewatering

Discussion on the potential for future dewatering below is based on the interaction between the groundwater surface and proposed design elements for the Site.

If proposed building footings are to be extended below the reported seasonally high groundwater conditions, it can be expected that short-term and/or long-term groundwater dewatering will be required. It should be noted that dependent on the required discharge volumes during and post-construction, additional permitting requirements may apply. If construction volumes are expected to fall between 50,000 L/day and 400,000 L/day registration with the MECP Environmental Activity Sector Register is required. If construction dewatering volumes are to exceed 400,000 L/day, a Permit to Take Water will be required. Similarly, if daily permanent dewatering volumes are to exceed 50,000 L/day post-construction, an additional Permit to Take Water will be required for the groundwater discharge. Local permitting will also likely be required prior to any groundwater discharge.

It is presumed that groundwater dewatering volumes will be low is due to the deep groundwater conditions found on Site. However, groundwater dewatering volumes should be evaluated once final footings for the proposed buildings are determined.

## 6.3 Contingency Plan for Well Complaints

In the event of any well complaints from private water supply wells within 500 m of the Site, the following steps will be implemented to ensure a continued oversight of groundwater quantity and quality in the area during and following construction.

Based on the Hydrogeological Study requirements outlined in the Public Works Design, Specifications & Procedures Manual prepared by the Region of Peel (Region of Peel, 2009), Crozier recommends the Owner to conduct monitoring throughout construction, and one (1) year after the completion of construction. Given the assumption that groundwater flows in the southeastern direction, Crozier suggests the Owner to monitor MW 23-10, as it is the most down gradient monitoring well on Site and has the highest potential of being impacted by future On-Site activities.

As mentioned in Section 6.3 a raw groundwater sample was taken to establish baseline conditions for groundwater quality within the Site area. Within the monitoring period, yearly groundwater samples should be taken to ensure no interference with groundwater quality and that no exceedances of the PWQO have occurred.

Residences within 500 m of the Site area will be provided contact information (by the Owner) to address any well complaints. On site activities must be stopped and immediate Site investigation will be launched to address and resolve any negatively influencing factors on neighboring properties.

## 7.0 Conclusions & Recommendations

Based on the information presented above, Crozier is prepared to make the following conclusions and recommendations:

- The shallow surficial soils are primarily sandy silt atop clayey silt with trace sand and gravel. The Site is situated at the edge of the Oak Ridges Moraine and variable amounts of sand is expected to be encountered across the Site.
- Water levels have ranged from 5.10 mbgs to 7.35 mbgs within the shallow water bearing unit. Seasonally high groundwater elevations were captured in Spring 2024 and range from 260.96 masl at MW23-10 to 265.99 masl at MW23-5.
- The water bearing unit can be characterized as leaky confined and minor fluctuations in water level can be expected due to seasonal change and precipitation.
- According to the MECP Source Protection Information Atlas, the Site atop a highly vulnerable aquifer, however, no significant drinking water threats and source protection policies are identified for the Site Area.
- In-situ hydraulic conductivity testing was completed at 2 of the 3 onsite wells and a geometric mean of 5.26 x 10-3 m/s was estimated for the shallow soils. This corresponds to an infiltration rate of approximately 75 mm/hr.
- Note that it is recommended that localized Guelph Permeameter testing be completed prior to implementation of any LID infrastructure to confirm LIDs will function as designed.
- A site wide water balance was completed for the site. Using 175.64 mm/yr and postdevelopment infiltration was determined to be 158.64 mm/yr. Therefore, the infiltration deficit is calculated to be 17.01 mm/yr.
- Groundwater monitoring is ongoing, note that results and conclusions will be updated following the completion of the monitoring period.

Respectfully submitted,

C.F. CROZIER & ASSOCIATES INC.

Victoria Mazur, Engineering Intern Hydrogeology, Land Development /stm

C.F. CROZIER & ASSOCIATES INC.

2

Chris Gerrits, M.Sc., P.Eng. Manager, Hydrogeology

J:\2200\2227- 2818963 Ontario Inc\6259- 15441 Mount Pleasant Rd\Reports\Hydrogeology\2024.07.05\_6259\_Hydrogeological Investigation Report.docx

## 8.0 References

Chapman, L.J. and D.F. Putnam. 1984. The Physiography of Southern Ontario, 3rd Edition. Ontario Geological Survey, Special Volume 2.

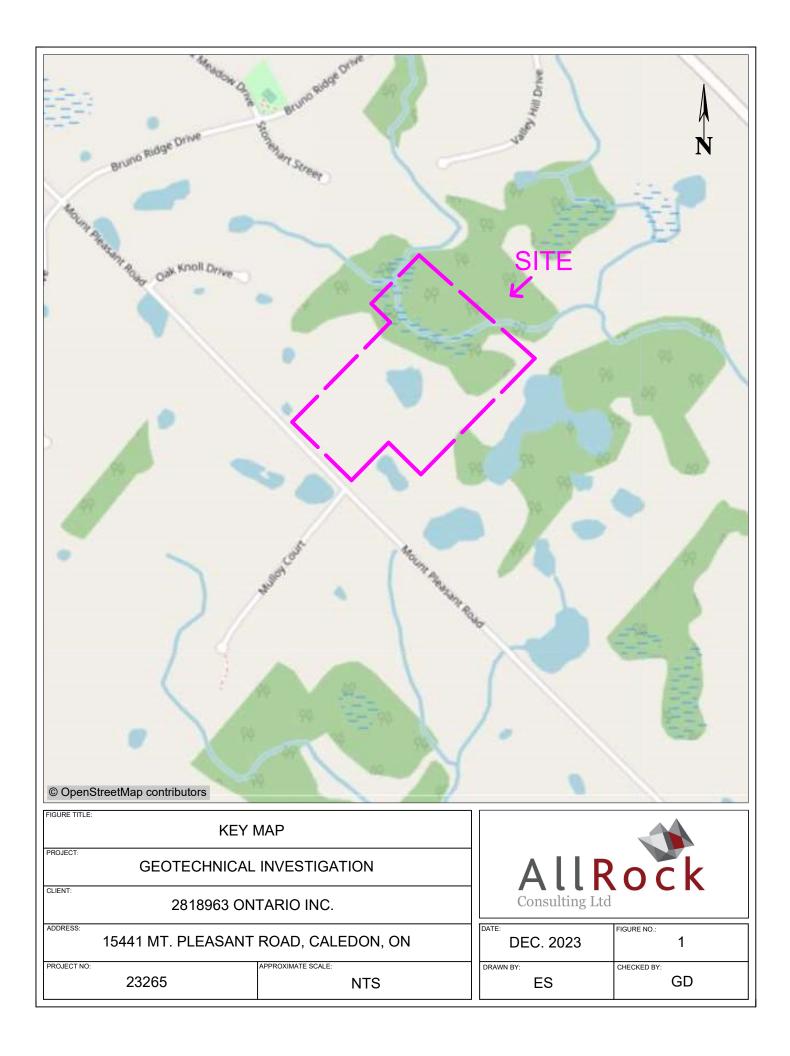
Ontario Geological Survey. 1990. Bedrock Topography. Retrieved from: http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth

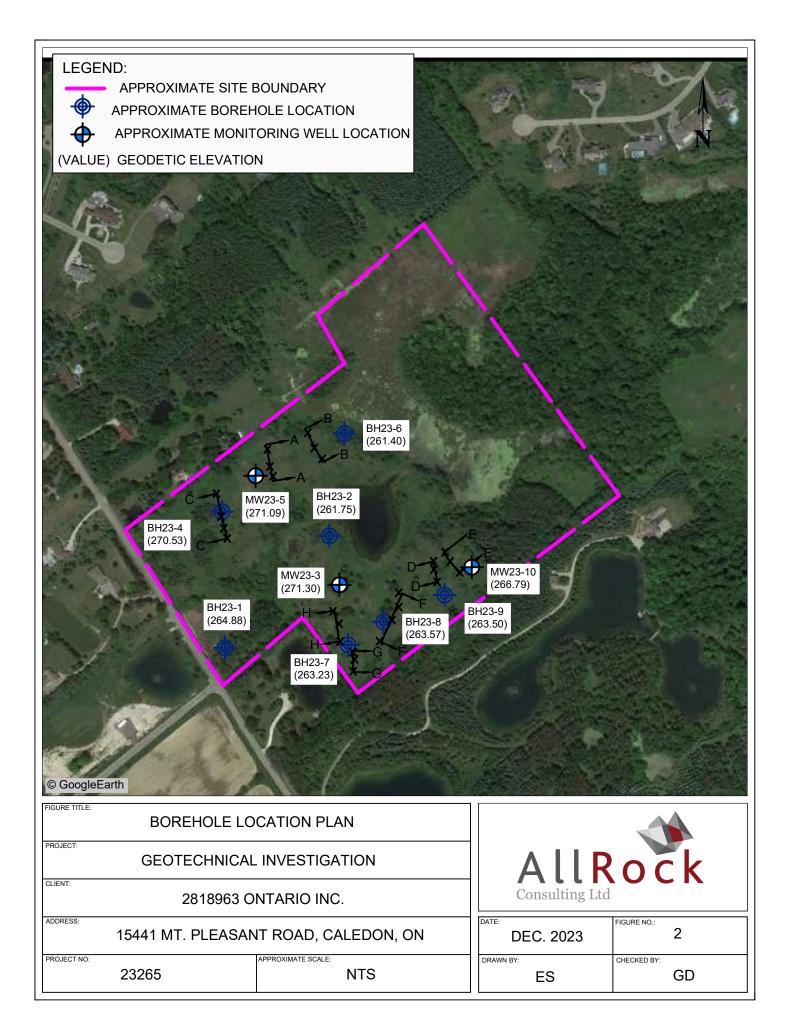
Ontario Ministry of Environment, Conservation and Parks. April 2024. Source Protection Information Atlas. Retrieved from:

https://www.gisapplication.lrc.gov.on.ca/SourceWaterProtection/Index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-US

Toronto and Region Conservation Authority. 2008. Humber River Watershed, Scenario Modelling and Analysis Report. Retrieved from: 1 (trcaca.s3.ca-central-1.amazonaws.com)

# APPENDIX A


Monitoring Well Logs

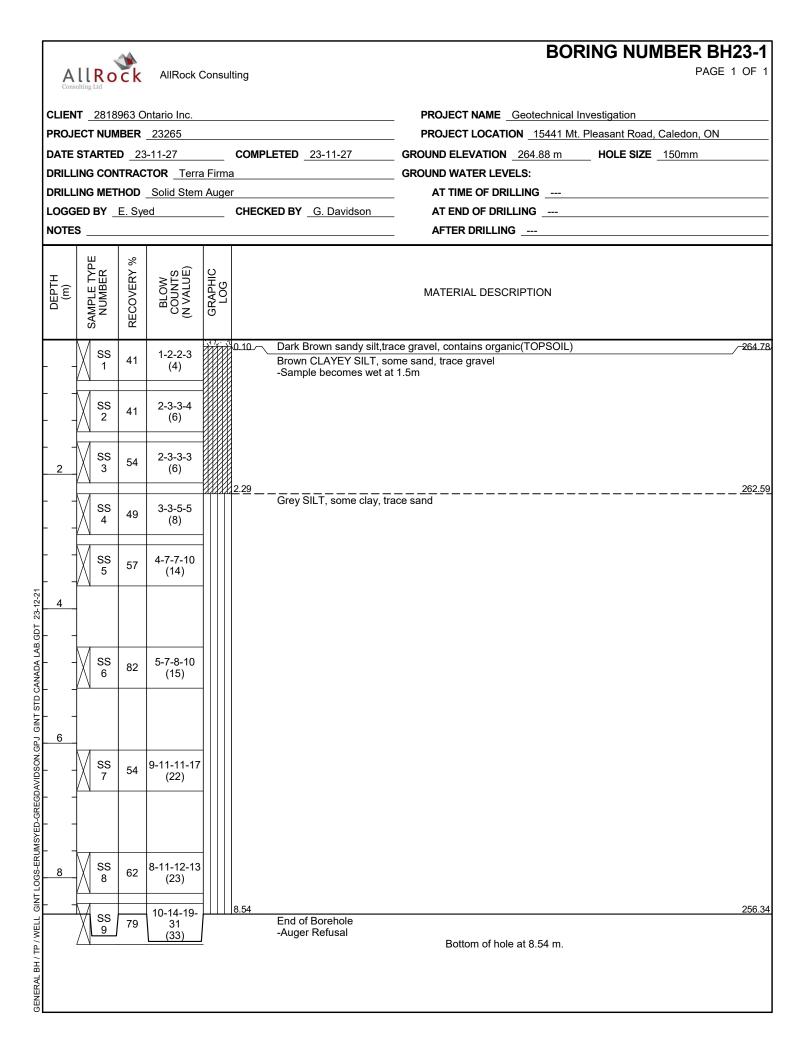



AllRock Consulting Ltd 24 Brydon Drive, Unit #5 Toronto, ON M9W 5R6 1-844-440-7625 www.allrockconsulting.com

## **APPENDIX A**

**Borehole Location Plan** 








AllRock Consulting Ltd 24 Brydon Drive, Unit #5 Toronto, ON M9W 5R6 1-844-440-7625 www.allrockconsulting.com

## **APPENDIX B**

Borehole Logs



|                                                                                 |                       |              |                             |                |                                                                                   | BORING NUMBER BH                                      | 123-2  |
|---------------------------------------------------------------------------------|-----------------------|--------------|-----------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|--------|
|                                                                                 |                       | ck           | AllRock                     | Consu          | ılting                                                                            | PAGE                                                  | 1 OF 1 |
| CLIEN                                                                           | T _ 2818              | 963 C        | Intario Inc.                |                |                                                                                   | PROJECT NAME _ Geotechnical Investigation             |        |
|                                                                                 |                       |              | 23265                       |                |                                                                                   | PROJECT LOCATION 15441 Mt. Pleasant Road, Caledon, ON |        |
| DATE                                                                            | STARTE                | <b>D</b> _23 | 3-11-27                     |                | <b>COMPLETED</b> 23-11-27                                                         | GROUND ELEVATION _261.75 m HOLE SIZE _150mm           |        |
| DRILL                                                                           |                       | ITRAC        | TOR Terr                    | a Firm         | a                                                                                 | _ GROUND WATER LEVELS:                                |        |
| DRILL                                                                           | ING MET               | HOD          | Solid Sten                  | n Auge         | er                                                                                | AT TIME OF DRILLING                                   |        |
| LOGG                                                                            | ED BY _               | E. Sye       | ed                          |                | CHECKED BY G. Davidson                                                            | AT END OF DRILLING                                    |        |
| NOTES                                                                           |                       | 1            | 1                           | 1              | 1                                                                                 | AFTER DRILLING                                        |        |
| DEPTH<br>(m)                                                                    | SAMPLE TYPE<br>NUMBER | RECOVERY %   | BLOW<br>COUNTS<br>(N VALUE) | GRAPHIC<br>LOG |                                                                                   | MATERIAL DESCRIPTION                                  |        |
|                                                                                 | 1                     | 98           | 1-2-3-6<br>(5)              |                | 0.10 Dark Brown sandy silt,tra<br>Brown CLAYEY SILT, so<br>-Sample becomes wet at |                                                       | 261.65 |
|                                                                                 | 2                     | 98           | 3-5-8-11<br>(13)            |                |                                                                                   |                                                       |        |
| 2                                                                               | 3                     | 98           | 5-6-7-10<br>(13)            |                |                                                                                   |                                                       |        |
|                                                                                 | 4                     | 90           | 5-7-7-9<br>(14)             |                |                                                                                   |                                                       |        |
|                                                                                 | 5                     | 98           | 5-7-7-9<br>(14)             |                |                                                                                   |                                                       |        |
| GDT 23-12-21<br>+<br>+<br>+                                                     |                       |              |                             |                | 4.47                                                                              |                                                       | 257.28 |
| :ANADA LAB.<br>I<br>I                                                           | 6                     | 90           | 4-4-5-6<br>(9)              |                | Grey SILT, some clay, tra                                                         | ace sand                                              |        |
| 9 GINT STD C                                                                    |                       |              |                             |                |                                                                                   |                                                       |        |
| GENERAL BH / TP / WELL GINT LOGS-ERUMSYED-GREGDAVIDSON.GPJ GINT STD CANADA LAB. | 7                     | 90           | 11-16-19-<br>20<br>(35)     | -              |                                                                                   |                                                       |        |
| INT LOGS-ERUMSYEI                                                               | 8                     | 98           | 3-3-3-5<br>(6)              | -              |                                                                                   |                                                       |        |
|                                                                                 | 9                     | 79           | 3-3-7-8<br>(10)             |                | 9.15                                                                              |                                                       | 252.60 |
| SAL BH / -                                                                      |                       |              |                             |                | End of Borehole                                                                   | Bottom of hole at 9.14 m.                             | 202.00 |
| GENER                                                                           |                       |              |                             |                |                                                                                   |                                                       |        |

| A                    | LILR O                | ok<br>ck   | AllRock                     | Consu          | Ilting |                                                                        | ١                                              | WELL NUMB             | ER MW23-3<br>PAGE 1 OF 1                   |
|----------------------|-----------------------|------------|-----------------------------|----------------|--------|------------------------------------------------------------------------|------------------------------------------------|-----------------------|--------------------------------------------|
| CLIER                | <b>IT</b> <u>2818</u> | 963 C      | Intario Inc.                |                |        |                                                                        | PROJECT NAME _ Geotechnic                      | al Investigation      |                                            |
| PROJ                 | ECT NUN               | IBER       | 23265                       |                |        |                                                                        | PROJECT LOCATION _15441                        | Mt. Pleasant Road, Ca | aledon, ON                                 |
| DATE                 | STARTE                | D _23      | 8-11-28                     |                | COMPL  | ETED 23-11-28                                                          | GROUND ELEVATION 271.3 m                       | HOLE SIZE 1           | 50mm                                       |
| DRILI                | ING CON               | ITRAC      | TOR Terra                   | a Firm         | а      |                                                                        | GROUND WATER LEVELS:                           |                       |                                            |
| DRILI                | ING MET               | HOD        | Solid Stem                  | Auge           | er     |                                                                        | AT TIME OF DRILLING                            |                       |                                            |
| LOGO                 | ED BY _               | E. Sy      | ed                          |                | CHECK  | ED BY G. Davidson                                                      |                                                |                       |                                            |
| NOTE                 | S                     |            |                             |                | 1      |                                                                        | _ <b>V</b> AFTER DRILLING _ 7.46 m /           | Elev 263.84 m         |                                            |
| DEPTH<br>(m)         | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | GRAPHIC<br>LOG |        |                                                                        | IAL DESCRIPTION                                |                       | /ELL DIAGRAM                               |
|                      | 1                     | 74         | 2-2-3-4<br>(5)              |                | 0.10   | Dark Brown sandy silt,tra<br>Brown SANDY SILT<br>-Samples become wet a | ace gravel, contains organic (TOPSOI<br>t 4.57 | L)271.20              | Flushmount<br>Cap                          |
|                      | 2                     | 84         | 2-2-3-4<br>(5)              |                |        |                                                                        |                                                |                       |                                            |
| 2                    | 3                     | 66         | 2-3-2-4<br>(5)              |                |        |                                                                        |                                                |                       |                                            |
|                      | 4                     | 98         | 4-6-9-11<br>(15)            |                |        |                                                                        |                                                |                       | C Backfill with<br>Auger                   |
| <br>                 | 5                     | 41         | 3-4-9-13<br>(13)            |                |        |                                                                        |                                                |                       | Cuttings<br>50 mm<br>diameter pvc<br>riser |
| ADA LAB.GDT 23-12-21 | 6                     | 98         | 6-9-11-13<br>(20)           |                |        |                                                                        |                                                |                       |                                            |
|                      |                       |            |                             |                | 6.10   |                                                                        |                                                | 265.20                | Bentonite<br>Seal                          |
|                      | 7                     | 90         | 7-12-12-15<br>(24)          |                |        | Grey SILT, trace sand ar                                               | nd clay                                        |                       |                                            |
|                      | <br>                  |            |                             |                | Ţ      |                                                                        |                                                |                       | Filter Sand<br>50 mm                       |
|                      | 8                     | 33         | 8-11-7-9<br>(18)            |                |        |                                                                        |                                                |                       | diameter pvc<br>screen                     |
|                      | 9                     | 41         | 4-7-10-11<br>(17)           |                | 9.15   |                                                                        |                                                | 262.15                |                                            |
| ENERAL BH            |                       |            |                             |                |        | End of Borehole<br>Bo                                                  | ttom of hole at 9.14 m.                        |                       |                                            |
| 0                    |                       |            |                             |                |        |                                                                        |                                                |                       |                                            |

|                                                                                 | A           | llRo                  | o<br>c k   | AllRock                     | Consi          | ulting |              |                           |                       | BORING NUMBER BH23<br>PAGE 1 O                |              |
|---------------------------------------------------------------------------------|-------------|-----------------------|------------|-----------------------------|----------------|--------|--------------|---------------------------|-----------------------|-----------------------------------------------|--------------|
|                                                                                 | Consu       | lting Ltd             |            |                             |                |        |              |                           |                       |                                               |              |
|                                                                                 |             |                       |            | Ontario Inc.                |                |        |              |                           |                       |                                               |              |
|                                                                                 |             |                       |            | 23265                       |                |        |              |                           |                       |                                               |              |
|                                                                                 |             |                       |            |                             |                |        |              |                           |                       | _ GROUND ELEVATION _270.53 m HOLE SIZE _150mm |              |
|                                                                                 |             |                       |            | TOR Terra                   |                |        |              |                           |                       | _ GROUND WATER LEVELS:                        |              |
|                                                                                 |             |                       |            | Solid Stem                  |                |        |              |                           |                       | AT TIME OF DRILLING                           |              |
|                                                                                 |             |                       |            | ed                          |                | CHEC   | KED BY       | G. Davids                 | son                   |                                               |              |
|                                                                                 |             | ·                     | 1          | 1                           | 1              | 1      |              |                           |                       | _ AFTER DRILLING                              |              |
| DEPTH                                                                           | (m)         | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | GRAPHIC<br>LOG |        |              |                           |                       | MATERIAL DESCRIPTION                          |              |
| -                                                                               | -           | 1                     | 98         | 3-3-5-6<br>(8)              |                | 0.10   |              | Brown sand<br>n SANDY S   |                       | ace gravel, contains organic(TOPSOIL)         | <u>′0.43</u> |
| -                                                                               | -<br>-      | 2                     | 98         | 2-3-3-3<br>(6)              |                |        |              |                           |                       |                                               |              |
| -                                                                               | 2           | 3                     | 98         | 3-3-3-2<br>(6)              |                |        |              |                           |                       |                                               |              |
| -                                                                               | -           | 4                     | 90         | 3-4-10-12<br>(14)           |                |        |              |                           |                       |                                               | 7.40         |
| -                                                                               |             | 5                     | 98         | 4-11-11-13<br>(22)          |                | 3.05   | Grey<br>-Sam | to brown SI<br>ples becom | LT, trace<br>e wet at | e sand and clav                               | <u>87.48</u> |
| GDT 23-                                                                         | 4           |                       |            |                             |                |        |              |                           |                       |                                               |              |
| D CANADA LAI                                                                    | -           | 6                     | 90         | 7-20-22-48<br>(42)          |                |        |              |                           |                       |                                               |              |
| GPJ GINT ST                                                                     | 6           |                       |            |                             |                |        |              |                           |                       |                                               |              |
| GREGDAVIDSON.(                                                                  | -           | 7                     | 98         | 10-11-11-<br>11<br>(22)     | -              |        |              |                           |                       |                                               |              |
| GENERAL BH / TP / WELL GINT LOGS-ERUMSYED-GREGDAVIDSON.GPJ GINT STD CANADA LAB. | -<br>-<br>8 | 8                     | 98         | 9-11-13-14<br>(24)          |                |        |              |                           |                       |                                               |              |
| P/WELL GINT                                                                     |             | 9                     | 98         | 10-10-17-<br>20<br>(27)     |                | 0.45   |              |                           |                       |                                               | 4.00         |
| É/H                                                                             |             |                       | L          | I                           |                | 9.15   | End          | of Borehole               |                       |                                               | <u>31.38</u> |
| RAL B                                                                           |             |                       |            |                             |                |        |              |                           |                       | Bottom of hole at 9.14 m.                     |              |
| ENEF                                                                            |             |                       |            |                             |                |        |              |                           |                       |                                               |              |
| ڻ<br>ا                                                                          |             |                       |            |                             |                |        |              |                           |                       |                                               |              |

| A                                                                              | LLR O                 | o<br>c k   | AllRock (                   | Consu          | lting     |                                                               | W                                                | ELL NUMBI            | ER MW23-5<br>PAGE 1 OF 1                       |
|--------------------------------------------------------------------------------|-----------------------|------------|-----------------------------|----------------|-----------|---------------------------------------------------------------|--------------------------------------------------|----------------------|------------------------------------------------|
| CLIEN                                                                          | T _2818               | 963 C      | Intario Inc.                |                |           |                                                               | PROJECT NAME Geotechnical                        | Investigation        |                                                |
| PROJ                                                                           | ECT NUN               | IBER       | 23265                       |                |           |                                                               | PROJECT LOCATION 15441 Mt                        | . Pleasant Road, Cal | edon, ON                                       |
| DATE                                                                           | STARTE                | D _23      | 3-11-24                     |                | COMPLETED | <b>D</b> _23-11-24                                            | GROUND ELEVATION 271.09 m                        | HOLE SIZE 15         | 0mm                                            |
|                                                                                |                       |            |                             |                |           |                                                               | GROUND WATER LEVELS:                             |                      |                                                |
|                                                                                |                       |            | Solid Stem                  |                |           |                                                               |                                                  |                      |                                                |
|                                                                                |                       |            |                             |                | CHECKED B | Y G. Davidson                                                 |                                                  |                      |                                                |
| NOTE                                                                           | s                     | 1          | 1                           | 1              | 1         |                                                               | _ 🖳 🖳 AFTER DRILLING _6.50 m / El                | ev 264.59 m          |                                                |
| DEPTH<br>(m)                                                                   | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | GRAPHIC<br>LOG |           |                                                               | IAL DESCRIPTION                                  |                      | ell Diagram                                    |
|                                                                                | 1                     | 98         | 1-1-3-4<br>(4)              |                | Brov      | k Brown sandy silt,tra<br>wn SANDY SILT<br>mples become wet a | ace gravel, contains organic (TOPSOIL)<br>t 4.57 | <u>~270.99</u>       | Flushmount<br>Cap                              |
|                                                                                | 2                     | 98         | 2-3-3-5<br>(6)              |                |           |                                                               |                                                  |                      |                                                |
| 2                                                                              | 3                     | 90         | 2-3-3-6<br>(6)              |                |           |                                                               |                                                  |                      |                                                |
|                                                                                | 4                     | 90         | 5-6-7-14<br>(13)            |                |           |                                                               |                                                  |                      | Backfill with                                  |
|                                                                                | 5                     | 90         | 9-10-11-20<br>(21)          |                |           |                                                               |                                                  |                      | Cuttings<br>50 mm<br>diameter pvc<br>riser     |
| 3.GDT 23-12-21                                                                 |                       |            |                             |                | 4.57      |                                                               |                                                  | 266.52               |                                                |
|                                                                                | 6                     | 90         | 9-12-16-23<br>(28)          |                | Gre       | y to brown SILT, trac                                         | e sand and clay                                  |                      |                                                |
|                                                                                |                       |            |                             |                |           |                                                               |                                                  |                      | Bentonite<br>Seal                              |
| GREGDAVIDSON.C                                                                 | 7                     | 98         | 10-12-14-<br>25<br>(26)     |                | Ţ         |                                                               |                                                  |                      |                                                |
| GENERAL BH / IP / WELL GINI LOGS-ERUMSYED-GREGDAVIDSON.GPJ GINI SID CANADA LAB | 8                     | 98         | 18-26-39-<br>35<br>(65)     |                |           |                                                               |                                                  |                      | Filter Sand<br>50 mm<br>diameter pvc<br>screen |
|                                                                                | 9                     | 98         | 10-30-20-<br>18<br>(50)     |                | 9.15      |                                                               |                                                  | 261.94               |                                                |
| ENERAL BH                                                                      |                       | -          |                             |                |           | l of Borehole<br>Bo                                           | ttom of hole at 9.14 m.                          |                      |                                                |
| ט                                                                              |                       |            |                             |                |           |                                                               |                                                  |                      |                                                |

|                                                                                 | LILR O                | o<br>c k   | AllRock                     | Consu          | Iting                                                 | BORING NUMBER BH23-6<br>PAGE 1 OF 1                                                           |
|---------------------------------------------------------------------------------|-----------------------|------------|-----------------------------|----------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                 | JT 2919               | 063 0      | Intario Inc.                |                |                                                       | PROJECT NAME Geotechnical Investigation                                                       |
|                                                                                 |                       |            | 23265                       |                |                                                       | PROJECT NAME Geolechnical Investigation PROJECT LOCATION 15441 Mt. Pleasant Road, Caledon, ON |
|                                                                                 |                       |            |                             |                | COMPLETED 23-11-24                                    | GROUND ELEVATION         261.4 m         HOLE SIZE         150mm                              |
|                                                                                 |                       |            |                             |                | a                                                     |                                                                                               |
|                                                                                 |                       |            | Solid Sten                  |                |                                                       | AT TIME OF DRILLING                                                                           |
|                                                                                 |                       |            |                             |                | CHECKED BY <u>G. Davidson</u>                         |                                                                                               |
|                                                                                 | S                     |            |                             |                |                                                       | AFTER DRILLING                                                                                |
| DEPTH<br>(m)                                                                    | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | GRAPHIC<br>LOG |                                                       | MATERIAL DESCRIPTION                                                                          |
|                                                                                 | 1                     | 82         | 1-1-2-4                     |                | 0.10 Dark brown silty sand, tr<br>Brown SAND and SILT | ace gravel (TOPSOIL)                                                                          |
|                                                                                 |                       |            | (3)                         |                | -Samples become wet a                                 | t 4.57                                                                                        |
|                                                                                 | 2                     | 82         | 1-2-2-3<br>(4)              |                |                                                       |                                                                                               |
| 2                                                                               | 3                     | 74         | 3-3-2-3<br>(5)              |                |                                                       |                                                                                               |
|                                                                                 | 4                     | 82         | 5-5-6-7<br>(11)             |                |                                                       |                                                                                               |
|                                                                                 | 5                     | 82         | 3-4-6-7<br>(10)             |                |                                                       |                                                                                               |
| A LAB.GDT 23-12-21                                                              | -<br>-<br>            |            | 2-2-2-3                     |                |                                                       |                                                                                               |
| T STD CANADA                                                                    | 6                     | 90         | (4)                         |                |                                                       |                                                                                               |
| 6<br>6                                                                          |                       |            | 2-2-4-3                     |                |                                                       |                                                                                               |
| ED-GREGDAVID                                                                    |                       | 98         | (6)                         |                |                                                       |                                                                                               |
| GENERAL BH / TP / WELL GINT LOGS-ERUMSYED-GREGDAVIDSON.GPJ GINT STD CANADA LAB. | 8                     | 98         | 2-4-6-6<br>(10)             |                |                                                       |                                                                                               |
|                                                                                 | 9                     | 98         | 6-6-9-8<br>(15)             |                |                                                       |                                                                                               |
| BH/T                                                                            | <u> </u>              | 1          | 1                           |                | End of Borehole                                       | 054.00                                                                                        |
| ENERAL                                                                          |                       |            |                             | <u></u>        | ·,ə.JU                                                | Bottom of hole at 9.14 m.                                                                     |
| ВП                                                                              |                       |            |                             |                |                                                       |                                                                                               |

|                                                                                 | A            |                       | o<br>c k   | AllRock                     | Consu          | lting  |       |                      | BORING NUMBER BH23-<br>PAGE 1 OF                       |     |
|---------------------------------------------------------------------------------|--------------|-----------------------|------------|-----------------------------|----------------|--------|-------|----------------------|--------------------------------------------------------|-----|
|                                                                                 | CLIEN        | <b>T</b> 2818         | 963 C      | Ontario Inc.                |                |        |       |                      | PROJECT NAME Geotechnical Investigation                |     |
| _ I                                                                             |              |                       |            | 23265                       |                |        |       |                      | PROJECT LOCATION _15441 Mt. Pleasant Road, Caledon, ON | _   |
|                                                                                 |              |                       |            |                             |                |        |       |                      | GROUND ELEVATION 263.23 m HOLE SIZE 150mm              |     |
| _ I                                                                             |              |                       |            | TOR Terr                    |                |        |       |                      | GROUND WATER LEVELS:                                   | —   |
|                                                                                 |              |                       |            | Solid Sten                  |                |        |       |                      | AT TIME OF DRILLING                                    |     |
|                                                                                 |              |                       |            |                             |                |        |       | G. Davidson          |                                                        |     |
|                                                                                 |              | S                     |            |                             |                | UNEO   |       | <u>G. Davidson</u>   | AFTER DRILLING                                         | —   |
| ┝                                                                               |              | -                     |            | 1                           | 1              |        |       |                      |                                                        |     |
|                                                                                 | DEPTH<br>(m) | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | GRAPHIC<br>LOG |        |       |                      | MATERIAL DESCRIPTION                                   |     |
|                                                                                 |              |                       |            | 1-1-2-2                     | <u></u>        | 0.10 ~ |       | n sand, trace grav   |                                                        | .13 |
| ┟                                                                               |              | 1                     | 74         | (3)                         |                |        | Brow  | n fine to coarse gra | ined sand, trace gravel                                |     |
|                                                                                 |              |                       |            |                             |                |        |       |                      |                                                        |     |
|                                                                                 |              | 2                     | 84         | 1-2-2-1                     |                |        |       |                      |                                                        |     |
| ł                                                                               |              |                       |            | (4)                         |                |        |       |                      |                                                        |     |
|                                                                                 |              |                       |            |                             |                | 1.52   | Grey  | SAND and SILT, tr    | 261<br>ace clay                                        | ./1 |
|                                                                                 | 2            | 3                     | 66         | 1-1-2-4<br>(3)              |                |        | -Sam  | ples become wet a    | t 3.05m                                                |     |
|                                                                                 |              |                       |            |                             |                |        |       |                      |                                                        |     |
| ┢                                                                               |              |                       |            | 4-5-5-7                     | 1              |        |       |                      |                                                        |     |
|                                                                                 |              | 4                     | 98         | (10)                        |                |        |       |                      |                                                        |     |
|                                                                                 |              |                       |            |                             |                |        |       |                      |                                                        |     |
| ŀ                                                                               |              | 5                     | 41         | 4-6-6-10                    |                |        |       |                      |                                                        |     |
|                                                                                 |              | Ű                     |            | (12)                        |                |        |       |                      |                                                        |     |
| 12-21                                                                           | 4            |                       |            |                             |                |        |       |                      |                                                        |     |
| GDT 23-12-21                                                                    |              |                       |            |                             |                |        |       |                      |                                                        |     |
| GDT                                                                             |              |                       |            |                             |                |        |       |                      |                                                        |     |
| A LAB                                                                           |              |                       |            | 4-7-9-11                    | 1              |        |       |                      |                                                        |     |
| NAD/                                                                            |              | 6                     | 98         | (16)                        |                |        |       |                      |                                                        |     |
| DCA                                                                             |              |                       |            |                             |                |        |       |                      |                                                        |     |
| UT ST                                                                           |              |                       |            |                             |                |        |       |                      |                                                        |     |
| Ч<br>С<br>Г                                                                     | 6            |                       |            |                             |                |        |       |                      |                                                        |     |
| N.GP                                                                            |              |                       |            | 11-11-11-                   |                |        |       |                      |                                                        |     |
| DSO                                                                             |              | 7                     | 90         | 18                          |                |        |       |                      |                                                        |     |
| DAV                                                                             |              |                       |            | (22)                        |                |        |       |                      |                                                        |     |
| GREG                                                                            |              |                       |            |                             |                |        |       |                      |                                                        |     |
| YED-(                                                                           |              |                       |            |                             |                |        |       |                      |                                                        |     |
| NMS                                                                             |              |                       |            |                             |                |        |       |                      |                                                        |     |
| S-ER                                                                            | 8            | 8                     | 33         | 6-9-10-12                   |                |        |       |                      |                                                        |     |
| Plog                                                                            |              |                       |            | (19)                        |                |        |       |                      |                                                        |     |
| GINT                                                                            |              |                       | -          | 16-34-29-                   | -              |        |       |                      |                                                        |     |
| VELL                                                                            |              | 9                     | 41         | 28                          |                |        |       |                      |                                                        |     |
| N / ≤                                                                           |              |                       |            | (63)                        |                | 9.15   |       |                      | 254                                                    | .08 |
| BH /                                                                            |              |                       | •          |                             | <u> </u>       |        | End o | of Borehole          |                                                        |     |
| ERAL.                                                                           |              |                       |            |                             |                |        |       |                      | Bottom of hole at 9.14 m.                              |     |
| GENERAL BH / TP / WELL GINT LOGS-ERUMSYED-GREGDAVIDSON.GPJ GINT STD CANADA LAB. |              |                       |            |                             |                |        |       |                      |                                                        |     |

|                                                                                 |                       |              |                             |                |       |                                                                            | BOI                                                                   | RING NUMBER                  | BH23-8    |
|---------------------------------------------------------------------------------|-----------------------|--------------|-----------------------------|----------------|-------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|-----------|
|                                                                                 |                       | ck           | AllRock                     | Consu          | lting |                                                                            |                                                                       | PA                           | GE 1 OF 1 |
| CLIEN                                                                           | <b>IT</b> <u>2818</u> | 963 C        | Ontario Inc.                |                |       |                                                                            | _ PROJECT NAME _ Geotechnical                                         | Investigation                |           |
|                                                                                 |                       |              | 23265                       |                |       |                                                                            | _ PROJECT LOCATION _15441 Mt                                          | t. Pleasant Road, Caledon, C | DN        |
| DATE                                                                            | STARTE                | <b>D</b> _23 | 3-11-28                     |                | COMPL | <b>_ETED</b> _23-11-28                                                     | GROUND ELEVATION _263.57 m                                            | HOLE SIZE 150mm              |           |
|                                                                                 |                       |              | TOR Terra                   |                |       |                                                                            | GROUND WATER LEVELS:                                                  |                              |           |
| DRILL                                                                           | ING MET               | HOD          | Solid Stem                  | n Auge         |       |                                                                            | AT TIME OF DRILLING                                                   |                              |           |
| LOGG                                                                            | ED BY                 | E. Sy        | ed                          |                | CHECK | ED BY G. Davidson                                                          |                                                                       |                              |           |
| NOTE                                                                            | s                     |              |                             |                |       |                                                                            | AFTER DRILLING                                                        |                              |           |
| DEPTH<br>(m)                                                                    | SAMPLE TYPE<br>NUMBER | RECOVERY %   | BLOW<br>COUNTS<br>(N VALUE) | GRAPHIC<br>LOG |       |                                                                            | MATERIAL DESCRIPTION                                                  |                              |           |
|                                                                                 | 1                     | 98           | 1-2-3-4<br>(5)              |                | 0.10  | Brown sandy silt,trace g<br>Brown CLAYEY SILT, so<br>-Sample sbecome wet a | ravel, contains organic(TOPSOIL<br>ome garvel, travel sand<br>t 3.05m |                              | 263.47    |
|                                                                                 | 2                     | 98           | 3-3-3-4<br>(6)              |                |       |                                                                            |                                                                       |                              |           |
| 2                                                                               | 3                     | 90           | 3-3-4-5<br>(7)              |                |       |                                                                            |                                                                       |                              |           |
|                                                                                 | 4                     | 98           | 3-6-6-9<br>(12)             |                |       |                                                                            |                                                                       |                              |           |
|                                                                                 | 5                     | 98           | 4-8-10-13<br>(18)           |                |       |                                                                            |                                                                       |                              |           |
| B.GDT 23-12-21                                                                  | -                     |              |                             |                | 4.57  |                                                                            |                                                                       |                              | 259.00    |
| D CANADA LA                                                                     | 6                     | 98           | 7-8-11-15<br>(19)           |                |       | Grey to brown SILT, tarc                                                   | e sand and clay                                                       |                              |           |
| I.GPJ GINT ST                                                                   | -<br>                 |              |                             |                |       |                                                                            |                                                                       |                              |           |
| BREGDAVIDSON                                                                    | 8                     | 98           | 8-14-10-15<br>(24)          |                |       |                                                                            |                                                                       |                              |           |
| GENERAL BH / TP / WELL GINT LOGS-ERUMSYED-GREGDAVIDSON.GPJ GINT STD CANADA LAB. | 7                     | 90           | 8-10-11-12<br>(21)          |                |       |                                                                            |                                                                       |                              |           |
| TP / WELL GINT                                                                  | 9                     | 98           | 4-7-9-11<br>(16)            |                | 9.15  |                                                                            |                                                                       |                              | 254.42    |
| BH/                                                                             |                       |              |                             | <u> </u>       |       | End of Borehole                                                            | Dottom of hole -+ 0.44 m                                              |                              | _0        |
| NERAL                                                                           |                       |              |                             |                |       |                                                                            | Bottom of hole at 9.14 m.                                             |                              |           |
| GE                                                                              |                       |              |                             |                |       |                                                                            |                                                                       |                              |           |

|                |                       |            |                             |                |        |                             | BOI                                   | RING NUMBER BH23             | -9      |
|----------------|-----------------------|------------|-----------------------------|----------------|--------|-----------------------------|---------------------------------------|------------------------------|---------|
| A              |                       | ck         | AllRock (                   | Consu          | Ilting |                             |                                       | PAGE 1 OI                    | - 1     |
| CLIEN          | <b>IT</b> _ 2818      | 963 C      | Intario Inc.                |                |        |                             | PROJECT NAME Geotechnical             | Investigation                |         |
| PROJ           | ECT NUM               | IBER       | 23265                       |                |        |                             | PROJECT LOCATION 15441 Mt             | . Pleasant Road, Caledon, ON |         |
| DATE           | STARTE                | D _23      | 8-11-28                     |                | COMP   | PLETED 23-11-28             | GROUND ELEVATION 263.5 m              | HOLE SIZE 150mm              |         |
| DRILL          | ING CON               | ITRAC      | TOR Terra                   | a Firm         | а      |                             | GROUND WATER LEVELS:                  |                              |         |
| DRILL          | ING MET               | HOD        | Solid Stem                  | n Auge         | er     |                             | AT TIME OF DRILLING                   |                              |         |
| LOGG           | ED BY                 | E. Sy      | ed                          |                | CHEC   | KED BY G. Davidson          | AT END OF DRILLING                    |                              |         |
| NOTE           | s                     |            | 1                           |                | 1      |                             | AFTER DRILLING                        |                              |         |
| DEPTH<br>(m)   | SAMPLE TYPE<br>NUMBER | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | GRAPHIC<br>LOG |        |                             | MATERIAL DESCRIPTION                  |                              |         |
|                | 1                     | 98         | 1-2-3-3                     |                | 0.10~  |                             | ce gravel, contains organic (TOPSOIL) | 26                           | 3.40    |
|                |                       | 90         | (5)                         |                |        | Brown SANDY SILT, trac      | e yıdvei                              |                              |         |
|                | 2                     | 98         | 2-4-6-8<br>(10)             |                |        |                             |                                       |                              |         |
| 2              | 3                     | 90         | 3-8-11-14<br>(19)           |                | 2.29   |                             |                                       | 26                           | 1.21    |
|                | 4                     | 98         | 6-7-5-7<br>(12)             |                |        | Brown to grey silt, trace s | and and clay (GLACIAL TILL)           |                              |         |
|                | 5                     | 98         | 3-9-10-10<br>(19)           |                |        |                             |                                       |                              |         |
| B.GDT 23-12-21 | -                     |            |                             |                |        |                             |                                       |                              |         |
| D CANADA LA    | 6                     | 98         | 10-16-18-<br>18<br>(34)     |                |        |                             |                                       |                              |         |
|                |                       |            |                             |                |        |                             |                                       |                              |         |
| REGDAVIDSOI    | 8                     | 98         | 9-14-16-20<br>(30)          | -              |        |                             |                                       |                              |         |
|                | 7                     | 90         | 8-5-14-20<br>(19)           |                |        |                             |                                       |                              |         |
|                | 9                     | 98         | 12-17-16-<br>22<br>(33)     |                | 9.15   |                             |                                       | 25                           | 4.35    |
| ERAL BH / 1    | I                     |            |                             |                | 10.10  | End of Borehole             | Bottom of hole at 9.14 m.             | 23                           | <u></u> |
| U<br>B<br>D    |                       |            |                             |                |        |                             |                                       |                              |         |

| CLIENT _2818963 Ontario Inc.       PROJECT NAME _ Geotechnical Investigation         PROJECT NUMBER _23265       PROJECT LOCATION _15411 ML Pleasant Ro         DATE STARTED _23-11-27       GROUND ELEVATION _266.79 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| PROJECT NUMBER 23265       PROJECT LOCATION 15441 ML Pleasant Ro         DATE STARTED 23-11-27       COMPLETED 23-11-27       GROUND ELEVATION 266.79 m       HOLE SL         DRILLING CONTRACTOR Terra Firma       GROUND WATER LEVELS:       AT TIME OF DRILLING       AT TIME OF DRILLING         DRILLING METHOD Solid Stem Auger       AT TIME OF DRILLING       AT END OF DRILLING       AT END OF DRILLING         NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
| DRILLING CONTRACTOR Terra Firma       GROUND WATER LEVELS:         DRILLING METHOD Solid Stem Auger       AT TIME OF DRILLING         LOGGED BY       E. Syed         NOTES       CHECKED BY         GROUND WATER LEVELS:       AT TIME OF DRILLING         NOTES       CHECKED BY         MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
| DRILLING METHOD _Solid Stem Auger       AT TIME OF DRILLING         LOGGED BY _E. Syed       CHECKED BY _G. Davidson       AT END OF DRILLING         NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>ZE</b> _150mm                               |
| LOGGED BY       E. Syed       CHECKED BY       G. Davidson       AT END OF DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| NOTES       ✓ AFTER DRILLING       7.00 m / Elev 259.79 m         Harden       Notes       Naterial description         Harden       Naterial description       Naterial description         Harden       1       90       1-3-3-6         Image: State       1       1       10-0       266.68         Brown SAND and SILT       Image: State       2       66       5-6-8-13         Image: State       1       3.05       263.74       263.74         Image: State       1       3.05       263.74       263.74         Image: State |                                                |
| Ham       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %       %                                                                                             |                                                |
| H       E       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B                                                                                               |                                                |
| Brown SAND and SILT<br>2 62 4-5-7-8<br>(12)<br>4 70 4-5-6-8<br>(11)<br>3.05<br>Grey to brown SILT, trace sand and clay<br>4 8 2 8-12-16-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WELL DIAGRAM                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flushmount<br>C Cap                            |
| 2       3       6       3       6       82       8-12-16-24         4       70       4-5-6-8       3.05       263.74         4       70       4-5-6-8       3.05       263.74         5       66       5-6-8-13       Grey to brown SILT, trace sand and clay         4       6       82       8-12-16-24       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| 4       70       (11)         3.05       3.05         5       66       5-6-8-13<br>(14)         4       6         6       82         8-12-16-24       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |
| Grey to brown SILT, trace sand and clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C Backfill with<br>A Auger                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cuttings<br>50 mm<br>diameter pvc<br>riser     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bentonite<br>Seal                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Filter Sand<br>50 mm<br>diameter pvc<br>screen |
| - <u>9 98 8-9-9-12 (18)</u><br>- <u>9 98 8-9-9-12 (18)</u><br>- <u>9 98 8-9-9-12 (18)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| End of Borehole Bottom of hole at 9.14 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |



AllRock Consulting Ltd 24 Brydon Drive, Unit #5 Toronto, ON M9W 5R6 1-844-440-7625 www.allrockconsulting.com

## **APPENDIX C**

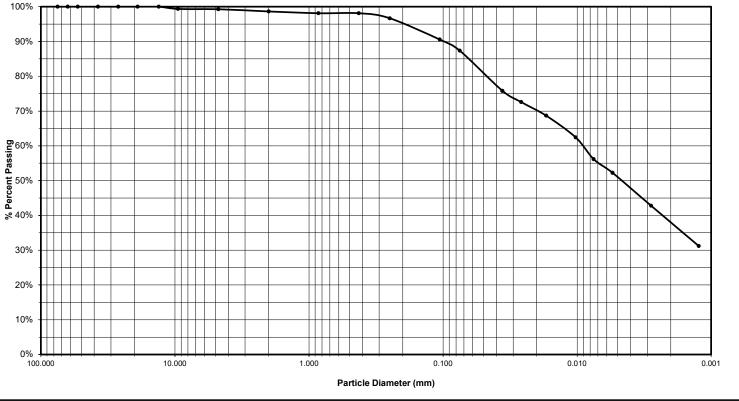
Laboratory Testing Results

| <b>A</b> []<br>onsulting | R    |                | C        | k      |   |         |        |        |       |      |      |      | e An<br>LS-60 |      | sis |      |                |                 |        |               | 24          | Br    | ydo | on   | Dri | ve, l | <b>1g Lt</b><br>Jnit #<br>5, Ont | ŧ5  |
|--------------------------|------|----------------|----------|--------|---|---------|--------|--------|-------|------|------|------|---------------|------|-----|------|----------------|-----------------|--------|---------------|-------------|-------|-----|------|-----|-------|----------------------------------|-----|
| oject:                   |      | Geotech        | nical In | vestig |   | and Slo | pe Sta | bility | / Ass | essn | nent |      |               |      |     | -    |                | umbe            |        |               | 2326        | 55    |     |      |     |       |                                  |     |
| ient:<br>mple No.        | _    | 281896.<br>SS3 | 8 Ontari | o Inc. |   |         |        |        |       |      |      |      |               |      |     |      | ple C<br>ple D |                 | cation |               | 1.52        | -2.13 | 3   |      |     |       |                                  |     |
| te Sampled               | _    | Novemł         | er 24, 2 | 2023   |   |         |        |        |       |      |      |      |               |      |     | Date | Test           | ed:             |        |               | Dece        | embe  |     | 2023 |     |       |                                  |     |
|                          |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     | Mois | sture          | Conte           | nt:    |               | 18.8        | %     |     |      |     |       |                                  |     |
| 100% -                   |      |                |          |        | • | •       | -      | •      |       |      | •    |      |               | •    |     |      | $\neg$         |                 |        |               |             |       |     |      |     |       |                                  |     |
| 90%                      |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                | $\overline{\ }$ |        |               |             |       |     |      |     |       |                                  |     |
| 0.00/                    |      |                |          |        |   |         |        |        |       |      |      |      |               | _    |     |      |                |                 |        |               |             | +     |     |      |     |       |                                  |     |
| 80% -                    |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                |                 |        | $\backslash$  |             |       |     |      |     |       |                                  |     |
| , 70% -                  |      |                |          |        |   |         |        |        |       |      |      | <br> |               |      |     |      | -              |                 |        | $\rightarrow$ |             | +     |     |      |     |       |                                  |     |
| 60%                      |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                |                 |        |               | $\setminus$ |       |     |      |     |       |                                  |     |
| 60% -<br>50% -<br>40% -  |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                |                 |        |               |             | +     |     |      |     |       |                                  |     |
| 50% -                    |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                |                 |        |               |             |       |     |      |     |       |                                  |     |
| 40% -                    |      |                |          |        |   |         |        |        |       |      |      | <br> |               |      |     |      |                |                 |        |               |             |       |     |      |     |       |                                  |     |
| 30%                      |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                |                 |        |               |             |       |     |      |     |       |                                  |     |
| 200/                     |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      | -              |                 |        |               | ++          | +     |     |      |     |       |                                  |     |
| 20% -                    |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                |                 |        |               |             |       |     |      |     |       |                                  |     |
| 10% -                    |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                |                 |        |               | +           | +     |     |      |     |       |                                  |     |
| 0%                       |      |                |          |        |   |         |        |        |       |      |      |      |               |      |     |      |                |                 |        |               |             |       |     |      |     |       |                                  |     |
| 100.                     | .000 | )              |          |        |   |         | 10.    | 000    |       |      |      |      | icle Dia      | 1.00 |     |      |                |                 |        | 0             | .100        |       |     |      |     |       |                                  | 0.0 |

| R (   |         | k                                              |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        | 24     | 4 Br                                                                                                                                                     | ydo                                                                                                                                                                                                                                                                                 | on                                                                                                                                                                                                                                                                                                | Driv                                                                                                                                                              | re, Ur                                                                                                                                                                                                                                                                                                                                   | nit #5                                                                                                                                                                                                                                                                                                                             |
|-------|---------|------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geote | echnica | al Inve                                        | stigation a                                               | and Sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ope St                                                                       | ability                                                                                     | y Ass                                                                                     | sessme                                                                                                 | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            | -                                                                                                                                                                                          |                                                                                                                                                                                                                                            | ation                                                                                                  | 232    | 265                                                                                                                                                      |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
| SS6   |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        | San<br>Dat | iple D<br>e Test                                                                                                                                                                           | epth<br>ed:                                                                                                                                                                                                                                |                                                                                                        | De     | cembe                                                                                                                                                    |                                                                                                                                                                                                                                                                                     | .023                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         | -                                              | -                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              | -                                                                                           |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        | •                                                                                                                                                        |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
|       |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                         |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        |        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |
| 00    |         |                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                           |                                                                                             |                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | 1                                                                                                       |        |            |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                        | 0 100  |                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          | (                                                                                                                                                                                                                                                                                                                                  |
|       |         | Geotechnica<br>2818963 On<br>SS6<br>November 2 | Geotechnical Inves 2818963 Ontario I SS6 November 28, 202 | 2818963 Ontario Inc.         SS6         November 28, 2023         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         • <t< td=""><td>Geotechnical Investigation and SI 2818963 Ontario Inc. SS6 November 28, 2023</td><td>Geotechnical Investigation and Slope St<br/>2818963 Ontario Inc.<br/>SS6<br/>November 28, 2023</td><td>Geotechnical Investigation and Slope Stability 2818963 Ontario Inc. SS6 November 28, 2023</td><td>Geotechnical Investigation and Slope Stability Ass<br/>2818963 Ontario Inc.<br/>SS6<br/>November 28, 2023</td><td>Geotechnical Investigation and Slope Stability Assessm         2818963 Ontario Inc.       SS6         November 28, 2023       Image: Colspan="2"&gt;Image: Colspan="2" Image: Colspan="2" Im</td><td>Geotechnical Investigation and Slope Stability Assessment         2818963 Ontario Inc.       SS6         November 28, 2023       Image: Colspan="2"&gt;Image: Colspan="2" Image: Colspan="2"</td><td>Geotechnical Investigation and Slope Stability Assessment 2818963 Ontario Inc. SS6 November 28, 2023</td><td>LS Ceotechnical Investigation and Slope Stability Assessment 2818963 Ontario Inc. SS6 November 28, 2023</td><td>LS-602</td><td></td><td>Geotechnical Investigation and Slope Stability Assessment       Pro         2818963 Ontario Inc.       San         SS6       San         November 28, 2023       Dat         Moi       Moi</td><td>Geotechnical Investigation and Slope Stability Assessment       Project N         2818963 Ontario Inc.       Sample D         S6       Date Test         November 28, 2023       Date Test         Voember 28, 2023       Voember 28, 2023</td><td>LS-602  Control Investigation and Slope Stability Assessment 2818963 Ontario Inc. S6 November 28, 2023</td><td>LS-602</td><td>LS-602 24<br/>M<br/>Geotechnical Investigation and Slope Stability Assessment 2818963 Ontario Inc. Sample Depth 4.5 Date Tested: Dee Moisture Content: 15.</td><td>LS-602       24 Br         Geotechnical Investigation and Slope Stability Assessment       23265         2818963 Ontario Inc.       Sample Classification:         S56       Sample Depth       4.57-5.37         Date Tested:       December         Moisture Content:       15.4%</td><td>LS-602       24 Bryde<br/>M9W 5R         Geotechnical Investigation and Slope Stability Assessment<br/>2818963 Ontario Inc.       Project Number<br/>Sample Depth<br/>Date Tested:       23265         November 28, 2023       angle Classification:       3265         Moisture Content:       15.4%</td><td>LS-602 24 Brydon M9W 5R6, 24 Brydon M9W 5R6, 25 25 26 26 26 27 27 2818963 Ontario Inc. 25 26 28 2818963 Ontario Inc. 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29</td><td>LS-602       24 Brydon Driv<br/>M9W 5R6, Tord         Geotechnical Investigation and Slope Stability Assessment<br/>2818963 Ontario Inc.       Project Number<br/>Sample Classification:<br/>Sample Depth<br/>Date Tested:       23265         November 28, 2023       4.57-5.33       December 7, 2023         Moisture Content:       15.4%</td><td>LS-602       24 Brydon Drive, Ur<br/>M9W 5R6, Toronto,         Geotechnical Investigation and Slope Stability Assessment<br/>2818963 Ontario Inc.       Sample Classification:<br/>Sample Depth<br/>Date Tested:       23265         November 28, 2023       Date Tested:       December 7, 2023         Moisture Content:       15.4%</td></t<> | Geotechnical Investigation and SI 2818963 Ontario Inc. SS6 November 28, 2023 | Geotechnical Investigation and Slope St<br>2818963 Ontario Inc.<br>SS6<br>November 28, 2023 | Geotechnical Investigation and Slope Stability 2818963 Ontario Inc. SS6 November 28, 2023 | Geotechnical Investigation and Slope Stability Ass<br>2818963 Ontario Inc.<br>SS6<br>November 28, 2023 | Geotechnical Investigation and Slope Stability Assessm         2818963 Ontario Inc.       SS6         November 28, 2023       Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Im | Geotechnical Investigation and Slope Stability Assessment         2818963 Ontario Inc.       SS6         November 28, 2023       Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" | Geotechnical Investigation and Slope Stability Assessment 2818963 Ontario Inc. SS6 November 28, 2023 | LS Ceotechnical Investigation and Slope Stability Assessment 2818963 Ontario Inc. SS6 November 28, 2023 | LS-602 |            | Geotechnical Investigation and Slope Stability Assessment       Pro         2818963 Ontario Inc.       San         SS6       San         November 28, 2023       Dat         Moi       Moi | Geotechnical Investigation and Slope Stability Assessment       Project N         2818963 Ontario Inc.       Sample D         S6       Date Test         November 28, 2023       Date Test         Voember 28, 2023       Voember 28, 2023 | LS-602  Control Investigation and Slope Stability Assessment 2818963 Ontario Inc. S6 November 28, 2023 | LS-602 | LS-602 24<br>M<br>Geotechnical Investigation and Slope Stability Assessment 2818963 Ontario Inc. Sample Depth 4.5 Date Tested: Dee Moisture Content: 15. | LS-602       24 Br         Geotechnical Investigation and Slope Stability Assessment       23265         2818963 Ontario Inc.       Sample Classification:         S56       Sample Depth       4.57-5.37         Date Tested:       December         Moisture Content:       15.4% | LS-602       24 Bryde<br>M9W 5R         Geotechnical Investigation and Slope Stability Assessment<br>2818963 Ontario Inc.       Project Number<br>Sample Depth<br>Date Tested:       23265         November 28, 2023       angle Classification:       3265         Moisture Content:       15.4% | LS-602 24 Brydon M9W 5R6, 24 Brydon M9W 5R6, 25 25 26 26 26 27 27 2818963 Ontario Inc. 25 26 28 2818963 Ontario Inc. 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 | LS-602       24 Brydon Driv<br>M9W 5R6, Tord         Geotechnical Investigation and Slope Stability Assessment<br>2818963 Ontario Inc.       Project Number<br>Sample Classification:<br>Sample Depth<br>Date Tested:       23265         November 28, 2023       4.57-5.33       December 7, 2023         Moisture Content:       15.4% | LS-602       24 Brydon Drive, Ur<br>M9W 5R6, Toronto,         Geotechnical Investigation and Slope Stability Assessment<br>2818963 Ontario Inc.       Sample Classification:<br>Sample Depth<br>Date Tested:       23265         November 28, 2023       Date Tested:       December 7, 2023         Moisture Content:       15.4% |

|                        | sulting I    | Rock                                                                              | ve Analysis<br>LS-602                    | <b>AllRock Consulting Ltd</b><br>24 Brydon Drive, Unit #5<br>M9W 5R6, Toronto, Ont. |
|------------------------|--------------|-----------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|
| Proj<br>Cliei          |              | Geotechnical Investigation and Slope Stability Assessment<br>2818963 Ontario Inc. | Project Number<br>Sample Classification: | 23265                                                                               |
| Sam                    | ple No.      | SS2                                                                               | Sample Depth                             | 0.76-1.37                                                                           |
| Date                   | Sampled      | November 28, 2023                                                                 | Date Tested:<br>Moisture Content:        | December 7, 2023 18.1%                                                              |
|                        | 100% -       |                                                                                   |                                          |                                                                                     |
| Percentage Passing (%) | 95%          |                                                                                   |                                          |                                                                                     |
| Percenta               | 90% -        |                                                                                   |                                          |                                                                                     |
|                        | 85%<br>100.0 |                                                                                   | 1.000<br>ticle Diameter (mm)             | 0.100 0.010                                                                         |

| <b>[</b> ]<br>sulting 1 | R          | 00       | k        |            |          |         |         |       |      | Sie | eve An<br>LS-6( |       | 5   |   |                        |          | 24    | Br | ydor  | n Driv | u <b>lting</b><br>ve, Un<br>onto, | it #5 |
|-------------------------|------------|----------|----------|------------|----------|---------|---------|-------|------|-----|-----------------|-------|-----|---|------------------------|----------|-------|----|-------|--------|-----------------------------------|-------|
| ect:                    | Geo        | technica | l Invest | tigation a | and Slop | e Stabi | lity As | sessn | nent |     |                 |       |     | - | ct Numbe               |          | 2320  | 65 |       |        |                                   |       |
| t:<br>de No.            | 281<br>SS1 | 8963 Or  | tario Ir | nc.        |          |         |         |       |      |     |                 |       |     |   | le Classif<br>le Depth | ication: | 0-0.0 | 61 |       |        |                                   |       |
| Sampled                 |            | ember 2  | 7, 2023  | 3          |          |         |         |       |      |     |                 |       |     | - | Tested:                |          | _     |    | 7,202 | 23     |                                   |       |
| · · · · · P · · · ·     |            |          | .,       | -          |          |         |         |       |      |     |                 |       |     |   | ure Cont               | ent:     | 20.3  |    | ,,    |        |                                   |       |
| <sup>00%</sup> T        |            |          |          | -          | •        | ••      |         |       | •    | _   | +               |       |     |   |                        |          |       |    |       |        |                                   |       |
| 90%                     |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| 80% -                   |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| 00%                     |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| 70% -                   |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       | +  |       |        |                                   |       |
| 60%                     |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       | •  |       |        |                                   |       |
| 50%                     |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| 40%                     |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| 30%                     |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| 20% -                   |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| ł                       |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| 10%                     |            |          |          |            |          |         |         |       |      |     |                 |       |     |   |                        |          |       |    |       |        |                                   |       |
| 0%                      |            |          |          |            |          | 10.00   |         |       |      |     |                 | 1.000 |     |   |                        |          | 0.100 |    |       |        |                                   |       |
| 100.0                   | 000        |          |          |            |          | 10.00   | 0       |       |      | Pa  | rticle Dia      |       | mm) |   |                        |          | 0.100 |    |       |        |                                   | 0     |



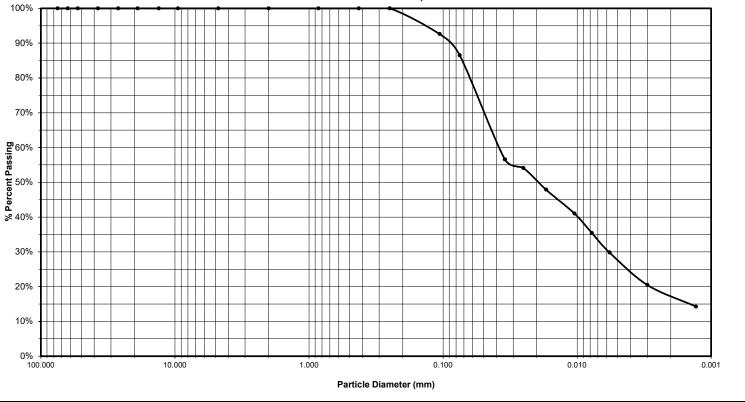

## AllRock Consulting Ltd

24 Brydon Drive, Unit #5 Etobicoke, ON. M9W 5R6

| F                        | Project Information                                          |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------|--|--|--|--|--|
| Project Name:            | Geotechnical Investigation and Slope<br>Stability Assessment |  |  |  |  |  |
| Project No.:             | 23265                                                        |  |  |  |  |  |
| Client:                  | 2818963 Ontario Inc.                                         |  |  |  |  |  |
| Borehole / Test Pit No.: | BH23-2                                                       |  |  |  |  |  |
| Sample Depth:            | 7.62-8.23                                                    |  |  |  |  |  |
| Sample No.:              | SS8                                                          |  |  |  |  |  |
| Sampled By:              | E.Syed                                                       |  |  |  |  |  |
| Sample Description:      |                                                              |  |  |  |  |  |
| Sample Natural M/C %:    | 16.2%                                                        |  |  |  |  |  |
| Date Sampled:            | Monday, November 27, 2023                                    |  |  |  |  |  |
| Tested By:               | A. Patel                                                     |  |  |  |  |  |
| Date Tested:             | Friday, December 15, 2023                                    |  |  |  |  |  |
| Reviewed By:             | G.Davidson                                                   |  |  |  |  |  |

| Grain              | Size Analysis | Hydrometer Analysis |               |  |  |
|--------------------|---------------|---------------------|---------------|--|--|
| Sieve Size<br>(mm) | % Passing     | Diameter<br>(mm)    | % Passing     |  |  |
| 75.0               | 100%          | 0.036091286         | 75.8%         |  |  |
| 63.0               | 100%          | 0.026149327         | 72.6%         |  |  |
| 53.0               | 100%          | 0.017011827         | 68.7%         |  |  |
| 37.5               | 100%          | 0.010241705         | 62.4%         |  |  |
| 26.5               | 100%          | 0.007527205         | 56.2%         |  |  |
| 19.0               | 100%          | 0.005445489         | 52.2%         |  |  |
| 13.2               | 100%          | 0.002807541         | 42.8%         |  |  |
| 9.5                | 99%           | 0.001237513         | 31.2%         |  |  |
| 4.8                | 99%           | ATTERBI             | ERG LIMITS, % |  |  |
| 2.0                | 99%           | Plastic Limit       | -             |  |  |
| 0.850              | 98%           | Liquid Limit        | -             |  |  |
| 0.425              | 98%           | Plastic Index       | -             |  |  |
| 0.250              | 97%           |                     |               |  |  |
| 0.106              | 91%           |                     |               |  |  |
| 0.075              | 87%           |                     |               |  |  |





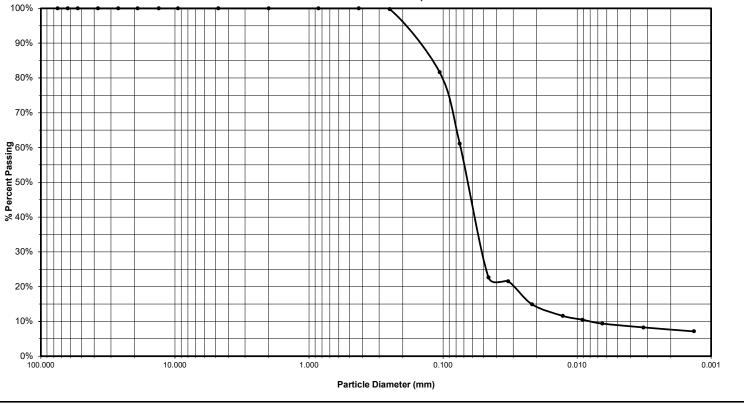

## AllRock Consulting Ltd

24 Brydon Drive, Unit #5 Etobicoke, ON. M9W 5R6

| F                        | Project Information                  |
|--------------------------|--------------------------------------|
| Project Name:            | Geotechnical Investigation and Slope |
| Project No.:             | Stability Assessment<br>23265        |
| Client:                  | 2818963 Ontario Inc.                 |
| Borehole / Test Pit No.: | BH23-3                               |
| Sample Depth:            | 8.38-8.99                            |
| Sample No.:              | SS9                                  |
| Sampled By:              | E.Syed                               |
| Sample Description:      |                                      |
| Sample Natural M/C %:    | 21.5%                                |
| Date Sampled:            | Tuesday, November 28, 2023           |
| Tested By:               | A. Patel                             |
| Date Tested:             | Monday, December 11, 2023            |
| Reviewed By:             | G.Davidson                           |

| Grain              | Size Analysis | Hydrometer Analysis |               |  |  |
|--------------------|---------------|---------------------|---------------|--|--|
| Sieve Size<br>(mm) | % Passing     | Diameter<br>(mm)    | % Passing     |  |  |
| 75.0               | 100%          | 0.034558041         | 56.6%         |  |  |
| 63.0               | 100%          | 0.025164195         | 54.1%         |  |  |
| 53.0               | 100%          | 0.017011827         | 47.9%         |  |  |
| 37.5               | 100%          | 0.010474104         | 41.0%         |  |  |
| 26.5               | 100%          | 0.007763348         | 35.4%         |  |  |
| 19.0               | 100%          | 0.005730868         | 29.8%         |  |  |
| 13.2               | 100%          | 0.002994247         | 20.5%         |  |  |
| 9.5                | 100%          | 0.001296876         | 14.3%         |  |  |
| 4.8                | 100%          | ATTERBI             | ERG LIMITS, % |  |  |
| 2.0                | 100%          | Plastic Limit       | -             |  |  |
| 0.850              | 100%          | Liquid Limit        | -             |  |  |
| 0.425              | 100%          | Plastic Index       | -             |  |  |
| 0.250              | 100%          |                     |               |  |  |
| 0.106              | 93%           | ]                   |               |  |  |
| 0.075              | 87%           |                     |               |  |  |





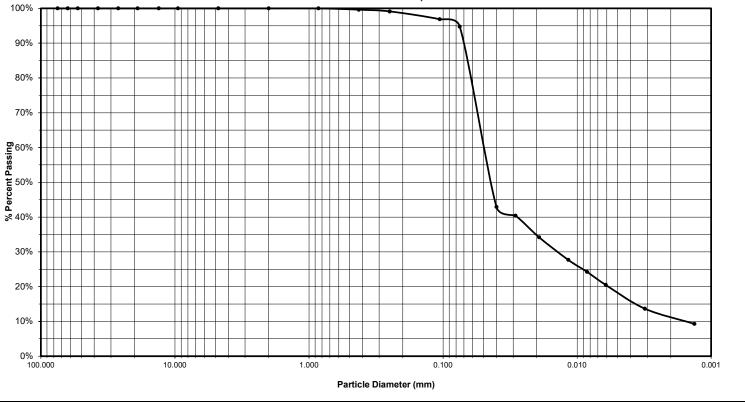

## AllRock Consulting Ltd

24 Brydon Drive, Unit #5 Etobicoke, ON. M9W 5R6

| Project Information      |                                      |  |  |  |  |
|--------------------------|--------------------------------------|--|--|--|--|
| Project Name:            | Geotechnical Investigation and Slope |  |  |  |  |
|                          | Stability Assessment<br>23265        |  |  |  |  |
| Project No.:             |                                      |  |  |  |  |
| Client:                  | 2818963 Ontario Inc.                 |  |  |  |  |
| Borehole / Test Pit No.: | BH23-7                               |  |  |  |  |
| Sample Depth:            | 3.05-3.66                            |  |  |  |  |
| Sample No.:              | SS5                                  |  |  |  |  |
| Sampled By:              | E.Syed                               |  |  |  |  |
| Sample Description:      |                                      |  |  |  |  |
| Sample Natural M/C %:    | 22.6%                                |  |  |  |  |
| Date Sampled:            | Friday, November 24, 2023            |  |  |  |  |
| Tested By:               | A. Patel                             |  |  |  |  |
| Date Tested:             | Wednesday, December 13, 2023         |  |  |  |  |
| Reviewed By:             | G.Davidson                           |  |  |  |  |

| Grain              | Size Analysis | Hydrom           | eter Analysis |
|--------------------|---------------|------------------|---------------|
| Sieve Size<br>(mm) | % Passing     | Diameter<br>(mm) | % Passing     |
| 75.0               | 100%          | 0.045792442      | 22.6%         |
| 63.0               | 100%          | 0.032657735      | 21.5%         |
| 53.0               | 100%          | 0.021678103      | 14.9%         |
| 37.5               | 100%          | 0.012801103      | 11.6%         |
| 26.5               | 100%          | 0.009117988      | 10.5%         |
| 19.0               | 100%          | 0.006493893      | 9.4%          |
| 13.2               | 100%          | 0.003203964      | 8.3%          |
| 9.5                | 100%          | 0.001344344      | 7.2%          |
| 4.8                | 100%          | ATTERB           | ERG LIMITS, % |
| 2.0                | 100%          | Plastic Limit    | -             |
| 0.850              | 100%          | Liquid Limit     | -             |
| 0.425              | 100%          | Plastic Index    | -             |
| 0.250              | 100%          |                  |               |
| 0.106              | 82%           | ]                |               |
| 0.075              | 61%           | ]                |               |






## AllRock Consulting Ltd

24 Brydon Drive, Unit #5 Etobicoke, ON. M9W 5R6

| Project Information      |                                      |  |  |  |  |
|--------------------------|--------------------------------------|--|--|--|--|
| Project Name:            | Geotechnical Investigation and Slope |  |  |  |  |
| ,                        | Stability Assessment<br>23265        |  |  |  |  |
| Project No.:             |                                      |  |  |  |  |
| Client:                  | 2818963 Ontario Inc.                 |  |  |  |  |
| Borehole / Test Pit No.: | BH23-8                               |  |  |  |  |
| Sample Depth:            | 7.38-7.99                            |  |  |  |  |
| Sample No.:              | SS7                                  |  |  |  |  |
| Sampled By:              | E.Syed                               |  |  |  |  |
| Sample Description:      |                                      |  |  |  |  |
| Sample Natural M/C %:    | 16.6%                                |  |  |  |  |
| Date Sampled:            | Monday, November 27, 2023            |  |  |  |  |
| Tested By:               | A. Patel                             |  |  |  |  |
| Date Tested:             | Sunday, December 10, 2023            |  |  |  |  |
| Reviewed By:             | G.Davidson                           |  |  |  |  |

| Grain              | Size Analysis | Hydrom           | eter Analysis |
|--------------------|---------------|------------------|---------------|
| Sieve Size<br>(mm) | % Passing     | Diameter<br>(mm) | % Passing     |
| 75.0               | 100%          | 0.039892876      | 42.9%         |
| 63.0               | 100%          | 0.028841435      | 40.4%         |
| 53.0               | 100%          | 0.01920518       | 34.2%         |
| 37.5               | 100%          | 0.011638883      | 27.7%         |
| 26.5               | 100%          | 0.008432191      | 24.2%         |
| 19.0               | 100%          | 0.00611198       | 20.5%         |
| 13.2               | 100%          | 0.00312408       | 13.7%         |
| 9.5                | 100%          | 0.001334985      | 9.3%          |
| 4.8                | 100%          | ATTERBI          | ERG LIMITS, % |
| 2.0                | 100%          | Plastic Limit    | -             |
| 0.850              | 100%          | Liquid Limit     | -             |
| 0.425              | 100%          | Plastic Index    | -             |
| 0.250              | 99%           |                  |               |
| 0.106              | 97%           | ]                |               |
| 0.075              | 95%           | ]                |               |



## APPENDIX B

MECP Well Summary

Project Number: 2227-6259 Prepared by: VM

## MECP WATER WELL RECORDS

Address: 15441 Mount Pleasant Rd Date completed: 01/03/2024

| WELL ID | Diameter<br>(cm) | Depth (m) | Static Level<br>(m) | Quantity<br>(Lpm) | Quality      | Materials               | Aquifer | Use                    | Date<br>Completed |
|---------|------------------|-----------|---------------------|-------------------|--------------|-------------------------|---------|------------------------|-------------------|
| 4900480 | 10.16            | 96.32     | -                   | -                 | -            | Soft Grey Clay          | OB      | Farm                   | 01/29/1964        |
| 4900481 | 91.44            | 11.58     | 4.88                | 7.57              | Cloudy       | Quick Sand              | OB      | Farm                   | 06/25/1965        |
| 4900482 | 12.70            | 61.87     | 4.27                | 15.14             | Clear/Fresh  | Fine Sand               | OB      | Domestic/Farm          | 01/04/1964        |
| 4900483 | 76.20            | 17.68     | 12.19               | 1.89              | Clear/Fresh  | Fine Grey Sand & Water  | OB      | House                  | 05/20/1965        |
| 4903021 | 76.20            | 12.19     | 4.57                | 15.14             | Clear/Fresh  | Blue Clay               | OB      | House                  | 04/27/1968        |
| 4903059 | 91.44            | 12.19     | 8.53                | 0.95              | Cloudy/Fresh | Blue Clay               | OB      | House                  | 07/26/1968        |
| 4903310 | 76.20            | 12.19     | 6.10                | 15.14             | Fresh        | Brown Sand              | OB      | Domestic               | 07/20/1969        |
| 4903698 | 91.44            | 12.80     | 6.71                | 7.57              | -            | Grey Sand               | OB      | Domestic               | 10/07/1971        |
| 4904243 | 76.20            | 10.67     | 2.44                | 7.57              | Fresh        | Blue Clay               | OB      | Domestic               | 10/19/1973        |
| 4905241 | 76.20            | 17.53     | 1.52                | 3.79              | -            | Grey Sand               | OB      | Domestic               | 11/25/1977        |
| 4905547 | 91.44            | 11.58     | 4.57                | 7.57              | -            | Blue Clay & Sand        | OB      | Water Supply           | 10/10/1979        |
| 4905562 | -                | -         | -                   | -                 | -            | -                       | -       | -                      | 09/28/1979        |
| 4905606 | 15.24            | 70.71     | 7.92                | 75.71             | -            | Brown Sand (Medium)     | OB      | Water Supply/Test Hole | 05/29/1979        |
| 4905627 | 15.24            | 148.44    | -                   | -                 | Salty        | Blue Shale              | BR      | -                      | 05/01/1979        |
| 4905855 | 76.20            | 18.28     | 9.75                | 7.57              | -            | Grey Sand               | OB      | Domestic               | 01/26/1982        |
| 4905996 | 15.24            | 17.37     | 11.58               | 3.78              | -            | Blue Clay               | OB      | Domestic               | 03/16/1983        |
| 4906291 | 76.20            | 21.95     | 3.05                | 7.57              | -            | Grey Clay               | OB      | Domestic               | 06/20/1984        |
| 4908090 |                  | 72.54     | 3.65                | 37.85             | -            | Blue Clay               | OB      | Domestic               | 03/18/1996        |
|         |                  |           |                     |                   |              | Grey Hard Packed Sand & |         |                        |                   |
| 4908344 | 76.20            | 23.16     | 1.83                | 18.93             | Fresh        | Clay                    | OB      | Domestic               | 05/26/1998        |
| 7109485 | 15.88            | 61.87     | 7.92                | 56.78             | -            | Sand/Clay               | OB      | Domestic               | 06/04/2008        |
| 7119440 | -                | 5.44      | -                   | -                 | -            | Grey Clay               | OB      | -                      | 02/09/2009        |
| 7214203 | 15.24            | 132.89    | 9.35                | 15.14             | -            | Grey Sand               | OB      | Domestic               | 01/06/2014        |
| 7285427 | -                | -         | -                   | -                 | -            | -                       | -       | Decomission            | 04/03/2017        |

## ${}^{\text{APPENDIX}} C$

Groundwater Quality Results

## **ALS Canada Ltd.**



| CERTIFICATE OF ANALYSIS |                           |                         |                                |  |  |  |
|-------------------------|---------------------------|-------------------------|--------------------------------|--|--|--|
| Work Order              | : WT2414011               | Page                    | : 1 of 7                       |  |  |  |
| Client                  | : CF Crozier & Associates | Laboratory              | : ALS Environmental - Waterloo |  |  |  |
| Contact                 | : Victoria Mazur          | Account Manager         | : Andrew Martin                |  |  |  |
| Address                 | : 2800 High Point Drive   | Address                 | : 60 Northland Road, Unit 1    |  |  |  |
|                         | Milton ON Canada L9T 6P4  |                         | Waterloo ON Canada N2V 2B8     |  |  |  |
| Telephone               | : (548) 708-0039          | Telephone               | : +1 519 886 6910              |  |  |  |
| Project                 | : 2227-69259              | Date Samples Received   | : 30-May-2024 13:20            |  |  |  |
| PO                      |                           | Date Analysis Commenced | : 31-May-2024                  |  |  |  |
| C-O-C number            | : 23-1096606              | Issue Date              | : 06-Jun-2024 20:11            |  |  |  |
| Sampler                 | : Victoria Mazur          |                         |                                |  |  |  |
| Site                    |                           |                         |                                |  |  |  |
| Quote number            | : 2024 SOA                |                         |                                |  |  |  |
| No. of samples received | : 1                       |                         |                                |  |  |  |
| No. of samples analysed | : 1                       |                         |                                |  |  |  |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

## Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

| Signatories | Position       | Laboratory Department           |
|-------------|----------------|---------------------------------|
| Nik Perkio  | Senior Analyst | Inorganics, Waterloo, Ontario   |
| Nik Perkio  | Senior Analyst | Metals, Waterloo, Ontario       |
| Zeba Patel  | Analyst        | Microbiology, Waterloo, Ontario |



## **General Comments**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

| Unit      | Description                                  |
|-----------|----------------------------------------------|
| -         | no units                                     |
| μS/cm     | microsiemens per centimetre                  |
| CFU/100mL | colony forming units per hundred millilitres |
| CU        | colour units (1 cu = 1 mg/l pt)              |
| mg/L      | milligrams per litre                         |
| NTU       | nephelometric turbidity units                |
| pH units  | pH units                                     |

### <: less than.

### >: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

## Workorder Comments

<1 or Not Detected with LOR of 1 equals Zero (0).

Not Detected = Absent; Detected = Present.

## **Qualifiers**

| Qualifier | Description                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------|
| DLDS      | Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical                    |
|           | Conductivity.                                                                                          |
| DLHC      | Detection Limit Raised: Dilution required due to high concentration of test analyte(s).                |
| DLM       | Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity). |

| Page<br>Work Order<br>Client<br>Project | : | 3 of 7<br>WT2414011<br>CF Crozier & Associates<br>2227-69259                                                                        | ALS |
|-----------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| LPMB                                    |   | Lab-Preserved for Total Metals. Sample received with pH > 2 and preserved at the                                                    |     |
| TMV                                     |   | lab. Total Metals results may be biased low.<br>Turbidity exceeded upper limit of the nephelometric method. Minimum value reported. |     |



| Sub-Matrix: Water                     |                     |             | Ci          | lient sample ID  | MW 23-3                        |     | <br> |  |
|---------------------------------------|---------------------|-------------|-------------|------------------|--------------------------------|-----|------|--|
| (Matrix: Water)                       |                     |             |             |                  |                                |     |      |  |
|                                       |                     |             | Client samp | ling date / time | 30-May-2024<br>12:00           |     | <br> |  |
| Analyte                               | CAS Number          | Method/Lab  | LOR         | Unit             | WT2414011-001                  |     | <br> |  |
|                                       |                     |             |             |                  | Result                         |     | <br> |  |
| Physical Tests                        |                     |             |             |                  |                                |     |      |  |
| Alkalinity, total (as CaCO3)          |                     | E290/WT     | 1.0         | mg/L             | 2960 DLHC                      |     | <br> |  |
| Colour, apparent                      |                     | E330/WT     | 2.0         | CU               | 19500 DLHC,<br>DLM             |     | <br> |  |
| Conductivity                          |                     | E100/WT     | 1.0         | µS/cm            | 726                            |     | <br> |  |
| Hardness (as CaCO3), dissolved        |                     | EC100/WT    | 0.50        | mg/L             | 440                            |     | <br> |  |
| рН                                    |                     | E108/WT     | 0.10        | pH units         | 7.57                           |     | <br> |  |
| Solids, total dissolved [TDS]         |                     | E162/WT     | 10          | mg/L             | 473 DLDS                       |     | <br> |  |
| Turbidity                             |                     | E121/WT     | 0.10        | NTU              | >4000 TMV                      |     | <br> |  |
| Anions and Nutrients                  |                     |             |             |                  |                                |     |      |  |
| Ammonia, total (as N)                 | 7664-41-7           | E298/WT     | 0.0050      | mg/L             | 0.0176                         |     | <br> |  |
| Chloride                              | 16887-00-6          | E235.CI/WT  | 0.50        | mg/L             | <0.50                          |     | <br> |  |
| Fluoride                              | 16984-48-8          | E235.F/WT   | 0.020       | mg/L             | 0.070                          |     | <br> |  |
| Nitrate (as N)                        | 14797-55-8          | E235.NO3/WT | 0.020       | mg/L             | 0.207                          |     | <br> |  |
| Nitrite (as N)                        | 14797-65-0          | E235.NO2/WT | 0.010       | mg/L             | <0.010                         |     | <br> |  |
| Phosphate, ortho-, dissolved (as P)   | 14265-44-2          | E378-U/WT   | 0.0010      | mg/L             | <0.0010                        |     | <br> |  |
| Sulfate (as SO4)                      | 14808-79-8          | E235.SO4/WT | 0.30        | mg/L             | 28.4                           |     | <br> |  |
| Microbiological Tests                 |                     |             |             |                  |                                |     |      |  |
| Coliforms, Escherichia coli [E. coli] |                     | E012A.EC/WT | 1           | CFU/100mL        | Not Detected DLM               |     | <br> |  |
| Coliforms, total                      |                     | E012.TC/WT  | 1           | CFU/100mL        | Not Detected DLM               |     | <br> |  |
| Total Metals                          |                     |             |             |                  |                                |     |      |  |
| Aluminum, total                       | 7429-90-5           | E420/WT     | 0.0030      | mg/L             | 90.1 DLHC,<br>LPMB             |     | <br> |  |
| Antimony, total                       | 7440-36-0           | E420/WT     | 0.00010     | mg/L             | <0.00100 <sup>DLHC,</sup> LPMB |     | <br> |  |
| Arsenic, total                        | 7440-38-2           | E420/WT     | 0.00010     | mg/L             | 0.0331 DLHC, LPMB              |     | <br> |  |
| Barium, total                         | 7440-39-3           |             | 0.00010     | mg/L             | 0.508 DLHC, LPMB               |     | <br> |  |
| Beryllium, total                      | 7440-41-7           | E420/WT     | 0.000020    | mg/L             | 0.00416 DLHC, LPMB             |     | <br> |  |
| Bismuth, total                        | 7440-69-9           | E420/WT     | 0.000050    | mg/L             | 0.00118 DLHC, LPMB             |     | <br> |  |
| Boron, total                          | 7440-42-8           |             | 0.010       | mg/L             | <0.100 DLHC, LPMB              |     | <br> |  |
| Cadmium, total                        | 7440-43-9           |             | 0.0000050   | mg/L             | 0.000852 DLHC,<br>LPMB         |     | <br> |  |
| Calcium, total                        | 7440-70-2           |             | 0.050       | mg/L             | 1590 DLHC,<br>LPMB             |     | <br> |  |
| Cesium, total                         | 7440-46-2           |             | 0.000010    | mg/L             | 0.00656 DLHC,<br>LPMB          |     | <br> |  |
| ,                                     | 7-7-7 <b>-70-</b> 2 | 1           |             |                  | LPMB                           | I I | I    |  |



| b-Matrix: Water Client sample ID |                       |          | MW 23-3          | <br>                           | <br> |      |
|----------------------------------|-----------------------|----------|------------------|--------------------------------|------|------|
| (Matrix: Water)                  |                       |          |                  |                                |      |      |
|                                  |                       |          | ling date / time | 30-May-2024<br>12:00           | <br> | <br> |
| Analyte                          | CAS Number Method/Lab | LOR      | Unit             | WT2414011-001                  | <br> | <br> |
| Total Metals                     |                       |          |                  | Result                         | <br> | <br> |
| Chromium, total                  | 7440-47-3 E420/WT     | 0.00050  | mg/L             | 0.153 DLHC,<br>LPMB            | <br> | <br> |
| Cobalt, total                    | 7440-48-4 E420/WT     | 0.00010  | mg/L             | 0.0898 DLHC,<br>LPMB           | <br> | <br> |
| Copper, total                    | 7440-50-8 E420/WT     | 0.00050  | mg/L             | 0.214 DLHC.                    | <br> | <br> |
| Iron, total                      | 7439-89-6 E420/WT     | 0.010    | mg/L             | 171 DLHC.<br>LPMB              | <br> | <br> |
| Lead, total                      | 7439-92-1 E420/WT     | 0.000050 | mg/L             | 0.0925 DLHC.<br>LPMB           | <br> | <br> |
| Lithium, total                   | 7439-93-2 E420/WT     | 0.0010   | mg/L             | 0.173 DLHC.<br>LPMB            | <br> | <br> |
| Magnesium, total                 | 7439-95-4 E420/WT     | 0.0050   | mg/L             | 206 DLHC,<br>LPMB              | <br> | <br> |
| Manganese, total                 | 7439-96-5 E420/WT     | 0.00010  | mg/L             | 7.39 LINC.                     | <br> | <br> |
| Molybdenum, total                | 7439-98-7 E420/WT     | 0.000050 | mg/L             | 0.00103 DLHC.<br>LPMB          | <br> | <br> |
| Nickel, total                    | 7440-02-0 E420/WT     | 0.00050  | mg/L             | 0.164 DLHC, LPMB               | <br> | <br> |
| Phosphorus, total                | 7723-14-0 E420/WT     | 0.050    | mg/L             | 9.81 DLHC,<br>LPMB             | <br> | <br> |
| Potassium, total                 | 7440-09-7 E420/WT     | 0.050    | mg/L             | 10.6 LPMB                      | <br> | <br> |
| Rubidium, total                  | 7440-17-7 E420/WT     | 0.00020  | mg/L             | 0.0877 DLHC, LPMB              | <br> | <br> |
| Selenium, total                  | 7782-49-2 E420/WT     | 0.000050 | mg/L             | 0.000947 DLHC, LPMB            | <br> | <br> |
| Silicon, total                   | 7440-21-3 E420/WT     | 0.10     | mg/L             | 96.3 DLHC, LPMB                | <br> | <br> |
| Silver, total                    | 7440-22-4 E420/WT     | 0.000010 | mg/L             | 0.000368 DLHC,<br>LPMB         | <br> | <br> |
| Sodium, total                    | 7440-23-5 E420/WT     | 0.050    | mg/L             | 14.4 DLHC,<br>LPMB             | <br> | <br> |
| Strontium, total                 | 7440-24-6 E420/WT     | 0.00020  | mg/L             | 2.62 DLHC,<br>LPMB             | <br> | <br> |
| Sulfur, total                    | 7704-34-9 E420/WT     | 0.50     | mg/L             | 19.2 DLHC,<br>LPMB             | <br> | <br> |
| Tellurium, total                 | 13494-80-9 E420/WT    | 0.00020  | mg/L             | <0.00200 DLHC, LPMB            | <br> | <br> |
| Thallium, total                  | 7440-28-0 E420/WT     | 0.000010 | mg/L             | 0.000951 DLHC, LPMB            | <br> | <br> |
| Thorium, total                   | 7440-29-1 E420/WT     | 0.00010  | mg/L             | 0.0376 LPMB                    | <br> | <br> |
| Tin, total                       | 7440-31-5 E420/WT     | 0.00010  | mg/L             | 0.00268 DLHC, LPMB             | <br> | <br> |
| Titanium, total                  | 7440-32-6 E420/WT     | 0.00030  | mg/L             | 1.19 DLHC,<br>LPMB             | <br> | <br> |
| Tungsten, total                  | 7440-33-7 E420/WT     | 0.00010  | mg/L             | <0.00100 <sup>DLHC,</sup> LPMB | <br> | <br> |
| Uranium, total                   | 7440-61-1 E420/WT     | 0.000010 | mg/L             | 0.00724 DLHC, LPMB             | <br> | <br> |
| Vanadium, total                  | 7440-62-2 E420/WT     | 0.00050  | mg/L             | 0.159 DLHC, LPMB               | <br> | <br> |
| Zinc, total                      | 7440-66-6 E420/WT     | 0.0030   | mg/L             | 0.414 DLHC, LPMB               | <br> | <br> |
| Zirconium, total                 | 7440-67-7 E420/WT     | 0.00020  | mg/L             | <0.00200 DLHC. LPMB            | <br> | <br> |
| Dissolved Metals                 |                       |          |                  |                                |      |      |



| (Matrix: Water) Analyte Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Barium, dissolved Bismuth, dissolved Bismuth, dissolved Cadmium, dissolved | CAS Number         Method/Lab           7429-90-5         E421/WT           7440-36-0         E421/WT           7440-38-2         E421/WT           7440-39-3         E421/WT           7440-41-7         E421/WT           7440-69-9         E421/WT           7440-41-7         E421/WT           7440-41-7         E421/WT           7440-89-8         E421/WT | Client sample<br>LOR<br>0.0010<br>0.00010<br>0.00010<br>0.00010<br>0.00010<br>0.000020 | ing date / time<br>Unit<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 30-May-2024<br>12:00<br>WT2414011-001<br>Result<br>0.0017<br><0.00010 | <br><br> | <br> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|----------|------|
| Dissolved Metals<br>Aluminum, dissolved<br>Antimony, dissolved<br>Arsenic, dissolved<br>Barium, dissolved<br>Beryllium, dissolved<br>Bismuth, dissolved<br>Boron, dissolved   | 7429-90-5 E421/WT<br>7440-36-0 E421/WT<br>7440-38-2 E421/WT<br>7440-39-3 E421/WT<br>7440-41-7 E421/WT<br>7440-69-9 E421/WT                                                                                                                                                                                                                                        | LOR<br>0.0010<br>0.00010<br>0.00010<br>0.00010                                         | Unit<br>mg/L<br>mg/L<br>mg/L                            | 12:00<br>WT2414011-001<br>Result<br>0.0017<br><0.00010                | <br>     | <br> |
| Dissolved Metals<br>Aluminum, dissolved<br>Antimony, dissolved<br>Arsenic, dissolved<br>Barium, dissolved<br>Beryllium, dissolved<br>Bismuth, dissolved<br>Boron, dissolved   | 7429-90-5 E421/WT<br>7440-36-0 E421/WT<br>7440-38-2 E421/WT<br>7440-39-3 E421/WT<br>7440-41-7 E421/WT<br>7440-69-9 E421/WT                                                                                                                                                                                                                                        | 0.0010<br>0.00010<br>0.00010<br>0.00010                                                | mg/L<br>mg/L<br>mg/L                                    | Result<br>0.0017<br><0.00010                                          | <br>     |      |
| Aluminum, dissolved<br>Antimony, dissolved<br>Arsenic, dissolved<br>Barium, dissolved<br>Beryllium, dissolved<br>Bismuth, dissolved<br>Boron, dissolved                       | 7440-36-0 E421/WT<br>7440-38-2 E421/WT<br>7440-39-3 E421/WT<br>7440-41-7 E421/WT<br>7440-69-9 E421/WT                                                                                                                                                                                                                                                             | 0.00010<br>0.00010<br>0.00010                                                          | mg/L<br>mg/L                                            | 0.0017<br><0.00010                                                    |          |      |
| Aluminum, dissolved<br>Antimony, dissolved<br>Arsenic, dissolved<br>Barium, dissolved<br>Beryllium, dissolved<br>Bismuth, dissolved<br>Boron, dissolved                       | 7440-36-0 E421/WT<br>7440-38-2 E421/WT<br>7440-39-3 E421/WT<br>7440-41-7 E421/WT<br>7440-69-9 E421/WT                                                                                                                                                                                                                                                             | 0.00010<br>0.00010<br>0.00010                                                          | mg/L<br>mg/L                                            | <0.00010                                                              |          |      |
| Antimony, dissolved<br>Arsenic, dissolved<br>Barium, dissolved<br>Beryllium, dissolved<br>Bismuth, dissolved<br>Boron, dissolved                                              | 7440-36-0 E421/WT<br>7440-38-2 E421/WT<br>7440-39-3 E421/WT<br>7440-41-7 E421/WT<br>7440-69-9 E421/WT                                                                                                                                                                                                                                                             | 0.00010<br>0.00010<br>0.00010                                                          | mg/L<br>mg/L                                            | <0.00010                                                              |          |      |
| Arsenic, dissolved<br>Barium, dissolved<br>Beryllium, dissolved<br>Bismuth, dissolved<br>Boron, dissolved                                                                     | 7440-38-2 E421/WT<br>7440-39-3 E421/WT<br>7440-41-7 E421/WT<br>7440-69-9 E421/WT                                                                                                                                                                                                                                                                                  | 0.00010<br>0.00010                                                                     | mg/L                                                    |                                                                       |          |      |
| Barium, dissolved<br>Beryllium, dissolved<br>Bismuth, dissolved<br>Boron, dissolved                                                                                           | 7440-39-3 E421/WT<br>7440-41-7 E421/WT<br>7440-69-9 E421/WT                                                                                                                                                                                                                                                                                                       | 0.00010                                                                                |                                                         |                                                                       | <br>     | <br> |
| Beryllium, dissolved<br>Bismuth, dissolved<br>Boron, dissolved                                                                                                                | 7440-41-7 E421/WT<br>7440-69-9 E421/WT                                                                                                                                                                                                                                                                                                                            |                                                                                        | ma/l                                                    | 0.00017                                                               | <br>     | <br> |
| Bismuth, dissolved<br>Boron, dissolved                                                                                                                                        | 7440-69-9 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.000020                                                                               | iiig/L                                                  | 0.0596                                                                | <br>     | <br> |
| Boron, dissolved                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                      | mg/L                                                    | <0.000020                                                             | <br>     | <br> |
|                                                                                                                                                                               | 7440-42-8 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.000050                                                                               | mg/L                                                    | <0.000050                                                             | <br>     | <br> |
| Cadmium, dissolved                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   | 0.010                                                                                  | mg/L                                                    | <0.010                                                                | <br>     | <br> |
|                                                                                                                                                                               | 7440-43-9 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.0000050                                                                              | mg/L                                                    | <0.000050                                                             | <br>     | <br> |
| Calcium, dissolved                                                                                                                                                            | 7440-70-2 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.050                                                                                  | mg/L                                                    | 138                                                                   | <br>     | <br> |
| Cesium, dissolved                                                                                                                                                             | 7440-46-2 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.000010                                                                               | mg/L                                                    | <0.000010                                                             | <br>     | <br> |
| Chromium, dissolved                                                                                                                                                           | 7440-47-3 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.00050                                                                                | mg/L                                                    | 0.00148                                                               | <br>     | <br> |
| Cobalt, dissolved                                                                                                                                                             | 7440-48-4 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.00010                                                                                | mg/L                                                    | 0.00012                                                               | <br>     | <br> |
| Copper, dissolved                                                                                                                                                             | 7440-50-8 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.00020                                                                                | mg/L                                                    | 0.00122                                                               | <br>     | <br> |
| Iron, dissolved                                                                                                                                                               | 7439-89-6 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.010                                                                                  | mg/L                                                    | <0.010                                                                | <br>     | <br> |
| Lead, dissolved                                                                                                                                                               | 7439-92-1 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.000050                                                                               | mg/L                                                    | <0.000050                                                             | <br>     | <br> |
| Lithium, dissolved                                                                                                                                                            | 7439-93-2 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.0010                                                                                 | mg/L                                                    | 0.0099                                                                | <br>     | <br> |
| Magnesium, dissolved                                                                                                                                                          | 7439-95-4 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.0050                                                                                 | mg/L                                                    | 23.3                                                                  | <br>     | <br> |
| Manganese, dissolved                                                                                                                                                          | 7439-96-5 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.00010                                                                                | mg/L                                                    | 0.0104                                                                | <br>     | <br> |
| Molybdenum, dissolved                                                                                                                                                         | 7439-98-7 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.000050                                                                               | mg/L                                                    | 0.000226                                                              | <br>     | <br> |
| Nickel, dissolved                                                                                                                                                             | 7440-02-0 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.00050                                                                                | mg/L                                                    | 0.00060                                                               | <br>     | <br> |
| Phosphorus, dissolved                                                                                                                                                         | 7723-14-0 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.050                                                                                  | mg/L                                                    | <0.050                                                                | <br>     | <br> |
| Potassium, dissolved                                                                                                                                                          | 7440-09-7 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.050                                                                                  | mg/L                                                    | 0.798                                                                 | <br>     | <br> |
| Rubidium, dissolved                                                                                                                                                           | 7440-17-7 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.00020                                                                                | mg/L                                                    | 0.00106                                                               | <br>     | <br> |
| Selenium, dissolved                                                                                                                                                           | 7782-49-2 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.000050                                                                               | mg/L                                                    | 0.000394                                                              | <br>     | <br> |
| Silicon, dissolved                                                                                                                                                            | 7440-21-3 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.050                                                                                  | mg/L                                                    | 8.94                                                                  | <br>     | <br> |
| Silver, dissolved                                                                                                                                                             | 7440-22-4 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.000010                                                                               | mg/L                                                    | <0.000010                                                             | <br>     | <br> |
| Sodium, dissolved                                                                                                                                                             | 7440-23-5 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.050                                                                                  | mg/L                                                    | 10.1                                                                  | <br>     | <br> |
| Strontium, dissolved                                                                                                                                                          | 7440-24-6 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.00020                                                                                | mg/L                                                    | 0.308                                                                 | <br>     | <br> |
| Sulfur, dissolved                                                                                                                                                             | 7704-34-9 E421/WT                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                   | mg/L                                                    | 10.5                                                                  | <br>     | <br> |
| Tellurium, dissolved                                                                                                                                                          | 13494-80-9 E421/WT                                                                                                                                                                                                                                                                                                                                                | 0.00020                                                                                | mg/L                                                    | <0.00020                                                              | <br>     | <br> |



| Sub-Matrix: Water                    |                    | Cl          | ient sample ID   | MW 23-3              | <br> | <br> |
|--------------------------------------|--------------------|-------------|------------------|----------------------|------|------|
| (Matrix: Water)                      | latrix: Water)     |             |                  |                      |      |      |
|                                      |                    | Client samp | ling date / time | 30-May-2024<br>12:00 | <br> | <br> |
| Analyte                              | CAS Number Method/ | Lab LOR     | Unit             | WT2414011-001        | <br> | <br> |
|                                      |                    |             |                  | Result               | <br> | <br> |
| Dissolved Metals                     |                    |             |                  |                      |      |      |
| Thallium, dissolved                  | 7440-28-0 E421/WT  | 0.000010    | mg/L             | 0.000010             | <br> | <br> |
| Thorium, dissolved                   | 7440-29-1 E421/WT  | 0.00010     | mg/L             | <0.00010             | <br> | <br> |
| Tin, dissolved                       | 7440-31-5 E421/WT  | 0.00010     | mg/L             | <0.00010             | <br> | <br> |
| Titanium, dissolved                  | 7440-32-6 E421/WT  | 0.00030     | mg/L             | <0.00030             | <br> | <br> |
| Tungsten, dissolved                  | 7440-33-7 E421/WT  | 0.00010     | mg/L             | <0.00010             | <br> | <br> |
| Uranium, dissolved                   | 7440-61-1 E421/WT  | 0.000010    | mg/L             | 0.000688             | <br> | <br> |
| Vanadium, dissolved                  | 7440-62-2 E421/WT  | 0.00050     | mg/L             | <0.00050             | <br> | <br> |
| Zinc, dissolved                      | 7440-66-6 E421/WT  | 0.0010      | mg/L             | <0.0010              | <br> | <br> |
| Zirconium, dissolved                 | 7440-67-7 E421/WT  | 0.00030     | mg/L             | <0.00030             | <br> | <br> |
| Dissolved metals filtration location | EP421/WT           | -           | -                | Laboratory           | <br> | <br> |

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

## ALS Canada Ltd.



### **QUALITY CONTROL REPORT** Work Order Page WT2414011 : 1 of 17 CF Crozier & Associates Client Laboratory : ALS Environmental - Waterloo : Victoria Mazur Account Manager : Andrew Martin Contact Address Address : 2800 High Point Drive :60 Northland Road, Unit 1 Milton ON Canada L9T 6P4 Waterloo, Ontario Canada N2V 2B8 Telephone : (548) 708-0039 Telephone :+1 519 886 6910 Project :2227-69259 Date Samples Received : 30-May-2024 13:20 PO Date Analysis Commenced : 31-May-2024 :----C-O-C number Issue Date :06-Jun-2024 20:11 :23-1096606 Sampler : Victoria Mazur Site :----Quote number :2024 SOA No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

## Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

| Signatories | Position       | Laboratory Department                    |
|-------------|----------------|------------------------------------------|
| Nik Perkio  | Senior Analyst | Waterloo Inorganics, Waterloo, Ontario   |
| Nik Perkio  | Senior Analyst | Waterloo Metals, Waterloo, Ontario       |
| Zeba Patel  | Analyst        | Waterloo Microbiology, Waterloo, Ontario |

| Page       | : | 2 of 17                 |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |



## **General Comments**

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

# = Indicates a QC result that did not meet the ALS DQO.

## Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

| Page :       | 3 of 17                 |
|--------------|-------------------------|
| Work Order : | WT2414011               |
| Client :     | CF Crozier & Associates |
| Project :    | 2227-69259              |



## Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

| Sub-Matrix: Water    |                      |                                       |            |          |        |           | Labora             | tory Duplicate (D   | UP) Report              |                     |           |
|----------------------|----------------------|---------------------------------------|------------|----------|--------|-----------|--------------------|---------------------|-------------------------|---------------------|-----------|
| Laboratory sample ID | Client sample ID     | Analyte                               | CAS Number | Method   | LOR    | Unit      | Original<br>Result | Duplicate<br>Result | RPD(%) or<br>Difference | Duplicate<br>Limits | Qualifier |
| Physical Tests (QC   | Lot: 1468699)        |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2413918-006        | Anonymous            | Turbidity                             |            | E121     | 0.10   | NTU       | 89.8               | 90.8                | 0.997%                  | 15%                 |           |
| Physical Tests (QC   | Lot: 1469701)        |                                       |            |          |        |           |                    |                     |                         |                     |           |
| HA2401222-001        | Anonymous            | Colour, apparent                      |            | E330     | 2.0    | CU        | 19.4               | 16.4                | 3.0                     | Diff <2x LOR        |           |
| Physical Tests (QC   | Lot: 1472923)        |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2413896-002        | Anonymous            | pН                                    |            | E108     | 0.10   | pH units  | 8.17               | 7.92                | 3.11%                   | 4%                  |           |
| Physical Tests (QC   | Lot: 1472924)        |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2413896-002        | Anonymous            | Alkalinity, total (as CaCO3)          |            | E290     | 10.0   | mg/L      | 254                | 255                 | 0.260%                  | 20%                 |           |
| Physical Tests (QC   | Lot: 1472925)        |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2413896-002        | Anonymous            | Conductivity                          |            | E100     | 3.0    | μS/cm     | 624                | 631                 | 1.12%                   | 10%                 |           |
| Physical Tests (QC   | Lot: 1476573)        |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2413918-007        | Anonymous            | Solids, total dissolved [TDS]         |            | E162     | 20     | mg/L      | 262                | 259                 | 1.15%                   | 20%                 |           |
| Anions and Nutrient  | s (QC Lot: 1470994)  |                                       |            |          |        |           |                    |                     |                         |                     |           |
| HA2401203-001        | Anonymous            | Ammonia, total (as N)                 | 7664-41-7  | E298     | 0.0050 | mg/L      | 0.0315             | 0.0317              | 0.0002                  | Diff <2x LOR        |           |
| Anions and Nutrient  | ts (QC Lot: 1472926) |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2414099-001        | Anonymous            | Nitrate (as N)                        | 14797-55-8 | E235.NO3 | 0.100  | mg/L      | <0.100             | <0.100              | 0                       | Diff <2x LOR        |           |
| Anions and Nutrient  | s (QC Lot: 1472927)  |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2414099-001        | Anonymous            | Nitrite (as N)                        | 14797-65-0 | E235.NO2 | 0.050  | mg/L      | <0.050             | <0.050              | 0                       | Diff <2x LOR        |           |
| Anions and Nutrient  | s (QC Lot: 1472928)  |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2414099-001        | Anonymous            | Chloride                              | 16887-00-6 | E235.Cl  | 2.50   | mg/L      | 27.8               | 27.7                | 0.337%                  | 20%                 |           |
| Anions and Nutrient  | s (QC Lot: 1472929)  |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2414099-001        | Anonymous            | Sulfate (as SO4)                      | 14808-79-8 | E235.SO4 | 1.50   | mg/L      | 627                | 626                 | 0.179%                  | 20%                 |           |
| Anions and Nutrient  | s (QC Lot: 1472930)  |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2414099-001        | Anonymous            | Fluoride                              | 16984-48-8 | E235.F   | 0.100  | mg/L      | 1.91               | 1.90                | 0.372%                  | 20%                 |           |
| Anions and Nutrient  | s (QC Lot: 1472940)  |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2413896-002        | Anonymous            | Phosphate, ortho-, dissolved (as P)   | 14265-44-2 | E378-U   | 0.0030 | mg/L      | <0.0030            | <0.0030             | 0                       | Diff <2x LOR        |           |
| Microbiological Test | ts (QC Lot: 1469285) |                                       |            |          |        | -         |                    |                     |                         |                     |           |
| WT2414060-001        | Anonymous            | Coliforms, Escherichia coli [E. coli] |            | E012A.EC | 1      | CFU/100mL | 2                  | 1                   | 1                       | Diff <2x LOR        |           |
|                      | ts (QC Lot: 1469287) |                                       |            |          |        |           |                    |                     |                         |                     |           |
| WT2414059-001        | Anonymous            | Coliforms, total                      |            | E012.TC  | 100    | CFU/100mL | <100               | <100                | 0                       | Diff <2x LOR        |           |
|                      | ,                    |                                       |            | -        |        |           |                    |                     | -                       |                     |           |

| Page       | : | 4 of 17                 |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |



| Sub-Matrix: Water   |                         |                   |            |        |           | Labora | tory Duplicate (D  | UP) Report          |                         |                     |          |
|---------------------|-------------------------|-------------------|------------|--------|-----------|--------|--------------------|---------------------|-------------------------|---------------------|----------|
| aboratory sample ID | Client sample ID        | Analyte           | CAS Number | Method | LOR       | Unit   | Original<br>Result | Duplicate<br>Result | RPD(%) or<br>Difference | Duplicate<br>Limits | Qualifie |
| Total Metals (QC Lo | ot: 1468238) - continue | d                 |            |        |           |        |                    |                     |                         |                     |          |
| 3F2400040-001       | Anonymous               | Aluminum, total   | 7429-90-5  | E420   | 0.0300    | mg/L   | 0.546              | 0.542               | 0.557%                  | 20%                 |          |
|                     |                         | Antimony, total   | 7440-36-0  | E420   | 0.00100   | mg/L   | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |          |
|                     |                         | Arsenic, total    | 7440-38-2  | E420   | 0.00100   | mg/L   | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |          |
|                     |                         | Barium, total     | 7440-39-3  | E420   | 0.00100   | mg/L   | 0.0151             | 0.0150              | 0.524%                  | 20%                 |          |
|                     |                         | Beryllium, total  | 7440-41-7  | E420   | 0.000200  | mg/L   | <0.000200          | <0.000200           | 0                       | Diff <2x LOR        |          |
|                     |                         | Bismuth, total    | 7440-69-9  | E420   | 0.000500  | mg/L   | <0.000500          | <0.000500           | 0                       | Diff <2x LOR        |          |
|                     |                         | Boron, total      | 7440-42-8  | E420   | 0.100     | mg/L   | <0.100             | <0.100              | 0                       | Diff <2x LOR        |          |
|                     |                         | Cadmium, total    | 7440-43-9  | E420   | 0.0000500 | mg/L   | 0.000266           | 0.000272            | 0.0000059               | Diff <2x LOR        |          |
|                     |                         | Calcium, total    | 7440-70-2  | E420   | 0.500     | mg/L   | 30.4               | 31.0                | 1.94%                   | 20%                 |          |
|                     |                         | Cesium, total     | 7440-46-2  | E420   | 0.000100  | mg/L   | <0.000100          | <0.000100           | 0                       | Diff <2x LOR        |          |
|                     |                         | Chromium, total   | 7440-47-3  | E420   | 0.00500   | mg/L   | <0.00500           | <0.00500            | 0                       | Diff <2x LOR        |          |
|                     |                         | Cobalt, total     | 7440-48-4  | E420   | 0.00100   | mg/L   | 0.0290             | 0.0282              | 2.59%                   | 20%                 |          |
|                     |                         | Copper, total     | 7440-50-8  | E420   | 0.00500   | mg/L   | <0.00500           | <0.00500            | 0                       | Diff <2x LOR        |          |
|                     |                         | Iron, total       | 7439-89-6  | E420   | 0.100     | mg/L   | 1.36               | 1.42                | 4.17%                   | 20%                 |          |
|                     |                         | Lead, total       | 7439-92-1  | E420   | 0.000500  | mg/L   | <0.000500          | <0.000500           | 0                       | Diff <2x LOR        |          |
|                     |                         | Lithium, total    | 7439-93-2  | E420   | 0.0100    | mg/L   | 0.0563             | 0.0588              | 0.0025                  | Diff <2x LOR        |          |
|                     |                         | Magnesium, total  | 7439-95-4  | E420   | 0.0500    | mg/L   | 130                | 128                 | 1.42%                   | 20%                 |          |
|                     |                         | Manganese, total  | 7439-96-5  | E420   | 0.00100   | mg/L   | 10.8               | 10.7                | 1.15%                   | 20%                 |          |
|                     |                         | Molybdenum, total | 7439-98-7  | E420   | 0.000500  | mg/L   | 0.000940           | 0.000836            | 0.000104                | Diff <2x LOR        |          |
|                     |                         | Nickel, total     | 7440-02-0  | E420   | 0.00500   | mg/L   | 0.0190             | 0.0184              | 0.00068                 | Diff <2x LOR        |          |
|                     |                         | Phosphorus, total | 7723-14-0  | E420   | 0.500     | mg/L   | <0.500             | <0.500              | 0                       | Diff <2x LOR        |          |
|                     |                         | Potassium, total  | 7440-09-7  | E420   | 0.500     | mg/L   | 5.22               | 5.17                | 0.908%                  | 20%                 |          |
|                     |                         | Rubidium, total   | 7440-17-7  | E420   | 0.00200   | mg/L   | 0.00938            | 0.00918             | 0.00020                 | Diff <2x LOR        |          |
|                     |                         | Selenium, total   | 7782-49-2  | E420   | 0.000500  | mg/L   | 0.00219            | 0.00219             | 0.0000003               | Diff <2x LOR        |          |
|                     |                         | Silicon, total    | 7440-21-3  | E420   | 1.00      | mg/L   | 1.75               | 1.78                | 0.03                    | Diff <2x LOR        |          |
|                     |                         | Silver, total     | 7440-22-4  | E420   | 0.000100  | mg/L   | <0.000100          | <0.000100           | 0                       | Diff <2x LOR        |          |
|                     |                         | Sodium, total     | 7440-23-5  | E420   | 0.500     | mg/L   | 44.8               | 42.9                | 4.46%                   | 20%                 |          |
|                     |                         | Strontium, total  | 7440-24-6  | E420   | 0.00200   | mg/L   | 0.0764             | 0.0784              | 2.62%                   | 20%                 |          |
|                     |                         | Sulfur, total     | 7704-34-9  | E420   | 5.00      | mg/L   | 182                | 186                 | 2.30%                   | 20%                 |          |
|                     |                         | Tellurium, total  | 13494-80-9 | E420   | 0.00200   | mg/L   | <0.00200           | <0.00200            | 0                       | Diff <2x LOR        |          |
|                     |                         | Thallium, total   | 7440-28-0  | E420   | 0.000100  | mg/L   | 0.000181           | 0.000168            | 0.000013                | Diff <2x LOR        |          |
|                     |                         | Thorium, total    | 7440-29-1  | E420   | 0.00100   | mg/L   | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |          |
|                     |                         | Tin, total        | 7440-31-5  | E420   | 0.00100   | mg/L   | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |          |
|                     |                         | Titanium, total   | 7440-32-6  | E420   | 0.00540   | mg/L   | <0.00540           | <0.00540            | 0                       | Diff <2x LOR        |          |

| Page       | : | 5 of 17                 |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |



| Sub-Matrix: Water       |                        |                       |            |        | Laboratory Duplicate (DUP) Report |      |                    |                     |                         |                     |          |
|-------------------------|------------------------|-----------------------|------------|--------|-----------------------------------|------|--------------------|---------------------|-------------------------|---------------------|----------|
| aboratory sample ID.    | Client sample ID       | Analyte               | CAS Number | Method | LOR                               | Unit | Original<br>Result | Duplicate<br>Result | RPD(%) or<br>Difference | Duplicate<br>Limits | Qualifie |
| Total Metals (QC Lo     | ot: 1468238) - continu | ed                    |            |        |                                   |      |                    |                     |                         |                     |          |
| 3F2400040-001           | Anonymous              | Tungsten, total       | 7440-33-7  | E420   | 0.00100                           | mg/L | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |          |
|                         |                        | Uranium, total        | 7440-61-1  | E420   | 0.000100                          | mg/L | <0.000100          | <0.000100           | 0                       | Diff <2x LOR        |          |
|                         |                        | Vanadium, total       | 7440-62-2  | E420   | 0.00500                           | mg/L | <0.00500           | <0.00500            | 0                       | Diff <2x LOR        |          |
|                         |                        | Zinc, total           | 7440-66-6  | E420   | 0.0300                            | mg/L | <0.0300            | <0.0300             | 0                       | Diff <2x LOR        |          |
|                         |                        | Zirconium, total      | 7440-67-7  | E420   | 0.00200                           | mg/L | <0.00200           | <0.00200            | 0                       | Diff <2x LOR        |          |
| )<br>issolved Metals (C | QC Lot: 1469428)       |                       |            |        |                                   |      |                    |                     |                         |                     |          |
| VT2413774-002           | Anonymous              | Aluminum, dissolved   | 7429-90-5  | E421   | 0.0100                            | mg/L | 0.0656             | 0.0643              | 0.0013                  | Diff <2x LOR        |          |
|                         |                        | Antimony, dissolved   | 7440-36-0  | E421   | 0.00100                           | mg/L | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |          |
|                         |                        | Arsenic, dissolved    | 7440-38-2  | E421   | 0.00100                           | mg/L | 0.00132            | 0.00131             | 0.00001                 | Diff <2x LOR        |          |
|                         |                        | Barium, dissolved     | 7440-39-3  | E421   | 0.00100                           | mg/L | 0.0178             | 0.0176              | 0.814%                  | 20%                 |          |
|                         |                        | Beryllium, dissolved  | 7440-41-7  | E421   | 0.000200                          | mg/L | <0.000200          | <0.000200           | 0                       | Diff <2x LOR        |          |
|                         |                        | Bismuth, dissolved    | 7440-69-9  | E421   | 0.000500                          | mg/L | <0.000500          | <0.000500           | 0                       | Diff <2x LOR        |          |
|                         |                        | Boron, dissolved      | 7440-42-8  | E421   | 0.100                             | mg/L | <0.100             | <0.100              | 0                       | Diff <2x LOR        |          |
|                         |                        | Cadmium, dissolved    | 7440-43-9  | E421   | 0.0000500                         | mg/L | <0.0000500         | <0.0000500          | 0                       | Diff <2x LOR        |          |
|                         |                        | Calcium, dissolved    | 7440-70-2  | E421   | 0.500                             | mg/L | 29.5               | 30.5                | 3.27%                   | 20%                 |          |
|                         |                        | Cesium, dissolved     | 7440-46-2  | E421   | 0.000100                          | mg/L | <0.000100          | <0.000100           | 0                       | Diff <2x LOR        |          |
|                         |                        | Chromium, dissolved   | 7440-47-3  | E421   | 0.00500                           | mg/L | <0.00500           | <0.00500            | 0                       | Diff <2x LOR        |          |
|                         |                        | Cobalt, dissolved     | 7440-48-4  | E421   | 0.00100                           | mg/L | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |          |
|                         |                        | Copper, dissolved     | 7440-50-8  | E421   | 0.00200                           | mg/L | 0.0155             | 0.0156              | 0.00009                 | Diff <2x LOR        |          |
|                         |                        | Iron, dissolved       | 7439-89-6  | E421   | 0.100                             | mg/L | <0.100             | <0.100              | 0                       | Diff <2x LOR        |          |
|                         |                        | Lead, dissolved       | 7439-92-1  | E421   | 0.000500                          | mg/L | 0.00539            | 0.00542             | 0.497%                  | 20%                 |          |
|                         |                        | Lithium, dissolved    | 7439-93-2  | E421   | 0.0100                            | mg/L | <0.0100            | <0.0100             | 0                       | Diff <2x LOR        |          |
|                         |                        | Magnesium, dissolved  | 7439-95-4  | E421   | 0.0500                            | mg/L | 5.72               | 5.79                | 1.09%                   | 20%                 |          |
|                         |                        | Manganese, dissolved  | 7439-96-5  | E421   | 0.00100                           | mg/L | 0.00237            | 0.00255             | 0.00018                 | Diff <2x LOR        |          |
|                         |                        | Molybdenum, dissolved | 7439-98-7  | E421   | 0.000500                          | mg/L | 0.00284            | 0.00283             | 0.000006                | Diff <2x LOR        |          |
|                         |                        | Nickel, dissolved     | 7440-02-0  | E421   | 0.00500                           | mg/L | <0.00500           | <0.00500            | 0                       | Diff <2x LOR        |          |
|                         |                        | Phosphorus, dissolved | 7723-14-0  | E421   | 0.500                             | mg/L | <0.500             | <0.500              | 0                       | Diff <2x LOR        |          |
|                         |                        | Potassium, dissolved  | 7440-09-7  | E421   | 0.500                             | mg/L | 29.9               | 30.2                | 0.752%                  | 20%                 |          |
|                         |                        | Rubidium, dissolved   | 7440-17-7  | E421   | 0.00200                           | mg/L | 0.0176             | 0.0182              | 0.00060                 | Diff <2x LOR        |          |
|                         |                        | Selenium, dissolved   | 7782-49-2  | E421   | 0.000500                          | mg/L | <0.000500          | <0.000500           | 0                       | Diff <2x LOR        |          |
|                         |                        | Silicon, dissolved    | 7440-21-3  | E421   | 0.500                             | mg/L | 2.56               | 2.60                | 0.042                   | Diff <2x LOR        |          |
|                         |                        | Silver, dissolved     | 7440-22-4  | E421   | 0.000100                          | mg/L | <0.000100          | <0.000100           | 0                       | Diff <2x LOR        |          |
|                         |                        | Sodium, dissolved     | 7440-23-5  | E421   | 0.500                             | mg/L | 23.6               | 24.3                | 2.88%                   | 20%                 |          |
|                         |                        | Strontium, dissolved  | 7440-23-5  | E421   | 0.00200                           | mg/L | 0.348              | 0.353               | 1.28%                   | 20%                 |          |

| Page :       | 6 of 17                 |
|--------------|-------------------------|
| Work Order : | WT2414011               |
| Client :     | CF Crozier & Associates |
| Project :    | 2227-69259              |



| Sub-Matrix: Water    |                         |                      |            |        |          |      | Labora             | tory Duplicate (Dl  | JP) Report              |                     |           |
|----------------------|-------------------------|----------------------|------------|--------|----------|------|--------------------|---------------------|-------------------------|---------------------|-----------|
| Laboratory sample ID | Client sample ID        | Analyte              | CAS Number | Method | LOR      | Unit | Original<br>Result | Duplicate<br>Result | RPD(%) or<br>Difference | Duplicate<br>Limits | Qualifier |
| Dissolved Metals (C  | C Lot: 1469428) - conti | nued                 |            |        |          |      |                    |                     |                         |                     |           |
| WT2413774-002        | Anonymous               | Sulfur, dissolved    | 7704-34-9  | E421   | 5.00     | mg/L | 16.0               | 15.1                | 0.93                    | Diff <2x LOR        |           |
|                      |                         | Tellurium, dissolved | 13494-80-9 | E421   | 0.00200  | mg/L | <0.00200           | <0.00200            | 0                       | Diff <2x LOR        |           |
|                      |                         | Thallium, dissolved  | 7440-28-0  | E421   | 0.000100 | mg/L | <0.000100          | <0.000100           | 0                       | Diff <2x LOR        |           |
|                      |                         | Thorium, dissolved   | 7440-29-1  | E421   | 0.00100  | mg/L | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |           |
|                      |                         | Tin, dissolved       | 7440-31-5  | E421   | 0.00100  | mg/L | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |           |
|                      |                         | Titanium, dissolved  | 7440-32-6  | E421   | 0.00300  | mg/L | <0.00300           | <0.00300            | 0                       | Diff <2x LOR        |           |
|                      |                         | Tungsten, dissolved  | 7440-33-7  | E421   | 0.00100  | mg/L | <0.00100           | <0.00100            | 0                       | Diff <2x LOR        |           |
|                      |                         | Uranium, dissolved   | 7440-61-1  | E421   | 0.000100 | mg/L | 0.000587           | 0.000577            | 0.000011                | Diff <2x LOR        |           |
|                      |                         | Vanadium, dissolved  | 7440-62-2  | E421   | 0.00500  | mg/L | <0.00500           | <0.00500            | 0                       | Diff <2x LOR        |           |
|                      |                         | Zinc, dissolved      | 7440-66-6  | E421   | 0.0100   | mg/L | 0.174              | 0.181               | 4.29%                   | 20%                 |           |
|                      |                         | Zirconium, dissolved | 7440-67-7  | E421   | 0.00300  | mg/L | <0.00300           | <0.00300            | 0                       | Diff <2x LOR        |           |

| Page :       | 7 of 17                 |
|--------------|-------------------------|
| Work Order : | WT2414011               |
| Client :     | CF Crozier & Associates |
| Project :    | 2227-69259              |



## Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

| ub-Matrix: Water                       |            |          |        |           |          |           |
|----------------------------------------|------------|----------|--------|-----------|----------|-----------|
| nalyte                                 | CAS Number | Method   | LOR    | Unit      | Result   | Qualifier |
| hysical Tests (QCLot: 1468699)         |            |          |        |           |          |           |
| Turbidity                              |            | E121     | 0.1    | NTU       | <0.10    |           |
| hysical Tests (QCLot: 1469701)         |            |          |        |           |          |           |
| Colour, apparent                       |            | E330     | 2      | CU        | <2.0     |           |
| hysical Tests (QCLot: 1472924)         |            |          |        |           |          |           |
| Alkalinity, total (as CaCO3)           |            | E290     | 1      | mg/L      | <1.0     |           |
| hysical Tests (QCLot: 1472925)         |            |          |        |           |          |           |
| Conductivity                           |            | E100     | 1      | μS/cm     | 1.3      |           |
| hysical Tests (QCLot: 1476573)         |            |          |        |           |          |           |
| Solids, total dissolved [TDS]          |            | E162     | 10     | mg/L      | <10      |           |
| nions and Nutrients (QCLot: 1470994)   |            |          |        |           |          |           |
| Ammonia, total (as N)                  | 7664-41-7  | E298     | 0.005  | mg/L      | <0.0050  |           |
| nions and Nutrients (QCLot: 1472926)   |            |          |        |           |          |           |
| Nitrate (as N)                         | 14797-55-8 | E235.NO3 | 0.02   | mg/L      | <0.020   |           |
| nions and Nutrients (QCLot: 1472927)   |            |          |        |           |          |           |
| Nitrite (as N)                         | 14797-65-0 | E235.NO2 | 0.01   | mg/L      | <0.010   |           |
| nions and Nutrients (QCLot: 1472928)   |            |          |        |           |          |           |
| Chloride                               | 16887-00-6 | E235.CI  | 0.5    | mg/L      | <0.50    |           |
| nions and Nutrients (QCLot: 1472929)   |            |          |        |           |          |           |
| Sulfate (as SO4)                       | 14808-79-8 | E235.SO4 | 0.3    | mg/L      | <0.30    |           |
| nions and Nutrients (QCLot: 1472930)   |            |          |        |           |          |           |
| Fluoride                               | 16984-48-8 | E235.F   | 0.02   | mg/L      | <0.020   |           |
| nions and Nutrients (QCLot: 1472940)   |            |          |        |           |          |           |
| Phosphate, ortho-, dissolved (as P)    | 14265-44-2 | E378-U   | 0.001  | mg/L      | <0.0010  |           |
| licrobiological Tests (QCLot: 1469285) |            |          |        |           |          |           |
| Coliforms, Escherichia coli [E. coli]  |            | E012A.EC | 1      | CFU/100mL | <1       |           |
| licrobiological Tests (QCLot: 1469287) |            |          |        |           |          |           |
| Coliforms, total                       |            | E012.TC  | 1      | CFU/100mL | <1       |           |
| otal Metals (QCLot: 1468238)           |            |          |        |           |          |           |
| Aluminum, total                        | 7429-90-5  | E420     | 0.003  | mg/L      | <0.0030  |           |
| Antimony, total                        | 7440-36-0  | E420     | 0.0001 | mg/L      | <0.00010 |           |
| Arsenic, total                         | 7440-38-2  | E420     | 0.0001 | mg/L      | <0.00010 |           |
| Barium, total                          | 7440-39-3  | E420     | 0.0001 | mg/L      | <0.00010 |           |

| Page       | : | 8 of 17                 |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |



## Sub-Matrix: Water

| Analyte                         | CAS Number | Method | LOR      | Unit | Result    | Qualifier |
|---------------------------------|------------|--------|----------|------|-----------|-----------|
| Total Metals (QCLot: 1468238) - | continued  |        |          |      |           |           |
| Beryllium, total                | 7440-41-7  | E420   | 0.00002  | mg/L | <0.000020 |           |
| Bismuth, total                  | 7440-69-9  | E420   | 0.00005  | mg/L | <0.000050 |           |
| Boron, total                    | 7440-42-8  | E420   | 0.01     | mg/L | <0.010    |           |
| Cadmium, total                  | 7440-43-9  | E420   | 0.000005 | mg/L | <0.000050 |           |
| Calcium, total                  | 7440-70-2  | E420   | 0.05     | mg/L | <0.050    |           |
| Cesium, total                   | 7440-46-2  | E420   | 0.00001  | mg/L | <0.000010 |           |
| Chromium, total                 | 7440-47-3  | E420   | 0.0005   | mg/L | <0.00050  |           |
| Cobalt, total                   | 7440-48-4  | E420   | 0.0001   | mg/L | <0.00010  |           |
| Copper, total                   | 7440-50-8  | E420   | 0.0005   | mg/L | <0.00050  |           |
| Iron, total                     | 7439-89-6  | E420   | 0.01     | mg/L | <0.010    |           |
| Lead, total                     | 7439-92-1  | E420   | 0.00005  | mg/L | <0.000050 |           |
| Lithium, total                  | 7439-93-2  | E420   | 0.001    | mg/L | <0.0010   |           |
| Magnesium, total                | 7439-95-4  | E420   | 0.005    | mg/L | <0.0050   |           |
| Manganese, total                | 7439-96-5  | E420   | 0.0001   | mg/L | <0.00010  |           |
| Molybdenum, total               | 7439-98-7  | E420   | 0.00005  | mg/L | <0.000050 |           |
| Nickel, total                   | 7440-02-0  | E420   | 0.0005   | mg/L | <0.00050  |           |
| Phosphorus, total               | 7723-14-0  | E420   | 0.05     | mg/L | <0.050    |           |
| Potassium, total                | 7440-09-7  | E420   | 0.05     | mg/L | <0.050    |           |
| Rubidium, total                 | 7440-17-7  | E420   | 0.0002   | mg/L | <0.00020  |           |
| Selenium, total                 | 7782-49-2  | E420   | 0.00005  | mg/L | <0.000050 |           |
| Silicon, total                  | 7440-21-3  | E420   | 0.1      | mg/L | <0.10     |           |
| Silver, total                   | 7440-22-4  | E420   | 0.00001  | mg/L | <0.000010 |           |
| Sodium, total                   | 7440-23-5  | E420   | 0.05     | mg/L | <0.050    |           |
| Strontium, total                | 7440-24-6  | E420   | 0.0002   | mg/L | <0.00020  |           |
| Sulfur, total                   | 7704-34-9  | E420   | 0.5      | mg/L | <0.50     |           |
| Tellurium, total                | 13494-80-9 | E420   | 0.0002   | mg/L | <0.00020  |           |
| Thallium, total                 | 7440-28-0  | E420   | 0.00001  | mg/L | <0.000010 |           |
| Thorium, total                  | 7440-29-1  | E420   | 0.0001   | mg/L | <0.00010  |           |
| Tin, total                      | 7440-31-5  | E420   | 0.0001   | mg/L | <0.00010  |           |
| Titanium, total                 | 7440-32-6  | E420   | 0.0003   | mg/L | <0.00030  |           |
| Tungsten, total                 | 7440-33-7  | E420   | 0.0001   | mg/L | <0.00010  |           |
| Uranium, total                  | 7440-61-1  | E420   | 0.00001  | mg/L | <0.000010 |           |
| Vanadium, total                 | 7440-62-2  | E420   | 0.0005   | mg/L | <0.00050  |           |
| Zinc, total                     | 7440-66-6  | E420   | 0.003    | mg/L | <0.0030   |           |
| Zirconium, total                | 7440-67-7  | E420   | 0.0002   | mg/L | <0.00020  |           |

| Page       | : | 9 of 17                 |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |



## Sub-Matrix: Water

| Analyte                           | CAS Number | Method | LOR      | Unit | Result    | Qualifier |
|-----------------------------------|------------|--------|----------|------|-----------|-----------|
| Dissolved Metals (QCLot: 1469428) |            |        |          |      |           |           |
| Aluminum, dissolved               | 7429-90-5  | E421   | 0.001    | mg/L | <0.0010   |           |
| Antimony, dissolved               | 7440-36-0  | E421   | 0.0001   | mg/L | <0.00010  |           |
| Arsenic, dissolved                | 7440-38-2  | E421   | 0.0001   | mg/L | <0.00010  |           |
| Barium, dissolved                 | 7440-39-3  | E421   | 0.0001   | mg/L | <0.00010  |           |
| Beryllium, dissolved              | 7440-41-7  | E421   | 0.00002  | mg/L | <0.000020 |           |
| Bismuth, dissolved                | 7440-69-9  | E421   | 0.00005  | mg/L | <0.000050 |           |
| Boron, dissolved                  | 7440-42-8  | E421   | 0.01     | mg/L | <0.010    |           |
| Cadmium, dissolved                | 7440-43-9  | E421   | 0.000005 | mg/L | <0.000050 |           |
| Calcium, dissolved                | 7440-70-2  | E421   | 0.05     | mg/L | <0.050    |           |
| Cesium, dissolved                 | 7440-46-2  | E421   | 0.00001  | mg/L | <0.000010 |           |
| Chromium, dissolved               | 7440-47-3  | E421   | 0.0005   | mg/L | <0.00050  |           |
| Cobalt, dissolved                 | 7440-48-4  | E421   | 0.0001   | mg/L | <0.00010  |           |
| Copper, dissolved                 | 7440-50-8  | E421   | 0.0002   | mg/L | <0.00020  |           |
| Iron, dissolved                   | 7439-89-6  | E421   | 0.01     | mg/L | <0.010    |           |
| Lead, dissolved                   | 7439-92-1  | E421   | 0.00005  | mg/L | <0.000050 |           |
| Lithium, dissolved                | 7439-93-2  | E421   | 0.001    | mg/L | <0.0010   |           |
| Magnesium, dissolved              | 7439-95-4  | E421   | 0.005    | mg/L | <0.0050   |           |
| Manganese, dissolved              | 7439-96-5  | E421   | 0.0001   | mg/L | <0.00010  |           |
| Molybdenum, dissolved             | 7439-98-7  | E421   | 0.00005  | mg/L | <0.000050 |           |
| Nickel, dissolved                 | 7440-02-0  | E421   | 0.0005   | mg/L | <0.00050  |           |
| Phosphorus, dissolved             | 7723-14-0  | E421   | 0.05     | mg/L | <0.050    |           |
| Potassium, dissolved              | 7440-09-7  | E421   | 0.05     | mg/L | <0.050    |           |
| Rubidium, dissolved               | 7440-17-7  | E421   | 0.0002   | mg/L | <0.00020  |           |
| Selenium, dissolved               | 7782-49-2  | E421   | 0.00005  | mg/L | <0.000050 |           |
| Silicon, dissolved                | 7440-21-3  | E421   | 0.05     | mg/L | <0.050    |           |
| Silver, dissolved                 | 7440-22-4  | E421   | 0.00001  | mg/L | <0.000010 |           |
| Sodium, dissolved                 | 7440-23-5  | E421   | 0.05     | mg/L | <0.050    |           |
| Strontium, dissolved              | 7440-24-6  | E421   | 0.0002   | mg/L | <0.00020  |           |
| Sulfur, dissolved                 | 7704-34-9  | E421   | 0.5      | mg/L | <0.50     |           |
| Tellurium, dissolved              | 13494-80-9 | E421   | 0.0002   | mg/L | <0.00020  |           |
| Thallium, dissolved               | 7440-28-0  | E421   | 0.00001  | mg/L | <0.000010 |           |
| Thorium, dissolved                | 7440-29-1  | E421   | 0.0001   | mg/L | <0.00010  |           |
| Tin, dissolved                    | 7440-31-5  | E421   | 0.0001   | mg/L | <0.00010  |           |
| Titanium, dissolved               | 7440-32-6  | E421   | 0.0003   | mg/L | <0.00030  |           |
| Tungsten, dissolved               | 7440-33-7  | E421   | 0.0001   | mg/L | <0.00010  |           |

| Page :       | 10 of 17                |
|--------------|-------------------------|
| Work Order : | WT2414011               |
| Client :     | CF Crozier & Associates |
| Project :    | 2227-69259              |



### Sub-Matrix: Water

| Analyte                           | CAS Number Me | ethod |    | LOR     | Unit | Result    | Qualifier |
|-----------------------------------|---------------|-------|----|---------|------|-----------|-----------|
| Dissolved Metals (QCLot: 1469428) | - continued   |       |    |         |      |           |           |
| Uranium, dissolved                | 7440-61-1 E42 | 21    | 0. | 0.00001 | mg/L | <0.000010 |           |
| Vanadium, dissolved               | 7440-62-2 E42 | 21    | O  | 0.0005  | mg/L | <0.00050  |           |
| Zinc, dissolved                   | 7440-66-6 E42 | 21    | (  | 0.001   | mg/L | <0.0010   |           |
| Zirconium, dissolved              | 7440-67-7 E42 | 21    | C  | 0.0002  | mg/L | <0.00020  |           |



## Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

| Sub-Matrix: Water                                                            |            |          |        |            |                      | Laboratory Co | ontrol Sample (LCS) | Report     |           |
|------------------------------------------------------------------------------|------------|----------|--------|------------|----------------------|---------------|---------------------|------------|-----------|
|                                                                              |            |          |        |            | Spike                | Recovery (%)  | Recovery            | Limits (%) |           |
| Analyte                                                                      | CAS Number | Method   | LOR    | Unit       | Target Concentration | LCS           | Low                 | High       | Qualifier |
| Physical Tests (QCLot: 1468699)                                              |            |          |        |            |                      |               |                     |            |           |
| Turbidity                                                                    |            | E121     | 0.1    | NTU        | 200 NTU              | 102           | 85.0                | 115        |           |
| Physical Tests (QCLot: 1469701)                                              |            |          |        |            |                      |               |                     |            |           |
| Colour, apparent                                                             |            | E330     | 2      | CU         | 25 CU                | 101           | 70.0                | 130        |           |
| Physical Tests (QCLot: 1472923)                                              |            |          |        |            |                      |               |                     |            |           |
| рН                                                                           |            | E108     |        | pH units   | 7 pH units           | 100           | 98.0                | 102        |           |
| Physical Tests (QCLot: 1472924)                                              |            |          |        |            | 100 /                |               |                     |            |           |
| Alkalinity, total (as CaCO3)                                                 |            | E290     | 1      | mg/L       | 150 mg/L             | 95.6          | 85.0                | 115        |           |
| Physical Tests (QCLot: 1472925)                                              |            | E 400    |        | ····C/arra | 4440.00/200          | 00.0          | 00.0                | 110        |           |
| Conductivity                                                                 |            | E100     | 1      | µS/cm      | 1410 µS/cm           | 99.8          | 90.0                | 110        |           |
| Physical Tests (QCLot: 1476573)<br>Solids, total dissolved [TDS]             |            | E162     | 10     | ma/l       | 1000 mg/l            | 104           | 85.0                | 115        |           |
| Solids, total dissolved [1DS]                                                |            | E 102    | 10     | mg/L       | 1000 mg/L            | 104           | 05.0                | 115        |           |
| Anions and Nutrients (QCLot: 1470994)                                        |            |          |        |            |                      |               |                     |            | 1         |
| Ammonia, total (as N)                                                        | 7664-41-7  | E298     | 0.005  | mg/L       | 0.2 mg/L             | 99.5          | 85.0                | 115        |           |
| Anions and Nutrients (QCLot: 1472926)                                        |            |          |        |            |                      |               |                     |            |           |
| Nitrate (as N)                                                               | 14797-55-8 | E235.NO3 | 0.02   | mg/L       | 2.5 mg/L             | 99.6          | 90.0                | 110        |           |
| Anions and Nutrients (QCLot: 1472927)                                        |            |          |        |            |                      |               |                     |            |           |
| Nitrite (as N)                                                               | 14797-65-0 | E235.NO2 | 0.01   | mg/L       | 0.5 mg/L             | 99.0          | 90.0                | 110        |           |
| Anions and Nutrients (QCLot: 1472928)                                        |            |          |        |            |                      |               |                     |            |           |
| Chloride                                                                     | 16887-00-6 | E235.Cl  | 0.5    | mg/L       | 100 mg/L             | 100           | 90.0                | 110        |           |
| Anions and Nutrients (QCLot: 1472929)                                        | 14808-79-8 | E225 804 | 0.2    |            | 100 mg/l             | 101           | 00.0                | 110        |           |
| Sulfate (as SO4)                                                             | 14808-79-8 | E230.8U4 | 0.3    | mg/L       | 100 mg/L             | 101           | 90.0                | 110        |           |
| Anions and Nutrients (QCLot: 1472930) Fluoride                               | 16984-48-8 | E235 E   | 0.02   | mg/L       | 1 mg/L               | 102           | 90.0                | 110        |           |
|                                                                              | 10904-40-0 | L233.1   | 0.02   | ing/L      | T Hig/L              | 102           | 30.0                | 110        |           |
| Anions and Nutrients (QCLot: 1472940)<br>Phosphate, ortho-, dissolved (as P) | 14265-44-2 | E378-U   | 0.001  | mg/L       | 0.031 mg/L           | 97.3          | 80.0                | 120        |           |
|                                                                              | 11200 112  |          | 0.001  |            | 0.001                | 0,10          | 00.0                |            |           |
| Total Metals (QCLot: 1468238)                                                |            |          |        |            |                      |               |                     |            |           |
| Aluminum, total                                                              | 7429-90-5  |          | 0.003  | mg/L       | 0.1 mg/L             | 107           | 80.0                | 120        |           |
| Antimony, total                                                              | 7440-36-0  |          | 0.0001 | mg/L       | 0.05 mg/L            | 108           | 80.0                | 120        |           |
| Arsenic, total                                                               | 7440-38-2  |          | 0.0001 | mg/L       | 0.05 mg/L            | 109           | 80.0                | 120        |           |
| Barium, total                                                                | 7440-39-3  | E420     | 0.0001 | mg/L       | 0.012 mg/L           | 103           | 80.0                | 120        |           |

# Page : 12 of 17 Work Order : WT2414011 Client : CF Crozier & Associates Project : 2227-69259



| Sub-Matrix: Water                      | Laboratory Control Sample (LCS) Report |          |      |                      |              |          |            |           |
|----------------------------------------|----------------------------------------|----------|------|----------------------|--------------|----------|------------|-----------|
|                                        |                                        |          |      | Spike                | Recovery (%) | Recovery | Limits (%) |           |
| Analyte                                | CAS Number Method                      | LOR      | Unit | Target Concentration | LCS          | Low      | High       | Qualifier |
| Fotal Metals (QCLot: 1468238) - contir | nued                                   |          |      |                      |              |          |            |           |
| Beryllium, total                       | 7440-41-7 E420                         | 0.00002  | mg/L | 0.005 mg/L           | 110          | 80.0     | 120        |           |
| Bismuth, total                         | 7440-69-9 E420                         | 0.00005  | mg/L | 0.05 mg/L            | 106          | 80.0     | 120        |           |
| Boron, total                           | 7440-42-8 E420                         | 0.01     | mg/L | 0.05 mg/L            | 102          | 80.0     | 120        |           |
| Cadmium, total                         | 7440-43-9 E420                         | 0.000005 | mg/L | 0.005 mg/L           | 98.3         | 80.0     | 120        |           |
| Calcium, total                         | 7440-70-2 E420                         | 0.05     | mg/L | 2.5 mg/L             | 104          | 80.0     | 120        |           |
| Cesium, total                          | 7440-46-2 E420                         | 0.00001  | mg/L | 0.002 mg/L           | 108          | 80.0     | 120        |           |
| Chromium, total                        | 7440-47-3 E420                         | 0.0005   | mg/L | 0.012 mg/L           | 104          | 80.0     | 120        |           |
| Cobalt, total                          | 7440-48-4 E420                         | 0.0001   | mg/L | 0.012 mg/L           | 103          | 80.0     | 120        |           |
| Copper, total                          | 7440-50-8 E420                         | 0.0005   | mg/L | 0.012 mg/L           | 101          | 80.0     | 120        |           |
| ron, total                             | 7439-89-6 E420                         | 0.01     | mg/L | 0.05 mg/L            | 102          | 80.0     | 120        |           |
| _ead, total                            | 7439-92-1 E420                         | 0.00005  | mg/L | 0.025 mg/L           | 106          | 80.0     | 120        |           |
| _ithium, total                         | 7439-93-2 E420                         | 0.001    | mg/L | 0.012 mg/L           | 105          | 80.0     | 120        |           |
| Magnesium, total                       | 7439-95-4 E420                         | 0.005    | mg/L | 2.5 mg/L             | 110          | 80.0     | 120        |           |
| Manganese, total                       | 7439-96-5 E420                         | 0.0001   | mg/L | 0.012 mg/L           | 104          | 80.0     | 120        |           |
| Molybdenum, total                      | 7439-98-7 E420                         | 0.00005  | mg/L | 0.012 mg/L           | 105          | 80.0     | 120        |           |
| Nickel, total                          | 7440-02-0 E420                         | 0.0005   | mg/L | 0.025 mg/L           | 102          | 80.0     | 120        |           |
| Phosphorus, total                      | 7723-14-0 E420                         | 0.05     | mg/L | 0.5 mg/L             | 110          | 80.0     | 120        |           |
| Potassium, total                       | 7440-09-7 E420                         | 0.05     | mg/L | 2.5 mg/L             | 101          | 80.0     | 120        |           |
| Rubidium, total                        | 7440-17-7 E420                         | 0.0002   | mg/L | 0.005 mg/L           | 107          | 80.0     | 120        |           |
| Selenium, total                        | 7782-49-2 E420                         | 0.00005  | mg/L | 0.05 mg/L            | 103          | 80.0     | 120        |           |
| Silicon, total                         | 7440-21-3 E420                         | 0.1      | mg/L | 0.5 mg/L             | 98.2         | 80.0     | 120        |           |
| Silver, total                          | 7440-22-4 E420                         | 0.00001  | mg/L | 0.005 mg/L           | 103          | 80.0     | 120        |           |
| Sodium, total                          | 7440-23-5 E420                         | 0.05     | mg/L | 2.5 mg/L             | 104          | 80.0     | 120        |           |
| Strontium, total                       | 7440-24-6 E420                         | 0.0002   | mg/L | 0.012 mg/L           | 109          | 80.0     | 120        |           |
| Sulfur, total                          | 7704-34-9 E420                         | 0.5      | mg/L | 2.5 mg/L             | 102          | 80.0     | 120        |           |
| Fellurium, total                       | 13494-80-9 E420                        | 0.0002   | mg/L | 0.005 mg/L           | 102          | 80.0     | 120        |           |
| Fhallium, total                        | 7440-28-0 E420                         | 0.00001  | mg/L | 0.05 mg/L            | 102          | 80.0     | 120        |           |
| Fhorium, total                         | 7440-29-1 E420                         | 0.0001   | mg/L | 0.005 mg/L           | 94.6         | 80.0     | 120        |           |
| Γin, total                             | 7440-31-5 E420                         | 0.0001   | mg/L | 0.025 mg/L           | 101          | 80.0     | 120        |           |
| Γitanium, total                        | 7440-32-6 E420                         | 0.0003   | mg/L | 0.012 mg/L           | 102          | 80.0     | 120        |           |
| Fungsten, total                        | 7440-33-7 E420                         | 0.0001   | mg/L | 0.005 mg/L           | 104          | 80.0     | 120        |           |
| Jranium, total                         | 7440-61-1 E420                         | 0.00001  | mg/L | 0 mg/L               | 107          | 80.0     | 120        |           |
| /anadium, total                        | 7440-62-2 E420                         | 0.0005   | mg/L | 0.025 mg/L           | 105          | 80.0     | 120        |           |
| Zinc, total                            | 7440-66-6 E420                         | 0.003    | mg/L | 0.025 mg/L           | 115          | 80.0     | 120        |           |
| Zirconium, total                       | 7440-67-7 E420                         | 0.0002   | mg/L | 0.005 mg/L           | 101          | 80.0     | 120        |           |

# Page : 13 of 17 Work Order : WT2414011 Client : CF Crozier & Associates Project : 2227-69259



| Sub-Matrix: Water                 | Laboratory Control Sample (LCS) Report |        |          |      |                      |              |          |            |           |
|-----------------------------------|----------------------------------------|--------|----------|------|----------------------|--------------|----------|------------|-----------|
|                                   |                                        |        |          |      | Spike                | Recovery (%) | Recovery | Limits (%) |           |
| Analyte                           | CAS Number                             | Method | LOR      | Unit | Target Concentration | LCS          | Low      | High       | Qualifier |
| Dissolved Metals (QCLot: 1469428) |                                        |        |          |      |                      |              |          |            |           |
| Aluminum, dissolved               | 7429-90-5                              | E421   | 0.001    | mg/L | 0.1 mg/L             | 109          | 80.0     | 120        |           |
| Antimony, dissolved               | 7440-36-0                              | E421   | 0.0001   | mg/L | 0.05 mg/L            | 103          | 80.0     | 120        |           |
| Arsenic, dissolved                | 7440-38-2                              | E421   | 0.0001   | mg/L | 0.05 mg/L            | 112          | 80.0     | 120        |           |
| Barium, dissolved                 | 7440-39-3                              | E421   | 0.0001   | mg/L | 0.012 mg/L           | 108          | 80.0     | 120        |           |
| Beryllium, dissolved              | 7440-41-7                              | E421   | 0.00002  | mg/L | 0.005 mg/L           | 106          | 80.0     | 120        |           |
| Bismuth, dissolved                | 7440-69-9                              | E421   | 0.00005  | mg/L | 0.05 mg/L            | 109          | 80.0     | 120        |           |
| Boron, dissolved                  | 7440-42-8                              | E421   | 0.01     | mg/L | 0.05 mg/L            | 99.2         | 80.0     | 120        |           |
| Cadmium, dissolved                | 7440-43-9                              | E421   | 0.000005 | mg/L | 0.005 mg/L           | 104          | 80.0     | 120        |           |
| Calcium, dissolved                | 7440-70-2                              | E421   | 0.05     | mg/L | 2.5 mg/L             | 104          | 80.0     | 120        |           |
| Cesium, dissolved                 | 7440-46-2                              | E421   | 0.00001  | mg/L | 0.002 mg/L           | 112          | 80.0     | 120        |           |
| Chromium, dissolved               | 7440-47-3                              | E421   | 0.0005   | mg/L | 0.012 mg/L           | 104          | 80.0     | 120        |           |
| Cobalt, dissolved                 | 7440-48-4                              | E421   | 0.0001   | mg/L | 0.012 mg/L           | 103          | 80.0     | 120        |           |
| Copper, dissolved                 | 7440-50-8                              | E421   | 0.0002   | mg/L | 0.012 mg/L           | 102          | 80.0     | 120        |           |
| ron, dissolved                    | 7439-89-6                              | E421   | 0.01     | mg/L | 0.05 mg/L            | 104          | 80.0     | 120        |           |
| _ead, dissolved                   | 7439-92-1                              | E421   | 0.00005  | mg/L | 0.025 mg/L           | 107          | 80.0     | 120        |           |
| _ithium, dissolved                | 7439-93-2                              | E421   | 0.001    | mg/L | 0.012 mg/L           | 98.0         | 80.0     | 120        |           |
| Magnesium, dissolved              | 7439-95-4                              | E421   | 0.005    | mg/L | 2.5 mg/L             | 114          | 80.0     | 120        |           |
| Manganese, dissolved              | 7439-96-5                              | E421   | 0.0001   | mg/L | 0.012 mg/L           | 109          | 80.0     | 120        |           |
| Molybdenum, dissolved             | 7439-98-7                              | E421   | 0.00005  | mg/L | 0.012 mg/L           | 108          | 80.0     | 120        |           |
| Nickel, dissolved                 | 7440-02-0                              | E421   | 0.0005   | mg/L | 0.025 mg/L           | 102          | 80.0     | 120        |           |
| Phosphorus, dissolved             | 7723-14-0                              | E421   | 0.05     | mg/L | 0.5 mg/L             | 110          | 80.0     | 120        |           |
| Potassium, dissolved              | 7440-09-7                              | E421   | 0.05     | mg/L | 2.5 mg/L             | 105          | 80.0     | 120        |           |
| Rubidium, dissolved               | 7440-17-7                              | E421   | 0.0002   | mg/L | 0.005 mg/L           | 116          | 80.0     | 120        |           |
| Selenium, dissolved               | 7782-49-2                              | E421   | 0.00005  | mg/L | 0.05 mg/L            | 106          | 80.0     | 120        |           |
| Silicon, dissolved                | 7440-21-3                              | E421   | 0.05     | mg/L | 0.5 mg/L             | 98.7         | 60.0     | 140        |           |
| Silver, dissolved                 | 7440-22-4                              | E421   | 0.00001  | mg/L | 0.005 mg/L           | 106          | 80.0     | 120        |           |
| Sodium, dissolved                 | 7440-23-5                              | E421   | 0.05     | mg/L | 2.5 mg/L             | 104          | 80.0     | 120        |           |
| Strontium, dissolved              | 7440-24-6                              | E421   | 0.0002   | mg/L | 0.012 mg/L           | 111          | 80.0     | 120        |           |
| Sulfur, dissolved                 | 7704-34-9                              | E421   | 0.5      | mg/L | 2.5 mg/L             | 103          | 80.0     | 120        |           |
| Tellurium, dissolved              | 13494-80-9                             | E421   | 0.0002   | mg/L | 0.005 mg/L           | 104          | 80.0     | 120        |           |
| Fhallium, dissolved               | 7440-28-0                              | E421   | 0.00001  | mg/L | 0.05 mg/L            | 105          | 80.0     | 120        |           |
| Thorium, dissolved                | 7440-29-1                              | E421   | 0.0001   | mg/L | 0.005 mg/L           | 99.9         | 80.0     | 120        |           |
| Tin, dissolved                    | 7440-31-5                              | E421   | 0.0001   | mg/L | 0.025 mg/L           | 108          | 80.0     | 120        |           |
| Titanium, dissolved               | 7440-32-6                              | E421   | 0.0003   | mg/L | 0.012 mg/L           | 105          | 80.0     | 120        |           |
| Tungsten, dissolved               | 7440-33-7                              | E421   | 0.0001   | mg/L | 0.005 mg/L           | 107          | 80.0     | 120        |           |
| Uranium, dissolved                | 7440-61-1                              | E421   | 0.00001  | mg/L | 0 mg/L               | 107          | 80.0     | 120        |           |

| Page :       | 14 of 17                |
|--------------|-------------------------|
| Work Order : | WT2414011               |
| Client :     | CF Crozier & Associates |
| Project :    | 2227-69259              |



| Sub-Matrix: Water                     | -Matrix: Water |              |                     |      |                      | Laboratory Control Sample (LCS) Report |      |      |           |  |  |  |
|---------------------------------------|----------------|--------------|---------------------|------|----------------------|----------------------------------------|------|------|-----------|--|--|--|
|                                       | Spike          | Recovery (%) | Recovery Limits (%) |      |                      |                                        |      |      |           |  |  |  |
| Analyte                               | CAS Number     | Method       | LOR                 | Unit | Target Concentration | LCS                                    | Low  | High | Qualifier |  |  |  |
| Dissolved Metals (QCLot: 1469428) - c | ontinued       |              |                     |      |                      |                                        |      |      |           |  |  |  |
| Vanadium, dissolved                   | 7440-62-2      | E421         | 0.0005              | mg/L | 0.025 mg/L           | 106                                    | 80.0 | 120  |           |  |  |  |
| Zinc, dissolved                       | 7440-66-6      | E421         | 0.001               | mg/L | 0.025 mg/L           | 107                                    | 80.0 | 120  |           |  |  |  |
| Zirconium, dissolved                  | 7440-67-7      | E421         | 0.0002              | mg/L | 0.005 mg/L           | 106                                    | 80.0 | 120  |           |  |  |  |
|                                       |                |              |                     |      |                      |                                        |      |      |           |  |  |  |



## Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

| Sub-Matrix: Water | trix: Water          |                                     |            |          | Matrix Spike (MS) Report |            |              |      |            |          |  |
|-------------------|----------------------|-------------------------------------|------------|----------|--------------------------|------------|--------------|------|------------|----------|--|
|                   |                      |                                     |            |          | Spi                      | ike        | Recovery (%) |      | Limits (%) |          |  |
| Laboratory sample | ID Client sample ID  | Analyte                             | CAS Number | Method   | Concentration            | Target     | MS           | Low  | High       | Qualifie |  |
| Anions and Nut    | rients (QCLot: 14709 | 94)                                 |            |          |                          |            |              |      |            |          |  |
| HA2401203-001     | Anonymous            | Ammonia, total (as N)               | 7664-41-7  | E298     | 0.0916 mg/L              | 0.1 mg/L   | 91.6         | 75.0 | 125        |          |  |
| Anions and Nut    | rients (QCLot: 14729 | 26)                                 |            |          |                          |            |              |      |            |          |  |
| WT2414099-001     | Anonymous            | Nitrate (as N)                      | 14797-55-8 | E235.NO3 | 12.0 mg/L                | 12.5 mg/L  | 96.4         | 75.0 | 125        |          |  |
| Anions and Nut    | rients (QCLot: 14729 | 27)                                 |            |          |                          |            |              |      |            |          |  |
| WT2414099-001     | Anonymous            | Nitrite (as N)                      | 14797-65-0 | E235.NO2 | 2.53 mg/L                | 2.5 mg/L   | 101          | 75.0 | 125        |          |  |
| Anions and Nut    | rients (QCLot: 14729 | 28)                                 |            |          |                          |            |              |      |            |          |  |
| WT2414099-001     | Anonymous            | Chloride                            | 16887-00-6 | E235.Cl  | 496 mg/L                 | 500 mg/L   | 99.2         | 75.0 | 125        |          |  |
| Anions and Nut    | rients (QCLot: 14729 | 29)                                 |            |          |                          |            |              |      |            |          |  |
| WT2414099-001     | Anonymous            | Sulfate (as SO4)                    | 14808-79-8 | E235.SO4 | ND mg/L                  |            | ND           | 75.0 | 125        |          |  |
| Anions and Nut    | rients (QCLot: 14729 | 30)                                 |            |          | -                        |            |              |      | 1          |          |  |
| WT2414099-001     | Anonymous            | Fluoride                            | 16984-48-8 | E235.F   | 5.25 mg/L                | 5 mg/L     | 105          | 75.0 | 125        |          |  |
| Anions and Nut    | rients (QCLot: 14729 | 40)                                 |            |          |                          |            |              |      |            |          |  |
| WT2413896-002     | Anonymous            | Phosphate, ortho-, dissolved (as P) | 14265-44-2 | E378-U   | 0.0230 mg/L              | 0.02 mg/L  | 118          | 70.0 | 130        |          |  |
| otal Metals (Q    | CLot: 1468238)       |                                     |            |          |                          |            | <u> </u>     |      |            |          |  |
| BF2400040-002     | Anonymous            | Aluminum, total                     | 7429-90-5  | E420     | 0.104 mg/L               | 0.1 mg/L   | 104          | 70.0 | 130        |          |  |
|                   |                      | Antimony, total                     | 7440-36-0  | E420     | 0.0532 mg/L              | 0.05 mg/L  | 106          | 70.0 | 130        |          |  |
|                   |                      | Arsenic, total                      | 7440-38-2  | E420     | 0.0532 mg/L              | 0.05 mg/L  | 106          | 70.0 | 130        |          |  |
|                   |                      | Barium, total                       | 7440-39-3  | E420     | 0.0120 mg/L              | 0.012 mg/L | 96.3         | 70.0 | 130        |          |  |
|                   |                      | Beryllium, total                    | 7440-41-7  | E420     | 0.00457 mg/L             | 0.005 mg/L | 91.4         | 70.0 | 130        |          |  |
|                   |                      | Bismuth, total                      | 7440-69-9  | E420     | 0.0475 mg/L              | 0.05 mg/L  | 95.1         | 70.0 | 130        |          |  |
|                   |                      | Boron, total                        | 7440-42-8  | E420     | 0.047 mg/L               | 0.05 mg/L  | 93.7         | 70.0 | 130        |          |  |
|                   |                      | Cadmium, total                      | 7440-43-9  | E420     | 0.00507 mg/L             | 0.005 mg/L | 101          | 70.0 | 130        |          |  |
|                   |                      | Calcium, total                      | 7440-70-2  | E420     | ND mg/L                  |            | ND           | 70.0 | 130        |          |  |
|                   |                      | Cesium, total                       | 7440-46-2  | E420     | 0.00260 mg/L             | 0.002 mg/L | 104          | 70.0 | 130        |          |  |
|                   |                      | Chromium, total                     | 7440-47-3  | E420     | 0.0129 mg/L              | 0.012 mg/L | 103          | 70.0 | 130        |          |  |
|                   |                      | Cobalt, total                       | 7440-48-4  | E420     | 0.0122 mg/L              | 0.012 mg/L | 97.7         | 70.0 | 130        |          |  |
|                   |                      | Copper, total                       | 7440-50-8  | E420     | 0.0126 mg/L              | 0.012 mg/L | 101          | 70.0 | 130        |          |  |
|                   |                      | Iron, total                         | 7439-89-6  | E420     | ND mg/L                  |            | ND           | 70.0 | 130        |          |  |
|                   |                      | Lead, total                         | 7439-89-0  | E420     | 0.0239 mg/L              | 0.025 mg/L | 95.7         | 70.0 | 130        |          |  |
|                   |                      | Lithium, total                      | 7439-92-1  | E420     | -                        | -          |              | 70.0 | 130        |          |  |
|                   |                      |                                     |            |          | 0.0111 mg/L              | 0.012 mg/L | 89.1         |      |            |          |  |
|                   |                      | Magnesium, total                    | 7439-95-4  | E420     | ND mg/L                  |            | ND           | 70.0 | 130        |          |  |
|                   |                      | Manganese, total                    | 7439-96-5  | E420     | ND mg/L                  |            | ND           | 70.0 | 130        |          |  |
|                   |                      | Molybdenum, total                   | 7439-98-7  | E420     | 0.0129 mg/L              | 0.012 mg/L | 103          | 70.0 | 130        |          |  |
|                   |                      | Nickel, total                       | 7440-02-0  | E420     | 0.0237 mg/L              | 0.025 mg/L | 94.6         | 70.0 | 130        |          |  |
|                   |                      | Phosphorus, total                   | 7723-14-0  | E420     | 0.542 mg/L               | 0.5 mg/L   | 108          | 70.0 | 130        |          |  |

| Page       | : | 16 of 17                |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |



| b-Matrix: Water      |                     |                       |            | Matrix Spike (MS) Report |               |            |              |          |            |           |  |
|----------------------|---------------------|-----------------------|------------|--------------------------|---------------|------------|--------------|----------|------------|-----------|--|
|                      |                     |                       |            |                          | Spi           | ike        | Recovery (%) | Recovery | Limits (%) |           |  |
| Laboratory sample ID | Client sample ID    | Analyte               | CAS Number | Method                   | Concentration | Target     | MS           | Low      | High       | Qualifier |  |
| otal Metals (QC      | Lot: 1468238) - con | tinued                |            |                          |               |            |              |          |            |           |  |
| BF2400040-002        | Anonymous           | Potassium, total      | 7440-09-7  | E420                     | 2.31 mg/L     | 2.5 mg/L   | 92.3         | 70.0     | 130        |           |  |
|                      |                     | Rubidium, total       | 7440-17-7  | E420                     | 0.00515 mg/L  | 0.005 mg/L | 103          | 70.0     | 130        |           |  |
|                      |                     | Selenium, total       | 7782-49-2  | E420                     | 0.0509 mg/L   | 0.05 mg/L  | 102          | 70.0     | 130        |           |  |
|                      |                     | Silicon, total        | 7440-21-3  | E420                     | 0.46 mg/L     | 0.5 mg/L   | 92.6         | 70.0     | 130        |           |  |
|                      |                     | Silver, total         | 7440-22-4  | E420                     | 0.00497 mg/L  | 0.005 mg/L | 99.4         | 70.0     | 130        |           |  |
|                      |                     | Sodium, total         | 7440-23-5  | E420                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Strontium, total      | 7440-24-6  | E420                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Sulfur, total         | 7704-34-9  | E420                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Tellurium, total      | 13494-80-9 | E420                     | 0.00492 mg/L  | 0.005 mg/L | 98.5         | 70.0     | 130        |           |  |
|                      |                     | Thallium, total       | 7440-28-0  | E420                     | 0.0477 mg/L   | 0.05 mg/L  | 95.4         | 70.0     | 130        |           |  |
|                      |                     | Thorium, total        | 7440-29-1  | E420                     | 0.00474 mg/L  | 0.005 mg/L | 94.8         | 70.0     | 130        |           |  |
|                      |                     | Tin, total            | 7440-31-5  | E420                     | 0.0259 mg/L   | 0.025 mg/L | 104          | 70.0     | 130        |           |  |
|                      |                     | Titanium, total       | 7440-32-6  | E420                     | 0.0118 mg/L   | 0.012 mg/L | 94.9         | 70.0     | 130        |           |  |
|                      |                     | Tungsten, total       | 7440-33-7  | E420                     | 0.00515 mg/L  | 0.005 mg/L | 103          | 70.0     | 130        |           |  |
|                      |                     | Uranium, total        | 7440-61-1  | E420                     | 0.000254 mg/L | 0 mg/L     | 102          | 70.0     | 130        |           |  |
|                      |                     | Vanadium, total       | 7440-62-2  | E420                     | 0.0259 mg/L   | 0.025 mg/L | 102          | 70.0     | 130        |           |  |
|                      |                     | Zinc, total           | 7440-66-6  | E420                     | 0.0258 mg/L   | 0.025 mg/L | 104          | 70.0     | 130        |           |  |
|                      |                     | Zirconium, total      | 7440-67-7  | E420                     | 0.00520 mg/L  | 0.005 mg/L | 103          | 70.0     | 130        |           |  |
| ssolved Metals       | (QCLot: 1469428)    | Zirconium, totai      | 7440-07-7  | 2420                     | 0.00320 mg/L  | 0.003 mg/L | 104          | 70.0     | 130        |           |  |
|                      |                     |                       | 7400.00.5  | E404                     | 0.440 mm/l    | 0.4        | 110          | 70.0     | 400        |           |  |
| /T2413852-001        | Anonymous           | Aluminum, dissolved   | 7429-90-5  | E421                     | 0.110 mg/L    | 0.1 mg/L   | 110          | 70.0     | 130        |           |  |
|                      |                     | Antimony, dissolved   | 7440-36-0  | E421                     | 0.0510 mg/L   | 0.05 mg/L  | 102          | 70.0     | 130        |           |  |
|                      |                     | Arsenic, dissolved    | 7440-38-2  | E421                     | 0.0578 mg/L   | 0.05 mg/L  | 116          | 70.0     | 130        |           |  |
|                      |                     | Barium, dissolved     | 7440-39-3  | E421                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Beryllium, dissolved  | 7440-41-7  | E421                     | 0.00568 mg/L  | 0.005 mg/L | 114          | 70.0     | 130        |           |  |
|                      |                     | Bismuth, dissolved    | 7440-69-9  | E421                     | 0.0481 mg/L   | 0.05 mg/L  | 96.2         | 70.0     | 130        |           |  |
|                      |                     | Boron, dissolved      | 7440-42-8  | E421                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Cadmium, dissolved    | 7440-43-9  | E421                     | 0.00487 mg/L  | 0.005 mg/L | 97.4         | 70.0     | 130        |           |  |
|                      |                     | Calcium, dissolved    | 7440-70-2  | E421                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Cesium, dissolved     | 7440-46-2  | E421                     | 0.00273 mg/L  | 0.002 mg/L | 109          | 70.0     | 130        |           |  |
|                      |                     | Chromium, dissolved   | 7440-47-3  | E421                     | 0.0130 mg/L   | 0.012 mg/L | 104          | 70.0     | 130        |           |  |
|                      |                     | Cobalt, dissolved     | 7440-48-4  | E421                     | 0.0124 mg/L   | 0.012 mg/L | 98.8         | 70.0     | 130        |           |  |
|                      |                     | Copper, dissolved     | 7440-50-8  | E421                     | 0.0118 mg/L   | 0.012 mg/L | 94.5         | 70.0     | 130        |           |  |
|                      |                     | Iron, dissolved       | 7439-89-6  | E421                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Lead, dissolved       | 7439-92-1  | E421                     | 0.0246 mg/L   | 0.025 mg/L | 98.4         | 70.0     | 130        |           |  |
|                      |                     | Lithium, dissolved    | 7439-93-2  | E421                     | 0.0137 mg/L   | 0.012 mg/L | 110          | 70.0     | 130        |           |  |
|                      |                     | Magnesium, dissolved  | 7439-95-4  | E421                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Manganese, dissolved  | 7439-96-5  | E421                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Molybdenum, dissolved | 7439-98-7  | E421                     | 0.0136 mg/L   | 0.012 mg/L | 109          | 70.0     | 130        |           |  |
|                      |                     | Nickel, dissolved     | 7440-02-0  | E421                     | 0.0237 mg/L   | 0.025 mg/L | 94.9         | 70.0     | 130        |           |  |
|                      |                     | Phosphorus, dissolved | 7723-14-0  | E421                     | 0.590 mg/L    | 0.5 mg/L   | 118          | 70.0     | 130        |           |  |
|                      |                     | Potassium, dissolved  | 7440-09-7  | E421                     | ND mg/L       |            | ND           | 70.0     | 130        |           |  |
|                      |                     | Rubidium, dissolved   | 7440-17-7  | E421                     | 0.00566 mg/L  | 0.005 mg/L | 113          | 70.0     | 130        |           |  |
|                      |                     | Selenium, dissolved   | 7782-49-2  | E421                     | 0.0535 mg/L   | 0.05 mg/L  | 107          | 70.0     | 130        |           |  |
|                      | 1                   | Silicon, dissolved    | 7440-21-3  | E421                     | ND mg/L       |            | ND           | 70.0     | 130        | ·         |  |

| Page       | : | 17 of 17                |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |



## Sub-Matrix: Wate

| Sub-Matrix: Water    |                    |                      |            |        |               |            | Matrix Spil  | Matrix Spike (MS) Report |            |           |  |  |  |
|----------------------|--------------------|----------------------|------------|--------|---------------|------------|--------------|--------------------------|------------|-----------|--|--|--|
|                      |                    |                      |            |        | Spi           | ke         | Recovery (%) | Recovery                 | Limits (%) |           |  |  |  |
| Laboratory sample ID | Client sample ID   | Analyte              | CAS Number | Method | Concentration | Target     | MS           | Low                      | High       | Qualifier |  |  |  |
| Dissolved Metals     | (QCLot: 1469428) - | continued            |            |        |               |            |              |                          |            |           |  |  |  |
| WT2413852-001        | Anonymous          | Silver, dissolved    | 7440-22-4  | E421   | 0.00292 mg/L  | 0.005 mg/L | 58.3         | 70.0                     | 130        | MS-Ag     |  |  |  |
|                      |                    | Sodium, dissolved    | 7440-23-5  | E421   | ND mg/L       |            | ND           | 70.0                     | 130        |           |  |  |  |
|                      |                    | Strontium, dissolved | 7440-24-6  | E421   | ND mg/L       |            | ND           | 70.0                     | 130        |           |  |  |  |
|                      |                    | Sulfur, dissolved    | 7704-34-9  | E421   | 2.84 mg/L     | 2.5 mg/L   | 114          | 70.0                     | 130        |           |  |  |  |
|                      |                    | Tellurium, dissolved | 13494-80-9 | E421   | 0.00487 mg/L  | 0.005 mg/L | 97.4         | 70.0                     | 130        |           |  |  |  |
|                      |                    | Thallium, dissolved  | 7440-28-0  | E421   | 0.0487 mg/L   | 0.05 mg/L  | 97.4         | 70.0                     | 130        |           |  |  |  |
|                      |                    | Thorium, dissolved   | 7440-29-1  | E421   | 0.00467 mg/L  | 0.005 mg/L | 93.3         | 70.0                     | 130        |           |  |  |  |
|                      |                    | Tin, dissolved       | 7440-31-5  | E421   | 0.0259 mg/L   | 0.025 mg/L | 104          | 70.0                     | 130        |           |  |  |  |
|                      |                    | Titanium, dissolved  | 7440-32-6  | E421   | 0.0136 mg/L   | 0.012 mg/L | 109          | 70.0                     | 130        |           |  |  |  |
|                      |                    | Tungsten, dissolved  | 7440-33-7  | E421   | 0.00525 mg/L  | 0.005 mg/L | 105          | 70.0                     | 130        |           |  |  |  |
|                      |                    | Uranium, dissolved   | 7440-61-1  | E421   | ND mg/L       |            | ND           | 70.0                     | 130        |           |  |  |  |
|                      |                    | Vanadium, dissolved  | 7440-62-2  | E421   | 0.0274 mg/L   | 0.025 mg/L | 110          | 70.0                     | 130        |           |  |  |  |
|                      |                    | Zinc, dissolved      | 7440-66-6  | E421   | 0.0263 mg/L   | 0.025 mg/L | 105          | 70.0                     | 130        |           |  |  |  |
|                      |                    | Zirconium, dissolved | 7440-67-7  | E421   | 0.00549 mg/L  | 0.005 mg/L | 110          | 70.0                     | 130        |           |  |  |  |

## MS-Ag

MS-Ag: Matrix Spike recovery for silver was marginally below DQO (40 to <60%) due to its instability in the sample matrix. Silver was not detected. Reported result (< LOR) is reliable



|                         | QUALITY CONTROL INTERPRETIVE REPORT |                       |                                  |  |  |  |  |  |  |
|-------------------------|-------------------------------------|-----------------------|----------------------------------|--|--|--|--|--|--|
| Work Order              | :WT2414011                          | Page                  | : 1 of 11                        |  |  |  |  |  |  |
| Client                  | CF Crozier & Associates             | Laboratory            | : ALS Environmental - Waterloo   |  |  |  |  |  |  |
| Contact                 | : Victoria Mazur                    | Account Manager       | : Andrew Martin                  |  |  |  |  |  |  |
| Address                 | 2800 High Point Drive               | Address               | : 60 Northland Road, Unit 1      |  |  |  |  |  |  |
|                         | Milton ON Canada L9T 6P4            |                       | Waterloo, Ontario Canada N2V 2B8 |  |  |  |  |  |  |
| Telephone               | : (548) 708-0039                    | Telephone             | : +1 519 886 6910                |  |  |  |  |  |  |
| Project                 | : 2227-69259                        | Date Samples Received | : 30-May-2024 13:20              |  |  |  |  |  |  |
| PO                      | :                                   | Issue Date            | : 06-Jun-2024 20:11              |  |  |  |  |  |  |
| C-O-C number            | : 23-1096606                        |                       |                                  |  |  |  |  |  |  |
| Sampler                 | : Victoria Mazur                    |                       |                                  |  |  |  |  |  |  |
| Site                    | :                                   |                       |                                  |  |  |  |  |  |  |
| Quote number            | : 2024 SOA                          |                       |                                  |  |  |  |  |  |  |
| No. of samples received | :1                                  |                       |                                  |  |  |  |  |  |  |
| No. of samples analysed | :1                                  |                       |                                  |  |  |  |  |  |  |

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

### Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

## Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

## **Summary of Outliers** Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- Matrix Spike outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

## **Outliers: Reference Material (RM) Samples**

• No Reference Material (RM) Sample outliers occur.

## Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

## **Outliers : Frequency of Quality Control Samples**

• <u>No</u> Quality Control Sample Frequency Outliers occur.



## **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

## Matrix: Water

| Analyte Group                                     |                                                                                                                                                                                         | Laboratory sample ID | Client/Ref Sample ID | Analyte           | CAS Number | Method | Result                  | Limits    | Comment                                         |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------|------------|--------|-------------------------|-----------|-------------------------------------------------|--|--|
| Matrix Spike (MS) Recoveries                      |                                                                                                                                                                                         |                      |                      |                   |            |        |                         |           |                                                 |  |  |
| Dissolved Metals                                  |                                                                                                                                                                                         | Anonymous            | Anonymous            | Silver, dissolved | 7440-22-4  | E421   | 58.3 % <sup>MS-Ag</sup> | 70.0-130% | Recovery less than lower data quality objective |  |  |
| Result Qualifiers       Qualifier     Description |                                                                                                                                                                                         |                      |                      |                   |            |        |                         |           |                                                 |  |  |
| MS-Ag                                             | MS-Ag: Matrix Spike recovery for silver was marginally below DQO (40 to <60%) due to its instability in the sample matrix. Silver was not detected. Reported result (< LOR) is reliable |                      |                      |                   |            |        |                         |           |                                                 |  |  |



## Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

| Matrix: Water                                                             |                       |                                       |                          |         | E١         | /aluation: × = | Holding time exce | edance ; • | = Within | Holding Tim |
|---------------------------------------------------------------------------|-----------------------|---------------------------------------|--------------------------|---------|------------|----------------|-------------------|------------|----------|-------------|
| Analyte Group : Analytical Method                                         | Method                | Sampling Date                         | Extraction / Preparation |         |            |                | Analysis          |            |          |             |
| Container / Client Sample ID(s)                                           |                       |                                       | Preparation              | Holding | Times Eval | Analysis Date  | Holding Times     |            | Eval     |             |
|                                                                           |                       |                                       | Date                     | Rec     | Actual     |                |                   | Rec        | Actual   |             |
| Anions and Nutrients : Ammonia by Fluorescence                            |                       |                                       |                          |         |            |                |                   |            |          |             |
| Amber glass total (sulfuric acid) [ON MECP]                               |                       |                                       |                          |         |            |                |                   |            |          |             |
| MW 23-3                                                                   | E298                  | 30-May-2024                           | 01-Jun-2024              | 28      | 2 days     | 1              | 03-Jun-2024       | 28 days    | 4 days   | ✓           |
|                                                                           |                       |                                       |                          | days    |            |                |                   |            |          |             |
| Anions and Nutrients : Chloride in Water by IC                            |                       |                                       |                          |         |            |                |                   |            |          |             |
| HDPE [ON MECP]                                                            |                       |                                       |                          |         |            |                |                   |            |          |             |
| MW 23-3                                                                   | E235.Cl               | 30-May-2024                           | 03-Jun-2024              | 28      | 4 days     | 1              | 04-Jun-2024       | 28 days    | 5 days   | ✓           |
|                                                                           |                       |                                       |                          | days    |            |                |                   |            |          |             |
| Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Tr | ace Level 0.001 mg/L) |                                       |                          |         |            |                |                   |            |          |             |
| HDPE [ON MECP]                                                            |                       |                                       |                          |         |            |                |                   |            |          |             |
| MW 23-3                                                                   | E378-U                | 30-May-2024                           | 03-Jun-2024              | 7 days  | 4 days     | 1              | 05-Jun-2024       | 7 days     | 6 days   | ✓           |
|                                                                           |                       |                                       |                          |         | -          |                |                   | -          |          |             |
| Anions and Nutrients : Fluoride in Water by IC                            |                       |                                       |                          |         |            |                |                   |            |          |             |
| HDPE [ON MECP]                                                            |                       |                                       |                          |         |            |                |                   |            |          |             |
| MW 23-3                                                                   | E235.F                | 30-May-2024                           | 03-Jun-2024              | 28      | 4 days     | 1              | 04-Jun-2024       | 28 days    | 5 days   | 1           |
|                                                                           |                       |                                       |                          | days    | -          |                |                   |            |          |             |
| Anions and Nutrients : Nitrate in Water by IC                             |                       |                                       |                          |         |            |                |                   |            |          |             |
| HDPE [ON MECP]                                                            |                       |                                       |                          |         |            |                |                   |            |          |             |
| MW 23-3                                                                   | E235.NO3              | 30-May-2024                           | 03-Jun-2024              | 7 days  | 4 days     | 1              | 04-Jun-2024       | 7 days     | 5 days   | 1           |
|                                                                           |                       | , , , , , , , , , , , , , , , , , , , |                          |         |            |                |                   |            | ,-       |             |
| Anions and Nutrients : Nitrite in Water by IC                             |                       |                                       |                          |         |            |                |                   |            |          |             |
| HDPE [ON MECP]                                                            |                       |                                       |                          |         |            |                |                   |            |          |             |
| MW 23-3                                                                   | E235.NO2              | 30-May-2024                           | 03-Jun-2024              | 7 days  | 4 days     | 1              | 04-Jun-2024       | 7 days     | 5 days   | 1           |
| 10100 20-0                                                                | L200.NO2              | 00-Way-2024                           | 00-001-202-              | / ddy5  | - days     | ·              | 04-0411-2024      | / ddy5     | 0 duy5   | •           |
|                                                                           |                       |                                       |                          |         |            |                |                   |            |          |             |
| Anions and Nutrients : Sulfate in Water by IC                             |                       |                                       |                          |         |            |                |                   |            |          |             |
| HDPE [ON MECP]<br>MW 23-3                                                 | E235.SO4              | 30-May-2024                           | 03-Jun-2024              | 20      | 4 days     | 1              | 04-Jun-2024       | 28 days    | 5 days   | 1           |
|                                                                           | L233.304              | 50-iviay-2024                         | 03-Jun-2024              | 28      | + uays     | •              | 04-Juli-2024      | ∠o uays    | Juays    | •           |
|                                                                           |                       |                                       |                          | days    |            |                |                   |            |          |             |



| nalyte Group : Analytical Method                            | Method   | Sampling Date | Ex          | traction / Pi | reparation |          |               | Analys  | is      |          |
|-------------------------------------------------------------|----------|---------------|-------------|---------------|------------|----------|---------------|---------|---------|----------|
| Container / Client Sample ID(s)                             |          |               | Preparation | Holdin        | g Times    | Eval     | Analysis Date | Holding | , Times | Eval     |
|                                                             |          |               | Date        | Rec           | Actual     |          |               | Rec     | Actual  |          |
| issolved Metals : Dissolved Metals in Water by CRC ICPMS    |          |               | Duto        |               |            |          |               |         |         |          |
| HDPE [ON MECP]                                              |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E421     | 30-May-2024   | 31-May-2024 | 0 hrs         | 27 hrs     | ×<br>UCP | 31-May-2024   | 0 hrs   | 27 hrs  | ¥<br>UCP |
| licrobiological Tests : E. coli (MF-mFC-BCIG)               |          |               |             |               |            |          |               | 1       |         |          |
| Sterile HDPE (Sodium thiosulphate) [ON MECP]                |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E012A.EC | 30-May-2024   |             |               |            |          | 31-May-2024   | 48 hrs  | 24 hrs  | ✓        |
| licrobiological Tests : Total Coliforms (MF-mEndo)          |          |               |             |               |            |          |               |         |         |          |
| Sterile HDPE (Sodium thiosulphate) [ON MECP]                |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E012.TC  | 30-May-2024   |             |               |            |          | 31-May-2024   | 48 hrs  | 24 hrs  | 1        |
| hysical Tests : Alkalinity Species by Titration             |          |               |             |               |            |          |               |         |         |          |
| HDPE [ON MECP]                                              |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E290     | 30-May-2024   | 03-Jun-2024 | 14<br>days    | 4 days     | 1        | 05-Jun-2024   | 14 days | 6 days  | ~        |
| hysical Tests : Colour (Apparent) by Spectrometer           |          |               |             |               |            |          |               |         |         |          |
| HDPE [ON MECP]                                              |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E330     | 30-May-2024   |             |               |            |          | 31-May-2024   | 48 hrs  | 27 hrs  | ~        |
| hysical Tests : Conductivity in Water                       |          |               |             |               |            |          |               | I       |         |          |
| HDPE [ON MECP]                                              |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E100     | 30-May-2024   | 03-Jun-2024 | 28            | 4 days     | 1        | 05-Jun-2024   | 28 days | 6 days  | 1        |
|                                                             |          |               |             | days          |            |          |               |         |         |          |
| hysical Tests : pH by Meter                                 |          |               |             |               |            |          |               |         |         |          |
| HDPE [ON MECP]                                              |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E108     | 30-May-2024   | 03-Jun-2024 | 14<br>days    | 4 days     | √        | 05-Jun-2024   | 14 days | 6 days  | ~        |
| hysical Tests : TDS by Gravimetry                           |          |               |             | .,-           | I          |          | I             | I       |         |          |
| HDPE [ON MECP]                                              |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E162     | 30-May-2024   |             |               |            |          | 05-Jun-2024   | 7 days  | 6 days  | 1        |
|                                                             |          |               |             |               |            |          |               |         |         |          |
| hysical Tests : Turbidity by Nephelometry<br>HDPE [ON MECP] |          |               |             |               |            |          |               |         |         |          |
| MW 23-3                                                     | E121     | 30-May-2024   |             |               |            |          | 31-May-2024   | 48 hrs  | 21 hrs  | 1        |
|                                                             | L121     | 00-may-2024   |             |               |            |          | 01-101ay-2024 | -101115 | 211113  | •        |



| Matrix: Water                                     |        |               |               |              | Ev        | aluation: × = | Holding time excee | edance ; • | = Within | Holding Tim |  |  |  |
|---------------------------------------------------|--------|---------------|---------------|--------------|-----------|---------------|--------------------|------------|----------|-------------|--|--|--|
| Analyte Group : Analytical Method                 | Method | Sampling Date | Ext           | raction / Pr | eparation |               |                    | Analysis   |          |             |  |  |  |
| Container / Client Sample ID(s)                   |        |               | Preparation   | Holding      | g Times   | Eval          | Analysis Date      | Holding    | Eval     |             |  |  |  |
|                                                   |        |               | Date          | Rec          | Actual    |               |                    | Rec        | Actual   | 1           |  |  |  |
| Total Metals : Total Metals in Water by CRC ICPMS |        |               |               |              |           |               |                    |            |          |             |  |  |  |
| HDPE [ON MECP]                                    | E420   | 30-May-2024   | 31-May-2024   | 0 hrs        | 16 hrs    |               | 31-Mav-2024        | 0 hrs      | 23 hrs   |             |  |  |  |
| MW 23-3                                           | ⊑420   | 50-ividy-2024 | 31-iviay-2024 | Unrs         | 10 Nrs    | UCP           | 31-iviay-2024      | Unrs       | ∠o nrs   | UCP         |  |  |  |

#### Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

UCP: Unsuitable Container and/or Preservative used (invalidates standard hold time). Maximum hold time of zero applied. Test results may be biased low / unreliable, and may not meet regulatory requirements.



## **Quality Control Parameter Frequency Compliance**

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

| Quality Control Sample Type                                             |          |          | Co | ount    |        | Frequency (%) | in specification |
|-------------------------------------------------------------------------|----------|----------|----|---------|--------|---------------|------------------|
| Analytical Methods                                                      | Method   | QC Lot # | QC | Regular | Actual | Expected      | Evaluation       |
| Laboratory Duplicates (DUP)                                             |          |          |    |         |        |               |                  |
| Alkalinity Species by Titration                                         | E290     | 1472924  | 1  | 20      | 5.0    | 5.0           | 1                |
| Ammonia by Fluorescence                                                 | E298     | 1470994  | 1  | 20      | 5.0    | 5.0           | 1                |
| Chloride in Water by IC                                                 | E235.Cl  | 1472928  | 1  | 20      | 5.0    | 5.0           | 1                |
| Colour (Apparent) by Spectrometer                                       | E330     | 1469701  | 1  | 16      | 6.2    | 5.0           | ✓                |
| Conductivity in Water                                                   | E100     | 1472925  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Dissolved Metals in Water by CRC ICPMS                                  | E421     | 1469428  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L) | E378-U   | 1472940  | 1  | 19      | 5.2    | 5.0           | ✓                |
| E. coli (MF-mFC-BCIG)                                                   | E012A.EC | 1469285  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Fluoride in Water by IC                                                 | E235.F   | 1472930  | 1  | 8       | 12.5   | 5.0           | ✓                |
| Nitrate in Water by IC                                                  | E235.NO3 | 1472926  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Nitrite in Water by IC                                                  | E235.NO2 | 1472927  | 1  | 20      | 5.0    | 5.0           |                  |
| pH by Meter                                                             | E108     | 1472923  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Sulfate in Water by IC                                                  | E235.SO4 | 1472929  | 1  | 20      | 5.0    | 5.0           | ✓                |
| TDS by Gravimetry                                                       | E162     | 1476573  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Total Coliforms (MF-mEndo)                                              | E012.TC  | 1469287  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Total Metals in Water by CRC ICPMS                                      | E420     | 1468238  | 1  | 18      | 5.5    | 5.0           | ✓                |
| Turbidity by Nephelometry                                               | E121     | 1468699  | 1  | 20      | 5.0    | 5.0           | ~                |
| Laboratory Control Samples (LCS)                                        |          |          |    |         |        |               |                  |
| Alkalinity Species by Titration                                         | E290     | 1472924  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Ammonia by Fluorescence                                                 | E298     | 1470994  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Chloride in Water by IC                                                 | E235.Cl  | 1472928  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Colour (Apparent) by Spectrometer                                       | E330     | 1469701  | 1  | 16      | 6.2    | 5.0           | 1                |
| Conductivity in Water                                                   | E100     | 1472925  | 1  | 20      | 5.0    | 5.0           | 1                |
| Dissolved Metals in Water by CRC ICPMS                                  | E421     | 1469428  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L) | E378-U   | 1472940  | 1  | 19      | 5.2    | 5.0           | ✓                |
| Fluoride in Water by IC                                                 | E235.F   | 1472930  | 1  | 8       | 12.5   | 5.0           | ✓                |
| Nitrate in Water by IC                                                  | E235.NO3 | 1472926  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Nitrite in Water by IC                                                  | E235.NO2 | 1472927  | 1  | 20      | 5.0    | 5.0           | ✓                |
| oH by Meter                                                             | E108     | 1472923  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Sulfate in Water by IC                                                  | E235.SO4 | 1472929  | 1  | 20      | 5.0    | 5.0           | ✓                |
| IDS by Gravimetry                                                       | E162     | 1476573  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Total Metals in Water by CRC ICPMS                                      | E420     | 1468238  | 1  | 18      | 5.5    | 5.0           | ✓                |
| Turbidity by Nephelometry                                               | E121     | 1468699  | 1  | 20      | 5.0    | 5.0           | ✓                |
| Method Blanks (MB)                                                      |          |          |    |         |        |               |                  |
| Alkalinity Species by Titration                                         | E290     | 1472924  | 1  | 20      | 5.0    | 5.0           | 1                |

| Page       | : | 8 of 11                 |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |



| Matrix: Water                                                           |          | Evaluatio | on: × = QC freque | ency outside spe | ecification; 🗸 = ( | QC frequency wit | hin specificatio |
|-------------------------------------------------------------------------|----------|-----------|-------------------|------------------|--------------------|------------------|------------------|
| Quality Control Sample Type                                             |          |           | Co                | ount             |                    | Frequency (%)    |                  |
| Analytical Methods                                                      | Method   | QC Lot #  | QC                | Regular          | Actual             | Expected         | Evaluation       |
| Method Blanks (MB) - Continued                                          |          |           |                   |                  |                    |                  |                  |
| Ammonia by Fluorescence                                                 | E298     | 1470994   | 1                 | 20               | 5.0                | 5.0              | 1                |
| Chloride in Water by IC                                                 | E235.Cl  | 1472928   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Colour (Apparent) by Spectrometer                                       | E330     | 1469701   | 1                 | 16               | 6.2                | 5.0              | 1                |
| Conductivity in Water                                                   | E100     | 1472925   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Dissolved Metals in Water by CRC ICPMS                                  | E421     | 1469428   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L) | E378-U   | 1472940   | 1                 | 19               | 5.2                | 5.0              | ✓                |
| E. coli (MF-mFC-BCIG)                                                   | E012A.EC | 1469285   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Fluoride in Water by IC                                                 | E235.F   | 1472930   | 1                 | 8                | 12.5               | 5.0              | ✓                |
| Nitrate in Water by IC                                                  | E235.NO3 | 1472926   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Nitrite in Water by IC                                                  | E235.NO2 | 1472927   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Sulfate in Water by IC                                                  | E235.SO4 | 1472929   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| TDS by Gravimetry                                                       | E162     | 1476573   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Total Coliforms (MF-mEndo)                                              | E012.TC  | 1469287   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Total Metals in Water by CRC ICPMS                                      | E420     | 1468238   | 1                 | 18               | 5.5                | 5.0              | ✓                |
| Turbidity by Nephelometry                                               | E121     | 1468699   | 1                 | 20               | 5.0                | 5.0              | 1                |
| Matrix Spikes (MS)                                                      |          |           |                   |                  |                    |                  |                  |
| Ammonia by Fluorescence                                                 | E298     | 1470994   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Chloride in Water by IC                                                 | E235.Cl  | 1472928   | 1                 | 20               | 5.0                | 5.0              | 1                |
| Dissolved Metals in Water by CRC ICPMS                                  | E421     | 1469428   | 1                 | 20               | 5.0                | 5.0              | ~                |
| Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L) | E378-U   | 1472940   | 1                 | 19               | 5.2                | 5.0              | ✓                |
| Fluoride in Water by IC                                                 | E235.F   | 1472930   | 1                 | 8                | 12.5               | 5.0              | ~                |
| Nitrate in Water by IC                                                  | E235.NO3 | 1472926   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Nitrite in Water by IC                                                  | E235.NO2 | 1472927   | 1                 | 20               | 5.0                | 5.0              | ✓                |
| Sulfate in Water by IC                                                  | E235.SO4 | 1472929   | 1                 | 20               | 5.0                | 5.0              | ~                |
| Total Metals in Water by CRC ICPMS                                      | E420     | 1468238   | 1                 | 18               | 5.5                | 5.0              | 1                |



### Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

| Analytical Methods         | Method / Lab        | Matrix | Method Reference  | Method Descriptions                                                                                                                                          |
|----------------------------|---------------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Coliforms (MF-mEndo) | E012.TC             | Water  | APHA 9222B (mod)  | Following filtration (0.45 µm), and incubation at 35.0 ±0.5°C for 24 hours, colonies                                                                         |
|                            |                     |        |                   | exhibiting characteristic morphology of the target organism are enumerated and                                                                               |
|                            | ALS Environmental - |        |                   | confirmed.                                                                                                                                                   |
|                            | Waterloo            |        |                   |                                                                                                                                                              |
| E. coli (MF-mFC-BCIG)      | E012A.EC            | Water  | ON E3433 (mod)    | Following filtration (0.45 $\mu$ m), and incubation at 44.5±0.2°C for 24 hours, colonies                                                                     |
|                            |                     |        |                   | exhibiting characteristic morphology of the target organism are enumerated.                                                                                  |
|                            | ALS Environmental - |        |                   |                                                                                                                                                              |
| Conductivity in Water      | Waterloo            | Water  | APHA 2510 (mod)   |                                                                                                                                                              |
|                            | E100                | Water  | AFHA 2510 (1100)  | Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is                                                                         |
|                            | ALS Environmental - |        |                   | measured by immersion of a conductivity cell with platinum electrodes into a water<br>sample. Conductivity measurements are temperature-compensated to 25°C. |
|                            | Waterloo            |        |                   | sample. Conductivity measurements are temperature-compensated to 25 C.                                                                                       |
| pH by Meter                | E108                | Water  | APHA 4500-H (mod) | pH is determined by potentiometric measurement with a pH electrode, and is conducted                                                                         |
| F                          | 2100                |        |                   | at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,                                                           |
|                            | ALS Environmental - |        |                   | pH should be measured in the field within the recommended 15 minute hold time.                                                                               |
|                            | Waterloo            |        |                   |                                                                                                                                                              |
| Turbidity by Nephelometry  | E121                | Water  | APHA 2130 B (mod) | Turbidity is measured by the nephelometric method, by measuring the intensity of light                                                                       |
|                            |                     |        |                   | scatter under defined conditions.                                                                                                                            |
|                            | ALS Environmental - |        |                   |                                                                                                                                                              |
|                            | Waterloo            |        |                   |                                                                                                                                                              |
| TDS by Gravimetry          | E162                | Water  | APHA 2540 C (mod) | Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre                                                                      |
|                            |                     |        |                   | filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight,                                                        |
|                            | ALS Environmental - |        |                   | with gravimetric measurement of the residue.                                                                                                                 |
|                            | Waterloo            |        |                   |                                                                                                                                                              |
| Chloride in Water by IC    | E235.Cl             | Water  | EPA 300.1 (mod)   | Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV                                                                             |
|                            |                     |        |                   | detection.                                                                                                                                                   |
|                            | ALS Environmental - |        |                   |                                                                                                                                                              |
| Fluoride in Water by IC    | Waterloo            | Water  | EPA 300.1 (mod)   |                                                                                                                                                              |
| Fluoride in Water by IC    | E235.F              | water  | EPA 300.1 (mod)   | Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.                                                                  |
|                            | ALS Environmental - |        |                   | detection.                                                                                                                                                   |
|                            | Waterloo            |        |                   |                                                                                                                                                              |
| Nitrite in Water by IC     | E235.NO2            | Water  | EPA 300.1 (mod)   | Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV                                                                             |
|                            | L200.N02            |        |                   | detection.                                                                                                                                                   |
|                            | ALS Environmental - |        |                   |                                                                                                                                                              |
|                            | Waterloo            |        |                   |                                                                                                                                                              |
| Nitrate in Water by IC     | E235.NO3            | Water  | EPA 300.1 (mod)   | Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV                                                                             |
|                            |                     |        |                   | detection.                                                                                                                                                   |
|                            | ALS Environmental - |        |                   |                                                                                                                                                              |
|                            | Waterloo            |        |                   |                                                                                                                                                              |

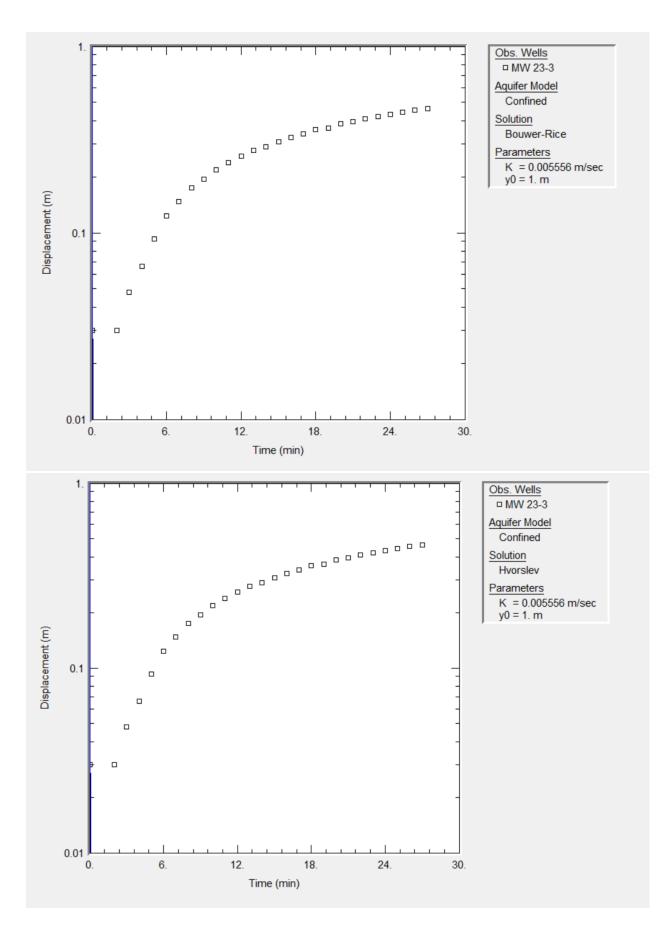
| Page       | : | 10 of 11                |
|------------|---|-------------------------|
| Work Order | : | WT2414011               |
| Client     | : | CF Crozier & Associates |
| Project    | : | 2227-69259              |

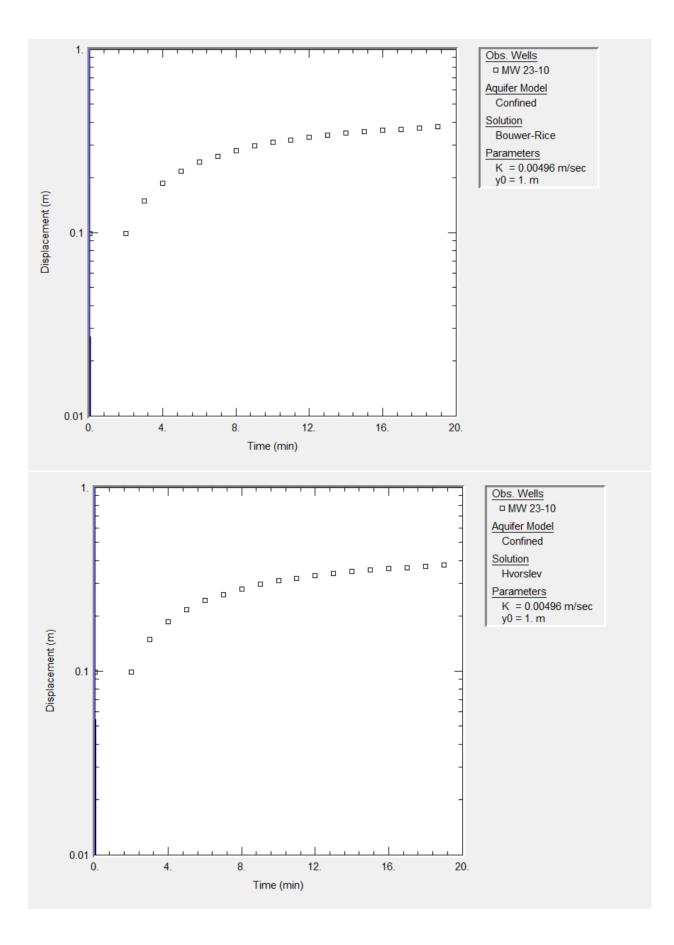


| Analytical Methods                       | Method / Lab                    | Matrix | Method Reference              | Method Descriptions                                                                                                                                                                       |
|------------------------------------------|---------------------------------|--------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sulfate in Water by IC                   | E235.SO4                        | Water  | EPA 300.1 (mod)               | Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.                                                                                               |
|                                          | ALS Environmental -             |        |                               |                                                                                                                                                                                           |
|                                          | Waterloo                        |        |                               |                                                                                                                                                                                           |
| Alkalinity Species by Titration          | E290                            | Water  | APHA 2320 B (mod)             | Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total |
|                                          | ALS Environmental -             |        |                               | alkalinity values.                                                                                                                                                                        |
|                                          | Waterloo                        |        |                               |                                                                                                                                                                                           |
| Ammonia by Fluorescence                  | E298                            | Water  | Method Fialab 100, 2018       | Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).                  |
|                                          | ALS Environmental -<br>Waterloo |        |                               | This method is approved under US EPA 40 CFR Part 136 (May 2021)                                                                                                                           |
| Colour (Apparent) by Spectrometer        | E330                            | Water  | APHA 2120 C (mod)             | Colour (Apparent) is measured in an unfiltered sample spectrophotometrically using the single wavelength method. The colour contribution of settleable solids are not included            |
|                                          | ALS Environmental -<br>Waterloo |        |                               | in the result. This method is intended for potable waters.                                                                                                                                |
|                                          | watenoo                         |        |                               | Colour measurements can be highly pH dependent, and apply to the pH of the sample as                                                                                                      |
|                                          |                                 |        |                               | received (at time of testing), without pH adjustment.                                                                                                                                     |
| Dissolved Orthophosphate by Colourimetry | E378-U                          | Water  | APHA 4500-P F (mod)           | Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab                                                                                                    |
| (Ultra Trace Level 0.001 mg/L)           |                                 |        |                               | or field filtered through a 0.45 micron membrane filter.                                                                                                                                  |
|                                          | ALS Environmental -             |        |                               |                                                                                                                                                                                           |
|                                          | Waterloo                        |        |                               | Field filtration is recommended to ensure test results represent conditions at time of sampling.                                                                                          |
| Total Metals in Water by CRC ICPMS       | E420                            | Water  | EPA 200.2/6020B<br>(mod)      | Water samples are digested with nitric and hydrochloric acids, and analyzed by<br>Collision/Reaction Cell ICPMS.                                                                          |
|                                          | ALS Environmental -             |        |                               |                                                                                                                                                                                           |
|                                          | Waterloo                        |        |                               | Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.                                                                                  |
| Dissolved Metals in Water by CRC ICPMS   | E421                            | Water  | APHA 3030B/EPA<br>6020B (mod) | Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.                                                                          |
|                                          | ALS Environmental -             |        | (                             |                                                                                                                                                                                           |
|                                          | Waterloo                        |        |                               | Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.                                                                                  |
| Dissolved Hardness (Calculated)          | EC100                           | Water  | APHA 2340B                    | "Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers                    |
|                                          | ALS Environmental -             |        |                               | to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially                                                                                                      |
|                                          | Waterloo                        |        |                               | calculated from dissolved Calcium and Magnesium concentrations, because it is a                                                                                                           |
|                                          |                                 |        |                               | property of water due to dissolved divalent cations.                                                                                                                                      |
| Preparation Methods                      | Method / Lab                    | Matrix | Method Reference              | Method Descriptions                                                                                                                                                                       |
| Preparation for Ammonia                  | EP298                           | Water  |                               | Sample preparation for Preserved Nutrients Water Quality Analysis.                                                                                                                        |
|                                          |                                 |        |                               |                                                                                                                                                                                           |
|                                          | ALS Environmental -<br>Waterloo |        |                               |                                                                                                                                                                                           |

| Page<br>Work Order | : | 11 of 11<br>WT2414011              |
|--------------------|---|------------------------------------|
| Client<br>Project  | : | CF Crozier & Associates 2227-69259 |




| Preparation Methods               | Method / Lab        | Matrix | Method Reference | Method Descriptions                                            |
|-----------------------------------|---------------------|--------|------------------|----------------------------------------------------------------|
| Dissolved Metals Water Filtration | EP421               | Water  | APHA 3030B       | Water samples are filtered (0.45 um), and preserved with HNO3. |
|                                   | ALS Environmental - |        |                  |                                                                |
|                                   | Waterloo            |        |                  |                                                                |


| Released by:                                                        |     | Are samples for hun                                              | Are samples taken f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drinking V                                                                                         |                                       |                          | a second a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ALS Sample #<br>(ALS use only)                                                           | ALS Lab Work                                                         |                     | I SD-          | Job / Project #:  | ALS Client Code / QUOTE #: | The second second                        | Contact:                  | Company:          |                                                   | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | City/Province:                                         | Street:                                                      |                                                                                                                                   | Phone:                                                                       | Contact:                                                 | Report To                                                      | ALS                                |                                  |                                                  |
|---------------------------------------------------------------------|-----|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|----------------|-------------------|----------------------------|------------------------------------------|---------------------------|-------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|------------------------------------|----------------------------------|--------------------------------------------------|
| Crozier May 30, 2024                                                |     | Are samples for human consumption/ use?                          | Are samples taken from a Regulated DW System?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rt use)                                                                                            |                                       | a dama adam ao ao Ane se | a strate of a section of the section | and have a set of second second product of |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW 25-5    | Sample Identification and/or Coordinates<br>(This description will appear on the report) | ALS Lab Work Order # (ALS use only): い 1 241 レ(011 FA                |                     |                | 2227-6259         |                            | Project Information                      | mhattecfcrozier.ca        | CF Crozier        |                                                   | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pro D                                                  | 2800 High Point Driv                                         | ss below will appear on                                                                                                           | 1120 - 678 - 608                                                             | -5                                                       | Contact and company name below will appear on the final report | www.alsglobal.com                  | 11-011 N-801                     | NM GZI .r                                        |
| Time:                                                               |     |                                                                  | Including the local section of | Notes / Specify Limits for                                                                         |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And the second second                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ordinates<br>le report)                                                                  | ) If FA ALS Contact:                                                 | Location:           | Requisitioner: | Major/Minor Code: | VM AFE/Cost Center:        |                                          |                           | Email 1           | 2                                                 | Email 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Email 2                                                | C                                                            | Select                                                                                                                            | I CO                                                                         | Select                                                   |                                                                |                                    | 100                              |                                                  |
| Received by:<br>Fachard M                                           |     |                                                                  | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes / Specify Limits for result evaluation by selecting from drop-down below<br>(Excel COC only) |                                       | and the second           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                             | and the second s | 30/05/2024 | Date<br>(dd-mmm-yy)                                                                      | ontact                                                               | in:                 | itioner.       | or Code:          | 122                        |                                          | all an martin or a        | Email 1 or Fax    | Invoice                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                      | Email 1 or Fax V Mazur Pcccozor C. con                       | Select Distribution:                                                                                                              | Compare Results to Criteria on Report - provide details below If box checked | Select Report Format:                                    | -                                                              | Children                           | Canada To                        | chain of Custody (CUC) / Analytical Request Form |
| INITIAL SHIPMENT RECEPTION (ALS use only)<br>L·M Date:<br>J·M - 10; |     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ting from drop-down below                                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                             | al press of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12:00      | Time Sa<br>(hh:mm)                                                                       | Sampler: VIU                                                         | of subsection dates |                | Routing Code:     | PO#                        | Oil and Gas Required Fields (client use) | the summary second second | EMAIL MAIL FAX    | Invoice Recipients                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The second second                                      | Recenter                                                     | MAIL AX                                                                                                                           | - provide details below if box                                               |                                                          | Reports / Recipients                                           | 511 1 100, 1 000 000 901           | Canada Toll Free: 1 800 668 9878 | <ul> <li>Analytical Ke</li> </ul>                |
| 12024 Time: 20                                                      | 7-9 | Cooler (                                                         | Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                    |                                       |                          | a Susan a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a state of the base                        |                             | al taginer of an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GW 7       | 1.1                                                                                      | IBER                                                                 | 0                   | FC             | ON                | ITA                        |                                          | ER                        | and the state     | And the second second                             | and the second sec | the second second                                      |                                                              | I                                                                                                                                 |                                                                              | С                                                        | the state of the state                                         | c                                  | 0                                | quest rolli                                      |
| Received by:                                                        |     | PERATURES °C                                                     | Cooling Method: NONE THE DACE PACKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE RECEIPT DETAILS (ALS use only)                                                              |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | addy with the distant light |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Toto                                                                                     | A<br>increating<br>in ty<br>in ty<br>in ty<br>in ty<br>and<br>contre | HF                  | Er             | 1                 |                            | 5                                        | P                         | Analysis Request  | For all tests with rush TATs requested, please co | Date and Time Required for all E&P TATs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Additional fees may apply to rush requests on weekends | Same day [E2] if received by 10am M-S - 200% rush surcharge. | 2 day [P2] If received by 3pm M-E - 50% rush surcharge minimum<br>1 day FE1 If received by 3pm M-E - 100%, such surcharge minimum | 3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum               | Routine [R] if received by 3pm M-F - no surcharges apply | Turnaround Time (TAT) Requested                                | and the second second              | Page of                          | COC Number: 23 - 1U                              |
| FINAL SHIPMENT RECEPTION (ALS use only)                             | -   | Sample Custody Seals Intact: YES<br>FINAL COOLER TEMPERATURES °C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (ALS use only)                                                                                   |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                          | ADDESS ADDESS                                                        |                     |                |                   |                            |                                          | 3 Preserved (F/P) below   | dnest             | 1 elephone : +1 519 886 6910                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                              |                                                                                                                                   |                                                                              |                                                          |                                                                | Environmental Division<br>Waterloo |                                  | TUAPPOP                                          |
| Time: 30                                                            |     | ATURES °C                                                        | COOLING INITIATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and solution                                                                                       | and the second second                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | SAMP                                                                                     |                                                                      | -                   | -              |                   | EQ                         | UIR                                      | ED                        | of the statute of | 0169 988 6                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | States and                                             |                                                              |                                                                                                                                   |                                                                              | + 40                                                     |                                                                | tal Divisio                        |                                  |                                                  |
|                                                                     | -   | NA                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a                                                                                              |                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | USPE                                                                                     | -                                                                    | -                   | -              | -                 | -                          | 010                                      | 1911                      | 1                 |                                                   | . =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                              |                                                                                                                                   | =                                                                            | -                                                        | *                                                              | п                                  |                                  |                                                  |

6 - 10 y

# APPENDIX D

Hydraulic Conductivity Testing





# APPENDIX E

Door-to-Door Survey

MAY 30, 2024

PROJECT NO: 2227-6259

SENT VIA: HAND DELIVERED

### Attention: Property Owner/Tenant

# RE: DOOR TO DOOR WELL AND SEPTIC SURVEY QUESTIONNAIRE REGION OF PEEL, ONTARIO

To whom it may concern,

C.F. Crozier & Associates Inc. (Crozier) has been retained to complete a detailed study of the nearby area to assess groundwater conditions and potential impacts occurring to the shallow groundwater system. Hence, Crozier is conducting a door-to-door survey to determine the location of any water supply wells, cisterns and private sewage systems in your area. We would appreciate participation in this survey to assist us in our study.

Attached is a questionnaire concerning your property and private well, cistern and/orseptic system (if applicable). Please review and provide your responses using the forms located in the QR code below or via email to <u>vmazur@cfcrozier.ca</u>. Alternatively, please feel free to call our office to provide us with your questionnaire responses. Please provide your response by June 21st, 2024, if possible. Rest assured, we will not share your contact information with any third parties and the information provided in this questionnaire will only be used for the purposes of this study.

Should you have any questions or require any further information, please do not hesitate to contact the undersigned.

Scan QR Code below.



Sincerely,

**CROZIER CONSULTING ENGINEERS** 

Victoria Mazur, ElT Hydrogeology

2800 High Point Dr., Suite 100 Milton, ON L9T 6P4 T. 905.875.0026 F. 905.875.4915 cfcrozier.ca



### Door to Door Well & Septic Survey Questionnaire

1. What is your address?

# The following questions 2 – 8 pertain to private water supply wells. If you do not have a well on your property, you may skip to question 9.

- 2. Do you have a private well on your property?
- 3. Does your well supply your drinking water?
- 4. What is the age of your well?
- 5. Is it a dug or drilled well?
- 6. How deep is your well?
- 7. Have you had any quantity or quality issues with your well? Briefly describe any issues.
- 8. Would you be willing to allow us to collect a sample of your water for laboratory analysis at no cost to you? All results will be provided to you for your records.

The following questions 9 - 10 pertain to cisterns. If you do not have a cistern on your property, you may skip to question 11.

- 9. Do you have a cistern on your property?
- 10. Does the cistern supply your drinking water?

- 11. What size is your cistern? Is it external or internal?
- 12. Do you have a surface water intake on your property?
- 13. Do you have any water treatment systems (e.g., water softener, chlorinator etc.)?
- 14. Do you have a septic system on your property?
- 15. Where is your sewage system located (i.e., front of your home, side yard etc.)?
- 16. What type of sewage system is it (i.e., septic tan with a leaching bed or holding tank)?
- 17. What is the age of your septic system?

If you are willing, please provide your contact information for any follow up questions we may have. If you answered yes to question 8, please provide your preferred method of contact so we may coordinate sampling:

Reminder: Your contact information will not be shared with any third parties.

MAY 30, 2024

MAY 2 9 2024

PROJECT NO: 2227-6259

SENT VIA: HAND DELIVERED

#### Attention: Property Owner/Tenant

#### RE: DOOR TO DOOR WELL AND SEPTIC SURVEY QUESTIONNAIRE REGION OF PEEL, ONTARIO

To whom it may concern,

C.F. Crozier & Associates Inc. (Crozier) has been retained to complete a detailed study of the nearby area to assess groundwater conditions and potential impacts occurring to the shallow groundwater system. Hence, Crozier is conducting a door-to-door survey to determine the location of any water supply wells, cisterns and private sewage systems in your area. We would appreciate participation in this survey to assist us in our study.

Attached is a questionnaire concerning your property and private well, cistern and/orseptic system (if applicable). Please review and provide your responses using the forms located in the QR code below or via email to <u>vmazur@cfcrozier.ca</u>. Alternatively, please feel free to call our office to provide us with your questionnaire responses. Please provide your response by June 21st, 2024, if possible. Rest assured, we will not share your contact information with any third parties and the information provided in this questionnaire will only be used for the purposes of this study.

Should you have any questions or require any further information, please do not hesitate to contact the undersigned.

Scan QR Code below.



Sincerely,

CROZIER CONSULTING ENGINEERS

Victoria Mazur, ElT Hydrogeology

2800 High Point Dr., Suite 100 Milton, ON L9T 6P4 T. 905.875.0026 F. 905.875.4915



#### RECEIVED

MAY 2 9 2024

Door to Door Well & Septic Survey May 30, 2024

#### Door to Door Well & Septic Survey Questionnaire

1. What is your address?

15486

Mount Pleasant Rd, Caledon LTE 3M4

The following questions 2 – 8 pertain to private water supply wells. If you do not have a well on your property, you may skip to question 9.

2. Do you have a private well on your property?

3. Does your well supply your drinking water?

4. What is the age of your well?

- 5. Is it a dug or drilled well? DuG
- 6. How deep is your well? 30'
- 7. Have you had any quantity or quality issues with your well? Briefly describe any issues.

No

Tes

8. Would you be willing to allow us to collect a sample of your water for laboratory analysis at no cost to you? All results will be provided to you for your records.

The following questions 9 - 10 pertain to cisterns. If you do not have a cistern on your property. you may skip to question 11.

9. Do you have a cistern on your property?

NO

10. Does the cistern supply your drinking water?

Crozier Consulting Engineers Project No. 2227-6259

Page 2 of 3

11. What size is your cistern? Is it external or internal?

12. Do you have a surface water intake on your property?

13. Do you have any water treatment systems (e.g., water softener, chlorinator etc.)?

### R.O.

14. Do you have a septic system on your property?

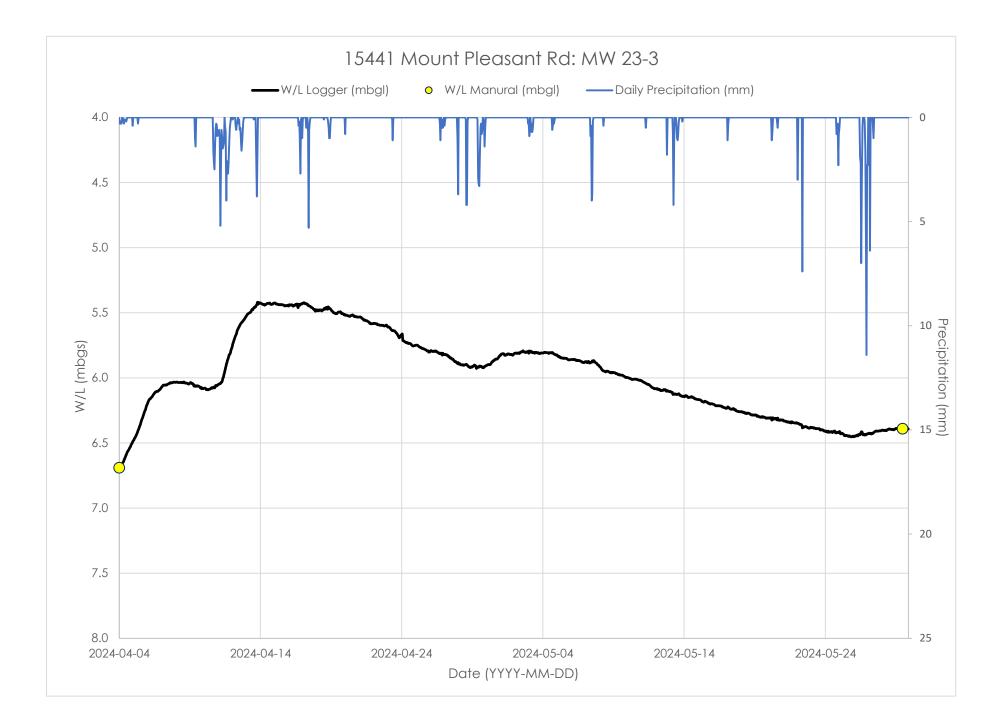
Yes

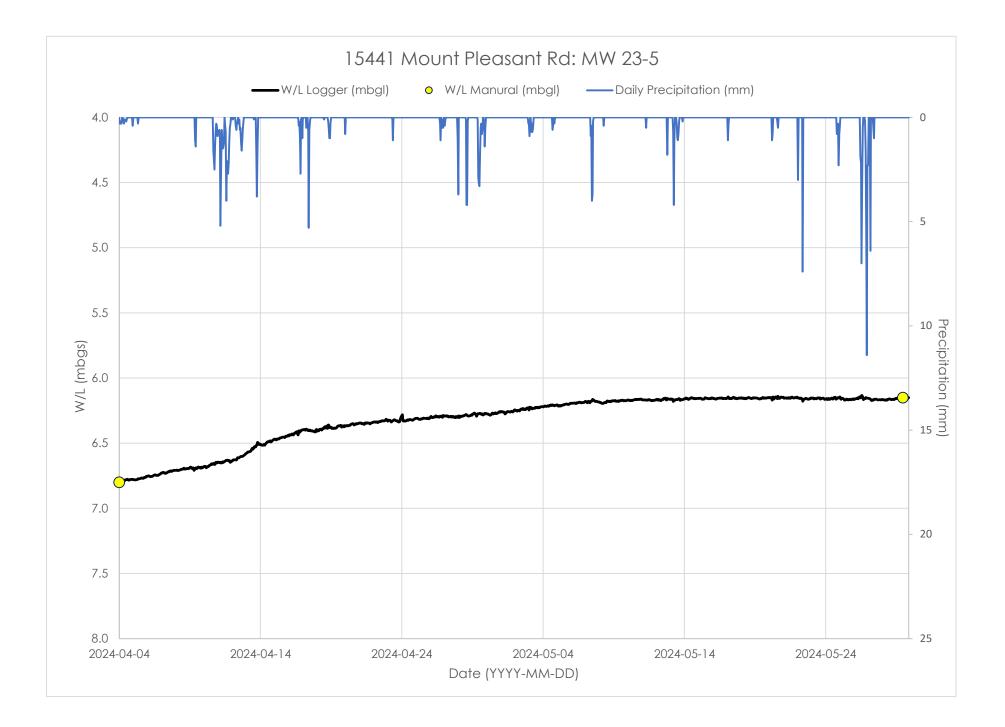
15. Where is your sewage system located (i.e., front of your home, side yard etc.)? BACK of home

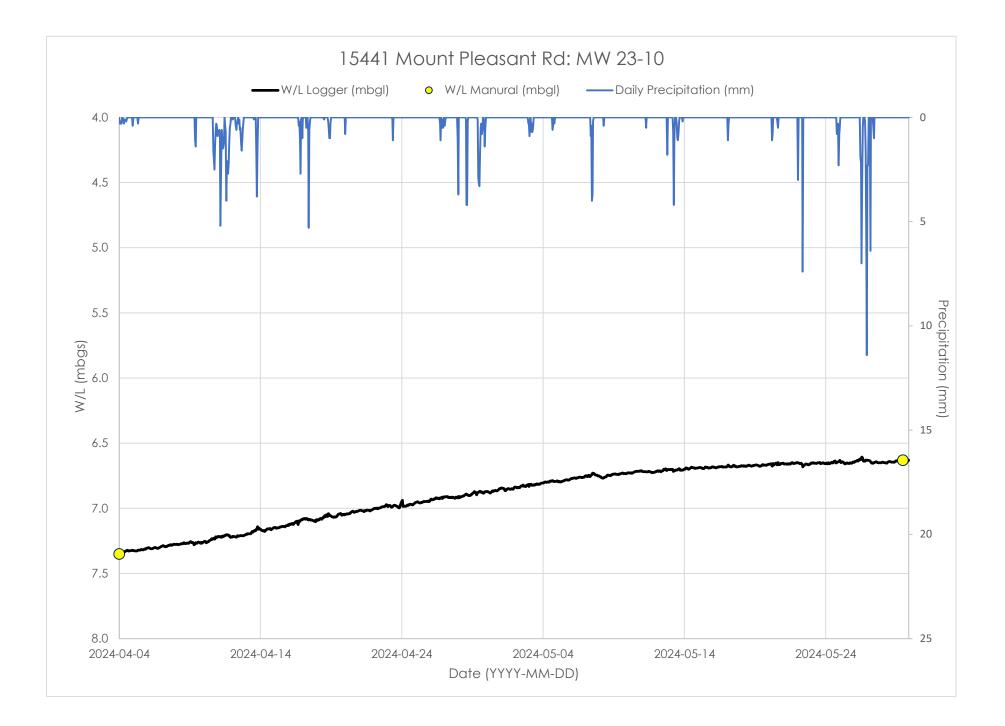
16. What type of sewage system is it (i.e., septic tan with a leaching bed or holding tank)?

17. What is the age of your septic system? 1970?

If you are willing, please provide your contact information for any follow up questions we may have. If you answered yes to question 8, please provide your preferred method of contact so we may coordinate sampling:


barbara, blair @ brantas.com


Reminder: Your contact information will not be shared with any third parties.


Crozier Consulting Engineers Project No. 2227-6259 Page 3 of 3

# APPENDIX F

Hydrographs







# APPENDIX G

Water Balance Assessment



#### Water Balance Parameters

Thornthwaite & Mather Method

Project Name: 15441 Mount Pleasant Road Project Number: 2227-6259 Created By: VM Checked By: CM Date: 2024-07-04

15441 Mount Pleasant Road Region of Peel

LATITUDE

Project Name: Location:

> DEGREES 43

 Climate Station:
 ALBION FIELD CENTRE

 Longitude:
 79°50'00.000" W

 Latitude:
 43°55'00.000" N

 Elevation:
 281.9 m

 Station ID:
 6150103

| Month     | Mean<br>Temperature<br>(C°) <sup>1</sup> | Heat Index $[i = (1/5)^{1.514}]$ | α      | Potential<br>Evapotranspiration<br>(PET)<br>(mm) | Correction<br>Factor <sup>2</sup> | Adjusted Potential<br>Evapotranspiration<br>(APET)<br>(mm) | Total Precipitation (P)<br>(mm) <sup>1</sup> | P - APET (mm) | <b>APET- P</b><br>(mm) |
|-----------|------------------------------------------|----------------------------------|--------|--------------------------------------------------|-----------------------------------|------------------------------------------------------------|----------------------------------------------|---------------|------------------------|
| January   | -7                                       | 0.0000                           | 0.4924 | 0.0000                                           | 0.81                              | 0                                                          | 60.4                                         | 60.4          | 0.0                    |
| February  | -5.9                                     | 0.0000                           | 0.4924 | 0.0000                                           | 0.82                              | 0                                                          | 50.2                                         | 50.2          | 0.0                    |
| March     | -1.4                                     | 0.0000                           | 0.4924 | 0.0000                                           | 1.02                              | 0                                                          | 50.3                                         | 50.3          | 0.0                    |
| April     | 6.1                                      | 1.3513                           | 0.5165 | 28.8545                                          | 1.12                              | 32                                                         | 67                                           |               | 0.0                    |
| May       | 12.4                                     | 3.9555                           | 0.5621 | 60.8270                                          | 1.26                              | 77                                                         | 76.1                                         | 0.0           | 0.5                    |
| June      | 17.3                                     | 6.5488                           | 0.6066 | 86.3244                                          | 1.28                              | 110                                                        | 75.5                                         | 0.0           | 35.0                   |
| July      | 19.9                                     | 8.0951                           | 0.6328 | 100.0131                                         | 1.29                              | .29 129 81.8                                               |                                              | 0.0           | 47.2                   |
| August    | 19.1                                     | 7.6075                           | 0.6246 | 95.7908                                          | 1.2                               | 115                                                        | 77.4                                         | 0.0           | 37.5                   |
| September | 14.3                                     | 4.9084                           | 0.5786 | 70.6617                                          | 1.04                              | 73                                                         | 75                                           | 1.5           | 0.0                    |
| October   | 8.1                                      | 2.0759                           | 0.5293 | 38.8760                                          | 0.95                              | 37                                                         | 68.3                                         | 31.4          | 0.0                    |
| November  | 2.1                                      | 0.2689                           | 0.4972 | 9.4052                                           | 0.81                              | 8                                                          | 81.7                                         | 74.1          | 0.0                    |
| December  | -3.9                                     | 0.0000                           | 0.4924 | 0.0000                                           | 0.77                              | 0                                                          | 57.7                                         | 57.7          | 0.0                    |
| TOTAL     |                                          | 34.8                             | 1.1    |                                                  |                                   | 581.5                                                      | 821.4                                        | 360.24        | 120.30                 |

TOTAL WATER DEFICIT = 120.30 mm TOTAL WATER SURPLUS (SURPLUS - DEFICIT) = 239.94 mm

NOTES: 1. Precipitation and Temperature data from the ALBION FIELD CENTRE (Station No.6150103) Environment Canada Station Data 2. Latitude adjustment factors determined based on site latitude assuming 12 hours of sunlight per day for 30 days



## Pre-Development Water Balance Thornthwaite & Mather Method

Project Name: 15441 Mount Pleasant Road Project Number: 2227-6259 Created By: VM Checked By: CM Date: 2024-07-04

|                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  | Checked By:<br>Date:                                                                           | 2024-07-04                                                                 |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                             |                                                             | Project Name                                                                                                                                                                                                                      | e:                                                                                       | 15441 Mount                                                                                                    | Pleasant Road                                                                                                        |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                             |                                                             | Location:                                                                                                                                                                                                                         |                                                                                          |                                                                                                                | of Peel                                                                                                              |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                                                                                                                                                                   |                                                                                          | Pre-Deve                                                                                                       | elopment Site                                                                                                        | Summary                                                                                                          |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| TOTAL SITE AREA (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                           | 228,600                                                     | D                                                                                                                                                                                                                                 |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Land Use                                                                                                                                                                                                                                                                                                                                                    | -                                                           |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  | 1                                                                                              | 1                                                                          |                                                                                                                                                        | 1                                                                   | 1                                                                                                                                           | -                                                                                                                                                                                 | 1                                                                                                   |
| Topography - flat/rolling/hilly                                                                                                                                                                                                                                                                                                                             | Grass<br>0.30                                               | O.30                                                                                                                                                                                                                              | Pond<br>0.30                                                                             | 0.30                                                                                                           |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Soils                                                                                                                                                                                                                                                                                                                                                       | 0.30                                                        | 0.30                                                                                                                                                                                                                              | 0.30                                                                                     | 0.30                                                                                                           |                                                                                                                      |                                                                                                                  |                                                                                                | 1                                                                          |                                                                                                                                                        |                                                                     | -                                                                                                                                           |                                                                                                                                                                                   |                                                                                                     |
| Cover - cultivated/woodland                                                                                                                                                                                                                                                                                                                                 | 0.10                                                        | 0.10                                                                                                                                                                                                                              | 0.10                                                                                     | 0.20                                                                                                           |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Sum (Infiltration Factor)                                                                                                                                                                                                                                                                                                                                   | 0.70                                                        | 0.70                                                                                                                                                                                                                              | 0.70                                                                                     | 0.80                                                                                                           |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Soil Moisture Capacity (mm)                                                                                                                                                                                                                                                                                                                                 | 100                                                         | 100                                                                                                                                                                                                                               | 100                                                                                      | 400                                                                                                            |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Catchment Area (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                            | 102,256                                                     | 950                                                                                                                                                                                                                               | 45,521                                                                                   | 79,873                                                                                                         |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Percent Imperviousness (%)                                                                                                                                                                                                                                                                                                                                  | 0%                                                          | 100%                                                                                                                                                                                                                              | 0%                                                                                       | 0%                                                                                                             |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Land Use                                                                                                                                                                                                                                                                                                                                                    | Creen                                                       | Crewal                                                                                                                                                                                                                            | 103                                                                                      | 104                                                                                                            |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Total Impervious Area (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                     | Grass                                                       | Gravel<br>950                                                                                                                                                                                                                     | 0                                                                                        | 104<br>0                                                                                                       |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Percentage of Impervious Area (%)                                                                                                                                                                                                                                                                                                                           | 0%                                                          | 100%                                                                                                                                                                                                                              | 0%                                                                                       | 0%                                                                                                             |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Total Pervious Area (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                       | 102,256                                                     | 0                                                                                                                                                                                                                                 | 45,521                                                                                   | 79,873                                                                                                         |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Percentage of Pervious Area (%)                                                                                                                                                                                                                                                                                                                             | 100%                                                        | 0%                                                                                                                                                                                                                                | 100%                                                                                     | 100%                                                                                                           |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| ~ ``                                                                                                                                                                                                                                                                                                                                                        |                                                             | -,-                                                                                                                                                                                                                               |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Land Use                                                                                                                                                                                                                                                                                                                                                    | Grass                                                       |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                | iration/Evapor                                                                                                       |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Month                                                                                                                                                                                                                                                                                                                                                       | Jan                                                         | Feb                                                                                                                                                                                                                               | Mar                                                                                      |                                                                                                                | Мау                                                                                                                  | Jun                                                                                                              | Jul                                                                                            | Aug                                                                        | Sep                                                                                                                                                    | Oct                                                                 | Nov                                                                                                                                         | Dec                                                                                                                                                                               | Year                                                                                                |
| Precipitation (P)                                                                                                                                                                                                                                                                                                                                           | 60                                                          | 50                                                                                                                                                                                                                                | 50                                                                                       | 67                                                                                                             | 76                                                                                                                   | 76                                                                                                               | 82                                                                                             | 77                                                                         | 75                                                                                                                                                     | 68                                                                  | 82                                                                                                                                          | 58                                                                                                                                                                                | 821                                                                                                 |
| Adjusted Potential Evapotranspiration                                                                                                                                                                                                                                                                                                                       | 0                                                           | 0                                                                                                                                                                                                                                 | 0                                                                                        | 32                                                                                                             | 77                                                                                                                   | 110                                                                                                              | 129                                                                                            | 115                                                                        | 73                                                                                                                                                     | 37                                                                  | 8                                                                                                                                           | 0                                                                                                                                                                                 | 581                                                                                                 |
| (APET)<br>P-APET                                                                                                                                                                                                                                                                                                                                            | 60                                                          | 50                                                                                                                                                                                                                                | 50                                                                                       | 35                                                                                                             | -1                                                                                                                   | -35                                                                                                              | -47                                                                                            | -38                                                                        | 2                                                                                                                                                      | 31                                                                  | 74                                                                                                                                          | 58                                                                                                                                                                                | 240                                                                                                 |
| Change in Storage                                                                                                                                                                                                                                                                                                                                           | 0                                                           | 0                                                                                                                                                                                                                                 | 0                                                                                        | 0                                                                                                              | -1                                                                                                                   | -35                                                                                                              | -47                                                                                            | -38                                                                        | 2                                                                                                                                                      | 31                                                                  | 74                                                                                                                                          | 13                                                                                                                                                                                | 120                                                                                                 |
| Storage (S) (mm)                                                                                                                                                                                                                                                                                                                                            | 100                                                         | 100                                                                                                                                                                                                                               | 100                                                                                      | 100                                                                                                            | 99                                                                                                                   | 64                                                                                                               | 17                                                                                             | -20                                                                        | -19                                                                                                                                                    | 13                                                                  | 87                                                                                                                                          | 100                                                                                                                                                                               | 120                                                                                                 |
| sisiege (s) (min)                                                                                                                                                                                                                                                                                                                                           | 100                                                         | 100                                                                                                                                                                                                                               | 100                                                                                      |                                                                                                                | a Infiltration/R                                                                                                     |                                                                                                                  | .,                                                                                             | 20                                                                         | 1 17                                                                                                                                                   | 10                                                                  | 0,                                                                                                                                          | 100                                                                                                                                                                               |                                                                                                     |
| Water Surplus (mm)                                                                                                                                                                                                                                                                                                                                          | 60                                                          | 50                                                                                                                                                                                                                                | 50                                                                                       | 35                                                                                                             | 0                                                                                                                    | 0                                                                                                                | 0                                                                                              | 0                                                                          | 0                                                                                                                                                      | 0                                                                   | 0                                                                                                                                           | 44                                                                                                                                                                                | 240                                                                                                 |
| Potential Infiltration (I) (mm)                                                                                                                                                                                                                                                                                                                             | 42                                                          | 35                                                                                                                                                                                                                                | 35                                                                                       | 24                                                                                                             | 0                                                                                                                    | 0                                                                                                                | 0                                                                                              | 0                                                                          | 0                                                                                                                                                      | 0                                                                   | 0                                                                                                                                           | 31                                                                                                                                                                                | 168                                                                                                 |
| Potential Direct Surface Water Runoff                                                                                                                                                                                                                                                                                                                       |                                                             |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| (R) (mm)                                                                                                                                                                                                                                                                                                                                                    | 18                                                          | 15                                                                                                                                                                                                                                | 15                                                                                       | 10                                                                                                             | 0                                                                                                                    | 0                                                                                                                | 0                                                                                              | 0                                                                          | 0                                                                                                                                                      | 0                                                                   | 0                                                                                                                                           | 13                                                                                                                                                                                | 72                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                             | 1                                                           |                                                                                                                                                                                                                                   | tara an da.                                                                              | ter ter ter ter                                                                                                |                                                                                                                      |                                                                                                                  | a ff A a art with                                                                              |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   | 1                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                             | 1                                                           |                                                                                                                                                                                                                                   | Imperviou                                                                                | is Area Evapotri                                                                                               | anspiration/Ev                                                                                                       | aporation/kur                                                                                                    | IOIT ANDIYSIS                                                                                  |                                                                            | 1                                                                                                                                                      | 1                                                                   | 1                                                                                                                                           | 1                                                                                                                                                                                 | 1                                                                                                   |
| Impervious                                                                                                                                                                                                                                                                                                                                                  | 0                                                           | 0                                                                                                                                                                                                                                 | 0                                                                                        | 10                                                                                                             | 11                                                                                                                   | 11                                                                                                               | 12                                                                                             | 12                                                                         | 11                                                                                                                                                     | 10                                                                  | 12                                                                                                                                          | 0                                                                                                                                                                                 | 90                                                                                                  |
| Evapotranspiration/Evaporation (mm)                                                                                                                                                                                                                                                                                                                         | 0                                                           | 0                                                                                                                                                                                                                                 | 0                                                                                        | 10                                                                                                             |                                                                                                                      |                                                                                                                  | 12                                                                                             | 12                                                                         |                                                                                                                                                        | 10                                                                  | 12                                                                                                                                          | 0                                                                                                                                                                                 | 70                                                                                                  |
| Impervious Runoff (mm)                                                                                                                                                                                                                                                                                                                                      | 60                                                          | 50                                                                                                                                                                                                                                | 50                                                                                       | 57                                                                                                             | 65                                                                                                                   | 64                                                                                                               | 70                                                                                             | 66                                                                         | 64                                                                                                                                                     | 58                                                                  | 69                                                                                                                                          | 58                                                                                                                                                                                | 731                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                                                                                                                                                                   |                                                                                          | Comb                                                                                                           | bined Water Bo                                                                                                       | alance                                                                                                           |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Pervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                               | 0                                                           | 0                                                                                                                                                                                                                                 | 0                                                                                        | 3305                                                                                                           | 7837                                                                                                                 | 11299                                                                                                            | 13193                                                                                          | 11754                                                                      | 7515                                                                                                                                                   | 3777                                                                | 779                                                                                                                                         | 0                                                                                                                                                                                 | 59458                                                                                               |
| Impervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                             | 0                                                           | 0                                                                                                                                                                                                                                 | 0                                                                                        | 0                                                                                                              | 0                                                                                                                    | 0                                                                                                                | 0                                                                                              | 0                                                                          | 0                                                                                                                                                      | 0                                                                   | 0                                                                                                                                           | 0                                                                                                                                                                                 | 0                                                                                                   |
| Pervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                           | 1853                                                        | 1540                                                                                                                                                                                                                              | 1543                                                                                     | 1064                                                                                                           | 0                                                                                                                    | 0                                                                                                                | 0                                                                                              | 0                                                                          | 0                                                                                                                                                      | 0                                                                   | 0                                                                                                                                           | 1361                                                                                                                                                                              | 7361                                                                                                |
| Impervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                         | 0                                                           | 0                                                                                                                                                                                                                                 | 0                                                                                        | 0                                                                                                              | 0                                                                                                                    | 0                                                                                                                | 0                                                                                              | 0                                                                          | 0                                                                                                                                                      | 0                                                                   | 0                                                                                                                                           | 0                                                                                                                                                                                 | 0                                                                                                   |
| Pervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                     | 4323                                                        | 3593                                                                                                                                                                                                                              | 3600                                                                                     | 2483                                                                                                           | 0                                                                                                                    | 0                                                                                                                | 0                                                                                              | 0                                                                          | 0                                                                                                                                                      | 0                                                                   | 0                                                                                                                                           | 3175                                                                                                                                                                              | 17175                                                                                               |
| Impervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                   | 0                                                           | 0                                                                                                                                                                                                                                 | 0                                                                                        | 0                                                                                                              | 0                                                                                                                    | 0                                                                                                                | 0                                                                                              | 0                                                                          | 0                                                                                                                                                      | 0                                                                   | 0                                                                                                                                           | 0                                                                                                                                                                                 | 0                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
| Land Use                                                                                                                                                                                                                                                                                                                                                    | Gravel                                                      |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        |                                                                     |                                                                                                                                             |                                                                                                                                                                                   |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                             |                                                             | 1                                                                                                                                                                                                                                 |                                                                                          |                                                                                                                | iration/Evapor                                                                                                       |                                                                                                                  |                                                                                                | r                                                                          | 1                                                                                                                                                      | 1                                                                   |                                                                                                                                             |                                                                                                                                                                                   | u                                                                                                   |
| Month                                                                                                                                                                                                                                                                                                                                                       | Jan                                                         | Feb                                                                                                                                                                                                                               | Mar                                                                                      | Apr                                                                                                            | May                                                                                                                  | Jun                                                                                                              | Jul                                                                                            | Aug                                                                        | Sep                                                                                                                                                    | Oct                                                                 | Nov                                                                                                                                         | Dec                                                                                                                                                                               | Year<br>821                                                                                         |
| Precipitation (P)<br>Adjusted Potential Evapotranspiration                                                                                                                                                                                                                                                                                                  | 10                                                          |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        | 10                                                                  | 00                                                                                                                                          |                                                                                                                                                                                   |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                             | 60                                                          | 50                                                                                                                                                                                                                                | 50                                                                                       | 67                                                                                                             | 76                                                                                                                   | 76                                                                                                               | 82                                                                                             | 77                                                                         | 75                                                                                                                                                     | 68                                                                  | 82                                                                                                                                          | 58                                                                                                                                                                                |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                             | 60<br>0                                                     |                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                  |                                                                                                |                                                                            |                                                                                                                                                        | 68<br>37                                                            | 82<br>8                                                                                                                                     |                                                                                                                                                                                   | 581                                                                                                 |
| (APET)<br>P-APET                                                                                                                                                                                                                                                                                                                                            |                                                             | 50                                                                                                                                                                                                                                | 50                                                                                       | 67                                                                                                             | 76                                                                                                                   | 76                                                                                                               | 82                                                                                             | 77                                                                         | 75                                                                                                                                                     |                                                                     |                                                                                                                                             | 58                                                                                                                                                                                |                                                                                                     |
| (APET)<br>P-APET<br>Change in Storage                                                                                                                                                                                                                                                                                                                       | 0<br>60<br>0                                                | 50<br>0<br>50<br>0                                                                                                                                                                                                                | 50<br>0<br>50<br>0                                                                       | 67<br>32<br>35<br>0                                                                                            | 76<br>77<br>-1<br>-1                                                                                                 | 76<br>110                                                                                                        | 82<br>129<br>-47<br>-47                                                                        | 77<br>115<br>-38<br>-38                                                    | 75<br>73<br>2<br>2                                                                                                                                     | 37<br>31<br>31                                                      | 8<br>74<br>74                                                                                                                               | 58<br>0<br>58<br>13                                                                                                                                                               | 581                                                                                                 |
| (APET)<br>P-APET                                                                                                                                                                                                                                                                                                                                            | 0<br>60                                                     | 50<br>0<br>50                                                                                                                                                                                                                     | 50<br>0<br>50                                                                            | 67<br>32<br>35<br>0<br>100                                                                                     | 76<br>77<br>-1<br>-1<br>99                                                                                           | 76<br>110<br>-35<br>-35<br>64                                                                                    | 82<br>129<br>-47                                                                               | 77<br>115<br>-38                                                           | 75<br>73<br>2                                                                                                                                          | 37<br>31                                                            | 8<br>74                                                                                                                                     | 58<br>0<br>58                                                                                                                                                                     | 581<br>240                                                                                          |
| (APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)                                                                                                                                                                                                                                                                                                   | 0<br>60<br>0<br>100                                         | 50<br>0<br>50<br>0<br>100                                                                                                                                                                                                         | 50<br>0<br>50<br>0<br>100                                                                | 67<br>32<br>35<br>0<br>100<br>Pervious Are                                                                     | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R                                                                       | 76<br>110<br>-35<br>-35<br>64<br>unoff Analysis                                                                  | 82<br>129<br>-47<br>-47<br>17                                                                  | 77<br>115<br>-38<br>-38<br>-20                                             | 75<br>73<br>2<br>2<br>-19                                                                                                                              | 37<br>31<br>31<br>13                                                | 8<br>74<br>74<br>87                                                                                                                         | 58<br>0<br>58<br>13<br>100                                                                                                                                                        | 581<br>240<br>120                                                                                   |
| (APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)                                                                                                                                                                                                                                                                             | 0<br>60<br>0<br>100                                         | 50<br>0<br>50<br>0<br>100<br>50                                                                                                                                                                                                   | 50<br>0<br>50<br>0<br>100                                                                | 67<br>32<br>35<br>0<br>100<br>Pervious Are<br>35                                                               | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0                                                                  | 76<br>110<br>-35<br>-35<br>64<br>unoff Analysis<br>0                                                             | 82<br>129<br>-47<br>-47<br>17                                                                  | 77<br>115<br>-38<br>-38<br>-20<br>0                                        | 75<br>73<br>2<br>-19<br>0                                                                                                                              | 37<br>31<br>31<br>13<br>0                                           | 8<br>74<br>74<br>87<br>0                                                                                                                    | 58<br>0<br>58<br>13<br>100<br>44                                                                                                                                                  | 581<br>240<br>120<br>240                                                                            |
| (APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)                                                                                                                                                                                                                                          | 0<br>60<br>0<br>100                                         | 50<br>0<br>50<br>0<br>100                                                                                                                                                                                                         | 50<br>0<br>50<br>0<br>100                                                                | 67<br>32<br>35<br>0<br>100<br>Pervious Are<br>35<br>24                                                         | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R                                                                       | 76<br>110<br>-35<br>-35<br>64<br>unoff Analysis                                                                  | 82<br>129<br>-47<br>-47<br>17                                                                  | 77<br>115<br>-38<br>-38<br>-20                                             | 75<br>73<br>2<br>2<br>-19                                                                                                                              | 37<br>31<br>31<br>13                                                | 8<br>74<br>74<br>87<br>0<br>0                                                                                                               | 58<br>0<br>58<br>13<br>100<br>44<br>31                                                                                                                                            | 581<br>240<br>120                                                                                   |
| (APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff                                                                                                                                                                                                 | 0<br>60<br>0<br>100                                         | 50<br>0<br>50<br>0<br>100<br>50                                                                                                                                                                                                   | 50<br>0<br>50<br>0<br>100                                                                | 67<br>32<br>35<br>0<br>100<br>Pervious Are<br>35                                                               | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0                                                                  | 76<br>110<br>-35<br>-35<br>64<br>unoff Analysis<br>0                                                             | 82<br>129<br>-47<br>-47<br>17                                                                  | 77<br>115<br>-38<br>-38<br>-20<br>0                                        | 75<br>73<br>2<br>-19<br>0                                                                                                                              | 37<br>31<br>31<br>13<br>0                                           | 8<br>74<br>74<br>87<br>0                                                                                                                    | 58<br>0<br>58<br>13<br>100<br>44                                                                                                                                                  | 581<br>240<br>120<br>240                                                                            |
| (APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)                                                                                                                                                                                                                                          | 0<br>60<br>0<br>100<br>60<br>42                             | 50<br>0<br>50<br>0<br>100<br>50<br>35                                                                                                                                                                                             | 50<br>0<br>50<br>0<br>100<br>50<br>35<br>15                                              | 67<br>32<br>35<br>0<br>100<br>Pervious Are-<br>35<br>24<br>10                                                  | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>0                                                        | 76<br>110<br>-35<br>-35<br>64<br>unoff Analysis<br>0<br>0<br>0<br>0                                              | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>0                                              | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0                                   | 75<br>73<br>2<br>2<br>-19<br>0<br>0                                                                                                                    | 37<br>31<br>31<br>13<br>0<br>0                                      | 8<br>74<br>74<br>87<br>0<br>0                                                                                                               | 58<br>0<br>58<br>13<br>100<br>44<br>31                                                                                                                                            | 581           240           120           240           168                                         |
| (APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)                                                                                                                                                                                     | 0<br>60<br>0<br>100<br>60<br>42                             | 50<br>0<br>50<br>0<br>100<br>50<br>35                                                                                                                                                                                             | 50<br>0<br>50<br>0<br>100<br>50<br>35<br>15                                              | 67<br>32<br>35<br>0<br>100<br>Pervious Are<br>35<br>24                                                         | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>0                                                        | 76<br>110<br>-35<br>-35<br>64<br>unoff Analysis<br>0<br>0<br>0<br>0                                              | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>0                                              | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0                                   | 75<br>73<br>2<br>2<br>-19<br>0<br>0                                                                                                                    | 37<br>31<br>31<br>13<br>0<br>0                                      | 8<br>74<br>74<br>87<br>0<br>0                                                                                                               | 58<br>0<br>58<br>13<br>100<br>44<br>31                                                                                                                                            | 581           240           120           240           168                                         |
| (APET)<br>PAPET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious                                                                                                                                                                        | 0<br>60<br>0<br>100<br>60<br>42                             | 50<br>0<br>50<br>0<br>100<br>50<br>35                                                                                                                                                                                             | 50<br>0<br>50<br>0<br>100<br>50<br>35<br>15                                              | 67<br>32<br>35<br>0<br>100<br>Pervious Are-<br>35<br>24<br>10                                                  | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>0                                                        | 76<br>110<br>-35<br>-35<br>64<br>unoff Analysis<br>0<br>0<br>0<br>0                                              | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>0                                              | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0                                   | 75<br>73<br>2<br>2<br>-19<br>0<br>0                                                                                                                    | 37<br>31<br>31<br>13<br>0<br>0                                      | 8<br>74<br>74<br>87<br>0<br>0                                                                                                               | 58<br>0<br>58<br>13<br>100<br>44<br>31                                                                                                                                            | 581           240           120           240           168                                         |
| (AFEI)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)                                                                                                                                                                   | 0<br>60<br>100<br>60<br>42<br>18<br>0                       | 50<br>0<br>50<br>0<br>100<br>50<br>35<br>15<br>0                                                                                                                                                                                  | 50<br>0<br>50<br>0<br>100<br>50<br>35<br>15<br><i>Imperviou</i><br>0                     | 67<br>32<br>0<br>100<br>Pervious Are<br>35<br>24<br>10<br>s Area Evapotre<br>10                                | 76<br>77<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>0<br>anspiration/Ev<br>11                                      | 76<br>110<br>-35<br>-35<br>64<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11                                           | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>0<br>0<br>0<br>12                              | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0<br>0<br>12                        | 75<br>73<br>2<br>2<br>-19<br>0<br>0<br>0                                                                                                               | 37<br>31<br>31<br>13<br>0<br>0<br>0<br>0                            | 8           74           74           87           0           0           0           12                                                   | 58<br>0<br>58<br>13<br>100<br>44<br>31<br>13<br>0                                                                                                                                 | 240<br>120<br>168<br>72<br>90                                                                       |
| (APET)<br>PAPET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious                                                                                                                                                                        | 0<br>60<br>0<br>100<br>60<br>42<br>18                       | 50<br>0<br>50<br>0<br>100<br>50<br>35<br>15                                                                                                                                                                                       | 50<br>0<br>50<br>0<br>100<br>50<br>35<br>15<br><i>Imperviou</i>                          | 67<br>32<br>35<br>0<br>100<br>Pervious Are<br>35<br>24<br>10<br>s Area Evapotri<br>10<br>57                    | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>0<br>anspiration/Ev<br>11                                | 76<br>110<br>-35<br>-35<br>64<br>unoff Analysis<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11<br>64              | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0<br>0                              | 75<br>73<br>2<br>2<br>-19<br>0<br>0<br>0                                                                                                               | 37<br>31<br>31<br>13<br>0<br>0<br>0                                 | 8<br>74<br>74<br>87<br>0<br>0<br>0                                                                                                          | 58<br>0<br>58<br>13<br>100<br>44<br>31<br>13                                                                                                                                      | 581<br>240<br>120<br>240<br>168<br>72                                                               |
| (AFEI)<br>P-APEI<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infliction (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)                                                                                                        | 0<br>60<br>0<br>100<br>60<br>42<br>18<br>0<br>60            | 50         0           50         0           100         35           15         0           50         50                                                                                                                       | 50<br>0<br>0<br>100<br>50<br>35<br>15<br><i>Imperviou</i><br>0<br>50                     | 67<br>32<br>0<br>100<br>Pervious Are-<br>35<br>24<br>10<br>is Area Evapotri<br>10<br>57<br>Comb                | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>0<br>anspiration/Ev<br>11<br>65<br>bined Water Bo        | 76<br>110<br>-35<br>-35<br>-64<br>unoff Analysis<br>0<br>0<br>0<br>0<br>aporation/Rur<br>11<br>-64<br>alance     | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>12<br>70                   | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0<br>0<br>12<br>66                  | 75           73           2           2           -19           0           0           0           11           64                                    | 37<br>31<br>31<br>13<br>0<br>0<br>0<br>0<br>0<br>10                 | 8           74           74           87           0           0           0           12           69                                      | 58<br>0<br>58<br>13<br>100<br>44<br>31<br>13<br>0<br>0<br>58                                                                                                                      | 581           240           120           240           168           72           90           731 |
| (AFEI)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)                                                                                                                                                                   | 0<br>60<br>0<br>100<br>60<br>42<br>18<br>0<br>60<br>60<br>0 | 50           0           50           0           100           50           35           15           0           50           0           0           0           0           0           0           0           0           0 | 50<br>0<br>50<br>0<br>100<br>50<br>35<br>15<br><i>Imperviou</i><br>0<br>50               | 67<br>32<br>0<br>Pervious Are<br>35<br>24<br>10<br>s Area Evapoln<br>10<br>57<br>Comb                          | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>0<br>anspiration/Ev<br>11<br>65<br>oined Water Ba<br>0   | 76<br>110<br>-35<br>64<br>unoff Analysis<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11<br>64<br>alance<br>0 | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>16<br>f Analysis<br>12<br>70<br>0              | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0<br>0<br>12<br>66<br>0             | 75       73       2       2       -19       0       0       0       11       64       0                                                                | 37<br>31<br>31<br>13<br>0<br>0<br>0<br>0<br>10<br>10<br>58<br>0     | 8<br>74<br>74<br>87<br>0<br>0<br>0<br>0<br>12<br>69<br>0                                                                                    | 58<br>0<br>58<br>13<br>100<br>44<br>31<br>13<br>0<br>0<br>58                                                                                                                      | 581<br>240<br>120<br>168<br>72<br>90<br><b>731</b><br>0                                             |
| (AFEI)<br>P-APEI<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infliction (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)                                                                                                        | 0<br>60<br>100<br>42<br>18<br>0<br>60<br>60<br>0<br>0<br>0  | 50<br>0<br>0<br>100<br>50<br>35<br>15<br>0<br>50<br>50<br>0<br>0                                                                                                                                                                  | 50<br>0<br>0<br>100<br>50<br>35<br>15<br>15<br>0<br>0<br>50<br>0<br>0                    | 67<br>32<br>0<br>Pervious Are<br>35<br>24<br>10<br>s Area Evapotre<br>10<br>57<br>Comb<br>0<br>10              | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>anspiration/Ev<br>11<br>65<br>sined Water Bo<br>0<br>11  | 76<br>110<br>-35<br>-35<br>64<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11<br>64<br>alance<br>0<br>11           | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>soff Analysis<br>12<br>70<br>0<br>12           | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0<br>0<br>12<br>66<br>11            | 75           73           2           2           2           2           0           0           0           11           64           0           11 | 37<br>31<br>31<br>13<br>0<br>0<br>0<br>0<br>0<br>0<br>10            | 8           74           74           87           0           0           12           69           12                                     | 58         0           58         13           100         100           44         31           13         0           58         0           0         58           0         0 | 581<br>240<br>120<br>168<br>72<br>90<br><b>731</b><br><b>0</b><br><b>86</b>                         |
| (AFEI)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infilitation (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)<br>Pervious EI (m <sup>3</sup> )                                                                     | 0<br>60<br>100<br>42<br>18<br>0<br>60<br>60<br>0<br>0<br>0  | 50<br>0<br>0<br>100<br>50<br>35<br>15<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                    | 50<br>0<br>0<br>100<br>50<br>35<br>15<br><i>Imperviou</i><br>0<br>50<br>0<br>0<br>0<br>0 | 67<br>32<br>0<br>100<br>Pervious Are<br>35<br>24<br>10<br>10<br>s Area Evapotra<br>10<br>57<br>Comb<br>0<br>10 | 76<br>77<br>-1<br>-1<br>99<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 76<br>110<br>-35<br>-35<br>64<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                   | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>0<br>12<br>70<br>12<br>0<br>12<br>0<br>0       | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0<br>0<br>12<br>66<br>66<br>11<br>0 | 75       73       2       -19       0       0       0       11       64       0       11       0                                                       | 37<br>31<br>31<br>13<br>0<br>0<br>0<br>0<br>0<br>10<br>10<br>0<br>0 | 8           74           74           87           0           0           12           69           0           12           0           0 | 58<br>0<br>58<br>13<br>100<br>44<br>31<br>13<br>0<br>0<br>58<br>0<br>0<br>0                                                                                                       | 581<br>240<br>120<br>240<br>168<br>72<br>90<br><b>731</b><br>0<br><b>86</b><br>0                    |
| (AFET)           P-APET           Change in Storage           Storage (S) (mm)           Water Surplus (mm)           Potential Infliction (I) (mm)           Potential Direct Surface Water Runoff<br>(R) (mm)           Impervious           Evapotranspiration/Evaporation (mm)           Impervious Runoff (mm)           Pervious ET (m <sup>3</sup> ) | 0<br>60<br>100<br>42<br>18<br>0<br>60<br>60<br>0<br>0<br>0  | 50<br>0<br>0<br>100<br>50<br>35<br>15<br>0<br>50<br>50<br>0<br>0                                                                                                                                                                  | 50<br>0<br>0<br>100<br>50<br>35<br>15<br>15<br>0<br>0<br>50<br>0<br>0                    | 67<br>32<br>0<br>Pervious Are<br>35<br>24<br>10<br>s Area Evapotre<br>10<br>57<br>Comb<br>0<br>10              | 76<br>77<br>-1<br>-1<br>99<br>a Infiltration/R<br>0<br>0<br>anspiration/Ev<br>11<br>65<br>sined Water Bo<br>0<br>11  | 76<br>110<br>-35<br>-35<br>64<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11<br>64<br>alance<br>0<br>11           | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>soff Analysis<br>12<br>70<br>0<br>12           | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0<br>0<br>12<br>66<br>11            | 75           73           2           2           2           2           0           0           0           11           64           0           11 | 37<br>31<br>31<br>13<br>0<br>0<br>0<br>0<br>0<br>0<br>10            | 8           74           74           87           0           0           12           69           12                                     | 58         0           58         13           100         100           44         31           13         0           58         0           0         58           0         0 | 581<br>240<br>120<br>168<br>72<br>90<br><b>731</b><br><b>0</b><br><b>86</b>                         |
| (AFEI)<br>P-APEI<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Inflication (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)<br>Pervious Et (m <sup>3</sup> )<br>Impervious Et (m <sup>3</sup> )                                   | 0<br>60<br>100<br>42<br>18<br>0<br>60<br>60<br>0<br>0<br>0  | 50<br>0<br>0<br>100<br>50<br>35<br>15<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                    | 50<br>0<br>0<br>100<br>50<br>35<br>15<br><i>Imperviou</i><br>0<br>50<br>0<br>0<br>0<br>0 | 67<br>32<br>0<br>100<br>Pervious Are<br>35<br>24<br>10<br>10<br>s Area Evapotra<br>10<br>57<br>Comb<br>0<br>10 | 76<br>77<br>-1<br>-1<br>99<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 76<br>110<br>-35<br>-35<br>64<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                   | 82<br>129<br>-47<br>-47<br>17<br>0<br>0<br>0<br>0<br>12<br>70<br>12<br>0<br>12<br>0<br>0       | 77<br>115<br>-38<br>-38<br>-20<br>0<br>0<br>0<br>12<br>66<br>66<br>11<br>0 | 75       73       2       -19       0       0       0       11       64       0       11       0                                                       | 37<br>31<br>31<br>13<br>0<br>0<br>0<br>0<br>0<br>10<br>10<br>0<br>0 | 8           74           74           87           0           0           12           69           0           12           0           0 | 58<br>0<br>58<br>13<br>100<br>44<br>31<br>13<br>0<br>0<br>58<br>0<br>0<br>0                                                                                                       | 581<br>240<br>120<br>240<br>168<br>72<br>90<br><b>731</b><br>0<br><b>86</b><br>0                    |

| Land Use                                                                                                                                                                                                                                                                                                                                                                                            | Pond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                      |                                                                                                  | Evapotransp                                                                                                                                                                                                                                                                                                                | piration/Evapo                                                                                                                                                                                                                                                                                                                                                                                                       | ration Analysis                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
| Month                                                                                                                                                                                                                                                                                                                                                                                               | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feb                                                                                                                    | Mar                                                                                              | Apr                                                                                                                                                                                                                                                                                                                        | May                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun                                                                                                                                                              | Jul                                                                                                                                                                            | Aug                                                                                                                      | Sep                                                                                                                                                                    | Oct                                                                                                                                                       | Nov                                                                                   | Dec                                                                          | Year                                                                                                              |
| Precipitation (P)                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                     | 50                                                                                               | 67                                                                                                                                                                                                                                                                                                                         | 76                                                                                                                                                                                                                                                                                                                                                                                                                   | 76                                                                                                                                                               | 82                                                                                                                                                                             | 77                                                                                                                       | 75                                                                                                                                                                     | 68                                                                                                                                                        | 82                                                                                    | 58                                                                           | 821                                                                                                               |
| Adjusted Potential Evapotranspiration<br>(APET)                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                      | 0                                                                                                | 32                                                                                                                                                                                                                                                                                                                         | 77                                                                                                                                                                                                                                                                                                                                                                                                                   | 110                                                                                                                                                              | 129                                                                                                                                                                            | 115                                                                                                                      | 73                                                                                                                                                                     | 37                                                                                                                                                        | 8                                                                                     | 0                                                                            | 581                                                                                                               |
| P-APET                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                     | 50                                                                                               | 35                                                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                                                                                                                                                                                   | -35                                                                                                                                                              | -47                                                                                                                                                                            | -38                                                                                                                      | 2                                                                                                                                                                      | 31                                                                                                                                                        | 74                                                                                    | 58                                                                           | 240                                                                                                               |
| Change in Storage                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                      | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                          | -1                                                                                                                                                                                                                                                                                                                                                                                                                   | -35                                                                                                                                                              | -47                                                                                                                                                                            | -38                                                                                                                      | 2                                                                                                                                                                      | 31                                                                                                                                                        | 74                                                                                    | 13                                                                           | 120                                                                                                               |
| Storage (S) (mm)                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                    | 100                                                                                              | 100                                                                                                                                                                                                                                                                                                                        | 99                                                                                                                                                                                                                                                                                                                                                                                                                   | 64                                                                                                                                                               | 17                                                                                                                                                                             | -20                                                                                                                      | -19                                                                                                                                                                    | 13                                                                                                                                                        | 87                                                                                    | 100                                                                          |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                                            | ea Infiltration/R                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
| Water Surplus (mm)                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                     | 50                                                                                               | 35                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 0                                                                                                                                                                              | 0                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                         | 0                                                                                     | 44                                                                           | 240                                                                                                               |
| Potential Infiltration (I) (mm)                                                                                                                                                                                                                                                                                                                                                                     | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                     | 35                                                                                               | 24                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 0                                                                                                                                                                              | 0                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                         | 0                                                                                     | 31                                                                           | 168                                                                                                               |
| Potential Direct Surface Water Runoff<br>(R) (mm)                                                                                                                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                     | 15                                                                                               | 10                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 0                                                                                                                                                                              | 0                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                         | 0                                                                                     | 13                                                                           | 72                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        | Imperviou                                                                                        | s Area Evapotr                                                                                                                                                                                                                                                                                                             | ranspiration/Ev                                                                                                                                                                                                                                                                                                                                                                                                      | /aporation/Ru                                                                                                                                                    | noff Analysis                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
| Impervious<br>Evapotranspiration/Evaporation (mm)                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                      | 0                                                                                                | 10                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                               | 12                                                                                                                                                                             | 12                                                                                                                       | 11                                                                                                                                                                     | 10                                                                                                                                                        | 12                                                                                    | 0                                                                            | 90                                                                                                                |
| Impervious Runoff (mm)                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                     | 50                                                                                               | 57                                                                                                                                                                                                                                                                                                                         | 65                                                                                                                                                                                                                                                                                                                                                                                                                   | 64                                                                                                                                                               | 70                                                                                                                                                                             | 66                                                                                                                       | 64                                                                                                                                                                     | 58                                                                                                                                                        | 69                                                                                    | 58                                                                           | 731                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                  | Com                                                                                                                                                                                                                                                                                                                        | bined Water B                                                                                                                                                                                                                                                                                                                                                                                                        | alance                                                                                                                                                           |                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
| Pervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                      | 0                                                                                                | 1471                                                                                                                                                                                                                                                                                                                       | 3489                                                                                                                                                                                                                                                                                                                                                                                                                 | 5030                                                                                                                                                             | 5873                                                                                                                                                                           | 5233                                                                                                                     | 3345                                                                                                                                                                   | 1681                                                                                                                                                      | 347                                                                                   | 0                                                                            | 26469                                                                                                             |
| Impervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                      | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 0                                                                                                                                                                              | 0                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                         | 0                                                                                     | 0                                                                            | 0                                                                                                                 |
| Pervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                   | 825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 686                                                                                                                    | 687                                                                                              | 474                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 0                                                                                                                                                                              | 0                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                         | 0                                                                                     | 606                                                                          | 3277                                                                                                              |
| Impervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                      | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 0                                                                                                                                                                              | 0                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                         | 0                                                                                     | 0                                                                            | 0                                                                                                                 |
| Pervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                             | 1925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1600                                                                                                                   | 1603                                                                                             | 1105                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 0                                                                                                                                                                              | 0                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                         | 0                                                                                     | 1413                                                                         | 7646                                                                                                              |
| Impervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                      | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                | 0                                                                                                                                                                              | 0                                                                                                                        | 0                                                                                                                                                                      | 0                                                                                                                                                         | 0                                                                                     | 0                                                                            | 0                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                                                                  |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
| Catchment ID                                                                                                                                                                                                                                                                                                                                                                                        | Woodlot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                                                            | piration/Evapo                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |                                                                                                                                                                                | T.:                                                                                                                      |                                                                                                                                                                        | n                                                                                                                                                         | la c                                                                                  | 1-                                                                           | <b>N</b> + -                                                                                                      |
| Month                                                                                                                                                                                                                                                                                                                                                                                               | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feb                                                                                                                    | Mar                                                                                              | Apr                                                                                                                                                                                                                                                                                                                        | Мау                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun                                                                                                                                                              | Jul                                                                                                                                                                            | Aug                                                                                                                      | Sep                                                                                                                                                                    | Oct                                                                                                                                                       | Nov                                                                                   | Dec                                                                          | Year                                                                                                              |
| Month<br>Precipitation (P)                                                                                                                                                                                                                                                                                                                                                                          | Jan<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                     | 50                                                                                               | Apr<br>67                                                                                                                                                                                                                                                                                                                  | May<br>76                                                                                                                                                                                                                                                                                                                                                                                                            | Jun<br>76                                                                                                                                                        | Jul<br>82                                                                                                                                                                      | 77                                                                                                                       | 75                                                                                                                                                                     | 68                                                                                                                                                        | 82                                                                                    | 58                                                                           | 821                                                                                                               |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration                                                                                                                                                                                                                                                                                                                                 | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                  | Apr                                                                                                                                                                                                                                                                                                                        | Мау                                                                                                                                                                                                                                                                                                                                                                                                                  | Jun                                                                                                                                                              | Jul                                                                                                                                                                            |                                                                                                                          |                                                                                                                                                                        |                                                                                                                                                           |                                                                                       |                                                                              |                                                                                                                   |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)                                                                                                                                                                                                                                                                                                                       | Jan<br>60<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50<br>0                                                                                                                | 50<br>0                                                                                          | Apr 67 32                                                                                                                                                                                                                                                                                                                  | May 76 77                                                                                                                                                                                                                                                                                                                                                                                                            | Jun<br>76<br>110                                                                                                                                                 | Jul<br>82<br>129                                                                                                                                                               | 77                                                                                                                       | 75                                                                                                                                                                     | 68<br>37                                                                                                                                                  | 82                                                                                    | 58<br>0                                                                      | 821<br>581                                                                                                        |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET                                                                                                                                                                                                                                                                                                             | Jan<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                     | 50                                                                                               | Apr<br>67                                                                                                                                                                                                                                                                                                                  | May<br>76                                                                                                                                                                                                                                                                                                                                                                                                            | Jun<br>76                                                                                                                                                        | Jul<br>82                                                                                                                                                                      | 77                                                                                                                       | 75                                                                                                                                                                     | 68                                                                                                                                                        | 82                                                                                    | 58                                                                           | 821                                                                                                               |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)                                                                                                                                                                                                                                                                                                                       | Jan<br>60<br>0<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50<br>0<br>50                                                                                                          | 50<br>0<br>50                                                                                    | Apr 67 32 35                                                                                                                                                                                                                                                                                                               | May 76 77 -1                                                                                                                                                                                                                                                                                                                                                                                                         | Jun<br>76<br>110<br>-35                                                                                                                                          | Jul 82<br>129<br>-47                                                                                                                                                           | 77 115 -38                                                                                                               | 75<br>73<br>2                                                                                                                                                          | 68<br>37<br>31                                                                                                                                            | 82<br>8<br>74                                                                         | 58<br>0<br>58                                                                | 821<br>581<br>240                                                                                                 |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage                                                                                                                                                                                                                                                                                        | Jan<br>60<br>0<br>60<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50<br>0<br>50<br>0                                                                                                     | 50<br>0<br>50<br>0                                                                               | Apr 67<br>32<br>35<br>0<br>400                                                                                                                                                                                                                                                                                             | May 76<br>77<br>-1<br>-1                                                                                                                                                                                                                                                                                                                                                                                             | Jun<br>76<br>110<br>-35<br>-35<br>364                                                                                                                            | Jul<br>82<br>129<br>-47<br>-47                                                                                                                                                 | 77<br>115<br>-38<br>-38                                                                                                  | 75<br>73<br>2<br>2                                                                                                                                                     | 68<br>37<br>31<br>31                                                                                                                                      | 82<br>8<br>74<br>74                                                                   | 58<br>0<br>58<br>13                                                          | 821<br>581<br>240                                                                                                 |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage                                                                                                                                                                                                                                                                                        | Jan<br>60<br>0<br>60<br>0<br>400<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50<br>0<br>50<br>0<br>400<br>50                                                                                        | 50<br>0<br>50<br>0<br>400<br>50                                                                  | Apr<br>67<br>32<br>35<br>0<br>400<br>Pervious Are<br>35                                                                                                                                                                                                                                                                    | May<br>76<br>77<br>-1<br>-1<br>399<br>ea Infiltration/R<br>0                                                                                                                                                                                                                                                                                                                                                         | Jun           76           110           -35           -35           364           cunoff Analysis           0                                                   | Jul<br>82<br>129<br>-47<br>-47<br>317<br>0                                                                                                                                     | 77<br>115<br>-38<br>-38<br>280                                                                                           | 75<br>73<br>2<br>2<br>281<br>0                                                                                                                                         | 68<br>37<br>31<br>31<br>313<br>0                                                                                                                          | 82<br>8<br>74<br>74<br>387<br>0                                                       | 58<br>0<br>58<br>13<br>400<br>44                                             | 821<br>581<br>240<br>120<br>240                                                                                   |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)                                                                                                                                                                                                           | Jan<br>60<br>0<br>60<br>0<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50<br>0<br>50<br>0<br>400                                                                                              | 50<br>0<br>50<br>0<br>400                                                                        | Apr<br>67<br>32<br>35<br>0<br>400<br>Pervious Are                                                                                                                                                                                                                                                                          | May 76<br>77<br>-1<br>-1<br>399<br>ea Infiltration/R                                                                                                                                                                                                                                                                                                                                                                 | Jun         76           110         -35           -35         364           Runoff Analysis                                                                     | Jul<br>82<br>129<br>-47<br>-47<br>317                                                                                                                                          | 77<br>115<br>-38<br>-38<br>280                                                                                           | 75<br>73<br>2<br>2<br>281                                                                                                                                              | 68<br>37<br>31<br>31<br>313                                                                                                                               | 82<br>8<br>74<br>74<br>387                                                            | 58<br>0<br>58<br>13<br>400                                                   | 821<br>581<br>240<br>120                                                                                          |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)                                                                                                                                                                                                                                              | Jan<br>60<br>0<br>60<br>0<br>400<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50<br>0<br>50<br>0<br>400<br>50                                                                                        | 50<br>0<br>50<br>0<br>400<br>50                                                                  | Apr<br>67<br>32<br>35<br>0<br>400<br>Pervious Are<br>35                                                                                                                                                                                                                                                                    | May<br>76<br>77<br>-1<br>-1<br>399<br>ea Infiltration/R<br>0                                                                                                                                                                                                                                                                                                                                                         | Jun           76           110           -35           -35           364           cunoff Analysis           0                                                   | Jul<br>82<br>129<br>-47<br>-47<br>317<br>0                                                                                                                                     | 77<br>115<br>-38<br>-38<br>280                                                                                           | 75<br>73<br>2<br>2<br>281<br>0                                                                                                                                         | 68<br>37<br>31<br>31<br>313<br>0                                                                                                                          | 82<br>8<br>74<br>74<br>387<br>0                                                       | 58<br>0<br>58<br>13<br>400<br>44                                             | 821<br>581<br>240<br>120<br>240                                                                                   |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Incet Surface Water Runoff                                                                                                                                                                   | Jan<br>60<br>0<br>60<br>400<br>60<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50<br>0<br>50<br>0<br>400<br>50<br>40                                                                                  | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10                                                      | Apr<br>67<br>32<br>35<br>0<br>400<br>Pervious Are<br>35<br>28                                                                                                                                                                                                                                                              | May<br>76<br>77<br>-1<br>-1<br>-1<br>399<br>a Infiltration/R<br>0<br>0                                                                                                                                                                                                                                                                                                                                               | Jun<br>76<br>110<br>-35<br>-35<br>364<br>tunoff Analysis<br>0<br>0<br>0                                                                                          | Jul         82           129         -47           -47         317           0         0           0         0                                                                 | 77<br>115<br>-38<br>-38<br>280<br>0<br>0                                                                                 | 75<br>73<br>2<br>2<br>281<br>0<br>0                                                                                                                                    | 68<br>37<br>31<br>31<br>313<br>0<br>0                                                                                                                     | 82<br>8<br>74<br>74<br>387<br>0<br>0                                                  | 58<br>0<br>58<br>13<br>400<br>44<br>35                                       | 821<br>581<br>240<br>120<br>240<br>192                                                                            |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)                                                                                                                                                      | Jan<br>60<br>0<br>60<br>0<br>400<br>60<br>48<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10                                                                            | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10<br><i>Imperviou</i>                                  | Apr         67           32         35           0         400           Pervious Are         35           28         7           s Area Evapotr                                                                                                                                                                           | May<br>76<br>77<br>-1<br>-1<br>399<br>ca Infiltration/R<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                     | Jun<br>76<br>110<br>-35<br>-35<br>364<br>2006 Analysis<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                          | Jul         82           129         -47           -47         317           0         0           0         0           noff Analysis         0                               | 77           115           -38           -38           280           0           0           0                           | 75<br>73<br>2<br>2<br>281<br>0<br>0<br>0                                                                                                                               | 68<br>37<br>31<br>31<br>313<br>0<br>0<br>0                                                                                                                | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0                                             | 58<br>0<br>58<br>13<br>400<br>44<br>35<br>9                                  | 821<br>581<br>240<br>120<br>240<br>192<br>48                                                                      |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Incet Surface Water Runoff                                                                                                                                                                   | Jan<br>60<br>0<br>60<br>400<br>60<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50<br>0<br>50<br>0<br>400<br>50<br>40                                                                                  | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10                                                      | Apr<br>67<br>32<br>35<br>0<br>400<br>Pervious Are<br>35<br>28<br>7                                                                                                                                                                                                                                                         | May<br>76<br>77<br>-1<br>-1<br>-1<br>399<br>a Infiltration/R<br>0<br>0                                                                                                                                                                                                                                                                                                                                               | Jun<br>76<br>110<br>-35<br>-35<br>364<br>tunoff Analysis<br>0<br>0<br>0                                                                                          | Jul         82           129         -47           -47         317           0         0           0         0                                                                 | 77<br>115<br>-38<br>-38<br>280<br>0<br>0                                                                                 | 75<br>73<br>2<br>2<br>281<br>0<br>0                                                                                                                                    | 68<br>37<br>31<br>31<br>313<br>0<br>0                                                                                                                     | 82<br>8<br>74<br>74<br>387<br>0<br>0                                                  | 58<br>0<br>58<br>13<br>400<br>44<br>35                                       | 821<br>581<br>240<br>120<br>240<br>192                                                                            |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)                                                                                                 | Jan<br>60<br>60<br>0<br>400<br>60<br>48<br>12<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10                                                                            | 50<br>0<br>50<br>400<br>50<br>40<br>10<br><i>Imperviou</i><br>0                                  | Apr         67           32         35           0         400           Pervious Are         35           28         7           s Area Evapotr         10                                                                                                                                                                | May<br>76<br>77<br>-1<br>-1<br>399<br>a Infiltration/R<br>0<br>0<br>0<br>canspiration/Ev<br>11                                                                                                                                                                                                                                                                                                                       | Jun<br>76<br>110<br>-35<br>-35<br>364<br>tunoff Analysis<br>0<br>0<br>0<br>0<br>11                                                                               | Jul         82           129         -47           -47         317           0         0           0ff Analysis         12                                                     | 77           115           -38           -38           280           0           0           0           12              | 75<br>73<br>2<br>2<br>281<br>0<br>0<br>0<br>0                                                                                                                          | 68<br>37<br>31<br>31<br>313<br>0<br>0<br>0<br>0                                                                                                           | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0<br>0                                        | 58<br>0<br>58<br>13<br>400<br>44<br>35<br>9<br>0                             | 821           581           240           120           240           192           48           90               |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Inflitcation (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious                                                                                                                                        | Jan<br>60<br>0<br>60<br>0<br>400<br>60<br>48<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10                                                                            | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10<br><i>Imperviou</i>                                  | Apr         67           32         35           0         400           Pervious Are         35           28         7           s Area Evapotr         10           57         57                                                                                                                                        | May 76<br>77<br>-1<br>-1<br>399<br>a Infiltration/R<br>0<br>0<br>0<br>anspiration/R<br>11<br>65                                                                                                                                                                                                                                                                                                                      | Jun<br>76<br>110<br>-35<br>-35<br>364<br>tunoff Analysis<br>0<br>0<br>0<br>vaporation/Ru<br>11<br>64                                                             | Jul         82           129         -47           -47         317           0         0           0         0           0         0                                           | 77           115           -38           -38           280           0           0           0                           | 75<br>73<br>2<br>2<br>281<br>0<br>0<br>0                                                                                                                               | 68<br>37<br>31<br>31<br>313<br>0<br>0<br>0                                                                                                                | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0                                             | 58<br>0<br>58<br>13<br>400<br>44<br>35<br>9                                  | 821<br>581<br>240<br>120<br>240<br>192<br>48                                                                      |
| Month<br>Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)<br>P-APET<br>Change in Storage<br>Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)                                    | Jan<br>60<br>0<br>400<br>400<br>48<br>12<br>0<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50           0           50           0           400           50           400           10           0           50 | 50<br>0<br>0<br>400<br>50<br>400<br>10<br><i>Imperviou</i><br>0<br>50                            | Apr         67           32         35           0         400           Pervious Are         35           28         7           s Area Evapotr         10           57         Com                                                                                                                                       | May         76           77         -1           -1         399           ca Infiltration/R         0           0         0           0         0           11         65           bined Water B         0                                                                                                                                                                                                          | Jun<br>76<br>110<br>-35<br>-35<br>364<br>20<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>11<br>64<br>alance                                                        | Jul         82           129         -47           -47         317           0         0           noff Analysis         12           70         70                            | 77           115           -38           -38           280           0           0           0           12           66 | 75           73           2           2           281           0           0           0           11           64                                                    | 68         37           31         31           313         0           0         0           10         58                                               | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0<br>0<br>12<br>69                            | 58<br>0<br>58<br>13<br>400<br>44<br>35<br>9<br>0<br>0<br>58                  | 821           581           240           120           240           192           48           90           731 |
| Month Precipitation (P) Adjusted Potential Evapotranspiration (APET) P-APET Change in Storage Storage (S) (mm) Water Surplus (mm) Potential Infiltration (I) (mm) Potential Direct Surface Water Runoff (R) (mm) Impervious Evapotranspiration/Evaporation (mm) Impervious ET (m <sup>3</sup> )                                                                                                     | Jan<br>60<br>0<br>400<br>400<br>400<br>48<br>12<br>0<br>60<br>60<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50<br>0<br>50<br>400<br>10<br>0<br>50<br>50<br>50<br>0                                                                 | 50<br>0<br>50<br>400<br>50<br>40<br>10<br><i>Imperviou</i><br>0<br>50<br>50                      | Apr         67           32         35           0         400           Pervious Are         35           28         7           s Area Evapotr         10           57         Comi           2581         2581                                                                                                          | May           76           77           -1           -1           399           a Infiltration/R           0           0           0           0           11           65           bined Water B           6122                                                                                                                                                                                                    | Jun<br>76<br>110<br>-35<br>-35<br>-364<br>100<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | Jul<br>82<br>129<br>-47<br>-47<br>317<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 77<br>115<br>-38<br>-38<br>280<br>0<br>0<br>0<br>0<br>12<br>66<br>9181                                                   | 75           73           2           2           281           0           0           0           11           64           5870                                     | 68         37           31         31           313         0           0         0           10         58           2950         2950                   | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0<br>0<br>12<br>69<br>608                     | 58<br>0<br>58<br>13<br>400<br>44<br>35<br>9<br>0<br>0<br>58                  | 821<br>581<br>240<br>120<br>240<br>192<br>48<br>90<br>731<br>46443                                                |
| Month Precipitation (P) Adjusted Potential Evapotranspiration (APET) P-APET Change in Storage Storage (S) (mm) Water Surplus (mm) Potential Infiltration (I) (mm) Potential Infiltration (I) (mm) Impervious Evapotranspiration/Evaporation (mm) Impervious Et (m <sup>3</sup> ) Impervious Ef (m <sup>3</sup> )                                                                                    | Jan<br>60<br>0<br>60<br>400<br>60<br>48<br>12<br>0<br>60<br>60<br>60<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10<br>0<br>50<br>50<br>0<br>0                                                 | 50<br>0<br>50<br>0<br>400<br>50<br>40<br>10<br>10<br>10<br>0<br>50<br>50<br>0<br>0               | Apr         Apr           67         32           35         0           400         Pervious Are           35         28           7         s Area Evapoh           10         57           Com         2581           0         0                                                                                       | May         76           77         -1           -1         -1           399         ad Infiltration/R           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           65         5ined Water B           6122         0 | Jun<br>76<br>110<br>-35<br>-33<br>364<br>unoff Analysis<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | Jul 82<br>129<br>-47<br>-47<br>317<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>10<br>0<br>12<br>12<br>70<br>10305<br>0                                                | 77<br>115<br>-38<br>-38<br>280<br>0<br>0<br>0<br>12<br>66<br>9181<br>0                                                   | 75           73           2           2           281           0           0           0           11           64           5870           0                         | 68         37           31         31           313         0           0         0           10         58           2950         0                      | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0<br>0<br>0<br>12<br>69<br>608<br>0           | 58<br>0<br>58<br>13<br>400<br>444<br>35<br>9<br>9<br>0<br>0<br>58<br>0<br>0  | 821<br>581<br>240<br>120<br>120<br>192<br>48<br>90<br>731<br>46443<br>0                                           |
| Month Precipitation (P) Adjusted Potential Evapotranspiration (APET) P-APET Change in Storage Storage (S) (mm) Water Surplus (mm) Potential Infiltration (I) (mm) Potential Direct Surface Water Runoff (R) (mm) Impervious Evapotranspiration/Evaporation (mm) Impervious Et (m <sup>2</sup> ) Impervious Et (m <sup>2</sup> ) Pervious Runoff (m <sup>3</sup> ) Pervious Runoff (m <sup>3</sup> ) | Jan<br><u>60</u><br>0<br><u>60</u><br>0<br>400<br><u>60</u><br><u>48</u><br>12<br>0<br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u> <u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u> <u>65</u> <u>6</u> | 50<br>0<br>50<br>400<br>50<br>40<br>10<br>0<br>50<br>50<br>0<br>0<br>802                                               | 50<br>0<br>0<br>400<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>50<br>50<br>0<br>0<br>804 | Apr         67           32         35           0         9           400         Pervious Are           35         7           5         Area Evapolit           10         57           Com         2581           0         554                                                                                        | May         76           77         -1           -1         -1           -9         antilitation/R           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0                                           | Jun<br>76<br>110<br>-35<br>-35<br>-35<br>-35<br>-35<br>-35<br>-35<br>-35                                                                                         | Jul 82<br>129<br>-47<br>-47<br>-47<br>-47<br>-47<br>-47<br>-47<br>-47                                                                                                          | 77<br>115<br>-38<br>-38<br>280<br>0<br>0<br>0<br>0<br>12<br>66<br>9181<br>0<br>0                                         | 75           73           2           2           2           281           0           0           11           64           5870           0           0           0 | 68<br>37<br>31<br>313<br>0<br>0<br>0<br>0<br>10<br>10<br>58<br>2950<br>0<br>0                                                                             | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0<br>0<br>0<br>12<br>69<br>608<br>0<br>0      | 58<br>0<br>58<br>13<br>400<br>44<br>35<br>9<br>0<br>0<br>58<br>0<br>0<br>709 | 821<br>581<br>240<br>120<br>240<br>192<br>48<br>90<br>731<br>46443<br>0<br>3833                                   |
| Month Precipitation (P) Adjusted Potential Evapotranspiration (APET) P-APET Change in Storage Storage (S) (mm) Water Surplus (mm) Potential Infiltration (I) (mm) Potential Direct Surface Water Runoff (R) (mm) Impervious Evapotranspiration/Evaporation (mm) Impervious ET (m <sup>3</sup> ) Impervious ET (m <sup>3</sup> ) Impervious Runoff (m <sup>3</sup> )                                 | Jan<br>60<br>0<br>60<br>400<br>60<br>48<br>12<br>0<br>60<br>60<br>0<br>0<br>965<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50<br>0<br>50<br>400<br>10<br>0<br>50<br>50<br>0<br>0<br>802<br>0<br>0                                                 | 50<br>0<br>0<br>400<br>50<br>10<br>10<br>10<br>10<br>10<br>50<br>50<br>0<br>0<br>804<br>0        | Apr         67           32         35           0         9           400         28           7         28           7         7           s Area Evapolt         10           57         Comi           28         0           57         Comi           57         Comi           0         55           0         554 | May         76           77         -1           -1         -1           399         anilitration/R           0         0           0         0           11         -1           612         -1           612         0           0         0           0         0           0         0           0         0                                                                                                     | Jun<br>76<br>110<br>-35<br>-35<br>-35<br>-35<br>-364<br>unoff Analysis<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Jul<br>82<br>129<br>-47<br>-47<br>317<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>12<br>12<br>70<br>10305<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 77<br>115<br>-38<br>-38<br>280<br>0<br>0<br>0<br>0<br>0<br>12<br>66<br>56<br>9181<br>0<br>0<br>0                         | 75           73           2           2           281           0           0           0           64           5870           0           0           0              | 68         37           31         313           0         0           0         0           10         58           2950         0           0         0 | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0<br>0<br>0<br>12<br>69<br>608<br>0<br>0<br>0 | 58<br>0<br>58<br>13<br>44<br>35<br>9<br>0<br>58<br>0<br>0<br>0<br>709<br>0   | 821<br>581<br>240<br>120<br>240<br>192<br>48<br>90<br>731<br>46443<br>0<br>3833<br>0                              |
| Month Precipitation (P) Adjusted Potential Evapotranspiration (APE1) P-APET Change in Storage Storage (S) (mm) Water Surplus (mm) Potential Infiltration (I) (mm) Potential Direct Surface Water Runoff (R) (mm) Impervious Evapotranspiration/Evaporation (mm) Impervious Et (m <sup>2</sup> ) Pervious Runoff (m <sup>3</sup> ) Pervious Runoff (m <sup>3</sup> )                                 | Jan<br><u>60</u><br>0<br><u>60</u><br>0<br>400<br><u>60</u><br><u>48</u><br>12<br>0<br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>60</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u> <u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u><br><u>65</u> <u>65</u> <u>6</u> | 50<br>0<br>50<br>400<br>50<br>40<br>10<br>0<br>50<br>50<br>0<br>0<br>802                                               | 50<br>0<br>0<br>400<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>50<br>50<br>0<br>0<br>804 | Apr         67           32         35           0         9           400         Pervious Are           35         7           5         Area Evapolit           10         57           Com         2581           0         554                                                                                        | May         76           77         -1           -1         -1           -9         antilitation/R           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0                                           | Jun<br>76<br>110<br>-35<br>-35<br>-35<br>-35<br>-35<br>-35<br>-35<br>-36<br>-0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                  | Jul 82<br>129<br>-47<br>-47<br>-47<br>-47<br>-47<br>-47<br>-47<br>-47                                                                                                          | 77<br>115<br>-38<br>-38<br>280<br>0<br>0<br>0<br>0<br>12<br>66<br>9181<br>0<br>0                                         | 75           73           2           2           2           281           0           0           11           64           5870           0           0           0 | 68<br>37<br>31<br>313<br>0<br>0<br>0<br>0<br>10<br>10<br>58<br>2950<br>0<br>0                                                                             | 82<br>8<br>74<br>74<br>387<br>0<br>0<br>0<br>0<br>0<br>12<br>69<br>608<br>0<br>0      | 58<br>0<br>58<br>13<br>400<br>44<br>35<br>9<br>0<br>0<br>58<br>0<br>0<br>709 | 821<br>581<br>240<br>120<br>240<br>192<br>48<br>90<br>731<br>46443<br>0<br>3833                                   |

| Pre-Development Water Balance Summary |         |       |       |       |  |  |  |  |  |
|---------------------------------------|---------|-------|-------|-------|--|--|--|--|--|
| Pre-Development Infiltration          | 40152.3 | m³/yr | 175.6 | mm/yr |  |  |  |  |  |
| Pre-Development Runoff                | 15164.7 | m³/yr | 66.3  | mm/yr |  |  |  |  |  |

NOTES: 1. Areas and percent imperviousness determined using Part 1 of Lot 18, Concession 9 dated April 2024 prepared by Design Plan Services Inc., 2. The infiltration factor is determined using the MECP Methodology outlined in Stormwater Drainage Manual 2003.
 3. Additional assumptions:

 > Surplus water is unavailable for runoff and recharge in months where water losses from AET exceed precipitation inputs.
 > Runoff, infiltration and evapotranspiration do not occur when average temperature is below zero.
 > Precipitation during winter months (Dec. through Mar. is assumed to be accumulated as snow.
 > Soil Moisture Capacity is at a maximum in April.



Post-Development Water Balance Thornthwaite & Mather Method

Project Name: 15441 Mount Pleasant Road Project Number: 2227-6259 Created By: VM Checked By: CM Date: 2024-07-04

|                                                                                                                                                                                                                                                                                                                                                        |                                                       | Project Name<br>Location:                 | : 1                                                                  | 15441 Mour<br>Regio                                             | it Pleasant I<br>on of Peel                                         | load                                                                     |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                           |                                                                      |                                                                 |                                                                     | Site Summar                                                              | /                                                              |                                                 |                                             |                                            |                                            |                                                |                                          |
| TOTAL SITE AREA (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                      | 228,600                                               |                                           |                                                                      |                                                                 |                                                                     |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Land Use                                                                                                                                                                                                                                                                                                                                               | Single<br>Residential<br>Homes                        | Streets                                   | Grass                                                                | Pond                                                            | Woodlot                                                             |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Topography - flat/rolling/hilly                                                                                                                                                                                                                                                                                                                        | 0.3                                                   | 0.3                                       | 0.3                                                                  | 0.3                                                             | 0.3                                                                 |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Soils                                                                                                                                                                                                                                                                                                                                                  | 0.3                                                   | 0.3                                       | 0.3                                                                  | 0.3                                                             | 0.3                                                                 |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Cover - cultivated/woodland                                                                                                                                                                                                                                                                                                                            | 0.1                                                   | 0.1                                       | 0.1                                                                  | 0.1                                                             | 0.2                                                                 |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Sum (Infiltration Factor)                                                                                                                                                                                                                                                                                                                              | 0.7                                                   | 0.7                                       | 0.7                                                                  | 0.7                                                             | 0.8                                                                 |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Soil Moisture Capacity (mm)                                                                                                                                                                                                                                                                                                                            | 100                                                   | 100                                       | 100                                                                  | 100                                                             | 400                                                                 |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Catchment Area (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                       | 25,000                                                | 10,350                                    | 67,856                                                               | 45,521                                                          | 79,873                                                              |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Percent Imperviousness (%)                                                                                                                                                                                                                                                                                                                             | 50%                                                   | 100%                                      | 0%                                                                   | 0%                                                              | 0%                                                                  |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Land Use                                                                                                                                                                                                                                                                                                                                               | Single<br>Residential                                 | Streets                                   | Grass                                                                | Pond                                                            | Woodlot                                                             |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Total Impervious Area (m²)                                                                                                                                                                                                                                                                                                                             | Homes<br>12500                                        | 10350                                     | 0                                                                    | 0                                                               | 0                                                                   |                                                                          |                                                                |                                                 | -                                           |                                            |                                            |                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                           |                                                                      |                                                                 |                                                                     |                                                                          |                                                                |                                                 |                                             | _                                          |                                            |                                                |                                          |
| Percentage of Impervious Area (%)                                                                                                                                                                                                                                                                                                                      | 50%                                                   | 100%                                      | 100%                                                                 | 0%                                                              | 0%                                                                  |                                                                          |                                                                |                                                 |                                             | _                                          |                                            |                                                |                                          |
| Total Pervious Area (m²)                                                                                                                                                                                                                                                                                                                               | 12,500                                                | 0                                         | 67,856                                                               | 45,521                                                          | 79,873                                                              |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Percentage of Pervious Area (%)                                                                                                                                                                                                                                                                                                                        | 50%                                                   | 0%                                        | 0%                                                                   | 100%                                                            | 100%                                                                |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Land Use                                                                                                                                                                                                                                                                                                                                               | <b>Residential</b>                                    | Homes                                     |                                                                      | Evapatraa                                                       | piration /F··                                                       | aporation An                                                             | alveic                                                         |                                                 |                                             |                                            |                                            |                                                |                                          |
| Month                                                                                                                                                                                                                                                                                                                                                  | Jan                                                   | Feb                                       | Mar                                                                  | Apr Apr                                                         |                                                                     | uporation An                                                             | lul                                                            | Aug                                             | Sor                                         | Oct                                        | Nov                                        | Dec                                            | Year                                     |
| Precipitation (P)                                                                                                                                                                                                                                                                                                                                      | Jan<br>60                                             | 50 Feb                                    | 50                                                                   | Apr<br>67                                                       | May<br>76                                                           | JUN<br>76                                                                | 82                                                             | Aug<br>77                                       | Sep<br>75                                   | 68                                         | 82                                         | 58                                             | 821                                      |
|                                                                                                                                                                                                                                                                                                                                                        | 60                                                    | 50                                        | 50                                                                   | 6/                                                              | /6                                                                  | /6                                                                       | 82                                                             | //                                              | /5                                          | 68                                         | 82                                         | 58                                             | 821                                      |
| Adjusted Potential Evapotranspiration<br>(APFT)                                                                                                                                                                                                                                                                                                        | 0                                                     | 0                                         | 0                                                                    | 32                                                              | 77                                                                  | 110                                                                      | 129                                                            | 115                                             | 73                                          | 37                                         | 8                                          | 0                                              | 581                                      |
|                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                           |                                                                      |                                                                 | 1                                                                   |                                                                          |                                                                |                                                 | 2                                           | 21                                         | 74                                         |                                                | 240                                      |
| P-APET                                                                                                                                                                                                                                                                                                                                                 | 60<br>0                                               | 50<br>0                                   | 50                                                                   | 35                                                              | -1                                                                  | -35<br>-35                                                               | -47                                                            | -38                                             | 2                                           | 31                                         | 74                                         | 58                                             | 240                                      |
| Change in Storage                                                                                                                                                                                                                                                                                                                                      |                                                       |                                           |                                                                      |                                                                 |                                                                     |                                                                          |                                                                |                                                 | ~                                           |                                            |                                            | 13                                             |                                          |
| Storage (S) (mm)                                                                                                                                                                                                                                                                                                                                       | 100                                                   | 100                                       | 100                                                                  | 100<br>Pervious Ar                                              | 99<br>ea Infiltratio                                                | 64<br>on/Runoff And                                                      | 17<br>alvsis                                                   | -20                                             | -19                                         | 13                                         | 87                                         | 100                                            |                                          |
| Water Surplus (mm)                                                                                                                                                                                                                                                                                                                                     | 60                                                    | 50                                        | 50                                                                   | 35                                                              | 0                                                                   | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 44                                             | 240                                      |
| Potential Infiltration (I) (mm)                                                                                                                                                                                                                                                                                                                        | 42                                                    | 35                                        | 35                                                                   | 24                                                              | 0                                                                   | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 31                                             | 168                                      |
| Potential Direct Surface Water Runoff<br>(R) (mm)                                                                                                                                                                                                                                                                                                      | 18                                                    | 15                                        | 15                                                                   | 10                                                              | 0                                                                   | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 13                                             | 72                                       |
|                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                           | Impervious A                                                         | vrea Evapo                                                      | transpiratio                                                        | n/Evaporatio                                                             | n/Runoff An                                                    | alvsis                                          |                                             |                                            |                                            |                                                |                                          |
| Impervious                                                                                                                                                                                                                                                                                                                                             |                                                       |                                           |                                                                      |                                                                 |                                                                     |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
| Evapotranspiration/Evaporation (mm)                                                                                                                                                                                                                                                                                                                    | 0                                                     | 0                                         | 0                                                                    | 10                                                              | 11                                                                  | 11                                                                       | 12                                                             | 12                                              | 11                                          | 10                                         | 12                                         | 0                                              | 90                                       |
| Impervious Runoff (mm)                                                                                                                                                                                                                                                                                                                                 | 60                                                    | 50                                        | 50                                                                   | 57                                                              | 65                                                                  | 64                                                                       | 70                                                             | 66                                              | 64                                          | 58                                         | 69                                         | 58                                             | 731                                      |
|                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                           | <u>^</u>                                                             |                                                                 | nbined Wat                                                          |                                                                          | 1/10                                                           | 1.407                                           | 010                                         | 4/0                                        | 0.5                                        |                                                |                                          |
| Pervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                          | 0                                                     | 0                                         | 0                                                                    | 404                                                             | 958                                                                 | 1381                                                                     | 1613                                                           | 1437                                            | 919                                         | 462                                        | 95                                         | 0                                              | 7268                                     |
| Impervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                        | 0                                                     | 0                                         | 0                                                                    | 126                                                             | 143                                                                 | 142                                                                      | 153                                                            | 145                                             | 141                                         | 128                                        | 153                                        | 0                                              | 1130                                     |
| Pervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                      | 227                                                   | 188                                       | 189                                                                  | 130                                                             | 0                                                                   | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 166                                            | 900                                      |
| Impervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                    | 755                                                   | 628                                       | 629                                                                  | 712                                                             | 809                                                                 | 802                                                                      | 869                                                            | 822                                             | 797                                         | 726                                        | 868                                        | 721                                            | 9137                                     |
| Pervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                | 529                                                   | 439                                       | 440                                                                  | 303                                                             | 0                                                                   | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 388                                            | 2099                                     |
| Impervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                              | 0                                                     | 0                                         | 0                                                                    | 0                                                               | 0                                                                   | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 0                                              | 0                                        |
| Land Use                                                                                                                                                                                                                                                                                                                                               | Streets                                               | 1                                         |                                                                      |                                                                 |                                                                     |                                                                          |                                                                |                                                 |                                             |                                            |                                            |                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                        |                                                       | 1                                         |                                                                      | Evapotrans                                                      | piration/Fv                                                         | aporation An                                                             | alvsis                                                         |                                                 |                                             |                                            |                                            |                                                |                                          |
| Month                                                                                                                                                                                                                                                                                                                                                  | Jan                                                   | Feb                                       | Mar                                                                  | Apr                                                             | May                                                                 | Jun                                                                      | Jul                                                            | Aug                                             | Sep                                         | Oct                                        | Nov                                        | Dec                                            | Year                                     |
| Precipitation (P)                                                                                                                                                                                                                                                                                                                                      | 60                                                    | 50                                        | 50                                                                   | 67                                                              | 76                                                                  | 76                                                                       | 82                                                             | 77                                              | 75                                          | 68                                         | 82                                         | 58                                             | 821                                      |
| Adjusted Potential Evapotranspiration<br>(APET)                                                                                                                                                                                                                                                                                                        | 0                                                     | 0                                         | 0                                                                    | 32                                                              | 77                                                                  | 110                                                                      | 129                                                            | 115                                             | 73                                          | 37                                         | 8                                          | 0                                              | 581                                      |
| (APEI)<br>P-APET                                                                                                                                                                                                                                                                                                                                       | 60                                                    | 50                                        | 50                                                                   | 35                                                              | -1                                                                  | -35                                                                      | -47                                                            | -38                                             | 2                                           | 31                                         | 74                                         | 58                                             | 240                                      |
| Change in Storage                                                                                                                                                                                                                                                                                                                                      | 0                                                     | 0                                         | 0                                                                    | 0                                                               | -1                                                                  | -35                                                                      | -47                                                            | -38                                             | 2                                           | 31                                         | 74                                         | 13                                             | 1                                        |
| Storage (S) (mm)                                                                                                                                                                                                                                                                                                                                       | 100                                                   | 100                                       | 100                                                                  | 100                                                             | 99                                                                  | 64                                                                       | 17                                                             | -20                                             | -19                                         | 13                                         | 87                                         | 100                                            |                                          |
|                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                           |                                                                      | . · ·                                                           | og lofiltrativ                                                      | n/Runoff And                                                             | alvsis                                                         |                                                 |                                             |                                            |                                            |                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                           |                                                                      | Pervious Ar                                                     | ea mininano                                                         |                                                                          |                                                                |                                                 | 0                                           | 0                                          | 0                                          | 44                                             | 240                                      |
| Water Surplus (mm)                                                                                                                                                                                                                                                                                                                                     | 60                                                    | 50                                        | 50                                                                   | 35                                                              | 0                                                                   | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          |                                            |                                                |                                          |
| Water Surplus (mm)                                                                                                                                                                                                                                                                                                                                     | 60                                                    |                                           | 50                                                                   | 35                                                              | 0                                                                   | 0                                                                        | 0                                                              |                                                 | 0                                           |                                            |                                            |                                                | 168                                      |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff                                                                                                                                                                                                                                                         | 60<br>42                                              | 35                                        | 50<br>35                                                             | 35<br>24                                                        | 0                                                                   | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 31                                             | 168<br>72                                |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)                                                                                                                                                                                                                                                                                                  | 60                                                    |                                           | 50<br>35<br>15                                                       | 35<br>24<br>10                                                  | 0 0 0                                                               | 0 0 0                                                                    | 0                                                              | 0                                               |                                             |                                            |                                            |                                                | 168<br>72                                |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)                                                                                                                                                                                                                                             | 60<br>42                                              | 35                                        | 50<br>35<br>15                                                       | 35<br>24<br>10                                                  | 0 0 0                                                               | 0                                                                        | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 31                                             |                                          |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff                                                                                                                                                                                                                                                         | 60<br>42                                              | 35                                        | 50<br>35<br>15                                                       | 35<br>24<br>10                                                  | 0 0 0                                                               | 0 0 0                                                                    | 0                                                              | 0                                               | 0                                           | 0                                          | 0                                          | 31                                             |                                          |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious                                                                                                                                                                                                                               | 60<br>42<br>18                                        | 35<br>15                                  | 50<br>35<br>15<br>Impervious A                                       | 35<br>24<br>10<br>rea Evapo<br>10<br>57                         | 0<br>0<br>transpiratio<br>11<br>65                                  | 0<br>0<br>n/Evaporatio<br>11<br>64                                       | 0<br>0<br>0<br>n/Runoff An                                     | 0<br>0<br>alysis                                | 0                                           | 0                                          | 0                                          | 31                                             | 72                                       |
| Water Surplus (mm)<br>Potential Inflittation (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)                                                                                                                                                              | 60<br>42<br>18<br>0<br>60                             | 35<br>15<br>0<br>50                       | 50<br>35<br>15<br>Impervious A<br>0<br>50                            | 35<br>24<br>10<br>vrea Evapo<br>10<br>57<br>Corr                | 0<br>0<br>transpiratio<br>11<br>65<br>bbined Wat                    | 0<br>0<br>n/Evaporatio<br>11<br>64<br>er Balance                         | 0<br>0<br>n/Runoff An<br>12<br>70                              | 0<br>0<br>alysis<br>12<br>66                    | 0<br>0<br>11<br>64                          | 0<br>0<br>10<br>58                         | 0<br>0<br>12<br>69                         | 31<br>13<br>0<br>58                            | 72<br>90<br><b>731</b>                   |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)                                                                                                                                                                                        | 60<br>42<br>18<br>0                                   | 35<br>15<br>0                             | 50<br>35<br>15<br>Impervious A<br>0                                  | 35<br>24<br>10<br>rea Evapo<br>10<br>57                         | 0<br>0<br>transpiratio<br>11<br>65                                  | 0<br>0<br>n/Evaporatio<br>11<br>64                                       | 0<br>0<br>n/Runoff An<br>12                                    | 0<br>0<br>alysis<br>12                          | 0                                           | 0 0 10                                     | 0 0 12                                     | 31<br>13<br>0                                  | 72<br>90<br>731<br>0                     |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)<br>Pervious EI (m <sup>3</sup> )                                                                                                                             | 60<br>42<br>18<br>0<br>60                             | 35<br>15<br>0<br>50                       | 50<br>35<br>15<br>Impervious A<br>0<br>50                            | 35<br>24<br>10<br>vrea Evapo<br>10<br>57<br>Corr                | 0<br>0<br>transpiratio<br>11<br>65<br>bbined Wat                    | 0<br>0<br>n/Evaporatio<br>11<br>64<br>er Balance                         | 0<br>0<br>n/Runoff An<br>12<br>70                              | 0<br>0<br>alysis<br>12<br>66                    | 0<br>0<br>11<br>64                          | 0<br>0<br>10<br>58                         | 0<br>0<br>12<br>69                         | 31<br>13<br>0<br>58                            | 72<br>90<br><b>731</b>                   |
| Water Surplus (mm) Potential Infiltration (I) (mm) Potential Direct Surface Water Runoff (R) (mm) Impervious Evapotranspiration/Evaporation (mm) Impervious Runoff (mm) Pervious ET (m <sup>3</sup> ) Impervious ET (m <sup>3</sup> )                                                                                                                  | 60<br>42<br>18<br>0<br>60                             | 35<br>15<br>0<br>50                       | 50<br>35<br>15<br>Impervious A<br>0<br>50                            | 35<br>24<br>10<br>rea Evapo<br>10<br>57<br>Con<br>0             | 0<br>0<br>transpiratio<br>11<br>65<br>bined Wat<br>0                | 0<br>0<br>n/Evaporatio<br>11<br>64<br>er Balance<br>0                    | 0<br>0<br>0<br>n/Runoff An<br>12<br>70<br>0                    | 0<br>0<br>alysis<br>12<br>66                    | 0<br>0<br>11<br>64                          | 0<br>0<br>10<br>58<br>0                    | 0<br>0<br>12<br>69<br>0                    | 31<br>13<br>0<br>58<br>0                       | 72<br>90<br>731<br>0                     |
| Water Surplus (mm)           Potential Inflitation (I) (mm)           Potential Direct Surface Water Runoff (R) (mm)           Impervious           Evapotranspiration/Evaporation (mm)           Impervious Runoff (mm)           Pervious ET (m <sup>3</sup> )           Impervious ET (m <sup>3</sup> )           Pervious Runoff (m <sup>3</sup> ) | 60<br>42<br>18<br>0<br>60<br>0<br>0<br>0              | 35<br>15<br>0<br>50<br>0<br>0<br>0        | 50<br>35<br>15<br>Impervious A<br>0<br>50<br>50<br>0<br>0<br>0       | 35<br>24<br>10<br>10<br>10<br>57<br>Con<br>0<br>104<br>0        | 0<br>0<br>transpiratio<br>11<br>65<br>nbined Wat<br>0<br>118<br>0   | 0<br>0<br>n/Evaporatio<br>11<br>64<br>er Balance<br>0<br>117<br>0        | 0<br>0<br>0<br>n/Runoff An<br>12<br>70<br>0<br>127<br>0        | 0<br>0<br>alysis<br>12<br>66<br>0<br>120<br>0   | 0<br>0<br>111<br>64<br>0<br>116<br>0        | 0<br>0<br>10<br>58<br>0<br>106<br>0        | 0<br>0<br>12<br>69<br>0<br>127<br>0        | 31<br>13<br>0<br>58<br>0<br>0<br>0<br>0        | 72<br>90<br>731<br>0<br>936<br>0         |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)<br>Pervious ET (m <sup>3</sup> )<br>Pervious ET (m <sup>3</sup> )<br>Pervious Runoff (m <sup>3</sup> )                                                       | 60<br>42<br>18<br>0<br>60<br>60<br>0<br>0<br>0<br>625 | 35<br>15<br>0<br>50<br>0<br>0<br>0<br>520 | 50<br>35<br>15<br>Impervious A<br>0<br>50<br>0<br>0<br>0<br>0<br>521 | 35<br>24<br>10<br>10<br>10<br>57<br>Con<br>0<br>104<br>0<br>589 | 0<br>0<br>0<br>11<br>11<br>65<br>nbined Wat<br>0<br>118<br>0<br>669 | 0<br>0<br>n/Evaporatio<br>11<br>64<br>er Balance<br>0<br>117<br>0<br>664 | 0<br>0<br>0<br>n/Runoff An<br>12<br>70<br>0<br>127<br>0<br>720 | 0<br>0<br>alysis<br>12<br>66<br>120<br>0<br>681 | 0<br>0<br>111<br>64<br>0<br>116<br>0<br>660 | 0<br>0<br>10<br>58<br>0<br>106<br>0<br>601 | 0<br>0<br>12<br>69<br>0<br>127<br>0<br>719 | 31<br>13<br>0<br>58<br>0<br>0<br>0<br>0<br>597 | 72<br>90<br>731<br>0<br>936<br>0<br>7566 |
| Water Surplus (mm)           Potential Inflitation (I) (mm)           Potential Direct Surface Water Runoff (R) (mm)           Impervious           Evapotranspiration/Evaporation (mm)           Impervious Runoff (mm)           Pervious ET (m <sup>3</sup> )           Impervious ET (m <sup>3</sup> )           Pervious Runoff (m <sup>3</sup> ) | 60<br>42<br>18<br>0<br>60<br>0<br>0<br>0              | 35<br>15<br>0<br>50<br>0<br>0<br>0        | 50<br>35<br>15<br>Impervious A<br>0<br>50<br>50<br>0<br>0<br>0       | 35<br>24<br>10<br>10<br>10<br>57<br>Con<br>0<br>104<br>0        | 0<br>0<br>transpiratio<br>11<br>65<br>nbined Wat<br>0<br>118<br>0   | 0<br>0<br>n/Evaporatio<br>11<br>64<br>er Balance<br>0<br>117<br>0        | 0<br>0<br>0<br>n/Runoff An<br>12<br>70<br>0<br>127<br>0        | 0<br>0<br>alysis<br>12<br>66<br>0<br>120<br>0   | 0<br>0<br>111<br>64<br>0<br>116<br>0        | 0<br>0<br>10<br>58<br>0<br>106<br>0        | 0<br>0<br>12<br>69<br>0<br>127<br>0        | 31<br>13<br>0<br>58<br>0<br>0<br>0<br>0        | 72<br>90<br>731<br>0<br>936<br>0         |

| Land Use           Month           Precipitation (P)           Adjusted Potential Evapotranspiration (APET)           P-APET                                                                                                                                                                                                                                                           | Grass                                |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------|---------------------------------|--------------------------------|-------------------------------|--------------------------------------|
| Precipitation (P)<br>Adjusted Potential Evapotranspiration<br>(APET)                                                                                                                                                                                                                                                                                                                   | 0.000                                | 1                                         | E                                                  | vapotrans                                                   | oiration/Eve                                                      | aporation And                                                  | alysis                                      |                                           |                                 |                                 |                                |                               |                                      |
| Adjusted Potential Evapotranspiration<br>(APET)                                                                                                                                                                                                                                                                                                                                        | Jan                                  | Feb                                       | Mar                                                | Apr                                                         | Мау                                                               | Jun                                                            | Jul                                         | Aug                                       | Sep                             | Oct                             | Nov                            | Dec                           | Year                                 |
| (APET)                                                                                                                                                                                                                                                                                                                                                                                 | 60                                   | 50                                        | 50                                                 | 67                                                          | 76                                                                | 76                                                             | 82                                          | 77                                        | 75                              | 68                              | 82                             | 58                            | 821                                  |
|                                                                                                                                                                                                                                                                                                                                                                                        | 0                                    | 0                                         | 0                                                  | 32                                                          | 77                                                                | 110                                                            | 129                                         | 115                                       | 73                              | 37                              | 8                              | 0                             | 581                                  |
| P-APEC                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                        | 60                                   | 50                                        | 50                                                 | 35                                                          | -1                                                                | -35                                                            | -47                                         | -38                                       | 2                               | 31                              | 74                             | 58                            | 240                                  |
| Change in Storage                                                                                                                                                                                                                                                                                                                                                                      | 0                                    | 0                                         | 0                                                  | 0                                                           | -1<br>99                                                          | -35<br>64                                                      | -47                                         | -38<br>-20                                | -19                             | 31                              | 74<br>87                       | 13                            |                                      |
| Storage (S) (mm)                                                                                                                                                                                                                                                                                                                                                                       | 100                                  | 100                                       |                                                    |                                                             |                                                                   | 04<br>0n/Runoff And                                            |                                             | -20                                       | -19                             | 13                              | 8/                             | 100                           |                                      |
| Water Sumlus (mm)                                                                                                                                                                                                                                                                                                                                                                      | 60                                   | 50                                        | 50                                                 |                                                             |                                                                   | 0                                                              |                                             | 0                                         | 0                               | 0                               | 0                              | 44                            | 240                                  |
| Water Surplus (mm)<br>Potential Infiltration (I) (mm)                                                                                                                                                                                                                                                                                                                                  | 42                                   | 35                                        | 35                                                 | 35<br>24                                                    | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 44<br>31                      | 168                                  |
| Potential Direct Surface Water Runoff                                                                                                                                                                                                                                                                                                                                                  |                                      |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
| (R) (mm)                                                                                                                                                                                                                                                                                                                                                                               | 18                                   | 15                                        | 15                                                 | 10                                                          | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 13                            | 72                                   |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                           | Impervious A                                       | rea Evapot                                                  | ranspiratio                                                       | n/Evaporatio                                                   | n/Runoff An                                 | alysis                                    |                                 |                                 |                                |                               |                                      |
| Impervious                                                                                                                                                                                                                                                                                                                                                                             |                                      |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
| Evapotranspiration/Evaporation (mm)                                                                                                                                                                                                                                                                                                                                                    | 0                                    | 0                                         | 0                                                  | 10                                                          | 11                                                                | 11                                                             | 12                                          | 12                                        | 11                              | 10                              | 12                             | 0                             | 90                                   |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
| Impervious Runoff (mm)                                                                                                                                                                                                                                                                                                                                                                 | 60                                   | 50                                        | 50                                                 | 57                                                          | 65                                                                | 64                                                             | 70                                          | 66                                        | 64                              | 58                              | 69                             | 58                            | 731                                  |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                      | -                                         | -                                                  |                                                             |                                                                   | er Balance                                                     |                                             |                                           |                                 |                                 |                                |                               |                                      |
| Pervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                          | 0                                    | 0                                         | 0                                                  | 2193                                                        | 5201                                                              | 7498                                                           | 8755                                        | 7800                                      | 4987                            | 2506                            | 517                            | 0                             | 39455                                |
| Impervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                        | 0                                    | 0                                         | 0                                                  | 0                                                           | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 0                             | 0                                    |
| Pervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                      | 1230                                 | 1022                                      | 1024                                               | 706                                                         | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 903                           | 4884                                 |
| Impervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                    | 0                                    | 0                                         | 0                                                  | 0                                                           | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 0                             | 0                                    |
| Pervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                | 2869                                 | 2384                                      | 2389                                               | 1647                                                        | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 2107                          | 11397                                |
| Impervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                              | 0                                    | 0                                         | 0                                                  | 0                                                           | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 0                             | 0                                    |
| ·                                                                                                                                                                                                                                                                                                                                                                                      |                                      | -                                         |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
| Land Use                                                                                                                                                                                                                                                                                                                                                                               | Pond                                 |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
| Month                                                                                                                                                                                                                                                                                                                                                                                  | lan                                  | Fab                                       |                                                    |                                                             |                                                                   | aporation And                                                  |                                             | 4.10                                      | Son                             | Oct                             | Nev                            | Dee                           | Voor                                 |
| Month<br>Broginitation (B)                                                                                                                                                                                                                                                                                                                                                             | Jan                                  | Feb                                       | Mar                                                | Apr<br>7                                                    | May                                                               | Jun                                                            | Jul                                         | Aug                                       | Sep                             | Oct                             | Nov                            | Dec                           | Year                                 |
| Precipitation (P)<br>Adjusted Potential Evapotranspiration                                                                                                                                                                                                                                                                                                                             | 60                                   | 50                                        | 50                                                 | 67                                                          | 76                                                                | 76                                                             | 82                                          | 77                                        | 75                              | 68                              | 82                             | 58                            | 821                                  |
| (APET)                                                                                                                                                                                                                                                                                                                                                                                 | 0                                    | 0                                         | 0                                                  | 32                                                          | 77                                                                | 110                                                            | 129                                         | 115                                       | 73                              | 37                              | 8                              | 0                             | 581                                  |
| P-APET                                                                                                                                                                                                                                                                                                                                                                                 | 60                                   | 50                                        | 50                                                 | 35                                                          | -1                                                                | -35                                                            | -47                                         | -38                                       | 2                               | 31                              | 74                             | 58                            | 240                                  |
| Change in Storage                                                                                                                                                                                                                                                                                                                                                                      | 0                                    | 0                                         | 0                                                  | 0                                                           | -1                                                                | -35                                                            | -47                                         | -38                                       | 2                               | 31                              | 74                             | 13                            | 2.10                                 |
| Storage (S) (mm)                                                                                                                                                                                                                                                                                                                                                                       | 100                                  | 100                                       | 100                                                | 100                                                         | 99                                                                | 64                                                             | 17                                          | -20                                       | -19                             | 13                              | 87                             | 100                           |                                      |
| • • • • •                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                           |                                                    | Pervious Are                                                | ea Infiltratio                                                    | on/Runoff And                                                  | alysis                                      |                                           |                                 |                                 |                                |                               |                                      |
| Water Surplus (mm)                                                                                                                                                                                                                                                                                                                                                                     | 60                                   | 50                                        | 50                                                 | 35                                                          | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 44                            | 240                                  |
| Potential Infiltration (I) (mm)                                                                                                                                                                                                                                                                                                                                                        | 42                                   | 35                                        | 35                                                 | 24                                                          | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 31                            | 168                                  |
| Potential Direct Surface Water Runoff                                                                                                                                                                                                                                                                                                                                                  | 18                                   | 15                                        | 15                                                 | 10                                                          | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 13                            | 72                                   |
| (R) (mm)                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           | -                               | -                               | -                              |                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                        | 1                                    | 1                                         | Impervious A                                       | rea Evapot                                                  | ranspiratio                                                       | n/Evaporatio                                                   | n/Runoff An                                 | alysis                                    | 1                               |                                 |                                | T                             | 1                                    |
| Impervious                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 0                                                  | 10                                                          | 11                                                                | 11                                                             | 10                                          | 10                                        | 11                              | 10                              | 12                             | 0                             | 90                                   |
| Evapotranspiration/Evaporation (mm)                                                                                                                                                                                                                                                                                                                                                    | 0                                    | 0                                         | 0                                                  | 10                                                          |                                                                   |                                                                | 12                                          | 12                                        |                                 | 10                              | 12                             | 0                             | 70                                   |
| Impervious Runoff (mm)                                                                                                                                                                                                                                                                                                                                                                 | 60                                   | 50                                        | 50                                                 | 57                                                          | 65                                                                | 64                                                             | 70                                          | 66                                        | 64                              | 58                              | 69                             | 58                            | 731                                  |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                           | 1                                                  |                                                             |                                                                   | er Balance                                                     |                                             |                                           | 1 2.                            |                                 |                                | 1                             | 0                                    |
| Pervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                          | 0                                    | 0                                         | 0                                                  | 1471                                                        | 3489                                                              | 5030                                                           | 5873                                        | 5233                                      | 3345                            | 1681                            | 347                            | 0                             | 26469                                |
| Impervious ET (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                        | 0                                    | 0                                         | 0                                                  | 0                                                           | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 0                             | 0                                    |
| Pervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                      | 825                                  | 686                                       | 687                                                | 474                                                         | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 606                           | 3277                                 |
| Impervious Runoff (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                    | 0                                    | 0                                         | 007                                                | 0                                                           | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 0                             | 0                                    |
| Pervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                | 1925                                 | 1600                                      | 1603                                               | 1105                                                        | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 1413                          | 7646                                 |
| Impervious Infiltration (m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                              | 0                                    | 0                                         | 0                                                  | 0                                                           | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 0                             | 0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                           |                                                    |                                                             |                                                                   | v                                                              |                                             |                                           | v                               | 0                               |                                |                               |                                      |
| Land Use                                                                                                                                                                                                                                                                                                                                                                               | Woodlot                              |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                        |                                      | ·                                         | E                                                  | vapotrans                                                   | oiration/Eve                                                      | aporation And                                                  | alysis                                      |                                           |                                 |                                 |                                |                               |                                      |
| Month                                                                                                                                                                                                                                                                                                                                                                                  | Jan                                  | Feb                                       | Mar                                                | Apr                                                         | May                                                               | Jun                                                            | Jul                                         | Aug                                       | Sep                             | Oct                             | Nov                            | Dec                           | Year                                 |
| Precipitation (P)                                                                                                                                                                                                                                                                                                                                                                      | 60                                   | 50                                        | 50                                                 | 67                                                          | 76                                                                | 76                                                             | 82                                          | 77                                        | 75                              | 68                              | 82                             | 58                            | 821                                  |
| Adjusted Potential Evapotranspiration                                                                                                                                                                                                                                                                                                                                                  | 0                                    | 0                                         | 0                                                  | 32                                                          | 77                                                                | 110                                                            | 129                                         | 115                                       | 73                              | 37                              | 8                              | 0                             | 581                                  |
| (APET)                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                           |                                                    |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
| P-APET                                                                                                                                                                                                                                                                                                                                                                                 | 60                                   | 50                                        | 50                                                 | 35                                                          | -1                                                                | -35                                                            | -47                                         | -38                                       | 2                               | 31                              | 74                             | 58                            | 240                                  |
| Change in Storage                                                                                                                                                                                                                                                                                                                                                                      | 0                                    | 0                                         | 0                                                  | 0                                                           | -1                                                                | -35                                                            | -47                                         | -38                                       | 2                               | 31                              | 74                             | 13                            |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                        | 400                                  | 400                                       | 400                                                | 400<br>Pervious Are                                         | 399<br>ag Infiltrativ                                             | 364<br>on/Runoff And                                           | 317                                         | 280                                       | 281                             | 313                             | 387                            | 400                           |                                      |
| Storage (S) (mm)                                                                                                                                                                                                                                                                                                                                                                       |                                      | 50                                        | 50                                                 | ervious Are                                                 | ea intiitratio                                                    | 0                                                              | liysis<br>0                                 | 0                                         | 0                               | 0                               | 0                              | 44                            | 240                                  |
| Storage (S) (mm)                                                                                                                                                                                                                                                                                                                                                                       | 40                                   |                                           |                                                    | 28                                                          | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 35                            | 192                                  |
| Storage (S) (mm)<br>Water Surplus (mm)                                                                                                                                                                                                                                                                                                                                                 | 60                                   |                                           | 40                                                 |                                                             |                                                                   | U U                                                            | U                                           | U                                         |                                 |                                 | U                              |                               |                                      |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)                                                                                                                                                                                                                                                                                                              | 48                                   | 40                                        | 40                                                 |                                                             |                                                                   |                                                                |                                             |                                           |                                 |                                 |                                |                               |                                      |
| Storage (S) (mm)<br>Water Surplus (mm)                                                                                                                                                                                                                                                                                                                                                 |                                      |                                           | 40                                                 | 7                                                           | 0                                                                 | 0                                                              | 0                                           | 0                                         | 0                               | 0                               | 0                              | 9                             | 48                                   |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff                                                                                                                                                                                                                                                                     | 48                                   | 40                                        | 10                                                 | 7                                                           | 0                                                                 | 0<br>n/Evaporation                                             |                                             |                                           | 0                               | 0                               | 0                              | 9                             | 48                                   |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infilitation (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)                                                                                                                                                                                                                                                         | 48                                   | 40                                        | 10                                                 | 7                                                           | 0                                                                 |                                                                |                                             |                                           | 0                               | 0                               | 0                              | 9                             | 48                                   |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious                                                                                                                                                                                                                                           | 48                                   | 40                                        | 10                                                 | 7                                                           | 0                                                                 |                                                                |                                             |                                           | 0                               | 0                               | 0                              | 9                             | 48<br>90                             |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)                                                                                                                                                                                                    | 48<br>12<br>0                        | 40<br>10<br>0                             | 10<br>Impervious A<br>0                            | 7<br>rea Evapot<br>10                                       | 0<br>ranspiratio<br>11                                            | n/Evaporation                                                  | n/Runoff And                                | alysis<br>12                              | 11                              | 10                              | 12                             | 0                             | 90                                   |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious                                                                                                                                                                                                                                           | 48<br>12                             | 40                                        | 10<br>Impervious A                                 | 7<br>rea Evapot<br>10<br>57                                 | 0<br>ranspiratio<br>11<br>65                                      | n/Evaporation<br>11<br>64                                      | n/Runoff An                                 | alysis                                    |                                 |                                 |                                |                               |                                      |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)                                                                                                                                                                          | 48<br>12<br>0<br>60                  | 40<br>10<br>0<br>50                       | 10<br>Impervious A<br>0<br>50                      | 7<br>rea Evapot<br>10<br>57<br>Corr                         | 0<br>ranspiratio<br>11<br>65<br>ibined Wat                        | n/Evaporation<br>11<br>64<br>er Balance                        | n/Runoff And<br>12<br>70                    | alysis<br>12<br>66                        | 11                              | 10                              | 12                             | 0                             | 90<br><b>731</b>                     |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)<br>Pervious EI (m <sup>3</sup> )                                                                                                                                         | 48<br>12<br>0<br>60                  | 40<br>10<br>0<br>50                       | 10<br>Impervious A<br>0<br>50                      | 7<br>rea Evapot<br>10<br>57<br>Com<br>2581                  | 0<br>ranspiratio<br>11<br>65<br>ibined Wat<br>6122                | n/Evaporation<br>11<br>64<br>er Balance<br>8826                | 12<br>70<br>10305                           | alysis<br>12<br>66<br>9181                | 11<br>64<br>5870                | 10<br>58<br>2950                | 12<br>69<br>608                | 0 58 0                        | 90<br>731<br>46443                   |
| Storage (S) (mm)<br>Water Surplus (mm)<br>Potential Infiltration (I) (mm)<br>Potential Direct Surface Water Runoff<br>(R) (mm)<br>Impervious<br>Evapotranspiration/Evaporation (mm)<br>Impervious Runoff (mm)<br>Pervious ET (m <sup>3</sup> )<br>Impervious ET (m <sup>3</sup> )                                                                                                      | 48<br>12<br>0<br>60<br>0<br>0        | 40<br>10<br>0<br>50                       | 10<br>Impervious A<br>0<br>50<br>0<br>0            | 7<br>rea Evapot<br>10<br>57<br>Com<br>2581<br>0             | 0<br>ranspiratio<br>11<br>65<br>ibined Wat<br>6122<br>0           | n/Evaporation<br>11<br>64<br>er Balance<br>8826<br>0           | 12<br>70<br>10305<br>0                      | alysis<br>12<br>66<br>9181<br>0           | 111<br>64<br>5870<br>0          | 10<br>58<br>2950<br>0           | 12<br>69<br>608<br>0           | 0<br>58<br>0<br>0             | 90<br>731<br>46443<br>0              |
| Storage (S) (mm)           Water Surplus (mm)           Potential Infiltration (I) (mm)           Potential Direct Surface Water Runoff (R) (mm)           Impervious           Evapotranspiration/Evaporation (mm)           Impervious Runoff (mm)           Pervious ET (m <sup>3</sup> )           Impervious ET (m <sup>3</sup> )                                                 | 48<br>12<br>0<br>60<br>0<br>0<br>965 | 40<br>10<br>0<br>50<br>0<br>802           | 10<br>mpervious A<br>0<br>50<br>0<br>0<br>804      | 7<br>10<br>57<br>2581<br>0<br>554                           | 0<br>ranspiratio<br>11<br>65<br>ibined Wat<br>6122<br>0<br>0      | n/Evaporation<br>11<br>64<br>er Balance<br>8826<br>0<br>0      | n/Runoff And<br>12<br>70<br>10305<br>0<br>0 | 12<br>66<br>9181<br>0<br>0                | 11<br>64<br>5870<br>0<br>0      | 10<br>58<br>2950<br>0<br>0      | 12<br>69<br>608<br>0<br>0      | 0<br>58<br>0<br>0<br>709      | 90<br>731<br>46443<br>0<br>3833      |
| Storage (S) (mm)           Water Surplus (mm)           Potential Infiltration (I) (mm)           Potential Direct Surface Water Runoff (R) (mm)           Impervious           Evapotranspiration/Evaporation (mm)           Impervious Runoff (mm)           Pervious ET (m <sup>3</sup> )           Pervious Runoff (m <sup>3</sup> )           Impervious Runoff (m <sup>3</sup> ) | 48<br>12<br>0<br>60<br>0<br>965<br>0 | 40<br>10<br>0<br>50<br>0<br>0<br>802<br>0 | 10<br>mpervious A<br>0<br>50<br>0<br>0<br>804<br>0 | 7<br>rea Evapot<br>10<br>57<br>Com<br>2581<br>0<br>554<br>0 | 0<br>ranspiratio<br>11<br>65<br>bbined Wat<br>6122<br>0<br>0<br>0 | n/Evaporation<br>11<br>64<br>er Balance<br>8826<br>0<br>0<br>0 | 12<br>70<br>10305<br>0<br>0<br>0            | alysis<br>12<br>66<br>9181<br>0<br>0<br>0 | 11<br>64<br>5870<br>0<br>0<br>0 | 10<br>58<br>2950<br>0<br>0<br>0 | 12<br>69<br>608<br>0<br>0<br>0 | 0<br>58<br>0<br>0<br>709<br>0 | 90<br>731<br>46443<br>0<br>3833<br>0 |
| Storage (S) (mm)           Water Surplus (mm)           Potential Infiltration (I) (mm)           Potential Direct Surface Water Runoff (R) (mm)           Impervious           Evapotranspiration/Evaporation (mm)           Impervious Runoff (mm)           Pervious ET (m <sup>3</sup> )           Impervious ET (m <sup>3</sup> )                                                 | 48<br>12<br>0<br>60<br>0<br>0<br>965 | 40<br>10<br>0<br>50<br>0<br>802           | 10<br>mpervious A<br>0<br>50<br>0<br>0<br>804      | 7<br>10<br>57<br>2581<br>0<br>554                           | 0<br>ranspiratio<br>11<br>65<br>ibined Wat<br>6122<br>0<br>0      | n/Evaporation<br>11<br>64<br>er Balance<br>8826<br>0<br>0      | n/Runoff And<br>12<br>70<br>10305<br>0<br>0 | 12<br>66<br>9181<br>0<br>0                | 11<br>64<br>5870<br>0<br>0      | 10<br>58<br>2950<br>0<br>0      | 12<br>69<br>608<br>0<br>0      | 0<br>58<br>0<br>0<br>709      | 90<br>731<br>46443<br>0<br>3833      |

| Post-Development Water Balance Summary |         |       |       |       |        |     |  |  |  |
|----------------------------------------|---------|-------|-------|-------|--------|-----|--|--|--|
| Post-Development Infiltration          | 36474.0 | m³/yr | 159.6 | mm/yr | 0.0051 | L/s |  |  |  |
| Post-Development Runoff                | 29596.8 | m³/yr | 129.5 | mm/yr | 0.0041 | L/s |  |  |  |

NOTES: 1.Areas and percent imperviousness determined using Part 1 of Lot 18, Concession 9 dated April 2024 prepared by Design Plan Services Inc..
 2.The infiltration factor is determined using the MECP Methodology outlined in SWM 2003 Manual.
 3. Additional assumptions:
 > Surplus water is unavailable for runoff and recharge in months where water losses from AET exceed precipitation inputs.
 > Runoff, infiltration and evapotranspiration do not occur when average temperature is below zero.
 > Precipitation during winter months (Dec. through Mar. is assumed to be accumulated as snow.
 > Soil Moisture Capacity is at a maximum in April.



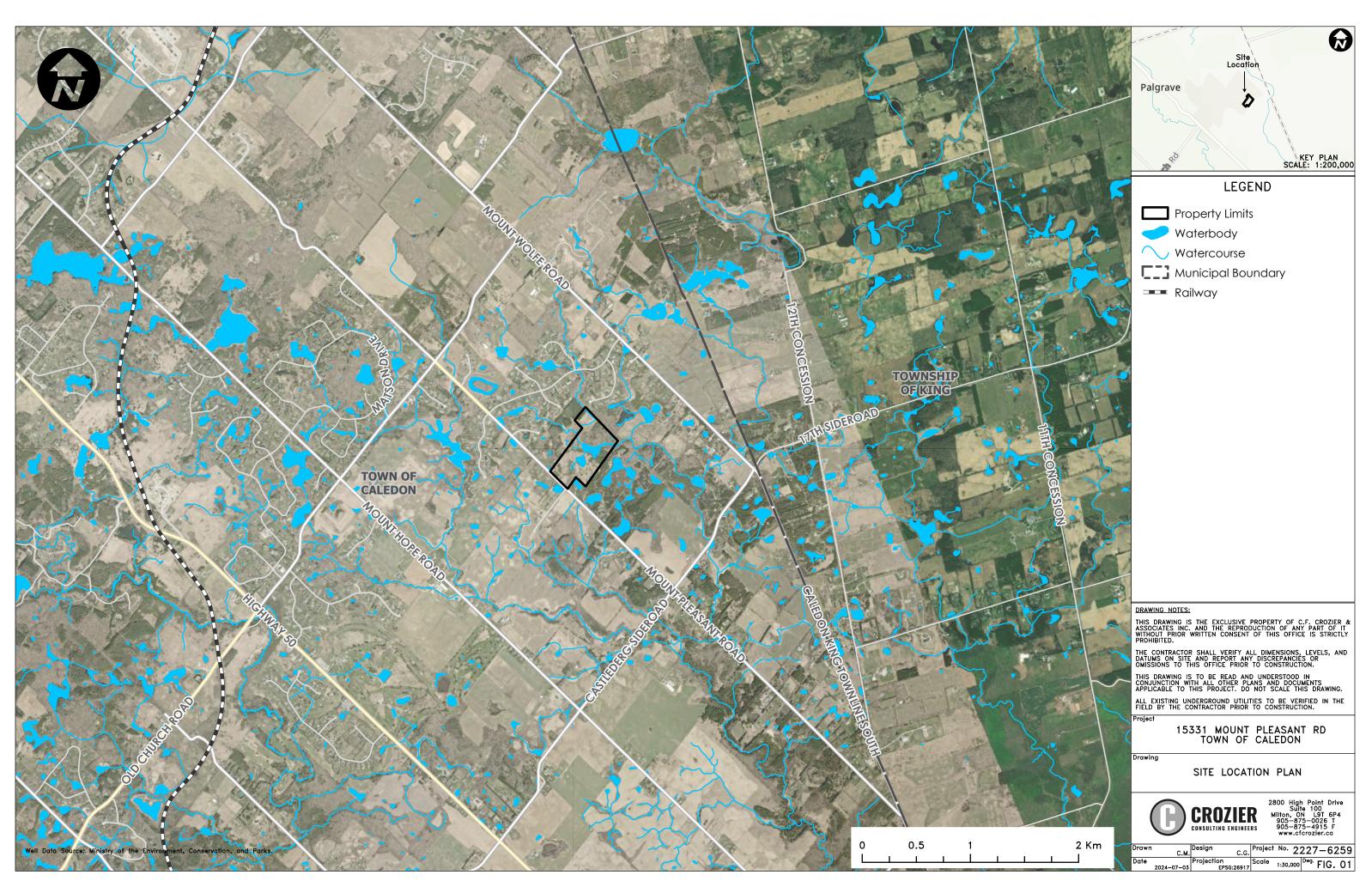
Water Balance Summary Thornthwaite & Mather Method Project Name: 15441 Mount Pleasant Road Project Number: 2227-6259 Created By: VM Checked By: CM Date: 2024-07-04

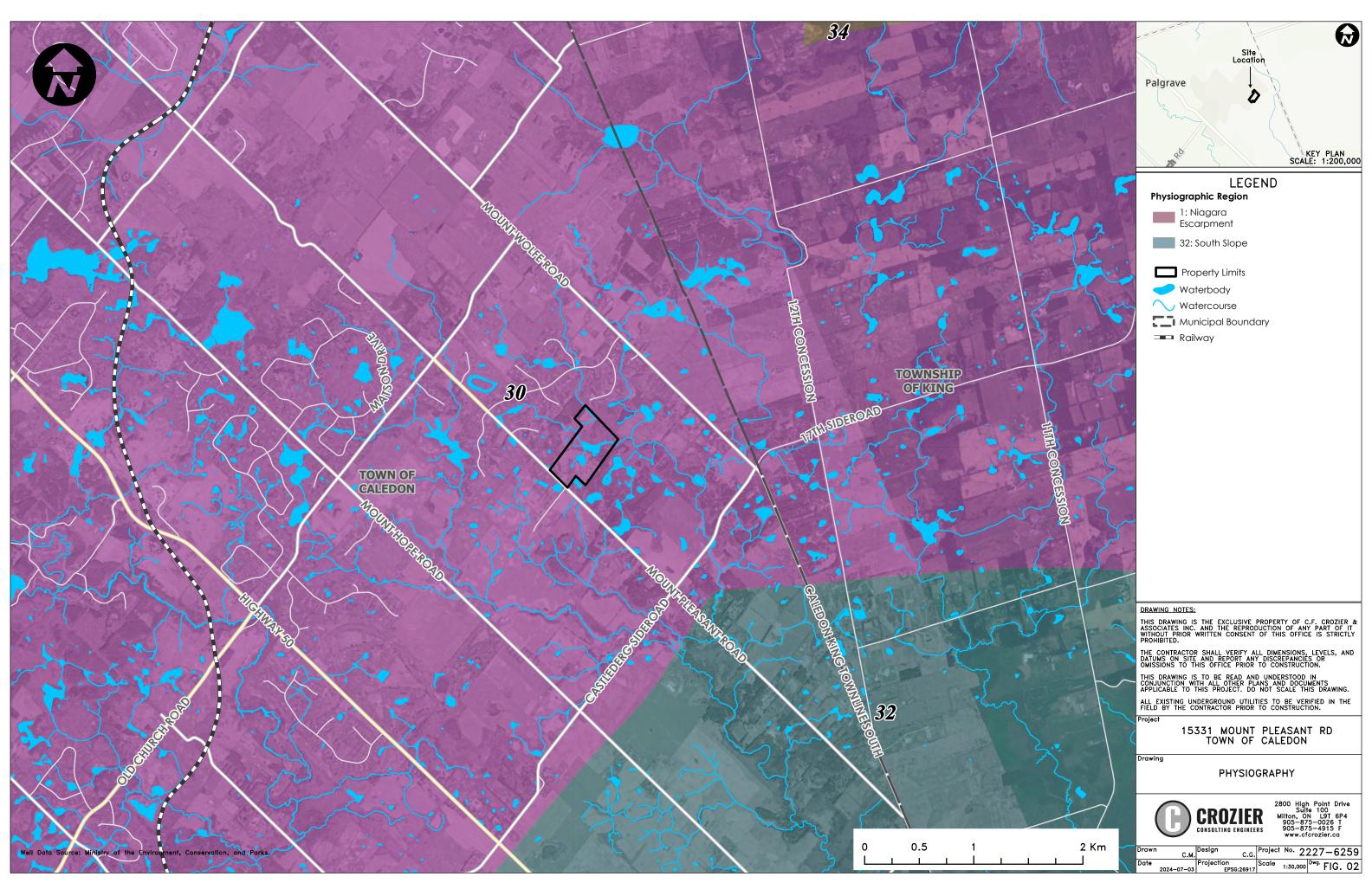
| Project Name: |  |
|---------------|--|
| Location:     |  |

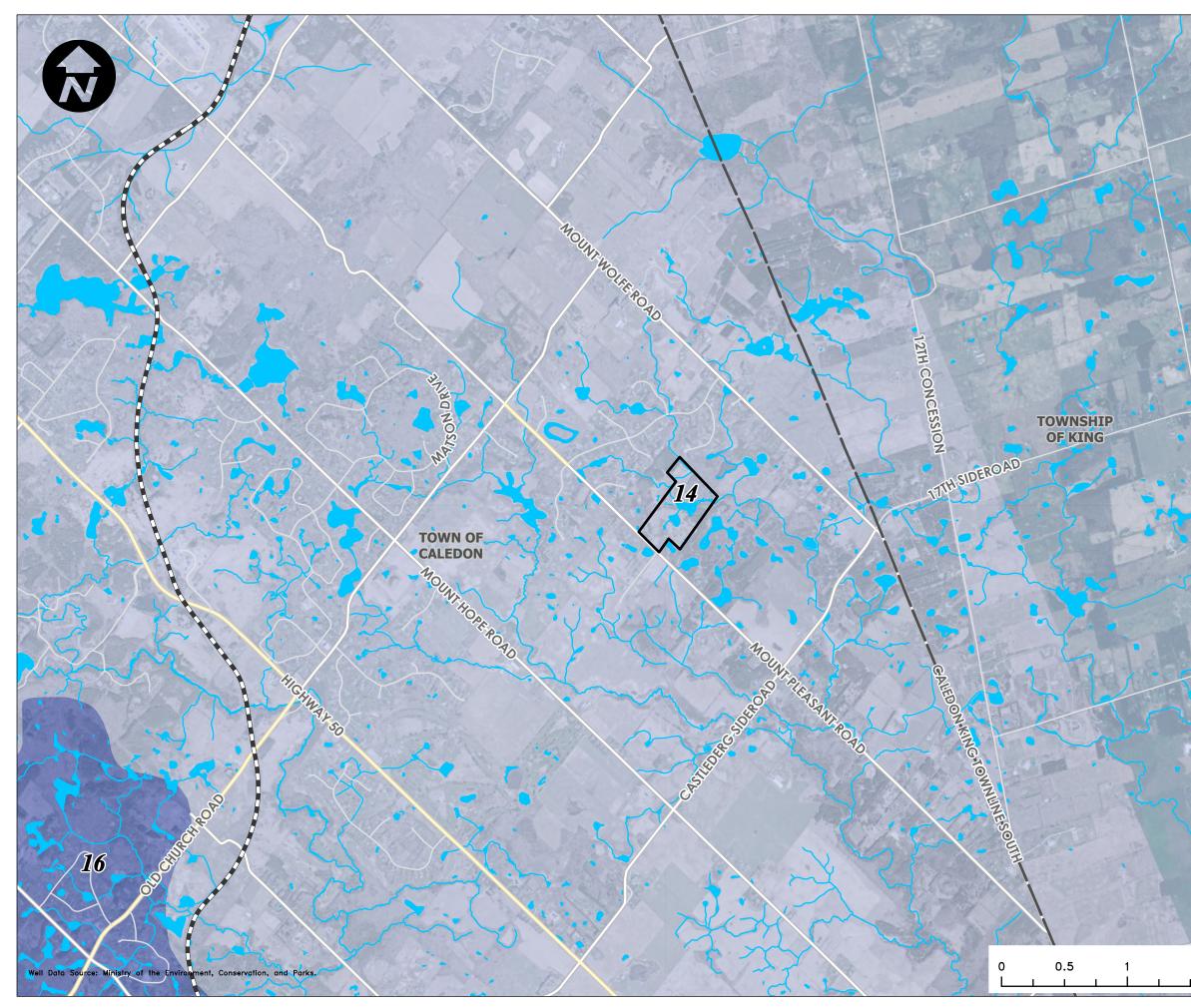
15441 Mount Pleasant Road Region of Peel

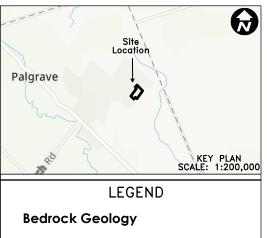
| Characteristic                  | Pre-Development | Post-Development | % Change<br>(Pre to Post) |
|---------------------------------|-----------------|------------------|---------------------------|
| Precipitation (mm/yr)           | 821.40          | 821.40           | 0%                        |
| Water Surplus (mm/yr)           | 239.94          | 239.94           | 0%                        |
| Evapotranspiration<br>(mm/yr)   | 581.46          | 581.46           | 0%                        |
| Natural Infiltration<br>(mm/yr) | 175.64          | 159.55           | -9%                       |
| Total Runoff (mm/yr)            | 66.34           | 129.47           | 95%                       |

Infiltration Deficit (mm/yr)


16.09


| $  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Latitude °C | Jan  | Feb  | Mar  | Apr   | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|------|------|-------|------|------|------|------|------|------|------|------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      |       |      |      |      |      |      |      |      | 0.70 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49          |      |      | 1.02 |       | 1.32 | 1.34 |      | 1.24 |      | 0.93 |      | 0.71 |
| $  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48          | 0.76 | 0.80 | 1.02 |       | 1.31 | 1.33 | 1.34 | 1.23 | 1.05 | 0.93 |      | 0.72 |
| $  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47          | 0.77 | 0.80 | 1.02 | 1.14  | 1.30 | 1.32 | 1.33 | 1.22 | 1.04 | 0.93 | 0.78 | 0.73 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46          | 0.79 | 0.81 | 1.02 | 1.13  | 1.29 | 1.31 | 1.32 | 1.22 | 1.04 | 0.94 | 0.79 | 0.74 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      | 1.13  | 1.28 | 1.29 | 1.31 |      |      | 0.94 | 0.79 | 0.75 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      | 1 13  | 1 27 | 1 29 | 1.30 |      |      | 0.95 | 0.80 | 0.76 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      | 1.10  | 1.26 | 1.29 | 1.00 |      |      | 0.95 |      | 0.77 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      | 1.12  | 1.26 |      |      |      |      | 0.95 | 0.82 | 0.79 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      | 1 1 1 | 1.20 | 1.27 | 1.20 |      |      | 0.75 |      | 0.80 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      | 1.11  | 1.23 | 1.20 |      |      |      | 0.76 | 0.02 | 0.80 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      |       | 1.24 |      |      |      |      | 0.76 |      |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39          |      |      |      | 1.11  | 1.23 | 1.24 | 1.20 |      | 1.04 | 0.96 | 0.84 | 0.82 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      | 1.10  | 1.23 |      |      |      |      | 0.96 | 0.84 | 0.83 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/          |      |      |      |       | 1.22 |      |      |      |      | 0.97 |      | 0.83 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36          |      |      |      |       | 1.21 | 1.22 |      |      |      | 0.97 |      | 0.84 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35          |      |      |      | 1.09  | 1.21 |      |      |      |      | 0.97 | 0.86 | 0.85 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34          |      |      |      |       | 1.20 |      |      |      |      | 0.97 | 0.87 | 0.86 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33          | 0.88 | 0.86 | 1.03 | 1.09  | 1.19 | 1.20 |      | 1.15 | 1.03 | 0.97 | 0.88 | 0.86 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32          | 0.89 | 0.86 | 1.03 | 1.08  | 1.19 | 1.19 | 1.21 | 1.15 | 1.03 | 0.98 | 0.88 | 0.87 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 0.90 | 0.87 |      | 1.08  | 1.18 | 1.18 | 1.20 | 1.14 | 1.03 | 0.98 | 0.89 | 0.88 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      |       | 1.18 |      |      |      |      | 0.98 | 0.89 | 0.88 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29          |      |      | 1.03 | 1.07  | 1.17 | 1.16 | 1.19 |      | 1.03 | 0.98 | 0.90 | 0.89 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      |       | 1.16 |      |      |      |      | 0.98 |      | 0.90 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27          |      |      |      | 1.07  | 1 16 |      |      |      | 1.02 | 0.99 | 0.90 | 0.90 |
| 20         0.95         0.90         1.03         1.05         1.13         1.11         1.14         1.11         1.02         1.00         0.93           15         0.97         0.91         1.03         1.04         1.11         1.08         1.12         1.08         1.02         1.01         0.95           10         1.00         0.91         1.03         1.03         1.08         1.06         1.08         1.07         1.02         1.02         0.98           5         1.02         0.93         1.03         1.02         1.06         1.03         1.06         1.05         1.01         1.04         1.01           -5         1.06         0.91         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.00         1.05         1.05           -15         1.12         0.98         1.05         0.97         0.96         0.91         0.95         0.99 |             |      |      |      |       | 1.15 |      |      |      | 1.02 | 0.99 |      | 0.91 |
| 20         0.95         0.90         1.03         1.05         1.13         1.11         1.14         1.11         1.02         1.00         0.93           15         0.97         0.91         1.03         1.04         1.11         1.08         1.12         1.08         1.02         1.01         0.95           10         1.00         0.91         1.03         1.03         1.08         1.06         1.08         1.07         1.02         1.02         0.98           5         1.02         0.93         1.03         1.02         1.06         1.03         1.06         1.05         1.01         1.04         1.01           -5         1.06         0.91         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.04         1.01         1.00         1.05         1.05           -15         1.12         0.98         1.05         0.97         0.96         0.91         0.95         0.99 |             |      |      |      |       | 1.15 |      | 1.17 |      | 1.02 | 0.00 | 0.91 | 0.91 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20          |      |      |      |       | 1.13 |      |      |      |      | 1.00 |      | 0.94 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      |       | 1.13 | 1.11 | 1.14 |      | 1.02 | 1.00 | 0.75 | 0.94 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      |       | 1.11 |      |      |      | 1.02 | 1.01 | 0.95 | 0.99 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      | 1.03 | 1.03  | 1.08 | 1.06 |      |      | 1.02 | 1.02 | 0.98 |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |      |      |      | 1.02  | 1.06 |      |      |      |      | 1.03 |      | 1.02 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |      |      | 1.01  | 1.04 | 1.01 |      |      |      | 1.04 | 1.01 | 1.04 |
| -25         1.17         1.01         1.05         0.96         0.94         0.88         0.93         0.98         1.00         1.10         1.11           -30         1.20         1.03         1.06         0.95         0.92         0.85         0.90         0.96         1.00         1.12         1.14           -35         1.23         1.04         1.06         0.94         0.89         0.82         0.87         0.94         1.00         1.13         1.17           -45         1.27         1.06         1.07         0.93         0.86         0.78         0.84         0.92         1.00         1.15         1.20           -42         1.28         1.07         1.07         0.92         0.85         0.76         0.82         0.92         1.00         1.16         1.22           -44         1.30         1.08         1.07         0.92         0.83         0.74         0.81         0.91         0.99         1.17         1.23                                                                                                                                                                                                                        |             |      |      |      |       | 1.02 |      |      |      |      | 1.05 |      | 1.06 |
| -25         1.17         1.01         1.05         0.96         0.94         0.88         0.93         0.98         1.00         1.10         1.11           -30         1.20         1.03         1.06         0.95         0.92         0.85         0.90         0.96         1.00         1.12         1.14           -35         1.23         1.04         1.06         0.94         0.89         0.82         0.87         0.94         1.00         1.13         1.17           -45         1.27         1.06         1.07         0.93         0.86         0.78         0.84         0.92         1.00         1.15         1.20           -42         1.28         1.07         1.07         0.92         0.85         0.76         0.82         0.92         1.00         1.16         1.22           -44         1.30         1.08         1.07         0.92         0.83         0.74         0.81         0.91         0.99         1.17         1.23                                                                                                                                                                                                                        |             | 1.08 |      |      | 0.99  | 1.01 | 0.96 |      |      |      | 1.06 | 1.05 | 1.10 |
| -25         1.17         1.01         1.05         0.96         0.94         0.88         0.93         0.98         1.00         1.10         1.11           -30         1.20         1.03         1.06         0.95         0.92         0.85         0.90         0.96         1.00         1.12         1.14           -35         1.23         1.04         1.06         0.94         0.89         0.82         0.87         0.94         1.00         1.13         1.17           -45         1.27         1.06         1.07         0.93         0.86         0.78         0.84         0.92         1.00         1.15         1.20           -42         1.28         1.07         1.07         0.92         0.85         0.76         0.82         0.92         1.00         1.16         1.22           -44         1.30         1.08         1.07         0.92         0.83         0.74         0.81         0.91         0.99         1.17         1.23                                                                                                                                                                                                                        |             |      |      |      | 0.98  |      |      |      |      |      | 1.07 |      | 1.12 |
| -25         1.17         1.01         1.05         0.96         0.94         0.88         0.93         0.98         1.00         1.10         1.11           -30         1.20         1.03         1.06         0.95         0.92         0.85         0.90         0.96         1.00         1.12         1.14           -35         1.23         1.04         1.06         0.94         0.89         0.82         0.87         0.94         1.00         1.13         1.17           -45         1.27         1.06         1.07         0.93         0.86         0.78         0.84         0.92         1.00         1.15         1.20           -42         1.28         1.07         1.07         0.92         0.85         0.76         0.82         0.92         1.00         1.16         1.22           -44         1.30         1.08         1.07         0.92         0.83         0.74         0.81         0.91         0.99         1.17         1.23                                                                                                                                                                                                                        |             |      |      |      | 0.97  | 0.96 |      |      |      |      | 1.08 |      | 1.15 |
| -35         1.23         1.04         1.06         0.94         0.89         0.82         0.87         0.94         1.00         1.13         1.17           -45         1.27         1.06         1.07         0.93         0.86         0.78         0.84         0.92         1.00         1.15         1.20           -42         1.28         1.07         1.07         0.92         0.85         0.76         0.82         0.92         1.00         1.16         1.22           -44         1.30         1.08         1.07         0.92         0.83         0.74         0.81         0.91         0.99         1.17         1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |      |      |      |       |      |      |      |      |      | 1.10 |      | 1.18 |
| -35         1.23         1.04         1.06         0.94         0.89         0.82         0.87         0.94         1.00         1.13         1.17           -45         1.27         1.06         1.07         0.93         0.86         0.78         0.84         0.92         1.00         1.15         1.20           -42         1.28         1.07         1.07         0.92         0.85         0.76         0.82         0.92         1.00         1.16         1.22           -44         1.30         1.08         1.07         0.92         0.83         0.74         0.81         0.91         0.99         1.17         1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 1.20 | 1.03 | 1.06 | 0.95  | 0.92 |      |      |      |      | 1.12 |      | 1.21 |
| -45         1.27         1.06         1.07         0.93         0.86         0.78         0.84         0.92         1.00         1.15         1.20           -42         1.28         1.07         1.07         0.92         0.85         0.76         0.82         0.92         1.00         1.16         1.22           -44         1.30         1.08         1.07         0.92         0.83         0.74         0.81         0.91         0.99         1.17         1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -35         |      |      | 1.06 | 0.94  | 0.89 | 0.82 |      | 0.94 |      | 1.13 | 1.17 | 1.25 |
| -42         1.28         1.07         1.07         0.92         0.85         0.76         0.82         0.92         1.00         1.16         1.22           -44         1.30         1.08         1.07         0.92         0.83         0.74         0.81         0.91         0.99         1.17         1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -45         |      |      |      | 0.93  | 0.86 | 0.78 |      |      |      | 1.15 | 1.20 | 1.29 |
| -44 1.30 1.08 1.07 0.92 0.83 0.74 0.81 0.91 0.99 1.17 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |      |      |      | 0.92  | 0.85 | 0.76 |      |      |      | 1.16 | 1.22 | 1.31 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |      |      |      | 0.92  |      |      |      |      |      | 1.17 |      | 1.33 |
| 1 -46 1.32 1.10 1.07 0.91 0.82 0.72 0.79 0.90 0.99 1.17 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -46         | 1.32 | 1.10 | 1.07 | 0.91  | 0.82 | 0.72 | 0.79 | 0.90 | 0.99 | 1.17 | 1.25 | 1.35 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |      |      |      |       |      |      |      |      |      |      |      | 1.37 |
| -50 1.37 1.12 1.08 0.89 0.77 0.67 0.74 0.88 0.99 1.19 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |      | 1 12 | 1.08 |       |      |      |      |      |      |      |      | 1.41 |


### Adjustment Factors Based on Site Latitude Based on 12 hours of Sunlight per day for 30 days


Source: Dunne, T. and Leopold, L.B., 1978. Water in environmental planning, Freeman Publishers.

# FIGURES









16 Queenston Formation: red shale and siltstone, minor green shale and siltstone, and variable calcareous siltstone to sandstone and limestone interbeds

14 Georgian Bay Formation: interbedded grey-green to dark grey shale and fossiliferous calcareous siltstone to bioclastic limestone

Property Limits

Railway

- Municipal Boundary
- Waterbody
- ∕ Watercourse

#### DRAWING NOTES:

Drawing

Drawn

Date

THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSOCIATES INC. AND THE REPRODUCTION OF ANY PART OF IT WITHOUT PRIOR WRITTEN CONSENT OF THIS OFFICE IS STRICTLY PROHIBITED.

THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATUMS ON SITE AND REPORT ANY DISCREPANCIES OR OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION.

THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APPLICABLE TO THIS PROJECT. DO NOT SCALE THIS DRAWING.

ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.

#### 15331 MOUNT PLEASANT RD TOWN OF CALEDON

BEDROCK GEOLOGY



Design

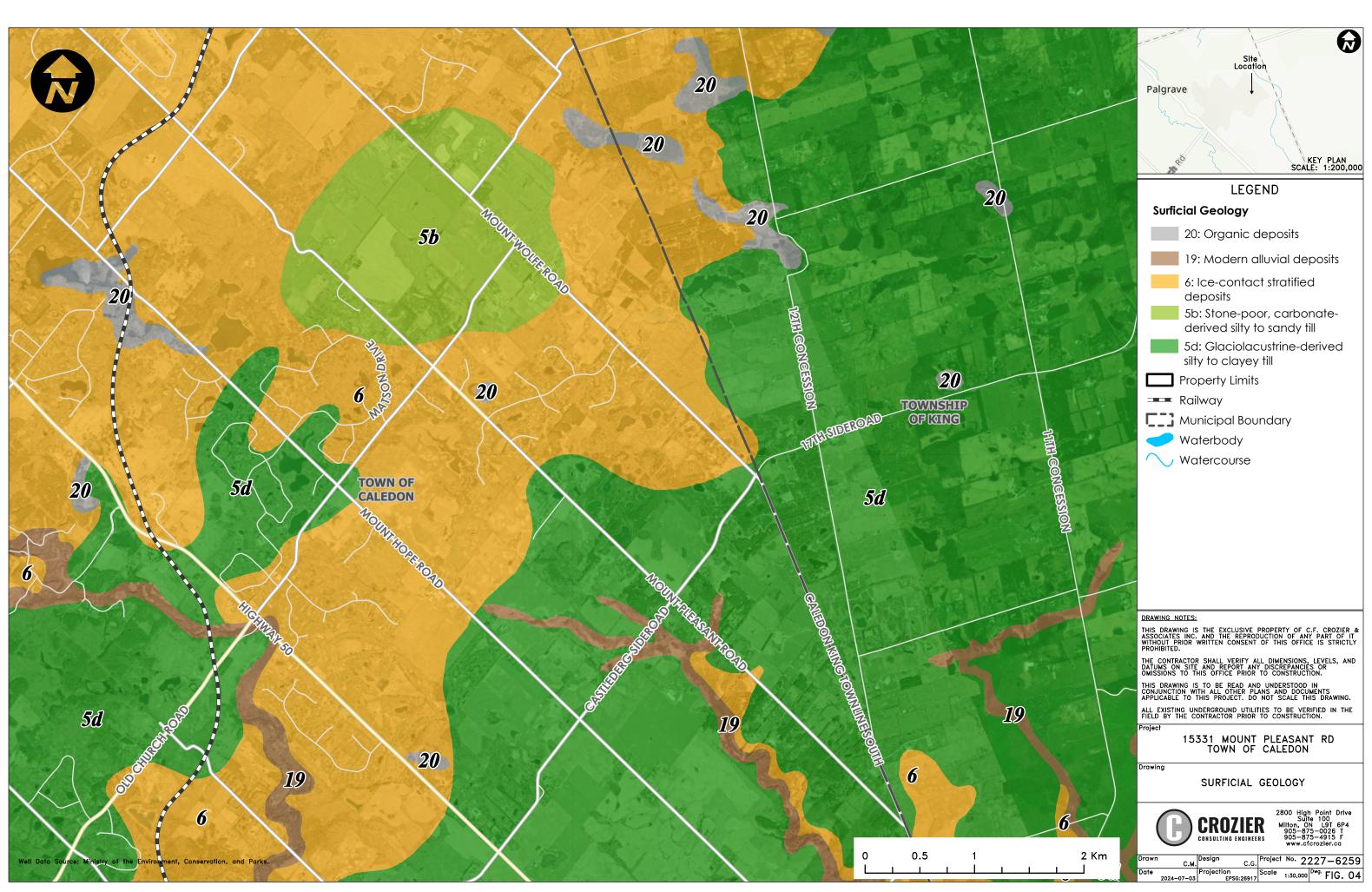
Projection

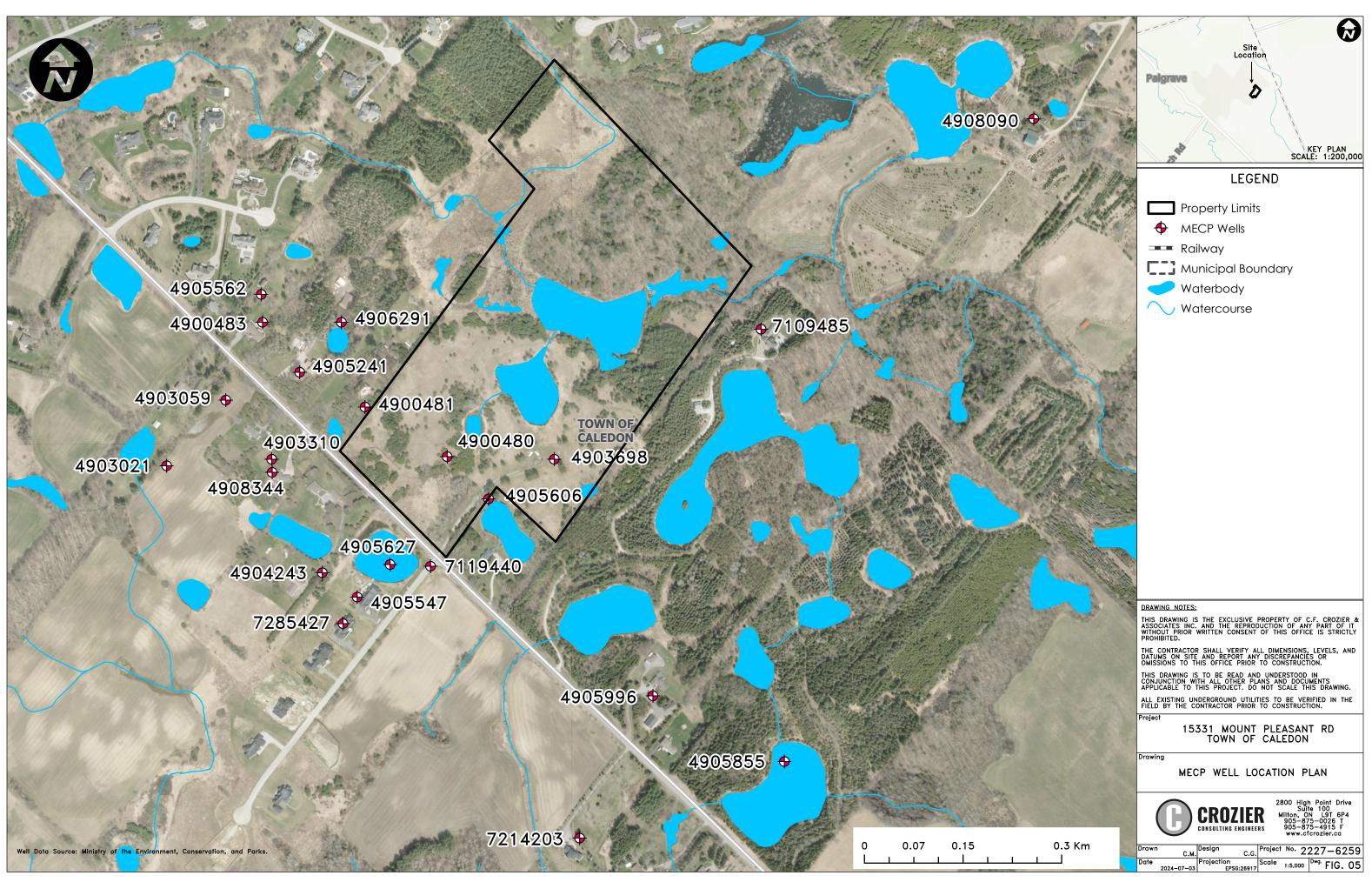
EPSG:26917

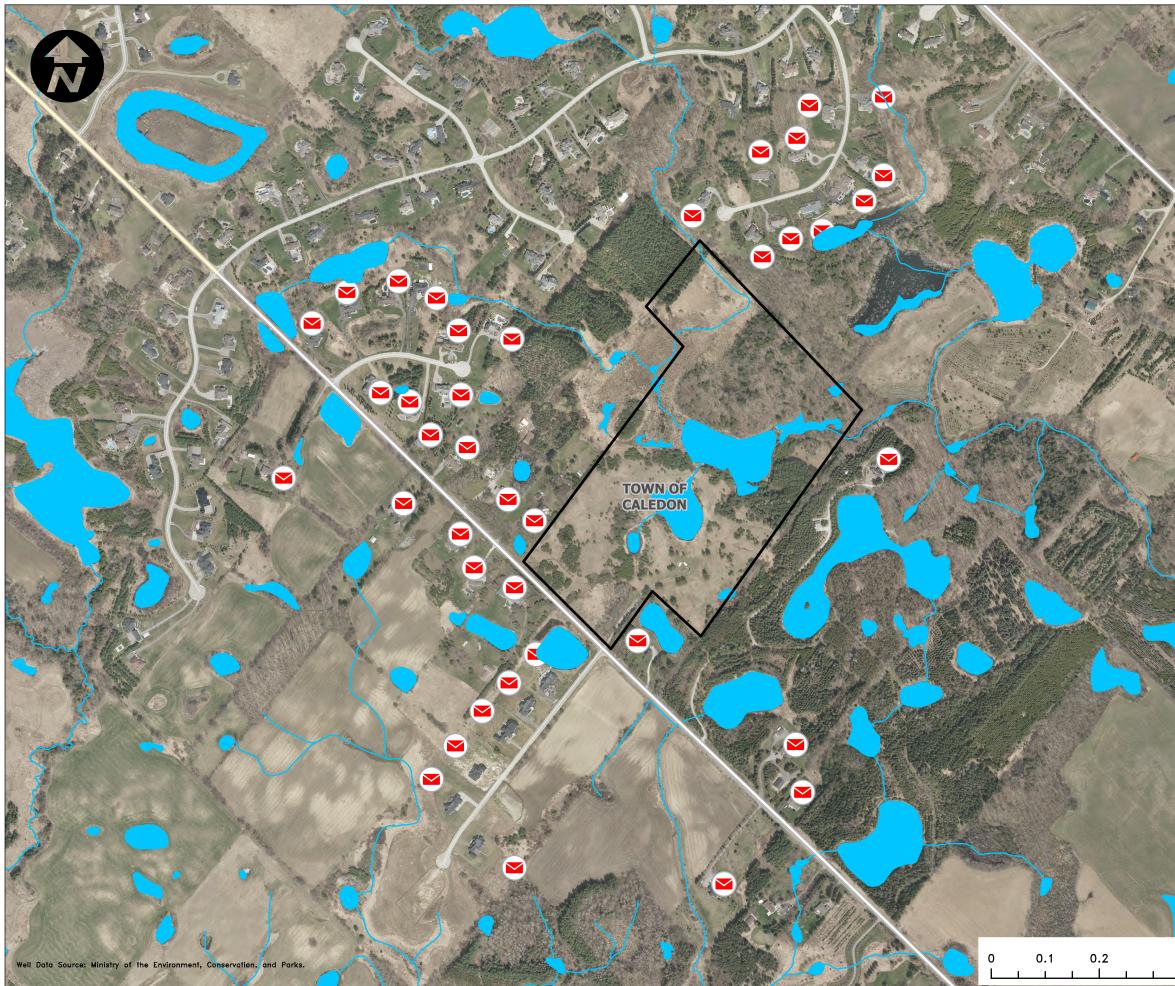
с.м.

2024-07-03

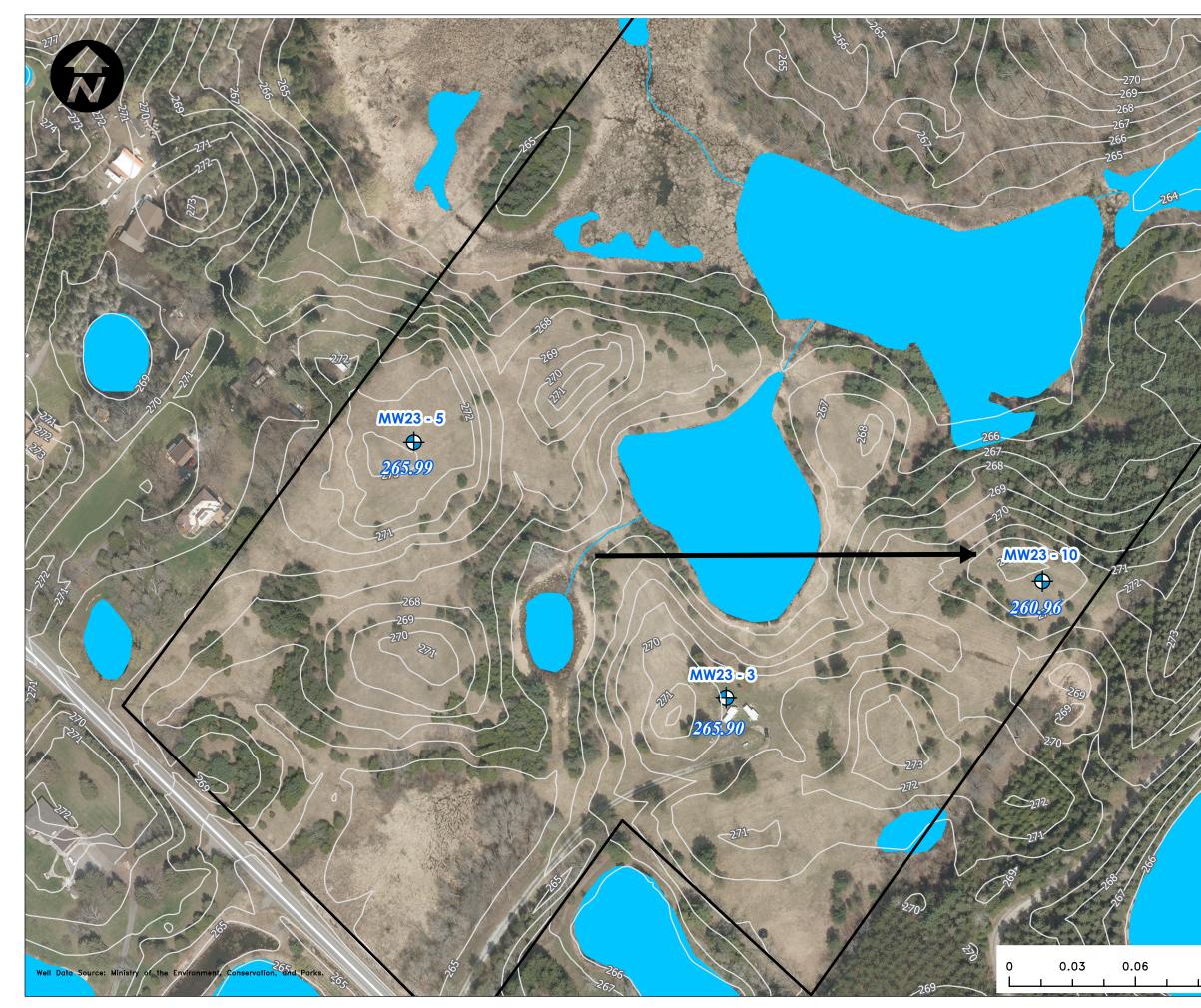
2800 High Point Drive Suite 100 Milton, ON L9T 6P4 905-875-0026 T 905-875-4915 F www.cfcrozier.co

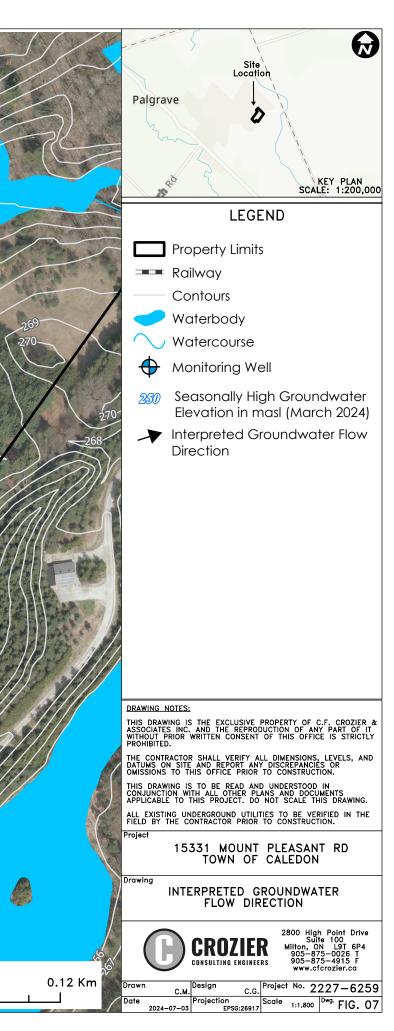

c.g. Project No. 2227-6259


Scale 1:30,000 Dwg. FIG. 03


2 Km I

HIIH


I CONCESSION








| and the second | Site                                                                                                                                                                                          |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Palgrave                                                                                                                                                                                      |
|                |                                                                                                                                                                                               |
| A Carl         | KEY PLAN<br>SCALE: 1:200,000                                                                                                                                                                  |
|                | LEGEND                                                                                                                                                                                        |
|                | Property Limits                                                                                                                                                                               |
|                | Railway                                                                                                                                                                                       |
|                | Municipal Boundary                                                                                                                                                                            |
|                | <ul> <li>Waterbody</li> <li>Watercourse</li> </ul>                                                                                                                                            |
|                | $\bigcirc$                                                                                                                                                                                    |
| C -            | Door-to-Door Survey Location                                                                                                                                                                  |
|                |                                                                                                                                                                                               |
|                |                                                                                                                                                                                               |
|                |                                                                                                                                                                                               |
|                |                                                                                                                                                                                               |
|                |                                                                                                                                                                                               |
| 1 14 21 2      |                                                                                                                                                                                               |
| and the second |                                                                                                                                                                                               |
|                |                                                                                                                                                                                               |
|                |                                                                                                                                                                                               |
|                |                                                                                                                                                                                               |
|                |                                                                                                                                                                                               |
| 1 an 1         | DRAWING NOTES:                                                                                                                                                                                |
|                | THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER &<br>ASSOCIATES INC. AND THE REPRODUCTION OF ANY PART OF IT<br>WITHOUT PRIOR WRITTEN CONSENT OF THIS OFFICE IS STRICTLY<br>PROHIBITED. |
|                | THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND<br>DATUMS ON SITE AND REPORT ANY DISCREPANCIES OR<br>OMISSIONS TO THIS OFFICE PRIOR TO CONSTRUCTION.                                  |
|                | THIS DRAWING IS TO BE READ AND UNDERSTOOD IN<br>CONJUNCTION WITH ALL OTHER PLANS AND DOCUMENTS<br>APPLICABLE TO THIS PROJECT. DO NOT SCALE THIS DRAWING.                                      |
|                | ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE<br>FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION.<br>Project                                                                         |
|                | 15331 MOUNT PLEASANT RD<br>TOWN OF CALEDON                                                                                                                                                    |
|                | Drawing<br>DOOR-TO-DOOR SURVEY LOCATION                                                                                                                                                       |
|                | CROZIER<br>CONSULTING ENGINEERS<br>2800 High Point Drive<br>Suite 100<br>Milton, ON L97 6P4<br>905-875-0026 T<br>905-875-4915 F<br>www.cfcrozier.ca                                           |
| 0.4 Km         | Drawn C.M. Design C.G. Project No. 2227-6259<br>Date Projection Scale 17.000 Project O.G.                                                                                                     |
|                | Date Projection Scale 1:7,000 Projection FIG. 06                                                                                                                                              |



