TOWN OF CALEDON PLANNING RECEIVED

July 29, 2020

NITRATE IMPACT ASSESSMENT

Proposed Sub-Division Development 17791 Mount Hope Road Part of Lot 28, Concession 8 Town of Caledon, Ontario

Prepared for:

Mr. Joe Triumbari Palgrave Development Inc 3 Manswood Crescent Brampton, ON L6P 0A3

Prepared By:

SIRATI & PARTNERS CONSULTANTS LIMITED

Project: SP18-334-00 November 25, 2019

12700 Keele Street King City, Ontario L7B 1H5 Tel: 905.833.1582 Fax:905.833.5360 <u>www.sirati.ca</u>

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND 1	L
1.1	Previous Investigations 1	ł
2.0	LAND USE 1	L
3.0	SITE DEVELOPMENT PLAN	<u>)</u>
4.0	PHYSICAL SETTING	<u>)</u>
4.1	Topography and Drainage	2
4.2	Physiography	3
4.3	Overburden Geology	3
4.4	Bedrock Geology	3
5.0	REGIONAL HYDROGEOLOGY	ł
5.1	Private Water Wells	ł
5.2	Palgrave Municipal Water Supply Wells 4	ł
6.0	SOIL AND GROUNDWATER CONDITIONS	;
6.1	Soil Stratigraphy 5	5
6.2	Groundwater Conditions 6	3
7.0	GROUNDWATER QUALITY AND BACKGROUND NITRATE CONCENTRATION	5
7.1	General Water Quality6	3
7.2	Nitrate Concentrations	,
8.0	WATER BALANCE ANALYSIS	3
8.1	Site Level Water Balance 8	3
8.2	Climate Data 8	3
8.3	Infiltration and Runoff10)
9.0	ASSESSMENT OF POTENTIAL NITRATE IMPACTS 10)
9.1	Background Nitrate Concentration11	ł
9.2	Nitrate Loading Analysis – On-Site Impact Assessment11	ł
9.3	Nitrate Dilution – Application of Reasonable Use Policy12	2
9.4	Potential Nitrate Impacts13	3
10.0	CONCLUSIONS AND RECOMMENDATIONS15	;
SELE	CTED BIBLIOGRAPHY 17	1
LIMIT	ATIONS AND USE OF THE REPORT	3

FIGURES

- Figure 1-1 Site Location Plan
- Figure 1-2 Land Use Designation Map
- Figure 4-1 Topographic Map
- Figure 4-1a Innisfil Creek Sub-watershed Map
- Figure 4-2 Physiography Map
- Figure 4-3 Surficial Geology Map
- Figure 4-4 Bedrock Geology Map
- Figure 5-1 MECP Water Well Location Map
- Figure 6-1 Borehole/Monitoring Well Location Plan
- Figure 6-2 Cross Section Profile A-A'
- Figure 6-3 Groundwater Elevations and Inferred Groundwater Flow Direction
- Figure 8-1 Mean Annual Temperature at the Site
- Figure 8-2 Mean Annual Precipitation at the Site
- Figure 8-3 Monthly Average Temperature and Precipitation at the Site

APENDICES

- Appendix A Site Development Plan
- Appendix B Borehole Logs
- Appendix C Laboratory Certificates of Analysis
- Appendix D Water Balance Thornthwaite

1.0 INTRODUCTION AND BACKGROUND

Sirati & Partners (SIRATI) was retained by Palgrave Development Inc. (the Client) to conduct a Nitrate Impact Assessment study at a property located at 17791 Mount Hope Road, described as Part of Lot 28, Concession 8, Mount Hope Road, Town of Caledon, Ontario (the Site). The approximate site location is presented on Figure 1-1.

The Site is located in the Town of Caledon, within the Regional Municipality of Peel or Region of Peel (Peel Region). It is understood that a residential subdivision development has been proposed at the Site.

Based on Town of Caledon Official Plan, the Site is located in a zoning area identified as rural area on Oak Ridges Moraine (A2-ORM). This study was performed in conformance with the Town of Caledon Official Plan Secondary Plan Policies Section 7.1.8.3.

Section 7.1.8.3 indicated that an applicant for an estate residential plan of subdivisions will be required to undertake any studies deemed necessary to assess the termination probability of contaminants on wells in nearby properties by septic system leachate or other sources of contaminants likely to be caused by the proposed development. Accordingly, an assessment of nitrate loadings from the on-site septic systems is being carried out.

1.1 Previous Investigations

In support of the development, geotechnical and hydrogeological investigations were carried out previously at the Site.

As part of geotechnical investigation, ten (10) boreholes were drilled and five (5) monitoring wells were completed at the Site. During the hydrogeological investigation, additional monitoring wells were completed at three (3) locations. A hydrogeological study was completed using the data obtained from the geotechnical investigation and the data obtained from the additional monitoring wells. A report entitled "Hydrogeological Investigation, Proposed Sub-Division Development, 17791 Mount Hope Road, Part of Lot 28, Concession 8, Town of Caledon, Region of Peel, Ontario" dated November 22, 2019 was prepared by SIRATI.

It should be noted that the existing monitoring wells were used for groundwater sampling for this nitrate impact assessment. In addition, the data or information obtained in the previous investigations was used and incorporated into this report.

2.0 LAND USE

The Site consists of a cultivated or undeveloped parcel of land, currently with no structures developed on the property, and is bounded by Mount Hope Road further with residential houses to the southwest, by a

vegetated wood lot and a residential property to the northwest, and by woodlots further with residential houses to the southeast and northeast.

As shown on Figure 1-2, the Site is located in an area designated as Palgrave Estate Residential Community land use area within Oak Ridges Moraine Conservation Plan area (a component of Countryside Area), where residential development is permitted.

It is understood that a residential subdivision development has been proposed at the Site.

3.0 SITE DEVELOPMENT PLAN

The Site is located on the northeast side of Mount Hope Road, in the Town of Caledon, and consists of a parcel of land with an area of approximately 41 hectares (102 acres).

A residential subdivision development consisting of twenty-nine (29) single homes has been proposed to be built on part of the property with a total development area of about 29.8 hectares (73.6 acres). A recent site development grading plan dated October 2019 provided by the Client is presented in Appendix A.

It is understood that the source of potable water for the proposed development will be supplied through the Palgrave municipal supply wells, and the new development will be serviced by private septic systems.

4.0 PHYSICAL SETTING

4.1 Topography and Drainage

As shown in Figure 4-1, the topography of the Site ranges in elevation generally between 290 mASL and 310 mASL. An unnamed creek crossing from the northwest to the southeast divides the property in two (2) parts, which drains the surface runoffs from the Site.

The Site is almost entirely located within the Nottawasaga Valley Watershed under the jurisdiction of Nottawasaga Valley Conservation Authority (NVCA).

The Nottawasaga Valley Watershed has nine (9) subwatersheds. The Innisfil Creek subwatershed (Figure 4-1a) is one of the nine (9) subwatersheds, and consists of four (4) main creek systems, namely Innisfil Creek, Bailey Creek, Beeton Creek and Penville Creek that drain the southeast portion of the Nottawasaga River watershed. The Site falls within the Beeton Creek system.

Beeton Creek arises on the Oak Ridges Moraine south of Tottenham. Flowing north, the creek enters a reservoir at the Tottenham Conservation Area and then continues downstream. An east branch, originating east of Tottenham, flows westward through agricultural lands and enters Beeton Creek north of Tottenham. Beeton Creek continues to flow northward through an agricultural landscape, skirting the west side of Beeton before joining Bailey Creek and then entering Innisfil Creek.

As shown in Figure 4-1, the unnamed tributary flows southeasterly and joins into a main tributary of Beeton Creek, which flows northwards and joins into Innisfil Creek.

4.2 Physiography

The Nottawasaga Valley Watershed is located within five (5) main regional-scale physiographic regions (Figure 4-2) as defined by Chapman and Putnam (1984). These regions include;

- Horseshoe Moraines,
- Oak Ridges Moraine,
- Peterborough Drumlin Field,
- Schomberg Clay Plains, and
- Simcoe Lowlands.

The Subject Property lies within the physiographic region termed as Oak Ridges Moraine. The Oak Ridges Moraine is comprised of rolling sandy hills, hummocky topography and closed depressions that form the source of the headwaters to major stream that drain off the moraine. The moraine within the subwatershed consists primarily of surficial sand and gravel deposits. The physiographic region provides headwater sources to Beeton Creek and Baily Creek in the southern portion of the watershed.

The Oak Ridges Moraine is an extensive interlobate moraine that extends from the Caledon area, eastward across the northern limits of the Greater Toronto area.

4.3 Overburden Geology

Surficial geology refers to those unconsolidated geologic materials overlying consolidated bedrock. As shown in Figure 4-3, the Subject Property is located in an area covered with ice-contact stratified deposits, which generally consist of gravel and sand deposits, with minor till, and also contain esker, kame, end moraine, ice-marginal delta and subaqueous fan deposits.

The Paleozoic bedrock topography appears to strongly influence the overlying Quaternary sediment thickness and distribution. The thicker Quaternary sediments occur in bedrock topographical lows (i.e. within bedrock valleys and beneath the ORM). The overburden thickness within the Oak Ridges Moraine (ORM) ranges from approximately 56 m to 240 m.

4.4 Bedrock Geology

Bedrock geology of the NVCA watershed is defined as the Paleozoic sedimentary rocks deposited during the Upper Ordovician geological period.

The bedrock consists of shale, limestone, dolostone, and dolomitic siltstone, which were deposited in shallow seas about 450 million years ago. These beds, named as Georgian Bay Formation are approximately 250 m thick and dip to the southeast at about 5 m/km. Following long periods of additional sedimentation and erosion, the ancient Laurentian River and its tributaries cut several deep, poorly-defined bedrock valleys trending northwest-southeast across the area. As depicted in Figure 4-4, the study area is underlain by the Georgian Bay Formation and have an important influence on drift thickness and groundwater distribution in the study area.

5.0 REGIONAL HYDROGEOLOGY

Water well records on file with the Ministry of the Environment, Conservation and Parks (MECP) serve as a database for assessment of the regional hydrogeological conditions. The water well locations were provided from the MECP interactive water well record database, and the recorded water wells located within a 500 m radius are shown on Figure 5-1.

5.1 Private Water Wells

As shown in Figure 5-1, a total of thirty (30) water wells have been found within a 500 m radius around the property. One (1) record for an abandoned well is found on Site.

Based on the well records, bedrock was encountered at three (3) wells (#4906507, #4906507 and #4906507) at the depth of $74.1 \sim 74.4$ mbgs, indicating presence of thick overburden sediment at and/or near the Site. In addition, layers of sand and/gravel were recorded, where the well screens were installed. The recorded water levels ranged from approximately 14 mbgs to 26 mbgs. Therefore, multiple aquifers may be present in the overburden deposits.

5.2 Palgrave Municipal Water Supply Wells

The Palgrave community is being serviced by Palgrave municipal supply wells #2, #3 and #4. The Site is situated within a wellhead protection zone, which is associated with the municipal supply well Palgrave Well#3.

Palgrave Well#3 is located about 220 m southeast of the Site, on the northeast side of Mount Hope Road, in Caledon, Ontario. Geologically, Palgrave Well#3 is located near the edge of a local bedrock valley and is overlain by about 80 m thick overburden of Oak Ridges Moraine Aquifer Complex (ORMAC) stratified sediments. This sequence consists (from surface downward) of about four metres of sand and gravel, about 35 m of silt and clay with minor sand, about 25 m of gravelly sand and silty sand, a silt and clay unit about five metres thick, and finally, about 10 m of gravelly sand where the well is screened (Earthfx , May 2007).

Based on MECP water well record, Palgrave Well#3 was found to have a well ID of 4906859, and was drilled to the depth of approximately 82.3 mbgs into (sandy) clay, and screened between 71.3 mbgs and 80.5 mbgs in (gravelly) sand. The static water level was recorded to be 15.1 mbgs.

Based on the above findings, it can be inferred that layers in a significant thickness of unconsolidated overburden are present in the site area, and multiple sandy soils can serve as the aquifer for water supply. However, it is more common that the deeper aquifer is selected for the water supply aquifer, probably because of having a thicker and better protection from the potential contamination.

6.0 SOIL AND GROUNDWATER CONDITIONS

The soil and groundwater conditions were at the Site were interpreted based on the data obtained from the previous geotechnical and hydrogeological investigations. All the boreholes and monitoring wells completed as part of the geotechnical and hydrogeological investigations are shown on Figure 6-1.

The details of Borehole Logs are presented in Appendix A. In addition, one (1) cross section (as shown on Figure 6-2) was constructed to illustrate the horizontal and vertical extents of the soil and groundwater conditions.

6.1 Soil Stratigraphy

The soil stratigraphy of the Site as revealed in the boreholes generally consisted of topsoil and fill materials (reworked soil), underlain by native soils predominantly comprised of cohesionless soils, locally with cohesive soils. No bedrock was encountered at the maximum explored depth of 18.3 mbgs. A summary of the encountered soils is made as follows.

Topsoil: A 300 mm to 450 mm thick surficial layer of topsoil was found at all borehole locations except BH4, BH19-1/1A, BH19-2 and BH19-3/3A. The thickness of the topsoil in each borehole is shown in the respective borehole logs. It should be noted that the thickness of the topsoil observed at the borehole locations may not be representative for the entire site and should not be relied on to calculate the amount of topsoil that need to be stripped from the Site.

Fill Material/Possible Fill: Below the topsoil, where present, a zone of earth fill/disturbed native material was encountered in all boreholes. The fill layer was found extending to depths varying between 0.2 m (BH19-1/1A) and 3 m (BH6) below the existing ground surface. The fill material mainly consisted of silty sand, sandy silt and sand, with trace to some topsoil inclusion at some borehole locations. The composition of the weathered/disturbed sand was generally similar to that of the underlying undisturbed native soils.

Cohesionless Layers: Cohesionless layers of silt, sandy silt, silty sand, sand, gravelly sand, and sand and gravel were encountered in all borehole locations. The native cohesionless layers were encountered at

different depths ranging from 0.2 m to 3.0 m below the existing ground surface and extended to the termination depth at all borehole locations.

<u>Cohesive Layer:</u> A thin cohesive layer of clayey silt was observed locally in BH5, extending from 1.5 m to 2.3 m depth.

The surficial geology is fairly consistent across the Site, as indicated in the borehole logs. Sand and gravel are predominant across the site indicating highly pervious nature of the soils.

All the boreholes and monitoring wells installed as part of the geotechnical and hydrogeological investigations are shown in Figure 6-1.

The details of the soil stratigraphy are presented in Borehole Logs in Appendix A. In addition, one (1) cross section (as shown on Figure 6-2) was constructed to illustrate the horizontal and vertical extents of the soil and groundwater conditions.

6.2 Groundwater Conditions

As part of geotechnical investigation, five (5) monitoring wells identified as BH/MW1, MW/BH3, MW/BH6, MW/BH9 & MW/BH10B) were installed at the Site. However, these monitoring wells were found to be dry wells. For further hydrogeological investigation, additional three (3) deeper monitoring wells (BH19-1A, BH19-2 and BH19-3A) were installed for groundwater monitoring, sampling and testing.

The groundwater levels measured in the three (3) monitoring wells ranged from 6.3 mbgs at BH/MW19-2 to 14.8 mbgs at BH/MW19-1A, and elevations ranged from 283.8 mASL at BH/MW19-3A to 291.6 mASL at BH/MW19-3A. Based on the most recent water level data dated October 21, 2019, the groundwater elevation contours were established. As shown on Figure 6-3, the inferred groundwater flow appeared to be generally in a northerly direction.

7.0 GROUNDWATER QUALITY AND BACKGROUND NITRATE CONCENTRATION

7.1 General Water Quality

To assess the general water quality, groundwater samples were collected on October 8, 2019 from monitoring well BH/MW19-2 and on October 18, 2019 from monitoring wells BH/MW19-1A and BH/MW19-3A. The samples were submitted to AGAT laboratory for analysis of the parameters as per Water Quality Assessment package provided by AGAT. The analytical results are provided in the Laboratory Certificate of Analysis in Appendix B.

The results were compared with Ontario Drinking Water Quality Standards (ODWQS)-Aesthetic Objectives and Operational Guidelines, and indicated that exceedances or elevated concentrations for aluminum, iron, manganese, total hardness, turbidity and nitrate were found in the tested groundwater samples.

Sample ID	Parameter	Guideline	Guideline Value	Measured Concentration
_			(mg/L)	(mg/L)
BH19-1A	Manganese	ODWQS	0.05	2.23
BH19-1A	Total Hardness (as CaCO ₃)	ODWQS	80-100	330
BH19-1A	Turbidity	ODWQS	5 NTU	24900
BH19-1A	Nitrate as N	ODWQS	10	21.5
BH19-2	Manganese	ODWQS	0.05	1.29
BH19-2	Total Hardness (as CaCO ₃)	ODWQS	80-100	367
BH19-2	Turbidity	ODWQS	5 NTU	6890
BH19-2	Nitrate as N	ODWQS	10	29.2
BH19-3A	Aluminum	ODWQS	0.1	4.36
BH19-3A	Iron	ODWQS	0.3	3.12
BH19-3A	Manganese	ODWQS	0.05	3.11
BH19-3A	Total Hardness (as CaCO ₃)	ODWQS	80-100	378
BH19-3A	Turbidity	ODWQS	5 NTU	7300
BH19-3A	Nitrate as N	ODWQS	10	27.0

Table 7:1 Guideline Violation of Groundw	ater Samples Compa	red to ODWQS-AO&OG
--	--------------------	--------------------

Based on the results above, exceedances or elevated concentrations for manganese, total hardness, nitrate and turbidity were found in all the tested groundwater samples. In addition, nitrate was found exceeding the ODWQS limit of 10 mg/L in groundwater at all locations.

It should be noted that the groundwater samples analyzed were in unfiltered state and shall contain a certain amount of sediments and/or particulates, which caused high value of turbidity. The exceedances or elevated concentrations may have resulted from the sediments and/or particulates in the water samples.

7.2 Nitrate Concentrations

As part of water quality assessment, nitrate was analyzed in three (3) groundwater samples taken from BH/MW19-1A, BH/MW19-2 and BH/MW19-3A. The results are presented in Table 7-2 below.

Monitoring Well	Nitrate as N (mg/L)	ODWQS Standard (mg/L)
BH/MW19-1A	21.5	10
BH/MW19-2	29.3	10
BH/MW19-3A	27.0	10

7-2: Nitrate Concentration in Groundwater from On-Site Wells.

Based on the results of chemical analysis, nitrate concentrations in the analyzed groundwater samples were found to be raised, which are above the ODWQS standards, indicating elevated background nitrate concentrations.

8.0 WATER BALANCE ANALYSIS

8.1 Site Level Water Balance

Based on the Thornthwaite and Mather methodology (1957), the water balance is an accounting of water in the hydrologic cycle. Precipitation (P) falls as rain and snow. It can run off towards lakes and streams (R), infiltrate to the groundwater table (I), or evaporate from ground or evapotranspire by vegetation (ET). When long-term average values of P, R, I, and ET are used, there is minimal or no net change to groundwater storage (Δ S).

The annual water budget can be expressed as:

$$\mathbf{P} = \mathbf{E}\mathbf{T} + \mathbf{R} + \mathbf{I} + \Delta\mathbf{S}$$

Where:

P = Precipitation (mm/year)

ET = Evapotranspiration (mm/year)

R = Run-off(mm/year)

- I = Infiltration (mm/year)
- ΔS = Change in groundwater storage (taken as zero) (mm/year)

8.2 Climate Data

Monthly average temperature and precipitation data were obtained from Environment Canada, for Orangeville WPCP station (climate identifier: 6155790) as the nearest station located at about 8 km distance from the Property. Data was available between the years 1962 to 2006. Temporal variations of temperature and rainfall are shown in Figures 8-1 and 8-2. Long-term average annual rainfall at the study area is 901

mm. Actual evapotranspiration was estimated to be about 482 mm/annum using the USGS Thornthwaite Monthly Water Balance software utilizing average monthly temperature and precipitation (Appendix C).

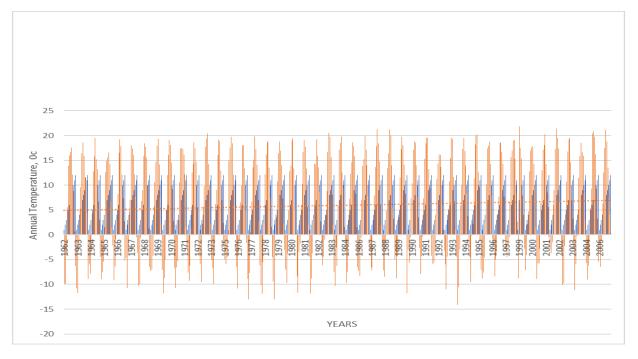
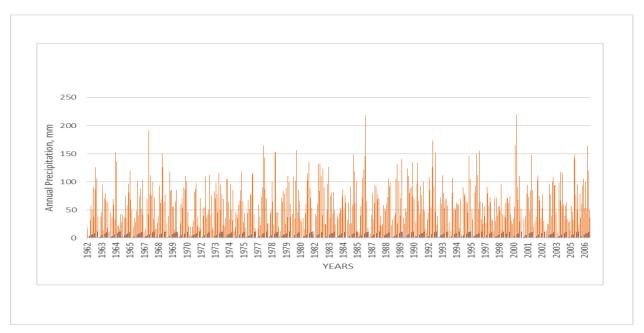



Figure 8-1 Mean Annual Temperature at the Site

Figure 8-2 Mean Annual Precipitation at the Site

Average monthly variations of both temperature and precipitation were calculated for the period from 1962 to 2006 and is presented below in Figure 8-3. The highest temperature was recorded in the month of July, while the highest rainfall was in the month of August.

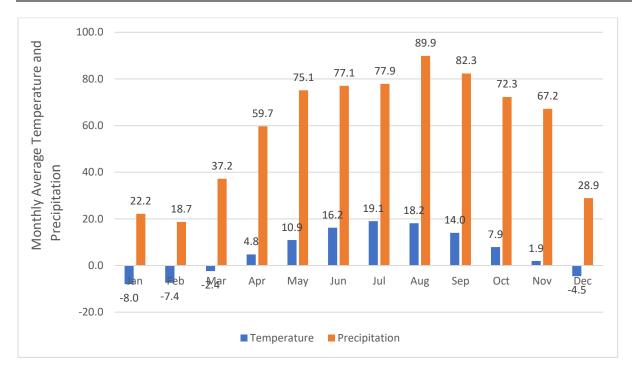


Figure 8-3 Average Monthly Temperature at the Site

8.3 Infiltration and Runoff

Actual evapotranspiration was estimated to be about 482 mm/annum using the USGS Thornthwaite Monthly Water Balance software (Appendix D) utilizing average monthly temperature and precipitation results of Environment Canada, Orangeville weather station.

As mentioned above, given the actual evapotranspiration at 482 mm/annum and the average annual precipitation of 901 mm/annum, there is a net water surplus of 419 (=901 - 482) mm/annum occurring at the Site, which can either infiltrate into subsurface or go as run-off.

As a very conservative estimate of precipitation infiltration at the Site, a value of 419 mm/year (say 0.4 m/year) could be utilized for nitrate dilution calculations.

9.0 ASSESSMENT OF POTENTIAL NITRATE IMPACTS

In compliance with Town of Caledon Official Plan, potential nitrate impacts which are associated with the proposed development were assessed. Since, the size of each lot in the proposed development is less than a hectare, it is necessary to characterize and assess the nature of impact of nitrate on the natural environment.

The impacts on local groundwater regime and down gradient property boundary are dependent upon the hydrogeology of the area, the background concentration of nitrate in the groundwater and contaminant concentration contained within the effluent.

9.1 Background Nitrate Concentration

As discussed in Section 7, nitrate was analyzed in groundwater samples taken from three (3) monitoring wells BH/MW19-1A, BH/MW19-2 and BH/MW19-3A, which are located in the development area. The analyzed nitrate concentrations (Nitrate as nitrogen) ranged from 21.5 mg/L to 29.3 mg/L, which are above the ODWQS Standard of 10 mg/L for nitrate as nitrogen.

It is known that the Site has been used to grow agricultural crops for farming purpose. Nitrogen is a very important nutrient element in agriculture, which occurs in soils in several forms. Application of nitrogen fertilizers may have occurred for the farming purpose, which provides the extra sources of nitrogen to the soil and groundwater.

In most soils, ammonium is rapidly converted to nitrate via nitrite by a process called nitrification, where ammonium is oxidized to nitrite and then to nitrate by the action of aerobic bacteria. Nitrate is very soluble and unless intercepted and taken up by plant roots, it may leach down in the soil along with the irrigation water or rain water or it may be carried away by runoff.

Based on the site condition, the background nitrate concentrations at the Site may have been elevated or raised due to the farming activities.

It would be anticipated that after the residential development, no further farming activities will take place at the Site, and therefore, the nitrate concentration in soil and groundwater at the Site will be minimized or reduced.

On the other hand, the Site is at the downgradient of the residential houses located in the southwest and southeast of the Site. These rural residential houses may have been using private septic systems, which would result in elevated nitrate concentration in local groundwater. Therefore, given the locations at the property boundary, the elevated nitrate concentrations found in BH/MW19-1A and BH/MW19-2 may also likely be caused due to the operations of the septic systems on the upgradient residential properties.

9.2 Nitrate Loading Analysis – On-Site Impact Assessment

It should be noted that where municipal water and wastewater services are not available, all the proposed developments need to be self-sustaining on private individual water wells and private individual sewage disposal systems. As noted previously in the report, the source of the potable drinking water supply for the proposed residential development will be from the Palgrave municipal water supply wells.

The nitrate loading analysis presented here is as per the methodology and procedures indicated in the Technical Guideline D-5 (Ministry of Environment, 1996) and the Ontario Building Code (Ministry of Municipal Affairs and Housing, 2011, as amended) for development proposals involving private on-site sewage servicing.

Site Information:

Number of Proposed lots (P)	29
Daily Effluent Flow /Lot (F)	1,000 L/day
Development Area (A)	29.8 ha (298,000 m ²)
Infiltration Rate (Ir) (From water balance)	0.40 m/year
Nitrate Loading /Dwelling (N)	40 g/day
Impervious Surface (S)	2 ha or ~7% (from Hydrogeological report)

Calculations:

Step 1: Calculation of On-site Recharge (R)

- = A x (1-S) x Ir + P x F = 298,000 m² x (1-0.07) x (0.40 m/year) + (29 x 1,000 L/day) = 110,856 m³/ year + 29,000 L/day = 303,715 L/day + 29,000 L/day
- = 332,715 L/day

Step 2: Calculation of Nitrate Loading (L)

- $= N \times P$
- = 40 g/day x 29
- = 1,160,000 mg/day

Step 3: Resultant Nitrate Concentration in Development Area

- = L / R
- = 1,160,000 mg/day / 332,715 L/day
- = 3.5 mg/L

Based on the above calculations, a total load of 1,160,000 mg/day of nitrate will be added on the proposed development lots, which will result in an added concentration of 3.5 mg/L for nitrate in groundwater in the development area.

9.3 Nitrate Dilution – Application of Reasonable Use Policy

Reasonable Use Policy (RUP) is used to assess the off-site nitrate impact at the property boundary of the Site with the proposed development, based on RUP Guideline B-7 (MOE, 1996). Since, the background nitrate concentrations are already well above the ODWQS guideline value of 10 mg/L, it is not recommended to perform RUP calculation. Off-site impact is however, estimated as below.

It is known that the Site has a total area of 40 hectares, out of which 29.8 hectares is the development area. Therefore, there is an additional infiltration water from the undeveloped area at the Site, which can be used for the purpose of nitrate dilution. The additional recharge will be:

$$(40-29.8) \ge 10,000 \text{ m}^2 \ge 0.4 \text{ (m/year)} = 40800 \text{ m}^3\text{/year or } 111,781 \text{ L/day}.$$

The resultant nitrate concentration at the Site Boundary will be:

It should be noted that the background nitrate concentrations tested in groundwater in the development area are well above the ODWQS guideline value of 10 mg/L, which may have been caused by the farming activities occurring in this area. However, the area with no proposed development is occupied mainly by woodlots, where no fertilizers would be applied and the background nitrate concentration should be much lower.

With the proposed residential development, the farming activities will not take place and no fertilizers will be used for farming purpose at the Site. As a result, no more nitrogen will be added to the Site and nitrate concentrations will therefore be minimized with time.

9.4 **Potential Nitrate Impacts**

Nitrate is highly mobile in groundwater. In addition, natural attenuation via denitrification and other processes is limited and slow to occur. As a result, nitrate can persist in groundwater for a time frame of years to decades.

Based on the analysis of nitrate dilution, an extra 2.6 mg/L of nitrate will be added to the local groundwater at the site property boundary. Since the background nitrate concentrations are elevated across the development area, it is necessary to assess the potential nitrate impacts with regards to natural environments as well as use of groundwater in water wells.

9.4.1 Surface Water

Based on the data review, an unnamed creek was noted in the middle of the Site crossing from the northwest to the southeast. However, no water or creek channel was observed in the area of the unnamed creek, and therefore, the unnamed creek should be an ephemeral stream.

Based on the soil and groundwater conditions observed during the investigations, it would be expected that the Site is situated in a recharge area rather than a discharge area of the groundwater flow regime. The observations of dry creek/stream and relatively deep groundwater levels indicate that there should be no groundwater discharge to the surface water.

Therefore, the added nitrate concentration due to the proposed development would not affect the local surface water.

9.4.2 On Site Water Wells

Based on the MECP water well records, no water supply wells are located on Site. It is also known that the source of the potable drinking water supply for the proposed residential development will be from the Palgrave municipal water supply wells. Therefore, no water wells will be anticipated at the Site or in the development area of the Site, and therefore should be no impact due to the proposed development.

9.4.3 Off Site Water Wells

Based on the MECP water well records, a number of water supply wells are located near the Site. It is known that the Site and its vicinity is situated in Oak Ridges Moraine area, in which the Oak Ridges Moraine Aquifer Complex (ORMAC) is present.

As revealed at Palgrave Well#3, the ORMAC sequence consists of about 80 m thick stratified sediments, and consists (from surface downward) of about four (4) metres of sand and gravel, about 35 m of silt and clay with minor sand, about 25 m of gravelly sand and silty sand, a silt and clay unit about 5 m thick, and finally, about 10 m of gravelly sand where the well is screened (Earthfx , May 2007).

The details of water well records also indicated that multiple aquifers are present in the overburden deposits. However, most of the water wells were constructed screening below 40 mbgs or in deep aquifers, probably because of having a thicker and better protection from the potential contamination. The recorded water levels ranged from approximately 14 mbgs to 26 mbgs.

Considering the interfered depth of development and the presence of clayey deposits above the potential aquifers, the potential impact generally on the shallow groundwater due to the added nitrate concentration would not occur on the deep aquifers which are preferably selected for water supply. Therefore, no impact would be anticipated on the off-site water supply wells.

9.4.4 Development Area Hydrogeologicaly Isolated.

- The Oak Ridges Moraine Aquifer Complex (ORMAC) stratified sediments consists of about 80 m thick overburden. This sequence consists (from surface downward) of about 35 m of silt and clay with minor sand, about 25 m of gravelly sand and silty sand, a silt and clay unit about five metres thick, and finally, about 10 m of gravelly sand where the productive water supply wells are screened (Earthfx, May 2007). The highly productive aquifer is overlain by thick silt and clayey silt layer, effectively isolating the aquifer from the surface contamination.

- The MECP well records in the area have indicated that the sand and gravelly sand overburden is followed by alternate layers of thick silt and clay layer which marks as a lower hydraulic or physical boundary of the groundwater receiving the sewage effluent.

Based on the above findings, it can be inferred that multiple sandy soils, separated by relatively highly impermeable silty clay to clayey silt layers, can serve as the aquifer for water supply. It is more common that the deeper aquifer is selected for the water supply, probably because of having a thicker and better protection from the potential contamination.

Therefore, it would be safe to say that the local water supply aquifer is hydrogeologicaly isolated from the naturally elevated nitrate concentrations across the Site. Also, the nitrate levels will decline after the development, within a reasonable time frame, as the application of fertilizers for agricultural purposes will completely be eliminated with the development of the Subject Property for residential purposes.

10.0 CONCLUSIONS AND RECOMMENDATIONS

This report was prepared by SIRATI in support of a proposed residential subdivision development at 17791 Mount Hope Road, Town of Caledon, Ontario.

Based on the information obtained from previous investigations and the results of nitrate impact assessment conducted at the Site, the following findings or conclusions can be presented:

- The soil stratigraphy of the Site generally consisted of topsoil and fill materials (reworked soil), underlain by native soils predominantly comprised of cohesionless soils, locally with cohesive soils. No bedrock was encountered at the maximum explored depth of 18.3 mbgs.
- Groundwater levels monitored in three (3) monitoring wells (BH/MW19-1A, BH/MW19-2 and BH/MW19-3A) ranged from 6.3 mbgs and 14.8 mbgs, with the highest groundwater level measured in BH/MW19-2 located in the south corner of the Site. Groundwater flow was inferred to be generally in the northerly direction.
- Groundwater quality assessment indicated that groundwater samples may not meet the Ontario Drinking Water Quality Standards (ODWQS) due to the elevated concentrations of aluminum, iron, manganese, total hardness and turbidity and nitrate.
- The background nitrate concentrations were found to exceed the ODWQS standard of 10 mg/L for nitrate. The elevated background nitrate concentrations may have resulted from the farming activities occurring at the development area and/or from the operations of private septic systems on the upgradient properties, which might be minimized after the residential development when no farming activities will take place.
- A water balance analysis indicated that there is a net water surplus of 419 mm/annum (or about 0.4 m/year) occurring at the Site, which can either infiltrate into subsurface or go as run-off.

- On-site nitrate loading calculation have resulted that, a total load of 1,160,000 mg/day of nitrate will be added on the proposed development lots, which will result in an added concentration of 3.5 mg/L for nitrate in groundwater in the development area.
- Based on the nitration dilution assessment, an extra 2.6 mg/L of nitrate will be added to the local groundwater at the site property boundary.
- The local water supply aquifer is hydrogeologicaly isolated from the naturally elevated nitrate concentrations across the Site.
- The nitrate concentration levels will decline after the development, within a reasonable time frame, as the application of fertilizers for agricultural purposes will completely be eliminated with the development of the Subject Property for residential purposes.
- Given the site features and the site-specific soil and groundwater conditions, the impact on the local surface water and/or groundwater or use of the water wells due to the proposed development will be minor or negligible.

SELECTED BIBLIOGRAPHY

Johnson, M.D., Armstrong, D.K., Sanford, B.V., Telford, P.G. and Rutka, M.A., 1992. Paleozoic and Mesozoic geology of Ontario; *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 2, p.907-1008.

Ministry of Natural Resources, Ontario Geologic Survey, 1984, The Physiography of Southern Ontario, Third Edition, L. J. Chapman and D. F. Putnam

MMAH, 1997. Ontario Building Code, Part 8 – Sewage Systems. Ont. Reg. 403/97 made under the Building Code Act, 1992. As amended from time to time.

Ministry of the Environment, 1982. Manual of Policy, Procedures and Guidelines for Onsite Sewage Systems. Queen's Printer for Ontario, ISBN 0-7743-7303.

Ministry of the Environment, 1996. Procedure D-5-4 – Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Assessment.

Ministry of the Environment, 1997. Ontario Building Code. Sewage System Design Flows. Table 8.2.1.3.A. Residential Occupancy

Ministry of the Environment, 2008. Design Guideline for Sewage Works. PIBS6879

Ontario Geological Survey 1991. Bedrock geology of Ontario, southern sheet; Ontario Geological Survey, Map 2544, scale 1: 1 000 000.

Thornthwaite, C.W., and Mather, J.R., 1957 Instructions and tables for computing potential evapotranspiration and the water balance. Climatology, vol. X, #3.

Freeze, R. A. and Cherry, J. A., 1979, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey

LIMITATIONS AND USE OF THE REPORT

This report was produced for the sole use of Palgrave Development Inc. (the Client) for the property located at 17791 Mount Hope Road, Town of Caledon, Ontario and may not be relied upon by any other person or entity without the written authorization of Sirati & Partners Consultants Limited (SIRATI). The conclusions presented in this report are professional opinions based on the historical and current records search, visual observations and limited information provided by persons knowledgeable about past and current activities on this site. As such, SIRATI cannot be held responsible for environmental conditions at the Property that was not apparent from the available information. No investigation method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level.

Professional judgement was exercised in gathering and analyzing data and formulation of recommendations using current industry guidelines and standards. Similar to all professional persons rendering advice, SIRATI cannot act as absolute insurer of the conclusion we have reached. No additional warranty or representation, expressed or implied, is included or intended in this report other than stated herein the report.

The assessment should not be considered a comprehensive audit that eliminates all risks of encountering environmental problems. The information presented herein this report is primarily based on information collected during the hydrogeological study based on the condition of the Property at the time of site inspection/drilling followed by a review of historical data, as appended to this report.

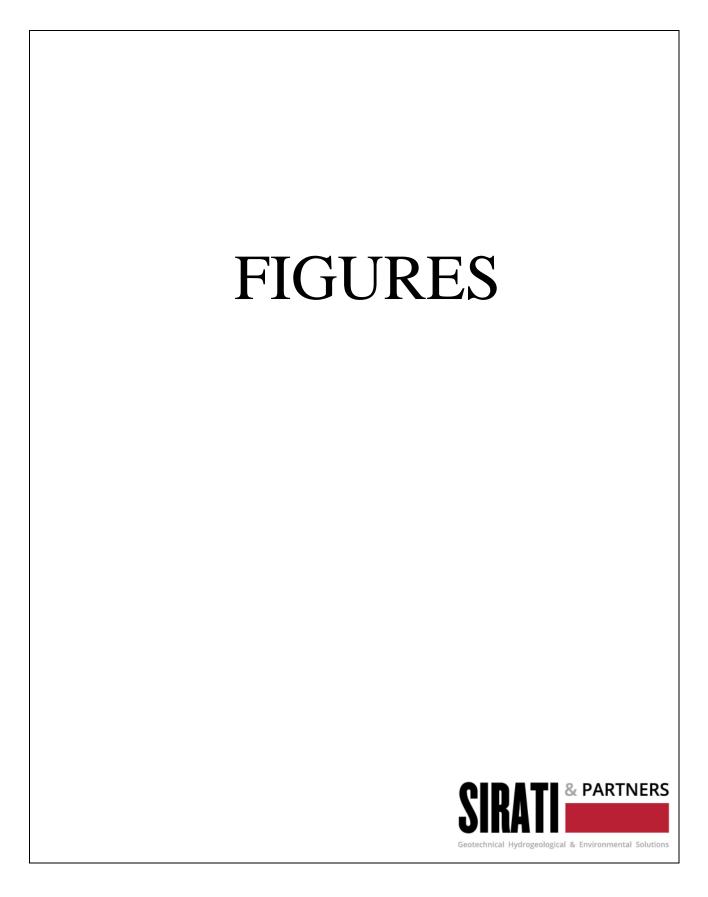
In assessing the environmental setting of the Property, SIRATI has solely relied upon information supplied by others in good faith and has therefore assumed that the information supplied is factual and accurate. We accept no responsibility for any inaccurate information, misrepresentation or for any deficiency of the information supplied by any third party.

The scope of services performed in the execution of this investigation may not be appropriate to satisfy third parties. SIRATI accepts no responsibility for damages if any, suffered by any third party as a result of decisions made or action taken based on this report. Any use, copying or distribution of the report in whole or in part is not permitted without the express written permission of SIRATI and use of findings, conclusions and recommendations represented in this report, is at the sole risk of third parties.

In the event that during future work new information regarding the environmental condition of the Property is encountered, or in the event that the outstanding responses from the regulatory agencies indicate outstanding issues on file with respect to the Property, SIRATI should be notified in order that we may re-evaluate the findings of this assessment and provide amendments, as required.

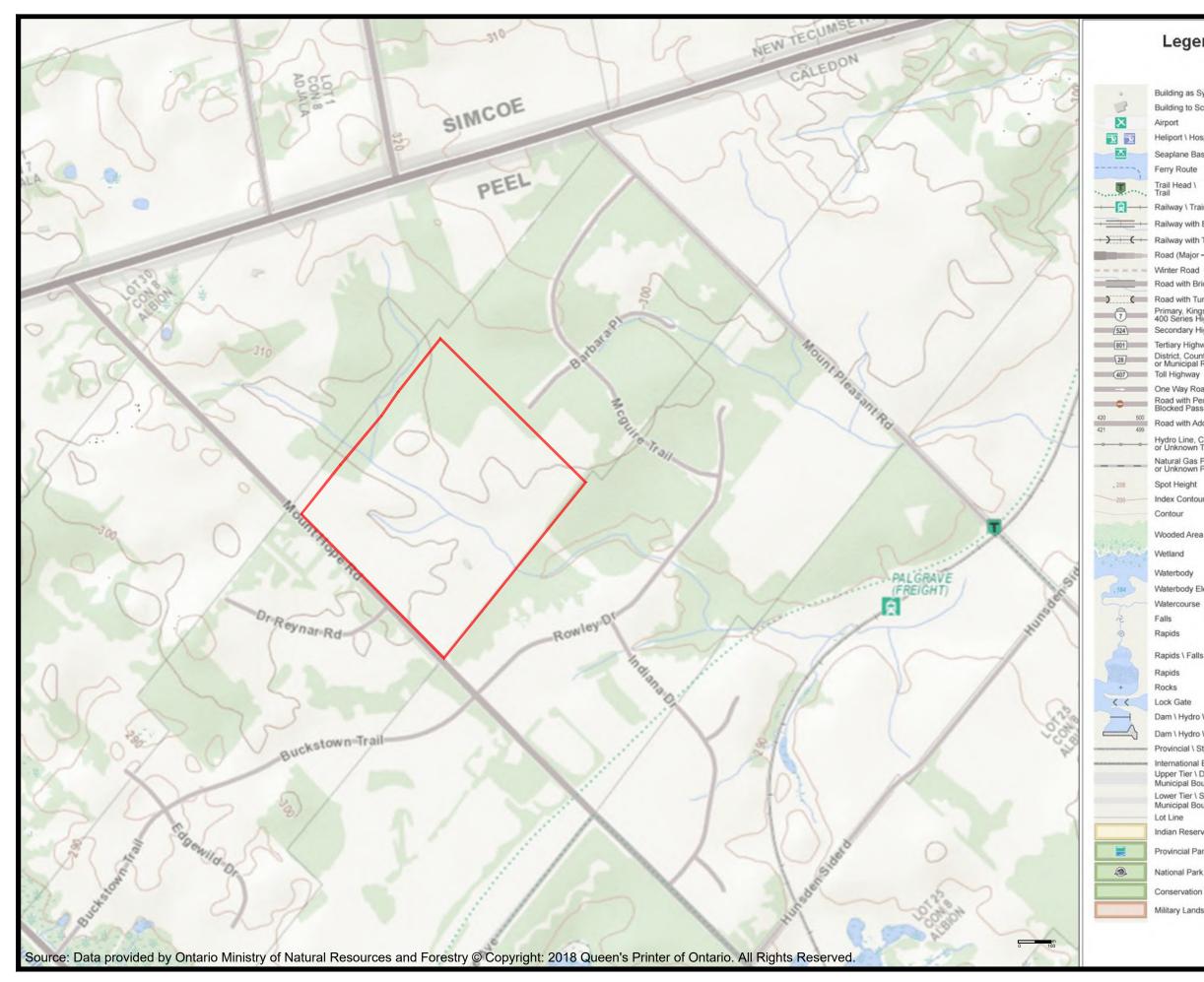
Should you have any questions regarding the information presented or limitation set in this report, please do not hesitate to contact our office.

Project: SP18-334-00 Palgrave Development Inc.


Yours truly,

Sirati and Partners Consultants Limited

Sudhakar Kurli, M.Sc., P. Geo. Hydrogeologist/Project Manager


A NOLES G BUJING GUAN PRACTISING MEMBER 1442 Bujing Guan, M. A.S. PAGeon

Senior Hydrogeologist/Environmental Specialist

Legend

Building as Symbol Building to Scale Airport Heliport \ Hospital Heliport Seaplane Base Ferry Route Trail Head \ Trail Railway \ Train Station Railway with Bridge Railway with Tunnel Road (Major - Minor) Road with Bridge Road with Tunnel Primary, Kings or 400 Series Highway 524 Secondary Highway 801 Tertiary Highway District, County, Regional or Municipal Road One Way Road Road with Permanent Blocked Passage Road with Address Ranges Hydro Line, Communication Line or Unknown Transmission Line Natural Gas Pipeline, Water Pipeline or Unknown Pipeline Spot Height Index Contour Contour Wooded Area Wetland Waterbody Waterbody Elevation Watercourse Falls Rapids Rapids \ Falls Rapids Rocks Lock Gate Dam \ Hydro Wall Dam \ Hydro Wall Provincial \ State Boundary International Boundary Upper Tier \ District Municipal Boundary Lower Tier \ Single Tier Municipal Boundary Lot Line Indian Reserve Provincial Park National Park Conservation Reserve Military Lands

ARTNERS nical Hydrogeological & Environmental Solution 12700- Keele Street King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360 North: Legend: Property Boundary Project Title: Nitrate Impact Assessment

Site Location:

17791 Mount Hope Road, Caledon, ON

Figure Title:

Topographic Map

Scale:

As Shown

Date:

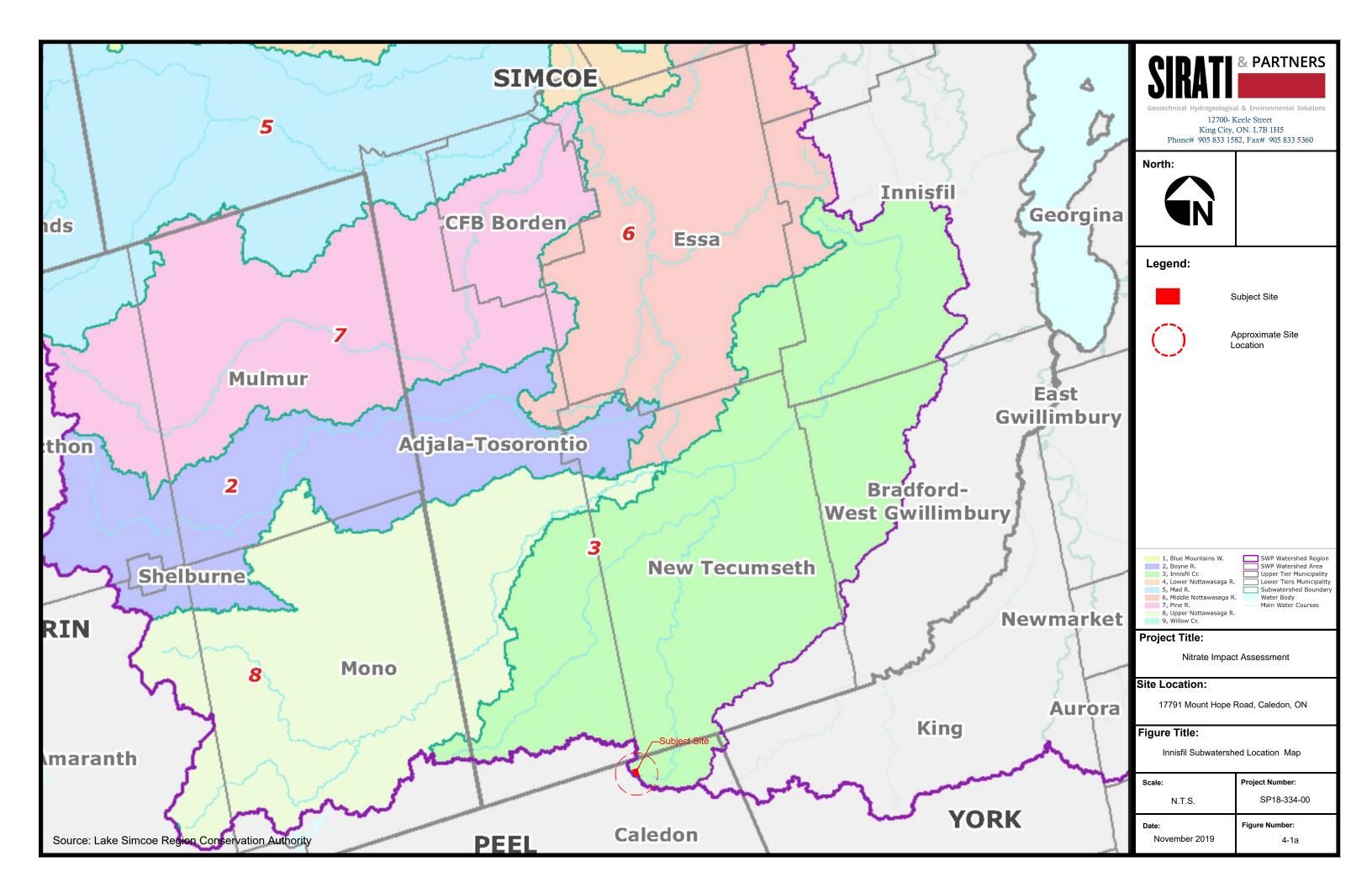

November 2019


Figure Number:

Project Number:

4-1

SP18-334-00

SIRATI & PARTNERS

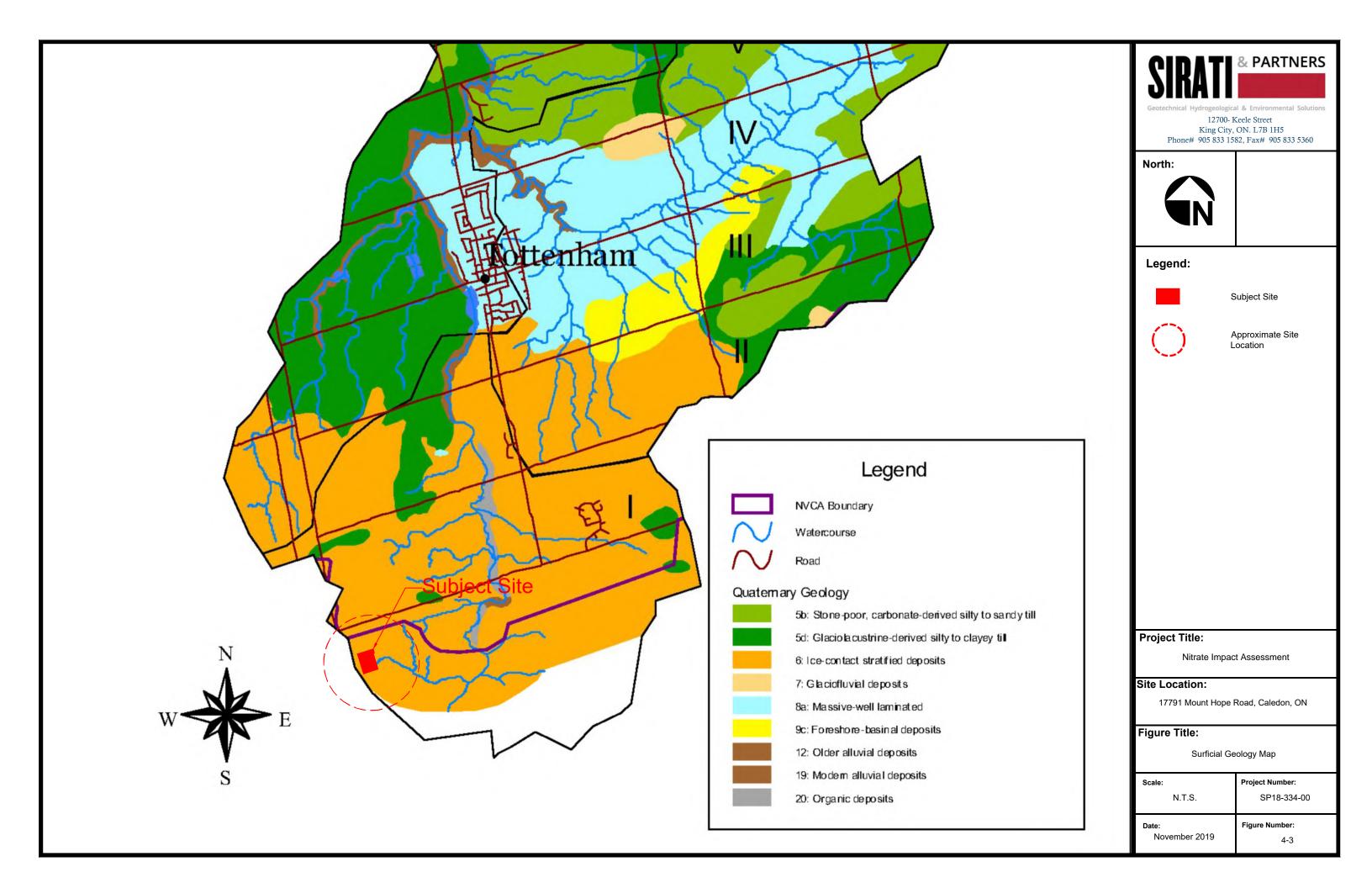
logical & Environmental Solutions

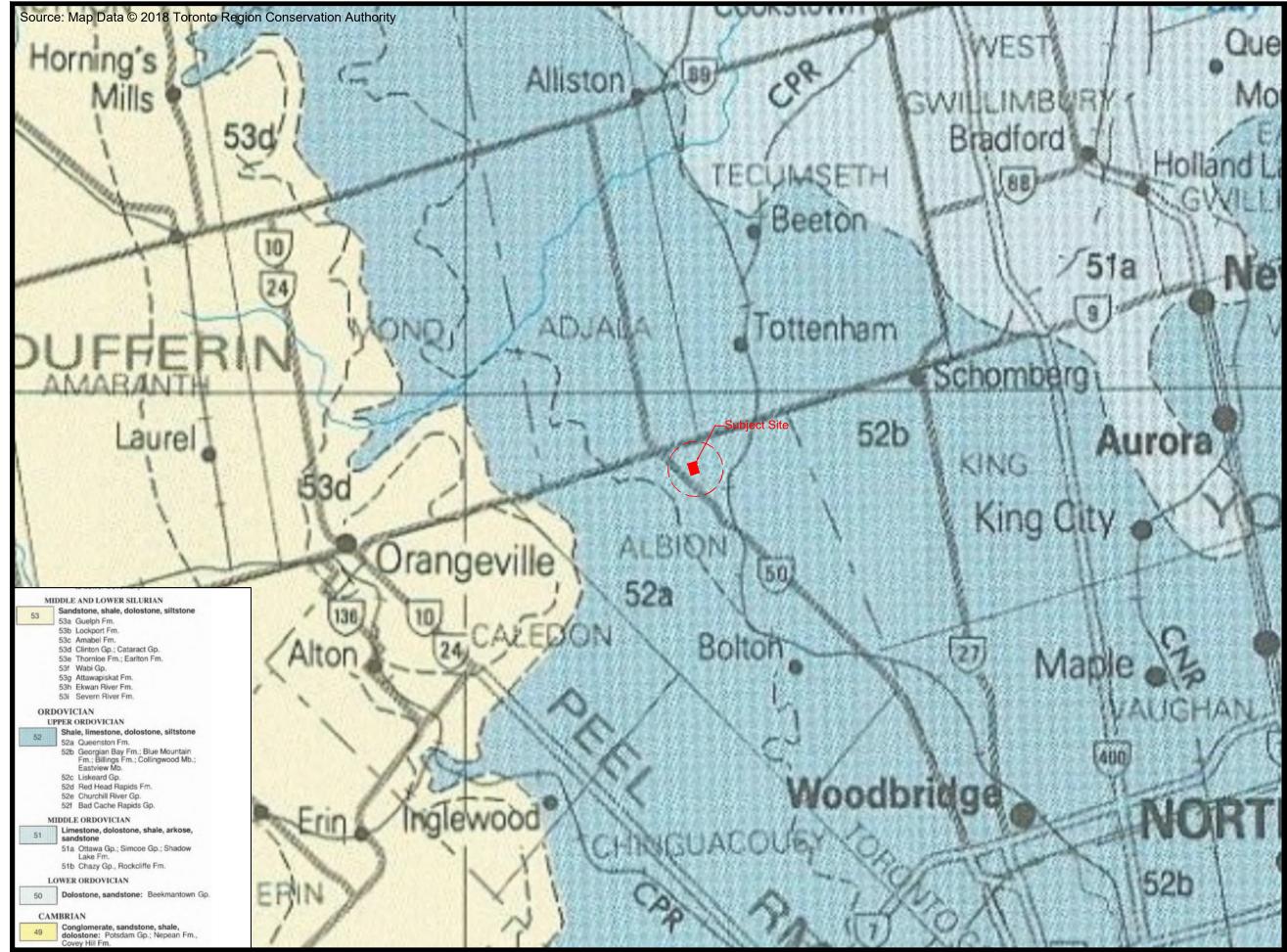
12700- Keele Street King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360

Subject Site

Approximate Site Location

Nitrate Impact Assessment


17791 Mount Hope Road, Caledon, ON


Physiography Map

Scale:	
	As Shown

SP18-334-00 Figure Number: 4-2

Project Number:

SIRATI & PARTNERS

Geotechnical Hydrogeological & Environmental Solutions

12700- Keele Street King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360

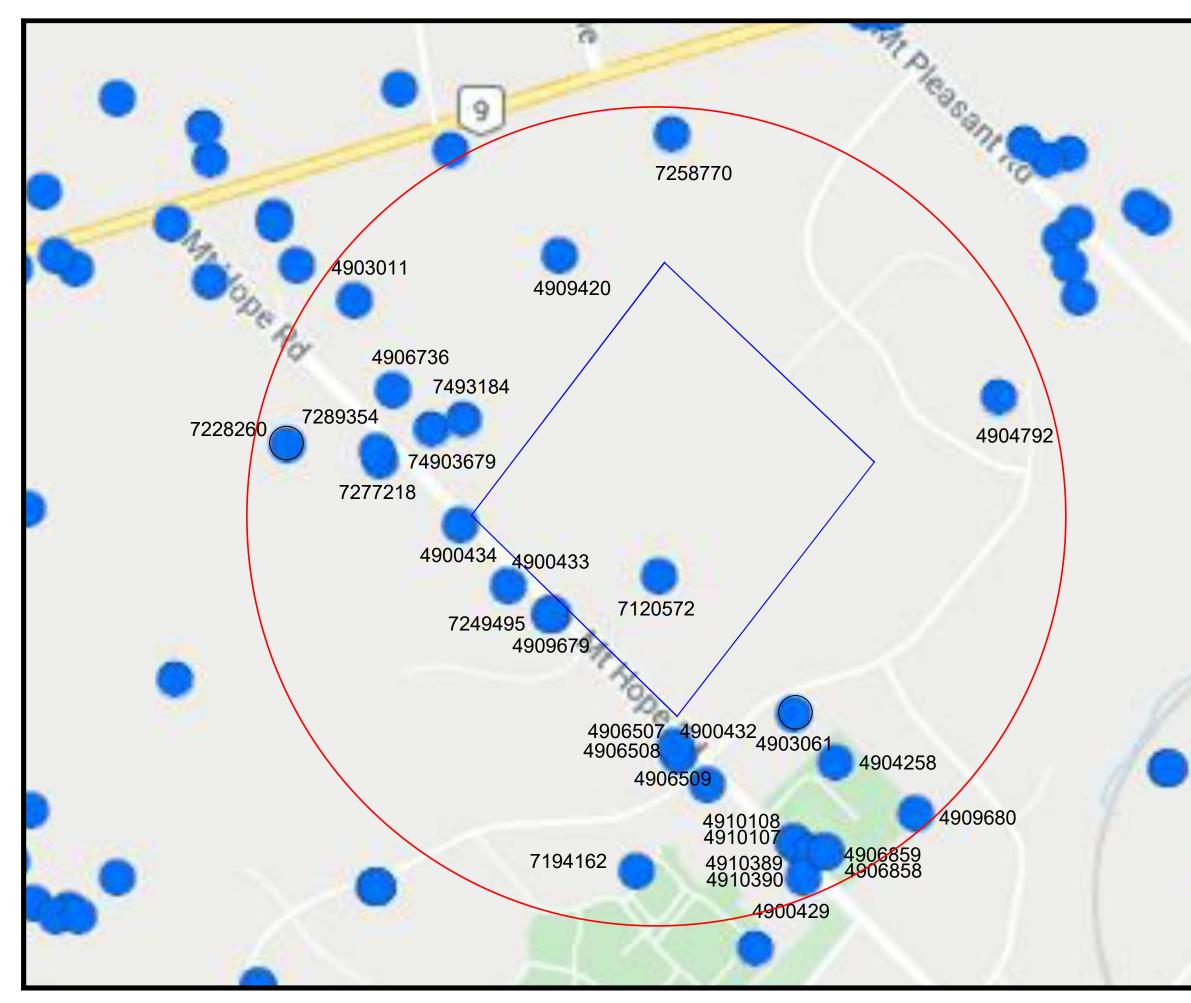
Legend:

Subject Site

Approximate Site Location

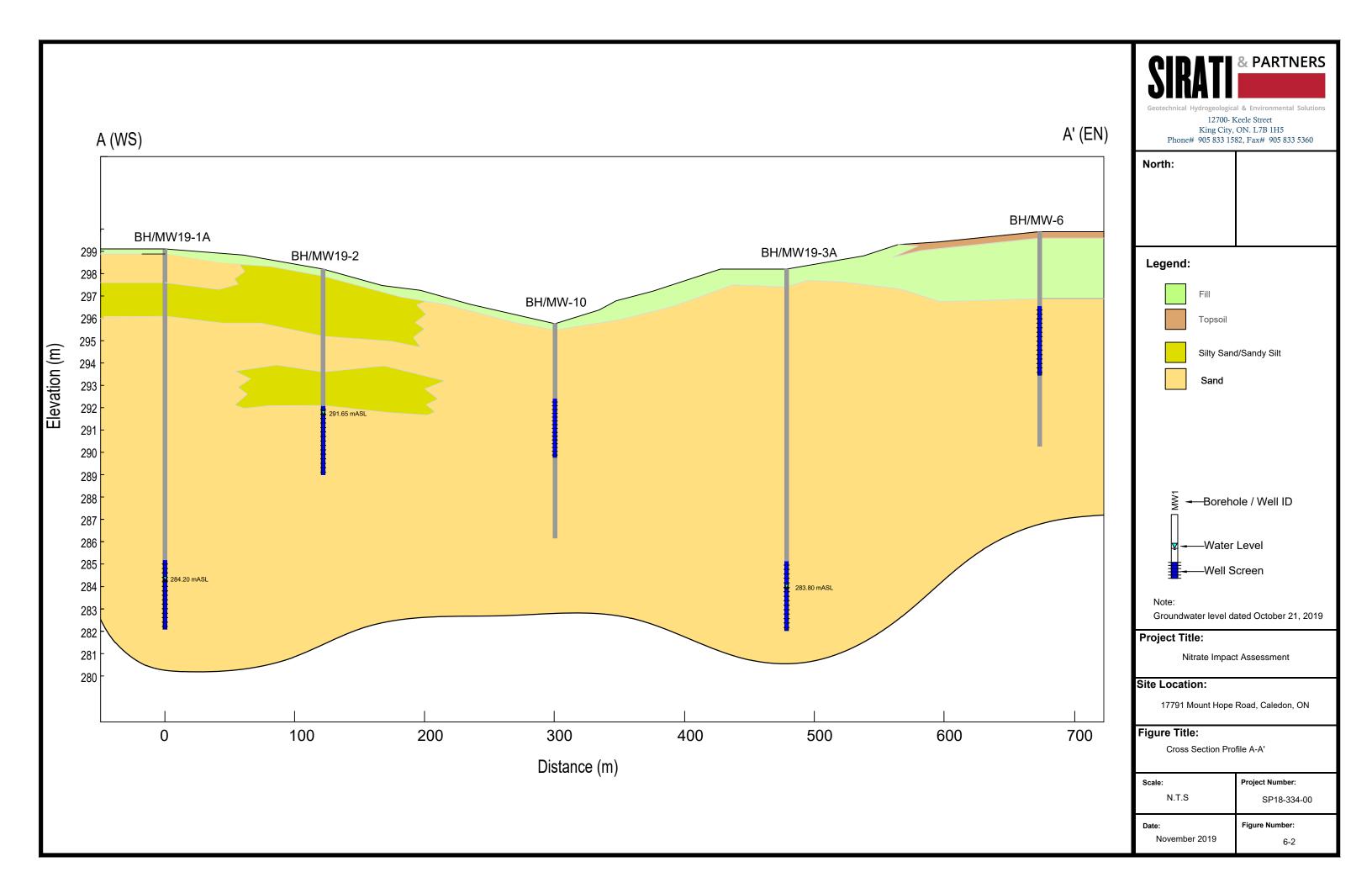
Project Title:

Nitrate Impact Assessment


Site Location:

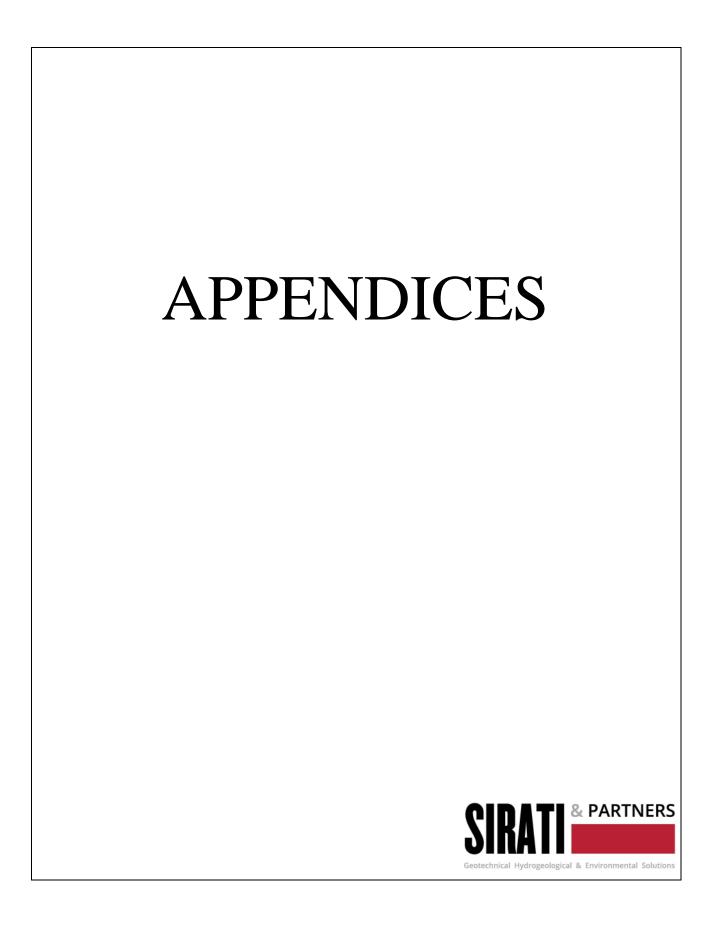
17791 Mount Hope Road, Caledon, ON

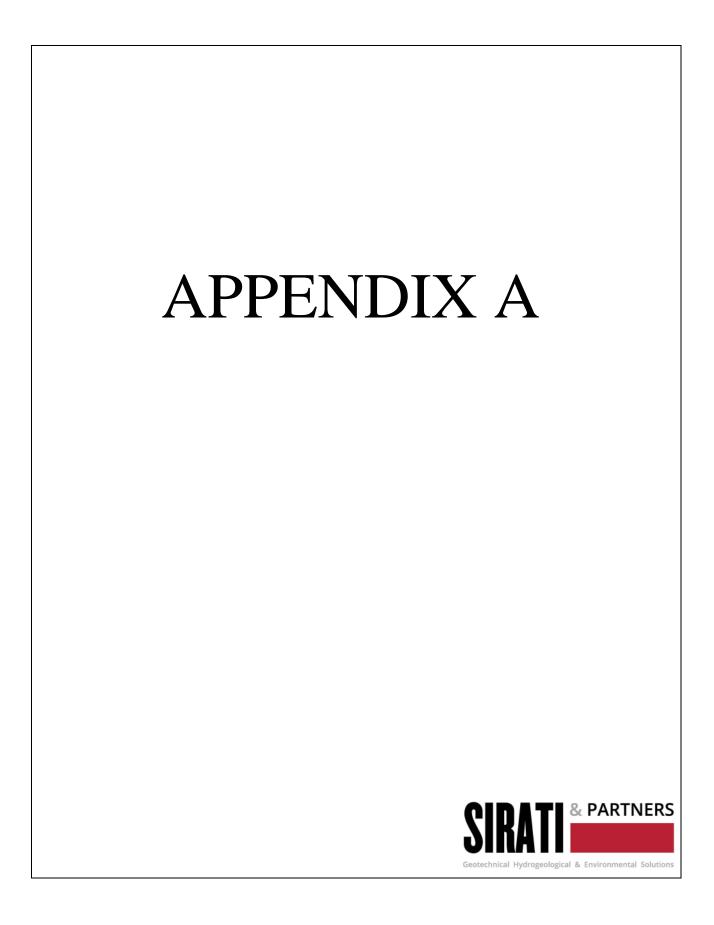
Figure Title:


Bedrock Geology Map

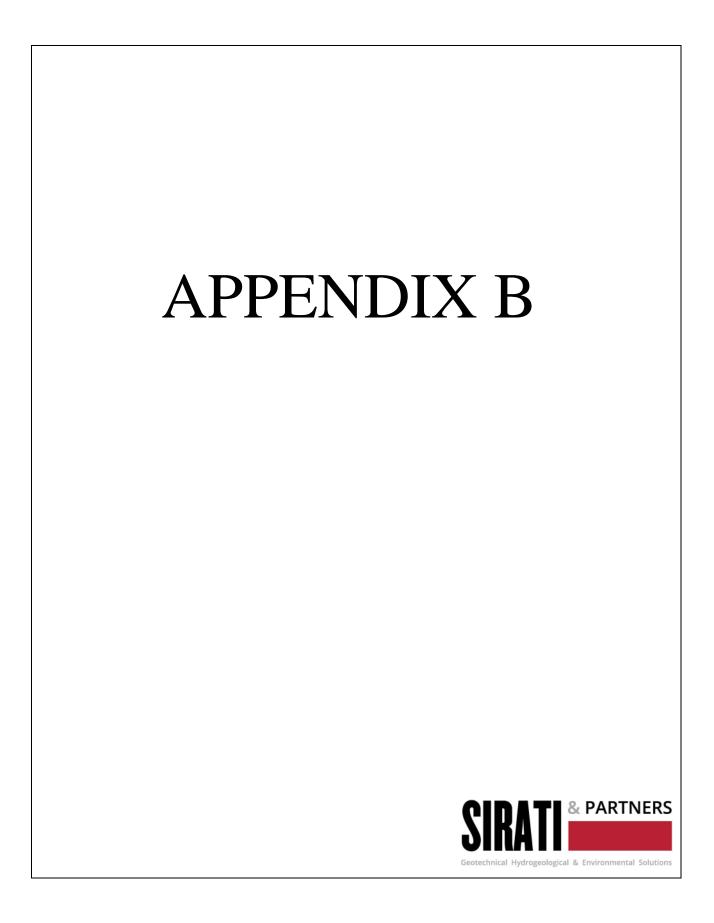
Scale:	Project Number:
N.T.S.	SP18-334-00
Date: November 2019	Figure Number: 4-4

Geotechnical Hydrogeological & Environmental Solution: 12700- Keele Street King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360 North:	
12700- Keele Street King City, ON. L7B 1H5 Phone# 905 833 1582, Fax# 905 833 5360 North:	_
Legend:	
Subject Site	
500m Study Area MECP Well	
MECP Well	
692	
1	
Project Title:	_
Nitrate Impact Assessment	
Site Location: 17791 Mount Hope Road, Caledon, ON	
Figure Title:	_
MECP Water Well Location Map	
Scale: Project Number: As Shown SP18-334-00	
Date: Figure Number: 0 100 November 2019 5-1	





Groundwater Flow Direction


	Scale:	Project Number:
	As Shown	SP18-334-00
6 60	Date:	Figure Number:
N and	November 2019	6-3

L.	MOUNT HOPE RD
	BUCASTOWN
	BUCKSTOWN PALERAVE AND DRIVE
	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
	LEGEND :
	PROPOSED DRIVEWAY WITH CULVERT
	 HYDRANT PROPOSED WATER SERV. CONNECTION
	 ☑ PROPOSED UTILITY BOX ▲ PROPOSED LIGHT POLE ☑ PROPOSED VALVE & BOX
	WATERCOURSE
	EDGE OF VEGETATION
	SEPTIC TANK SYSTEM (TYP)
	PROPOSED HOUSE (TYP) $300.15 \times$ EXISTING ELEVATION
	300.75 × EXISTING ELEVATION 300.20 × PROPOSED ELEVATION
IRE TRAIL	
WCGUIF	
	REVISIONS
	NO. BT DATE REVISION CHECKED APPR'D 1 1
	APPROVED FOR CONSTRUCTION
	THIS APPROVAL CONSTITUTES A GENERAL REVIEW AND DOES NOT CERTIFY DIMENSIONAL ACCURACY. THIS APPROVAL IS SUBJECT TO THE FURTHER CERTIFICATION OF THE "AS CONSTRUCTED" WORKS BY A REGISTERED PROFESSIONAL ENGINEER OF THE PROVINCE OF ONTARIO.
	DATE: APPROVED BY: H. MUNTZ, P.ENG.
	ELEVATION NOTES ELEVATION SHOWN HEREON ARE GEODETIC AND DERIVED FROM THE TOWN
	OF CALEDON BENCHMARKS. <u>LOCAL BENCHMARK</u> NO. 008197558066 ELEVATION = 277.870 METRES AND NO. 00819778416
	ELEVATION = 318.849 METRES DESIGNED BY APPROVED BY
	W. C. IP
	TOLINCE OF ONTRE
	PROJECT:
	PALGRAVE ESTATES SUBDIVISION
	CONSULTANT: TRANSPORTED CONSULTANT: TRANSPOR
	www.maeng.ca
	Region of Peel Working for you
	TOWN OF CALEDON
	ΠΤLΕ:
	GRADING PLAN
	SCALE: 1:1000 PROJECT No. DESIGNED BY: M.N. DRAWN BY: MAEL CAD
	CHECKED BY: A.I. DATE: OCTOBER 2019

					L	OG (OF B	OR	EHOLE	E BH	1									1 OF 1
PROJ	ECT: Proposed Residential Developme	ent						D	RILLING	DATA										
CLIEN	IT: Palgrave Estate							М	ethod: So	olid Ste	em Aug	gers								
PROJ	ECT LOCATION: Mount Hope Rd., Ca	ledon	, Ont	ario				Di	ameter:	150 mr	n					R	EF. NO).: S	P18-	334-10
	IM: Geodetic							D	ate: Oct/	19/201	8					EI	NCL N	0.: 2	2	
BHLC	DCATION: See Drawing 1							D	rilling Cor	ntracto	r:									
	SOIL PROFILE			SAMPL	ES				Head	Space	e Com	busti	ole		NAT					REMARKS
		Ι.				GROUND WATER			V	/apor	Readi	ing		PLAST LIMIT	IC NAT MOIS CON	STURE	LIQUID LIMIT	z.	NATURAL UNIT WT (kN/m ³)	AND
(m) ELEV		101			SE	-AV				(p	pm)			W _P		w	WL	POCKET PEN. (Cu) (kPa)	AL UN	GRAIN SIZE
DEPTH	DESCRIPTION	TAI	BER		BLOWS 0.3 m		E E			\geq							T (0()	DO DO DO DO	E LIR	DISTRIBUTION (%)
2000.0		STRATA PLOT	NUMBER	ТҮРЕ	z	DNO.	ELEVATION		2	4	6	8	10		TER CO		1 (%) 30		ž	GR SA SI CL
298.9	TOPSOIL:350 mm	<u>11/2</u>	-		-			╈	-Ī-	1	Ť	Ť	1		1	1	+			GR SA SI CL
298.6		- Kon	1	SS	5		-	F							0					
0.4	SAND (REWORKED): trace gravel, brown, moist, loose	\mathbb{X}						E												
E	possibly reworked, becoming light	\otimes	}—				~	, t												
-	brown	\otimes	2	SS	5		29	18						0				1		
E 207 4		\mathbb{X}						F												
- 297.4 - 1.5	SAND: light brown, moist, compact	<u> </u>	1					E												
E			3	SS	7		20	,_F						0						
-							29	"[
E	trace gravel		-					F												
-			4	SS	11			E						0						
E							29													
-	becoming brown						28	,0 -												
E			5	SS	15			Ē						0						2 93 1 4
-			_					Ē												
E I							29	5												
-						日日	. 28	, -												
						日日		Ē												
-						上日	• •	E												
E	some gravel		6	SS	23	日日	29	JE												
-			ľ		20	に目	. ²⁸	⁷⁴						ľ						
E						1 目		F												
-						日日		F												
			·			E	29 29	<u></u>												
⁶ 292.8	GRAVELLY SAND: trace cobbles,	-	-				2	,3 -												
6.1	brown, moist, compact	م. ب م. ()	5 7	SS	19		÷	Ē						0						
-		0	1			日日		ŧ						–						
F.		0				1日	29	2 L												
-		e [8				2	~												
-291.3		Ő						Ē						1						
-291.3	SILT: greyish brown, trace gravel,	- 19-19-					. ·	F						1						
- 7.0 	very moist to wet, very dense		8	SS	74		29	₁Ē						1	•			1		
-			ľ				20	''E												
-								Ē												
								F												
- - - - - - - - - - - - - - - - - - -							29	лĒ												
289.7				- 55	50/		23	Ť							0					
9.2	END OF BOREHOLE:				75			Т												
	Notes:				\mm	/								1						
	1. Borehole was open and dry upon completion of drilling.													1						
	2. Monitoring well was installed in																			
	the borehole upon completion of drilling.																			
	Monitoring well was dry on													1						
	November 1, 2018 and November 28, 2018.													1						
	140Verriber 20, 2010.													1						
														1						
														1						
			1	1	1	L				-			1	1	1	1		1	-	I
<u>GROUN</u>	DWATER ELEVATIONS					GRAPI NOTES	<u><u></u> + <u>s</u> +</u>	3,×	3 . Number to Sens	ers refer sitivity	C	S ^{∎=3%}	Strain	at Failu	re					

					LC	DG O	F BO	REF	IOLE	BH	2									1 OF 1
CLIE PRO DATU	JECT: Proposed Residential Developme NT: Palgrave Estate JECT LOCATION: Mount Hope Rd., Cal JM: Geodetic		, Onta	ario				Meth Diam Date	LING I od: Sol eter: 1 Oct/1	id Ste 50 mn 9/201	י 1 8	ers					EF. NC			334-10
BHL	OCATION: See Drawing 1				F 0	1			ng Cont					1						
(m) <u>ELEV</u> DEPTH	SOIL PROFILE DESCRIPTION	STRATA PLOT	NUMBER	SAMPL IVBE	"N" BLOWS	GROUND WATER CONDITIONS	ELEVATION		lead S Va	apor I	Readi om)	ng	ole 10	W _P I WA	TER CO	W O ONTEN	LIQUID LIMIT w _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZE DISTRIBUTION (%)
299.1 - 0.0 - 298.8	TOPSOIL: 300 mm	<u>x¹ 1₇</u>	2	-	-	00	299				Ĭ	ľ					1			GR SA SI CL IBL in ppm
- <u>298.8</u> - 0.3	FILL: topsoil mixed with silty sand to sand, brown, moist	\bigotimes	1	SS	4		200	-							o					
- - <u>1</u> -	SAND (REWORKED): trace silt, light brown, moist		2	ss	4		298	-						0						
- - - - - -			3	SS	8			-						o						
<u>- 296.8</u> - 2.3	SAND: light brown, moist, compact to dense	×	4	SS	15	-	297	-						0						
- <u>3</u> - - -			5	SS	21		296	-						0				_		
- - - - - - -							295	-										_		
- - - - - - - -	some gravel, trace cobbles, becoming brown		6	SS	21	-	294	-						0				-		78535
- - - - - - - - -	trace gravel					-	293	-										-		
- - - - - - - - -			7	SS	25	-	292	-						0						
2819239471 12012 12018 12019 12018	trace cobbles		8	SS	21	-		-						0						
-10.6PJ SPC							291	-												
	some gravel		9	SS	31	_	290	-						0				-		
1289.4 9.7 9.7 102-W44 71-6 000 M 907	END OF BOREHOLE: Notes: 1. Borehole was open and dry upon completion of drilling.																			
SPCL SC						GRAPH			Number					et Feilu						

					L	ЭG	OF BC	DRE	HOLE	BH	3									1 OF 1
PROJ	ECT: Proposed Residential Developme	ent						DR		DATA										
CLIEN	IT: Palgrave Estate							Me	thod: So	lid Ste	m Au	gers								
PROJ	ECT LOCATION: Mount Hope Rd., Cal	edon	, Ont	ario				Dia	meter: 1	50 mn	n					RI	EF. NO).: S	P18-	334-10
DATU	IM: Geodetic							Da	te: Oct/1	8/201	8					Eľ	NCL N	0.: 4		
BH LC	DCATION: See Drawing 1							Dri	lling Con	tracto	r:							_		
	SOIL PROFILE		5	SAMPL	ES				Head S	Space	Corr	nbustil	ole		NAT	URAI			L	REMARKS
(m)						GROUND WATER			V	apor l	Read	ing		PLAST LIMIT	C NAT MOIS CON	TURE	Liquid Limit	- UNIC	NATURAL UNIT WT (kN/m ³)	AND
ELEV		STRATA PLOT			BLOWS 0.3 m	AW 0	ONS ONS			(PI _	om)			W _P		N 0	WL	POCKET PEN. (Cu) (kPa)		GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	ATA	1BER	ш	BLO 0.3	NND	CONDITION		l	\geq				WA	TER CC		т (%)	90 00	ATUR (X	(%)
297.8		STR	NUMBER	ТҮРЕ	ż	GRO	ELE		2	4	6	8	10				30 30		z	GR SA SI CL
0.0	TOPSOIL: 450 mm	<u>x 1/</u>				<u>کا</u>		F												IBL in ppm
297.3		4	1	SS	5			Ē								0				
0.5	FILL: silty sand, trace gravel, dark brown, very moist to moist	\mathbb{X}	}				00	ļ												
1	becomig sandy silt, trace clay,	\bigotimes					29	1										1		
E	brown, moist	\otimes	2	SS	6			Ē							0					
296.3			<u>}</u>					F												
- 1.5	SANDY SILT TO SILTY SAND: trace clay, brown, moist, loose to				-		29	a È						-						
2	compact		3	SS	7		20	Ť						0						
								E												
								Ē												
			4	SS	18		29	5						0						1 61 30 8
- <u>3</u> 294.8 - 3.0	SAND: trace gravel, trace silt, light	<u> </u>	-			≵∶∟	 	Ē												
- 3.0	brown, very moist, compact to very		5	ss	16	ΙE		F							c	>				
E	dense		Ľ					Ē												
						E	294	4[-		
4						ΙE		F												
-						E		F												
-								Ē												
Ē	trace to some gravel, trace cobbles		6	SS	29			3						0						
-			ľ		23			Ē						ľ						
						1:E		F												
Ē						E		E												
6						ĿΕ	29	2										1		
Ē			<u> </u>			F		F												
			7	SS	40			Ē						0						
E						l	© 29	1È												
7			i				8 ²³	'												
							X	Ē												
111							X	F												
2						R	29	oF												
<u>6</u>			8	SS	31	R	5	Ē						0						
			-			R	S a	F												
						R	B	F												
0			i			R	28	9[-		
334-1						R	8	F												
<u>6 - 288.5</u>			9	SS	50/	þợ	8	÷.				_		0						
9.3 9	END OF BOREHOLE:				<u>mm</u>	1													1	
-201	Notes: 1. Borehole was open and dry upon																			
PPM-2016	completion of drilling.																			
~12	2. Monitoring well was installed in the borehole upon completion of																			
	drilling. 3. Monitoring well was dry on																			
SOIL LOG /W VOC 0~12	3. Monitoring well was dry on November 1, 2018 and																		1	
00	November 28, 2018.																		1	
																			1	
s																			1	
SPC																			1	
			•	-	-	GRAF			Numbe			8=3%		•		-		•	•	-

					LC	DG O	F BO	REH	OLE	BH	4									1 OF 1
CLIEI PRO. DATU	JECT: Proposed Residential Developme NT: Palgrave Estate JECT LOCATION: Mount Hope Rd., Cale JM: Geodetic DCATION: See Drawing 1		Onta	ario				Metho Diam Date:	LING D od: Soli eter: 18 Oct/18	d Stei 50 mm 8/2018	1 3	ers					EF. NC			334-10
DITE	SOIL PROFILE		5	AMPL	ES							huntik						1		
(m) <u>ELEV</u> DEPTH 298.5	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		ead S Va 2 4	apor F	Readi om)	ng	01e	W _P	TER CO	W O ONTENT	LIQUID LIMIT WL (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
- 0.0	FILL: sandy silt, trace gravel, trace topsoil, brown, moist	\bigotimes	1	SS	7		298	-							0			_		IBL in ppm
-	POSSIBLE FILL: silty sand, trace cobbles, trace gravel, brown		2	SS	32			-						0						
- 297.0 - 1.5 	SAND: light brown, moist, compact to dense	X	3	SS	27		297	- - - - -						0				-		
			4	SS	32		296	- - - - -						0				-		
3 - - -	trace gravel		5	SS	17	-	295	- - - - - -						0				-		
- 4 - - - - -						-	294	-										-		
- - - - - - -			6	SS	12	-	293	-						0				-		
- - - - - - - - -	some gravel		7	SS	31	-	292	-						0				-		
/5/18 1 1 1 1 1 1 1 1 1							291	-												
SP18.334-10.GPJ SPCL.GDT 12/5/18			8	SS	40	-		-						0						
	trace gravel					-	290	- - - - -												
	END OF BOREHOLE:		9	SS	26		289	-						0						
SPCL SOIL LOG // VOC 0-12 PPM-2016 8882 2.6 888 2.9 88	Notes: 1. Borehole was open and dry upon completion of drilling.																			
SPCL SOIL						GRAPH			Numbers			8 =3%								

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \underline{\text{Measurement}} & \underline{\overset{1st}{\underline{V}}} & \underline{\overset{2nd}{\underline{V}}} & \underline{\overset{3rd}{\underline{V}}} & \underline{\overset{4th}{\underline{V}}} \end{array}$

					LC	og of	F BO	REH	IOLE	BH	5										1 OF 1
PROJ	ECT: Proposed Residential Developme	ent						DRIL	LING D	ΑΤΑ											
CLIEN	IT: Palgrave Estate							Meth	od: Sol	id Ste	m Aug	jers									
PROJ	ECT LOCATION: Mount Hope Rd., Cal	ledon	, Ont	ario				Diam	eter: 1	50 mm	ı					R	EF. NC).: S	P18-	334-10	C
DATU	M: Geodetic							Date:	Oct/1	8/2018	3					E١	NCL N	O.: 6			
BHLC	OCATION: See Drawing 1							Drillir	ng Cont	ractor	:										
	SOIL PROFILE		5	SAMPL	.ES			н	ead S	pace	Com	bustil	ole		ΝΑΤΙ				L	RE	MARKS
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	щ	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		Va	apor F	Readi om)	ng		W _P		v 5	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	GR/	AND AIN SIZE RIBUTION (%)
294.1			Ŋ	ТҮРЕ	ż	GR			2 4	Ļ (6	8	10	1	0 2	20 3	30		[⁻	GR S	A SI C
0.0 293.8	TOPSOIL: 300 mm	<u>x1 1/</u>			_		294	-													
0.3	FILL: silty sand, yellowish brown,	\boxtimes	1	SS	5										o						
F	moist	\otimes						Ē													
1	sandy silt, trace clay, light brown, very moist to wet	\mathbb{X}			_		000	-													
	very moist to wet		2	SS	5		293	-								0					
- 292.6	CLAYEY SILT some sand, trace	- Hiti						Ē													
-	cobbles, trace gravel, light brown,		3	SS	7											-1				2 1	7 54 2
-	very moist, firm		1				292	-													
291.8	SAND: light brown, moist, compact	111				-		-													
E			4	SS	13			F						0							
-			<u> </u>					-													
-							291	-						-							
E			5	SS	11			-						0							
-			1					Ē													
4								-													
E							290	5													
								-													
	trace gravel							Ē													
5			6	SS	16		289	-						0							
			-				203	-													
								-													
E			1																		
-			<u> </u>				288														
E			7	SS	28									0							
E			Ľ		20			-						Ē							
7			-					-													
							287														
- 7.6	SANDY SILT: brown, moist, dense		1					Ē													
3			8	SS	32									0						1 2	8 65 6
2			<u> </u>			-	286	-													
<u>-</u>								-													
5								Ē													
285.0							285	-													
<u>6</u> 9.1	SILT: trace sand, brown, very moist, very dense		9	SS	50		200	ŧ						1	0			1	1		0809
0 □ 284.4	, , .		۹ ۱	33	52			-													0 00 8
286.5 7.6 7.6 285.0 9.1 285.0 9.1 285.0 9.1 285.0 9.1 285.0 9.1 285.0 9.1 285.0 9.1 1.5 285.0 9.1 1.5 285.0 9.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	END OF BOREHOLE:		1											1				1	1		
	Notes:																				
	 Borehole was dry and open upon completion of drilling. 		1											1				1	1		
3	prosion of anning.																				
\geq			1											1				1	1		
3			1											1				1	1		
5			1											1				1	1		
ĥ																					
	DWATER ELEVATIONS					<u>GRAPH</u>	, 3	×3.	Number	s refer	~	8 =3%		at Failu							

Gh $\frac{1}{Measurement} \quad \underbrace{\overset{1st}{\underline{\nabla}}}_{\underline{\underline{\nabla}}} \quad \underbrace{\overset{2nd}{\underline{\nabla}}}_{\underline{\underline{\nabla}}} \quad \underbrace{\overset{3rd}{\underline{\nabla}}}_{\underline{\underline{\nabla}}} \quad \underbrace{\overset{4th}{\underline{\nabla}}}_{\underline{\underline{\nabla}}}$

					LC	og ol	F BO	REHO	LE B	SH 6	5									1 OF 1
PROJ	ECT: Proposed Residential Developme	nt						DRILLI	NG DA	ГА										
CLIEN	IT: Palgrave Estate							Method	Solid	Stem	n Auge	ers								
PROJ	ECT LOCATION: Mount Hope Rd., Cal	edon,	Ont	ario				Diamete	er: 150	mm						RE	EF. NC).: S	P18-:	334-10
DATU	M: Geodetic							Date: C)ct/18/2	2018						E١		0.: 7		
BHLC	OCATION: See Drawing 1							Drilling	Contrac	ctor:										
	SOIL PROFILE		s	SAMPL	ES			Hea	id Spa	ice (Comb	oustib	le		ΝΔΤ				_	REMARKS
(m)		F				GROUND WATER CONDITIONS			Vapo	or R	eadir	ng		PLASTI LIMIT	C NAT MOIS CON	TURE	LIQUID LIMIT	Ľ.	NATURAL UNIT WT (kN/m ³)	AND
(m) ELEV		PLO.			S	o WA	NO		_	(ppr	n)			WP		N 0	WL	POCKET PEN. (Cu) (kPa)	AL UN N/m ³)	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	ATA	NUMBER		BLOWS 0.3 m		ELEVATION							\\/\AT			г (%)	DO DO	ATUR (k	(%)
299.9		STRATA PLOT	NUN	ТҮРЕ	ż	GRO CON	ELEV	2	4	6	- 8	10)				30			GR SA SI CL
- 0.0 - 299.6	TOPSOIL: 300 mm	<u>x1 1/</u>		-																IBL in ppm
- 0.3	SAND (REWORKED): trace		1	SS	5										0					
	gravel, trace silt, dark brown, moist	\bigotimes																		
F.	becoming brown	\bigotimes					299													
Ē		\otimes	2	SS	2		200							0						
E		\mathbb{X}						-												
F	becoming light brown	\otimes																		
2		\mathbb{X}	3	SS	0		298	-						0						
297.6		\otimes																		
- 2.3	FILL: silty sand, light brown, moist	\bigotimes		~~																
			4	SS	2										0					
- <u>3296.9</u> - 3.0	SAND: some silt, light brown,						297													
- 3.0	moist, compact to very dense		5	SS	11										0					
								-												
F																				
-							296													
E																				
-																				
E I			6	SS	19		295	-						0						
-			ľ	00			295	-												
E I																				
-							294													
E							-													
E			7	SS	36			-						0						
F						i i i i i i i i i i i i i i i i i i i														
7						R659	293	-												
_E			1																	
81/6/						6659														
						6659														
			8	SS	59	RG3	292							0						
			-			6659														
						R665		Ē												
						R655														
100- 100- 100- 100- 100- 100- 100- 100-	hooming groutely because of the				<u> </u>	R655	291											1		
9F16-334-10.GFJ 9FU	beoming greyish brown, very moist		9	SS	52	R655									o					
<u>e 290.2</u>			Ĺ			6659														
9.7	END OF BOREHOLE:																			
	Notes:																			
SOIL LOG /W VOC U~12 PPM	1. Borehole was dry and open upon completion of drilling.																			
3	Monitoring well was installed in																			
< l	the borehole upon completion of drilling.																			
3	3. Borehole was dry on November 1, 2018 and November 27, 2018.																			
	1, 2010 and NOVETIDE $21, 2010$.																			
n L																				
7																				L
						<u>GRAPH</u>	. 3	×3. Nu	mhore re	fer		8=3%								

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \underbrace{\stackrel{1 \text{st}}{\underline{\bigvee}} \quad \underbrace{\stackrel{2 \text{nd}}{\underline{\bigvee}} \quad \underbrace{\stackrel{3 \text{rd}}{\underline{\bigvee}} \quad \underbrace{\stackrel{4 \text{th}}{\underline{\bigvee}}} \end{array}$

					LC	og ol	F BO	REH	IOLE	BH	7									1 OF 1
PROJ	ECT: Proposed Residential Developme	ent						DRIL	LING	DATA										
CLIEN	NT: Palgrave Estate							Meth	od: Sol	id Ste	m Aug	jers								
PROJ	ECT LOCATION: Mount Hope Rd., Cal	edon,	, Ont	ario				Diam	eter: 1	50 mn	n					RI	EF. NC).: S	P18-	334-10
DATU	IM: Geodetic							Date:	Oct/1	9/201	8					E١		O.: 8		
BH LC	DCATION: See Drawing 1							Drillir	ng Con	tractor	r:								1	
	SOIL PROFILE		s	SAMPL	ES	~		Н	ead S	pace	Com	bustil	ole	DIASTI		URAL	LIQUID		F	REMARKS
(m)		1				GROUND WATER CONDITIONS			Va	apor l n)	Readi pm)	ng		PLASTI LIMIT			LIMIT	a) EN	NATURAL UNIT WT (KN/m ³)	
ELEV	DESCRIPTION	A PLO	~		BLOWS 0.3 m	NOI-	NOL				_			W _P	(א כ	WL	Э К Е Е	(kN/m	GRAIN SIZE DISTRIBUTION
DEPTH		STRATA PLOT	NUMBER	ТҮРЕ	- Blo		ELEVATION			\geq				WA	TER CC	NTEN	T (%)	0 ⁰ 0	NATU	(%)
298.9			R	Ł	ż	GR CO	ELI		2 4	4	6	8	10	1	0 2	20 3	30			GR SA SI CI
- 0.0 - 298.6	TOPSOIL: 300 mm	<u>×1/</u>	1	SS	5										0					
- 0.3	SAND (REWORKED): trace silt, brown, moist, loose			00				-							Č					
298.1		\mathbb{X}																		
- <u>1</u> 0.8	SAND: trace silt, light brown, moist		2	SS	11		298													
E								-												
Ē																				
-			3	SS	16		297							•						
-																				
								-												
-			4	SS	24										0					
3	some silt, wet		<u> </u>				296	-												
-	some sin, wet		5	SS	32									0						
-			·					-												
E							295	-												
-							295	-												
- -								-												
-294.3	SANDY SILT: brown, wet, compact	ΗΠ																		
5			6	SS	30		294									•		-		
-			<u> </u>			-		-												
-								-												
6							293	-												
-				~~	10			-												
-			1	SS	18			Ē								Í				
-							292	-												
-								Ē												
291.3								F												
7.6	SAND: brown, wet to moist,		-					E												
	compact		8	SS	23		291	 			-							1		
								Ē												
								Ē												
0- - -							200													
289.8		L	-				290	-												
<u>8</u> - 9.1	GRAVELLY SAND: brown, moist, very dense	ه () اه ()	9	SS	60			Ē						0						
n_ <u>●</u> 289.2		0	Ľ					-												
9.7 9.7	END OF BOREHOLE:																			
291.3 7.6 289.8 289.8 9.1 289.9 9.7 289.9 9.7 9.7 9.7 9.7 9.7 9.7 9.7	Notes: 1. Borehole was dry and open upon																			
20	 Borehole was dry and open upon completion of drilling. 																			
N N																				
0		1	I	I	I	<u>GRAPH</u>			Number	e rof	1	e -201		at Failur	I	I	I	1	1	I
CROUN												· · · · · · · · · · · //								

					L	DG O	F BO	RE	HOLE	E BH	8									1 OF	- 1
	ECT: Proposed Residential Developme	ent							LLING hod: So			jers									
PROJ	ECT LOCATION: Mount Hope Rd., Cal	edon	, Ont	ario				Dia	meter:	150 mr	n					R	EF. NO	D.: S	P18-	334-10	
	M: Geodetic								e: Oct/							E	NCL N	O.: 9			
BHLC	DCATION: See Drawing 1		-						ling Co									-	-	i	
	SOIL PROFILE		5	SAMPL	ES	~			Head	Space	e Com Readi	bustil	ole	PLAST	IC NAT MOIS CON		LIQUID LIMIT		¥	REMARK	S
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	Щ	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		v	(p	pm)	ng		W _P		<i>N</i> O	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZ DISTRIBUT (%)	
302.8			₽	ТҮРЕ	ż	R C	Ē		2	4	6	8	10	1	0 2	20	30			GR SA SI	CL
- 0.0	TOPSOIL: 450 mm	<u>× 1,</u> 1,	1	SS	6			-							0						
<u>302.3</u> 0.5	FILL: silty sand, trace topsoil, dark brown, moist	\mathbb{X}	<u> </u>			-	302	-													
- - -			2	SS	2		302	-						0							
-			3	SS	2		301	-													
-		\otimes		33	2			-													
- <u>300.5</u> - 2.3	SAND: trace cobbbles, trace		-					-													
-	gravel, light brown, moist, compact		4	SS	16		300	-						0							
- <u>3</u> 299.8 - 3.0	SILTY SAND: light brown, very		-					-													
-	moist, compact		5	SS	14			-							0						
			<u> </u>				299	-	_					-							
-								-													
								-													
-298.2 4.6	SAND: light brown, moist, compact					-	298	-	_									1			
-	to dense		6	SS	12			-						0							
-								-													
-							297	-	_					-							
<u>-</u> 6 -			_					-													
-			7	SS	9			-							o						
			<u> </u>				296	-	_					-							
-								-													
-								-													
-			8	SS	42		295	-						0							
-				33	42			-						ľ							
-								Ē													
							294	-	_					<u> </u>							
9			-					-													
- - 293.1			9	SS	31			-						0							
9.7	END OF BOREHOLE:		1											1				\square			
- <u>293.1</u> 9.7	Notes: 1. Borehole was dry and open upon completion of drilling.																				
		-	-	1		GRAPH	·	<u></u>	Numbe		1	8=3%	1		I	I	_			1	

					LC	DG O	F BO	REHC	LE E	BH 9									1 OF 1
PROJ	ECT: Proposed Residential Developme	nt						DRILLI	NG DA	ТА									
CLIEN	T: Palgrave Estate							Method	: Solid	Stem A	Augers								
PROJ	ECT LOCATION: Mount Hope Rd., Cal	edon,	Onta	ario				Diamet	er: 150	mm					RE	EF. NC).: SI	P18-3	334-10
DATU	M: Geodetic							Date: 0	Oct/19/2	2018					EN		O.: 10	0	
BH LC	CATION: See Drawing 1							Drilling	Contra	ctor:									
	SOIL PROFILE		s	AMPL	ES	~		Hea	ad Spa	ace_Co	ombu	stible	DIAST	NAT	URAL	חוווסעו		F	REMARKS
(m)		5				GROUND WATER CONDITIONS			Vap	or Rea (ppm			LIMIT	IC NAT MOIS CON		LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	
ELEV	DESCRIPTION	A PLO	۲		BLOWS 0.3 m	NOI:	NOI				/		W _P		N 0	WL	i) (k	RAL L (kN/m	GRAIN SIZE
DEPTH		STRATA PLOT	NUMBER	ТҮРЕ		NNO	ELEVATION				X		WA	TER CO		Г (%)	9 Q Q	NATU	(%)
298.2			N	Τ	ž	88		2	4	6	8	10		10 2	20 3	30			GR SA SI CL
- 0.0 - 297.9	TOPSOIL: 300 mm	<u>x' /y</u>	1	SS	6	X	298	-					_						
- 0.3	FILL: sandy silt to silty sand, trace topsoil, dark brown, wet	\mathbb{X}	'	00															
-								-											
- <u>1</u>			2	SS	3										0				
		\otimes					297												
-		\bigotimes																	
-		\otimes	3	SS	4			-							0				
- 295.9		\otimes					296	-					_						
- 2.3	SAND: light brown, moist, compact																		
-			4	SS	15								0						
3								-											
-			5	SS	29		295	-					0						
-																			
-																			
-								-											
							294	-											
-293.6	GRAVELLY SAND : trace cobbles,	0.0																	
5	light brown, moist, dense	00	6	SS	35								0						
-		0					293	-					_						
-		° 0																	
Ē		0				ŀ∃:		-											
<u>6</u>		. O																	
-		20	7	~~~	25		292												
-		0.0	7	SS	25			-						Ť					
Ē		o.O					291	-											
		• ()																	
290.6	SAND: trace silt, light brown, moist,	0						-											
0.0	dense		8	SS	41								0						
						L L L L L L L L L L L L L L L L L L L	290	-					-						
334-10.GPJ								-											
- 2334-																			
	trace gravel		9	SS	43		289	-					0						
ກ_ ຼ288.5			0	00				-											
9.7	END OF BOREHOLE:						1												
	Notes: 1. Borehole was dry and open upon																		
0~1	1. Borehole was dry and open upon completion of drilling.																		
	2. Monitoring well was installed in the borehole upon completion of						1												
N N	drillina.																		
Ĭ	3. Monitoring well was dry on November 1, 2018, and November																		
SOIL LOG /W VOC 0~12	27, 2018.																		
shor																			
n 🗌 🗌		1		1		I	I						_	1		1	L		

					LO	g of	BOR	REH	OLE	BH 1	0B										1 0	ι F 1
PROJ	ECT: Proposed Residential Developme	ent						DR	LLING	DATA												
CLIEN	IT: Palgrave Estate							Met	hod: So	olid Ste	em Aug	gers										
PROJ	ECT LOCATION: Mount Hope Rd., Cal	edon	, Ont	ario				Dia	neter:	150 mr	n					R	EF. NC).: S	P18-	334-1	0	
DATU	IM: Geodetic							Dat	e: Oct/	19/201	8					E١	NCL N	0.: 1	1			
BHLC	OCATION: See Drawing 1							Dril	ing Co	ntracto	r:									•		
	SOIL PROFILE		5	SAMPL	ES	~			Head	Space	Com	busti	ble	DIAST	NAT	URAL			F	RI	EMAR	KS
(m)		-OT			<u>ଛ</u> -	GROUND WATER CONDITIONS	7		V	apor/ apor/	Readi pm)	ing		LIMIT WP	IC NAT MOIS CON	TURE TENT W	LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	GF	AND RAIN SI	
ELEV DEPTH	DESCRIPTION	STRATA PLOT	Щ		BLOWS 0.3 m		ELEVATION							-		0		OCKE (DU)	(KN/	DIST		TION
		TRA-	NUMBER	ТҮРЕ	"Z	ROU OND	LEV		2	4	×	8	10		TER CO		. ,	_	Ā		(%)	
295.7	TOPSOIL: 300 MM	0	z	-	F		_	-		4		-	10		10 2	20 :	30		-	GR :	SA SI	
- 0.0 - 295.4 - 0.3	FILL: topsoil mixed with silty sand,	\boxtimes	1	SS	6	CANCINE -									0							
	reddish brown, very moist, loose SAND (REWORKED): brown, very	\otimes					295	; 	-													
-	moist, very loose		2	SS	0			-							0							
-						IN I	294															
- - -		\otimes	3	SS	0										¢							
- 293.4	SAND: brown, moist to very moist,							Ē														
Ē	very loose to very dense		4	SS	4		293	Ē						0								
3			_					Ē														
	trace cobbles		5	SS	5			Ē						•								
E I			Ľ					Ē						ľ								
E							292	E										1				
-			1					Ē														
								Ē														
	trace gravel		-				291	-						_								
- - 5	·		6	SS	9			E						0								
			<u> </u>			目		F														
								Ē														
E			1				290	Ē														
<u>6</u>			_			H		Ē														
E			7	SS	18			Ē						0								
E							289	È										-				
- 7								Ē														
- I								Ē														
12/5/	some grouply trace day light brown		8	SS	50/		288	-												3	88 2	, ₇
	some gravel, trace clay, light brown				125		200	È													<i>J</i> O 2	
			1		\ <u>mm</u>			F														
<u>ה</u> ביים לאביים לאבי מינים לאביים ל								E														
0.0							287	' F														
334-1								Ē														
8	some silt (pockets)		9	SS	38			Ē														
SPCL SOIL LOG M VOC 0-12 PPM-2016 5 PPM-334-10.GPJ SPCL.601 12/5/18 6 87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				00	50		286	-						Ű								
9.7 9.7	END OF BOREHOLE:																					
12	Notes: 1. Borehole was dry and open upon																					
è	completion of drilling. 2. Monitoring well was installed in																					
	the borehole upon completion of																					
< 00	drilling. 3. Borehole was dry on November																					
	1, 2018 and November 27, 2018.																					
														1					1			
Ъ.																						
						RAPH	•	~	Numbe			8=3%	,									

O ^{8=3%} Strain at Failure

CLIEN	ECT: Proposed Residential Developme IT: Palgrave Estate ECT LOCATION: Mount Hope Rd., Ca		Ont	ario				Metho	od: So	DATA ild Ste 50 mr	em Au	ger				P	EE NC) · · ·	P10	334-00
DATU	M: Geodetic DCATION:	leuon	, Uni	ano				Date:									NCL N			334-00
	SOIL PROFILE		5	Sampl	ES	ER		DYNA RESIS					100	PLAST LIMIT			LIQUID LIMIT	ż	T WT	REMARKS AND
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/ ୦ UI ● QI	AR ST NCONF JICK T			KPa) FIELD & Sens LAB	VANE sitivity /ANE	WA	TER C	W O ONTEN		POCKET PI (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	
299.1 29 8.9	FILL: silty sand, trace rootlets,	s.	z	-	£	υõ	団 299	2	20 4	40	60	80	100		0 :	20	30	-	-	GR SA SI
0.2	brown, moist // SAND: brown, moist, loose	1	1	SS	7			-												
	,		i					-												
L	oxidated		2	SS	5		298	-												
							298	-												
297.6 1.5	SILTY SAND: brown, oxidated,	11						-												
2	moist, compact		3	SS	10		297	-												
296.8							297	-												
2.3	SANDY SILT: trace clay, brown, very moist, compact		4	SS	12			-												
296.1								-												
3.0	SAND: brown, moist, compact		5	SS	27		296	-												
								-												
							295	-												
								-												
	becoming grey and very moist							-												
			6	SS	26		294													
								-												
								-												
								-												
	becoming very dense		-				293	-						-						
	5 7		7	SS	63															
								-												
<u>.</u>							292	-												
2 3 290.0							292	-												
								-												
			8	SS	52															
							291							-						
								-												
								-												
290.0 9.1	SAND AND GRAVEL: trace	0.0	-				290	-										1		
	cobbles, brown, moist, very dense	0.0	9	SS	98															
9.1		。 0 0						ł												
	Continued Next Page	þ	1			GRAPH		× ³ :						ı at Failur	<u> </u>					

					LO	g of	BOR	EHO	OLE E	3H 19	9-1									2	OF 3
PROJ	ECT: Proposed Residential Developme	ent						DRIL	LING I	DATA											
	NT: Palgrave Estate							Meth	od: Soi	ld Ster	n Aug	er									
	IECT LOCATION: Mount Hope Rd., Cal	ledon	, Ont	ario					neter: 1		-					RI	EF. NC).: S	P19-	334-00	
	IM: Geodetic							Date	: Aug/2	23/201	9						NCL N				
BHLC	DCATION:								Ū												
	SOIL PROFILE		5	SAMPL	ES			DYN/	MIC CC		IETRAT	FION								DEM	
		Ι.				GROUND WATER CONDITIONS				0 6	<u>~</u> 0 8	0 1	00	PLASTI LIMIT	C MOIS	URAL STURE TENT	LIQUID LIMIT	z	NATURAL UNIT WT (kN/m ³)	REM/ AN	
(m)		STRATA PLOT			SIE	NS NS	z		AR ST	i i		I	1	W _P		N	WL	POCKET PEN. (Cu) (kPa)	VL UN	GRAIN	
ELEV DEPTH	DESCRIPTION	TAF	BER		BLOWS 0.3 m	UND DI DI	ATIC	οι	INCONF	INED	÷	FIÉLD V & Sensit	ivity			0		δ CCΓ Δ	TUR/	DISTRIE (%	
		STR/	NUMBER	ТҮРЕ	ż	SR0	ELEVATION		UICK TI 20 4	RIAXIAL 0 6		LAB VA	ANE 00		TER CC 0 2		1 (%) 30		Ž	GR SA	
-	SAND AND GRAVEL: trace	6. V			-		289		-				-			-	-	-			
-	cobbles, brown, moist, very dense(Continued)	0.0	Ś					E													
-	dense(Continued)	0						E													
288.4	SAND: trace gravel, some cobbles,	- 				┥╘		E .													
11	brown, very moist, very dense		10	SS	50/	目		È.													
					mm].≣.	288	-													
-								F													
-						目		F													
-								E													
12							287														
286.9	SAND AND GRAVEL: some					1:目:	201	È.													
_ 12.2	cobbles, brown, very moist, dense	0	11	SS	49			È													
-		0	<u> </u>			↓:目:		F													
-		0.0						F													
-		0	1				W. L.														
-		о. О					Oct 08	3, 201 I	9												
-		0.0	Ś					F													
-		0				:• = :•		È.													
14		0	Ś					ŀ													
-		0	1				285	-													
-		0						F													
-								F													
-		, O						E													
15		0 C	Š				284														
283.9 5 15.2	SAND: grey, wet, dense	0	1				204														
- 10.2	GAND: grey, wet, dense		12	SS	36			È.													
- 283.4	──Ęnd of SPT sampling	<u> </u>	1					F													
15.7	Augered from 15.66 m to 18.3 m							È													
<u>16</u> -	below ground surface						283														
-								E													
-								E													
-								E													
6 17								F													
1221							282	: <u> </u>													
12								È.													
8								È.													
Lo Lo								F													
S 18							201	F													
ບ້- ອີ 280.8							281	-													
₹ <u>200.0</u> ₹ 18.3	END OF BOREHOLE:		1					1										1	1		
SPCL SOIL LOG SP18-334-10 - 2019.GPJ SPCLGDT 10/22/19 81 82 88 89 88 89 88 80 88 80 80 80 80 80 80 80 80 80 80	Note:		1			1	1	1						1							
-334	1. Borehole caved at 11.58 mbgs.		1			1	1	1						1							
SP18	2. Water was encountered at 15.2 mbgs upon completion of drilling.		1			1	1	1						1							
у́9	Monitoring well was installed		1			1	1	1						1							
L LC	upon completion of drilling. 4. Groundwater level was observed																				
sol	at 12.96 mbgs on August 30, 2019.		1			1	1	1						1							
PC	5. Groundwater level was observed at 13 mbgs on September 5, 2019.		1			1	1	1						1							
ري ا	Continued Next Page		L		1		<u> </u>	<u>_</u>	<u> </u>				L	1		L		1	I		
GROUN	IDWATER ELEVATIONS					<u>GRAPH</u> <u>NOTES</u>	+ 3	,×3:	Number to Sens	s reter tivity	0	s =3%	Strain	at Failur	e						

 $\begin{array}{c} 1 \\ \text{Measurement} & \underline{\underline{}}^{1\text{st}} & \underline{\underline{}}^{2\text{nd}} & \underline{\underline{}}^{3\text{rd}} \\ \underline{\underline{}}^{2\text{nd}} & \underline{\underline{}}^{2\text{rd}} & \underline{\underline{}}^{4\text{th}} \end{array}$

PROJECT: Proposed Residential Development

CLIENT: Palgrave Estate

PROJECT LOCATION: Mount Hope Rd., Caledon, Ontario

DATUM: Geodetic

BH LC	DCATION:		-									TION						-	i —	
	SOIL PROFILE				ES	œ.		RESIS		NE PEI PLOT		IUN		PLAST		URAL	LIQUID		۲	REMARKS
(m) ELEV DEPTH				ТҮРЕ	v" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/ 0 U 0 Q	AR ST NCONF UICK TI	I RENG INED RIAXIAL	iTH (kl + - ×	BO 1 Pa) FIELD V & Sensit LAB V	ANE ivity ANE		TER CO			POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
	6. Groundwater level was observed at 12.98 mbgs on October 8, 2019.	STRATA PLOT	NUMBER			CO														<u>GR SA SI CL</u>
						GRAPH														

REF. NO.: SP19-334-00

ENCL NO.: 2

DRILLING DATA

Date: Aug/23/2019

Method: Soild Stem Auger Diameter: 150 mm

PRACECT LOCATION: Mount Hope Rd., Caledon, Ontario Demeter: 200 mm REE: NO: SPI DATUME Goodies Demeter: Coll (2000) DEMELS: SPI SOIL PROFILE SAMPLES Demeter: Coll (2000) REE: NO: SPI (m) DESCRIPTION Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE Bit BASE (m) DESCRIPTION Bit BASE Bit BASE Bit BASE <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>iger</th> <th>em Au</th> <th>low St</th> <th>od: Hol</th> <th>Metho</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>IENT: Palgrave Estate</th> <th>CLIEN</th>								iger	em Au	low St	od: Hol	Metho							IENT: Palgrave Estate	CLIEN
BH LOCATION: SOLL PROFILE SAMPLES UPMANC CONFERENCE NOT UPMANC CONFERENCE NOT UPMANC CONFERENCE NOT UPMANC CONFERENCE NOT UPMANC PROFILE UPMANC PROFILE <t< td=""><td>9-334-00</td><td>P19-:</td><td>.: SF</td><td>F. NO</td><td>RE</td><td></td><td></td><td></td><td></td><td>00 mm</td><td>eter: 20</td><td>Diam</td><td></td><td></td><td>ario</td><td>Onta</td><td>don,</td><td>, Caled</td><td>ROJECT LOCATION: Mount Hope Rd., Ca</td><td>PROJ</td></t<>	9-334-00	P19-:	.: SF	F. NO	RE					00 mm	eter: 20	Diam			ario	Onta	don,	, Caled	ROJECT LOCATION: Mount Hope Rd., Ca	PROJ
SOIL PROFILE SAMPLES (m) ELCY 299.1 DESCRIPTION Image: Solution of the second s).: 3	CL NC	EN)	0/2019	Oct/1	Date:							ATUM: Geodetic	DATU
(m) BEEV DEPTH DESCRIPTION (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)		—																		BH LC
Um Um<	REMARKS	₽			JRAL		PI ASTI	ION		PLOT	TANCE	RESIS		S	AMPL	s			SOIL PROFILE	
298.0 FLL: sity sand, trace rootlets, x 0.2 gown, moist SAND: brown, moist, loose oxidated	AND	» TINĽ	PEN.	LIMIT	ΓENT	CON	LINNI		1				Ś				ЪТ))	(m)
298.0 FLL: sity sand, trace rootlets, x 0.2 gown, moist SAND: brown, moist, loose oxidated		KAL L (kN/m)	u) (kF	WL	v >	۷ (₩ _P	Pa)	TH (kP	RENG	AR STR	SHEA	NOI NOI	3 m		۲	V PLO			ELEV
298.0 FLL: sity sand, trace rootlets, x 0.2 gown, moist SAND: brown, moist, loose oxidated	(%)	NATU	90 00	(%)	NTENT	FER CC	WA	& Sensitiv	+ ;		ICK TE			BL0	щ	MBEI	RATA		TH DESCRIPTION	DEPTH
298.0 FLL: sity sand, trace rootlets, x 0.2 gown, moist SAND: brown, moist, loose oxidated	GR SA SI CL	_											ELE CO	ž	T	NUN	STF		9.1	299.1
SAND: brown, moist, loose 0xidated 297.6 1.5 SILTY SAND: brown, oxidated, moist, compact 2.3 SANDY SILT: trace clay, brown, very moist, compact 3.0 SAND: brown, moist, compact 3.0 SAND: brown, moist, compact 296.1												-	29				\propto		9.9 FILL: silty sand, trace rootlets,	- 29 8.9
oxidated 297.6 1.5 SLTY SAND: brown, oxidated, molst, compact 298.8 SANDY SILT: trace clay, brown, very molst, compact 296.8 SAND: brown, molst, compact 296.1 296 3.0 SAND: brown, molst, compact 4 296 becoming grey and very molst a becoming very dense												-						 / :	SAND: brown, moist, loose	[0.2
297.6 1.5 SILTY SAND: brown, oxidated, moist, compact 296.8 296.1 3.0 SANDY SILT: trace clay, brown, very moist, compact 296.1 3.0 SAND: brown, moist, compact 4 becoming grey and very moist becoming very dense												-							- , , ,	-
297.6 1.5 SILTY SAND: brown, oxidated, moist, compact 296.8 296.1 3.0 SANDY SILT: trace clay, brown, very moist, compact 296.1 3.0 SAND: brown, moist, compact 4 becoming grey and very moist becoming very dense												-						÷		
297.6 Image: Subtry SAND: brown, oxidated, moist, compact 2 200.8 2.3 SANDY SILT: trace clay, brown, very moist, compact 290.1 3.0 3.0 SAND: brown, moist, compact 200.1 201 3.0 SAND: brown, moist, compact 201 202 202 203 203 204 204 204 205 204 204 204 205 204 204 204 205 204 204 204 205 204 204 204 204 204 204 204 205 204 204 204 205 204 204 204 205 204 204 204 203 204												-	20						oxidated	1
1.5 SILTY SAND: brown, oxidated, moist, compact 2 296.8 2.3 SANDY SILT: trace clay, brown, very moist, compact 296.1 3.0 3.0 SAND: brown, moist, compact 2 296 296 297 296.1 296 296 296 296 296 296 296 296 296 296 296 296 296 296 296 296 296 297 296 298 296 299 296 290 296 291 295 292 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294												-	20					:		-
1.5 SILTY SAND: brown, oxidated, moist, compact 2 296.8 2.3 SANDY SILT: trace clay, brown, very moist, compact 296.1 3.0 3.0 SAND: brown, moist, compact 2 296 296 297 296.1 296 296 296 296 296 296 296 296 296 296 296 296 296 296 296 296 296 297 296 298 296 299 296 290 296 291 295 292 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294												-							7.6	297.6
296.8 297 297 297 296.1 296 296 3.0 SAND: brown, moist, compact 296 4 296 296 6 becoming grey and very moist 4UGER 9 9 9 9 9												-							1.5 SILTY SAND: brown, oxidated,	_ 1.5
296.8 297 0 0 0 0 2.3 SANDY SILT: trace clay, brown, very moist, compact 296 296 0 <												-							moist, compact	-
2.3 SANDY SILT: trace clay, brown, very moist, compact 296.1 296 3.0 SAND: brown, moist, compact 4 296 6 296 9 9													29							-
AUGER very moist, compact 296.1 3.0 SAND: brown, moist, compact becoming grey and very moist becoming very dense												E						 		296.8
3.0 SAND: brown, moist, compact 4 296 6 becoming grey and very moist 6 becoming very dense												-					÷ŀ.		very moist, compact	- 2.3
3.0 SAND: brown, moist, compact 4 296 6 becoming grey and very moist 6 becoming very dense												-								-
AUGER AUGER becoming grey and very moist becoming very dense												-								
AUGER AUGER becoming grey and very moist becoming very dense												-	29						3.0 SAND: brown, moist, compact	_ 3.0
AUGER AUGER becoming grey and very moist becoming very dense												-								-
AUGER AUGER becoming grey and very moist becoming very dense												F								-
AUGER AUGER becoming grey and very moist becoming very dense												-								-
AUGER AUGER becoming grey and very moist becoming very dense												-	29					:		4
becoming grey and very moist												-						·.		-
becoming grey and very moist												-								-
6 294 294 1 1 1 1 1 6 becoming very dense 293 1 1 1 1 1												-			UGEH	A			becoming grey and very moist	-
becoming very dense												-								-
becoming very dense												-	29							-
becoming very dense												-						ŀ		-
becoming very dense												-						:		-
becoming very dense												-						:		-
becoming very dense												-								6
												-	29					÷	becoming very dense	-
												E								-
9 AS 9 AS 291 291 291 291 291 291 291 291												-						:		-
												-						·.		-
												-	29							52/18
												-						ŀ		10/2
												-								
9 AS 9 AS 291 												Ē								-CL.
												-			AS	9				Ъ,
												-	29					:		Ð-
												-						·. 		2016
												-						:		- - -
												F						ŀ.		334-
	1											Ē	20					. .		P18
trace gravel, moist, very dense												-	29						trace gravel, moist, very dense	0 0
	1											È i		105	SS	10		.		9
	1											F					·* .*	· ·		log
												Ē						ŀ		124

PROJECT: Proposed Residential Development

DRILLING DATA

LOG OF BOREHOLE BH 19-1A

 Image: continued local continter continued local continued local continued local continued lo

<u>GRAPH</u> <u>NOTES</u> + ³, × ³: Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

PROJECT: Proposed Residential Development DRILLING DATA CLIENT: Palgrave Estate Method: Hollow Stem Auge																				
CLIENT: Palgrave Estate Method: Hollow Stem PROJECT LOCATION: Mount Hope Rd., Caledon, Ontario Diameter: 200 mm																				
												uger								
		edon,	Onta	ario															P19-3	334-00
	M: Geodetic							Date:	Oct/1	0/2019)					El	NCL N	0.: 3		
вн ГС	SOIL PROFILE		· ·	AMPL	Ed			DYNA		NE PEN PLOT	IETRA	TION								
			3	AIVIPL	.ES	н								PLASTI LIMIT	C MATI	URAL	LIQUID LIMIT	7	TW -	REMARKS AND
(m)		LOT			ଷ୍ଟ	GROUND WATER CONDITIONS	z					1	00	W _P	CON	TENT N	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	TA P	ER		BLOWS 0.3 m		ATIO		NCONF	RENG ⁻ INED	і н (кі +	FIELD V & Sensit	'ANE		(э——		(CU)	TURAI (kn	DISTRIBUTION (%)
		STRATA PLOT	NUMBER	түре	r Z	ROL	ELEVATION			RIAXIAL	×	LAB V/	ANE		TER CC 0 2		T (%) 30	L.		
	SAND: brown, moist,	S S	z	F	-	00	ш 289													GR SA SI C
	compact(Continued)							-												
								-												
	trace cobbles, trace gravel, trace							-												
.	silt, light brown		11	SS	64		288	-												
							200	-												
								-												
								-												
.								-												
							287													
			10		07			-												
			12	SS	67			-												
								-												
							286	-												
								E												
	some gravel, trace silt							F												
	some graver, trace sit		13	SS	50			-												
						」 目:	285	-												
						」 目:		-												
								-												
								ŀ												
							W. L. 2 Oct 21	284.2 r , 2019	n 											
	some silt, trace clay, wet		14	DO				E												
			14	00				-												
								-												
						目		-												
						l:∃:	283	-												
								-												
202.2								-												
282.3 16.8	END OF BOREHOLE:							-						-						
	Note:																			
	 Monitoring well was installed upon completion of drilling. 																			
	2. Groundwater level was observed at 14.84 mbgs on October 18, 2019.																			
	3. Groundwater level was observed																			
	at 14.85 mbgs on October 21, 2019.																			
- 1							1													

SPCL SOIL LOG SP18-334-10 - 2019.GPJ SPCL.GDT 10/22/19

 $\begin{array}{c} \underline{\text{GROUNDWATER ELEVATIONS}} \\ \text{Measurement} \quad \underbrace{\stackrel{1\text{st}}{\underline{\checkmark}} \quad \underbrace{\stackrel{2\text{nd}}{\underline{\checkmark}} \quad \underbrace{\stackrel{3\text{rd}}{\underline{\checkmark}} \quad \underbrace{\stackrel{4\text{th}}{\underline{\checkmark}}} \\ \end{array} \end{array}$

LOG OF BOREHOLE BH 19-1A

PROJ	ECT: Proposed Residential Developme	ent						DF	RILLI	NG	DATA										
CLIEN	NT: Palgrave Estate							Me	ethoc	l: Soi	ld Ste	em Au	ger								
PROJ	ECT LOCATION: Mount Hope Rd., Ca	ledon	, Ont	ario				Dia	amet	er: 1	50 mr	n					R	EF. NC).: S	P19-3	334-00
DATU	IM: Geodetic							Da	ate: /	Aug/2	23/201	19					E	NCL N	O.: 4		
BH LC	DCATION:		-				1		/N 1 A N A										—		
(m)	SOIL PROFILE	LOT	5	SAMPL		GROUND WATER CONDITIONS	z		20	4		60	80	100	PLAST LIMIT W _P		TURAL STURE NTENT W	LIQUID LIMIT W _L		NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" <u>BLOWS</u> 0.3 m		ELEVATION	0	UNG	CONF	INED RIAXIA	+ L X	FIÉLD & Sen LAB	VANE sitivity VANE 100			-0 ONTEN 20	T (%)	POCK (cu)	NATURA (KN	DISTRIBUTION (%)
298.2	FILL: sand, some cobbles, some				-	00		+		4		+		100			20	1		$\left - \right $	GR SA SI C
297.9	gravel, brown to grey, moist		41	ss	5		298	3											1		
- 0.3 - -	SILTY SAND: brown, moist, loose		4	SS	21	-		-													
- - - -			2	SS	5		297	,													
-							201	-													
	trace cobbles, dark brown, very loose		3	SS	4			-													
-		뮘					296	Ē													
295.9	SANDY SILT: trace clay, brown,		· •				200	1													
 - -	very moist, compact							-													
<u>3</u> 295.2 - 3.0	SAND: brown, moist, compact							-													
-			5	SS	25		295	5													
-								-													
4			·					-													
-							294	1 <u>-</u>							-				1		
293.6								ŀ													
- 4.6	SILTY SAND: brown, very moist,							-													
5	very dense		6	SS	64			-													
-			÷				293	3											-		
-								F													
-								-													
6000 (Ē													
⁶ 292.1 - 6.1	SAND: some clay, brown, very	414					292	2							-				-		
-	moist, dense		7	SS	42			-													
-								-													
- ק-ת			·					Ē													
			:				291	1													
<u> </u>			:					-													
	brown to grey, wet, compact		·					_													
<u>}</u>	Siourito groy, not, compact		8	SS	27			ŀ													
- -			·]				290	Ē													
							. 290	1													
								F													
- 334			:					Ē													
								ŀ													
9.1	END OF BOREHOLE:								T												
	Note: 1. Borehole caved at 7 mbgs.																				
9	2. Water was encountered at 6.7 mbgs upon completion of drilling.																				
GROUN	Continued Next Page					<u>GRAPH</u>	+ 3	׳	3. Ni	umber	s refer		C ⁸ =3	[%] Strain	at Failu	re					

DRILLING DATA

Diameter: 150 mm

Date: Aug/23/2019

Method: Soild Stem Auger

PROJECT: Proposed Residential Development

CLIENT: Palgrave Estate

PROJECT LOCATION: Mount Hope Rd., Caledon, Ontario

DATUM: Geodetic

	SOIL PROFILE	AMPL	ES	~		DYNA RESIS	MIC CC	NE PE PLOT		TION		PLAST	NAT	URAL	LIQUID		Þ	RE	MAR	٢S		
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	түре	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/ 0 U 0 Q	AR ST NCONF UICK TI	I RENG INED RIAXIAI	⊥ GTH (kl + ∟ ×	I FIELD V & Sensit LAB V	ANE		ER CO	W O ONTEN		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	GR/ DISTI	(%)	IZI TIC
	3. Monitoring well was installed upon completion of drilling. 4. Groundwater level was observed at 5.8 mbgs on August 30, 2019. 5. Groundwater level was observed to be dry on October 8, 2019. 7. Groundwater level was observed at 6.53 mbgs on October 18, 2019. 8. Groundwater level was observed at 6.52 mbgs on October 21, 2019.																					

REF. NO.: SP19-334-00 ENCL NO.: 4

PRC	JECT: Proposed Residential Developme	ent						DRII	LING	DATA										
CLIE	ENT: Palgrave Estate							Meth	od: So	oild Ste	em Aug	ger								
PRC	DJECT LOCATION: Mount Hope Rd., Cal	edon,	, Ont	ario				Dian	neter: ²	150 mi	n					R	EF. NC).: S	P19-	334-00
DAT	UM: Geodetic							Date	: Aug	23/20	19					El	NCL N	O.: 5		
BHI	LOCATION:					1														
	SOIL PROFILE		5	SAMPL	ES	~		RESI	STANC	E PLOT		-		PLAST	C NAT	URAL			⊧	REMARKS
(m)		1				GROUND WATER CONDITIONS			20	40	60	80	100	PLASTI LIMIT		TURE ITENT W	LIQUID LIMIT	DEN.	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE
ELEV		STRATA PLOT	Ř		BLOWS 0.3 m		ELEVATION		AR ST		GTH (k	Pa) FIELD	VANE	W _P		w o	WL	CKET Su) (x	JRAL ((kN/m	DISTRIBUTION
DEPTH		RAT,	NUMBER	түре			EVA.		QUICK T		LX		sitivity VANE	WA	TER CO	ONTEN	T (%)	d S	NATU	(%)
298.2	2	st	Ĩ	∠	ž	<u></u> В С	Ц		20	40	60	80	100	1	0 2	20	30			GR SA SI CL
- 0.0	D POSSIBLE FILL: sand, brown, moist	\bigotimes					298													IBL in ppm
-			11	SS	12		200	-												
297.4								-												
- 0.8								E												
F			2	SS	4			-												
			-				297	-												
-	trace cobbles, loose							Ē												
-			3	SS	5			-												
2								-												
-							296	-			-		_	-						
F			4	SS	5			[
-								-												
3								-												
-			5	SS	4		295													
-			Ľ				200	-												
-								-												
È.								Ē												
-								[
-]				294	-	-		-			+						
F								-												
-	becoming grey, very moist and very dense		6	SS	53			-												
5			Ľ	00				-												
Ē							293						_							
-								-												
F			1					E												
6								-												
Ē	becoming dense						000													
-			7	SS	41		292	-												
-																				
-								-												
22/19								-												
10/22/							291						_	-						
- GDT			·					-												
SPCL					200			-												
			8	SS	36			Ē												
19.GPJ							290													
- 2019.							200	-												
4 1 1								-												
sP18-334-10 . 			1					E										1	1	
0)								ŀ										1	1	
			1				289	-	1		1			1		1		1		
<u>s</u> t								E										1	1	
5 - -								F											1	
G 10	Continued Next Page	<u> </u>						ŀ										1		
<u>GROL</u>	INDWATER ELEVATIONS				<u>(</u>	<u>GRAPH</u> NOTES	+ 3,	× ³ :	Numbe to Sens	ers refer sitivity	Ċ	8 =3	[%] Strair	ı at Failur	e					
Measu	urement $\underline{\nabla}$ and $\underline{\nabla}$ and $\underline{\nabla}$ are $\underline{\nabla}$ and $\underline{\nabla}$									•										

PROJ	ECT LOCATION: Mount Hope Rd., Cal				ou mm					RE	F. NC).: S	P19-	334-00					
	M: Geodetic				Date:	Aug/2	23/201	9				EN	ICL NO	D.: 5					
BH LC	DCATION:	-															1	i	
(m) <u>ELEV</u> DEPTH	SOIL PROFILE	STRATA PLOT	NUMBER	AMPL BALL	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	2 SHEA O UN	0 4 R STI NCONF	RENG	0 8 TH (kF + ×	Pa) FIELD V. & Sensiti LAB VA	ANE vity			LIQUID LIMIT W _L (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m ³)	REMARKS AND GRAIN SIZE DISTRIBUTION (%)
	SAND: brown, moist, very loose(Continued)	8	2 9 9	AS	2		 287 286 285												GR SA SI C
<u>14.0</u>	END OF BOREHOLE: Note: 1. Borehole caved at 7 mbgs. 2. Water was encountered at 12.2 mbgs upon completion of drilling. 3. Monitoring well was installed upon completion of drilling. 4. Monitoring well was observed to be dry on September 5, 2019. 5. Monitoring well observed to be dry on August 30, 2019. 5. Monitoring well observed to be dry on September 5, 2019. 6. Monitoring well observed to be dry on October 8, 2019.																		

DRILLING DATA

Method: Soild Stem Auger Diameter: 150

REF NO . SP10-334-00

LOG OF BOREHOLE BH 19-3

PROJECT: Proposed Residential Development CLIENT: Palgrave Estate

PRO IECT LOCATION: Mount Hope Rd Caledon Ontario

LOG O	F BOREHO	LE BH 19-3A
-------	-----------------	-------------

DRILLING DATA

Diameter: 200 mm

Method: Hollow Stem Auger

PROJECT: Proposed Residential Development

CLIENT: Palgrave Estate

PROJECT LOCATION: Mount Hope Rd., Caledon, Ontario

DATUM: Geodetic

	IM: Geodetic							Date	: Oct/	11/201	9					E١	NCL N	O.: 6		
BHLC	DCATION:							DYN/	AMIC CO	DNE PEI	NETRA	TION		1				T	T	
	SOIL PROFILE	-	L.	SAMPL	E2	н			AMIC CO STANCE					PLASTI LIMIT		URAL	LIQUID LIMIT		۲M.	REMARKS
(m)		10			<u>v</u> _	GROUND WATER CONDITIONS	7			1		1	00	W _P		ITENT W	LIMI I WL	POCKET PEN. (Cu) (KPa)	NATURAL UNIT WT (kN/m ³)	AND GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	ĥ		BLOWS 0.3 m		ELEVATION		AR ST		TH (kl +	Pa) FIELD V & Sensit	ANE	ļ Ē		o	—	OCKE OCKE	(KN/r	DISTRIBUTION
DEPTH		RAT	NUMBER	ТҮРЕ	= =		EVA	• (QUICK T	RIAXIAL	- ×	LAB V	ANE		TER CO			e o	NAT	(%)
298.2		st	ž	È	ŗ	50	Ш		20 4	40 6	30 8 	30 1	00	1	0 2	20 :	30			GR SA SI C
- 0.0	POSSIBLE FILL: sand, brown, moist	\otimes					298	-												IBL in ppm
-		\otimes					200													
- -		\bigotimes						-												
297.4	SAND: brown, moist, very loose	<u>ب</u>						-												
-	· · · · ·		i					[
-							297													
-	trace cobbles, loose							-												
Ē								-												
2								-												
-							296	-												
			:				290	Ŀ						1					1	
E								t -												
								F												
-			i					E						1					1	
-			1				295											-		
-																				
E								-												
4								-												
-							204	-												
-							294													
-	becoming grey, very moist and very							-												
	dense		1					-												
5								-												
-				AUGEF	>		293													
-			. '		`															
-								-												
6																				
5	becoming dense						202	-												
-	-						292	[
-																				
-								-												
			1					F						1					1	
			1				291							+				1	1	
			:				Í	ŀ						1					1	
			1				Í	È.						1					1	
								F												
- - -							2000	E												
]				290													
								ŀ												
200-								F												
								Ē						1					1	
3-			1				289	[1				1	1	
<u>+</u>								ŀ												
								-												
ך 10								-												
	Continued Next Page					<u>GRAPH</u> NOTES	<u>1</u> 3	× ^{3.}	Numbe	rs refer	C	8=3%	Strain	at Failur	·•					
GROUN	$\frac{1}{2} \frac{1}{2} \frac{1}$					NOTES	<u>}</u>		Numbe to Sens	itivity			Cuairi	arrand	-					
Measure	ement $\underline{\vee}$ $\underline{\mathbf{Y}}$ $\underline{\mathbf{V}}$ $\underline{\mathbf{V}}$																			

REF. NO.: SP19-334-00

LOG OF BOREHOLE	BH 19-3A
-----------------	----------

DRILLING DATA

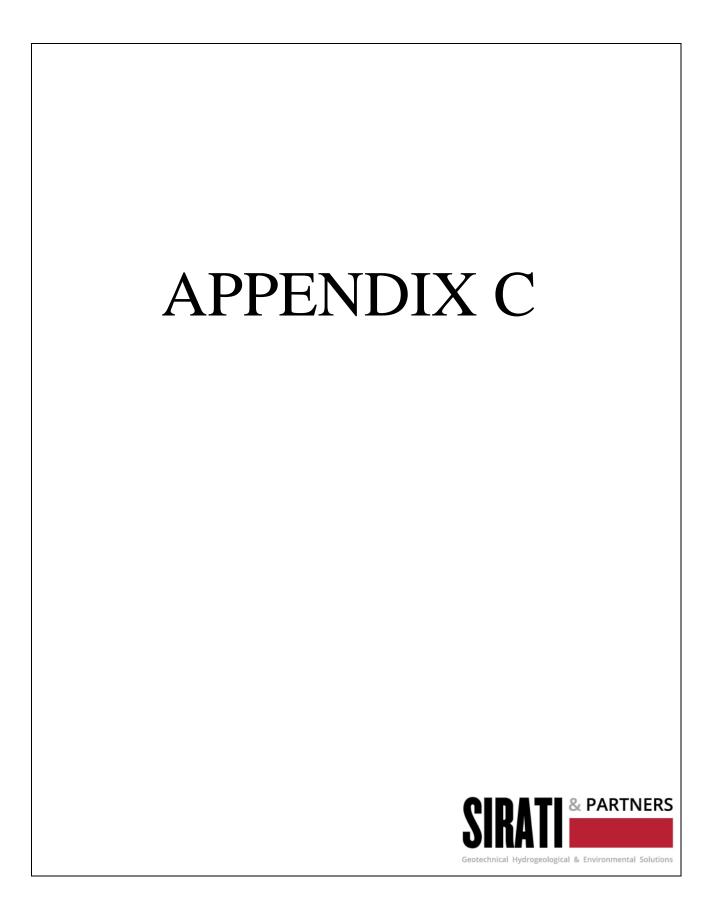
Diameter: 200 mm

Date: Oct/11/2019

Method: Hollow Stem Auger

PROJECT: Proposed Residential Development

CLIENT: Palgrave Estate


PROJECT LOCATION: Mount Hope Rd., Caledon, Ontario

DATUM: Geodetic

BH LOCATION:

F	DITLO	SOIL PROFILE		5	SAMPL	FS			DY	NAN		NE PEN PLOT	NETRA	TION								
-				\vdash			GROUND WATER		RE				~		~~	PLASTI LIMIT	C NAT MOIS	URAL	LIQUID LIMIT	z	NATURAL UNIT WT (kN/m ³)	REMARKS AND
	(m)		Lot			ଷ୍ଟ	VAT			2			1	30 1	1	W _P	CON	TENT N	WL	POCKET PEN. (Cu) (kPa)	"""	GRAIN SIZE
Ē	ELEV DEPTH	DESCRIPTION	A P	н		BLOWS 0.3 m			0	IEA UN		KENG INED	ін (к +	Pa) FIELD V & Sensit LAB V	ANE	⊢		э——	1	(CU)	URAI (KN	
			STRATA PLOT	NUMBER	ТҮРЕ			ELEVATION	•	QL	JICK TF	RIAXIAL	. ×	LAB V	ANE		TER CO		• •	ē.	TAT	(%)
┝			<u>ال</u>	ž	F	ż	50	ы ы	-	2	0 4	06	3 0	30 1	00	1	0 2	20 :	30			GR SA SI CL
Ē		SAND: brown, moist, very loose(Continued)						28	8È													
Ē								20	Ť													
Ē	287.5								È.													
F	10.7	SAND: light brown, moist							F													
11	L			8	DO				t													
Ē	287.0							28	7													
F	11.3	Augered to 16.8 mbgs						-	È.													
E									F													
E									F													
12	2								F													
E								28	6—											-		
Ŀ									F													
Ē									-													
Ŀ									F													
-	3							·	E													
È								28	5[-		
È							日日		Ł													
Ē							日	2	Ŀ													
Ē							l∷ ⊟:		E													
-	-								È													
F								28	4													
F									283	ا 8 n	n											
E								Oct 2	1, 20)19												
15	5						ĽΕ	• •	F													
Ŀ									,F													
Ē							l E	. 28	3											1		
F									E													
ţ							「目		E													
16	3						日日	· · ·	Ł													
Ē								28	۶Ŀ													
Ē									1													
F									È													
	281.4	END OF BOREHOLE:		-					╞							 				\vdash	-	
SPCL SOIL LOG SP18-334-10 - 2019.GPJ SPCL.GDT 10/22/19																						
10/2		Note: 1. Borehole caved at 16.8 mbgs.																				
1 U		Monitoring well was installed																				
CL.G		upon completion of drilling. 3. Groundwater level was observed																				
SP(at 14.45 mbgs on October 18, 2019.																				
GPJ		4. Groundwater level was observed at 14.44 mbgs on October 21, 2019.																				
019.																						
0 - 2																						
34-1(
8-30																						
SP1																						
g																						
L SC																						
SPC																						

REF. NO.: SP19-334-00 ENCL NO.: 6

Page 1 of 9

CLIENT NAME: MISC AGAT CLIENT ON, ON ATTENTION TO: Sudhakar Kurli PROJECT: SP18-334-30 AGAT WORK ORDER: 19T529356 WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Oct 22, 2019

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for L Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific certs scope of accreditation AGAT Laboratories (Mississauga) is also accredited by the Ca Association for Laboratory Accreditation Inc. (CALA) on Specific certs	
are location and parameter specific. A complete listing of parameters for each location from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be the scope of accreditation. Measurement Uncertainty is not taken into consideration w	y the Canadian er tests. Accreditations I location is available arily be included in

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T529356 PROJECT: SP18-334-30

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Sudhakar Kurli

DATE REPORTED: 2019-10-22

SAMPLED BY:

Water Quality Assessment (mg/L)

DATE RECEIVED: 2019-10-10

DATE RECEIVED: 2019-10-10				
			20191008-001-	
1	S	AMPLE DESCRIPTION:	BH19+2	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2019-10-08	
Parameter	Unit	G/S RDL	608065	
Electrical Conductivity	µS/cm	2	811	
рН	pH Units	NA	7.62	
Saturation pH (Calculated)			6.89	
Langelier Index (Calculated)			0.73	
Total Hardness (as CaCO3) (Calculated)	mg/L	0.5	367	
Total Dissolved Solids	mg/L	20	594	
Alkalinity (as CaCO3)	mg/L	5	272	
Bicarbonate (as CaCO3)	mg/L	5	272	
Carbonate (as CaCO3)	mg/L	5	<5	
Hydroxide (as CaCO3)	mg/L	5	<5	
Fluoride	mg/L	0.25	<0.25	
Chloride	mg/L	0.50	20.1	
Nitrate as N	mg/L	0.25	29.3	
Nitrite as N	mg/L	0.25	<0.25	
Bromide	mg/L	0.25	<0.25	
Sulphate	mg/L	0.50	20.0	
Ortho Phosphate as P	mg/L	0.50	<0.50	
Reactive Silica	mg/L	0.05	13.0	
Ammonia as N	mg/L	0.02	<0.02	
Total Phosphorus	mg/L	0.02	3.72	
Total Organic Carbon	mg/L	1.0	8.5	
Colour	TCU	5	<5	
Turbidity	NTU	3.0	6890	
Calcium	mg/L	0.05	132	
Magnesium	mg/L	0.05	9.02	
Sodium	mg/L	0.05	9.58	
Potassium	mg/L	0.05	1.31	
Aluminum	mg/L	0.004	0.060	

Certified By:

Nivine Basily

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19T529356 PROJECT: SP18-334-30

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Sudhakar Kurli

DATE REPORTED: 2019-10-22

SAMPLED BY:

Water Quality Assessment (mg/L)

DATE RECEIVED: 2019-10-10

DATE RECEIVED: 2019-10			
			20191008-001-
	SA	MPLE DESCRIPTION:	BH19+2
		SAMPLE TYPE:	Water
		DATE SAMPLED:	2019-10-08
Parameter	Unit	G/S RDL	608065
Antimony	mg/L	0.003	<0.003
Arsenic	mg/L	0.003	<0.003
Barium	mg/L	0.002	0.112
Beryllium	mg/L	0.001	<0.001
Boron	mg/L	0.010	0.027
Cadmium	mg/L	0.001	<0.001
Chromium	mg/L	0.003	<0.003
Cobalt	mg/L	0.001	0.004
Copper	mg/L	0.003	<0.003
Iron	mg/L	0.010	<0.010
Lead	mg/L	0.001	<0.001
Manganese	mg/L	0.002	1.29
Mercury	mg/L	0.0001	<0.0001
Molybdenum	mg/L	0.002	<0.002
Nickel	mg/L	0.003	<0.003
Selenium	mg/L	0.004	<0.004
Silver	mg/L	0.002	<0.002
Strontium	mg/L	0.005	1.09
Thallium	mg/L	0.006	<0.006
Tin	mg/L	0.002	<0.002
Titanium	mg/L	0.002	<0.002
Tungsten	mg/L	0.010	<0.010
Uranium	mg/L	0.002	<0.002
Vanadium	mg/L	0.002	<0.002
Zinc	mg/L	0.005	0.008
Zirconium	mg/L	0.004	<0.004
% Difference/ Ion Balance (Calculated)	%	NA	4.46

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19T529356 PROJECT: SP18-334-30

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Sudhakar Kurli

SAMPLED BY:

Water Quality Assessment (mg/L)

DATE RECEIVED: 2019-10-10

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

608065 Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference.

Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2019-10-22

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Nivine Basily

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SP18-334-30

SAMPLING SITE:

AGAT WORK ORDER: 19T529356 ATTENTION TO: Sudhakar Kurli

SAMPLED BY:

	Water Analysis														
RPT Date: Oct 22, 2019			0	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN		MAT		KE
DADAMETED		Sample	5	5		Method Blank	Measured	Acce Measured Lir		_		ptable nits	_	1.11	ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower Upper		Recovery	Lower	Upper
Water Quality Assessment (mg/L)															
Electrical Conductivity	608780		1200	1200	0.0%	< 2	108%	80%	120%						
рН	608780		7.69	7.60	1.2%	NA	99%	90%	110%						
Alkalinity (as CaCO3)	608780		506	506	0.0%	< 5	96%	80%	120%						
Bicarbonate (as CaCO3)	608780		506	506	0.0%	< 5									
Carbonate (as CaCO3)	608780		<5	<5	NA	< 5									
Hydroxide (as CaCO3)	608780		<5	<5	NA	< 5									
Fluoride	604149		<0.25	<0.25	NA	< 0.05	101%	90%	110%	102%	90%	110%	91%	85%	115%
Chloride	604149		14.6	15.1	3.4%	< 0.10	90%	90%	110%	101%	90%	110%	101%	85%	115%
Nitrate as N	604149		<0.25	<0.25	NA	< 0.05	93%	90%	110%	107%	90%	110%	104%	85%	115%
Nitrite as N	604149		<0.25	<0.25	NA	< 0.05	NA	90%	110%	106%	90%	110%	105%	85%	115%
Bromide	604149		<0.25	<0.25	NA	< 0.05	103%	90%	110%	102%	90%	110%	101%	85%	115%
Sulphate	604149		172	179	4.0%	< 0.10	98%	90%	110%	105%	90%	110%	95%	85%	115%
Ortho Phosphate as P	604149		<0.50	<0.50	NA	< 0.10	95%	90%	110%	100%	90%	110%	95%	80%	120%
Reactive Silica	582369		2.86	2.84	0.7%	< 0.05	100%	90%	110%	105%	90%	110%	101%	80%	120%
Ammonia as N	601989		1.04	1.03	1.0%	< 0.02	104%	90%	110%	101%	90%	110%	93%	70%	130%
Total Phosphorus	607866		0.03	0.03	NA	< 0.02	95%	80%	120%	98%	90%	110%	98%	70%	130%
Total Organic Carbon	608860		8.3	9.2	10.3%	< 0.5	106%	90%	110%	104%	90%	110%	90%	80%	120%
Colour	608065	608065	<5	<5	NA	< 5	100%	90%	110%				/-		
Turbidity	602035		<0.5	< 0.5	NA	< 0.5	99%	90%	110%						
Calcium	609113		102	103	1.0%	< 0.05	98%	90%	110%	98%	90%	110%	96%	70%	130%
Magnesium	609113		10.7	10.6	0.9%	< 0.05	99%	90%	110%	98%	90%	110%	96%	70%	130%
Sodium	609113		12.7	12.5	1.6%	< 0.05	101%	90%	110%	100%	90%	110%	97%	70%	130%
Potassium	609113		15.0	14.8	1.3%	< 0.05	99%	90%	110%	99%	90%	110%	97%	70%	130%
Aluminum	608206		0.131	0.127	3.1%	< 0.004	105%	90%	110%	101%	90%	110%	100%	70%	130%
Antimony	608206		<0.003	<0.003	NA	< 0.003	107%	90%	110%	95%	90%	110%	95%	70%	130%
Arsenic	608206		0.004	<0.003	NA	< 0.003	103%	90%	110%	97%	90%	110%	105%	70%	130%
Barium	608206		0.054	0.053	1.9%	< 0.002	97%	90%	110%	96%	90%	110%	91%	70%	130%
Beryllium	608206		<0.001	<0.001	NA	< 0.001	103%	90%	110%	99%	90%	110%	107%	70%	130%
Boron	608206		0.139	0.141	1.4%	< 0.010	102%	90%	110%	97%	90%	110%	101%	70%	130%
Cadmium	608206		<0.001	<0.001	NA	< 0.001	101%	90%	110%	100%	90%	110%	101%	70%	130%
Chromium	608206		<0.003	<0.003	NA	< 0.003	100%	90%	110%	98%	90%	110%	95%	70%	130%
Cobalt	608206		<0.001	<0.000	NA	< 0.001	99%	90%	110%	97%	90%	110%	97%	70%	130%
Copper	608206		< 0.003	<0.003	NA	< 0.003	102%		110%	100%		110%	97%	70%	130%
Iron	608206		1.01	0.995	1.5%	< 0.000	102%			97%		110%	101%		130%
Lead	608206		<0.001	<0.001	NA	< 0.001	104%		110%	102%		110%	98%		130%
Manganese	608206		0.045	0.045	0.0%	< 0.002	108%	90%	110%	106%	90%	110%	100%	70%	130%
Mercury	606734		<0.0001	<0.0001	NA	< 0.0001		90%	110%	103%		120%	99%	80%	120%
Molybdenum	608206		0.013	0.013	0.0%	< 0.002	99%	90%	110%	96%	90%	110%	98%	70%	130%
Nickel	608206		< 0.013	< 0.013	NA	< 0.002			110%	99%		110%	98%		130%
	000200		-0.000	~0.000	11/1	~ 0.000	10170	5070	11070	5576	5078	11070	5570	1070	10070

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SP18-334-30

SAMPLING SITE:

AGAT WORK ORDER: 19T529356 ATTENTION TO: Sudhakar Kurli SAMPLED BY:

Water Analysis (Continued)

					-	•									
RPT Date: Oct 22, 2019		OUPLICAT		REFEREN	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Lin	eptable nits	Recovery	1.10	eptable nits
		ld					Value	Lower	Upper	-	Lower	Upper		Lower	Upper
Selenium	608206		0.012	0.011	NA	< 0.004	101%	90%	110%	97%	90%	110%	84%	70%	130%
Silver	608206		<0.002	<0.002	NA	< 0.002	104%	90%	110%	104%	90%	110%	89%	70%	130%
Strontium	608206		3.77	3.70	1.9%	< 0.005	99%	90%	110%	98%	90%	110%	91%	70%	130%
Thallium	608206		<0.006	<0.006	NA	< 0.006	104%	90%	110%	99%	90%	110%	97%	70%	130%
Tin	608206		<0.002	< 0.002	NA	< 0.002	103%	90%	110%	97%	90%	110%	99%	70%	130%
Titanium	608206		0.005	0.005	NA	< 0.002	100%	90%	110%	95%	90%	110%	97%	70%	130%
Tungsten	608206		<0.010	<0.010	NA	< 0.010	98%	90%	110%	92%	90%	110%	96%	70%	130%
Uranium	608206		0.015	0.015	0.0%	< 0.002	104%	90%	110%	102%	90%	110%	104%	70%	130%
Vanadium	608206		<0.002	< 0.002	NA	< 0.002	101%	90%	110%	98%	90%	110%	99%	70%	130%
Zinc	608206		0.052	0.051	1.9%	< 0.005	106%	90%	110%	103%	90%	110%	105%	70%	130%
Zirconium	608206		<0.004	<0.004	NA	< 0.004	93%	90%	110%	93%	90%	110%	92%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SP18-334-30

AGAT WORK ORDER: 19T529356 **ATTENTION TO: Sudhakar Kurli**

SAMPLING SITE:		SAMPLED BY:	1					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis								
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE					
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE					
Saturation pH (Calculated)		SM 2320 B	CALCULATION					
Langelier Index (Calculated)		SM 2330B	CALCULATION					
Total Hardness (as CaCO3) (Calculated)	MET-93-6105	EPA SW-846 6010C & 200.7	CALCULATION					
Total Dissolved Solids	INOR-93-6028	SM 2540 C	BALANCE					
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE					
Bicarbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE					
Carbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE					
Hydroxide (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE					
Fluoride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Bromide	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Ortho Phosphate as P	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Reactive Silica	INOR-93-6070	QuickChem 10-114-27-1-A & SM 45 Si-F	⁾ LACHAT FIA					
Ammonia as N	INOR-93-6059	SM 4500-NH3 H	LACHAT FIA					
Total Phosphorus	INOR-93-6057	QuikChem 10-115-01-3-A & SM 4500-P I	LACHAT FIA					
Total Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310	SHIMADZU CARBON ANALYZER					
Colour	INOR-93-6046	SM 2120 B	SPECTROPHOTOMETER					
Turbidity	INOR-93-6044	SM 2130 B	NEPHELOMETER					
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES					
Aluminum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Iron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS					
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Strontium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS					

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SP18-334-30

SAMPLING SITE:

AGAT WORK ORDER: 19T529356 ATTENTION TO: Sudhakar Kurli SAMPI ED BY:

SAMPLING SHE:		SAWPLED DT:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Tin	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Titanium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Tungsten	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Zirconium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
% Difference/ Ion Balance (Calculated)		SM 1030 E	CALCULATION								

									5	835 Coop	ore Au	200	L	abor	ator	y U	se O	nly				
	1		abor	ato	ories	-	Ph: 90		sissau .5100	ga, Ontar Fax: 905	o L4Z . 712 ,5	1Y2 122	v	/ork Ord	ler #:	_	19		52	93	<u>, 56</u>	>
Chain of Custody Record		_			e Drinking Water Chain of Cusi	tody Form (p	otable w	vater co		bearth.ag		om		ooler Q rrival Te			es:	States	no	29.	9	37
Report Information: Company: Contact:	PART	NERS			Regulatory Requires (Please check all applicable blokes)	ments:	Prin	lo Re	egula	tory Re	quirer	nent		ustody lotes:	Seall	Intact	:	 Yes	-2		70	
Address: 12700 Kee	le st	4			Table Indicate One	Sewer				egulation	558						_			uired:		
Phone: 647.554.9057 Fax:				☐ Ind/Com ☐ Res/Park ☐ Agriculture	Storn	Storm Prov. Water Quali Objectives (PWQC				Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)												
Reports to be sent to: 1. Email: 2. Email:	Sirati	·ca			Soil Texture (Check One) Reg	ion Indicate	one	-	<u> </u>	ther		-		μD	Busir ays			Day		s arges Ma	∟ _{Day}	
Project Information: Project: SPI8 - 334 - 3 Site Location: Mt. Hope RI		Ion			Is this submission for Record of Site Condit Yes	or a tion?		Cert		Indicate Guidellin te of An	e on			*7	Plea AT is e	ase pr exclus	rovide sive of	prior n weeke	otificat ends ar	tion for indistatut	rush TA tory hol	NT lidays
Sampled By: AGAT Quote #: Please note: If quotation number is Invoice Information: Company: Contact: Address: Email:	PO: not provided, client	will be billed full price Bill To Same:		, _ (Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	d	Field Filtered - Metals, Hg, CrVI	and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) O □ Hydride Metals □ 153 Metals (Incl. Hydrides) O	CICI CIN	Full Metals Scan		s: DVOC DBTEX DTHM	F1 - F4		Total T Aroclors	chlorine Pesticides	TCLP: DM&I DVOCS DABNS DB(a)P DCBS	se A L Units			Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sampl Matrix		ons	Y/N	Metals and	□ All Met	ORPs: [OCr ⁶⁺ C	Full Mer	Nutrient	Volatiles:	PHCs F	BAHS	PCBs: 1 Total	Organochlorine	TCLP: D	Sewer Use	Ň		Potential
20191008-001-B#19+2	08/10	Р М	5	Gn)		N												×	· · · · · · · · · · · · · · · · · · ·		
Samples Relinquished By (Print Name and Sign):	se	Date Oct	09/2019	ne 31.5	Samples Réceived By (Print Nan Samples Réceived By (Print Nan Samples Réceived By (Print Nan	ne and Sign):	~				1	Date Date	rol	9 Tim	8:	45	2	F	age _	1_0	f	
Document ID: DIV-78 1511.016		Date	1 1 "		Samples Received by (Print Nam	ne anu olgri):		_		D' L C		Date		Tim		1 14/1-	N	r: T	09	151	79	

Page 1 of 9

CLIENT NAME: MISC AGAT CLIENT ON, ON **ATTENTION TO: Sudhakar Kurli** PROJECT: SP18-334-30 AGAT WORK ORDER: 19T533219 WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician DATE REPORTED: Oct 28, 2019 PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscient	AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory
(APEGA) Western Enviro-Agricultural Laboratory Association (V Environmental Services Association of Alberta (ESAA	Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T533219 PROJECT: SP18-334-30

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Sudhakar Kurli

SAMPLED BY:

Water Quality Assessment (mg/L)

DATE RECEIVED: 2019-10-21					DATE REPORTED: 2019-10-28
			20191018-BH19-	20191018-BH19-	
		SAMPLE DESCRIPTION:	1	3	
		SAMPLE TYPE:	Water	Water	
		DATE SAMPLED:	2019-10-18	2019-10-18	
Parameter	Unit	G/S RDL	635183	635200	
Electrical Conductivity	µS/cm	2	637	743	
рН	pH Units	NA	7.79	7.71	
Saturation pH (Calculated)			6.97	6.88	
Langelier Index (Calculated)			0.82	0.83	
Total Hardness (as CaCO3) (Calculated)	mg/L	0.5	330	378	
Total Dissolved Solids	mg/L	20	494	554	
Alkalinity (as CaCO3)	mg/L	5	237	268	
Bicarbonate (as CaCO3)	mg/L	5	237	268	
Carbonate (as CaCO3)	mg/L	5	<5	<5	
Hydroxide (as CaCO3)	mg/L	5	<5	<5	
Fluoride	mg/L	0.10	<0.10	<0.10	
Chloride	mg/L	0.20	29.9	29.8	
Nitrate as N	mg/L	0.10	21.5	27.0	
Nitrite as N	mg/L	0.10	<0.10	<0.10	
Bromide	mg/L	0.10	<0.10	<0.10	
Sulphate	mg/L	0.20	15.3	20.7	
Ortho Phosphate as P	mg/L	0.20	<0.20	<0.20	
Reactive Silica	mg/L	0.05	10.1	13.3	
Ammonia as N	mg/L	0.02	<0.02	<0.02	
Total Phosphorus	mg/L	0.02	0.39	2.76	
Total Organic Carbon	mg/L	1.0	4.3	12.9	
Colour	TCU	5	<5	<5	
Turbidity	NTU	3.0	24900	7300	
Calcium	mg/L	0.05	116	130	
Magnesium	mg/L	0.05	9.89	12.9	
Sodium	mg/L	0.05	8.80	10.8	
Potassium	mg/L	0.05	1.77	1.95	
Aluminum	mg/L	0.004	0.350	4.36	

Jacky 2th **Certified By:**

AGAT WORK ORDER: 19T533219 PROJECT: SP18-334-30

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Sudhakar Kurli

SAMPLED BY:

Water Quality Assessment (mg/L)

DATE RECEIVED: 2019-10-21					DATE REPORTED: 2019-10-28
20191018-BH19- 20191018-BH19-					
	5	SAMPLE DESCRIPTION:	1	3	
		SAMPLE TYPE:	Water	Water	
		DATE SAMPLED:	2019-10-18	2019-10-18	
Parameter	Unit	G/S RDL	635183	635200	
Antimony	mg/L	0.003	<0.003	<0.003	
Arsenic	mg/L	0.003	<0.003	<0.003	
Barium	mg/L	0.002	0.229	0.342	
Beryllium	mg/L	0.001	<0.001	<0.001	
Boron	mg/L	0.010	0.037	0.041	
Cadmium	mg/L	0.001	<0.001	<0.001	
Chromium	mg/L	0.003	0.003	0.008	
Cobalt	mg/L	0.001	0.012	0.046	
Copper	mg/L	0.003	<0.003	0.030	
ron	mg/L	0.010	0.128	3.12	
ead	mg/L	0.001	<0.001	0.013	
langanese	mg/L	0.002	2.23	3.11	
/lercury	mg/L	0.0001	<0.0001	<0.0001	
lolybdenum	mg/L	0.002	<0.002	<0.002	
lickel	mg/L	0.003	0.088	0.025	
Selenium	mg/L	0.004	< 0.004	<0.004	
Silver	mg/L	0.002	<0.002	<0.002	
Strontium	mg/L	0.005	1.65	1.49	
hallium	mg/L	0.006	<0.006	<0.006	
ïn	mg/L	0.002	<0.002	<0.002	
ītanium	mg/L	0.002	0.009	0.015	
ungsten	mg/L	0.010	<0.010	<0.010	
Iranium	mg/L	0.002	<0.002	<0.002	
anadium	mg/L	0.002	<0.002	0.007	
ïnc	mg/L	0.005	0.018	0.087	
írconium	mg/L	0.004	<0.004	<0.004	
% Difference/ Ion Balance (Calculated)	%	NA	2.76	2.90	

Jacky 2th

Certificate of Analysis

AGAT WORK ORDER: 19T533219 PROJECT: SP18-334-30

CLIENT NAME: MISC AGAT CLIENT ON

SAMPLING SITE:

ATTENTION TO: Sudhakar Kurli

DATE REPORTED: 2019-10-28

SAMPLED BY:

Water Quality Assessment (mg/L)

DATE RECEIVED: 2019-10-21

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

635183-635200 Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference. Analysis performed at AGAT Toronto (unless marked by *)

Jacky 2th

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

Water Analysia

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SP18-334-30

SAMPLING SITE:

AGAT WORK ORDER: 19T533219 ATTENTION TO: Sudhakar Kurli

SAMPLED BY:

				Wate	er Ar	nalys	is								
RPT Date: Oct 28, 2019				OUPLICATE	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery	1 1 10	eptable nits
		ľ					Value	Lower	Upper		Lower	Upper		Lower	Upper
Water Quality Assessment (mg/L))														
Electrical Conductivity	637812		25	24	4.1%	< 2	104%	80%	120%						
рН	637812		5.23	4.81	8.4%	NA	100%	90%	110%						
Total Dissolved Solids	635183	635183	494	496	0.4%	< 20	98%	80%	120%						
Alkalinity (as CaCO3)	637812		<5	<5	NA	< 5	100%	80%	120%						
Bicarbonate (as CaCO3)	637812		<5	<5	NA	< 5									
Carbonate (as CaCO3)	637812		<5	<5	NA	< 5									
Hydroxide (as CaCO3)	637812		<5	<5	NA	< 5									
Fluoride	633483		<0.25	<0.25	NA	< 0.05	108%	90%	110%	103%	90%	110%	99%	85%	115%
Chloride	633483		179	171	4.6%	< 0.10	96%	90%	110%	106%	90%	110%	94%	85%	115%
Nitrate as N	633483		<0.25	<0.25	NA	< 0.05	97%	90%	110%	108%	90%	110%	106%	85%	115%
Nitrite as N	633483		<0.25	<0.25	NA	< 0.05	105%	90%	110%	102%	90%	110%	106%	85%	115%
Bromide	633483		<0.25	<0.25	NA	< 0.05	105%	90%	110%	102%	90%	110%	101%	85%	115%
Sulphate	633483		53.5	53.5	0.0%	< 0.10	94%	90%	110%	106%	90%	110%	108%	85%	115%
Ortho Phosphate as P	633483		<0.50	< 0.50	NA	< 0.10	94%	90%	110%	102%	90%	110%	99%	80%	120%
Reactive Silica	632809		12.8	12.8	0.0%	< 0.05	100%	90%	110%	104%	90%	110%	94%	80%	120%
Ammonia as N	632928		<0.02	<0.02	NA	< 0.02	103%	90%	110%	96%	90%	110%	87%	70%	130%
Total Phosphorus	634539		<0.02	<0.02	NA	< 0.02	104%	80%	120%	109%	90%	110%	108%	70%	130%
Total Organic Carbon	638469		4.60	4.30	6.7%	< 0.5	103%	90%	110%	108%	90%	110%	83%	80%	120%
Colour	653186		7	7	NA	< 5	95%	90%	110%						
Turbidity	635183	635183	24900	25000	0.4%	< 0.5	99%	90%	110%						
Calcium	634801		84.1	83.5	0.7%	< 0.05	93%	90%	110%	94%	90%	110%	96%	70%	130%
Magnesium	634801		19.2	19.0	1.0%	< 0.05	94%	90%	110%	95%	90%	110%	94%	70%	130%
Sodium	634801		20.5	20.3	1.0%	< 0.05	92%	90%	110%	92%	90%	110%	92%	70%	130%
Potassium	634801		5.77	5.76	0.2%	< 0.05	91%	90%	110%	91%	90%	110%	93%	70%	130%
Aluminum	630780		0.012	0.012	NA	< 0.004	103%	90%	110%	103%	90%	110%	101%	70%	130%
Antimony	630780		<0.003	<0.003	NA	< 0.003	104%	90%	110%	96%	90%	110%	97%	70%	130%
Arsenic	630780		<0.003	<0.003	NA	< 0.003	99%	90%	110%	100%	90%	110%	106%	70%	130%
Barium	630780		0.220	0.216	1.8%	< 0.002	97%	90%	110%	99%	90%	110%	97%	70%	130%
Beryllium	630780		< 0.001	<0.001	NA	< 0.001	93%	90%	110%	98%	90%	110%	106%	70%	130%
Boron	630780		0.069	0.071	2.9%	< 0.010	103%	90%	110%	105%	90%	110%	98%	70%	130%
Cadmium	630780		<0.001	<0.001	NA	< 0.001	101%	90%	110%	102%	90%	110%	117%	70%	130%
Chromium	630780		< 0.003	< 0.003	NA	< 0.003	103%	90%	110%	103%		110%	100%	70%	130%
Cobalt	630780		<0.001	<0.001	NA	< 0.001	100%	90%	110%	102%		110%	99%	70%	130%
Copper	630780		0.013	0.012	NA	< 0.003	101%	90%	110%	103%	90%	110%	98%	70%	130%
Iron	630780		<0.010	<0.010	NA	< 0.010	106%		110%	98%		110%	92%	70%	
Lead	630780		<0.001	<0.001	NA	< 0.001	101%	90%	110%	104%	90%	110%	98%	70%	130%
Manganese	630780		0.046	0.045	2.2%	< 0.002	104%	90%	110%	104%		110%	96%	70%	130%
Mercury	635183	635183	<0.0001	<0.0001	NA	< 0.0001			110%	99%		120%	103%	80%	120%
Molybdenum	630780		0.195	0.193	1.0%	< 0.002			110%	100%		110%	99%		130%
			000	0.100		. 5.002	. 50 / 5	0070			5570		0070	. 575	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SP18-334-30

SAMPLING SITE:

AGAT WORK ORDER: 19T533219 ATTENTION TO: Sudhakar Kurli SAMPLED BY:

Water Analysis (Continued)

					-	•		-							
RPT Date: Oct 28, 2019				DUPLICAT	E		REFERE	NCE MATERIAL		L METHOD BLANK SPIKE					
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.10	eptable nits	Recovery	Lie	eptable nits
		ld						Lower	Upper	-	Lower	Upper		Lower	Upper
Nickel	630780		<0.003	<0.003	NA	< 0.003	104%	90%	110%	105%	90%	110%	101%	70%	130%
Selenium	630780		<0.004	<0.004	NA	< 0.004	98%	90%	110%	101%	90%	110%	107%	70%	130%
Silver	630780		<0.002	<0.002	NA	< 0.002	104%	90%	110%	106%	90%	110%	105%	70%	130%
Strontium	630780		2.71	2.63	3.0%	< 0.005	96%	90%	110%	98%	90%	110%	103%	70%	130%
Thallium	630780		<0.006	<0.006	NA	< 0.006	104%	90%	110%	105%	90%	110%	99%	70%	130%
Tin	630780		<0.002	<0.002	NA	< 0.002	105%	90%	110%	100%	90%	110%	99%	70%	130%
Titanium	630780		<0.002	<0.002	NA	< 0.002	102%	90%	110%	101%	90%	110%	98%	70%	130%
Tungsten	630780		<0.010	<0.010	NA	< 0.010	102%	90%	110%	98%	90%	110%	97%	70%	130%
Uranium	630780		0.006	0.006	NA	< 0.002	97%	90%	110%	100%	90%	110%	98%	70%	130%
Vanadium	630780		<0.002	<0.002	NA	< 0.002	99%	90%	110%	101%	90%	110%	99%	70%	130%
Zinc	630780		0.009	0.008	NA	< 0.005	100%	90%	110%	105%	90%	110%	105%	70%	130%
Zirconium	630780		<0.004	<0.004	NA	< 0.004	92%	90%	110%	98%	90%	110%	96%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Jacky 2th

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SP18-334-30

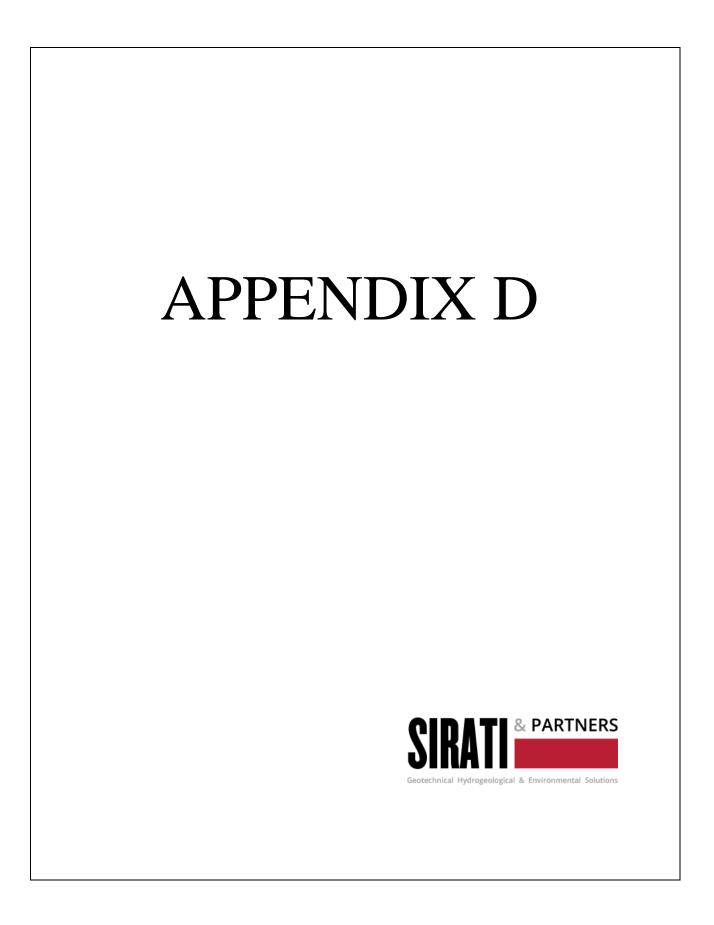
AGAT WORK ORDER: 19T533219 **ATTENTION TO: Sudhakar Kurli**

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Water Analysis					
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE		
pH	INOR-93-6000	SM 4500-H+ B	PC TITRATE		
Saturation pH (Calculated)		SM 2320 B	CALCULATION		
Langelier Index (Calculated)		SM 2330B	CALCULATION		
Total Hardness (as CaCO3) (Calculated)	MET-93-6105	EPA SW-846 6010C & 200.7	CALCULATION		
Total Dissolved Solids	INOR-93-6028	SM 2540 C	BALANCE		
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE		
Bicarbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE		
Carbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE		
Hydroxide (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE		
Fluoride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Bromide	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Ortho Phosphate as P	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Reactive Silica	INOR-93-6070	QuickChem 10-114-27-1-A & SM 450 Si-F	¹⁰ LACHAT FIA		
Ammonia as N	INOR-93-6059	SM 4500-NH3 H	LACHAT FIA		
Total Phosphorus	INOR-93-6057	QuikChem 10-115-01-3-A & SM 4500-P I	LACHAT FIA		
Total Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310	SHIMADZU CARBON ANALYZER		
Colour	INOR-93-6046	SM 2120 B	SPECTROPHOTOMETER		
Turbidity	INOR-93-6044	SM 2130 B	NEPHELOMETER		
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES		
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES		
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES		
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES		
Aluminum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Iron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS		
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Strontium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS		

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: SP18-334-30


SAMPLING SITE:

AGAT WORK ORDER: 19T533219 ATTENTION TO: Sudhakar Kurli

SAMPLING SITE:		SAMPLED BT:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Tin	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Titanium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Tungsten	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zirconium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
% Difference/ Ion Balance (Calculated)		SM 1030 E	CALCULATION

Chain of Custody Recor				_	Ties	1		5.712.510 W	ebearth.a	rio L4 5.712 gatlab	Z 1Y2 . 5122	v c	/ork Or	der #: <u>)</u> uanti	1		5	33	121	19
Report Information: Company:			ter sample, p	F	Regulatory Requ	irements:		No Regul			ement		ustody	Seal	Intact:		<u>3-2</u> /es	+ ~	171. No	26 DIN/A
Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email: Didate AR Phone: Reports to be sent to: biging e	KURY	tica			Regulation 153/04	MISA	iitary		Regulatio CCME Prov. Wat Objective: Other	er Qua s (PWQ e One	lity 20)	Tu Re	egula Ish T/	r TAT AT (Rus 8 Busil Days	h Surcha	Arges Apply)	5 to 7 E 2 Busir Days		Days	Business
Project Information: Project: Site Location: 17791 Mt-+ Sampled By: Support Ar	34-30 top= Rd,	Celedo	n		Record of Site Co			Certific Yes			ils			TAT is	exclusi	ive of we	ekends	and stat	or rush TAT atory holic our AGAT	idays
Please note: If quotation number of Invoice Information: Company: Contact: Address: Email:		Bill To Same:	^	F S	Ground Water Oil Paint		Field Filtered - Metals, Hg, CrVI	Metals and Inorganics	DEC DFOC DHg	als Scan	Regulation/Custom Metals Nutrients: DTP_DNH ₃ _DTKN	JNO2 UNO3+NO2 : UVOC DBTEX DTHM	F4	ALTERNA PUR	Total	Organochlorine Pesticides Tri P 1 M&I 1 Vorce 1 Apple 1 press		A Package		Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Commen Special Instr		Y/N		ORPs: D8-H	Full Metals	Regulation/CL	Volatiles:	PHCs F1 -	ABNs	PCBs: D Total	Organochlorine	Sewer Use	NQ		Potentially
20191018-134319-1 20191018-BH19-3	19/18-	PM PM	6	GW			シン											X		
NOTE: Please copy	of the	-senn	et 1	υb	ujing es	irste. q														
Samples Relinquished By (Rink Name and Sign):		Dato 2.1/1	dis Tin	ne AM	Samples Béceivad 87 (P7)			-			Date	21/	Py 110	1e 9	:/9				¢0	
Samples Retinguighed By (Print Name and Sign)		Date		ne 4:4	Samples Received By (Pri Samples Received By (Pri						Date Date	-11	Tin	ne					of	

Document ID: DIV 78 1511 016

				Soil			Snow		
Date	PET	P =========	P-PET ========	Moisture		PET-AET ========	Storage	Surplus	ROtotal
Jan-62	8.1	48	-7.6	144.3	6.2	1.9	47.5	0	12.7
Feb-62	8.5	72.1	-7.5	138.9	6.4	2.1	118.6	0	6.4
Mar-62	16.4	12.2	18.7	157.6	16.4	0	95.4	0	3.5
Apr-62	33.8	42.2	54	200	33.8	0	47.7	11.5	9.5
May-62	66.9	58.4	12.4	200	66.9	0	23.8	12.4	12.8
Jun-62	78.7	50	-19.3	180.7	78.7	0	11.9	0	7.5
Jul-62	82.4	90.9	9.9	190.6	82.4	0	6	0	7
Aug-62	77.5	37.3	-36.1	156.2	75.8	1.7	0	0	3.1
Sep-62	45.1	86.4	37	193.2	45.1				4.9
Oct-62		134.4	96	200	31.7				51.6
Nov-62	15.5	113.5	79.6	200	15.5			79.6	66.8
Dec-62		71.1	18.3	200	9.6	0			41.2
Jan-63	7.6	25.7	-7.6	192.4	7.6	0	81.8		20.1
Feb-63	7.6	15	-7.6	185.1	7.3	0.3			10.1
Mar-63	18.2	57.2	49.8	200	18.2	0			24.2
Apr-63	33	59.4	65.6	200	33	0			47
May-63	51.2	95	60.1	200	51.2				56.8
Jun-63	80.7	14.5	-56.4	143.6	80.7		10.5		26.8
Jul-63	92.7	70.9	-20.1	129.2	87	5.7			16.6
Aug-63	69.8	80	11.5	140.7	69.8	0			10.5
Sep-63	43.7	65.8	18.8	159.5	43.7				6.5
Oct-63	37.7		-20.3	143.3	33.6				2.5
Nov-63	19.8	71.1	47.8	191.1	19.8		0		4.4
Dec-63	8.2	58.9	-1.3	189.8	8.1				0.7
Jan-64	10.3	72.6	25.9	200	10.3	0		15.7	9.2
Feb-64	9.6	31.8	4.2	200	9.6	0			6.4
Mar-64	17.6	73.4	59.4	200	17.6	0			34.8
Apr-64	31.2	71.9	86.7	200	31.2	0			63.3
May-64		59.7	19.1	200	62.5	0			42.4
Jun-64	77.7		-33.2	166.8	77.7				21.4
Jul-64	98			200	98	0			27.5
Aug-64	66.8	136.1	68.7	200	66.8	0			51.1
Sep-64		21.6	-27.8	172.2				-	23.2
Oct-64	27.8		6.7	178.9					12.9
Nov-64	18.1		12.6	191.5	18.1			0	7.1
Dec-64			22.8	200	10.7				11.3
Jan-65	8.6	88.9	3	200	8.6	0			6.8
Feb-65		96.5	24.8	200	9.8				16.6
Mar-65	14.8		36.4	200	14.8				26.9
Apr-65	26.2		87.8	200	26.2				59
May-65	61.7		58.7	200	61.7				61.6
Jun-65	73.5	35.3	-15.5	184.5	73.5				30.7
Jul-65				176.3					17.4
Aug-65	72.9	96.5	24.9	200	72.9	0	6.1	1.2	12.7

Sep-65	51.7	80.8	31.2	200	51.7	0	0	31.2	23.5
Oct-65	27.8	121.2	87.3	200	27.8	0	0	87.3	59.5
Nov-65	16.3	93.5	65.5	200	16.3	0	7.6	65.5	63.5
Dec-65	12.5	74.2	40.6	200	12.5	0	26.5	40.6	52.3
Jan-66	8.4	67.6	-1.9	198.1	8.4	0	87.4	0	25.2
Feb-66	10.5	37.1	14.5	200	10.5	0	98.9	12.6	19.3
Mar-66	19.6	60.2	59.9	200	19.6	0	77.6	59.9	41.4
Apr-66	28.8	48	54.2	200	28.8	0	40.2	54.2	49.2
May-66	47	69.1	38.8	200	47	0	20.1	38.8	46.3
Jun-66	81.2	101.3	25.1	200	81.2	0	10.1	25.1	39
Jul-66	96.2	40.4	-52.8	147.2	96.2	0	5	0	19
Aug-66	78.5	74.7	-2.5	145.4	77.8	0.7	0	0	12.2
Sep-66	45.1	87.9	38.4	183.8	45.1	0	0	0	8.6
Oct-66	28.8	52.3	20.8	200	28.8	0	0	4.6	7
Nov-66	17.7	112.5	89.4	200	17.7	0	0	89.4	52.3
Dec-66	10.3	72.1	22.8	200	10.3	0	37.8	22.8	36.1
Jan-67	11.1	66.3	29.4	200	11.1	0	62.2	29.4	33.5
Feb-67	8.1	46.7	-8.1	191.9	8.1	0	108.9	0	16.1
Mar-67	16.4	22.1	22	200	16.4	0	92	14	15.5
Apr-67	32	74.9	85.1	200	32	0	46	85.1	53.8
May-67	43.9	45.2	22.1	200	43.9	0	23	22.1	38.3
Jun-67	89.1	191.8	104.6	200	89.1	0	11.5	104.6	79.9
Jul-67	86	78.7	-5.5	194.5	86	0	5.7	0	39.1
Aug-67	70.7	111.8	41.3	200	70.7	0	0	35.8	41.1
Sep-67	45.4	75.9	26.7	200	45.4	0	0	26.7	34.9
Oct-67	29.6	99.8	65.2	200	29.6	0	0	65.2	53.2
Nov-67	14.5	66.8	37.6	200	14.5	0	12.3	37.6	45.3
Dec-67	11.4	88.1	42.9	200	11.4	0	44	42.9	45
Jan-68	7.9	65.5	-7.9	192.1	7.9	0	109.5	0	21.4
Feb-68	8.4	29.7	-8.4	184	8.1	0.3	139.2	0	10.7
Mar-68	19.9	55.4	72.2	200	19.9	0	100.5	56.3	35.4
Apr-68	36.4	40.4	52.2	200	36.4	0	50.3	52.2	44.9
May-68	49.4	92.7	63.8	200	49.4	0	25.1	63.8	58
Jun-68	78.2	62	-6.8	193.2	78.2	0	12.6	0	29.8
Jul-68	91.5	68.6	-20.1	173.8	90.9	0.7	6.3	0	16.8
Aug-68	78	150.4	71.1	200	78	0	0	45	36.7
Sep-68	56.1	125.5	63.2	200	56.1	0	0	63.2	52.4
Oct-68	33.9	67.3	30	200	33.9	0	0	30	41.5
Nov-68	16.2	107.7	77.6	200	16.2	0	9.3	77.6	62.4
Dec-68	9.5	73.7	17.3	200	9.5	0	55.2	17.3	38.6
Jan-69	9.5	63.5	13.5	200	9.5	0	95.1	13.5	26.2
Feb-69	10.1	39.4	12.5	200	10.1	0	111.5	12.5	19.4
Mar-69	15.9	56.1	38.5	200	15.9 24.2	0	111.9	38.5	30 86 8
Apr-69	34.2	117.3	133.1	200	34.2	0	55.9	133.1	86.8
May-69	54.5 72.6	84.1 85.6	53.4 22.7	200	54.5 72.6	0	28	53.4 22.7	71.4
Jun-69	72.6	85.6	22.7	200	72.6	0	14	22.7	49.2
Jul-69	88.7	56.1	-28.5	171.5	88.7	0	7	0	25.3

Aug-69	86.2	56.4	-25.6	149.6	82.5	3.6	0	0	14
Sep-69	51.4	15.7	-36.5	122.3	42.2	9.2	0	0	6.4
Oct-69	29.2	82	48.7	171	29.2	0	0	0	6.9
Nov-69	17.2	102.6	80.6	200	17.2	0	0	51.6	32
Dec-69	9.1	52.3	6.2	200	9.1	0	36.4	6.2	17.3
Jan-70	7.2	45.2	-7.2	192.8	7.2	0	81.6	0	8.3
Feb-70	9.1	23.1	-2	190.9	9.1	0.1	97.5	0	4.3
Mar-70	15.2	48.8	26.3	200	15.2	0	103.9	17.2	11.6
Apr-70	32.8	72.6	88.1	200	32.8	0	51.9	88.1	53
May-70	59.4	70.9	33.9	200	59.4	0	26	33.9	45.2
, Jun-70	79.2	53.6	-15.3	184.7	79.2	0	13	0	23.5
Jul-70	95.6	90.7	-2.9	182	95.4	0.2	6.5	0	14.9
Aug-70	80	86.4	8.6	190.6	80	0	0	0	9.5
Sep-70	52.4	110.7	52.8	200	52.4	0	0	43.4	29.8
Oct-70	32.5	101.1	63.6	200	32.5	0	0	63.6	49
Nov-70	17.8	57.2	36.7	200	17.8	0	0	36.7	43.1
Dec-70	9.4	80.3	17.1	200	9.4	0	52.9	17.1	29.7
Jan-71	7.7	44.2	-7.7	192.3	7.7	0	97.1	0	14.3
Feb-71	10.4	67.3	24.8	200	10.4	0	128.4	17.1	16.6
Mar-71	14.9	36.8	24.4	200	14.9	0	125.3	24.4	20.7
Apr-71	28.6	25.9	56.4	200	28.6	0	64.9	56.4	39.5
May-71	54.5	31	7.4	200	54.5	0	32.5	7.4	24.4
Jun-71	85.9	81.5	7.8	200	85.9	0	16.2	7.8	19.4
Jul-71	86.6	87.1	4.3	200	86.6	0	8.1	4.3	14.2
Aug-71	75.6	97.5	25.1	200	75.6	0	0	25.1	22.3
Sep-71	57.8	21.8	-37.1	162.9	57.8	0	0	0	9.8
Oct-71	39.1	37.8	-3.2	160.3	38.5	0.6	0	0	6.3
Nov-71	16.5	45	26.5	186.8	16.5	0	0	0	4.1
Dec-71	12	106.4	56.6	200	12	0	34.8	43.5	25.7
Jan-72	9.3	56.4	7.7	200	9.3	0	73.7	7.7	15.8
Feb-72	8.8	56.1	-2.7	197.3	8.8	0	123.5	0	7.8
Mar-72	14.1	87.6	36.3	200	14.1	0	159.5	33.6	21.9
Apr-72	25.9	59.9	94	200	25.9	0	96.9	94	59.9
May-72	61.3	56.1	40.4	200	61.3	0	48.5	40.4	51.7
Jun-72	71.3	109.5	57	200	71.3	0	24.2	57	58.4
Jul-72	92.7	36.8	-45.6	154.4	92.7	0	12.1	0	28.3
Aug-72	76.6	42.7	-30	131.3	69.8	6.8	6.1	0	15.4
Sep-72	53	50.5	1	132.3	53	0	0	0	9.1
Oct-72	25.8	116.3	84.7	200	25.8	0	0	17	17.6
Nov-72	14.9	62.2	35	200	14.9	0	10	35	25.7
Dec-72	10.9	124.2	57	200	10.9	0	63.6	57	42.9
Jan-73	10.3	44.2	17.1	200	10.3	0	79.7	17.1	29.4
Feb-73	8.7	42.9	-4.9	195.1	8.7	0	118.7	0	14.4
Mar-73	23.7	98	119.9	200	23.7	0	68.6	115	69.1
Apr-73	34	76.7	73.1	200	34	0	34.3	73.1	72.7
May-73	51.9	98	58.4	200	51.9	0	17.2	58.4	68.5
Jun-73	87.5	78	-4.8	195.2	87.5	0	8.6	0	35.7

Jul-73	97.4	46	-45.1	151.2	96.3	1.1	0	0	18.2
Aug-73	92.2	115.8	17.8	168.9	92.2	0	0	0	13.7
Sep-73	51.7	50	-4.2	165.4	51.1	0.7	0	0	6.5
Oct-73	34.1	95.3	56.4	200	34.1	0	0	21.8	17.7
Nov-73	17.1	89.2	68	200	17.1	0	0	68	44.5
Dec-73	10.3	75.7	25	200	10.3	0	39	25	34.1
Jan-74	9.8	102.1	28.6	200	9.8	0	101.4	28.6	31.9
Feb-74	8.5	69.6	-7.3	192.7	8.5	0	169.8	0	15.3
Mar-74	17.4	60.5	67.2	200	17.4	0	144.1	59.9	39.2
Apr-74	35.1	104.1	135.8	200	35.1	0	72.1	135.8	91.9
May-74	49.7	106.2	87.3	200	49.7	0	36	87.3	92.3
Jun-74	79.2	64.8	0.4	200	79.2	0	18	0.4	46.9
Jul-74	96.2	33.5	-55.4	144.6	96.2	0	9	0	23.5
Aug-74	84	96.5	16.6	161.3	84	0	0	0	15.7
Sep-74	47.7	51.1	0.8	162.1	47.7	0	0	0	8
Oct-74	28.3	36.6	6.5	168.6	28.3	0	0	0	4.6
Nov-74	17.4	100.1	78.1	200	17.4	0	0	46.6	29.4
Dec-74	12.2	41.7	15.5	200	12.2	0	12.8	15.5	21.3
Jan-75	11	52.6	16.8	200	11	0	36.5	16.8	19.5
Feb-75	10.9	90.7	31	200	10.9	0	84	31	26.1
Mar-75	15.5	66.3	35.1	200	15.5	0	98.3	35.1	31.2
Apr-75	25.3	57.9	64.4	200	25.3	0	64.2	64.4	49.5
May-75	71.6	59.4	16.9	200	71.6	0	32.1	16.9	35
Jun-75	86.9	66.5	-7.7	192.3	86.9	0	16	0	19.3
Jul-75	99.2	85.1	-10.4	182.3	98.8	0.4	8	0	12.3
Aug-75	81.5	117.9	38.5	200	81.5	0.1	0	20.9	20.3
Sep-75	45.1	65	16.6	200	45.1	0	0	16.6	18.8
Oct-75	32.5	28.4	-5.5	194.5	32.5	0	0	0.0	9.2
Nov-75	21.3	52.6	28.7	200	21.3	0	0	23.2	18.1
Dec-75	9.5	83.3	19.4	200	9.5	0	53.3	19.4	18.5
Jan-76	7.6	88.4	-7.6	192.4	7.6	0	141.7	10.4	8.7
Feb-76	12	91.2	66.7	200	12	0	152.3	59	35.8
Mar-76	19.3	106.4	111.1	200	19.3	0	124.8	111.1	76
Apr-76	35.8	72.6	95.6	200	35.8	0	62.4	95.6	87.7
May-76	52.2	85.3	60	200	52.2	0	31.2	60	76.3
Jun-76	89.1	76.5	-0.8	199.2	89.1	0	15.6	0	39.8
Jul-76	89.9	112.8	25.1	200	89.9	0	7.8	24.3	35.8
Aug-76	85.1	110.5	27.7	200	85.1	0	0.	27.7	34.4
Sep-76	48.9	116.8	62.1	200	48.9	0	0	62.1	51.3
Oct-76	25	74.4	45.7	200	25	0	0	45.7	49.3
Nov-76	13.5	35.8	12.1	200	13.5	0	9	12.1	30
Dec-76	8.2	41.7	-2.9	197.1	8.2	0	45.3	0	14.6
Jan-77	6.7	72.7	-6.7	190.5	6.6	0.1	118	0	7.2
Feb-77	9.7	33.3	8.3	190.5	9.7	0.1	133	0	3.9
Mar-77	21.3	85.2	8.3 102.1	200	21.3	0	91.3	101	55.7
Apr-77	36.2	40.7	48.1	200	36.2	0	91.5 45.7	48.1	52.2
May-77	65.6	23.7	-20.3	179.7	65.6	0	22.8	48.1	26.3
11109-77	0.00	23.7	-20.3	1/5./	05.0	0	22.0	0	20.5

Jun-77	74.4	73	6.3	186	74.4	0	11.4	0	16.2
Jul-77	99.8	90.3	-8.3	178.3	99.3	0.6	5.7	0	10.8
Aug-77	76.1	164	85.4	200	76.1	0	0	63.7	43.2
-				200				84.7	
Sep-77	51.1	142.9	84.7		51.1	0	0		67
Oct-77	28.5	86.8	54	200	28.5	0	0	54	61.2
Nov-77	17.6	85.9	64.3	200	17.6	0	0	64.3	64.6
Dec-77	9.7	114.6	34.1	200	9.7	0	69.1	34.1	49
Jan-78	8	82.5	-8	192	8	0	151.6	0	23.7
Feb-78	7.5	17.2	-7.5	184.8	7.2	0.3	168.8	0	11.8
Mar-78	14.7	50	35.5	200	14.7	0	167.7	20.4	16.9
Apr-78	27.9	61.6	107.7	200	27.9	0	90.9	107.7	64.8
May-78	60.2	100.2	80.4	200	60.2	0	45.4	80.4	76.2
Jun-78	79.7	64.8	4.6	200	79.7	0	22.7	4.6	41.1
Jul-78	94.4	23.8	-60.5	139.5	94.4	0	11.4	0	20.1
Aug-78	82.5	153.8	69.3	200	82.5	0	5.7	8.8	21.6
Sep-78	49.2	152.2	101.1	200	49.2	0	0	101.1	65.1
Oct-78	29	45.2	13.9	200	29	0	0	13.9	38
Nov-78	16.5	63.1	43.8	200	16.5	0	0	43.8	42.5
Dec-78	10.7	72.8	26.7	200	10.7	0	33.9	26.7	34.7
Jan-79	8.3	67.2	-3.2	196.8	8.3	0	95.8	0	16.8
Feb-79	7	29.2	-7	189.9	6.9	0.1	125	0	8.3
Mar-79	20.5	83.4	92.9	200	20.5	0	91.9	82.8	48.6
Apr-79	29.7	114.2	124.7	200	29.7	0	45.9	124.7	90.8
May-79	55.2	87.4	50.8	200	55.2	0	23	50.8	72.3
Jun-79	80.7	78.4	5.3	200	80.7	0	11.5	5.3	40.5
Jul-79	93.8	25	-64.3	135.7	93.8	0	5.7	0	19.6
Aug-79	74.7	89.2	15.8	151.4	74.7	0	0	0	13.6
Sep-79	50.8	37.4	-15.2	139.9	47.1	3.7	0	0	6.4
Oct-79	28.8	112.2	77.7	200	28.8	0	0	17.6	16.7
Nov-79	17.2	110.4	88	200	17.2	0	0	88	54.7
Dec-79	11.8	91.2	45.2	200	11.8	0	31.8	45.2	49.8
Jan-80	9.7	47.4	8.2	200	9.7	0	60.8	8.2	28.3
Feb-80	8.6	19.3	-7.3	192.7	8.6	0	78.8	0	13.9
Mar-80	16.3	64	38.3	200	16.3	0	86.6	31.1	24
Apr-80	32.4	111.7	117	200	32.4	0	43.3	117	75.3
May-80	62.5	34.2	-8.3	191.7	62.5	0	21.7	0	36.6
Jun-80	69.1	102	38.6	200	69.1	0	10.8	30.3	37.7
Jul-80	95	156.2	58.8	200	95	0	5.4	58.8	53.5
Aug-80	87.2	46	-38.1	161.9	87.2	0	0	0	25.1
Sep-80	48.9	86	32.8	194.7	48.9	0	0	0	15.7
Oct-80		66	37.4	200		0	0	32	25
	25.3				25.3				
Nov-80	15.2	50.8	26.6	200	15.2	0	7	26.6	26.1
Dec-80	8.4	59.4	1.9	200	8.4	0	55.7	1.9	13.4
Jan-81	7.2	13	-7.2	192.8	7.2	0	68.7	0	6.5
Feb-81	12.6	53.7	35.8	200	12.6	0	72.7	28.6	18.9
Mar-81	18.5	31.2	25.9	200	18.5	0	58.5	25.9	22.7
Apr-81	34.7	43.6	36	200	34.7	0	29.3	36	31
•									

May-81	53.5	60	18.1	200	53.5	0	14.6	18.1	26.5
Jun-81	82.2	101.8	21.8	200	82.2	0	7.3	21.8	27.8
Jul-81	95.6	115.4	21.3	200	95.6	0	0	21.3	27.8
Aug-81	78	136	51.2	200	78	0	0	51.2	43.4
Sep-81	48.9	88.8	35.5	200	48.9	0	0	35.5	40.5
Oct-81	26	91.6	61.1	200	26	0	0	61.1	53.1
Nov-81	16.9	61.8	42.1	200	16.9	0	0	42.1	48.1
Dec-81	10.8	44.6	12.5	200	10.8	0	20.4	12.5	29.8
Jan-82	7.1	63.2	-7.1	192.9	7.1	0	83.6	0	14.4
Feb-82	9.1	21	-2.6	190.3	9	0.1	98.1	0	7.3
Mar-82	16.4	70.2	47.1	200	16.4	0	103	37.5	24
Apr-82	29.2	56	75	200	29.2	0	52.1	75	51.4
May-82	69	60.6	14.6	200	69	0	26.1	14.6	34.7
Jun-82	70.4	132.6	68.6	200	70.4	0	13	68.6	56.8
Jul-82	96.2	83.8	-10.1	189.9	96.2	0	6.5	0	29.3
Aug-82	69.8	132.6	62.7	200	69.8	0	0	52.6	45.5
Sep-82	49.5	110.8	55.7	200	49.5	0	0	55.7	52.8
Oct-82	31.3	41.2	7.9	200	31.3	0	0	7.9	29.6
Nov-82	17.7	134.4	110.3	200	17.7	0	0	110.3	75.4
Dec-82	13.3	102.2	63.5	200	13.3	0	21.9	63.5	69.7
Jan-83	10.2	37.6	7.4	200	10.2	0	41.3	7.4	37.4
Feb-83	11.8	32.2	13.3	200	11.8	0	47.8	13.3	25.7
Mar-83	19.4	66	46.4	200	19.4	0	45.7	46.4	37.9
Apr-83	30.4	96.2	83.8	200	30.4	0	22.9	83.8	64.6
May-83	48.7	126.4	82.8	200	48.7	0	11.4	82.8	77.6
Jun-83	82.2	35	-43.2	156.8	82.2	0	5.7	0	37.4
Jul-83	104.3	75.4	-26.9	135.7	98.4	5.8	0	0	21.6
Aug-83	88.3	81.2	-11.2	128.1	84.7	3.6	0	0	13
Sep-83	56.4	43.4	-15.2	118.4	50.9	5.5	0	0	6.6
Oct-83	30.3	82	47.6	165.9	30.3	0	0	0	6.3
Nov-83	16.9	77	56.6	200	16.9	0	0	22.5	15.9
Dec-83	8.9	96.1	15.6	200	8.9	0	70.7	15.6	14.9
Jan-84	7.9	41.5	-7.9	192.1	7.9	0	112.2	0	7
Feb-84	13.3	74	66.1	200	13.3	0	104.7	58.3	34.7
Mar-84	14	75.8	28.2	200	14	0	137.2	28.2	31.5
Apr-84	34.7	50.2	81.6	200	34.7	0	68.6	81.6	58.5
May-84	55.2	82.2	57.2	200	55.2	0	34.3	57.2	60.7
Jun-84	84.3	54.6	-15.2	184.8	84.3	0	17.2	0	31
Jul-84	92.1	49.4	-36.6	150.9	89.3	2.8	8.6	0	16.6
Aug-84	88.9	73.8	-10.2	143.3	86.4	2.5	0	0	10.8
Sep-84	46.3	86.7	36.1	179.4	46.3	0	0	0	7.9
Oct-84	32.9	49.6	14.3	193.6	32.9	0	0	0	4.2
Nov-84	16.5	78.4	52.8	200	16.5	0	5.7	46.4	27.5
Dec-84	12.7	97.7	57.8	200	12.7	0	29.8	57.8	44
Jan-85	8.2	63.3	-5.8	194.2	8.2	0	90.7	0	20.6
Feb-85	9.9	108.9	27.8	200	9.9	0	160.8	22	22.3
Mar-85	18.4	95.7	97.4	200	18.4	0	137.9	97.4	62.2

Apr-85	37.4	43.3	72.7	200	37.4	0	68.9	72.7	68.2
May-85	60.6	91.6	60.9	200	60.6	0	34.5	60.9	68.1
, Jun-85	72.2	26.6	-29.7	170.3	72.2	0	17.2	0	33.1
Jul-85	92.7	59.6	-27.4	147	88.6	4.1	8.6	0	18.8
Aug-85	78.5	148.7	71.4	200	78.5	0	0.0	18.3	24.5
Sep-85	56.8	148.7	56.2	200	56.8	0	0	56.2	42.6
•									
Oct-85	30.7	62.4	28.6	200	30.7	0	0	28.6	35.7
Nov-85	16.4	114.6	84.4	200	16.4	0	8.8	84.4	63.5
Dec-85	9.4	58.8	11.6	200	9.4	0	45.9	11.6	35.8
Jan-86	9.5	30.8	3.6	200	9.5	0	63.3	3.6	19.6
Feb-86	9.4	64.3	6.1	200	9.4	0	111.7	6.1	13.1
Mar-86	19.8	59.3	64.9	200	19.8	0	84.3	64.9	40.9
Apr-86	37.1	63.1	64.9	200	37.1	0	42.1	64.9	55
May-86	66.5	72.1	23.1	200	66.5	0	21.1	23.1	41.1
Jun-86	74.9	106.9	37.2	200	74.9	0	10.5	37.2	42.7
Jul-86	101.1	122	20.1	200.0 1	1.1	0	5.3	20.1	34.8
Aug-86	75.2	145.6	68.4	200	75.2	0	0	68.4	55.8
Sep-86	50.8	218.9	157.2	200	50.8	0	0	157.2	113.8
Oct-86	29.8	64.4	31.4	200	29.8	0	0	31.4	70.4
Nov-86	15.1	33.4	17	200	15.1	0	0	17	43.3
Dec-86	11.6	53.8	21.2	200	11.6	0	19.6	21.2	33
Jan-87	9.9	70.4	16.4	200	9.9	0	62.8	16.4	24.9
Feb-87	10	20	2.3	200	10	0	70.3	2.3	13.3
Mar-87	20.5	68.7	60.7	200	20.5	0	55.2	60.7	39.5
Apr-87	20.3 39	85	69.3	200	39	0	27.6	69.3	57.4
•									
May-87	66.1	33.6	-20.3	179.7	66.1	0	13.8	0	28.2
Jun-87	88	62	-22.2	159.7	85.8	2.3	6.9	0	16.4
Jul-87	109.6	95.1		149.9 1	7.1	2.5	0	0	11.4
Aug-87	81.5	91.6	5.5	155.4	81.5	0	0	0	7.9
Sep-87	53.3	68.5	11.7	167.1	53.3	0	0	0	5.1
Oct-87	26.6	79.5	48.9	200	26.6	0	0	16	12.8
Nov-87	16.8	93.2	72.2	200	16.8	0	0	72.2	44.7
Dec-87	12.2	44.9	17.6	200	12.2	0	13.7	17.6	30.4
Jan-88	9.5	52.8	6.8	200	9.5	0	49.6	6.8	18.5
Feb-88	9.2	91.4	7.9	200	9.2	0	123.3	7.9	13.5
Mar-88	17.7	32.2	38.3	200	17.7	0	98.6	38.3	26.5
Apr-88	32.4	58.9	72.9	200	32.4	0	49.3	72.9	52.2
May-88	64.8	52.4	9.6	200	64.8	0	24.7	9.6	32
, Jun-88	80.7	48.2	-22.6	177.4	80.7	0	12.3	0	17.1
Jul-88	108.9	61.2		137.9 1	3.9	5	6.2	0	10.4
Aug-88	90	73	-14.5	127.9	85.5	4.5	0	0	7.3
Sep-88	50.8	106.1	50	177.9	50.8	۰.9 0	0	0	7.5
Oct-88	25.6	93.5	63.2	200	25.6	0	0	41.1	26.2
Nov-88	18.2	101.9	78.6	200	18.2	0	0	78.6	20.2 55.1
Dec-88	10.5	37	7.4	200	10.5	0	18.4	7.4	29.4
Jan-89	11.6	49	19.2	200	11.6	0	35.6	19.2	25.1
Feb-89	9.1	39.6	-2.4	197.6	9.1	0	68.4	0	12.2

Mar-89	15.8	58	29.5	200	15.8	0	79.8	27.1	20.8
Apr-89	29.7	47.5	55.3	200	29.7	0	39.9	55.3	39.8
May-89	57.6	106.2	63.2	200	57.6	0	19.9	63.2	55.6
Jun-89	84.8	132	50.6	200	84.8	0	10	50.6	57
Jul-89	99.2	26.2	-64.4	135.6	99.2	0	0	0	26.5
Aug-89	80	100.6	15.6	151.2	80	0	0	0	17.6
Sep-89	51.1	39.7	-13.4	141.1	47.8	3.3	0	0	8.3
Oct-89	30.7	75.2	40.7	181.9	30.7	0	0	0	6.9
Nov-89	15	154.6	110.6	200	15	0	23.1	92.5	53.7
Dec-89	6.8	41	-6.8	193.2	6.8	0	64.1	0	23.9
Jan-90	12.4	60.2	42.1	200	12.4	0	68.2	35.3	31.2
Feb-90	11.1	60.2	25.8	200	11.1	0	90.6	25.8	28.7
Mar-90	20	64.4	62.6	200	20	0	70	62.6	47.4
Apr-90	37.6	49.6	44.6	200	37.6	0	35	44.6	47.3
May-90	53.8	124	81.5	200	53.8	0	17.5	81.5	69.4
Jun-90	84.3	109.8	28.8	200	84.3	0	8.8	28.8	51.5
Jul-90	94.4	80.4	-9.3	190.7	94.4	0	0	0	27
Aug-90	82	88.1	1.7	192.4	82	0	0	0	15.9
Sep-90	50.8	90.9	35.6	200	50.8	0	0	28	24.3
Oct-90	29.6	134.4	98.1	200	29.6	0	0	98.1	65.7
Nov-90	18.6	83.1	60.4	200	18.6	0	0	60.4	63.8
Dec-90	12	98	51.2	200	12	0	32.1	51.2	58.1
Jan-91	9.1	48	3.8	200	9.1	0	66.8	3.8	30
Feb-91	12	63.3	35.8	200	12	0	80.9	35.8	34.1
Mar-91	20.2	106.1	92.4	200	20.2	0	70.6	92.4	66.4
Apr-91	37.6	133.6	124.6	200	37.6	0	35.3	124.6	100.3
May-91	72.9	65.6	7	200	72.9	0	17.6	7	53.6
Jun-91	91.3	44.1	-40.6	159.4	91.3	0	8.8	0	27.4
Jul-91	98.6	93	-1.4	158.2	98.3	0.3	0	0	17.2
Aug-91	87.8	76.6	-15	146.3	84.6	3.1	0	0	10.1
Sep-91	48.3	51.1	0.2	146.6	48.3	0	0	0	5.7
Oct-91	32.9	100.2	62.3	200	32.9	0	0	8.9	11
Nov-91	15.6	59.6	34.6	200	15.6	0	7	34.6	22.7
Dec-91	10.9	64	25	200	10.9	0	33.7	25	24
Jan-92	10.3	42.5	11.8	200	10.3	0	53.3	11.8	17.9
Feb-92	11.1	46.2	17.4	200	11.1	0	70.3	17.4	18.1
Mar-92	16.7	52.6	32.1	200	16.7	0	72.8	32.1	26
Apr-92	30.6	107.2	107.6	200	30.6	0	36.4	107.6	71.5
May-92	56.6	85.6	42.9	200	56.6	0	18.2	42.9	58.8
Jun-92	71.3	55.4	-9.6	190.4	71.3	0	9.1	0	30
Jul-92	79.9	126.6	49.5	200	79.9	0	0	39.9	39.9
Aug-92	70.7	173.8	94.5	200	70.7	0	0	94.5	72.7
Sep-92	49.8	91.4	37	200	49.8	0	0	37	55.1
Oct-92	26.5	48.6	19.7	200	26.5	0	0	19.7	37.5
Nov-92	15.9	167.2	127.4	200	15.9	0	17	127.4	88.2
Dec-92	11.6	70.6	35.8	200	11.6	0	38.3	35.8	60.3
Jan-93	10.3	85.9	29.1	200	10.3	0	83.6	29.1	45.1

Feb-93	7.9	34	-7.9	192.1	7.9	0	117.6	0	21.9
Mar-93	15.7	33.2	26.3	200	15.7	0	108	18.4	20.9
Apr-93	33	75.6	92.8	200	33	0	54	92.8	60.3
May-93	55.2	61.6	30.3	200	55.2	0	27	30.3	46.5
Jun-93	76.3	111.4	43	200	76.3	0	13.5	43	48.8
Jul-93	98.6	80.4	-15.5	184.5	98.6	0	6.7	45 0	25.6
Aug-93	86.2	54.4	-27.7	158.9	84	2.1	0	0	13.5
Sep-93	44	68.8	21.3	180.3	44	0	0	0	8.8
Oct-93	27.8	72.3	40.9	200	27.8	0	0	21.2	16.9
Nov-93	15.9	63.4	38.4	200	15.9	0	6.4	38.4	28.5
Dec-93	10.8	20	1	200	10.8	0	14.2	1	13.8
Jan-94	6.2	69	-6.2	193.8	6.2	0	83.2	0	6.7
Feb-94	8.1	18	-8.1	185.9	7.9	0.3	101.2	0	3.4
Mar-94	17.2	35.4	31.6	200	17.2	0	86.9	17.5	11.4
Apr-94	34.5	87.4	92	200	34.5	0	43.5	92	55.6
May-94	52.5	107.6	71.4	200	52.5	0	21.7	71.4	66.7
Jun-94	85.3	49.4	-27.5	172.5	85.3	0	10.9	0	33.1
Jul-94	98	54.7	-40.6	137.5	92.4	5.6	5.4	0	18.1
Aug-94	74.2	50	-21.3	122.8	67.6	6.7	0.4 0	0	10.1
-									
Sep-94	50.4	63	9.4	132.2	50.4	0	0	0	7
Oct-94	30.9	59.5	25.6	157.9	30.9	0	0	0	4.9
Nov-94	18.9	71	48.5	200	18.9	0	0	6.4	7.7
Dec-94	12.5	38.4	13.8	200	12.5	0	11	13.8	10.1
Jan-95	11.2	116.9	50.2	200	11.2	0	64.1	50.2	32
Feb-95	8.7	24.2	-6.2	193.8	8.7	0	85.7	0	14.8
Mar-95	20.4	3.4	13.9	200	20.4	0	54.7	7.7	11.4
Apr-95	27.4	93.2	82.4	200	27.4	0	33.8	82.4	51.1
May-95	56.9	76.2	32.4	200	56.9	0	16.9	32.4	43.4
Jun-95	90.2	79.8	-6	194	90.2	0	8.4	0	23.8
Jul-95	101.1	65.9		164.9 1	0.2	0.9	0	0	13.2
Aug-95	91.1	62.2	-32	138.5	85.5	5.6	0	0	8.1
Sep-95	46.5	45.4	-3.4	136.1	45.5	5.0	0	0	4.7
•						0	0		29.5
Oct-95	33.3	146.3	105.7	200	33.3			41.9	
Nov-95	13.8	142.2	90.7	200	13.8	0	33.1	90.7	61.1
Dec-95	9.1	34	4.4	200	9.1	0	53.2	4.4	30.8
Jan-96	8.6	66.8	2.2	200	8.6	0	108.8	2.2	16.6
Feb-96	9.8	43.8	10.8	200	9.8	0	131.6	10.8	13.9
Mar-96	15.5	62.8	43	200	15.5	0	134.7	43	29.5
Apr-96	28.1	97.8	126.2	200	28.1	0	73.6	126.2	81.8
May-96	53.2	93	72	200	53.2	0	36.8	72	79.2
Jun-96	85.9	149.2	74.3	200	85.9	0	18.4	74.3	81.9
Jul-96	88.7	112.4	27.2	200	88.7	0	9.2	27.2	56.5
Aug-96	83.5	52	-24.9	175.1	83.5	0	0	0	28
Sep-96	51.7	155.1	95.6	200	51.7	0	0	70.7	55.8
Oct-96	29.9	65.2	32	200	29.9	0	0	32	43.3
Nov-96	29.9 14.2	40.6	16.8	200	14.2	0	8.2	16.8	43.3 29.8
Dec-96	12.5	107.7	64.4	200	12.5	0	35.7	64.4	49.6

Jan-97	8.9	87.5	7.9	200	8.9	0	105.9	7.9	27.7
Feb-97	11.5	77.6	45.2	200	11.5	0	125.3	45.2	37.7
Mar-97	16.7	84	64.5	200	16.7	0	126.1	64.5	52.4
Apr-97	30.8	29.6	60.3	200	30.8	0	63	60.3	56.8
May-97	45.5	90.8	72.2	200	45.5	0	31.5	72.2	68.3
Jun-97	91.9	79.7	-0.4	199.6	91.9	0	15.8	0	35.9
Jul-97	92.7	58.3	-29.4	170.2	92.6	0.1	7.9	0	18.9
Aug-97	73.3	72.5	3.4	173.6	73.3	0	0	0	11.6
Sep-97	51.7	63.7	8.8	182.4	51.7	0	0	0	7.2
Oct-97	29.6	50.6	18.5	200	29.6	0	0	0.9	5
Nov-97	15.4	70.6	43.4	200	15.4	0	9	43.4	25.7
Dec-97	11.9	30.6	10	200	11.9	0	16.8	10	17.3
Jan-98	11.3	129.2	58.6	200	11.3	0	73.4	58.6	40.2
Feb-98	13.6	40.8	35.1	200	13.6	0	64.4	35.1	37.5
Mar-98	20	117.8	94.9	200	20	0	63	94.9	69.8
Apr-98	36	39.2	32.8	200	36	0	31.5	32.8	51.1
May-98	74.8	56.7	-5.2	194.8	74.8	0	15.8	0	27.4
Jun-98	83.8	57	-21.7	173.7	83.2	0.6	7.9	0	15.1
Jul-98	95	47.8	-41.7	137.5	89.5	5.5	0	0	8.5
Aug-98	85.1	96.4	6.5	143.9	85.1	0	0	0	7.9
Sep-98	55	44	-13.2	134.4	51.3	3.7	0	0	3.7
Oct-98	31.1	13.6	-13.2	122.2	25.1	6	0	0	5.7 1.4
Nov-98	17.6	45.2	25.5	122.2	17.6	0	0	0	2.5
Dec-98	17.0	4J.2 51	23.3	169.7	17.0	0	15.3	0	2.5 1.7
Jan-99	8.6	125.5	8	109.7	8.6	0	123.6	0	0.7
		40.6	ہ 48.2			0	123.6		
Feb-99	13.4			200	13.4			25.8	14.1
Mar-99	19.2	15.5	25.9	200	19.2	0	71.4	25.9	19.9
Apr-99	33.2	48.2	48.3	200	33.2	0	35.7	48.3	36.3
May-99	73.9	85	24.7	200	73.9	0	17.9	24.7	33.5
Jun-99	89.1	68.7	-14.9	185.1	89.1	0	8.9	0	18.1
Jul-99	113	63.4		144.5 1	9.7	3.3	0	0	10.5
Aug-99	77.1	70.7	-9.9	137.3	74.3	2.7	0	0	7.2
Sep-99	55.4	71.6	12.7	150	55.4	0	0	0	5.4
Oct-99	29.9	64.1	31	181	29.9	0	0	0	4.1
Nov-99	19.2	102.4	78.1	200	19.2	0	0	59.1	35.1
Dec-99	11.9	55	23.2	200	11.9	0	18.4	23.2	28.1
Jan-00	9.6	46.1	5.9	200	9.6	0	48.5	5.9	16.7
Feb-00	12.1	55.7	29	200	12.1	0	61.9	29	23.8
Mar-00	23.7	40.6	41.6	200	23.7	0	35.3	41.6	34
Apr-00	32	67	49.3	200	32	0	17.7	49.3	44.1
May-00	62.5	164.9	103	200	62.5	0	8.8	103	80.1
Jun-00	83.8	219	133.1	200	83.8	0	0	133.1	113.4
Jul-00	87.1	91.2	-0.5	199.5	87.1	0	0	0	55.8
Aug-00	78.5	68.4	-13.5	186	78.5	0	0	0	29
Sep-00	51.7	110.6	53.4	200	51.7	0	0	39.4	38
Oct-00	33.7	29.6	-5.6	194.4	33.7	0	0	0	17.7
Nov-00	16.4	65.4	46.2	200	16.4	0	0	40.6	31.3

Dec-00	8.2	74.7	0.5	200	8.2	0	65.7	0.5	14.8
Jan-01	10.4	11.5	4.7	200	10.4	0	61.9	4.7	9.7
Feb-01	10.9	70.5	27.6	200	10.9	0	92.8	27.6	19.7
Mar-01	17.4	30.5	27.2	200	17.4	0	77.9	27.2	23.7
Apr-01	35.5	41	42.3	200	35.5	0	38.9	42.3	34.7
May-01	63.2	79.2	31.5	200	63.2	0	19.5	31.5	36
Jun-01	84.3	94.4	15.1	200	84.3	0	9.7	15.1	28.3
Jul-01	89.9	73.6	-10.2	189.8	89.9	0	0	0	15.5
Aug-01	91.7	48.6	-45.5	146.6	89.4	2.3	0	0	8.3
Sep-01	51.7	84.4	28.5	175.1	51.7	0	0	0	7.2
Oct-01	31.1	150.3	111.7	200	31.1	0	0	86.8	52.4
Nov-01	21.2	85.6	60.2	200	21.2	0	0	60.2	56.8
Dec-01	13.8	37	15.1	200	13.8	0	6.8	15.1	35.1
Jan-02	12.5	31.5	9.4	200	12.5	0	15.5	9.4	22.5
Feb-02	12.4	45.8	17.5	200	12.4	0	30.2	17.5	20.7
Mar-02	18.8	54.1	29.9	200	18.8	0	33.8	29.9	26.5
Apr-02	34.7	112.5	89.1	200	34.7	0	16.9	89.1	62.6
May-02	49.7	111.4	64.6	200	49.7	0	8.5	64.6	66.4
Jun-02	85.3	74.8	-5.8	194.2	85.3	0	0	0	34.1
Jul-02	110.3	66.6	-47 1		8.9	1.4	0	0	18.5
Aug-02	87.2	35	-54	108.5	73.4	13.9	0	0	9.3
Sep-02	62.7	52.5	-12.8	100.5	56.8	5.9	0	0	6.4
Oct-02	27.8	78	46.3	147.8	27.8	0	0	0	5.8
Nov-02	15.7	56	40.5 31.8	179.6	15.7	0	6.3	0	3.2
Dec-02	11.1	33.5	51.8 9	179.0	11.1	0	18.8	0	1.2
Jan-03	8	29	-8	188.0	7.5	0.5	47.8	0	0.2
Feb-03	8.5	50.5	-8 -7.1	174.7	7.9	0.3	47.8 96.8	0	0.2
Mar-03	8.5 17.9	38.6	-7.1 36	200	7.9 17.9	0.7	90.8 80.3	0 10.7	0.2 6.5
Apr-03						0			
•	30.4	33.6	41.6	200	30.4		40.2	41.6	25.2
May-03	54.8	95.6	56.1	200	54.8	0	20.1	56.1	44.6
Jun-03	82.7	77.3	0.8	200	82.7	0	10	0.8	24.1
Jul-03	96.2	38.8	-54.3	145.7	96.2	0	5	0	12.1
Aug-03	87.8	99.9	12.1	157.8	87.8	0	0	0	10.1
Sep-03	52.7	107.8	49.7	200	52.7	0	0	7.6	11.7
Oct-03	28.3	95.6	62.5	200	28.3	0	0	62.5	39.2
Nov-03	18.2	116.4	92.4	200	18.2	0	0	92.4	69.2
Dec-03	12.2	80.6	40.9	200	12.2	0	25.2	40.9	54.4
Jan-04	7.4	72.7	-7.4	192.6	7.4	0	97.9	0	26.1
Feb-04	10.8	20	11.8	200	10.8	0	95.1	4.3	15.5
Mar-04	20.3	110	101.5	200	20.3	0	79.3	101.5	62.3
Apr-04	32.8	71.8	75.1	200	32.8	0	39.7	75.1	70.3
May-04	57.6	117	73.4	200	57.6	0	19.8	73.4	75.9
Jun-04	77.7	57.5	-13.2	186.8	77.7	0	9.9	0	37.9
Jul-04	92.1	116.7	28.7	200	92.1	0	0	15.5	31.1
Aug-04	72.9	60.8	-15.1	184.9	72.9	0	0	0	15.7
Sep-04	57.1	39.7	-19.4	167	55.6	1.5	0	0	8.3
Oct-04	30.9	58.4	24.6	191.6	30.9	0	0	0	6.1

Nov-04	17.9	73.9	52.4	200	17.9	0	0	44	27.1
Dec-04	10	103.7	33.2	200	10	0	58.8	33.2	30.1
Jan-05	8.5	64	0.5	200	8.5	0	113.6	0.5	14.7
Feb-05	10.7	78.5	34.9	200	10.7	0	145.4	34.9	25.8
Mar-05	16.3	56.5	49.6	200	16.3	0	134.7	49.6	38.5
Apr-05	33.4	97.1	126.2	200	33.4	0	67.3	126.2	86.5
May-05	50.3	47.2	28.2	200	50.3	0	33.7	28.2	57.3
Jun-05	103.4	32.3	-55.9	144.1 1	3.4	0	16.8	0	29.1
Jul-05	106.9	141.7	36.1	180.3 1	6.9	0	8.4	0	20.8
Aug-05	88.3	148.3	61	200	88.3	0	0	41.2	34.9
Sep-05	58.5	76.6	14.2	200	58.5	0	0	14.2	24.7
Oct-05	32.7	51	15.8	200	32.7	0	0	15.8	20.9
Nov-05	18.2	122.9	98.6	200	18.2	0	0	98.6	64.5
Dec-05	10.2	97.3	32.8	200	10.2	0	52.6	32.8	47.3
Jan-06	13	109.9	77	200	13	0	69.3	77	64.5
Feb-06	10.5	141	47.6	200	10.5	0	150.4	47.6	56.3
Mar-06	19.1	62.9	76.3	200	19.1	0	115.9	76.3	67.4
Apr-06	35.3	95.1	113	200	35.3	0	57.9	113	93.9
May-06	61.3	106.1	68.4	200	61.3	0	29	68.4	84.1
Jun-06	86.4	53.9	-20.7	179.3	86.4	0	14.5	0	42.1
Jul-06	108.2	100.4	-5.6	174.3 1	7.6	0.6	7.2	0	24.7
Aug-06	83.5	52.6	-26.3	151.3	80.1	3.4	0	0	12.5
Sep-06	49.2	163.3	105.9	200	49.2	0	0	57.3	41.7
Oct-06	28.8	122.2	87.2	200	28.8	0	0	87.2	66.5
Nov-06	19.3	50.8	29	200	19.3	0	0	29	47.2
Dec-06	14.5	59.6	34.6	200	14.5	0	8.2	34.6	42
	506	901	358	2295	482	4	425	361	395