

TOWN OF CALEDON
PLANNING
RECEIVED
07-29-21

15728 Airport Road Town of Caledon Transportation Impact Study

February 2021 Project No. 200052

Project Summary

Project Number 200052

February 2021

Client

Wyndham Holdings Inc. 222 Mountainview Road North Georgetown ON L7G 3R2

Client Contact

Glenn Wellings

Consultant Project Team

Stew Elkins, BES Erica Bayley, P.Eng. Scott Catton, C.E.T. Stefan Hajgato, P.Eng.

Paradigm Transportation Solutions Limited

5A-150 Pinebush Road Cambridge ON N1R 8J8 p: 519.896.3163 905.381.2229 416.479.9684 www.ptsl.com

15728 Airport Road Town of Caledon Transportation Impact Study

Signing Engineer, P.Eng.

Disclaimer

This document has been prepared for the titled project or named part thereof (the "project") and except for approval and commenting municipalities and agencies in their review and approval of this project, should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authorization of Paradigm Transportation Solutions Limited being obtained. Paradigm Transportation Solutions Limited being obtained. Paradigm Transportation Solutions Limited accepts no responsibility or liability for the consequence of this document being used for a purpose other than the project for which it was commissioned. Any person using or relying on the document for such other purpose agrees and will by such use or reliance be taken to confirm their agreement to indemnify Paradigm Transportation Solutions Limited accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned and the approval and commenting municipalities and agencies for the project.

To the extent that this report is based on information supplied by other parties, Paradigm Transportation Solutions Limited accepts no liability for any loss or damage suffered by the client, whether through contract or tort, stemming from any conclusions based on data supplied by parties other than Paradigm Transportation Solutions Limited and used by Paradigm Transportation Solutions Limited in preparing this report.

Executive Summary

Content

Wyndham Holdings has retained Paradigm Transportation Solutions Limited (Paradigm) to conduct this Transportation Impact Study (TIS) for a proposed retirement home located at 15728 Airport Road in the Town of Caledon.

This study determines the impacts of the development traffic on the surrounding road network, identifies the recommended improvements to accommodate the site generated traffic, and recommends Transportation Demand Management (TDM) measures to mitigate the subject site's transportation and parking impacts.

Development Concept

The subject site is located at 15728 Airport Road in the Town of Caledon. The proposed Retirement Home is expected to consist of up to 150 beds in 127 units. Build-out is anticipated to occur by the end of Year 2026.

Vehicle access to the site is proposed by a single right-in, right-out, and left-in driveway to Airport Road located approximately 80 metres south of the Caledon East Public School Driveway.

Conclusions

The main findings and conclusions of this study are as follows:

- Existing Traffic: The study area intersections are operating with acceptable levels of service during the weekday AM and PM peak hours. No critical movements are occurring at the study area intersections.
- Planned Improvements: The Region of Peel is currently undertaking an Environmental Assessment (EA) for Airport Road. At the time of writing, the EA is not yet finalized. For analysis purposes, geometric and traffic control improvements are assumed to be in place for the study area intersections.
- Trip Generation: The site's net trip generation is estimated to be approximately 29 AM peak hour vehicle trips and 39 PM peak hour vehicle trips. Vehicle access to the site is proposed by a driveway connection to Airport Road and left-turns out of the driveway are assumed to be restricted by a raised centre median on Airport Road.

Heavy Vehicle Circulation: Pending the final lane configuration from the Airport Road EA, modifications to the curb radii and/or entrance width may be required to accommodate the design vehicle to enter and exit the site without impacting the opposing travel lane.

The reversing maneuvers into the site's loading zone should ideally be assisted by a traffic control person.

- Background Traffic: The study area intersections are generally operating with acceptable levels of service, with the exception of the westbound movement at the Airport Road and Cranston Drive intersection which is forecast to operate at LOS E with a v/c < 0.50 during the AM peak hour in the 10-year horizon.</p>
- ► Total Traffic: The study area intersections are forecast to operate with similar levels of service as the background traffic conditions. No additional critical movements are noted at the study area intersections over background conditions. The site driveway is forecast to operate with delays in the LOS A to B range with v/c ratios of less than 0.05.
- Remedial Measures: No changes to the existing lane configurations are warranted or required. It is noted that the Airport Road EA may recommend changes in intersection traffic control that is not discussed in this study.
- Transportation Demand Management: Enhancements to the on-site pedestrian realm, inclusion of bicycle parking and preferential carpool parking will help promote sustainable modes of travel and further mitigate the site's transportation impacts.

Recommendations

Based on the findings of this study, it is recommended that:

- The Region of Peel monitor the outcome of the Airport Road EA to determine if modifications to the curb radii and/or entrance width are required to the proposed driveway; and
- The site operator manages deliveries and waste collection to minimize on-site disruptions. Reversing maneuvers into the site's loading zone should ideally be assisted by a traffic control person.

Contents

1	Introduction	1
1.1 1.2	Overview Study Area	1 1
2	Existing Conditions	3
2.1 2.2 2.3 2.4 2.5	Road Network Cycling Network Transit Service Traffic Volumes Traffic Operations	
3	Site Concept	10
3.1 3.2 3.3	Description Trip Generation Heavy Vehicle Circulation	10 12 14
4	Future Traffic Conditions	18
4.1 4.2 4.3 4.3.1 4.3.2 4.4 4.4.1 4.4.2	Forecast Traffic Planned Improvements Five-Year Horizon Background Traffic Operations Total Traffic Operations Ten-Year Horizon Background Traffic Operations Total Traffic Operations	
5	Remedial Measures	32
5.1	Signal Warrants	32
6	Transportation Demand Management	33
6.1 6.2	Proposed TDM Measures Potential TDM Measures	33 33
7	Conclusions and Recommendations	34
7.1 7.2	Conclusions Recommendations	34 35

Appendices

Appendix A	Pre-Study Consultation
Appendix B	Existing Data
Appendix C	Base Year Traffic Operations Reports
Appendix D	Background Development Traffic Forecasts
Appendix E	5-Year Horizon Background Traffic Operations Reports
Appendix F	5-Year Horizon Total Traffic Operations Reports
Appendix G	10-Year Horizon Background Traffic Operations Reports
Appendix H	10-Year Horizon Total Traffic Operations Reports
Appendix I	Signal Warrant

Figures

Figure 1.1:	Study Area and Subject Site Location	2
Figure 2.1:	Existing Traffic Control and Lane Configuration	4
Figure 2.2:	Existing Traffic Volumes	6
Figure 3.1:	Site Concept Plan	11
Figure 3.2:	Forecast Site Traffic	13
Figure 3.3:	Swept Path Analysis – Delivery Vehicle	16
Figure 3.4	Swept Path Analysis – Waste Collection Vehicle	17
Figure 4.1:	Background Traffic Volumes – 5-Year Horizon	20
Figure 4.2:	Total Traffic Volumes – 5-Year Horizon	21
Figure 4.3:	Background Traffic Volumes – 10-Year Horizon	22
Figure 4.4:	Total Traffic Volumes – 10-Year Horizon	23
Figure 4.5:	Future Lane Configuration	25

Tables

Table 2.1:	Existing Traffic Operations	9
Table 3.1:	Site Generated Traffic	12
Table 3.2:	Estimated Trip Distribution	12
Table 4.1:	Background Traffic Operations – 5-Year Horizon	27
Table 4.2:	Total Traffic Operations – 5-Year Horizon	28
Table 4.3:	Background Traffic Operations – 10-Year Horizon.	30
Table 4.4:	Total Traffic Operations – 10-Year Horizon	31
Table 5.1:	OTM Signal Warrant Analysis – Summary	32

1 Introduction

1.1 Overview

Wyndham Holdings has retained Paradigm Transportation Solutions Limited (Paradigm) to conduct this Transportation Impact Study (TIS) for a proposed retirement home located at 15728 Airport Road in the Town of Caledon. **Figure 1.1** illustrates the location of the subject site.

The scope of the study includes:

- Determine and assess the current study area traffic conditions;
- Forecast the additional traffic generated by the proposed development;
- Assess the site's circulation of delivery and waste collection vehicles;
- Analyze the impacts of the additional traffic on the study area street network;
- Review Transportation Demand Management (TDM) strategies; and
- Recommend any necessary remedial measures to mitigate the traffic impacts.

The study scope was developed in consultation with the Region of Peel in February 2020. **Appendix A** contains the pre-study consultation material. This study has been prepared in accordance with the Region's Traffic Impact Study Guidelines¹.

1.2 Study Area

The study area intersections assessed in this study include:

- Airport Road (Regional Road 7) & Caledon East Public School Driveway (unsignalized);
- Airport Road & Cranston Drive (unsignalized); and
- ► The proposed site driveway to Airport Road.

https://www.peelregion.ca/pw/transportation/business/traffic-impact-study.asp

¹ Transportation Impact Study, Region of Peel,

Study Area and Subject Site Location

Figure 1.1

2 Existing Conditions

2.1 Road Network

The roadways of interest within the study area include:

- Airport Road is a north/south regional roadway under the jurisdiction of the Region of Peel. The road has a two-lane urban/rural cross-section and a posted speed limit of 60 km/h south of the subject site. The posted speed limit transitions to 50 km/h near the south limits of the subject site. Sidewalks are provided on the west side of the roadway to the north of the Caledon East Public School Driveway.
- Cranston Drive, an east/west local road under the jurisdiction of the Town of Caledon. The road has a two-lane urban crosssection, a sidewalk on the north side of the road, and a posted speed limit of 40 km/h within the study area. The approach to Airport Road operates under stop control; and
- Caledon East Public School Driveway, a private driveway serving the Caledon East Public School. The driveway has a two-lane rural cross-section and an assumed speed limit of 50 km/h south of the subject site. The driveway operates as a oneway eastbound connection to Airport Road. Sidewalks are present on the north side of the driveway. No sidewalks are provided along the driveway. The approach to Airport Road operates under stop control.

Figure 2.1 illustrates the existing lane configuration and traffic control at the study area intersections.

15728 Airport Rd TIS 200052

Figure 2.1

2.2 Cycling Network

Cycling infrastructure typically consists of on-street and off-street facilities. On-street facilities comprise of cycling lanes, signed cycling routes, and paved shoulders. Off-street facilities are in the form of multi-use or informal trails.

No on-street cycling facilities are present within 500 m of the subject site. The Trans Canada Trail² is an off-street trail which can be accessed via Airport Road approximately 550 m north of the subject site.

2.3 Transit Service

There is currently no transit service available within the Town of Caledon.

2.4 Traffic Volumes

Figure 2.2 illustrates the existing AM and PM weekday peak hour turning movement traffic volumes collected by Paradigm in February 2020. **Appendix B** contains the turning movement data.

² https://maps.caledon.ca/h5/index.html?viewer=Trails.Trails

Existing Traffic Volumes

15728 Airport Rd TIS 200052 Figure 2.2

2.5 Traffic Operations

Intersection level of service (LOS) is a recognized method of quantifying the efficiency of traffic flow at intersections. It is based on the delay experienced by individual vehicles executing the various movements. The delay is related to the number of vehicles wanting to make a movement, compared to the estimated capacity for that movement. The capacity is based on several criteria related to the opposing traffic flows. The highest possible rating is LOS A, under which the average total delay is equal or less than 10.0 seconds per vehicle. When the average delay exceeds 80 seconds at signalized intersections (50 seconds at unsignalized), the movement is considered to have a LOS F and remedial measures are usually implemented if they are feasible.

The operations of the intersections in the study area were evaluated using the existing lane configuration, signal timings, and traffic control along with the existing traffic volumes. The intersection analysis considered three separate measures of performance:

- ▶ The LOS for each turning movement;
- The volume to capacity ratio (v/c) for each movement; and
- The 95th percentile queue lengths using Synchro 9 and Synchro 10.

Under the Region's TIS Guidelines, the operational analysis must include identification of signalized and unsignalized intersections where:

- Volume to Capacity ratios (v/c) for overall intersection operations, through movements, or shared through / turning movements increase to 0.90 or above;
- V/C ratios for exclusive turning movements that will exceed 1.00;
- Queues for an individual movement are projected to exceed available turning lane storage; and
- LOS, based on average delay per vehicle on individual movements, exceeds LOS D for unsignalized intersections.

The operations of the intersections in the study area were evaluated with the existing turning movement volumes using Synchro 9. The key parameters used in the analysis as indicated in the include:

- Existing lane configurations;
- Heavy vehicle percentages derived from existing traffic counts;
- Ideal saturation flow rate of 1,900 vehicles per hour per lane (vphpl), as specified in the Region's Synchro Guidelines³;
- Lane widths of 3.7 m and 3.5 m for through and auxiliary turn lanes, respectively, as specified in the Region's guidelines;
- Posted speed limits;
- Peak Hour Factor (PHF) of 1.00 for all movements; and
- Synchro default values for all other inputs.

Table 2.1 summarizes the level of service conditions at the study area intersections. No critical movements are noted to be occurring at the study area intersections.

Appendix C contains the detailed Synchro 9 reports.

³ *Regional Guidelines for Using Synchro*, Region of Peel, December 2010.

TABLE 2.1: EXI	STING TRAFFI	C OPERATIONS
----------------	---------------------	---------------------

bd									Dire	ection	n / Mo	oveme	ent/A	Appro	ach					
erio					Eastb	ound		١	Nestt	ounc	ł	1	Northl	ooun	d	Ş	South	bound	k	
Analysis P	Intersection	Control Type	MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALI
	Airport Road &	TWSC	LOS	С	-	>	С					-	А	-	Α	-	А	-	Α	
	Caledon East		Delay	16	-	>	16					-	0	-	0	-	0	-	0	
<u> </u>	Public School		V/C	0.04	-	>						-	0.11	-		-	0.45	-		
lou	Driveway		95th	1	-	>						-	0	-		-	0	-		
ak F	Airport Road & Cranston Drive		LOS	С	-	>	С					А	А	-	Α	-	А	А	Α	
Pe			Delay	16	-	>	16					9	0	-	0	-	0	0	0	
AM		TWSC	V/C	0.06	-	>						0.00	0.11	-		-	0.45	0.00		
			95th	2	-	>						0	0	-		-	0	0		
			Storage	-	-	>						45	-	-		-	-	45		
			Avail.	-	-	>						45	-	-		-	-	45		
	Airport Road &		LOS	С	-	>	С					-	А	-	Α	-	А	-	Α	
	Caledon East	TWSC	Delay	21	-	>	21					-	0	-	0	-	0	-	0	
<u> </u>	Public School		V/C	0.06	-	>						-	0.45	-		-	0.22	-		
hou	Driveway		95th	2	-	>						-	0	-		-	0	-		
ak I			LOS	С	-	>	С					Α	А	-	Α	-	А	А	Α	
Pe			Delay	18	-	>	18					8	0	-	0	-	0	0	0	
PM	Airport Road &	TWSC	V/C	0.07	-	>						0.01	0.44	-		-	0.21	0.01		
	Cranston Drive		95th	2	-	>						0	0	-		-	0	0		
			Storage	-	-	>						45	-	-		-	-	45		
			Avail.	-	-	>						45	-	-		-	-	45		

TWSC - Two-Way Stop Control TCS - Traffic Control Signal V/C - Volume to Capacity Ratio

MOE - Measure of Effectiveness

LOS - Level of Service

95th - 95th Percentile Queue Length

Storage - Existing Storage (m) Avail. - Available Storage (m) > - Shared Right-Turn Lane

< - Shared Left-Turn Lane

3 Site Concept

3.1 Description

The subject site is located at 15728 Airport Road in the Town of Caledon. The proposed Retirement Home is expected to consist of up to 150 beds in 127 units. Build-out is anticipated to occur by the end of Year 2026.

Vehicle access to the site is proposed by a single driveway connection to Airport Road located approximately 80 metres south of the Caledon East Public School Driveway. Left-turns out of the driveway are assumed to be restricted by a raised centre median on Airport Road.

The site provides direct sidewalk connections to Airport Road and the Caledon Public School East Driveway. Sidewalks are provided along the perimeter of the proposed building which also provides access to the internal courtyard area. The sites parking supply consists of 45 spaces of which three are designed as accessible.

The site's loading zone is east of the main entrance and the waste collection area is on the end of the parking lot drive aisle. **Section 3.3** reviews heavy vehicle movements to/from the loading zone.

Figure 3.1 illustrates the proposed site plan.

NTS

Site Concept Plan Figure 3.1

15728 Airport Rd TIS 200052

3.2 Trip Generation

The Institute of Transportation Engineers (ITE) Trip Generation⁴ methods are used to estimate the site trip generation. Land Use Code (LUC) 254 (Assisted Living) was used to estimate the site trip generation. Average rates were used as the regression equation was unavailable for this LUC.

The subject site is forecast to generate approximately 29 vehicle trips during the AM peak hour and approximately 39 vehicle trips during the PM peak hour. **Table 3.1** summarizes the estimated trip generation. To remain conservative, a mode share reduction was not applied to this development.

Land Lico Codo	Α	M Pe	ak Ho	ur	PM Peak Hour							
	Rate	In	Out	Sum	Rate	In	Out	Sum				
254: Assisted Living												
(150 Beds)	0.19	18	11	29	0.26	15	24	39				
Average Rates												
Total New Trips		18	11	29		15	24	39				

TABLE 3.1: SITE GENERATED TRAFFIC

Table 3.2 summarizes the estimated trip distribution for site generated traffic. The residential distribution was developed using the Transportation Tomorrow Survey⁵ (TTS) data for the zone containing

the subject site. **Appendix B** contains the TTS survey data. **Figure 3.2** illustrates site-generated traffic volumes.

TABLE 3.2: ESTIMATED TRIP DISTRIBUTION

Origin / Destingtion	AM Pea	ak Hour	PM Peak Hour				
Origin / Destination	In	Out	In	Out			
North via Airport Road	50%	20%	25%	40%			
West via Cranston Drive	5%	0%	0%	0%			
South via Airport Road	45%	80%	75%	60%			
Total	100%	100%	100%	100%			

⁴ *Trip Generation Tenth Edition*, Institute of Transportation Engineers, Washington D.C., 2017

⁵ *Transportation Tomorrow Survey 2016*, University of Toronto Data Management Group. Zone 3197

15728 Airport Rd TIS 200052 Figure 3.2

3.3 Heavy Vehicle Circulation

Heavy vehicle circulation for the loading and waste collection area has been assessed using AutoTURN swept path analysis software. Two design vehicles were used in the analysis:

- Delivery Truck Transportation Association of Canada (TAC) Heavy Single Unit (HSU)⁶; and
- Waste collection The Peel Region Front Loader⁷.

Figure 3.3 illustrates the on-site circulation of the TAC HSU and the following is noted:

- The design vehicle will enter the site via Airport Road and reverse into the loading area. The design vehicle will require the entire driveway width to enter; and
- To exit the site in a forward movement the design vehicle will require the entire width of the driveway.

Figure 3.4 illustrates the on-site circulation of the Peel Region Front Loader and the following is noted:

- The design vehicle will enter the site via Airport Road and front into the waste collection area. The design vehicle will require the entire driveway width to enter the site; and
- To exit the site, the design vehicle will reverse approximately 55 m into the loading area then exit in a forward movement. The design vehicle will require the entire width of the driveway to exit.

When exiting the site, the design vehicles must encroach into two lanes of traffic to travel southbound. However, the future lane configuration at the time of this study is not confirmed as there is currently an Environmental Assessment (EA) underway for planned improvements to Airport Road.

If the final design for Airport Road includes two southbound lanes at the site access, the design vehicles can wait for a gap in southbound traffic and safely use both lanes when exiting the site. However, if there is one southbound lane and the adjacent lane facilitates opposing traffic, modifications to the proposed driveway curb radii are

⁷ Appendix 1 – Waste Collection Design Standards Manual, Region of Peel.

⁶ 2.4 – Design Vehicles, Geometric Design Guide for Canadian Roads,

Transportation Association of Canada, June 2017.

required to permit the design vehicles to enter and exit the site without impacting the opposing travel lane.

The frequency of delivery vehicles and waste collection vehicles is expected to be low with loading and waste collection times managed by the site operator. The level of conflict between the design vehicles and traffic using Airport Road is expected to be low. The reversing maneuvers into the site's loading zone should ideally be assisted by a traffic control person.

Swept Path Analysis Delivery Vehicle

15728 Airport Rd TIS 200052

Figure 3.3

Swept Path Analysis Waste Collection Vehicle

15728 Airport Rd TIS 200052

Figure 3.4

4 Future Traffic Conditions

The assessment of future conditions in this section includes the following components necessary to assess the site traffic implications on the adjacent road network:

- Future background traffic estimates;
- Level of service analysis for background traffic (predevelopment);
- ▶ Future total traffic estimates; and
- Level of service analysis for total traffic (post-development).

4.1 Forecast Traffic

As directed by Peel Region staff, a five-year and ten-year horizon from the year of expected build-out (2031 & 2036) has been assessed. The likely future traffic volumes near the subject site are estimated to consist of:

- Increased non-site traffic (generalized background traffic growth);
- Traffic generated by the development of 15717 Airport Road⁸. This proposed development includes approximately 641 townhouse units and 30 Senior Adult Housing units. Vehicle access is proposed by two new roadways to Airport Road. Street 'A' is proposed to form the fourth leg to the Caledon Public School Driveway intersection. The Street 'A' intersection is proposed to operate with traffic control signals. Street 'B' is proposed to form the fourth leg to the Cranston Drive intersection. The Street 'B' intersection is proposed to operate with stop control on Cranston Drive and Street 'B'; and
- ▶ Traffic generated by the subject site.

The generalized background traffic growth forecast assumes an annual growth rate of 2.0% per annum and is consistent with the traffic study prepared for the adjacent development applications. **Appendix D** contains the detailed traffic forecast for the adjacent development applications.

⁸ *15717 Airport Road, Town of Caledon TIS*, Cole Engineering Group LTD, August 2018.

Figure 4.1 illustrates the forecast 5-year (2031) background forecasts which include the generalized growth and in-stream development. **Figure 4.2** illustrates the forecast 5-Year (2031) total (with development) traffic volumes. **Figure 4.3** illustrates the forecast 10-year (2036) background forecasts which include the generalized growth and in-stream development. **Figure 4.4** illustrates the forecast 10-Year (2036) total (with development) traffic volumes.

Background Traffic Volumes 5-Year Horizon

15728 Airport Rd TIS 200052

Total Traffic Volumes 5-Year Horizon

15728 Airport Rd TIS 200052

Background Traffic Volumes 10-Year Horizon

15728 Airport Rd TIS 200052

Total Traffic Volumes 10-Year Horizon

15728 Airport Rd TIS 200052

4.2 Planned Improvements

The Region of Peel is currently undertaking an Environmental Assessment (EA) for planned improvements to the Airport Road corridor from 100 metres north of King Street to 300 metres north of Huntsmill Drive⁹. At time of writing, the EA is not yet finalized.

For analysis purposes, the improvements to Airport Road within the study area were assumed to align with the improvements identified in the 15717 Airport Road TIS¹⁰. These include:

- Airport Road at Caledon Public School Driveway / Street 'A';
 - Traffic control signal;
 - The new Street 'A' connection with separate eastbound leftturn and right-turn lanes.
 - Northbound right-turn lane;
 - Southbound left-turn
- Airport Road at Cranston Drive / Street 'B'
 - The new Street 'B' connection, single lane approach.
 - Northbound right-turn lane;
 - Southbound left-turn.
- Two-Way Left-Turn Lanes (TWLTL) on Airport Road between the Caledon Public School Driveway and Cranston Drive.

Figure 4.5 illustrates the future lane configuration.

⁹ https://www.peelregion.ca/pw/transportation/environ-assess/airport-roadimprovements.htm

¹⁰ *Figure 5-1 – Future Lane Configuration*, 15717 Airport Road TIS.

Future Lane Configuration

Figure 4.5

15728 Airport Rd TIS 200052

4.3 Five-Year Horizon

4.3.1 Background Traffic Operations

The study area intersection operations analyses followed the same methodology used for existing traffic conditions. The geometric and traffic control improvements outlined in **Section 4.2** are assumed to be in place. Signal timings have been optimized to help ensure reasonable levels of service.

Table 4.1 summarizes the level of service conditions. No critical movements are noted to be occurring at the study area intersections.

Appendix E contains the detailed Synchro 10 reports.

4.3.2 Total Traffic Operations

The study area intersection operations analyses followed the same methodology as the background conditions. Signal timings have been optimized to help ensure reasonable levels of service.

Table 4.2 summarizes the level of service conditions at the study area intersections. The total traffic operations are forecast to operate with similar levels of service as the background operations with no additional critical movements noted.

The site driveway is forecast to operate with delays in the LOS A to B range with v/c ratios of less than 0.05.

The 95th percentile queue length on the northbound approach of Airport Road at the Caledon East Public School Driveway intersection is forecast to extend into the operational area of the proposed site driveway during the PM peak hour. The 50th percentile queue length is not forecast to reach the site driveway, which suggests the site driveway will be blocked for less than half of the peak hour and will continue to operate with acceptable levels of service.

Appendix F contains the detailed Synchro 10 reports.

TABLE 4.1: BACKGROUND TRAFFIC OPERATIONS – 5-YEAR HORIZON

bd									Dire	ction	n / Mo	oveme	ent / /	Appro	ach					
erio					Eastb	ound		١	Nestt	ounc	ł	1	North	boun	d	S	South	bound	k	
Analysis P	Intersection	Control Type	MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALI
	Airport Road &		LOS	<	С	>	С	С	-	С	С	-	А	А	Α	Α	А	-	Α	Α
	Caledon East	TCS	Delay	<	22	>	22	26	-	22	25	-	3	3	3	3	8	-	8	9
<u> </u>	Public School		V/C	<	0.01	>		0.52	-	0.04		-	0.20	0.00		0.02	0.75	-		0.71
hou	Driveway		95th	<	3	>		20	-	7		-	19	0		2	152	-		
ak F			LOS	<	С	>	С	<	D	>	D	В	А	А	Α	Α	А	А	Α	
Pe			Delay	<	22	>	22	<	28	>	28	12	0	0	0	8	0	0	0	
AM	Airport Road &	TWSC	V/C	<	0.11	>		<	0.34	>		0.01	0.14	0.02		0.00	0.62	0.00		
	Cranston Drive	10000	95th	<	3	>		<	11	>		0	0	0		0	0	0		
			Storage	<	-	>		<	-	>		45	-	-		-	-	45		
			Avail.	<	-	>		<	-	>		45	-	-		-	-	45		
	Airport Road &		LOS	<	С	>	С	С	-	С	С	-	А	А	Α	A	А	-	Α	Α
	Caledon East	TCS	Delay	<	24	>	24	27	-	24	26	-	6	2	6	3	3	-	3	6
<u> </u>	Public School	100	V/C	<	0.01	>		0.42	-	0.02		-	0.70	0.01		0.21	0.37	-		0.67
lou	Driveway		95th	<	3	>		13	-	5		-	117	1		7	33	-		
¥ T			LOS	<	С	>	С	<	С	>	С	А	А	А	Α	В	А	А	Α	
Pea			Delay	<	17	>	17	<	20	>	20	9	0	0	0	11	0	0	0	
M	Airport Road &	TWEC	V/C	<	0.07	>		<	0.10	>		0.02	0.56	0.08		0.01	0.29	0.01		
	Cranston Drive	10050	95th	<	2	>		<	3	>		0	0	0		0	0	0		
			Storage	<	-	>		<	-	>		45	-	-		-	-	45		
			Avail.	<	-	>		<	-	>		45	-	-		-	-	45		
TWS	C - Two-Way Sto	p Control		V/C -	Volu	me to	Capa	acity F	Ratio			> - S	hared	Right	t-Turn	Lane				

TWSC - Two-Way Stop Control TCS - Traffic Control Signal

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length < - Shared Left-Turn Lane

MOE - Measure of Effectiveness

LOS - Level of Service

Storage - Existing Storage (m) Avail. - Available Storage (m)

TABLE 4.2: TOTAL TRAFFIC OPERATIONS – 5-YEAR HORIZON

pd									Dire	ction	/ Mc	oveme	ent / /	Appro	ach					
erio					Eastb	ound		1	Westh	oounc	1	1	North	bound	d		South	bound	k	
Analysis P	Intersection	Control Type	MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALI
	Airport Road &		LOS	<	С	>	С	С	-	С	С	-	А	А	Α	А	А	-	Α	Α
	Caledon East	тсе	Delay	<	22	>	22	26	-	23	25	-	3	3	3	3	8	-	8	9
	Public School	105	V/C	<	0.01	>		0.52	-	0.04		-	0.20	0.00		0.02	0.75	-		0.71
	Driveway		95th	<	3	>		20	-	7		-	19	0		2	155	-		
			LOS	<	С	>	С	<	D	>	D	В	Α	Α	Α	Α	Α	А	Α	
Inol			Delay	<	22	>	22	<	29	>	29	13	0	0	0	8	0	0	0	
кн	Airport Road &	TMEC	V/C	<	0.11	>		<	0.35	>		0.01	0.14	0.02		0.00	0.63	0.01		
Реа	Cranston Drive	10050	95th	<	3	>		<	11	>		0	0	0		0	0	0		
W			Storage	<	-	>		<	-	>		45	-	-		-	-	45		
1			Avail.	<	-	>		<	-	>		45	-	-		-	-	45		
			LOS	-	-	В	В					В	А	-	Α	-	А	А	Α	
	Airport Road	TWEC	Delay	-	-	13	13					11	0	-	0	-	0	0	0	
	Driveway	10000	V/C	-	-	0.02						0.01	0.08	-		-	0.42	0.21		
			95th	-	-	1						0	0	-		-	0	0		
	Airport Road &		LOS	<	С	>	С	С	-	С	С	-	А	А	Α	А	А	-	Α	Α
	Caledon East	TCS	Delay	<	24	>	24	27	-	24	26	-	6	2	6	3	3	-	3	6
	Public School	100	V/C	<	0.01	>		0.42	-	0.02		-	0.70	0.01		0.21	0.37	-		0.67
	Driveway		95th	<	3	>		13	-	5		-	117	1		7	34	-		
<u> </u>			LOS	<	С	>	С	<	С	>	С	А	A	А	Α	В	А	А	Α	
hou			Delay	<	18	>	18	<	20	>	20	9	0	0	0	11	0	0	0	
ak F	Airport Road &	TWSC	V/C	<	0.07	>		<	0.10	>		0.02	0.57	0.08		0.01	0.30	0.02		
Pei	Cranston Drive		95th	<	2	>		<	3	>		0	0	0		0	0	0		
Mq			Storage	<	-	>		<	-	>		45	-	-		-	-	45		
			Avail.	<	-	>		<	-	>		45	-	-		-	-	45		
	Airport Dood		LOS	-	-	В	В					A	A	-	Α	-	А	А	Α	
	& Proposed	TWSC	Delay	-	-	10	10					9	0	-	0	-	0	0	0	
	Driveway		V/C	-	-	0.03						0.01	0.29	-		-	0.21	0.11		
	Driveway		95th	-	-	1						0	0	-		-	0	0		

TWSC - Two-Way Stop Control

TCS - Traffic Control Signal

MOE - Measure of Effectiveness

LOS - Level of Service

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length Storage - Existing Storage (m) Avail. - Available Storage (m) > - Shared Right-Turn Lane

< - Shared Left-Turn Lane

4.4 Ten-Year Horizon

4.4.1 Background Traffic Operations

The study area intersection operations analyses followed the same methodology used for five-year background conditions. The geometric and traffic control improvements outlined in **Section 4.2** are assumed to be in place. Signal timings have been optimized to help ensure reasonable levels of service.

Table 4.3 summarizes the level of service conditions. Study area intersections are generally operating with acceptable levels of service, with the exception of the westbound movement at the Airport Road and Cranston Drive intersection which is forecast to operate at LOS E with a v/c < 0.50 during the AM peak hour.

Appendix G contains the detailed Synchro 10 reports.

4.4.2 Total Traffic Operations

The study area intersection operations analyses followed the same methodology as the background conditions. Signal timings have been optimized to help ensure reasonable levels of service.

Table 4.4 summarizes the level of service conditions at the study area intersections. The total traffic operations are forecast to operate with similar levels of service as the background operations with no additional critical movements noted.

The site driveway is forecast to operate with delays in the LOS A to B range with v/c ratios of less than 0.05.

The 95th percentile queue length on the northbound approach of Airport Road at the Caledon East Public School Driveway intersection is forecast to extend into the operational area of the proposed site driveway during the PM peak hour. The 50th percentile queue length is not forecast to reach the site driveway, which suggests the site driveway will be blocked for less than half of the peak hour and will continue to operate with acceptable levels of service.

Appendix H contains the detailed Synchro 10 reports.

TABLE 4.3: BACKGROUND TRAFFIC OPERATIONS – 10-YEAR HORIZON

bd									Dire	ection	n / Mo	oveme	ent / /	Appro	bach					
erio					Eastb	ound		١	Westt	oounc	ł	ľ	North	boun	d	5	South	bound	k	
Analysis P	Intersection	Control Type	MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALI
	Airport Road &		LOS	<	С	>	С	С	-	С	С	-	А	А	Α	А	В	-	в	В
	Caledon East	TOS	Delay	<	23	>	23	27	-	23	26	-	3	3	3	3	11	-	11	11
<u> </u>	Public School	100	V/C	<	0.01	>		0.51	-	0.04		-	0.22	0.00		0.02	0.82	-		0.77
lou	Driveway		95th	<	3	>		20	-	7		-	21	0		2	178	-		
ak			LOS	v	D	٧	D	۷	Е	~	Е	В	А	А	Α	А	А	А	Α	
l Pe			Delay	<	28	>	28	<	42	>	42	14	0	0	0	8	0	0	0	
AM Pea	Airport Road &	TWSC	V/C	<	0.16	>		<	0.46	>		0.01	0.15	0.02		0.00	0.68	0.00		
	Cranston Drive		95th	<	4	>		<	16	>		0	0	0		0	0	0		
			Storage	<	-	>		<	-	>		45	-	-		-	-	45		
			Avail.	<	-	>		<	-	>		45	-	-		-	-	45		
	Airport Road &		LOS	<	С	>	С	C	-	С	С	-	A _	A	A	A	A	-	Α	A
	Caledon East	TCS	Delay	<	25	>	25	29	-	25	28	-	7	2	7	3	3	-	3	7
L,	Public School		V/C	<	0.01	>		0.45	-	0.02		-	0.76	0.01		0.26	0.40	-		0.73
Hot	Diffeway		95th	<	3	>	-	13	-	5		-	165	1		8	38	-		
ak			LOS	<	С	>	С	<	С	>	С	A	A	A	Α	В	Α	A	Α	
Pe			Delay	<	19	>	19	<	22	>	22	9	0	0	0	11	0	0	0	
ΡM	Airport Road &	TWSC	V/C	<	0.09	>		<	0.11	>		0.02	0.62	0.08		0.01	0.32	0.01		
	Cranston Drive		95th	<	2	>		<	3	>		0	0	0		0	0	0		
			Storage	<	-	>		<	-	>		45	-	-		-	-	45		
			Avail.	<	-	>		<	-	>		45	-	-		-	-	45		

TWSC - Two-Way Stop Control TCS - Traffic Control Signal

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length Storage - Existing Storage (m)

MOE - Measure of Effectiveness LOS - Level of Service

Avail. - Available Storage (m)

> - Shared Right-Turn Lane

< - Shared Left-Turn Lane

TABLE 4.4: TOTAL TRAFFIC OPERATIONS – 10-YEAR HORIZON

bd									Dire	ection	n / Mo	oveme	ent / /	Appro	ach					
eric					Eastb	ound		1	Westt	oound	1	1	North	bound	k	5	South	bound	k	
Analysis P	Intersection	Control Type	MOE	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	Left	Through	Right	Approach	OVERALI
	Airport Road &		LOS	<	С	>	С	С	-	С	С	-	А	А	Α	Α	В	-	В	В
	Caledon East	TOS	Delay	<	23	>	23	27	-	23	26	-	3	3	3	3	11	-	11	11
	Public School	100	V/C	<	0.01	>		0.51	-	0.04		-	0.22	0.00		0.02	0.83	-		0.77
	Driveway		95th	<	3	>		20	-	7		-	21	0		2	180	-		
<u> </u>			LOS	۷	D	٧	D	<	Е	v	Е	С	А	А	Α	Α	А	А	Α	
lou			Delay	<	29	>	29	<	46	>	46	15	0	0	0	8	0	0	0	
ak F	Airport Road &	TWSC	V/C	<	0.17	>		<	0.48	>		0.01	0.16	0.02		0.00	0.69	0.01		
Pea	Cranston Drive	10030	95th	<	4	>		<	17	>		0	0	0		0	0	0		
MA			Storage	<	-	>		<	-	>		45	-	-		-	-	45		
			Avail.	<	-	>		<	-	>		45	-	-		-	-	45		
	Aiment Deed		LOS	-	-	В	В					В	А	-	Α	-	А	А	Α	
	& Proposed	TWSC	Delay	-	-	13	13					11	0	-	0	-	0	0	0	
	Driveway	1000	V/C	-	-	0.02						0.02	0.08	-		-	0.46	0.23		
	,		95th	-	-	1						0	0	-		-	0	0		
	Airport Road &		LOS	<	С	>	С	С	-	С	С	-	А	А	Α	A	А	-	Α	Α
	Caledon East	TCS	Delay	<	25	>	25	29	-	25	28	-	7	2	7	3	3	-	3	7
	Public School	100	V/C	<	0.01	>		0.45	-	0.02		-	0.76	0.01		0.26	0.40	-		0.73
	Driveway		95th	<	3	>		13	-	5		-	165	1		8	38	-		
5			LOS	<	С	>	С	<	С	>	С	A	A	А	Α	В	А	А	Α	
μοι			Delay	<	20	>	20	<	22	>	22	9	0	0	0	11	0	0	0	
ak I	Airport Road &	TWSC	V/C	<	0.10	>		<	0.11	>		0.02	0.62	0.08		0.01	0.33	0.02		
Pe	Cranston Drive		95th	<	2	>		<	3	>		0	0	0		0	0	0		
ΡM			Storage	<	-	>		<	-	>		45	-	-		-	-	45		
			Avail.	<	-	>		<	-	>		45	-	-		-	-	45		
	Airport Road		LOS	-	-	В	В					A	A	-	Α	-	А	A	Α	
	& Proposed	TWSC	Delay	-	-	10	10					9	0	-	0	-	0	0	0	
	Driveway		V/C	-	-	0.03						0.01	0.32	-		-	0.23	0.12		
Airpo Cale Publ Dr Airpo Cale Publ Dr Airpo Crans Airpo Crans	-		95th	-	-	1						0	0	-		-	0	0		

TWSC - Two-Way Stop Control

TCS - Traffic Control Signal

MOE - Measure of Effectiveness

LOS - Level of Service

V/C - Volume to Capacity Ratio

95th - 95th Percentile Queue Length Storage - Existing Storage (m) Avail. - Available Storage (m) > - Shared Right-Turn Lane

< - Shared Left-Turn Lane

5 **Remedial Measures**

5.1 Signal Warrants

The intersection of Airport Road and Cranston Drive/Street B was assessed using the Ontario Traffic Manual (OTM Book 12 – Justification 7) signal warrant¹¹ procedures. **Appendix I** contains the warrant analysis. **Table 5.1** summarizes the warrant analysis.

Intersection	Warrant	Percent Fulfilled	Overall Percentage
	1A	120%	249/
Ten-Year Total Traffic	1B	24%	24%
Airport Rd and Cranston Dr / Street 'B'	2A	114%	209/
	2B	36%	30%

TABLE 5.1: OTM SIGNAL WARRANT ANALYSIS – SUMMARY

Based on the warrant analysis, the criteria necessary to warrant the installation of a traffic control signal is technically not satisfied. No changes to the existing form of traffic control is recommended. It is noted that the Airport Road EA may recommend changes in intersection traffic control that is not discussed in this study.

¹¹ Ontario Traffic Manual Book 12, Ministry of Transportation of Ontario, July 2001.

6 Transportation Demand Management

Transportation Demand Management (TDM) programs consider how choice of travel mode is affected by land use patterns, development design, parking availability, parking cost, and the relative cost, convenience, and availability of alternative modes of travel.

Various TDM strategies are used to influence those factors so that the alternatives to single occupant vehicle travel, such as transit or carpooling, are more accessible.

6.1 Proposed TDM Measures

The site provides direct sidewalk connections to Airport Road and the Caledon Public School East Driveway. Sidewalks are provided along the perimeter of the proposed building which also provides access to the internal courtyard area.

6.2 Potential TDM Measures

To promote sustainable modes of travel and to further mitigate the site's transportation impacts, the following TDM measures could be considered:

- Walking Pedestrian amenities including benches, lighting and weather protection be considered for the site's landscaping plan. The on-site pedestrian realm should be designed to provide a safe and attractive environment for employees, residents, and visitors to the site;
- Cycling Bicycle parking could be provided in convenient and readily accessible locations near the main entrances. End of trip amenities such as secure bike parking and shower/change facilities for employees would enhance the appeal for cycling to work; and
- Carpool Consider providing preferential carpool parking spaces for employees.

The TDM program should be monitored and adjust as needed by the property manager or an assigned TDM coordinator.

7 Conclusions and Recommendations

7.1 Conclusions

The main findings and conclusions of this study are as follows:

- Existing Traffic: The study area intersections are operating with acceptable levels of service during the weekday AM and PM peak hours. No critical movements are occurring at the study area intersections.
- Planned Improvements: The Region of Peel is currently undertaking an Environmental Assessment (EA) for Airport Road. At the time of writing, the EA is not yet finalized. For analysis purposes, geometric and traffic control improvements are assumed to be in place for the study area intersections.
- Trip Generation: The site's net trip generation is estimated to be approximately 29 AM peak hour vehicle trips and 39 PM peak hour vehicle trips. Vehicle access to the site is proposed by a driveway connection to Airport Road and left-turns out of the driveway are assumed to be restricted by a raised centre median on Airport Road.
- Heavy Vehicle Circulation: Pending the final lane configuration from the Airport Road EA, modifications to the curb radii and/or entrance width may be required to accommodate the design vehicle to enter and exit the site without impacting the opposing travel lane.

The reversing maneuvers into the site's loading zone should ideally be assisted by a traffic control person.

- Background Traffic: The study area intersections are generally operating with acceptable levels of service, with the exception of the westbound movement at the Airport Road and Cranston Drive intersection which is forecast to operate at LOS E with a v/c < 0.50 during the AM peak hour in the 10-year horizon.</p>
- Total Traffic: The study area intersections are forecast to operate with similar levels of service as the background traffic conditions. No additional critical movements are noted at the study area intersections over background conditions. The site driveway is forecast to operate with delays in the LOS A to B range with v/c ratios of less than 0.05.
- Remedial Measures: No changes to the existing lane configurations are warranted or required. It is noted that the

Airport Road EA may recommend changes in intersection traffic control that is not discussed in this study.

Transportation Demand Management: Enhancements to the on-site pedestrian realm, inclusion of bicycle parking and preferential carpool parking will help promote sustainable modes of travel and further mitigate the site's transportation impacts.

7.2 Recommendations

Based on the findings of this study, it is recommended that:

- The Region of Peel monitor the outcome of the Airport Road EA to determine if modifications to the curb radii and/or entrance width are required to the proposed driveway; and
- The site operator manages deliveries and waste collection to minimize on-site disruptions. Reversing maneuvers into the site's loading zone should ideally be assisted by a traffic control person.

Appendix A

Pre-Study Consultation

Stefan Hajgato

From:	Kol, Rani <rani.kol@peelregion.ca></rani.kol@peelregion.ca>
Sent:	February 14, 2020 10:03 AM
То:	Stefan Hajgato
Cc:	Carrick, Sean; Hamdani, Hashim; Casey Blakely; Scott Catton
Subject:	Traffic Engineering Comments - Terms of Reference - Wyndham Retirement Home - 15728 Airport
	Road - our file D-00728880W
Attachments:	FW: Seniors site - 15728 Airport Road

Hi Stefan,

The Traffic Engineering section has reviewed the proposed Terms of Reference for 15728 Airport Road and wishes to provide the following responses in red;

We've been retained to complete a Transportation Impact Study (TIS) for a proposed Retirement Residence located at 15728 Airport Road in Caledon. The preliminary development plan (attached) includes 144 beds in 140 units with an expected trip generation of approximately 27 AM and 37 PM peak hour vehicle trips. We are proposing the following scope:

- Study Area:
 - Airport Road (RR7) & Cranston Drive;
 - o Airport Road (RR7) & Caledon East Public School Driveway; and
 - One all-moves access onto Airport Road (RR7). Previous discussions took place regarding the type of access that would be permitted and considered to the lands. See attached correspondence which outlines the details. It has been noted in the past that the Region would support a right in/right out access to the site. Consideration for a left-in movement can be made, subject to the surrounding existing and proposed developments being incorporated into the analysis.
 - Proposed residential development at 15717 Airport Road: Please work with the Developer with regards to incorporating the access design of the northerly restricted access to their site into your proposed study analysis.
- Horizon Years:
 - o Existing (Year 2020); and
 - Five years from Build-Out (date TBD).
 - o Ten years from Build-Out
- Analysis Periods: Weekday AM & PM peak hours.
- Trip Generation: ITE LUC 254 (Assisted Living)
- Background Growth:
 - General Background Growth Rate: 2.0% compounded per annum. The TIS for the neighboring development located at 15717 Airport Road (attached) indicated a 2% growth rate was used to forecast 2021-2031 background conditions in the Airport Road EA; and we support this growth rate.
 - Other Approved and Pending Developments: 15717 Airport Road site generated trips.
- Trip Distribution: 2016 TTS Survey, which is consistent with the 15717 Airport Road TIS.

Could you please provide: The Airport Road EA for use in determining planned geometric improvements and confirming the background growth rate. Please contact Sonya Bubas (ext. 7801, sonya.bubas@peelregion.ca), the Project Manager for the Airport Road EA (#16-4360) to obtain the most up to date material.

Also, for your use please see the below standard Terms of Reference outline;

Full Description

The study must provide a full description of the proposed development. This includes, but is not limited to:

- 1. Municipal address.
- 2. Existing land uses that are permitted and use provisions in an Official Plan Amendment, Zoning By-law, etc.
- 3. Proposed land uses.
- 4. Floor space, including a summary of each type of use and/or number of residential units (where applicable).
- 5. Anticipated date of occupancy.
- 6. Approximate hour of operation.
- 7. Planned phasing of the development.
- 8. Nearby Regional intersections and access to adjacent developments, including type of control (signalized or unsignalized).
- 9. Number of lanes, width and configuration:

- The requirements for auxiliary turn lanes shall be reviewed. Adequate spacing must be provided between access points in accordance with the Region of Peel's current <u>Controlled Access By-law</u>, as amended. All design standards must be in accordance with those outlined in the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads and the Ministry of Transportation, Ontario (MTO) Geometric Design Standards for Ontario Highways.

• 10. Proposed access points and type of access:

- When determining the location of an access, consideration should be given to how the access will affect the surrounding road network, area residents and area businesses. All proposed site access points on Regional roads should be evaluated for capacity, safety and adequacy of queue storage capacity. Approval of the proposed access will be evaluated using the Region of Peel's current <u>Controlled Access By-law</u>, as amended and sound engineering judgement.

- 11. Nearby transit facilities/stops.
- 12. Bike paths.
- 13. A combination of maps and other documentation, which will identify all relevant information.

Traffic Volume Analysis

A traffic volume analysis must include:

- 1. Horizon years of 5 and 10 and 20 depending on full build-out, or as advised by Regional staff.
- 2. AM and PM peak periods at a minimum. Commercial development requires Saturday analysis note that the analysis of turning movement counts (TMCs) for a Saturday of a holiday weekend will not be accepted except when directed by Regional staff.
- 3. Background, site-generated and total traffic volumes.
 - 4. "Worst case" combination of site-related and background traffic.
 - Please contact Roman Kuczynski, Supervisor, Transportation Planning at extension 4381 to obtain the Growth Rates along Airport Road;
 - Please contact Damian Jamroz, Supervisor, Traffic Operations at extension 7856 for most recent average annual daily traffic (AADT) and TMCs required for the study; and
 - Please contact Rick Laing, Supervisor, Traffic Signals and Streetlighting at extension 7859 for the most up-to-date Traffic Signal Timing Parameters and ensure that the information includes the appropriate walk/don't walk splits, recall modes and offsets.
 - Please contact <u>Development Services Planning</u> staff to obtain details on surrounding developments in the area that would affect traffic capacity in the planning horizon year(s).

Trip Generation and Distribution

A trip distribution and trip generation analysis must include:

• 1. Trip generation surveys from similar developments in the Region which have similar operating characteristics as the proposed development.

- 2. Latest edition of the Institute of Transportation Engineers (ITE) trip generation rates are acceptable (use the greater of the average rate method or the fitted line equation).
- 3. A table summarizing your findings.
- 4. Trip distribution assumptions must be supported by one or more of the following:
 - Transportation Tomorrow Survey
 - Origin-destination surveys
 - Comprehensive travel surveys
 - Existing/anticipated travel patterns
 - Output from the Region of Peel Travel Demand Forecasting Model
 - Market studies

Capacity Analysis

The report must include capacity analysis completed in Synchro (version 7.0 preferred, but version 8.0 will be accepted as per the Highway Capacity Manual (HCM) 2000 standards and not the new HCM 2010 module). Unsignalized analysis can be completed in either Synchro or CCG Intercalc (2008 version at a minimum).

The following parameters must be used in either software:

- Saturation flow rate of 1,900 vehicles per hour
- 3.7 metre lane width on Regional roads; and
- 3.5 metre lane width on the intersecting street(s) and/or access(es)

For Synchro analysis, see <u>Regional Guidelines for Using Synchro 7.0</u> for other individual parameters. For CCG Intercalc analysis, saturation adjustments should include a complete breakdown of vehicle types by percentage (based on available data) and is to be documented in a table in the report.

The analysis must also include the identification of signalized intersections, unsignalized intersections and unsignalized accesses where:

- 1. Volume/capacity (V/C) ratios for overall intersection operations, through movements or shared through/turning movements increased to 0.90 or above.
- 2. V/C ratios for exclusive movements that will exceed 1.00.
- 3. 95th percentile queue lengths for individual movements and do they exceed available lane storage.

All intersections that are modelled as signalized intersections (other than existing signalized intersections) must be supported by an <u>Ontario Traffic Manual (OTM) Book 12</u> traffic control signals warrant, each one required to be included in the appendix of the TIS.

If traffic control signals are found to be warranted at a particular intersection in an earlier horizon year (e.g. 5 year horizon), a warrant is not required for the subsequent horizon year (e.g. 10 year horizon). The horizon year in which a particular intersection is warranted for traffic control signals must be documented in the text of the TIS. A roundabout feasibility analysis may also be required at the direction of Regional staff.

In Synchro unsignalized intersection analysis, if an unacceptable LOS ("E" or higher) and v/c ratio results on the minor approach in existing conditions analysis, the consultant shall conduct a gap study to establish an average value for gaps accepted (in seconds) and override the resultant value for the HCM-calculated critical gap in the Signing window.

For horizon year analysis with an existing two- lane road, if the road is forecasted to be widened to four lanes by the respective horizon year, the consultant shall override the resultant value for the HCM-calculated critical gap in the Signing window by inputting recommended values for critical gap of left-turning and right-turning movements onto a four-lane road as identified in the Ministry of Transportation, Ontario (MTO) Geometric Design Standards for Ontario Highways.

Sight Distance Evaluation

A review and analysis of the sight distance availability for all proposed accesses or roads is required. The sight distance requirements must be determined based on the most current standards and guidelines used by the Region of Peel. Available sight distance should be taken from actual field measurements to ensure accurate conditions.

Assess the sightlines based on the Region of Peel's standard practice, eye height and object height of 1.05 metres and 0.38 metres above road surface, respectively. The Region requires the access to meet the following sightline requirements:

- 1. Stopping sight distance; and
- 2. Turning sight distance.

Sight distances must be in accordance with the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads methodology. Folded full size and to scale drawings of the sightline analysis are required for our review and comment.

Safety

Identification of potential safety or operational issues must be reviewed that are associated with:

- weaving
- merging
- corner clearances
- sight distances
- vehicle/pedestrian conflicts
- traffic infiltration
- access conflicts
- cyclist movements
- heavy truck movement conflicts

In addition, should the development be determined by Regional staff to be adjacent to a Regional intersection or road segment with significant collision history, most recent five-year collision data for the intersection(s) and/or road segment (s) must be reviewed and an assessment of the impact of the proposed development provided. Such information may be helpful to minimize any additional problems through the design or location of access points along the subject Regional road(s). Please contact William Toy, Supervisor, Traffic Safety at extension 7869 for collision information.

Functional Design

A functional design detailing a recommended access configuration and/or proposed intersection geometrics may be required at the discretion of Regional staff.

Final Report

The following study structure is suggested:

- 1. Site/development description
- 2. Study area, including map
- 3. Existing conditions exhibit required
- 4. Analysis periods
- 5. Background, existing, future background and future total traffic demand exhibit required
- 6. Site generated traffic exhibit required
- 7. Improvement alternatives
- 8. Traffic impacts for future background and total traffic with and without mitigation (tabular summaries)
- 9. Access considerations
- 10. Recommendations

The TIS should consist of a main document, supplemented by technical appendices containing detailed analyses as required.

The Region of Peel will require 1 copy to be in electronic format and 1 hard copy complete with the appropriate supporting documentation. This shall be submitted to the Traffic Engineering section of Public Works for our review, comment and approval.

All information submitted to Regional staff in connection with any Traffic Impact Study will be considered to be in the public domain.

Appendix

The appendix must include:

- 1. Turning movement counts (include date counted) with breakdown of heavy vehicle counts;
- 2. Signal timing plan(s) for signalized intersections; and
- 3. For submissions using Synchro, generated Synchro reports showing HCM 2000 results and queuing, as well
 as electronic Synchro files (CD copy or sent concurrently with the TIS via email); or
- 4. For submissions using CCG Intercalc, a CCG Intercalc summary report.

Study Updates

From the date of submission, the Traffic Impact Study will have a "shelf life" of 5 years. Where timing of subsequent development approvals exceeds 5 years, a new study will be required at the discretion of the Region of Peel.

Should you have any questions or concerns please do not hesitate to contact me.

Regards,

Rani Kol Specialist Traffic Development & Permits Region of Peel 10 Peel Centre Drive, Suite B, 4th Floor Brampton, ON L6T 4B9 (905) 791-7800 ext. 7858

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Hamdani, Hashim <hashimali.hamdani@peelregion.ca>
Sent: February 13, 2020 2:18 PM
To: Stefan Hajgato <shajgato@ptsl.com>; Carrick, Sean <sean.carrick@peelregion.ca>; casey.blakely@caledon.ca
Cc: Scott Catton <scatton@ptsl.com>; Kol, Rani <rani.kol@peelregion.ca>
Subject: RE: (200052: Wyndham Retirement Home) Terms of Reference

Hi Stefan,

Please be advised that Rani from our group will review the TOR and get back to you soon.

Should you have any questions, please feel free to contact us.

Thanks,

Hashim Ali Hamdani

Supervisor, Traffic Development & Permits Traffic Engineering Region of Peel 10 Peel Centre Drive Suite B, 4th Floor Brampton, ON L6T 4B9 905 791-7800 Ext. 7852

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Stefan Hajgato <<u>shajgato@ptsl.com</u>>
Sent: February 13, 2020 2:03 PM
To: Carrick, Sean <<u>sean.carrick@peelregion.ca</u>>; <u>casey.blakely@caledon.ca</u>
Cc: Scott Catton <<u>scatton@ptsl.com</u>>; Hamdani, Hashim <<u>hashimali.hamdani@peelregion.ca</u>>; Kol, Rani
<<u>rani.kol@peelregion.ca</u>>
Subject: RE: (200052: Wyndham Retirement Home) Terms of Reference

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Thanks for the update Sean.

We spoke with the client and they have not made a planning application to the Town.

Regards,

Stefan Hajgato, E.I.T.

Transportation Consultant

Paradigm Transportation Solutions Limited

p: 519.896.3163 x209

From: Carrick, Sean <<u>sean.carrick@peelregion.ca</u>>
Sent: February 13, 2020 9:42 AM
To: Stefan Hajgato <<u>shajgato@ptsl.com</u>>; <u>casey.blakely@caledon.ca</u>
Cc: Scott Catton <<u>scatton@ptsl.com</u>>; Hamdani, Hashim <<u>hashimali.hamdani@peelregion.ca</u>>; Kol, Rani
<<u>rani.kol@peelregion.ca</u>>
Subject: RE: (200052: Wyndham Retirement Home) Terms of Reference

Hi Stefan,

I just got back to the office from vacation and am catching up on emails. I've just passed this onto Hashim's team to review and provide comments on the TOR. For our records, has a planning application been made to the Town?

Thanks,

Sean

Sean Carrick, C.E.T. Manager Traffic Engineering Region of Peel 10 Peel Centre Drive Suite B, 4th Floor Brampton, ON L6T 4B9 905 791-7800 Ext. 7868

This email, including any attachments, is intended for the recipient specified in the message and may contain information which is confidential or privileged. Any unauthorized use or disclosure of this email is prohibited. If you are not the intended recipient or have received this e-mail in error, please notify the sender via return email and permanently delete all copies of the email. Thank you.

From: Stefan Hajgato <<u>shajgato@ptsl.com</u>>
Sent: February 11, 2020 9:06 AM
To: Carrick, Sean <<u>sean.carrick@peelregion.ca</u>>; <u>casey.blakely@caledon.ca</u>
Cc: Scott Catton <<u>scatton@ptsl.com</u>>
Subject: RE: (200052: Wyndham Retirement Home) Terms of Reference

CAUTION: EXTERNAL MAIL. DO NOT CLICK ON LINKS OR OPEN ATTACHMENTS YOU DO NOT TRUST.

Hi Sean and Casey,

Just checking in. Have you had a chance to review our proposed scope of work for the Wyndham Retirement Home TIS? If not, can you indicate to us when we might expect to receive comment so we can advise our client?

Thanks,

Stefan Hajgato, E.I.T. *Transportation Consultant*

Paradigm Transportation Solutions Limited p: 519.896.3163 x209

From: Stefan Hajgato
Sent: February 3, 2020 9:35 AM
To: Carrick, Sean <<u>sean.carrick@peelregion.ca</u>>; mary.nordstrom@caledon.ca; casey.blakely@caledon.ca
Cc: Scott Catton <<u>scatton@ptsl.com</u>>
Subject: (200052: Wyndham Retirement Home) Terms of Reference

Good morning Sean, Mary, and Casey,

We've been retained to complete a Transportation Impact Study (TIS) for a proposed Retirement Residence located at 15728 Airport Road in Caledon. The preliminary development plan (attached) includes 144 beds in 140 units with an expected trip generation of approximately 27 AM and 37 PM peak hour vehicle trips. We are proposing the following scope:

- Study Area:
 - Airport Road (RR7) & Cranston Drive;
 - o Airport Road (RR7) & Caledon East Public School Driveway; and
 - One all-moves access onto Airport Road (RR7).
- Horizon Years:
 - o Existing (Year 2020); and
 - Five years from Build-Out (date TBD).
- Analysis Periods: Weekday AM & PM peak hours.
- Trip Generation: ITE LUC 254 (Assisted Living)
- Background Growth:
 - General Background Growth Rate: 2.0% compounded per annum. The TIS for the neighboring development located at 15717 Airport Road (attached) indicated a 2% growth rate was used to forecast 2021-2031 background conditions in the Airport Road EA; and
 - Other Approved and Pending Developments: 15717 Airport Road site generated trips.
- **Trip Distribution:** 2016 TTS Survey, which is consistent with the 15717 Airport Road TIS.

Could you please provide: The Airport Road EA for use in determining planned geometric improvements and confirming the background growth rate.

Please let me know if you have any questions or comments.

Best regards,

Stefan Hajgato, E.I.T.

Transportation Consultant

Paradigm Transportation Solutions Limited

150 Pinebush Road, Unit 5A, Cambridge ON N1R 8J8 p: 519.896.3163 x209 e: <u>shajgato@ptsl.com</u> w: <u>www.ptsl.com</u>

This e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this e-mail in error please notify the sender immediately. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of Paradigm Transportation Solutions Limited. Finally, the recipient should check this e-mail and any attachments for the presence of viruses. Paradigm Transportation Solutions Limited Solutions Limited accepts no liability for any damage caused by any virus transmitted by this e-mail.

This e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this e-mail in error please notify the sender immediately. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of Paradigm Transportation Solutions Limited. Finally, the recipient should check this e-mail and any attachments for the presence of viruses. Paradigm Transportation Solutions Limited Solutions Limited accepts no liability for any damage caused by any virus transmitted by this e-mail.

Appendix B

Existing Data

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 1

Turning Movement Data

		Caledon E	East Public School	Driveway				Airport Road					Airport Road			
Stort Time			Eastbound					Northbound					Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:00 AM	1	2	0	0	3	0	36	0	0	36	172	0	0	0	172	211
7:15 AM	0	0	0	0	0	0	45	0	0	45	202	0	0	0	202	247
7:30 AM	1	1	0	0	2	0	47	0	0	47	215	0	0	0	215	264
7:45 AM	4	5	0	0	9	0	63	0	0	63	181	0	0	0	181	253
Hourly Total	6	8	0	0	14	0	191	0	0	191	770	0	0	0	770	975
8:00 AM	1	2	0	0	3	0	66	0	0	66	136	0	0	0	136	205
8:15 AM	0	7	0	0	7	0	54	0	0	54	143	0	0	0	143	204
8:30 AM	1	0	0	0	1	0	67	0	0	67	112	0	0	0	112	180
8:45 AM	8	10	0	0	18	0	70	0	0	70	112	0	0	0	112	200
Hourly Total	10	19	0	0	29	0	257	0	0	257	503	0	0	0	503	789
9:00 AM	14	16	0	0	30	0	67	0	0	67	91	0	0	0	91	188
9:15 AM	2	1	0	0	3	0	61	0	0	61	100	0	0	0	100	164
9:30 AM	0	0	0	0	0	0	67	0	0	67	75	0	0	0	75	142
9:45 AM	1	0	0	0	1	0	46	0	0	46	88	0	0	0	88	135
Hourly Total	17	17	0	0	34	0	241	0	0	241	354	0	0	0	354	629
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:30 AM	1	0	0	0	1	0	47	0	0	47	66	0	0	0	66	114
11:45 AM	1	0	0	0	1	0	59	0	0	59	72	0	0	0	72	132
Hourly Total	2	0	0	0	2	0	106	0	0	106	138	0	0	0	138	246
12:00 PM	1	0	0	0	1	0	67	0	0	67	64	0	0	0	64	132
12:15 PM	1	0	0	0	1	0	68	0	0	68	60	0	0	0	60	129
12:30 PM	5	1	0	0	6	0	50	0	0	50	55	0	0	0	55	111
12:45 PM	1	0	0	0	1	0	77	0	0	77	68	0	0	0	68	146
Hourly Total	8	1	0	0	9	0	262	0	0	262	247	0	0	0	247	518
1:00 PM	1	0	0	0	1	0	54	0	0	54	56	0	0	0	56	111
1:15 PM	0	0	0	0	0	0	62	0	0	62	63	0	0	0	63	125
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	1	0	0	0	1	0	116	0	0	116	119	0	0	0	119	236
3:00 PM	1	1	0	0	2	0	124	0	0	124	76	0	0	0	76	202
3:15 PM	0	0	0	0	0	0	146	0	0	146	76	0	0	0	76	222
3:30 PM	21	12	0	1	33	0	154	0	0	154	76	0	0	0	76	263
3:45 PM	13	8	0	1	21	0	149	0	0	149	81	0	0	0	81	251
Hourly Total	35	21	0	2	56	0	573	0	0	573	309	0	0	0	309	938
4:00 PM	1	1	0	0	2	0	163	0	0	163	80	0	0	0	80	245
4:15 PM	5	1	0	0	6	0	205	0	0	205	110	0	0	0	110	321
4:30 PM	0	0	0	0	0	0	173	0	0	173	107	0	0	0	107	280

4:45 PM	3	1	0	0	4	0	196	0	0	196	73	0	0	0	73	273
Hourly Total	9	3	0	0	12	0	737	0	0	737	370	0	0	0	370	1119
5:00 PM	5	0	0	0	5	0	197	0	0	197	81	0	0	0	81	283
5:15 PM	2	0	0	0	2	0	196	0	0	196	83	0	0	0	83	281
5:30 PM	2	0	0	0	2	0	163	0	0	163	62	0	0	0	62	227
5:45 PM	3	3	0	0	6	0	176	0	0	176	79	0	0	0	79	261
Hourly Total	12	3	0	0	15	0	732	0	0	732	305	0	0	0	305	1052
Grand Total	100	72	0	2	172	0	3215	0	0	3215	3115	0	0	0	3115	6502
Approach %	58.1	41.9	0.0	-	-	0.0	100.0	0.0	-	-	100.0	0.0	0.0	-	-	-
Total %	1.5	1.1	0.0	-	2.6	0.0	49.4	0.0	-	49.4	47.9	0.0	0.0	-	47.9	-
Lights	94	59	0	-	153	0	3016	0	-	3016	2828	0	0	-	2828	5997
% Lights	94.0	81.9	-	-	89.0	-	93.8	-	-	93.8	90.8	-	-	-	90.8	92.2
Buses	4	13	0	-	17	0	35	0	-	35	31	0	0	-	31	83
% Buses	4.0	18.1	-	-	9.9	-	1.1	-	-	1.1	1.0	-	-	-	1.0	1.3
Single-Unit Trucks	2	0	0	-	2	0	87	0	-	87	129	0	0	-	129	218
% Single-Unit Trucks	2.0	0.0	-	-	1.2	-	2.7	-	-	2.7	4.1	-	-	-	4.1	3.4
Articulated Trucks	0	0	0	-	0	0	77	0	-	77	127	0	0	-	127	204
% Articulated Trucks	0.0	0.0	-	-	0.0	-	2.4	-	-	2.4	4.1	-	-	-	4.1	3.1
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	-	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	0.0	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	2	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 4

Turning Movement Peak Hour Data (7:00 AM)

					1 011111	<i>y</i> 1010 001			Julu (I							
		Caledon E	ast Public Schoo	l Driveway				Airport Road					Airport Road			
Start Time			Eastbound					Northbound					Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:00 AM	1	2	0	0	3	0	36	0	0	36	172	0	0	0	172	211
7:15 AM	0	0	0	0	0	0	45	0	0	45	202	0	0	0	202	247
7:30 AM	1	1	0	0	2	0	47	0	0	47	215	0	0	0	215	264
7:45 AM	4	5	0	0	9	0	63	0	0	63	181	0	0	0	181	253
Total	6	8	0	0	14	0	191	0	0	191	770	0	0	0	770	975
Approach %	42.9	57.1	0.0	-	-	0.0	100.0	0.0	-	-	100.0	0.0	0.0	-	-	-
Total %	0.6	0.8	0.0	-	1.4	0.0	19.6	0.0	-	19.6	79.0	0.0	0.0	-	79.0	-
PHF	0.375	0.400	0.000	-	0.389	0.000	0.758	0.000	-	0.758	0.895	0.000	0.000	-	0.895	0.923
Lights	6	7	0	-	13	0	163	0	-	163	733	0	0	-	733	909
% Lights	100.0	87.5	-	-	92.9	-	85.3	-	-	85.3	95.2	-	-	-	95.2	93.2
Buses	0	1	0	-	1	0	12	0	-	12	7	0	0	-	7	20
% Buses	0.0	12.5	-	-	7.1	-	6.3	-	-	6.3	0.9	-	-	-	0.9	2.1
Single-Unit Trucks	0	0	0	-	0	0	4	0	-	4	15	0	0	-	15	19
% Single-Unit Trucks	0.0	0.0	-	-	0.0	-	2.1	-	-	2.1	1.9	-	-	-	1.9	1.9
Articulated Trucks	0	0	0	-	0	0	12	0	-	12	15	0	0	-	15	27
% Articulated Trucks	0.0	0.0	-	-	0.0	-	6.3	-	-	6.3	1.9	-	-	-	1.9	2.8
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	-	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 5

Turning Movement Peak Hour Data Plot (7:00 AM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 6

Turning Movement Peak Hour Data (12:00 PM)

		Caledon E	ast Public Schoo	l Driveway	_			Airport Road	-	-			Airport Road			
Start Time			Eastbound					Northbound					Southbound			
	Left	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
12:00 PM	1	0	0	0	1	0	67	0	0	67	64	0	0	0	64	132
12:15 PM	1	0	0	0	1	0	68	0	0	68	60	0	0	0	60	129
12:30 PM	5	1	0	0	6	0	50	0	0	50	55	0	0	0	55	111
12:45 PM	1	0	0	0	1	0	77	0	0	77	68	0	0	0	68	146
Total	8	1	0	0	9	0	262	0	0	262	247	0	0	0	247	518
Approach %	88.9	11.1	0.0	-	-	0.0	100.0	0.0	-	-	100.0	0.0	0.0	-	-	-
Total %	1.5	0.2	0.0	-	1.7	0.0	50.6	0.0	-	50.6	47.7	0.0	0.0	-	47.7	-
PHF	0.400	0.250	0.000	-	0.375	0.000	0.851	0.000	-	0.851	0.908	0.000	0.000	-	0.908	0.887
Lights	8	1	0	-	9	0	244	0	-	244	219	0	0	-	219	472
% Lights	100.0	100.0	-	-	100.0	-	93.1	-	-	93.1	88.7	-	-	-	88.7	91.1
Buses	0	0	0	-	0	0	0	0	-	0	1	0	0	-	1	1
% Buses	0.0	0.0	-	-	0.0	-	0.0	-	-	0.0	0.4	-	-	-	0.4	0.2
Single-Unit Trucks	0	0	0	-	0	0	10	0	-	10	13	0	0	-	13	23
% Single-Unit Trucks	0.0	0.0	-	-	0.0	-	3.8	-	-	3.8	5.3	-	-	-	5.3	4.4
Articulated Trucks	0	0	0	-	0	0	8	0	-	8	14	0	0	-	14	22
% Articulated Trucks	0.0	0.0	-	-	0.0	-	3.1	-	-	3.1	5.7	-	-	-	5.7	4.2
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	-	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-		0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 7

Turning Movement Peak Hour Data Plot (12:00 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 8

Turning Movement Peak Hour Data (4:15 PM)

		Caledon E	ast Public Schoo	l Driveway				Airport Road		-			Airport Road			
Start Time			Eastbound					Northbound					Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
4:15 PM	5	1	0	0	6	0	205	0	0	205	110	0	0	0	110	321
4:30 PM	0	0	0	0	0	0	173	0	0	173	107	0	0	0	107	280
4:45 PM	3	1	0	0	4	0	196	0	0	196	73	0	0	0	73	273
5:00 PM	5	0	0	0	5	0	197	0	0	197	81	0	0	0	81	283
Total	13	2	0	0	15	0	771	0	0	771	371	0	0	0	371	1157
Approach %	86.7	13.3	0.0	-	-	0.0	100.0	0.0	-	-	100.0	0.0	0.0	-	-	-
Total %	1.1	0.2	0.0	-	1.3	0.0	66.6	0.0	-	66.6	32.1	0.0	0.0	-	32.1	-
PHF	0.650	0.500	0.000	-	0.625	0.000	0.940	0.000	-	0.940	0.843	0.000	0.000	-	0.843	0.901
Lights	12	2	0	-	14	0	749	0	-	749	325	0	0	-	325	1088
% Lights	92.3	100.0	-	-	93.3	-	97.1	-	-	97.1	87.6	-	-	-	87.6	94.0
Buses	0	0	0	-	0	0	1	0	-	1	6	0	0	-	6	7
% Buses	0.0	0.0	-	-	0.0	-	0.1	-	-	0.1	1.6	-	-	-	1.6	0.6
Single-Unit Trucks	1	0	0	-	1	0	12	0	-	12	20	0	0	-	20	33
% Single-Unit Trucks	7.7	0.0	-	-	6.7	-	1.6	-	-	1.6	5.4	-	-	-	5.4	2.9
Articulated Trucks	0	0	0	-	0	0	9	0	-	9	20	0	0	-	20	29
% Articulated Trucks	0.0	0.0	-	-	0.0	-	1.2	-	-	1.2	5.4	-	-	-	5.4	2.5
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	-	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 9

Turning Movement Peak Hour Data Plot (4:15 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Caledon East Public School Driveway Site Code: Start Date: 02/05/2020 Page No: 10

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 1

Turning Movement Data

			Cranston Drive			i un	ing me	Airport Road	Jaia				Airport Road			
Start Time	Loft	Right	Lastbound	Pade	App. Total	l oft	Thru	Northbound	Pade	App. Total	Thru	Right	Southbound	Pade	App. Total	Int Total
7.00 AM	0	4	0	0	4	0	38	0	0	.38	179	0	0	0	179	221
7:15 AM	0	4	0	0	4	2	43	0	0	45	197	3	0	0	200	249
7:30 AM	4	4	0	0	8	1	43	0	0	44	218	1	0	0	219	271
7:45 AM	2	4	0	0	6	0	63	0	0	63	179	2	0	0	181	250
Hourly Total	6	16	0	0	22	3	187	0	0	190	773	6	0	0	779	991
8:00 AM	1	6	0	0	7	3	64	0	0	67	136	1	0	0	137	211
8:15 AM	3	5	0	0	8	1	52	0	0	53	148	3	0	0	151	212
8:30 AM	4	6	0	0	10	5	60	0	0	65	112	2	0	0	114	189
8:45 AM	1	7	0	0	8	9	69	0	0	78	117	3	0	0	120	206
Hourly Total	9	24	0	0	33	18	245	0	0	263	513	9	0	0	522	818
9:00 AM	4	2	0	0	6	2	63	0	0	65	107	0	0	0	107	178
9:15 AM	3	2	0	0	5	2	56	0	0	58	98	1	0	0	99	162
9:30 AM	3	2	0	0	5	0	64	0	0	64	76	1	0	0	77	146
9:45 AM	1	0	0	0	1	1	45	0	0	46	85	3	0	0	88	135
Hourly Total	11	6	0	0	17	5	228	0	0	233	366	5	0	0	371	621
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:30 AM	2	1	0	0	3	0	45	0	0	45	64	2	0	0	66	114
11:45 AM	2	1	0	0	3	1	58	0	0	59	68	5	0	0	73	135
Hourly Total	4	2	0	0	6	1	103	0	0	104	132	7	0	0	139	249
12:00 PM	0	2	0	0	2	3	65	0	0	68	59	2	0	0	61	131
12:15 PM	0	3	0	0	3	0	68	0	0	68	56	0	0	0	56	127
12:30 PM	1	1	0	0	2	1	51	0	0	52	61	0	1	0	62	116
12:45 PM	3	0	0	0	3	2	73	0	0	75	63	4	0	0	67	145
Hourly Total	4	6	0	0	10	6	257	0	0	263	239	6	1	0	246	519
1:00 PM	0	0	0	0	0	3	54	0	0	57	53	2	0	0	55	112
1:15 PM	1	1	0	0	2	0	60	0	0	60	63	0	0	0	63	125
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	1	1	0	0	2	3	114	0	0	117	116	2	0	0	118	237
3:00 PM	0	0	0	0	0	6	120	0	0	126	73	3	0	0	76	202
3:15 PM	2	1	0	0	3	7	146	0	0	153	71	5	0	0	76	232
3:30 PM	3	1	0	0	4	10	150	0	0	160	80	5	0	0	85	249
3:45 PM	4	3	0	0	7	4	144	0	0	148	89	2	0	0	91	246
Hourly Total	9	5	0	0	14	27	560	0	0	587	313	15	0	0	328	929
4:00 PM	1	0	0	0	1	5	171	1	0	177	75	3	0	0	78	256
4:15 PM	7	1	0	0	8	2	196	0	0	198	103	5	0	0	108	314
4:30 PM	3	1	0	0	4	4	167	0	0	171	105	5	0	0	110	285

4:45 PM	2	4	0	0	6	4	190	0	0	194	70	4	0	0	74	274
Hourly Total	13	6	0	0	19	15	724	1	0	740	353	17	0	0	370	1129
5:00 PM	0	2	0	0	2	4	200	0	0	204	77	4	0	0	81	287
5:15 PM	1	2	0	0	3	9	196	0	0	205	80	6	0	0	86	294
5:30 PM	3	7	0	0	10	1	164	0	0	165	60	1	0	0	61	236
5:45 PM	2	0	0	0	2	1	166	0	0	167	81	5	0	0	86	255
Hourly Total	6	11	0	0	17	15	726	0	0	741	298	16	0	0	314	1072
Grand Total	63	77	0	0	140	93	3144	1	0	3238	3103	83	1	0	3187	6565
Approach %	45.0	55.0	0.0	-	-	2.9	97.1	0.0	-	-	97.4	2.6	0.0	-	-	-
Total %	1.0	1.2	0.0	-	2.1	1.4	47.9	0.0	-	49.3	47.3	1.3	0.0	-	48.5	-
Lights	60	76	0	-	136	84	2936	1	-	3021	2814	75	1	-	2890	6047
% Lights	95.2	98.7	-	-	97.1	90.3	93.4	100.0	-	93.3	90.7	90.4	100.0	-	90.7	92.1
Buses	1	1	0	-	2	8	32	0	-	40	35	5	0	-	40	82
% Buses	1.6	1.3	-	-	1.4	8.6	1.0	0.0	-	1.2	1.1	6.0	0.0	-	1.3	1.2
Single-Unit Trucks	2	0	0	-	2	0	95	0	-	95	123	2	0	-	125	222
% Single-Unit Trucks	3.2	0.0	-	-	1.4	0.0	3.0	0.0	-	2.9	4.0	2.4	0.0	-	3.9	3.4
Articulated Trucks	0	0	0	-	0	1	80	0	-	81	131	1	0	-	132	213
% Articulated Trucks	0.0	0.0	-	-	0.0	1.1	2.5	0.0	-	2.5	4.2	1.2	0.0	-	4.1	3.2
Bicycles on Road	0	0	0	-	0	0	1	0	-	1	0	0	0	-	0	1
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 4

Turning Movement Peak Hour Data (7:00 AM)

					1 011111	<i>y</i> 1010 0 0 1			Juiu (I							
			Cranston Drive					Airport Road					Airport Road			
Chart Time			Eastbound					Northbound					Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:00 AM	0	4	0	0	4	0	38	0	0	38	179	0	0	0	179	221
7:15 AM	0	4	0	0	4	2	43	0	0	45	197	3	0	0	200	249
7:30 AM	4	4	0	0	8	1	43	0	0	44	218	1	0	0	219	271
7:45 AM	2	4	0	0	6	0	63	0	0	63	179	2	0	0	181	250
Total	6	16	0	0	22	3	187	0	0	190	773	6	0	0	779	991
Approach %	27.3	72.7	0.0	-	-	1.6	98.4	0.0	-	-	99.2	0.8	0.0	-	-	-
Total %	0.6	1.6	0.0	-	2.2	0.3	18.9	0.0	-	19.2	78.0	0.6	0.0	-	78.6	-
PHF	0.375	1.000	0.000	-	0.688	0.375	0.742	0.000	-	0.754	0.886	0.500	0.000	-	0.889	0.914
Lights	5	16	0	-	21	3	158	0	-	161	741	5	0	-	746	928
% Lights	83.3	100.0	-	-	95.5	100.0	84.5	-	-	84.7	95.9	83.3	-	-	95.8	93.6
Buses	1	0	0	-	1	0	10	0	-	10	4	1	0	-	5	16
% Buses	16.7	0.0	-	-	4.5	0.0	5.3	-	-	5.3	0.5	16.7	-	-	0.6	1.6
Single-Unit Trucks	0	0	0	-	0	0	5	0	-	5	14	0	0	-	14	19
% Single-Unit Trucks	0.0	0.0	-	-	0.0	0.0	2.7	-	-	2.6	1.8	0.0	-	-	1.8	1.9
Articulated Trucks	0	0	0	-	0	0	14	0	-	14	14	0	0	-	14	28
% Articulated Trucks	0.0	0.0	-	-	0.0	0.0	7.5	-	-	7.4	1.8	0.0	-	-	1.8	2.8
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	_	-	-	-	-	-	-	-	_	-	-	-	-	-	_
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 5

Turning Movement Peak Hour Data Plot (7:00 AM)

Paradigm Transportation Solutions Limited 5A-150 Pinebush Rd

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 6

Turning Movement Peak Hour Data (12:00 PM)

			Cranston Drive Eastbound					Airport Road	·				Airport Road Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
12:00 PM	0	2	0	0	2	3	65	0	0	68	59	2	0	0	61	131
12:15 PM	0	3	0	0	3	0	68	0	0	68	56	0	0	0	56	127
12:30 PM	1	1	0	0	2	1	51	0	0	52	61	0	1	0	62	116
12:45 PM	3	0	0	0	3	2	73	0	0	75	63	4	0	0	67	145
Total	4	6	0	0	10	6	257	0	0	263	239	6	1	0	246	519
Approach %	40.0	60.0	0.0	-	-	2.3	97.7	0.0	-	-	97.2	2.4	0.4	-	-	-
Total %	0.8	1.2	0.0	-	1.9	1.2	49.5	0.0	-	50.7	46.1	1.2	0.2	-	47.4	-
PHF	0.333	0.500	0.000	-	0.833	0.500	0.880	0.000	-	0.877	0.948	0.375	0.250	-	0.918	0.895
Lights	4	6	0	-	10	6	235	0	-	241	212	5	1	-	218	469
% Lights	100.0	100.0		-	100.0	100.0	91.4	-	-	91.6	88.7	83.3	100.0	-	88.6	90.4
Buses	0	0	0	-	0	0	0	0	-	0	0	1	0	-	1	1
% Buses	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	16.7	0.0	-	0.4	0.2
Single-Unit Trucks	0	0	0	-	0	0	13	0	-	13	12	0	0	-	12	25
% Single-Unit Trucks	0.0	0.0	-	-	0.0	0.0	5.1	-	-	4.9	5.0	0.0	0.0	-	4.9	4.8
Articulated Trucks	0	0	0	-	0	0	8	0	-	8	15	0	0	-	15	23
% Articulated Trucks	0.0	0.0		-	0.0	0.0	3.1	-	-	3.0	6.3	0.0	0.0	-	6.1	4.4
Bicycles on Road	0	0	0	-	0	0	1	0	-	1	0	0	0	-	0	1
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.4	-	-	0.4	0.0	0.0	0.0	-	0.0	0.2
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 7

Turning Movement Peak Hour Data Plot (12:00 PM)

Paradigm Transportation Solutions Limited 5A-150 Pinebush Rd

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 8

Turning Movement Peak Hour Data (4:15 PM)

			Cranston Drive					Airport Road					Airport Road			
Chart Time			Eastbound					Northbound					Southbound			
Start Time	Left	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
4:15 PM	7	1	0	0	8	2	196	0	0	198	103	5	0	0	108	314
4:30 PM	3	1	0	0	4	4	167	0	0	171	105	5	0	0	110	285
4:45 PM	2	4	0	0	6	4	190	0	0	194	70	4	0	0	74	274
5:00 PM	0	2	0	0	2	4	200	0	0	204	77	4	0	0	81	287
Total	12	8	0	0	20	14	753	0	0	767	355	18	0	0	373	1160
Approach %	60.0	40.0	0.0	-	-	1.8	98.2	0.0	-	-	95.2	4.8	0.0	-	-	-
Total %	1.0	0.7	0.0	-	1.7	1.2	64.9	0.0	-	66.1	30.6	1.6	0.0	-	32.2	-
PHF	0.429	0.500	0.000	-	0.625	0.875	0.941	0.000	-	0.940	0.845	0.900	0.000	-	0.848	0.924
Lights	11	8	0	-	19	14	727	0	-	741	310	17	0	-	327	1087
% Lights	91.7	100.0	-	-	95.0	100.0	96.5	-	-	96.6	87.3	94.4	-	-	87.7	93.7
Buses	0	0	0	-	0	0	2	0	-	2	6	0	0	-	6	8
% Buses	0.0	0.0	-	-	0.0	0.0	0.3	-	-	0.3	1.7	0.0	-	-	1.6	0.7
Single-Unit Trucks	1	0	0	-	1	0	14	0	-	14	18	1	0	-	19	34
% Single-Unit Trucks	8.3	0.0	-	-	5.0	0.0	1.9	-	-	1.8	5.1	5.6	-	-	5.1	2.9
Articulated Trucks	0	0	0	-	0	0	10	0	-	10	21	0	0	-	21	31
% Articulated Trucks	0.0	0.0	-	-	0.0	0.0	1.3	-	-	1.3	5.9	0.0	-	-	5.6	2.7
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-		0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 9

Turning Movement Peak Hour Data Plot (4:15 PM)

Paradigm Transportation Solutions Limited 5A-150 Pinebush Rd

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com Count Name: Airport Road & Cranston Drive Site Code: Start Date: 02/05/2020 Page No: 10

Zone Tri	ps Hour	Direct	Region	Route
38	15 PM 41 PM	In In	Toronto	SW via Olde Base Line SW via Olde Base Line
101	10 PM 5 AM	In	Toronto	SW via Olde Base Line SW via Olde Base Line
107	5 PM	Out	Toronto	SW via Olde Base Line
184	22 PM	In	Toronto	SW via Olde Base Line
211	41 AM	Out	Toronto	SW via Olde Base Line
211	41 PM	In	Toronto	SW via Olde Base Line
236	15 AM	Out	Toronto	SW via Olde Base Line
236	15 PM	In	Toronto	SW via Olde Base Line
292	26 PM	In In	Toronto Toronto	SW via Olde Base Line
330	18 AM	In	Toronto	SW via Olde Base Line SW via Olde Base Line
337	15 AM 15 PM	In	Toronto	SW via Olde Base Line SW via Olde Base Line
349	25 PM	Out	Toronto	SW via Olde Base Line
358	33 AM	Out	Toronto	SW via Olde Base Line
415	26 AM	In	Toronto	SW via Olde Base Line
415	13 PM	In	Toronto	SW via Olde Base Line
497	25 PM	Out	Toronto	SW via Olde Base Line
600	23 PM	Out	Toronto	SW via Olde Base Line
2006	7 AM 10 PM	Out	York York	SW via Olde Base Line SW via Olde Base Line
2055	41 PM	Out	York	SW via Olde Base Line
2063	38 AM	Out	York	SW via Olde Base Line
2065	19 AM	Out	York	SW via Olde Base Line SW via Olde Base Line
2066	19 PM 16 AM	In Out	York	SW via Olde Base Line SW via Olde Base Line
2097	16 PM	In	York	SW via Olde Base Line
2101	50 AM	Out	York	SW via Olde Base Line
2399	26 AM	Out	York	SW via Olde Base Line
2399	26 PM	Out	York	SW via Olde Base Line
2609	15 PM	In	York	N via Airport Rd
2778	41 AM	Out	York	N via Airport Rd
2778	41 PM	In	York	N via Airport Rd
3002	33 AM	In	Peel	S via Airport Road
3002 3007	33 PM 59 AM	Out	Peel	S via Airport Road S via Airport Road
3007	22 PM	Out	Peel	S via Airport Road
3100	16 AM	In	Peel	N via Airport Rd
3100	39 PM	In	Peel	N via Airport Rd
3101	107 AM	In	Peel	N via Airport Rd
3102	74 PM	In		N via Airport Rd
3108	13 AM	In	Peel	N via Airport Rd
3108	13 PM	Out	Peel	N via Airport Rd
3151	28 AM	In	Peel	SW via Olde Base Line
3151	13 AM	Out	Peel	SW via Olde Base Line
3151	11 PM	Out	Peel	SW via Olde Base Line
3152	52 AM	In	Peel	West via Cranston
3153	22 AM	In	Peel	S via Airport Road
3153	22 PM	Out		S via Airport Road
3189	13 PM	Out	Peel	S via Airport Road
3191	7 PM	In	Peel	S via Airport Road
3193	41 AM 71 AM	Out	Peel	S via Airport Road S via Airport Road
3193	80 PM 106 PM	In	Peel	S via Airport Road S via Airport Road
3194	13 PM	In	Peel	S via Airport Road
3195	27 AM	In		N via Airport Rd
3195	13 PM	In	Peel	N via Airport Rd
3197	221 AM	In	Peel	N via Airport Rd
3197	221 AM	Out	Peel	N via Airport Rd
3197	103 PM	Out	Peel	N via Airport Rd
3197	103 PM	In	Peel	N via Airport Rd
3199	48 AM	In	Peel	N via Airport Rd
3328	7 AM	Out	Peel	S via Airport Road
3332	39 AM		Peel	S via Airport Road
3332	39 PM	In	Peel	S via Airport Road
3333	9 PM	In	Peel	S via Airport Road
3335	26 PM	In	Peel	S via Airport Road
3336	19 AM 19 PM	In	Peel	S via Airport Road S via Airport Road
3337	14 AM	In	Peel	S via Airport Road
3337	17 PM	In	Peel	S via Airport Road
3343	9 AM	Out	Peel	S via Airport Road
3343	9 PM	In	Peel	S via Airport Road
3350	39 AM	Out	Peel	S via Airport Road
3351	4 AM	Out	Peel	S via Airport Road
3357	33 PM	Out	Peel	S via Airport Road
3364	24 AM	In	Peel	S via Airport Road
3364 3370	10 AM 47 PM	Out	Peel	S via Airport Road S via Airport Road
3371	35 AM	Out	Peel	S via Airport Road
3375	15 PM	Out	Peel	S via Airport Road
3378	35 PM	In	Peel	S via Airport Road S via Airport Road
3380	33 AM 16 AM	Out	Peel	S via Airport Road S via Airport Road
3419	95 AM	Out	Peel	S via Airport Road
3421	55 AM	Out		S via Airport Road
3421	55 PM	In	Peel	S via Airport Road
3422	7 PM	In	Peel	S via Airport Road
3423	48 AM	Out	Peel	S via Airport Road
3423	48 PM	In	Peel	S via Airport Road
3459	29 AM	In	Peel	S via Airport Road
3462	51 AM	Out	Peel	S via Airport Road
3462	51 PM	In	Peel	S via Airport Road
3466	14 PM	Out	Peel	S via Airport Road
3467	47 AM	In	Peel	S via Airport Road
3468	12 AM	Out	Peel	S via Airport Road
3468	12 PM	In	Peel	S via Airport Road
3501	20 PM	In	Peel	S via Airport Road
3506	11 AM	In	Peel	S via Airport Road
3506	11 PM	Out	Peel	S via Airport Road
3519	36 AM	In	Peel	S via Airport Road
	16 AM	Out	Peel	S via Airport Road
3605	16 PM	In	Peel	S via Airport Road
3650	7 AM	In	Peel	S via Airport Road
3674	15 AM	In	Peel	S via Airport Road S via Airport Road
3701	63 PM	In	r-eel Peel	S via Airport Road S via Airport Road
3703	16 AM	Out	r'eei	o via Airport Road
3703	16 PM	In	Peel	S via Airport Road
3707	33 PM	In	Peel	S via Airport Road
3877	7 PM	In	Peel	S via Airport Road
4023	55 AM	Out	Halton	SW via Olde Base Line
4023	55 PM	In	Halton	SW via Olde Base Line
4029	18 AM	Out	Halton	SW via Olde Base Line
4160	36 AM	In	Halton	SW via Olde Base Line
4166	44 PM	In	Halton	SW via Olde Base Line
4193	16 PM	Out	Halton	SW via Olde Base I ine
4195	7 AM	In	Halton	SW via Olde Base Line
	31 PM	In	Hamilton	SW via Olde Base Line
6275	50 AM	Out	Niagara	SW via Olde Base Line SW via Olde Base Line
8401	7 AM	In O	Orangeville	N via Airport Rd
8401	7 PM	Out	Orangeville	N via Airport Rd
8403	50 AM	In		N via Airport Rd
8403	32 PM	Out	Orangeville	N via Airport Rd
8404	51 PM	Out		N via Airport Rd
8405	36 AM	In	Orangeville	N via Airport Rd
8405	32 PM	In	Orangeville	N via Airport Rd
8412	16 AM	In	Dufferin	N via Airport Rd
8415	35 AM	In	Dufferin	N via Airport Rd
8415	13 PM	Out	Dufferin	N via Airport Rd
8415	4 PM	In	Dufferin	N via Airport Rd
8521	50 AM	Out In	Barrie Simcoe County	N via Airport Rd
8556	37 PM 45 AM	Out In	Simcoe County Simcoe County	N via Airport Rd
8585	23 PM	Out	Simcoe County	N via Airport Rd
0392	JZ PM	Jul	cance county	·····a Auport Rd

Appendix C

Base Year Traffic Operations Reports

	<u>aonn c</u>	DIIVO	way			,		Exioting / i
	•	\mathbf{F}	1	Ť	ŧ	-		
Novement	EBL	EBR	NBL	NBT	SBT	SBR		
ane Configurations	Y			↑	↑			
raffic Volume (veh/h)	6	8	0	191	770	0		
uture Volume (Veh/h)	6	8	0	191	770	0		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
eak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
lourly flow rate (vph)	6	8	0	191	770	0		
Pedestrians								
ane Width (m)								
Valking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Nedian type				None	None			
/ledian storage veh)								
Jpstream signal (m)								
X, platoon unblocked								
C, conflicting volume	961	770	770					
C1, stage 1 conf vol								
C2, stage 2 conf vol								
Cu, unblocked vol	961	770	770					
C, single (s)	6.4	6.2	4.1					
C, 2 stage (s)								
F (s)	3.5	3.3	2.2					
0 queue free %	98	98	100					
M capacity (veh/h)	287	404	854					
ection, Lane #	EB 1	NB 1	SB 1					
olume Total	14	191	770					
olume Left	6	0	0					
olume Right	8	0	0					
SH	344	1700	1700					
olume to Capacity	0.04	0.11	0.45					
Queue Length 95th (m)	1.0	0.0	0.0					
Control Delay (s)	15.9	0.0	0.0					
ane LOS	С							
pproach Delay (s)	15.9	0.0	0.0					
pproach LOS	С							
tersection Summary								
erane Delay			0.2					
toreaction Canacity Utilizati	n		0.Z	10		f Sonvico	•	
							4	

Paradigm	Transportation	Solutions

2: Airport Rd & Cra	Interse	ction C Ir	apaci	iy Anal	ysis		200052 Existing AN
	۶	\mathbf{i}	•	1	ţ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		ľ	•	1	1	
Traffic Volume (veh/h)	6	16	3	187	773	6	
Future Volume (Veh/h)	6	16	3	187	773	6	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	6	16	3	187	773	6	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	966	773	779				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	966	773	779				
tC. single (s)	6.4	6.2	4.1				
tC. 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	98	96	100				
cM capacity (veh/h)	284	402	847				
Direction Long #	ED 1	ND 1	ND 2	CD 1	CD 2		
Volumo Totol	ED 1	10101	107	301	SD Z		
Volume Loft	22	3	187	113	0		
Volume Lett	1/	3	0	0	0		
volume Right	10	0.47	1700	1700	1700		
LOFI Volume to Consolity	301	847	0.11	0.45	1700		
Volume to Capacity	0.00	0.00	0.11	0.45	0.00		
Queue Leiigiii 95iii (III)	1.5	0.1	0.0	0.0	0.0		
Long LOS	15.6	9.3	0.0	0.0	0.0		
Approach Dolay (c)	15 /	A 0.1		0.0			
Approach LOS	15.6	0.1		0.0			
Approduiteus	C						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utiliza	ation		50.7%	IC	U Level c	t Service	A
Analysis Period (min)			15				

Paradigm Transportation Solutions

	≯	~	•	ŧ	1	1		
	-	•	7	1	•	•		
Viovement	EBL	EBR	NBL	NBI	SBI	SBR		
Lane Configurations	۲.	0	0	T	1	0		
I raffic Volume (veh/h)	13	2	0	//1	3/1	0		
-uture Volume (Veh/h)	13	2	0	771	371	0		
Sign Control	Stop			Free	Free			
Srade	0%			0%	0%			
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	13	2	0	771	371	0		
redestrians								
ane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Vedian type				None	None			
Viedian storage veh)								
Jpstream signal (m)				315				
oX, platoon unblocked	4440	074	074					
/C, conflicting volume	1142	3/1	371					
/CT, stage T conf vol								
/C2, stage 2 cont vol	4440	074	074					
Cu, unbiocked voi	1142	3/1	3/1					
C, single (s)	6.5	6.2	4.1					
C, 2 stage (s)	0.4	0.0	0.0					
(S)	3.6	3.3	2.2					
00 queue free %	94	100	100					
M capacity (veh/h)	216	679	1199					
irection, Lane #	EB 1	NB 1	SB 1					
/olume Total	15	771	371					
/olume Left	13	0	0					
/olume Right	2	0	0					
:SH	237	1700	1700					
/olume to Capacity	0.06	0.45	0.22					
Queue Length 95th (m)	1.5	0.0	0.0					
Control Delay (s)	21.2	0.0	0.0					
ane LOS	С							
Approach Delay (s)	21.2	0.0	0.0					
Approach LOS	С							
ntersection Summary								
verage Delay			0.3					
ntersection Capacity Utilization	n		50.6%	IC	Ulevelo	f Service	Α	
naluoio Dariad (min)			201010	10				

Synchro 9 Report Page 1

HCM Unsignalized 2: Airport Rd & Cra	Interse anston D	ction C r	apacit	y Anal	ysis		200052 Existing PM
	۶	~	•	t	ţ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥		5	•	•	1	
Traffic Volume (veh/h)	12	8	14	753	355	18	
Future Volume (Veh/h)	12	8	14	753	355	18	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	12	8	14	753	355	18	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1136	355	373				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1136	355	373				
tC, single (s)	6.5	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.6	3.3	2.2				
p0 queue free %	94	99	99				
cM capacity (veh/h)	215	693	1197				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	20	14	753	355	18		
Volume Left	12	14	0	0	0		
Volume Right	8	0	0	0	18		
cSH	297	1197	1700	1700	1700		
Volume to Capacity	0.07	0.01	0.44	0.21	0.01		
Queue Length 95th (m)	1.6	0.3	0.0	0.0	0.0		
Control Delay (s)	18.0	8.0	0.0	0.0	0.0		
Lane LOS	С	А					
Approach Delay (s)	18.0	0.1		0.0			
Approach LOS	С						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utiliza	ation		49.6%	IC	CU Level c	of Service	А
Analysis Period (min)			15				

Paradigm Transportation Solutions

Appendix D

Background Development Traffic Forecasts

200052

Appendix D

Appendix E

5-Year Horizon Background Traffic Operations Reports

	-	4		†	1	- \	÷.	
ane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	4	5	1	•	1	5	•	
Traffic Volume (vph)	0	95	59	254	5	12	961	
Future Volume (vph)	0	95	59	254	5	12	961	
Turn Type	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	4			2			6	
Permitted Phases		8	8		2	6		
Detector Phase	4	8	8	2	2	6	6	
Switch Phase								
Vinimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Vinimum Split (s)	28.0	28.0	28.0	24.0	24.0	24.0	24.0	
Total Split (s)	28.0	28.0	28.0	42.0	42.0	42.0	42.0	
Total Split (%)	40.0%	40.0%	40.0%	60.0%	60.0%	60.0%	60.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
_ead/Lag								
_ead-Lag Optimize?								
Recall Mode	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	10.0	10.0	10.0	42.5	42.5	42.5	42.5	
Actuated g/C Ratio	0.17	0.17	0.17	0.73	0.73	0.73	0.73	
//c Ratio	0.05	0.40	0.19	0.20	0.00	0.01	0.71	
Control Delay	5.1	27.3	7.9	4.6	0.0	4.2	11.8	
Queue Delav	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.1	27.3	7.9	4.6	0.0	4.2	11.8	
.OS	A	C	A	A	A	A	В	
Approach Delay	5.1			4.5			11.7	
Approach LOS	A			A			В	
ntersection Summary								
Cycle Length: 70								
Actuated Cycle Length: 58	1							
Vatural Cycle: 75								
Control Type: Actuated I In	coordinated							
Maximum v/c Ratio: 0.71								
ntersection Signal Delay:	11 2			b	atoreoctio			
ntersection Canacity Litiliz	ration 68 5%			10		of Service	• (
Inersection Capacity Otiliz	alion 00.070			N	JO LEVEI		50	
analysis i chod (min) is								
Splits and Phases: 1: Ai	rport Rd & C	Caledon F	S Drivew	ay/Street	'A' Acces	ss .		
las							100	
42 a		_		_			-104	
12.5						2	-0-S	
China							_	

Paradiam	Transportation	Solutions
----------	----------------	-----------

1: Airport Rd & Cal	edon PS	S Drive	way/S	treet '/	A' Acce	ess		2031 Background AM
	-	1	*	Ť	1	1	Ļ	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	16	95	59	254	5	12	961	
v/c Ratio	0.05	0.40	0.19	0.20	0.00	0.01	0.71	
Control Delay	5.1	27.3	7.9	4.6	0.0	4.2	11.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.1	27.3	7.9	4.6	0.0	4.2	11.8	
Queue Length 50th (m)	0.0	8.9	0.0	8.1	0.0	0.3	55.4	
Queue Length 95th (m)	2.5	19.7	7.4	19.1	0.0	1.9	#152.4	
nternal Link Dist (m)	88.8			63.0			79.3	
Turn Bay Length (m)								
Base Capacity (vph)	719	554	666	1301	1154	811	1351	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.17	0.09	0.20	0.00	0.01	0.71	
Intersection Summary								
Intersection Summary # 95th percentile volume e	exceeds cap	pacity, qu	eue may	be longer	r.			

Queue shown is maximum after two cycles.

Paradigm Transportation Solutions

1: Airport Rd & Caledon PS Driveway/Street 'A' Access 2031 Background													
	۶	-	7	1	-	*	1	1	1	1	Ŧ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		đ,		5		1		•	1	5	*		
Traffic Volume (vph)	7	0	9	95	0	59	0	254	5	12	961	0	
Future Volume (vph)	7	0	9	95	0	59	0	254	5	12	961	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Lane Width	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5	
Total Lost time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0		
Lane Util. Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00		
Frt		0.92		1.00		0.85		1.00	0.85	1.00	1.00		
Flt Protected		0.98		0.95		1.00		1.00	1.00	0.95	1.00		
Satd. Flow (prot)		1737		1750		1566		1779	1566	1750	1847		
Flt Permitted		0.98		0.75		1.00		1.00	1.00	0.60	1.00		
Satd. Flow (perm)		1737		1376		1566		1779	1566	1109	1847		
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj. Flow (vph)	7	0	9	95	0	59	0	254	5	12	961	0	
RTOR Reduction (vph)	0	14	0	0	0	51	0	0	2	0	0	0	
Lane Group Flow (vph)	0	2	0	95	0	8	0	254	3	12	961	0	
Heavy Vehicles (%)	0%	2%	0%	2%	2%	2%	0%	8%	2%	2%	4%	0%	
Turn Type	Perm	NA		Perm		Perm		NA	Perm	Perm	NA		
Protected Phases		4						2			6		
Permitted Phases	4			8		8			2	6			
Actuated Green, G (s)		7.9		7.9		7.9		41.2	41.2	41.2	41.2		
Effective Green, a (s)		7.9		7.9		7.9		41.2	41.2	41.2	41.2		
Actuated g/C Ratio		0.13		0.13		0.13		0.70	0.70	0.70	0.70		
Clearance Time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0		
Vehicle Extension (s)		3.0		3.0		3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)		232		183		209		1240	1091	773	1287		
v/s Ratio Prot								0.14			c0.52		
v/s Ratio Perm		0.00		c0.07		0.01			0.00	0.01			
v/c Ratio		0.01		0.52		0.04		0.20	0.00	0.02	0.75		
Uniform Delay, d1		22.2		23.8		22.3		3.2	2.7	2.7	5.7		
Progression Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2		0.0		2.5		0.1		0.1	0.0	0.0	2.4		
Delay (s)		22.2		26.3		22.4		3.2	2.7	2.7	8.1		
Level of Service		С		С		С		А	А	А	А		
Approach Delay (s)		22.2			24.8			3.2			8.0		
Approach LOS		С			С			Α			А		
Intersection Summarv													
HCM 2000 Control Delay			9,1	H	CM 2000	Level of S	Service		A				
HCM 2000 Volume to Capac	city ratio		0.71		2000	2010.0.0	5011100						
Actuated Cycle Length (s)	,		59.1	Si	um of lost	time (s)			10.0				
Intersection Capacity Utilizat	tion		68.5%	IC	U Level o	of Service			C				
Analysis Period (min)			15	10					5				
c Critical Lane Group													

Synchro 9 Report Page 3

2: Airport Rd & Crar	nston D	r/Stree	et 'B' A	ccess	ysis					2031	20 Backgro	und AM
·	≯	-	\mathbf{i}	-	+	×	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		÷.			\$		5	4	1	5	•	7
Traffic Volume (veh/h)	7	0	19	63	0	17	3	237	28	3	1057	7
Future Volume (Veh/h)	7	0	19	63	0	17	3	237	28	3	1057	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	7	0	19	63	0	17	3	237	28	3	1057	7
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)											315	
pX. platoon unblocked	0.54	0.54	0.54	0.54	0.54		0.54					
vC. conflicting volume	1323	1334	1057	1325	1313	237	1064			265		
vC1, stage 1 conf vol	1063	1063		243	243							
vC2, stage 2 conf vol	260	271		1082	1070							
vCu, unblocked vol	1170	1190	673	1173	1151	237	686			265		
tC. single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
C. 2 stage (s)	6.1	5.5		6.1	5.5							
iE (s)	3.5	4.0	3.3	3.5	4.0	33	22			22		
p0 queue free %	97	100	92	68	100	98	99			100		
cM capacity (veh/h)	225	228	246	196	223	802	491			1299		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	26	80	3	237	28	3	1057	7				
Volume Left	7	63	3	0	0	3	0	0				
Volume Right	19	17	0	0	28	0	0	7				
cSH	240	233	491	1700	1700	1299	1700	1700				
Volume to Capacity	0.11	0.34	0.01	0.14	0.02	0.00	0.62	0.00				
Queue Length 95th (m)	2.7	10.9	0.1	0.0	0.0	0.1	0.0	0.0				
Control Delay (s)	21.8	28.3	12.4	0.0	0.0	7.8	0.0	0.0				
Lane LOS	С	D	В			А						
Approach Delay (s)	21.8	28.3	0.1			0.0						
Approach LOS	С	D										
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utilizat	ion		73.5%	IC	U Level o	of Service			D			

Paradigm Transportation Solutions

Lane Group EBT WBL WBR NBT NBR SBL SBT Lane Configurations 4. 7 7 4 7 7 7 4 7 1 1 <th></th> <th>-</th> <th>4</th> <th></th> <th>†</th> <th>1</th> <th>- \</th> <th>↓</th> <th></th>		-	4		†	1	- \	↓	
Lane Configurations	ane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Traffic Volume (vph) 0 55 29 965 18 62 469 Future Volume (vph) 0 55 29 965 18 62 469 Traffic Volume (vph) 0 55 29 965 18 62 469 Trum Type NA Permi NA Permi NA Permi NA Permi NA Permited Phases 8 8 2 6 Detector Phase 4 8 8 2 6 Winimum Initial (s) 8.0 8.0 8.0 8.0 8.0 8.0 Vinimum Split (s) 28.0 28.0 28.0 24.0 24.0 24.0 Total Split (s) 28.0	ane Configurations	\$	5	1	•	1	ሻ	4	
Future Volume (vph) 0 55 29 965 18 62 469 Tum Type NA Perm PA Perm NA Perm NA Protected Phases 4 2 6 6 Detector Phase 4 8 8 2 2 6 Switch Phase 8 8 2 2 6 6 Switch Phase 8 8 2 2 6 6 Minimum Split (s) 28.0 28.0 24.0 24.0 24.0 24.0 Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Vellow Time (s) 2.0	raffic Volume (vph)	0	55	29	965	18	62	469	
Turn Type NA Perm Perm NA Perm Perm NA Protected Phases 4 2 6 7 6 6 7 7 6 6 6 7	uture Volume (vph)	0	55	29	965	18	62	469	
Protected Phases 4 2 6 Permitted Phases 8 8 2 2 6 Detector Phase 4 8 8 2 2 6 Switch Phase Minimum Initial (s) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 Minimum Split (s) 28.0 28.0 28.0 24.0 24.0 24.0 24.0 Total Split (s) 28.0 28.0 28.0 42.0 42.0 42.0 Total Split (s) 28.0 28.0 28.0 42.0 42.0 42.0 Total Split (s) 28.0 28.0 28.0 28.0 28.0 42.0 42.0 Total Split (s) 28.0 28.0 28.0 28.0 42.0 42.0 42.0 Total Split (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Lead/Lag Otimize? Recall Mode None None None Min Min Min Min Recall Mode None None None Min Min Min Min Actuated g/C Ratio 0.16 0.16 0.16 0.81 0.81 0.81 0.81 V/c Ratio 0.06 0.23 0.10 0.64 0.01 0.19 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Cost A C A A A A A Approach Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Cost A C A A A A A Approach Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Cost A C A A A A A Approach LOS A C A A A A A Approach Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Cost A C A A A A A Approach Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Cost A C A A A A A Approach Delay 6.3 8.2 4.4 Approach LOS A A A A A A Approach LOS A A A A A An Mitersection Signal Delay: 7.5 Intersection LOS: A Intersection LOS: A	Turn Type	NA	Perm	Perm	NA	Perm	Perm	NA	
Permitted Phases 8 8 2 6 Detector Phase 4 8 8 2 2 6 6 Switch Phase Winimum Initial (s) 8.0	Protected Phases	4			2			6	
Detector Phase 4 8 8 2 2 6 6 Switch Phase Switch Phase Switch Phase Switch Phase Switch Phase Switch Phase Winimum Split (s) 8.0 8.0 8.0 8.0 8.0 8.0 Switch Phase Vinimum Split (s) 28.0 28.0 28.0 24.0 24.0 24.0 24.0 Total Split (s) 28.0 28.0 28.0 42.0 42.0 42.0 42.0 Follow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 S.0	Permitted Phases		8	8		2	6		
Switch Phase Minimum Initial (s) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 Minimum Spit (s) 28.0 28.0 28.0 24.0 24.0 24.0 Total Spit (s) 28.0 28.0 42.0 42.0 42.0 42.0 Total Spit (s) 40.0% 40.0% 60.0% 60.0% 60.0% 60.0% Colla Spit (s) 0.0 0.0 3.0 3.0 3.0 3.0 3.0 Solar Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 cost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 cost Time Adjust (s) 5.0 5.0 5.0 5.0 5.0 5.0 cead-Lag exact Mode None None Min Min Min Act Effct Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Act Effct Green (s) 8.7 8.7 8.7 8.7 43.9 43.9 43.9 <t< td=""><td>Detector Phase</td><td>4</td><td>8</td><td>8</td><td>2</td><td>2</td><td>6</td><td>6</td><td></td></t<>	Detector Phase	4	8	8	2	2	6	6	
Minimum Initial (s) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 Minimum Split (s) 28.0 28.0 28.0 24.0 24.0 24.0 24.0 Fotal Split (s) 28.0 28.0 28.0 42.0 42.0 42.0 42.0 Total Split (s) 0.0.0 40.0% 40.0% 60.0% 60.0% 60.0% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Jack Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Optimize? Recall Mode None None Nin Min Min Actified Green (s) 8.7 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Actuated g/C Ratio 0.16 0.16 0.81 0.81 0.81 0.81 0.81 0.81 Lotated g/C Ratio 0.06 0.23 0.10 0.64 0.01 <	Switch Phase								
Minimum Split (s) 28.0 28.0 28.0 24.0 24.0 24.0 24.0 Total Split (s) 28.0 28.0 28.0 42.0 42.0 42.0 42.0 Folal Split (%) 40.0% 40.0% 60.0% 60.0% 60.0% 60.0% Folal Split (%) 40.0% 40.0% 60.0% 60.0% 60.0% 60.0% Folal Split (%) 40.0% 0.0% 3.0 3.0 3.0 3.0 3.0 Nil-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 cast Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 cast Time Adjust (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 casd Lag Optimize? Recall Mode None None None None None None None Vact Effor Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Actuated g/C Ratio 0.16 0.16 0.81 0.81 0.81	/linimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Total Split (s) 28.0 28.0 28.0 42.0 42.0 42.0 Total Split (%) 40.0% 40.0% 60.0% 60.0% 60.0% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 Yellow Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lad Lag ead-Lag Optimize? Recall Mode None None Nin Min Min Act Effct Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Actuated g/C Ratio 0.16 0.16 0.81 0.81 0.81 0.81 //c Ratio 0.06 0.23 0.10 0.64 0.01 0.9 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cost A C A A </td <td>/linimum Split (s)</td> <td>28.0</td> <td>28.0</td> <td>28.0</td> <td>24.0</td> <td>24.0</td> <td>24.0</td> <td>24.0</td> <td></td>	/linimum Split (s)	28.0	28.0	28.0	24.0	24.0	24.0	24.0	
Total Split (%) 40.0% 40.0% 60.0% 60.0% 60.0% 60.0% Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 cost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 cost Time Adjust (s) 5.0 5.0 5.0 5.0 5.0 5.0 cad-Lag Optimize? Recall Mode None None Min Min Min Act Effct Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Actuated g/C Ratio 0.16 0.16 0.81 0.81 0.81 0.81 Ontrol Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.3 24.1 9.6 8.4 <td>otal Split (s)</td> <td>28.0</td> <td>28.0</td> <td>28.0</td> <td>42.0</td> <td>42.0</td> <td>42.0</td> <td>42.0</td> <td></td>	otal Split (s)	28.0	28.0	28.0	42.0	42.0	42.0	42.0	
Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Colal Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead/Lag Optimize? Recall Mode None None None Min Min Min Min Act Effct Green (s) 8.7 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Actuated g/C Ratio 0.16 0.16 0.16 0.81 0.81 0.81 0.81 //c Ratio 0.06 0.23 0.10 0.64 0.01 0.19 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Dueue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Love Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Love Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 DS A C A A A A A A Approach Delay 6.3 8.2 4.4 Approach Delay 6.3 8.2 4.4 Approach Delay 6.3 8.2 4.4 Natural Cycle Length: 54.3 Vatural Cycle Length: 54.3 Vatural Cycle Length: 54.3 Vatural Cycle .75 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.64 Intersection LOS: A Intersection LOS: A Intersection LOS: A Intersection LOS: A	otal Split (%)	40.0%	40.0%	40.0%	60.0%	60.0%	60.0%	60.0%	
Ail-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag	(ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lost Time Adjušt (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Lead/Lag Optimize? Recall Mode None None Nin Min Min Min Act Effct Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 Actuated g/C Ratio 0.16 0.16 0.81 0.81 0.81 0.81 Vic Ratio 0.06 0.23 0.10 0.64 0.01 0.19 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 1.0 Iotal Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.3 8.2 4.4 4.0 4.0 A A A LoS A A </td <td>All-Red Time (s)</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td></td>	All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lag Optimize? Recall Mode None None Min Min Min Min Act Effct Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Act Lade g/C Ratio 0.16 0.16 0.81 0.81 0.81 0.81 //c Ratio 0.06 0.23 0.10 0.64 0.01 0.19 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.3 0.0 0.0 0.0 0.0 0.0 0.0 Cots A A A A A A A Approach LOS A A A A A A A Vatural Cycle Length: 70 Scatu	ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead/Lag None None None None None None Min Min Min Min Actuated g/C Ratio 0.16 0.16 0.81 0	fotal Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead-Lag Optimize? Recall Mode None None None Min Min Min Min Act Effct Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Act Effct Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 Act Effct Green (s) 0.16 0.16 0.16 0.81 0.81 0.81 0.81 Act Effct Green (s) 0.06 0.23 0.10 0.64 0.01 0.19 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 QS A C A A A A Approach Delay 6.3 8.2 4.4 Approach LOS A A Actuated Cycle Length: 70 Actuated Lon	ead/Lag								
Recall Mode None None None Min	ead-Lag Optimize?								
Act Effct Green (s) 8.7 8.7 8.7 43.9 43.9 43.9 43.9 Actuated g/C Ratio 0.16 0.16 0.16 0.81 0.81 0.81 0.81 V/c Ratio 0.06 0.23 0.10 0.64 0.01 0.19 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 LOS A C A A A A A Approach Delay 6.3 8.2 4.4 A A Approach LOS A A A A A Actuated Cycle Length: 70 5.3 Vatural Cycle: 75 Control Type: Actuated-Un	Recall Mode	None	None	None	Min	Min	Min	Min	
Actuated g/C Ratio 0.16 0.16 0.16 0.81 0.81 0.81 0.81 V/c Ratio 0.06 0.23 0.10 0.64 0.01 0.19 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 OS A C A A A A A A Approach Delay 6.3 8.2 4.4 Approach LOS A A A A Actuated Cycle Length: 70 5 Soutrol Type: Actuated-Uncoordinated A A A A A A A	Act Effct Green (s)	8.7	8.7	8.7	43.9	43.9	43.9	43.9	
v/c Ratio 0.06 0.23 0.10 0.64 0.01 0.19 0.34 Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 OS A C A A A A Approach Delay 6.3 8.2 4.4 Approach LOS A A A Atuated Cycle Length: 70 70 Actuated Cycle: 75 Actuated Cycle: 75 Control Type: Actuated-Uncoordinated Vatural Cycle: 75 Intersection LOS: A Maximum v/c Ratio: 0.64 Intersection LOS: A Intersection LOS: A Intersection Signal Delay: 7.5 Intersection LOS: A Intersection LOS: A	Actuated g/C Ratio	0.16	0.16	0.16	0.81	0.81	0.81	0.81	
Control Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 Deve Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 OS A C A A A A A Approach Delay 6.3 8.2 4.4 A </td <td>/c Ratio</td> <td>0.06</td> <td>0.23</td> <td>0.10</td> <td>0.64</td> <td>0.01</td> <td>0.19</td> <td>0.34</td> <td></td>	/c Ratio	0.06	0.23	0.10	0.64	0.01	0.19	0.34	
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 LOS A C A A A A Approach Delay 6.3 8.2 4.4 Approach LOS A A A Approach LOS A A A Vice Length: 70 A A A Actuated Cycle Length: 54.3 Vatural Cycle: 75 Control Type: Actuated-Uncoordinated Vaximum v/c Ratio: 0.64 Intersection LOS: A Intersection LOS: A Intersection Signal Delay: 7.5 Intersection LOS: A UPscreaction Conarcity Liftizition 76.6% ICLU evel of Service D	Control Delay	6.3	24.1	9.6	8.4	1.1	5.4	4.2	
Total Delay 6.3 24.1 9.6 8.4 1.1 5.4 4.2 .OS A C A A A A Approach Delay 6.3 8.2 4.4 Approach LOS A A A Intersection Summary Cycle Length: 70	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
LOS A C A A A Approach Delay 6.3 8.2 4.4 Approach LOS A A A Intersection Summary Dycle Length: 70 Valuated Cycle: 75 Control Type: Actuated-Unccordinated Maximum v/c Ratio: 0.64 Intersection LOS: A Intersection LOS: A	otal Delay	6.3	24.1	9.6	8.4	1.1	5.4	4.2	
Approach Delay 6.3 8.2 4.4 Approach LOS A A A A ntersection Summary Cycle Length: 70 Actuated Cycle Length: 54.3 Vatural Cycle: 75 Control Type: Actuated-Uncoordinated Vaximum v/c Ratio: 0.64 Intersection LOS: A preserverion Caractiv Liftization 76.6% ICLL evel of Service D	.0S	A	С	А	А	А	А	А	
Approach LOS A A A A A A A Intersection Summary Cycle Length: 70 Actuated Cycle Length: 54.3 Vatural Cycle: 75 Control Type: Actuated-Uncoordinated Vaximum v/c Ratio: 0.64 Intersection Signal Delay: 7.5 Intersection LOS: A preservice D	Approach Delay	6.3			8.2			4.4	
ntersection Summary Cycle Length: 70 Cycleated Cycle Length: 54.3 Vatural Cycle: 75 Control Type: Actuated-Uncoordinated Vaximum v/c Ratio: 0.64 Intersection Signal Delay: 7.5 Intersection LOS: A Intersection Cos: A Intersecti	Approach LOS	A			А			А	
Cycle Length: 70 Actuated Cycle Length: 54.3 Vatural Cycle: 75 Jontrol Type: Actuated-Uncoordinated vlaximum v/c Ratio: 0.64 Intersection LOS: A Intersection LOS: A Intersection Signal Delay: 7.5 Intersection LOS: A Intersection Cost	ntersection Summary								
Actuated Cycle Length: 54.3 Vatural Cycle: 75 Control Type: Actuated-Uncoordinated Vaximum v/c Ratio: 0.64 ntersection Signal Delay: 7.5 Intersection LOS: A presention Caractive Lifetization 76.6% ICLU evel of Service D	Cycle Length: 70								
Natural Cycle: 75 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.64 Intersection Signal Delay: 7.5 Intersection LOS: A Intersection Canacity Utilization 76.6% ICLU evel of Service D	Actuated Cycle Length: 54.	3							
Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.64 ntersection Signal Delay: 7.5 Intersection LOS: A presection Conscitut Hilitation 76.6% ICLU evel of Service D	Vatural Cycle: 75								
vlaximum v/c Ratio: 0.64 Intersection Signal Delay: 7.5 Intersection LOS: A Intersection Cost A IntersectiA Intersection Cost A Intersection Cost A Intersection Cost	Control Type: Actuated-Un	coordinated							
ntersection Signal Delay: 7.5 Intersection LOS: A	/laximum v/c Ratio: 0.64								
ntersection Canacity Utilization 76.6%	ntersection Signal Delay: 7	.5			Ir	ntersectio	n LOS: A		
	ntersection Capacity Utiliza	ation 76.6%			[0	CU Level	of Service	e D	
Analysis Period (min) 15	Analysis Period (min) 15								
Calife and Diseases 4. Aliment Del 9. Caladas DC Drivery (Otrast VA Assass	alite and Dhasaas 1. Air	mont Dd 9 (Volodon F		ou/Ctroot	141 4 4 4 4 4			

1: Airport Rd & Cale	edon PS	S Drive	way/s	Street '/	A' Acce	ess		2031 Background PM
	-	1	*	1	1	1	Ļ	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	18	55	29	965	18	62	469	
v/c Ratio	0.06	0.23	0.10	0.64	0.01	0.19	0.34	
Control Delay	6.3	24.1	9.6	8.4	1.1	5.4	4.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.3	24.1	9.6	8.4	1.1	5.4	4.2	
Queue Length 50th (m)	0.0	6.2	0.0	50.2	0.0	1.8	16.1	
Queue Length 95th (m)	3.1	12.9	5.2	#116.8	1.1	7.0	33.2	
Internal Link Dist (m)	88.8			63.0			79.3	
Turn Bay Length (m)								
Base Capacity (vph)	800	649	694	1507	1272	327	1399	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.08	0.04	0.64	0.01	0.19	0.34	
Intersection Summarv								

Queue shown is maximum after two cycles.

Paradigm Transportation Solutions

1: Airport Rd & Cal	edon PS	S Drive	eway/S	Street '/	A' Acce	ess				2031	Backgrou	und PM
'	۶	-	~	1	-	*	1	Ť	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		aî.		5		1		•	1	5	•	
Traffic Volume (vph)	16	0	2	55	0	29	0	965	18	62	469	0
Future Volume (vph)	16	0	2	55	0	29	0	965	18	62	469	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Frt		0.98		1.00		0.85		1.00	0.85	1.00	1.00	
Flt Protected		0.96		0.95		1.00		1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1812		1750		1566		1865	1566	1750	1731	
Flt Permitted		0.96		0.82		1.00		1.00	1.00	0.22	1.00	
Satd. Flow (perm)		1812		1504		1566		1865	1566	405	1731	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adi, Flow (vph)	16	0	2	55	0	29	0	965	18	62	469	0
RTOR Reduction (vph)	0	16	0	0	0	26	0	0	5	0	0	0
Lane Group Flow (vph)	0	2	0	55	0	3	0	965	13	62	469	0
Heavy Vehicles (%)	0%	8%	0%	2%	2%	2%	0%	3%	2%	2%	11%	0%
Turn Type	Perm	NA		Perm		Perm		NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8			2	6		
Actuated Green, G (s)		4.9		4.9		4.9		41.5	41.5	41.5	41.5	
Effective Green, g (s)		4.9		4.9		4.9		41.5	41.5	41.5	41.5	
Actuated g/C Ratio		0.09		0.09		0.09		0.74	0.74	0.74	0.74	
Clearance Time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Vehicle Extension (s)		3.0		3.0		3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		157		130		136		1372	1152	298	1273	
v/s Ratio Prot								c0.52			0.27	
v/s Ratio Perm		0.00		c0.04		0.00			0.01	0.15		
v/c Ratio		0.01		0.42		0.02		0.70	0.01	0.21	0.37	
Uniform Delay, d1		23.5		24.4		23.6		4.1	2.0	2.3	2.7	
Progression Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.0		2.2		0.1		1.7	0.0	0.3	0.2	
Delay (s)		23.6		26.6		23.6		5.7	2.0	2.7	2.9	
Level of Service		С		С		С		A	A	А	A	
Approach Delay (s)		23.6			25.6			5.7			2.9	
Approach LOS		С			С			A			A	
Intersection Summary												
HCM 2000 Control Delay			6.0	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Canad	city ratio		0.67	11	2.11 2000	2010/010			~			
Actuated Cycle Length (s)	ony runo		56.4	S	im of lost	time (s)			10.0			
Intersection Canacity I Itiliza	tion		76.6%	10		of Service			10.0 D			
Analysis Period (min)			15		0 201010				5			
a Critical Lana Croup												

Synchro 9 Report Page 3

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	÷.	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			\$		٦	1	1	5	1	7
Traffic Volume (veh/h)	14	0	9	20	0	7	17	954	132	7	497	22
Future Volume (Veh/h)	14	0	9	20	0	7	17	954	132	7	497	22
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	14	0	9	20	0	7	17	954	132	7	497	22
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None		•	TWLTL	
Median storage veh)											2	
Upstream signal (m)											315	
pX. platoon unblocked												
vC. conflicting volume	1506	1631	497	1508	1521	954	519			1086		
vC1, stage 1 conf vol	511	511		988	988							
vC2, stage 2 conf vol	995	1120		520	533							
vCu, unblocked vol	1506	1631	497	1508	1521	954	519			1086		
tC, single (s)	7.2	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	6.2	5.5		6.1	5.5							
tF (s)	3.6	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	94	100	98	92	100	98	98			99		
cM capacity (veh/h)	245	247	577	260	281	314	1057			642		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	23	27	17	954	132	7	497	22				
Volume Left	14	20	17	0	0	7	0	0				
Volume Right	9	7	0	0	132	0	0	22				
cSH	316	272	1057	1700	1700	642	1700	1700				
Volume to Capacity	0.07	0.10	0.02	0.56	0.08	0.01	0.29	0.01				
Queue Length 95th (m)	1.8	2.5	0.4	0.0	0.0	0.2	0.0	0.0				
Control Delay (s)	17.3	19.7	8.5	0.0	0.0	10.7	0.0	0.0				
Lane LOS	С	С	А			В						
Approach Delay (s)	17.3	19.7	0.1			0.1						
Approach LOS	C	С										
Intersection Summary												
Average Delay			0.7									
Intersection Capacity Utiliza	tion		60.2%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

Paradigm Transportation Solutions

Appendix F

5-Year Horizon Total Traffic Operations Reports

	-	4		†	1	- \	÷.	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	afa,	5	1	•	1	5	•	
Traffic Volume (vph)	0	95	59	254	5	12	970	
Future Volume (vph)	0	95	59	254	5	12	970	
Furn Type	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	4			2			6	
Permitted Phases		8	8		2	6		
etector Phase	4	8	8	2	2	6	6	
witch Phase								
/inimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
/inimum Split (s)	28.0	28.0	28.0	24.0	24.0	24.0	24.0	
otal Split (s)	28.0	28.0	28.0	42.0	42.0	42.0	42.0	
otal Split (%)	40.0%	40.0%	40.0%	60.0%	60.0%	60.0%	60.0%	
fellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Fotal Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
_ead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	10.0	10.0	10.0	42.9	42.9	42.9	42.9	
Actuated g/C Ratio	0.17	0.17	0.17	0.73	0.73	0.73	0.73	
v/c Ratio	0.05	0.41	0.19	0.20	0.00	0.01	0.72	
Control Delay	5.1	27.4	8.0	4.5	0.0	4.2	12.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.1	27.4	8.0	4.5	0.0	4.2	12.0	
.0S	A	С	A	A	A	A	В	
Approach Delay	5.1			4.5			11.9	
pproach LOS	A			A			В	
ntersection Summary								
Cycle Length: 70								
Actuated Cycle Length: 58	3.6							
Natural Cycle: 75								
Control Type: Actuated-Ur	ncoordinated							
Maximum v/c Ratio: 0.72								
ntersection Signal Delay:	11.4			li	ntersectio	n LOS: B		
ntersection Capacity Utiliz	zation 69.0%			10	CU Level	of Service	e C	
Analysis Period (min) 15								
Calita and Dhasaas 1. A	imant Dd 9 (Valadan F		ou/Chroad	141 4 4 4 4 4			
plits and Phases: I: A	ігроп ка & С	aledon F	25 Drivew	ay/Street	A Acces	55		
Ø2								
42 s						2	28 s	
						Т	2.	
▼~Ø6							🔻 Ø8	

Paradigm	Transportation	Solutions
----------	----------------	-----------

1: Airport Rd & Cal	edon PS	S Drive	eway/S	treet '/	A' Acce	ess		2031 Tota
	->	-	*	Ť	1	1	Ļ	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	16	95	59	254	5	12	970	
v/c Ratio	0.05	0.41	0.19	0.20	0.00	0.01	0.72	
Control Delay	5.1	27.4	8.0	4.5	0.0	4.2	12.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.1	27.4	8.0	4.5	0.0	4.2	12.0	
Queue Length 50th (m)	0.0	8.9	0.0	8.1	0.0	0.3	56.5	
Queue Length 95th (m)	2.5	19.7	7.4	19.1	0.0	1.9	#154.8	
Internal Link Dist (m)	88.8			63.0			79.3	
Turn Bay Length (m)								
Base Capacity (vph)	710	547	658	1301	1154	811	1351	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.02	0.17	0.09	0.20	0.00	0.01	0.72	
Intersection Summary								
# 95th percentile volume e	exceeds cap	bacity, qu	ieue may	be longer				

Queue shown is maximum after two cycles.

Paradigm Transportation Solutions

HCM Signalized Inte 1: Airport Rd & Cale	ersectio don P\$	on Cap S Drive	acity / way/S	Analysi Street '/	is A' Acce	ess					200052 2031 Total AM			
	≯	-	$\mathbf{\hat{z}}$	4	+	*	1	1	1	1	÷.	~		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations		4		٦		1		•	1	٦	•			
Traffic Volume (vph)	7	0	9	95	0	59	0	254	5	12	970	0		
Future Volume (vph)	7	0	9	95	0	59	0	254	5	12	970	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Lane Width	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5		
Total Lost time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0			
Lane Util. Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00			
Frt		0.92		1.00		0.85		1.00	0.85	1.00	1.00			
Flt Protected		0.98		0.95		1.00		1.00	1.00	0.95	1.00			
Satd. Flow (prot)		1737		1750		1566		1779	1566	1750	1847			
Flt Permitted		0.98		0.75		1.00		1.00	1.00	0.60	1.00			
Satd. Flow (perm)		1737		1376		1566		1779	1566	1109	1847			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Adj. Flow (vph)	7	0	9	95	0	59	0	254	5	12	970	0		
RTOR Reduction (vph)	0	14	0	0	0	51	0	0	2	0	0	0		
Lane Group Flow (vph)	0	2	0	95	0	8	0	254	3	12	970	0		
Heavy Vehicles (%)	0%	2%	0%	2%	2%	2%	0%	8%	2%	2%	4%	0%		
Turn Type	Perm	NA		Perm		Perm		NA	Perm	Perm	NA			
Protected Phases		4						2			6			
Permitted Phases	4			8		8			2	6				
Actuated Green, G (s)		8.0		8.0		8.0		41.6	41.6	41.6	41.6			
Effective Green, g (s)		8.0		8.0		8.0		41.6	41.6	41.6	41.6			
Actuated g/C Ratio		0.13		0.13		0.13		0.70	0.70	0.70	0.70			
Clearance Time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0			
Vehicle Extension (s)		3.0		3.0		3.0		3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)		233		184		210		1241	1093	774	1289			
v/s Ratio Prot								0.14			c0.53			
v/s Ratio Perm		0.00		c0.07		0.01			0.00	0.01				
v/c Ratio		0.01		0.52		0.04		0.20	0.00	0.02	0.75			
Uniform Delay, d1		22.4		24.0		22.5		3.2	2.7	2.7	5.7			
Progression Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00			
Incremental Delay, d2		0.0		2.4		0.1		0.1	0.0	0.0	2.5			
Delay (s)		22.4		26.4		22.5		3.3	2.7	2.8	8.3			
Level of Service		С		С		С		A	A	A	A			
Approach Delay (s)		22.4			24.9			3.2			8.2			
Approach LOS		С			С			A			A			
Intersection Summary														
HCM 2000 Control Delay			9.3	H	CM 2000	Level of S	Service		A					
HCM 2000 Volume to Capac	ity ratio		0.71											
Actuated Cycle Length (s)			59.6	Si	um of lost	t time (s)			10.0					
Intersection Capacity Utilizati	on		69.0%	ICU Level of Service					С					
Analysis Period (min)			15											
c Critical Lane Group														

Paradiam	Transportati	on Solutions

2: Airport Rd & Cra	Interse Inston D	ction C)r/Stree	apacit et 'B' A	y Anal .ccess	ysis						20 2031 T	0052 otal AN
	۶	-	\mathbf{i}	-	-	×	1	1	1	1	Ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		4			4		۲	•	1	۲.	•	ĩ
Traffic Volume (veh/h)	8	0	19	63	0	17	3	245	28	3	1066	
Future Volume (Veh/h)	8	0	19	63	0	17	3	245	28	3	1066	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Hourly flow rate (vph)	8	0	19	63	0	17	3	245	28	3	1066	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)											315	
pX, platoon unblocked	0.44	0.44	0.44	0.44	0.44		0.44					
vC. conflicting volume	1340	1351	1066	1342	1332	245	1075			273		
vC1. stage 1 conf vol	1072	1072		251	251							
vC2, stage 2 conf vol	268	279		1091	1081							
vCu, unblocked vol	1136	1161	512	1140	1118	245	533			273		
tC. single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC. 2 stage (s)	6.1	5.5		6.1	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	96	100	92	67	100	98	99			100		
cM capacity (veh/h)	223	219	249	194	214	794	459			1290		
Direction Lane #	FB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	27	80	3	245	28	3	1066	9				
Volume Left	8	63	3	0	0	3	0	0				
Volume Right	19	17	0	0	28	0	0	9				
cSH	241	231	459	1700	1700	1290	1700	1700				
Volume to Capacity	0.11	0.35	0.01	0.14	0.02	0.00	0.63	0.01				
Queue Length 95th (m)	2.8	11 1	0.1	0.0	0.0	0.1	0.0	0.0				
Control Delay (s)	21.9	28.7	12.9	0.0	0.0	7.8	0.0	0.0				
Lane LOS	C	D	B	0.0	0.0	Δ	0.0	0.0				
Approach Delay (s)	21.9	28.7	0.1			0.0						
Approach LOS	C	D	0.1			0.0						
Intersection Summary												
Average Delay			2.0									
Intersection Canacity Litiliza	ation		73.2%	IC		of Service			D			
Analysis Pariod (min)			15	ic					J			
			15									

Paradigm Transportation Solutions

HCM Unsignalized 3: Airport Rd & Pro	I Interse	ction C Access	apaci	ty Anal	ysis		200052 2031 Total AM
`	۶.	\mathbf{r}	1	Ť	Ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1	1	^	≜ †}		
Traffic Volume (veh/h)	0	11	9	261	1066	9	
Future Volume (Veh/h)	0	11	9	261	1066	9	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	0	11	9	261	1066	9	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				TWLTL	None		
Median storage veh)				2			
Upstream signal (m)					87		
pX, platoon unblocked							
vC, conflicting volume	1219	538	1075				
vC1, stage 1 conf vol	1070						
vC2, stage 2 conf vol	148						
vCu, unblocked vol	1219	538	1075				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	5.8						
t⊢ (s)	3.5	3.3	2.2				
p0 queue tree %	100	98	99				
civi capacity (ven/n)	281	488	644				
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	11	9	130	130	711	364	
Volume Left	0	9	0	0	0	0	
Volume Right	11	0	0	0	0	9	
cSH	488	644	1700	1700	1700	1700	
Volume to Capacity	0.02	0.01	0.08	0.08	0.42	0.21	
Queue Length 95th (m)	0.5	0.3	0.0	0.0	0.0	0.0	
Control Delay (s)	12.5	10.7	0.0	0.0	0.0	0.0	
Lane LOS	В	В					
Approach Delay (s)	12.5	0.4			0.0		
Approach LOS	В						
Intersection Summary							
Average Delay			0.2				
Intersection Capacity Utilization	ation		39.8%	IC	U Level o	of Service	А
Analysis Period (min)			15				

	-	-		†	1	1	÷.	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¢.	5	1	•	1	5	•	
Traffic Volume (vph)	0	55	29	965	18	62	473	
Future Volume (vph)	0	55	29	965	18	62	473	
Turn Type	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	4			2			6	
Permitted Phases		8	8		2	6		
Detector Phase	4	8	8	2	2	6	6	
Switch Phase								
Vinimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	28.0	28.0	28.0	24.0	24.0	24.0	24.0	
Total Split (s)	28.0	28.0	28.0	42.0	42.0	42.0	42.0	
Total Split (%)	40.0%	40.0%	40.0%	60.0%	60.0%	60.0%	60.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	8.7	8.7	8.7	43.9	43.9	43.9	43.9	
Actuated g/C Ratio	0.16	0.16	0.16	0.81	0.81	0.81	0.81	
v/c Ratio	0.06	0.23	0.10	0.64	0.01	0.19	0.34	
Control Delay	6.3	24.1	9.6	8.4	1.1	5.4	4.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.3	24.1	9.6	8.4	1.1	5.4	4.2	
LOS	A	С	A	A	A	A	A	
Approach Delay	6.3			8.2			4.4	
Approach LOS	A			A			A	
ntersection Summary								
Cycle Length: 70								
Actuated Cycle Length: 54.3								
Natural Cycle: 75								
Control Type: Actuated-Unco	ordinated							
Maximum v/c Ratio: 0.64								
ntersection Signal Delay: 7.5				Ir	ntersectio	n LOS: A		
ntersection Capacity Utilization	on 76.6%			10	CU Level	of Service	e D	
Analysis Period (min) 15								

t _{ø2}	A ₀₄
42 s	28 s

42 s 28 s 06 06 08	1Ø2	- 104	
↓ <i>Q</i> 6	42 s	28 s	
10 -	↓ [™] Ø6	Ø8	
42 S 28 S	42 s	28 s	

Paradigm Transportation Solutions

Queues 1: Airport Rd & Cal	ueues : Airport Rd & Caledon PS Driveway/Street 'A' Access											
	-	1	×	1	1	1	÷.					
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT					
Lane Group Flow (vph)	18	55	29	965	18	62	473					
v/c Ratio	0.06	0.23	0.10	0.64	0.01	0.19	0.34					
Control Delay	6.3	24.1	9.6	8.4	1.1	5.4	4.2					
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Total Delay	6.3	24.1	9.6	8.4	1.1	5.4	4.2					
Queue Length 50th (m)	0.0	6.2	0.0	50.2	0.0	1.8	16.3					
Queue Length 95th (m)	3.1	12.9	5.2	#116.8	1.1	7.0	33.6					
Internal Link Dist (m)	88.8			63.0			79.3					
Turn Bay Length (m)												
Base Capacity (vph)	800	649	694	1507	1272	327	1399					
Starvation Cap Reductn	0	0	0	0	0	0	0					
Spillback Cap Reductn	0	0	0	0	0	0	0					
Storage Cap Reductn	0	0	0	0	0	0	0					
Reduced v/c Ratio	0.02	0.08	0.04	0.64	0.01	0.19	0.34					
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Paradigm Transportation Solutions

Synchro 9 Report Page 2

HCM Signalized Intersection Capacity Analysis 1: Airport Rd & Caledon PS Driveway/Street 'A' Access

200052 2031 Total PM

	۶	-	$\mathbf{\hat{z}}$	1	-	*	•	1	1	1	÷.	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷		۲		1		1	1	٦	1	
Traffic Volume (vph)	16	0	2	55	0	29	0	965	18	62	473	0
Future Volume (vph)	16	0	2	55	0	29	0	965	18	62	473	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Frt		0.98		1.00		0.85		1.00	0.85	1.00	1.00	
Flt Protected		0.96		0.95		1.00		1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1812		1750		1566		1865	1566	1750	1731	
Flt Permitted		0.96		0.82		1.00		1.00	1.00	0.22	1.00	
Satd. Flow (perm)		1812		1504		1566		1865	1566	405	1731	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	16	0	2	55	0	29	0	965	18	62	473	0
RTOR Reduction (vph)	0	16	0	0	0	26	0	0	5	0	0	0
Lane Group Flow (vph)	0	2	0	55	0	3	0	965	13	62	473	0
Heavy Vehicles (%)	0%	8%	0%	2%	2%	2%	0%	3%	2%	2%	11%	0%
Turn Type	Perm	NA		Perm		Perm		NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8			2	6		
Actuated Green, G (s)		4.9		4.9		4.9		41.5	41.5	41.5	41.5	
Effective Green, a (s)		4.9		4.9		4.9		41.5	41.5	41.5	41.5	
Actuated q/C Ratio		0.09		0.09		0.09		0.74	0.74	0.74	0.74	
Clearance Time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Vehicle Extension (s)		3.0		3.0		3.0		3.0	3.0	3.0	3.0	
Lane Gro Cap (vph)		157		130		136		1372	1152	298	1273	
v/s Ratio Prot								c0.52			0.27	
v/s Ratio Perm		0.00		c0 04		0.00			0.01	0 15		
v/c Ratio		0.00		0.42		0.02		0.70	0.01	0.21	0.37	
Uniform Delay d1		23.5		24.4		23.6		4 1	2.0	2.3	27	
Progression Factor		1 00		1 00		1 00		1 00	1.00	1.00	1.00	
Incremental Delay d2		0.0		2.2		0.1		17	0.0	0.3	0.2	
Delay (s)		23.6		26.6		23.6		5.7	2.0	2.7	2.9	
Level of Service		C		C		C		A	A	A	A	
Approach Delay (s)		23.6		Ũ	25.6	Ū		5.7			2.9	
Approach LOS		C			C			A			A	
Intersection Summary												
HCM 2000 Control Delay			6.0	Н	CM 2000	Level of	Service		A			
HCM 2000 Volume to Capa	city ratio		0.67									
Actuated Cycle Length (s)			56.4	S	um of lost	t time (s)			10.0			
Intersection Capacity Utiliza	ation		76.6%	IC	U Level	of Service	;		D			
Analysis Period (min)			15									
c Critical Lane Group												

Paradigm Transportation Solutions

HCM Unsignalized 2: Airport Rd & Cra	Interse anston D	ction C)r/Stree	apacit et 'B' A	y Anal .ccess	ysis						20 2031 To	0052 otal PM
	≯	+	\mathbf{r}	4	+	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		ľ	•	1	1	•	1
Traffic Volume (veh/h)	14	0	9	20	0	7	17	965	132	7	511	32
Future Volume (Veh/h)	14	0	9	20	0	7	17	965	132	7	511	32
Sian Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	14	0		20	0	7	17	965	132	7	511	32
Pedestrians		Ŭ		20	Ŭ			000	102		0.11	02
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTI	
Median storage yeb)								NULLE			2	
Upstream signal (m)											315	
nX platoon unblocked											515	
pA, platoon unbiocked	1501	1050	E11	1500	1550	065	E 4 2			1007		
vC, connicting volume	1001	1000	511	1555	1000	905	545			1097		
vC1, stage 1 conti vol	1006	020		999	999							
	1000	1131	E 4 4	4522	100	005	E 40			4007		
VCU, UNDIOCKED VOI	1531	1000	511	1533	0001	965	543			1097		
tC, single (s)	1.2	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	6.2	5.5		6.1	5.5							
t⊢ (s)	3.6	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	94	100	98	92	100	98	98			99		
cM capacity (veh/h)	241	243	567	255	276	309	1036			636		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	23	27	17	965	132	7	511	32				
Volume Left	14	20	17	0	0	7	0	0				
Volume Right	9	7	0	0	132	0	0	32				
cSH	311	268	1036	1700	1700	636	1700	1700				
Volume to Capacity	0.07	0.10	0.02	0.57	0.08	0.01	0.30	0.02				
Queue Length 95th (m)	1.8	2.5	0.4	0.0	0.0	0.3	0.0	0.0				
Control Delay (s)	17.5	20.0	8.5	0.0	0.0	10.7	0.0	0.0				
Lane LOS	C	С	А			В						
Approach Delay (s)	17.5	20.0	0.1			0.1						
Approach LOS	C	С										
Intersection Summary												
			0.7									
Intersection Canacity Utilize	ation		60.8%	10		of Service			В			
Analysis Period (min)			15	ic.	C LOVEI (J			
Analysis Fellou (IIIII)			10									

3: Airport Rd & Pro	posed A	ction C	apaci	ty Anal	ysis		20005 2031 Total P
	≯	\mathbf{r}	-	†	Ŧ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1	1	^	≜1 ≽		
Traffic Volume (veh/h)	0	24	11	976	526	4	
Future Volume (Veh/h)	0	24	11	976	526	4	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	0	24	11	976	526	4	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				TWLTL	None		
Median storage veh)				2			
Upstream signal (m)					87		
pX. platoon unblocked							
vC. conflicting volume	1038	265	530				
vC1, stage 1 conf vol	528						
vC2, stage 2 conf vol	510						
vCu, unblocked vol	1038	265	530				
tC. single (s)	6.8	6.9	4.1				
tC. 2 stage (s)	5.8						
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	97	99				
cM capacity (veh/h)	437	733	1033				
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	24	11	488	488	351	179	
Volume Left	0	11	0	0	0	0	
Volume Right	24	0	0	0	0	4	
cSH	733	1033	1700	1700	1700	1700	
Volume to Capacity	0.03	0.01	0.29	0.29	0.21	0.11	
Queue Length 95th (m)	0.8	0.2	0.0	0.0	0.0	0.0	
Control Delay (s)	10.1	8.5	0.0	0.0	0.0	0.0	
Lane LOS	В	Α					
Approach Delay (s)	10.1	0.1			0.0		
Approach LOS	В						
Intersection Summary			0.0				
Average Delay			0.2			(O	A
Intersection Capacity Utiliza	ation		30.3%	IC	U Level o	of Service	A
Analysis Period (min)			15				

Synchro 9 Report Page 4 Paradigm Transportation Solutions

Appendix G

10-Year Horizon Background Traffic Operations Reports

	-	1		†	1	- \	÷.	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	£.	5	1	*	1	5	•	
Traffic Volume (vph)	0	95	59	279	5	12	1061	
Future Volume (vph)	0	95	59	279	5	12	1061	
Turn Type	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	4			2			6	
Permitted Phases		8	8		2	6		
Detector Phase	4	8	8	2	2	6	6	
Switch Phase					_			
Vinimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Vinimum Split (s)	28.0	28.0	28.0	24.0	24.0	24.0	24.0	
Total Split (s)	28.0	28.0	28.0	42.0	42.0	42.0	42.0	
Total Split (%)	40.0%	40.0%	40.0%	60.0%	60.0%	60.0%	60.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ead-Lag Ontimize?								
Recall Mode	None	None	None	Min	Min	Min	Min	
Act Effet Green (s)	10.0	10.0	10.0	44 1	44.1	44.1	44.1	
Actuated a/C Ratio	0.17	0.17	0.17	0.73	0.73	0.73	0.73	
Ic Ratio	0.06	0.42	0.10	0.70	0.00	0.02	0.70	
Control Delay	5.8	27.8	8.0	4.6	0.00	4.2	14.8	
	0.0	27.0	0.0	4.0	0.0	4.2	0.0	
Zueue Delay	5.8	27.8	8.0	1.6	0.0	1.2	1/1.8	
	J.0 A	21.0	0.0	4.0	0.0	4.2	14.0 R	
Approach Delay	5.8	0	A	4.5	A	А	14.7	
Approach LOS	0.0			4.5			14.1 R	
Approach 203	A			A			D	
ntersection Summary								
Cycle Length: 70								
Actuated Cycle Length: 60	J.3							
Natural Cycle: 80	P (
Control Type: Actuated-U	ncoordinated	1						
Maximum v/c Ratio: 0.79								
ntersection Signal Delay:	13.2			1	ntersectio	n LOS: B	_	
ntersection Capacity Utili	zation 73.6%)		10	CU Level	of Service	e D	
Analysis Period (min) 15								
Splits and Phases: 1. A	irport Rd & 0	Caledon F	PS Drivew	av/Street	'A' Acces	ss		
+			S DIVOW	4,0000			A	
⁶ Ø2							Ø4	
42 s						2	28 s	
1 mar							200	
¥ 120							T 108	

Paradiam	Transportation	Solutions
----------	----------------	-----------

1: Airport Rd & Cal	edon PS	S Drive	way/S	treet '/	A' Acce	ess		200032 2036 Background AM
	+	4	*	1	1	1	Ļ	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	18	95	59	279	5	12	1061	
v/c Ratio	0.06	0.42	0.19	0.21	0.00	0.02	0.79	
Control Delay	5.8	27.8	8.0	4.6	0.0	4.2	14.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.8	27.8	8.0	4.6	0.0	4.2	14.8	
Queue Length 50th (m)	0.0	8.9	0.0	9.1	0.0	0.3	68.9	
Queue Length 95th (m)	3.0	19.7	7.4	21.0	0.0	1.9	#178.2	
Internal Link Dist (m)	88.8			63.0			79.3	
Turn Bay Length (m)								
Base Capacity (vph)	686	527	637	1300	1153	791	1350	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.18	0.09	0.21	0.00	0.02	0.79	
Intersection Summary								
# 95th percentile volume e	exceeds cap	bacity, qu	eue may	be longer	r.			

Queue shown is maximum after two cycles.

Paradigm Transportation Solutions

HCM Signalized Int 1: Airport Rd & Cal	tersectio edon PS		200052 2036 Background AM									
	۶	-	~	4	+	*	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ,		5		1		•	1	5	•	
Traffic Volume (vph)	8	0	10	95	0	59	0	279	5	12	1061	0
Future Volume (vph)	8	0	10	95	0	59	0	279	5	12	1061	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Frt		0.93		1.00		0.85		1.00	0.85	1.00	1.00	
Flt Protected		0.98		0.95		1.00		1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1738		1750		1566		1779	1566	1750	1847	
Flt Permitted		0.98		0.75		1.00		1.00	1.00	0.59	1.00	
Satd. Flow (perm)		1738		1374		1566		1779	1566	1084	1847	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	8	0	10	95	0	59	0	279	5	12	1061	0
RTOR Reduction (vph)	0	16	0	0	0	51	0	0	1	0	0	0
Lane Group Flow (vph)	0	2	0	95	0	8	0	279	4	12	1061	0
Heavy Vehicles (%)	0%	2%	0%	2%	2%	2%	0%	8%	2%	2%	4%	0%
Turn Type	Perm	NA		Perm		Perm		NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8			2	6		
Actuated Green, G (s)		8.3		8.3		8.3		43.0	43.0	43.0	43.0	
Effective Green, g (s)		8.3		8.3		8.3		43.0	43.0	43.0	43.0	
Actuated g/C Ratio		0.14		0.14		0.14		0.70	0.70	0.70	0.70	
Clearance Time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Vehicle Extension (s)		3.0		3.0		3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		235		186		212		1247	1098	760	1295	
v/s Ratio Prot								0.16			c0.57	
v/s Ratio Perm		0.00		c0.07		0.01			0.00	0.01		
v/c Ratio		0.01		0.51		0.04		0.22	0.00	0.02	0.82	
Uniform Delay, d1		22.9		24.6		23.0		3.2	2.7	2.8	6.4	
Progression Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.0		2.4		0.1		0.1	0.0	0.0	4.2	
Delay (s)		23.0		27.0		23.1		3.3	2.7	2.8	10.6	
Level of Service		С		С		С		A	A	A	В	
Approach Delay (s)		23.0			25.5			3.3			10.5	
Approach LOS		С			С			A			В	
Intersection Summarv												
HCM 2000 Control Delay			10.8	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.77		2000	2010.01	0011100		2			
Actuated Cycle Length (s)	,		61.3	S	um of lost	t time (s)			10.0			
Intersection Capacity Utiliza	tion		73.6%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 9 Report Page 3

2: Airport Rd & Cra	inston D)r/Stree		2036 Background AM								
	≯	+	*	4	+	•	•	1	*	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		\$			\$		٦	1	1	٦	1	7
Traffic Volume (veh/h)	8	0	21	63	0	17	4	261	28	3	1157	8
Future Volume (Veh/h)	8	0	21	63	0	17	4	261	28	3	1157	8
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	8	0	21	63	0	17	4	261	28	3	1157	8
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)											315	
pX. platoon unblocked	0.49	0.49	0.49	0.49	0.49		0.49					
vC. conflicting volume	1449	1460	1157	1453	1440	261	1165			289		
vC1, stage 1 conf vol	1163	1163		269	269							
vC2, stage 2 conf vol	286	297		1184	1171							
vCu, unblocked vol	1396	1418	798	1404	1377	261	815			289		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	6.1	5.5		6.1	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	95	100	89	56	100	98	99			100		
cM capacity (veh/h)	175	183	190	144	177	778	402			1273		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	29	80	4	261	28	3	1157	8				
Volume Left	8	63	4	0	0	3	0	0				
Volume Right	21	17	0	0	28	0	0	8				
cSH	186	174	402	1700	1700	1273	1700	1700				
Volume to Capacity	0.16	0.46	0.01	0.15	0.02	0.00	0.68	0.00				
Queue Length 95th (m)	4.0	16.1	0.2	0.0	0.0	0.1	0.0	0.0				
Control Delay (s)	27.9	42.1	14.1	0.0	0.0	7.8	0.0	0.0				
Lane LOS	D	E	В			A						
Approach Delay (s)	27.9	42.1	0.2			0.0						
Approach LOS	D	E										
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utiliza	ation		78.6%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
,												

Paradigm Transportation Solutions

ane Group			- - -	T.	1	- `	÷.	
	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	£.	5	1	•	1	5	•	
raffic Volume (vph)	0	55	29	1065	18	62	517	
uture Volume (vph)	0	55	29	1065	18	62	517	
urn Type	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	4			2			6	
ermitted Phases		8	8		2	6		
Detector Phase	4	8	8	2	2	6	6	
witch Phase								
Ainimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
/inimum Split (s)	28.0	28.0	28.0	24.0	24.0	24.0	24.0	
otal Split (s)	28.0	28.0	28.0	42.0	42.0	42.0	42.0	
otal Split (%)	40.0%	40.0%	40.0%	60.0%	60.0%	60.0%	60.0%	
(ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
ead/Lag	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ead-Lag Ontimize?								
Recall Mode	None	None	None	Min	Min	Min	Min	
act Effct Green (s)	8.6	8.6	8.6	47.4	47.4	47.4	47.4	
actuated g/C Ratio	0.15	0.15	0.15	0.81	0.81	0.81	0.81	
/c Ratio	0.06	0.27	0.11	0.71	0.01	0.24	0.37	
Control Delay	6.7	25.5	9.6	10.4	1 1	6.7	4.4	
Jueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
iotal Delay	6.7	25.5	9.6	10.4	1 1	6.7	4.4	
OS	Δ	20.0 C	Δ	B	Δ	Δ	Δ	
annroach Delay	67	Ŭ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.2		7.	47	
annroach LOS	Δ			B			Δ	
	N			U			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Nolo Longth: 70								
Actuated Cuale Langth: 59	7							
latural Cycle: 90	.1							
Control Type: Actuated Lin	coordinated							
Jonitor Type: Actualed-On	coordinated							
ntereaction Signal Dalay:	0 0			l.	atoroactio	n I OQ: A		
ntersection Signal Delay.	otion 91 09/			11		of Sonvio		
nelveic Period (min) 15	all011 0 1.9%			I	JU Level	OI SEIVICI	υ	
malysis Period (min) 15								
plits and Phases: 1: Air	rport Rd & C	Caledon F	S Drivew	ay/Street	'A' Acces	s	_	
t an						Т	A	
102							-104	

Paradigm	Transportation	Solutions
----------	----------------	-----------

1: Airport Rd & Cale	edon PS	5 Drive	eway/\$	Street '/	A' Acce	ess		2036 Background PM
	-	1		1	1	1	Ļ	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	19	55	29	1065	18	62	517	
v/c Ratio	0.06	0.27	0.11	0.71	0.01	0.24	0.37	
Control Delay	6.7	25.5	9.6	10.4	1.1	6.7	4.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.7	25.5	9.6	10.4	1.1	6.7	4.4	
Queue Length 50th (m)	0.0	6.1	0.0	62.5	0.0	1.9	18.5	
Queue Length 95th (m)	3.2	13.0	5.2	#164.5	1.1	8.2	37.9	
Internal Link Dist (m)	88.8			63.0			79.3	
Turn Bay Length (m)								
Base Capacity (vph)	731	547	634	1507	1271	262	1398	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.10	0.05	0.71	0.01	0.24	0.37	
Intersection Summary								

Queue shown is maximum after two cycles.

Paradigm Transportation Solutions

HCM Signalized Int 1: Airport Rd & Cal	tersection edon PS		200052 2036 Background PM									
	۶	-	~	4	-	•	*	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		aî.		5		1		•	1	5	•	
Traffic Volume (vph)	17	0	2	55	0	29	0	1065	18	62	517	0
Future Volume (vph)	17	0	2	55	0	29	0	1065	18	62	517	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Frt		0.99		1.00		0.85		1.00	0.85	1.00	1.00	
Flt Protected		0.96		0.95		1.00		1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1813		1750		1566		1865	1566	1750	1731	
Flt Permitted		0.96		0.75		1.00		1.00	1.00	0.18	1.00	
Satd. Flow (perm)		1813		1390		1566		1865	1566	324	1731	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	17	0	2	55	0	29	0	1065	18	62	517	0
RTOR Reduction (vph)	0	17	0	0	0	26	0	0	5	0	0	0
Lane Group Flow (vph)	0	2	0	55	0	3	0	1065	13	62	517	0
Heavy Vehicles (%)	0%	8%	0%	2%	2%	2%	0%	3%	2%	2%	11%	0%
Turn Type	Perm	NA		Perm		Perm		NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8			2	6		
Actuated Green, G (s)		5.3		5.3		5.3		45.3	45.3	45.3	45.3	
Effective Green, g (s)		5.3		5.3		5.3		45.3	45.3	45.3	45.3	
Actuated g/C Ratio		0.09		0.09		0.09		0.75	0.75	0.75	0.75	
Clearance Time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Vehicle Extension (s)		3.0		3.0		3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		158		121		136		1394	1170	242	1293	
v/s Ratio Prot								c0.57			0.30	
v/s Ratio Perm		0.00		c0.04		0.00			0.01	0.19		
v/c Ratio		0.01		0.45		0.02		0.76	0.01	0.26	0.40	
Uniform Delay, d1		25.3		26.3		25.3		4.5	1.9	2.4	2.8	
Progression Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.0		2.7		0.1		2.5	0.0	0.6	0.2	
Delay (s)		25.3		29.0		25.3		7.1	2.0	3.0	3.0	
Level of Service		С		С		С		А	A	A	А	
Approach Delay (s)		25.3			27.7			7.0			3.0	
Approach LOS		С			С			А			А	
Intersection Summary												
HCM 2000 Control Delay			6.8	H	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capa	city ratio		0.73									
Actuated Cycle Length (s)			60.6	Si	um of lost	t time (s)			10.0			
Intersection Capacity Utiliza	tion		81.9%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 9 Report Page 3

2: Airport Rd & Cra	anston Dr/Street 'B' Access									2036 Background PM					
	≯	+	*	1	+	*	1	1	1	1	Ļ	4			
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF			
Lane Configurations		ala			afa		5	•	1	5	•	7			
Traffic Volume (veh/h)	16	0	10	20	0	7	19	1051	132	7	543	24			
Future Volume (Veh/h)	16	0	10	20	0	7	19	1051	132	7	543	24			
Sign Control		Stop			Stop			Free			Free				
Grade		0%			0%			0%			0%				
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Hourly flow rate (vph)	16	0	10	20	0	7	19	1051	132	7	543	24			
Pedestrians															
Lane Width (m)															
Walking Speed (m/s)															
Percent Blockage															
Right turn flare (veh)															
Median type								None			TWLTL				
Median storage veh)											2				
Upstream signal (m)											315				
pX. platoon unblocked															
vC. conflicting volume	1653	1778	543	1656	1670	1051	567			1183					
vC1, stage 1 conf vol	557	557		1089	1089										
vC2, stage 2 conf vol	1096	1221		567	581										
vCu, unblocked vol	1653	1778	543	1656	1670	1051	567			1183					
tC. single (s)	7.2	6.5	6.2	7.1	6.5	6.2	4.1			4.1					
tC 2 stage (s)	6.2	5.5		6.1	5.5										
tF (s)	3.6	4.0	3.3	3.5	4.0	33	22			22					
n0 queue free %	93	100	98	91	100	97	98			99					
cM capacity (veh/h)	213	220	544	228	252	276	1015			590					
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3							
Volume Total	26	27	19	1051	132	7	543	24							
Volume Left	16	20	19	0	0	7	0	0							
Volume Right	10	7	0	0	132	0	0	24							
cSH	278	239	1015	1700	1700	590	1700	1700							
Volume to Capacity	0.09	0.11	0.02	0.62	0.08	0.01	0.32	0.01							
Queue Length 95th (m)	2.3	2.8	0.4	0.0	0.0	0.3	0.0	0.0							
Control Delay (s)	19.3	22.0	8.6	0.0	0.0	11.2	0.0	0.0							
Lane LOS	С	С	А			В									
Approach Delay (s)	19.3	22.0	0.1			0.1									
Approach LOS	С	С													
Intersection Summary															
Average Delay			0.7												
Intersection Capacity Utiliza	tion		65.3%	IC	ICU Level of Service										
Analysis Period (min)			15												

Paradigm Transportation Solutions
Appendix H

10-Year Horizon Total Traffic Operations Reports

	-	-	. 🔨	1	1	- \	Ļ	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	afa,	5	1	•	1	5	•	
Traffic Volume (vph)	0	95	59	279	5	12	1070	
Future Volume (vph)	0	95	59	279	5	12	1070	
Turn Type	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	4			2			6	
Permitted Phases		8	8		2	6		
Detector Phase	4	8	8	2	2	6	6	
Switch Phase								
Vinimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	28.0	28.0	28.0	24.0	24.0	24.0	24.0	
Total Split (s)	28.0	28.0	28.0	42.0	42.0	42.0	42.0	
Fotal Split (%)	40.0%	40.0%	40.0%	60.0%	60.0%	60.0%	60.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	Min	Min	Min	Min	
Act Effct Green (s)	10.0	10.0	10.0	44.1	44.1	44.1	44.1	
Actuated g/C Ratio	0.17	0.17	0.17	0.73	0.73	0.73	0.73	
v/c Ratio	0.06	0.42	0.19	0.21	0.00	0.02	0.79	
Control Delay	5.8	27.8	8.0	4.6	0.0	4.2	15.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.8	27.8	8.0	4.6	0.0	4.2	15.1	
LOS	A	С	A	A	A	A	В	
Approach Delay	5.8			4.5			15.0	
Approach LOS	A			А			В	
ntersection Summary								
Cycle Length: 70								
Actuated Cycle Length: 60).3							
Natural Cycle: 90								
Control Type: Actuated-U	ncoordinated							
Maximum v/c Ratio: 0.79								
Intersection Signal Delay:	13.5			Ir	ntersectio	n LOS: B		
Intersection Capacity Utiliz	zation 74.1%			10	CU Level	of Service	e D	
Analysis Period (min) 15								
Splits and Phases: 1: A	irport Rd & C	Caledon F	PS Drivew	ay/Street	'A' Acces	SS		
1 ₀₂							404	

Paradigm T	ransportation	Solutions
------------	---------------	-----------

Synchro 9 Report Page 1

						\ \	1	
	-	-		T	1	- >	÷	
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	18	95	59	279	5	12	1070	
v/c Ratio	0.06	0.42	0.19	0.21	0.00	0.02	0.79	
Control Delay	5.8	27.8	8.0	4.6	0.0	4.2	15.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.8	27.8	8.0	4.6	0.0	4.2	15.1	
Queue Length 50th (m)	0.0	8.9	0.0	9.1	0.0	0.3	70.3	
Queue Length 95th (m)	3.0	19.7	7.4	21.0	0.0	1.9	#180.3	
Internal Link Dist (m)	88.8			63.0			79.3	
Turn Bay Length (m)								
Base Capacity (vph)	686	527	637	1300	1153	791	1350	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.03	0.18	0.09	0.21	0.00	0.02	0.79	
Intersection Summary								

Queue shown is maximum after two cycles.

Paradigm Transportation Solutions

1: Airport Rd & Cale	don P	S Drive	way/S	Street 'A	s <u>A' Acc</u>	ess					2036 To	otal AM
	≯	+	\mathbf{r}	4	+	*	•	1	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		۲.		1		•	1	<u> </u>	•	
Traffic Volume (vph)	8	0	10	95	0	59	0	279	5	12	1070	0
Future Volume (vph)	8	0	10	95	0	59	0	279	5	12	1070	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.5	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Frt		0.93		1.00		0.85		1.00	0.85	1.00	1.00	
Flt Protected		0.98		0.95		1.00		1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1738		1750		1566		1779	1566	1750	1847	
Flt Permitted		0.98		0.75		1.00		1.00	1.00	0.59	1.00	
Satd. Flow (perm)		1738		1374		1566		1779	1566	1084	1847	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	8	0	10	95	0	59	0	279	5	12	1070	0
RTOR Reduction (vph)	0	16	0	0	0	51	0	0	1	0	0	0
Lane Group Flow (vph)	0	2	0	95	0	8	0	279	4	12	1070	0
Heavy Vehicles (%)	0%	2%	0%	2%	2%	2%	0%	8%	2%	2%	4%	0%
Turn Type	Perm	NA		Perm		Perm		NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4			8		8			2	6		
Actuated Green, G (s)		8.3		8.3		8.3		43.0	43.0	43.0	43.0	
Effective Green, g (s)		8.3		8.3		8.3		43.0	43.0	43.0	43.0	
Actuated g/C Ratio		0.14		0.14		0.14		0.70	0.70	0.70	0.70	
Clearance Time (s)		5.0		5.0		5.0		5.0	5.0	5.0	5.0	
Vehicle Extension (s)		3.0		3.0		3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		235		186		212		1247	1098	760	1295	
v/s Ratio Prot								0.16			c0.58	
v/s Ratio Perm		0.00		c0.07		0.01			0.00	0.01		
v/c Ratio		0.01		0.51		0.04		0.22	0.00	0.02	0.83	
Uniform Delay, d1		22.9		24.6		23.0		3.2	2.7	2.8	6.5	
Progression Factor		1.00		1.00		1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2		0.0		2.4		0.1		0.1	0.0	0.0	4.5	
Delay (s)		23.0		27.0		23.1		3.3	2.7	2.8	11.0	
Level of Service		С		С		С		A	A	A	В	
Approach Delay (s)		23.0			25.5			3.3			10.9	
Approach LOS		С			С			A			В	
Intersection Summary												
HCM 2000 Control Delay			11 1	H	CM 2000	Level of S	Service		B			
HCM 2000 Volume to Canaci	ity ratio		0.77		2000				2			
Actuated Cycle Length (s)	.,		61.3	Si	um of lost	t time (s)			10.0			
Intersection Capacity Utilizati	on		74.1%	IC	ULevel	of Service			D			
Analysis Period (min)			15	10	2 20.01				5			
c Critical Lane Group												

Paradiam T	ransportation	Solutions
------------	---------------	-----------

Synchro 9 Report Page 3

HCM Unsignalized 2: Airport Rd & Cra	Interse	ction C r/Stree	apacit et 'B' A	y Anal ccess	ysis						20 2036 T	0052 otal AN
I	۶	-	\mathbf{i}	-	-	×	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		÷			÷		٦	1	1	٦	•	i
Traffic Volume (veh/h)	9	0	21	63	0	17	4	269	28	3	1166	1
Future Volume (Veh/h)	9	0	21	63	0	17	4	269	28	3	1166	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	9	0	21	63	0	17	4	269	28	3	1166	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)											315	
pX, platoon unblocked	0.38	0.38	0.38	0.38	0.38		0.38					
vC, conflicting volume	1466	1477	1166	1470	1459	269	1176			297		
vC1, stage 1 conf vol	1172	1172		277	277							
vC2, stage 2 conf vol	294	305		1193	1182							
vCu, unblocked vol	1410	1439	617	1421	1392	269	644			297		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	6.1	5.5		6.1	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	95	100	89	54	100	98	99			100		
cM capacity (veh/h)	169	170	187	137	162	770	360			1264		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	30	80	4	269	28	3	1166	10				
Volume Left	9	63	4	0	0	3	0	0				
Volume Right	21	17	0	0	28	0	0	10				
cSH	181	166	360	1700	1700	1264	1700	1700				
Volume to Capacity	0.17	0.48	0.01	0.16	0.02	0.00	0.69	0.01				
Queue Length 95th (m)	4.3	17.3	0.3	0.0	0.0	0.1	0.0	0.0				
Control Delay (s)	28.8	45.5	15.1	0.0	0.0	7.9	0.0	0.0				
Lane LOS	D	E	С			А						
Approach Delay (s)	28.8	45.5	0.2			0.0						
Approach LOS	D	E										
Intersection Summary												
Average Delay			2.9									
Intersection Capacity Utiliza	ation		78.4%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

Paradigm Transportation Solutions

HCM Unsignalized 3: Airport Rd & Pro	I Interse posed A	ction C Access	apaci	ty Anal	ysis		200052 2036 Total AM
`	٠	\mathbf{r}	*	1	Ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1	1	† †	≜ †⊅		
Traffic Volume (veh/h)	0	11	9	286	1167	9	
Future Volume (Veh/h)	0	11	9	286	1167	9	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	0	11	9	286	1167	9	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				TWLTL	None		
Median storage veh)				2			
Upstream signal (m)					87		
pX, platoon unblocked							
vC, conflicting volume	1332	588	1176				
vC1, stage 1 conf vol	1172						
vC2, stage 2 conf vol	161						
vCu, unblocked vol	1332	588	1176				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	5.8						
tF (s)	3.5	3.3	2.2				
p0 queue tree %	100	98	98				
cM capacity (veh/h)	248	452	590				
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	11	9	143	143	778	398	
Volume Left	0	9	0	0	0	0	
Volume Right	11	0	0	0	0	9	
cSH	452	590	1700	1700	1700	1700	
Volume to Capacity	0.02	0.02	0.08	0.08	0.46	0.23	
Queue Length 95th (m)	0.6	0.3	0.0	0.0	0.0	0.0	
Control Delay (s)	13.2	11.2	0.0	0.0	0.0	0.0	
Lane LOS	В	В					
Approach Delay (s)	13.2	0.3			0.0		
Approach LOS	В						
Intersection Summary							
Average Delay			0.2				
Intersection Capacity Utilization	ation		42.5%	IC	CU Level o	of Service	A
Analysis Period (min)			15				

Paradigm	Transportation	Solutions

Synchro 9 Report Page 5

		_	•	- +			
		•	-	I NOT	1	0.01	•
Lane Group	ERI	WBL	WBR	NBI	NBR	SBL	SBI
Lane Configurations		<u>_</u>	, r	1005	r 10	1	T
Traffic Volume (vpn)	0	55	29	1005	10	62	521
Future volume (vpn)	0	55	29	1065	18	62	521
Turn Type	NA 4	Perm	Perm	NA 0	Perm	Perm	NA
Protected Phases	4	0	0	2	0	6	0
Permilleu Priases	4	0	0	0	2	0	G
Delector Priase	4	0	0	2	2	0	0
Switch Phase	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Minimum Colit (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Minimum Split (s)	28.0	28.0	28.0	24.0	24.0	24.0	24.0
Total Split (%)	20.0	20.0	20.0	42.0	42.0	42.0	42.0
Vellew Time (a)	40.0%	40.0%	40.0%	00.0%	00.0%	00.0%	00.0%
All Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Reu Time (S)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Aujust (s)	0.0	0.0	0.0	0.0 E 0	0.0	0.0	0.0
Total Lost Time (S)	0.0	5.0	5.0	5.0	5.0	0.0	5.0
Leau/Lag							
Decall Mode	None	None	None	Min	Min	Min	Min
Act Effet Green (s)	8.6	8.6	8.6	17 /	17.1	17.1	17.1
Actuated a/C Patio	0.0	0.0	0.0	0.81	0.81	0.81	0.81
Actualed g/C Ratio	0.15	0.15	0.15	0.01	0.01	0.01	0.01
Control Dolov	6.7	25.5	0.11	10.71	1 1	6.7	0.57
	0.7	25.5	9.0	10.4	0.0	0.7	4.4
Total Delay	6.7	25.5	0.0	10.0	1 1	6.7	0.0
	0.7	23.5	3.0 A	10.4 R	Λ	0.7	4.4
Approach Delay	67	U	~	10.2	~	~	47
	0.7			10.Z			4.7
Approach LOS	A			D			A
Intersection Summary							
Cycle Length: 70							
Actuated Cycle Length: 58.7							
Natural Cycle: 90							
Control Type: Actuated-Unc	pordinated						
Maximum v/c Ratio: 0.71	_						
Intersection Signal Delay: 8.	8			Ir	itersection	1 LOS: A	_
Intersection Capacity Utilizat	tion 81.9%			10	U Level	of Service	e D
Analysis Period (min) 15							
Colite and Dhacas: 1. Air	ort Dd 8 C	aladar D		ov/Ctroot	'A' A occor	~	
Spiils and Phases. 1. Airp	UIL RU & C	aleuon P	5 Drivew	ay/Sireei	A Acces	5	
Pø2							
42 s						2	8 s
							*
▼ Ø6							∜ Ø8

Paradigm Transportation Solutions

Queues 1: Airport Rd & Cale	ນeues : Airport Rd & Caledon PS Driveway/Street 'A' Access												
	-	1	*	†	1	1	Ŧ						
Lane Group	EBT	WBL	WBR	NBT	NBR	SBL	SBT						
Lane Group Flow (vph)	19	55	29	1065	18	62	521						
v/c Ratio	0.06	0.27	0.11	0.71	0.01	0.24	0.37						
Control Delay	6.7	25.5	9.6	10.4	1.1	6.7	4.4						
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
Total Delay	6.7	25.5	9.6	10.4	1.1	6.7	4.4						
Queue Length 50th (m)	0.0	6.1	0.0	62.5	0.0	1.9	18.6						
Queue Length 95th (m)	3.2	13.0	5.2	#164.5	1.1	8.2	38.3						
Internal Link Dist (m)	88.8			63.0			79.3						
Turn Bay Length (m)													
Base Capacity (vph)	731	547	634	1507	1271	262	1398						
Starvation Cap Reductn	0	0	0	0	0	0	0						
Spillback Cap Reductn	0	0	0	0	0	0	0						
Storage Cap Reductn	0	0	0	0	0	0	0						
Reduced v/c Ratio	0.03	0.10	0.05	0.71	0.01	0.24	0.37						
Intersection Summary													

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Paradigm Transportation Solutions

Synchro 9 Report Page 2 HCM Signalized Intersection Capacity Analysis 1: Airport Rd & Caledon PS Driveway/Street 'A' Access

۰. 1 ٦ \mathbf{i} Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SRI SBT SR Lane Configurations 4 Traffic Volume (vph) 17 0 55 29 0 1065 18 62 521 2 Λ Future Volume (vph) 17 0 2 55 0 29 0 1065 18 62 521 0 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Width 3.5 3.7 3.5 3.5 3.5 3.5 3.7 3.5 3.5 3.5 3.5 3.7 Total Lost time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.99 1.00 0.85 1.00 0.85 1.00 1.00 Flt Protected 0.96 0.95 1.00 1.00 1.00 0.95 1.00 Satd, Flow (prot) 1813 1750 1566 1865 1566 1750 1731 Flt Permitted 0.96 0.75 1.00 1.00 1.00 0.18 1.00 Satd. Flow (perm) 1813 1390 1566 1865 1566 324 1731 Peak-hour factor, PHF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 17 55 29 0 1065 18 62 521 0 2 0 0 RTOR Reduction (vph) 0 17 0 0 26 0 0 5 0 0 0 0 Lane Group Flow (vph) 1065 13 62 521 55 0 0 2 0 0 3 0 Heavy Vehicles (%) 2% 0% 8% 0% 2% 2% 2% 0% 3% 2% 11% 0% Turn Type Perm NA Perm Perm NA Perm Perm NA Protected Phases 4 2 6 Permitted Phases 4 8 Actuated Green, G (s) 5.3 45.3 45.3 45.3 5.3 5.3 45.3 Effective Green, g (s) 5.3 5.3 5.3 45.3 45.3 45.3 45.3 Actuated g/C Ratio 0.09 0.09 0.09 0.75 0.75 0.75 0.75 Clearance Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 158 121 136 1394 1170 242 1293 v/s Ratio Prot c0.57 0.30 v/s Ratio Perm 0.00 c0.04 0.00 0.01 0.19 v/c Ratio 0.01 0.45 0.02 0.76 0.01 0.26 0.40 Uniform Delay, d1 25.3 26.3 25.3 4.5 1.9 2.4 2.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 2.7 0.1 2.5 0.0 0.6 0.2 Delay (s) 25.3 29.0 25.3 7.1 2.0 3.0 3.0 Level of Service С С С Α А Α Α Approach Delay (s) 25.3 27.7 7.0 3.0 Approach LOS С С А A Intersection Summary HCM 2000 Control Delay 6.8 HCM 2000 Level of Service Α HCM 2000 Volume to Capacity ratio 0.73 Actuated Cycle Length (s) 60.6 10.0 Sum of lost time (s) Intersection Capacity Utilization 81.9% ICU Level of Service D Analysis Period (min) 15 c Critical Lane Group

Paradigm Transportation Solutions

Synchro 9 Report Page 3

200052

2036 Total PM

HCM Unsignalized I 2: Airport Rd & Crar	nterse iston D	ction C)r/Stree	apacit et 'B' A	y Anal .ccess	ysis						20 2036 To	0052 otal PM
	≯	-	\mathbf{r}	1	+	*	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		۲	•	1	۲	1	1
Traffic Volume (veh/h)	16	0	10	20	0	7	19	1062	132	7	557	34
Future Volume (Veh/h)	16	0	10	20	0	7	19	1062	132	7	557	34
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	16	0	10	20	0	7	19	1062	132	7	557	34
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)											315	
pX_platoon unblocked												
vC conflicting volume	1678	1803	557	1681	1705	1062	591			1194		
vC1_stage 1 conf vol	571	571		1100	1100	1002						
vC2_stage 2 conf vol	1107	1232		581	605							
vCu unblocked vol	1678	1803	557	1681	1705	1062	591			1194		
tC single (s)	7.2	6.5	6.2	7 1	6.5	6.2	4 1			4 1		
tC. 2 stage (s)	6.2	5.5	0.2	6.1	5.5	0.2						
tF (s)	3.6	4.0	33	3.5	4.0	33	22			22		
n (o) n0 queue free %	92	100	98	91	100	97	98			99		
cM capacity (veh/h)	210	217	534	224	247	272	995			585		
Direction. Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	26	27	19	1062	132	7	557	34				
Volume Left	16	20	19	0	0	7	0	0				
Volume Right	10	7	0	0	132	0	0	34				
cSH	274	235	995	1700	1700	585	1700	1700				
Volume to Capacity	0.10	0.11	0.02	0.62	0.08	0.01	0.33	0.02				
Queue Length 95th (m)	2.3	2.9	0.02	0.0	0.00	0.3	0.0	0.0				
Control Delay (s)	19.5	22.3	8.7	0.0	0.0	11.2	0.0	0.0				
Lane LOS	С	C	A			B						
Approach Delay (s)	19.5	22.3	0.1			0.1						
Approach LOS	C	C	0.1			0.1						
Intersection Summary												
Average Delay			0.7									
Intersection Capacity Utilizati	on		65.9%	IC	ULevel	of Service			С			
Analysis Period (min)			15									

3: Airport Rd & Pro	Interse posed A	ction (Access	apaci	ty Anal	ysis		200052 2036 Total PM
	≯	~	1	1	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		1	٦	<u>†</u> †	≜ †}		
Traffic Volume (veh/h)	0	24	11	1075	575	4	
Future Volume (Veh/h)	0	24	11	1075	575	4	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	0	24	11	1075	575	4	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				TWLTL	None		
Median storage veh)				2			
Upstream signal (m)					87		
pX, platoon unblocked							
vC. conflicting volume	1136	290	579				
vC1, stage 1 conf vol	577						
vC2, stage 2 conf vol	560						
vCu, unblocked vol	1136	290	579				
tC, single (s)	6.8	6.9	4.1				
tC. 2 stage (s)	5.8						
tF (s)	3.5	3.3	2.2				
n0 queue free %	100	97	99				
cM capacity (veh/h)	406	707	991				
Direction. Lane #	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	24	11	538	538	383	196	
Volume Left	0	11	0	0	0	0	
Volume Right	24	0	0	0	0	4	
cSH	707	991	1700	1700	1700	1700	
Volume to Capacity	0.03	0.01	0.32	0.32	0.23	0.12	
Queue Length 95th (m)	0.00	0.3	0.0	0.0	0.0	0.0	
Control Delay (s)	10.3	8.7	0.0	0.0	0.0	0.0	
Lane LOS	10.0 R	Δ	0.0	0.0	0.0	0.0	
Approach Delay (s)	10.3	0.1			0.0		
Approach LOS	B	0.1			0.0		
Intersection Summary							
Average Delay			0.2				
Intersection Canacity I Itiliza	ation		33.0%	10		of Service	Δ
Analysis Period (min)			15				
			10				

Paradigm Transportation Solutions

Synchro 9 Report Page 4 Paradigm Transportation Solutions

Appendix I

Signal Warrant

PM Forecast Only? N

	Major Street					Minor Street							
	Airport Road				Cranston Dr/Street 'B' Access								
		Northbound			Southbound			Eastbound			Westbound		Peds Crossing
Time Period	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	Main Road
AM Peak Hour	4.1183571	269.71093	28	3	1166.1634	10.236714	9.2367142	0	21.964571	63	0	17	0
PM Peak Hour	19.219	1062.7076	132	7	557.33893	34.710143	16.473428	0	10.982286	20	0	7	0
Average Hourly Volume	6	333	40	3	431	11	6	0	8	21	0	6	0

Warrant	AHV
1A - All	865
1B - Minor	41
2A - Major	824
2B - Cross	27

Warrant 1 - Minimum Vehicular Volume

	Approach Lanes		1	2 or	Average	
	Flow Conditions	Free	Restricted	Free	Restricted	Hourly
1A	Flow Conditions		Х			Volume
		480	720	600	900	865
	All Approaches				% Fulfilled	120.1%

	Approach Lanes	1		2 or	Average	
1B	Flow Conditions	Free	Restricted	Free	Restricted	Hourly
	Flow Conditions		Х			Volume
	Minor Street	120	170	120	170	41
	Approaches				% Fulfilled	24.4%
	-					

Warrant 2 - Delay To Cross Traffic

2A	Approach Lanes		1	2 or	Average	
	Flow Conditions	Free	Restricted	Free	Restricted	Hourly
	Flow Conditions		Х			Volume
	Major Street	480	720	600	900	824
	Approaches				% Fulfilled	114.4%
	Approach Lanes		1	2 or	more	Average

	Approach Lanes			2 01	Average	
2B	Flow Conditions	Free	Restricted	Free	Restricted	Hourly
	Flow Conditions		Х			Volume
	Traffic Crossing Major	50	75	50	75	27
	Street				% Fulfilled	36.2%

Signal Warrant Airport Rd at Cranston Dr & Street 'B' 2036 Total Horizon

15728 Airport Rd TIS 200052

Appendix I