FUNCTIONAL SERVICING & PRELIMINARY STORMWATER MANAGEMENT REPORT

WYNDHAM RESIDENCE 15728 AIRPORT ROAD

TOWN OF CALEDON REGION OF PEEL

PREPARED FOR:

WYNDHAM HOLDINGS INC.

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

MARCH 2021

CFCA FILE NO. 1856-5524

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number	Date	Comments
Rev. 0	June 5, 2020	Issued for 1st Submission.
Rev. 1	March 30, 2021	Re-Issued for 1 st Submission.

TABLE OF CONTENTS

1.0		Introduction1
2.0		Site Description1
3.0		Population Equivalents2
4.0		Water Servicing2
	4.1 4.2	
	4.3 4.4	Fire Flow Demand3 Proposed Water Servicing4
5.0		Sanitary Servicing4
	5.1 5.2 5.3	
6.0		Drainage Conditions
	6.1 6.2	Existing Drainage5 Proposed Drainage5
7.0		Stormwater Management7
	7.1 7.2 7.3	
8.0		Conclusions and Recommendations

LIST OF TABLES

- Table 1:Equivalent Population Estimate
- Table 2:
 Existing and Proposed Domestic Water Demand
- Table 3:
 Estimated Fire Flow Demand
- Table 4:
 Existing and Proposed Sanitary Design Flows
- Table 5:
 Summary of Peak Flows and Storage Volumes
- Table 6:
 Area Breakdown and Associated TSS Removal

LIST OF APPENDICES

- Appendix A: Water Demand Calculations
- Appendix B: Sanitary Flow Calculations
- Appendix C: Stormwater Management Calculations

LIST OF DRAWINGS & FIGURES

- C102: Preliminary Site Servicing Plan
- C103: Preliminary Site Grading Plan
- Figure 1: Pre-Development Drainage Plan
- Figure 2: Post-Development Drainage Plan
- **SPA.01:** Site Plan Aba Architects Inc.

1.0 Introduction

C.F. Crozier & Associates Inc. (Crozier) was retained by Wyndham Holdings Inc. to prepare a Functional Servicing & Preliminary Stormwater Management Report to support the Official Plan Amendment (OPA) and Zoning By-Law Amendment (ZBA) applications for the proposed development located at 15728 Airport Road in the Town of Caledon, Regional Municipality of Peel (Peel Region).

This report provides information about the water and sanitary servicing as well as stormwater management according to the applicable standards and requirements of the Town of Caledon and Peel Region.

The reports and design standards referenced during the preparation of this report include:

- Region of Peel Public Works Design, Specifications & Procedures Manual Watermain Design Criteria (Revised June 2010)
- Region of Peel Public Works Design, Specifications & Procedures Manual Sanitary Sewer Design Criteria (Modified March 2017)
- Town of Caledon Development Standards Manual (Version 5.0, 2019)
- Ministry of the Environment (now Ministry of Environment, Conservation and Parks) Stormwater Management Planning and Design Manual (March 2003)
- Fire Underwriters Survey Water Supply for Public Fire Protection (1999)

2.0 Site Description

The subject property is approximately 0.96 ha and currently consists of a single-family residential dwelling, two asphalt driveways and three storage sheds. The landscaping on the property consists of trees and grass. The property is in a mixed-use residential area and is bounded by Airport Road to the east, private residences to the south, Caledon East Public School to the west, and a private lane access for the school to the north.

The elements envisioned for this development include a 3-storey retirement home overlying a lower basement level, complete with an at grade parking lot and site access to Airport Road.

The pertinent background information associated with the servicing and preliminary stormwater management strategy for the site have been reviewed, including:

- Site Plan (ABA Architects Inc., February 09, 2021)
- Topographic Survey (Young & Young Surveying Inc., May 29, 2018)
- Geotechnical Engineering Report (Grounded Engineering Inc., May 2020)
- Hydrogeological Report (Crozier Consulting Engineers, June 2020)

3.0 Population Equivalents

The Region of Peel Linear Infrastructure Sanitary Sewer Design Criteria (March 2017) provides the criteria to calculate population equivalents based on land use. These criteria were referenced to determine the equivalent population estimate for the existing and proposed buildings. The Design Criteria provided a value of 50 persons/ha for residential use, however, given that the there is one single-family dwelling currently onsite, a value of 5 persons living in the dwelling was assumed. Using the Region criteria would have provided a population equivalent of 48 persons on site. The institutional density for hospitals (3 persons/bed) was used for the retirement home, which assumes 1 bed per unit. Table 1 outlines the existing and proposed equivalent population estimate.

Туре	Units	Persons/Unit	Total Persons
Existing	1	5	5
Proposed	127	3	381

Table 1: Equivalent Population Estimate

The proposed building has 127 units spread among the 3 floors. Considering the Peel Region unit density of 3 persons per bed, the total population for the proposed building is 381 persons.

4.0 Water Servicing

Peel Region is responsible for the operation and maintenance of the public water supply and treatment system in the Town of Caledon. Any local water supply system will connect to the Region's municipal water network. A Region of Peel Connection Demand Table has been included in Appendix A.

4.1 Existing Water Servicing

A review of Town of Caledon and Peel Region as-constructed drawings indicate that there is an existing 300 mm diameter poly-vinyl chloride (PVC) watermain on the west side of Airport Road (Peel Region drawing 22336-D dated construction record June 7, 1995).

The as-constructed drawing indicates an existing connection for the property to the 300 mm diameter PVC watermain, complete with a water box at the property line. The size of the water service connection is not labelled; however, it is assumed to be 19 mm to 25 mm in diameter as per Peel Region Watermain Design Criteria. The plan also shows two fire hydrants located on Airport Road, approximately 60 m to the north and approximately 60 m to the south of the center of the property.

4.2 Design Water Demand

The Region of Peel Linear Infrastructure Watermain Design Criteria (June 2010) was used to determine the maximum domestic water demand generated in the existing condition and by the proposed development based on the equivalent population estimate. An average daily water demand of 280 L/cap/day was used for the existing residential condition and an average daily water demand of 300 L/cap/day was used for the proposed development, along with daily and hourly peaking factors. Table 2 summarizes the estimated design water demand. Appendix A contains detailed water demand calculations.

Standard	Building	Average Daily Demand (L/s)	Maximum Daily Demand (L/s)	Maximum Hourly Demand (L/s)
Region of Peel Public Works Design,	Existing Dwelling	0.02	0.03	0.05
Specification & Procedures Manual – Linear Infrastructure Watermain Design	Proposed Building	1.32	1.85	3.97
Criteria (June 2010)	Increase	1.30	1.82	3.92

Table 2: Existing and Proposed Domestic Water Demand

For this application, the domestic water service for the proposed building will be designed to convey a water demand equivalent to the maximum hourly demand of 3.92 L/s as shown in Table 2.

4.3 Fire Flow Demand

The Fire Underwriters Survey (FUS) method was used to estimate the fire flow demand for the proposed building. The retirement home will be ordinary construction and therefore, a construction coefficient of 1.0 was applied to the fire flow calculations (Water Supply for Public Fire Protection by Fire Underwriters Survey, 1999). The proposed retirement home will be equipped with an automatic sprinkler system which reduces the initial fire flow demand of each building by up to 50%. The automated sprinkler system is to be designed by the Mechanical Engineer; therefore, the detailed design of the system is not included in this report. Table 3 summarizes the required fire flow demand and duration of flow required for the proposed building.

Table 3: Estimated Fire Flow Demand

Method	Demand Flow (L/s)	Duration (h)
Water Supply for Public Fire Protection by Fire Underwriters Survey (1999)	133.3	2.00

Note: Floor area was determined by the largest floor plus 25% of each of the immediately adjoining floors.

As shown in Table 3, the proposed fire line is required to accommodate a fire flow demand of 133.3 L/s for a duration of 2.00 hours. This is based on the fire flow demand of the Lower Level, with floor area of 3655.5 m² and 25% of the above adjoining floor, for total area of 4458.7 m².

Refer to Appendix A for the Fire Flow Support Letter prepared by ABA Architects Inc. and detailed calculations of the proposed fire flow.

4.4 Proposed Water Servicing

The proposed development will have a single connection into the existing 300 mm diameter PVC watermain on the west side of Airport Road. The connection will split at the property line into an individual 100 mm diameter PVC domestic water service and individual 200 mm diameter PVC fire line per Peel Region Standard Drawing 1-8-3. The existing water service connection to the existing dwelling will be decommissioned during construction. The fire line will extend to service a proposed hydrant in the parking area to provide fire protection.

The proposed water servicing plan is shown on C102 – Preliminary Site Servicing Plan. The Mechanical Engineer will design the internal private water system including the internal sprinkler system within the building.

5.0 Sanitary Servicing

Peel Region is responsible for the operation and maintenance of the public sewage collection and treatment system in the Town of Caledon. Any local sewage system will connect to the Region's municipal sanitary sewage network. A Region of Peel Connection Demand Table has been included in Appendix A.

5.1 Existing Sanitary Servicing

A review of the Town of Caledon and Peel Region as-constructed drawings indicate that there is an existing 450 mm diameter concrete sanitary sewer on the east side of Airport Road (Peel Region drawing 22336-D dated construction record June 7, 1995).

The as-constructed drawing indicates an existing sanitary service connection for the property from the 450 mm diameter concrete sewer to the property line. The size of the connection is not labelled, however is assumed to be minimum of 125 mm per Peel Sanitary Sewer Design Criteria.

5.2 Design Sanitary Flow

The sanitary design flow for the subject property was calculated using the Region of Peel Public Works Design, Specifications & Procedures Manual – Linear Infrastructure Sanitary Sewer Manual (March 2017) and the equivalent population estimate described in Section 3.2. A unit sewage flow of 302.8 L/cap/d was used, and infiltration flow and a peaking factor were applied to the unit sewage flow to obtain the total estimated design sewage flow. A summary of the results is presented in Table 4, and detailed calculations are provided in Appendix B.

Standard	Building	Average Flow (L/s)	Peaking Factor	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Flow (L/s)
Region of Peel Public Works Design, Specification & Procedures Manual – Linear Infrastructure Sanitary Sewer Manual (March 2017)	Existing Dwelling	0.02	4.44	0.08	0.19	0.27
	Proposed Building	1.34	4.03	5.38	0.19	5.58
	Increase	1.32	-	5.30	-	5.31

Table 4: Existing and Proposed Sanitary Design Flows

For this application, the sanitary service for the proposed building will be designed to convey a sanitary design flow of 5.31 L/s as shown in Table 4.

5.3 Proposed Sanitary Servicing

The development is proposed to be serviced by a 200 mm diameter PVC sanitary sewer at a slope of 2% which has a full flow capacity of 46 L/s. The service lateral capacity (46 L/s) exceeds the sanitary design flow (5.31 L/s) and therefore is sufficient to convey the flow. The lateral will extend from the existing 450 mm diameter municipal sewer in Airport Road to a property line manhole and ultimately to the building. The proposed sanitary servicing plan is shown on C102 – Preliminary Site Servicing Plan. The internal building plumbing will be designed by the Mechanical Engineer with their details and specifications.

6.0 Drainage Conditions

6.1 Existing Drainage

The subject property currently consists of one residential dwelling and three storage sheds, complete with an asphalt driveway with two accesses to Airport Road. The site has dense coverage of trees and landscaping. No municipal storm sewer servicing or private storm infrastructure exists. Ditches in the Airport Road right-of-way convey stormwater from the property.

According to the topographic survey prepared by Young & Young Surveying Inc. (Project 18-B7160, dated May 29, 2018), there are two existing 400 mm diameter corrugated steel pipe (CSP) culverts fronting the site in the ditch along Airport Road. The culverts convey stormwater below the existing driveway accesses.

Per the topographic survey, the existing topography indicates that stormwater generally drains north to south across the property. The site can be delineated into one catchment denoted as Catchment 101. Catchment 101 conveys major system drainage overland to the south and southwest corner of the property to the adjacent school lands. Stormwater from the site's frontage is conveyed overland directly into the Airport Road ditch.

The existing drainage conditions are illustrated on Figure 1 – Pre- Development Drainage Plan.

6.2 Proposed Drainage

The proposed development as described in Section 2.0 is a 3-storey retirement home overlying a lower basement level, complete with an at-grade parking lot and site access to Airport Road.

In the existing condition, the drainage from the 0.96 ha property generally drains to the neighbouring property to the south and the school field to the southwest. The proposed grading design significantly reduces the amount of drainage being conveyed to the neighbouring properties. The main overland flow route for the site will now utilize the site entrance on the east side, to convey the major storm system to the Airport Road right-of-way. A 450 mm diameter corrugated steel pipe (CSP) culvert is proposed to provide drainage for the existing ditch at the site entrance.

Minor system flows will be conveyed in storm sewers designed to accommodate the 5-year design storm per the Town of Caledon Development Standards Manual. Any storm greater than this will flow overland as the major system.

The proposed grading of the site results in the following catchments:

- Catchment UC01 (0.07 ha): Maintains the existing drainage pattern and conveys drainage uncontrolled south and east to the neighbouring properties. Area significantly reduced from existing condition.
- Catchment UC02 (0.02 ha): Maintains the existing drainage pattern and conveys drainage uncontrolled to the existing ditch on the east side of Airport Road.
- Catchment 201 (0.51 ha): Minor system flows from the roof and courtyard are collected by a double catch basin and stored in the underground stormwater chamber. The stormwater outlets from the underground chamber controlled by an orifice and is conveyed by a 300 mm PVC internal storm sewer that ultimately outlets to the Airport Road ditch. Major system flows are conveyed overland, ultimately discharging to Airport Road though the site entrance.
- Catchment 202 (0.37 ha): Minor system flows are conveyed to the parking lot, where catch basins convey drainage into an underground stormwater chamber. The drainage is discharged to a 300 mm PVC internal storm sewer that outlets to the Airport Road ditch. Major system flows are conveyed overland, ultimately discharging to Airport Road though the site entrance.

The proposed drainage conditions are illustrated on Figure 2 – Post-Development Drainage Plan. Stormwater runoff from Catchment 201 and 202 will be captured in catch basins located throughout the courtyard and parking surfaces. A flat-bottom swale along the west side of the property will collect stormwater and spill into the parking lot. The swale will be designed as a Low Impact Development (LID) feature such as a vegetated ditch (bioswale) to provide quantity and quality control to stormwater. A spill point has been provided for the bioswale to allow overflow to enter the parking lot. Details of the swale design will be provided at the detailed design stage.

Minor system drainage will be conveyed to two underground stormwater chambers. The Catchment 202 chamber will be located within the parking lot. The Catchment 201 chamber will be located beneath the rear courtyard. Both chambers will detain and release controlled stormwater flows using a downstream orifice. Stormwater from each chamber will then be conveyed via the proposed internal storm sewer network through a quality control device and to a property line manhole. Ultimately the internal storm sewer network will discharge to the ditch in the Airport Road right-of-way.

7.0 Stormwater Management

Upon reviewing the Toronto and Region Conservation Authority (TRCA) Regulation Mapping, we found that the site is located outside TRCA regulated area and therefore is not subject to TRCA design criteria.

The proposed stormwater management design must comply with the Town of Caledon Development Standards Manual (Version 5.0, 2019). The stormwater management criteria based on the guidelines are as follows:

Water Quantity Control

Match post-development peak flows from each storm event up to the 100-year event to the predevelopment peak flows.

Water Quality Control

Private stormwater discharging from the proposed development must achieve Ontario Ministry of the Environment, Conservation and Parks (MECP) Enhanced Level of protection (80% total suspended solids (TSS) removal) for water quality control.

The methods used to achieve the stormwater management criteria are described in the following sections.

7.1 Stormwater Quantity Control

Using the Town of Caledon intensity-duration frequency data (IDF), the Modified Rational Method was used to determine the pre- and post-development peak flow rates. The post-development peak flow rates were then used to determine the level of stormwater quantity control required for the proposed development.

As described in Section 5.2, Catchments UC01 and UC02 will be localized uncontrolled drainage over grassed areas.

Stormwater runoff for Catchment 201 will be collected in a double catch basin. A 75 mm orifice tube located at the downstream of the double catch basin will cause the water to back-up through a 9.7 m long, 300 mm diameter sewer into an underground storm chamber located within the courtyard. Following the storm event, the water will outlet from the chamber and be controlled by the 75 mm orifice tube to a release rate of 22.07 L/s.

Stormwater runoff for Catchment 202 is proposed to be controlled by a 100 mm orifice tube downstream of an underground chamber in the parking area. Stormwater flows from each of the controlled catchments will discharge through an Oil-Grit Separator (OGS) for quality control and outlet to the existing ditch in the Airport Road right-of-way. Table 5 summarizes the peak flows and subsequent storage requirements for each post-development catchment.

		Storage Required																								
Storm	Pre-Development	P	ost-Develo	(m³)																						
Event (Year)	Catchment 101	Uncontrolled (UC01 & UC02)	01 & Rate Rate Rele		Total Release Rate	Catchment 201	Catchment 202																			
2	65.63	5.50			54.03	57.84	30.14																			
5	83.97	7.04	22.07 26.45	22.07																				55.57	95.65	53.15
10	102.71	8.61			26.45	57.14	126.21	73.64																		
25	119.79	10.04		58.57	167.00	100.25																				
50	134.89	11.31			59.84	196.92	120.58																			
100	150.47	12.62			61.14	229.52	142.79																			

Table 5: Summary of Peak Flows and Storage Volumes

As shown in Table 5, the total post-development peak stormwater flows from Catchments 201, 202, UC01 and UC02 are significantly below the pre-development peak stormwater flows from Catchment 101 for all storm events. Therefore, the quantity control criterion is achieved.

Using orifice tubes, the post-development peak stormwater flows for Catchments 201 and 202 are controlled to complement the uncontrolled flows from catchments UC01 & UC02. As shown in Table 5, approximately 230 m³ and 143 m³ of storage is required during the 100-year storm event in Catchments 201 and 202, respectively.

The underground stormwater chamber in Catchment 201 is sized to provide 239 m³ of storage required for the catchment.

Storage in Catchment 202 will be provided through a combination of surface ponding in the parking lot and underground storage. The underground stormwater chamber will provide 75 m³ of storage and the surface ponding provides approximately 68 m³ of storage for a total volume of 143 m³, thereby meeting the storage requirements of 143 m³ for Catchment 202. The extent of the surface ponding for the 100-year storm event is illustrated on C103 – Preliminary Site Grading Plan.

Appendix C contains the preliminary orifice sizing calculations and preliminary stormwater chamber design.

7.2 Stormwater Quality Control

Stormwater quality controls for the site must incorporate measures to provide an Enhanced Level of Protection (Level 1) according to the MECP (March 2003) guidelines. Enhanced water quality protection requires the removal of at least 80% of TSS from 90% of the annual runoff volume.

A treatment train approach including an OGS and LID measures will be used to achieve the stormwater quality control criteria. An area breakdown and associated TSS removal rate for each catchment is provided in Table 6.

	Table 6: Area Breakdown and Associated TSS Removal							
Catchi	nent	Area (ha)	% of Total Development Area	TSS Removal Efficiency	Total TSS Removal			
Catabaset 201	Hardscaped Area	0.07	7.3%	80.0%	5.8%			
Catchment 201	Landscaped Area + Building Roof	0.44	45.8%	80.0%	36.6%			
Catchment 202	Paved Surface / Hardscaped Area	0.28	29.2%	80.0%	23.4%			
	Landscaped Area	0.08	8.3%	80.0%	6.7%			
Catchment UC01	Landscaped Area	0.07	7.3%	80.0%	5.8%			
Catchment UC02	Landscaped Area	0.02	2.1%	80.0%	1.7%			
	Total Site	0.96	100%	-	80%			

As illustrated in Table 6, the weighted TSS removal for the site is 80% and achieves the required quality control criteria. 80% TSS removal efficiency was applied for landscaped areas, roof areas, and catchments draining to the OGS.

Water quality control for Catchment 201 and 202 will be provided with a Stormceptor EF6 OGS downstream of the underground stormwater chambers and orifice tubes. The new Stormceptor EF/EFO models sized for 60% removal of the Environmental Technology Verification (ETV) Particle Size Distribution (PSD) are comparable to sizing for 80% removal of the earlier model Stormceptor Fine PSD. The sizing results in Appendix C reflects this qualification. A technical bulletin explaining the equivalency is included in Appendix C.

In addition to the OGS, roof drains will be directed towards the courtyard's landscaped (i.e., grassed) area in Catchment 201, which will provide pre-treatment of stormwater runoff prior to entering the internal storm sewer network. In Catchment 202, prior to the parking lot area, a grassed flat bottom swale will provide additional water quality control to stormwater prior to entering the internal storm sewer network.

7.3 Sustainable Stormwater Management

Additional LID strategies will be considered by the building architect and landscape architect for use throughout the proposed development during the detailed design stage. The following LID strategies may be applicable for this site:

- **Rainwater Harvesting**: With minimal pretreatment, the captured rainwater within the underground storage tanks can be used for outdoor non-potable water uses such as irrigation, or in the buildings as gray water.
- **Green Roofs**: This method is beneficial due to its water quality, water balance, and peak flow control benefits. In addition to water resource management, green roofs improve energy efficiency, reduce urban heat island effects, and create greenspace for passive recreation.
- Enhanced Grass Swale and Bioretention: Enhanced grass swales are designed to convey, treat and attenuate stormwater runoff. These features slow water to allow sedimentation, filtration through the soil matrix, evapotranspiration, and infiltration into the underlying native soil. Bioretention methods, such as rain gardens and stormwater planters, temporarily store, treat and infiltrate runoff. They are typically designed to capture small storm events. Where underground parking facilities exist, infiltration is not a feasible option.
- **Permeable Pavement**: Porous asphalt, pervious concrete, permeable paver and plastic grid filled with gravel can be used for driveways, walkways and courtyards to reduce the amount of impervious area throughout the site. This approach encourages infiltration and reduces runoff volumes. Where underground parking facilities exists, infiltration is not a feasible option.
- **Enhanced Topsoil**: Enhanced topsoil provides water quality benefits in addition to water balance storage which will reduce the infrastructure required to store the required water balance volume.

LID strategies and an overall treatment train approach, where possible, will be specified during detailed design at the site plan approval stage.

8.0 Conclusions and Recommendations

The proposed development can be serviced for water, sanitary, and stormwater in accordance with the Town of Caledon and Peel Region requirements and standards. Our conclusions and recommendations include:

- 1. Water demand for the proposed building will be provided using a 200 mm diameter PVC fire line and 100 mm diameter PVC domestic line extending from the existing 300 mm diameter PVC watermain located in the Airport Road right-of-way.
- 2. Sanitary servicing for the proposed building will be provided with a 200 mm diameter PVC sanitary sewer at a 2% slope extending from the building to the existing 450 mm concrete sanitary sewer in the Airport Road right-of-way.
- Stormwater runoff from Catchment 201 and Catchment 202 will be overcontrolled to account for the uncontrolled localized flows from Catchments UC01 and UC02. Water quantity controls will be provided using underground stormwater chambers and parking lot ponding, upstream of an orifice control tube. Both catchments outlet to the existing ditch located in the Airport Road right-of-way.
- 4. Water quality for Catchments 201 and 202 will be provided through a treatment train approach including a vegetated swale (bioswale) and an OGS (Stormceptor Model EF6 or equivalent) to achieve enhanced protection (80% TSS removal).
- 5. Erosion and Sediment Controls will be implemented on-site during construction and will be maintained until the site is stabilized.

Based on the above conclusions we support the proposed development application from the perspective of water supply, sanitary servicing, and stormwater management.

Respectfully submitted,

C.F. CROZIER & ASSOCIATES INC.

1'.

Daniel Doherty, E.I.T. Land Development

C.F. CROZIER & ASSOCIATES INC.

Wayne Cooley, P.Eng. Senior Technical Advisor

DD:NS/cj

1800\1856 - Wyndham Holdings Inc\5524 - 15728 Airport Rd\Reports\FSR\March 2021 - Reissued 1st Sub\2021.03.30 5524_FSR SWM.docx

APPENDIX A

Water Demand Calculations

Region of Peel Connection Demand Table

WATER CONNECTION

Connection point ³⁾ 300mm dia. watermain on Airport Road						
Pressure zone of connection po	int					
Total equivalent population to b		381				
Total lands to be serviced		0.96 ha				
Hydrant flow test						
Hydrant flow test location	N/A					
	Pressure (kPa)	Flow (in l/s)	Time			
Minimum water pressure	N/A	N/A				
Maximum water pressure N/A		N/A	N/A			

No.	Water demands						
NO.	Demand type	Demand	Units				
1	Average day flow	1.32	l/s				
2	Maximum day flow	1.85	l/s				
3	Peak hour flow	3.97	l/s				
4	Fire flow ²⁾	133.3	l/s				
Anal	Analysis						
5	Maximum day plus fire flow	135.15	l/s				

WASTEWATER CONNECTION

Conr	Connection point ⁴⁾ 450mm dia. sanitary sewer on Airport Road				
Tota	Total equivalent population to be serviced 381				
Tota	lands to be serviced	0.96 ha			
6	Wastewater sewer effluent (in l/s)	5.58			

¹⁾ Please refer to design criteria for population equivalencies

- ²⁾ Please reference the Fire Underwriters Survey Document
- ³⁾ Please specify the connection point ID

⁴⁾ Please specify the connection point (wastewater line or manhole ID) Also, the "total equivalent population to be serviced" and the "total lands to be serviced" should reference the connection point. (the FSR should contain one copy of Site Servicing Plan)

Please include the graphs associated with the hydrant flow test information table Please provide Professional Engineer's signature and stamp on the demand table All required calculations must be submitted with the demand table submission.

Detailed calculations of water demand and wastewater flows are provided in Appendices A and B respectively of the Functional Servicing and Preliminary Stormwater Management Report (Crozier Consulting Engineers, March 2021)

CROZIER &ASSOCIATES Consulting Engineers	Project: Wyndham Residence Address: 15728 Airport Road Project No.: 1856-5524	Date: 05.12.2020 Revised: 03.30.2021 Design: DD Check: NS	
	Existing Population Estimate		
Site Area 0.96	ha		
Population:			
Residential Population:	5 persons	Peel Region Public Works Design Criteria Manual - Sanitary Sewer, Modified March 2017 provides value of 50 persons/ha. 5	
EXISTING POPULATION	5 persons	persons was assumed for calculation as site is currently one single family dwelling	
	Project: Wyndham Residence	Date: 05.12.2020	
	Address: 15728 Airport Road	Revised: 03.30.2021 Design: DD Check: NS	
CROZIER & ASSOCIATES Consulting Engineers	Project No.: 1856-5524	-	
& ASSOCIATES Consulting Engineers	Project No.: 1856-5524 Proposed Population Estimate	Check: NS	
Consulting Engineers		Check: NS	
Consulting Engineers	Proposed Population Estimate	Check: NS	
Consulting Engineers Site Area 0.96	Proposed Population Estimate	Check: NS	
Consulting Engineers Site Area 0.96 Proposed Building Floor 1 (Memory Care + Ambulatory Care)	Proposed Population Estimate ha # of Units 47	Check: NS Source: ABA Architects, Site Plan, 2021.02.09,	
Consulting Engineers Consulting Engineers Consulting Engineers Consulting Consulting Consulting Floor 1 (Memory Care + Ambulatory Care) Floor 2 (Studio + 1 Bed) Floor 3 (1 Bedroom)	Proposed Population Estimate ha # of Units 47 50 30	Check: NS Source: ABA Architects, Site Plan, 2021.02.09,	
Consulting Engineers Consulting Engineers Consulting Engineers 0.96 Proposed Building Floor 1 (Memory Care + Ambulatory Care) Floor 2 (Studio + 1 Bed) Floor 3 (1 Bedroom) TOTAL Population:	Proposed Population Estimate ha # of Units 47 50 30 127	Check: NS Source: ABA Architects, Site Plan, 2021.02.09,	
Consulting Engineers Consulting Engineers Consulting Engineers Consulting Engineers 0.96 Proposed Building Floor 1 (Memory Care + Ambulatory Care) Floor 2 (Studio + 1 Bed) Floor 3 (1 Bedroom) TOTAL Population: Equivalent - Institutional (Hospital)	Proposed Population Estimate ha # of Units 47 50 30 127 3 persons/bed	Check: NS Source: ABA Architects, Site Plan, 2021.02.09, Project No.: 2018-127) Source: Peel Region Public Works Design Criteria	

	yndham Residence 728 Airport Road 56-5524	Date: 05.12.2020 Revised: 03.30.2021 Design: DD Check: NS
	Existing Water Demand	
Population Estimate: Residential: 5 pe	ersons	
<u>Design Criteria:</u>		
Average Consumption Rate:	0.280 m³/cap.day	Source: Peel Region Public Works
Maximum Daily Demand Peaking Factor:	2.00	Watermain Design Criteria, June
Maximum Hourly Demand Peaking Factor:	3.00	2010.
Residential Demand:		
Average Daily Demand:	1.40 m ³ /day	
5 ,	0.02 L/s	
Maximum Daily Demand:	2.80 m³/day	
	0.03 L/s	
Maximum Hourly Demand:	4.20 m ³ /day	
	0.05 L/s	
Existing Average Daily Demand:	0.02 L/s	
Existing Maximum Daily Demand:	0.03 L/s	
Existing Maximum Hourly Demand:	0.05 L/s	

Estimates

	Wyndham Residence	Date: 05.12.2020 Revised: 03.30.2021
	15728 Airport Road	Design: DD
	1050-5524	Check: NS
Consulting Engineers		CHECK. NS
	Proposed Water Demand	
Population Estimate:		
Institutional: 381	persons	
<u>Design Criteria:</u>		
Average Consumption Rate:	0.300 m³/cap.day	Source: Peel Region Public Works
Maximum Daily Demand Peaking Factor:	1.40	Watermain Design Criteria, June
Maximum Hourly Demand Peaking Factor:	3.00	2010.
Residential Demand:		
Average Daily Demand:	114.30 m³/day	
	1.32 L/s	
Maximum Daily Demand:	160.02 m³/day	
,	1.85 L/s	
Maximum Hourly Demand:	342.90 m ³ /day	
	3.97 L/s	
Proposed Average Daily Demand:	1.32 L/s	
Proposed Maximum Daily Demand:	1.85 L/s	
Proposed Maximum Hourly Demand:	3.97 L/s	

I:\1800\1856 - Wyndham Holdings Inc\5524 - 15728 Airport Rd\Design\Civil_Water\[5524_ Ex_Prop Wtr_San Demand_v3.xlsx]Population Estimate

CROZIER & ASSOCIATES Consulting Engineers	Project: Wyndham Residence	Date: 2020.05.12 Revised: 2021.03.30			
Consuming Engineers	Project No.: 1856-5524	Designed By: DD Checked By: NS			
	Fire Flow Calculations - Fire Underwriters Survey Method				
Water Supply for Public Fire Protect Fire Underwriters Survey	tion (1999)				
	e ordinary construction (C-value = 1.0). to have an automatic sprinkler protection system.				
, .		of the Water Supply for Public Fire Protection (1999) by FUS.			
	Part II - G	Guide for Determination of Required Fire Flow			
1. An estimate of fire flow	equired for a given area may be determined by	the formula:			
Where:	F = 220 * C * √A				
	F = the required fire flow in litres per minute C = coefficient related to the type of construction	in .			
	= 1.5 for wood frame construction (structure				
	= 1.0 for ordinary construction (brick or other = 0.8 for non-combustible construction (unpr	masonry walls, combustible floor and interior)			
	= 0.6 for fire-resistive construction (fully protein				
	A = The total floor area in square metres (includi 50 percent below grade) in the building cor				
Proposed Developmen					
	1.0 C-Value Large (Plus 25% of Adjoining	est Floor 3655.5 sq.m Note: Lower Level g Floors) 803.225 sq.m Note: 25% Upper Level 1 4458.7 sq.m			
Therefore	F = <u>14,700</u> L/min	44.00.7 39.111			
Fire flow de	ermined above shall not exceed:				
	30,000 L/min for wood frame const				
	30,000 L/min for ordinary construct 25,000 L/min for non-combustible (
	25,000 L/min for fire-resistive constr				
	I may be reduced by as much as 25% for occupa				
be increased by up to 2	5% surcharge for occupancies having a high fire h	nazard.			
Non-Combus		Burning 15%			
Limited Combus Combus		Burning 25%			
Combus					
	-15% Reduction(%)				
	-2,205 L/min reduction				
Subto	tal =12,495 L/min				
Note: Flow determined	shall not be less than 2,000 L/min				
 Sprinklers - The value of protection. 	btained in No. 2 above may be reduced by up to	50% for complete automatic sprinkler			
protection.	 Assume complete automat -6,248 L/min reduction 	ic sprinkler protection (50% reduction)			
	,				

Underwriters Survey	P	art II - Guide fo	r Determination of R	equired Fire Flow		
4. Exposure - To the value obtained in No. 2, a		he added for stru	ctures exposed with	in 45 metres		
by the fire area under consideration. The pe						
building(s) being exposed, the separation, of						
the provision of automatic sprinklers and/or		017	° °			
exposed building(s) and the effect of hillside						
		shere spread or i				
Separation Charge	Separation	Charge]			
0 to 3 m 25%	20.1 to 30 m	10%				
3.1 to 10 m 20%	30.1 to 45 m	5%				
10.1 to 20 m 15%	>45 m	0%				
Exposed buildings						
Name	Distance (m)	Charge	Surcharge (L/min)			
North	n.a	0%	0			
East	n.a	0%	0			
South	30	10%	1,250			
West	n.a	0%	0			
		Total Surcharge	1,250			
					Required Duratio	n of Fire Flow
Determine Required Fire Flow					Flow Required	Duration
·					(L/min)	(hours)
No.	1 14,700)			2,000 or less	1.00
No.	2 -2,205	reduction			3,000	1.25
No.	3 -6,248	reduction			4,000	
	4 1,250	surcharge		I		1.50
No.		boroniaigo			5,000	1.50 1.75
No.						
Required Flow		 L/min			5,000 6,000 8,000	1.75 2.00 2.00
			or	133.3 L/s	5,000 6,000 8,000 10,000	1.75 2.00 2.00 2.00
Required Flow Rounded to nearest 1000 L/mir		 L/min	or	133.3 L/s 2,112.0 USGPM	5,000 6,000 8,000 10,000 12,000	1.75 2.00 2.00 2.00 2.50
Required Flow		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000	1.75 2.00 2.00 2.00 2.50 3.00
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000 16,000	1.75 2.00 2.00 2.50 3.00 3.50
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000	1.75 2.00 2.00 2.50 3.00 3.50 4.00
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 10,000 12,000 14,000 16,000 18,000 20,000	1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000 18,000 20,000 22,000	1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000	1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000	1.75 2.00 2.00 2.50 3.50 4.00 4.50 5.00 5.50 6.00
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 14,000 14,000 16,000 20,000 22,000 24,000 24,000 26,000 28,000	1.75 2.00 2.00 2.50 3.00 4.50 4.00 4.50 5.50 5.50 6.00 6.50
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000 16,000 22,000 22,000 24,000 26,000 28,000 30,000	1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 14,000 14,000 18,000 20,000 22,000 24,000 24,000 28,000 30,000 32,000	1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000 18,000 20,000 22,000 24,000 24,000 26,000 30,000 30,000 33,000 34,000	1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.50 6.00 6.50 6.00 6.50 7.00 7.50 8.00
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 14,000 16,000 20,000 22,000 24,000 24,000 28,000 30,000 32,000 34,000 36,000	1.75 2.00 2.00 2.50 3.00 4.50 5.00 6.00 6.50 7.00 7.50 8.00 8.50
Required Flow Rounded to nearest 1000 L/mir		 L/min	or		5,000 6,000 8,000 10,000 12,000 14,000 18,000 20,000 22,000 24,000 24,000 26,000 30,000 30,000 33,000 34,000	1.75 2.00 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00

Ms. Nicole Segal C.F. Crozier & Associates 2800 High Point Drive, Suite 100 Milton, ON L9T 6P4

Wednesday, April 15, 2020

Re: 15728 Airport Road – Fire Flow Support Letter

Dear Ms. Segal,

This letter serves to confirm that the proposed building located at 15728 Airport Road will be of combustible construction and sprinklered. All floor assemblies and vertical openings will have a minimum fire-resistance rating of 2 hours as per Ontario Building Code 3.2.2.48B.

We trust that this letter is sufficient to address Development Engineering's request to confirm the type of building construction.

Yours Truly,

Alizell

Josh Bedard, HBAS, M.Arch, OAA, MRAIC Vice President, Architecture

APPENDIX B

Sanitary Flow Calculations

CROZIER &ASSOCIATES Consulting Engineers	Project: Wyndham Residence Address: 15728 Airport Road Project No.: 1856-5524	Date: 05.12.2020 Revised: 03.30.2021 Design: DD Check: NS	
	Existing Population Estimate		
Site Area 0.96	ha		
Population:			
Residential Population:	5 persons	Peel Region Public Works Design Criteria Manual - Sanitary Sewer, Modified March 2017 provides value of 50 persons/ha. 5	
EXISTING POPULATION	5 persons	persons was assumed for calculation as site is currently one single family dwelling	
	Project: Wyndham Residence	Date: 05.12.2020	
	Address: 15728 Airport Road	Revised: 03.30.2021 Design: DD Check: NS	
CROZIER & ASSOCIATES Consulting Engineers	Project No.: 1856-5524	-	
& ASSOCIATES Consulting Engineers	Project No.: 1856-5524 Proposed Population Estimate	Check: NS	
Consulting Engineers		Check: NS	
Consulting Engineers	Proposed Population Estimate	Check: NS	
Consulting Engineers Site Area 0.96	Proposed Population Estimate	Check: NS	
Consulting Engineers Site Area 0.96 Proposed Building Floor 1 (Memory Care + Ambulatory Care)	Proposed Population Estimate ha # of Units 47	Check: NS Source: ABA Architects, Site Plan, 2021.02.09,	
Consulting Engineers Consulting Engineers Consulting Engineers Consulting Consulting Consulting Floor 1 (Memory Care + Ambulatory Care) Floor 2 (Studio + 1 Bed) Floor 3 (1 Bedroom)	Proposed Population Estimate ha # of Units 47 50 30	Check: NS Source: ABA Architects, Site Plan, 2021.02.09,	
Consulting Engineers Consulting Engineers Consulting Engineers 0.96 Proposed Building Floor 1 (Memory Care + Ambulatory Care) Floor 2 (Studio + 1 Bed) Floor 3 (1 Bedroom) TOTAL Population:	Proposed Population Estimate ha # of Units 47 50 30 127	Check: NS Source: ABA Architects, Site Plan, 2021.02.09,	
Consulting Engineers Consulting Engineers Consulting Engineers Consulting Engineers 0.96 Proposed Building Floor 1 (Memory Care + Ambulatory Care) Floor 2 (Studio + 1 Bed) Floor 3 (1 Bedroom) TOTAL Population: Equivalent - Institutional (Hospital)	Proposed Population Estimate ha # of Units 47 50 30 127 3 persons/bed	Check: NS Source: ABA Architects, Site Plan, 2021.02.09, Project No.: 2018-127) Source: Peel Region Public Works Design Criteria	

CROZIER & ASSOCIATES Consulting Engineers	Project: Wyndham Residence Address: 15728 Airport Road Project No.: 1856-5524		Date: 05.12.2020 Revised: 03.30.2021 Design: DD Check: NS
		Existing Sanitary Flow	
Infiltration Area: 0.96	ha		
Population Estimates: Residential:	5	persons	
<u>Design Criteria:</u> Unit Sewage Flow: Infiltration: Harmon Peaking Factor:	0.3028 0.200	m ³ /cap.day L/s/ha M = 1+ $\frac{14}{4+\sqrt{Pe}}$	Source: Peel Region Sanitary Sewer Design Criteria, March 2017. Standard Drawing 2-9-2
Residential Sanitary Flow:			
Average Dry Weather Flow:	1.51 0.02	m ³ /day L/s	
Existing Dry Weather Sanitary Flow: Peaking Factor:	0.02 4.44	L/s	
Existing Peak Sanitary Flow: Inflow/Infiltration Allowance:	0.08 0.19	L/s L/s	
Existing Design Sanitary Flow:	0.27	L/s	

I:\1800\1856 - Wyndham Holdings Inc\5524 - 15728 Airport Rd\Design\Civil_Water\[5524_Ex_Prop Wtr_San Demand_v3.xlsx]Population Estimates

	Proied	ct: Wyndham Residence	Date: 05.12.2020
		ss: 15728 Airport Road	Revised: 03.30.2021
& ASSOCIATES		o.: 1856-5524	Design: DD
	- j		Check: NS
	P	roposed Sanitary Flow	
Infiltration Area:			
0.96	ha		
Demulation Fatimento a			
Population Estimates: Institutio	nal: 381	persons	
IIISIIOIIO	nui. 301	persons	
<u>Design Criteria:</u>			
Unit Sewage Fl	ow: 0.3028	m°/cap.day	
Infiltrat		L/s/ha	Source: Peel Region Sanitary Sewer Design Criteria,
Harmon Peaking Fac	tor:		March 2017. Standard Drawing 2-9-2
		dified Harmon Formula	
		$M = 1 + \frac{1}{4 + \sqrt{Pe}}$	
			1
<u>Residential Sanitary Flow:</u> Average Dry Weather Flow:	115.37	m³/day	
Average by weather now.	1.34	L/s	
	1.04	L/ S	
Proposed Dry Weather Sanitary Fl	ow: 1.34	L/s	
Peaking Fac		-	
Proposed Peak Sanitary Fl		L/s	
Inflow/Infiltration Allowar		L/s	
Proposed Design Sanitary Fl		L/s	

I:\1800\1856 - Wyndham Holdings Inc\5524 - 15728 Airport Rd\Design\Civil_Water\[5524_Ex_Prop Wtr_San Demand_v3.xlsx]Population Estimates

Stormwater Management Calculations

 Project:
 15728 Airport Road

 Project No.:
 1856-5524

 Created By:
 DD

 Checked By:
 NRS

 Date:
 2020.03.02

 Updated:
 2021.03.30

Modified Rational Calculations - Input Parameters

Storm Data:		Cc	ledon		
Time of Concer	ntration:	T _c =	10	min	(per Town of Caledon standards)
Return Period	А	В	С	l (mm/hr)	
2 yr	1070	7.85	0.8759	85.72	
5 yr	1593	11	0.8789	109.68	
10 yr	2221	12	0.908	134.16	
25 yr	3158	15	0.9335	156.47	
50 yr	3886	16	0.9495	176.19	
100 yr	4688	17	0.9624	196.54	

Pre - Development Conditions						
Land Use	Area (ha)	Area (m²)	С	Weighted Average C		
Pervious	0.91	9,137	0.25	0.24		
Impervious	0.05	500	0.90	0.05		
Total Site	0.96	9,637	-	0.28		

Post - Development Conditions					
Catchment	Area (ha)	Area (m²)	С		
201	0.51	5,060	0.74		
202	0.37	3,660	0.75		
UC01	0.07	727	0.25		
UC02	0.02	190	0.25		
Total Site	0.96	9,637	-		

Equations:

Peak Flow	
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d)$	

Intensity i(T_d) = A / (T + B)^C

I:\1800\1856 - Wyndham Holdings Inc\5524 - 15728 Airport Rd\Design\Civil_Water\[5524_ Ex_Prop Wtr_San Demand_v3.xlsx]Population Es:

 Project:
 15728 Airport Road

 Project No.:
 1856-5524

 Created By:
 DD

 Checked By:
 NRS

 Date:
 2020.03.02

 Updated:
 3/30/2021

Modified Rational Calculations - Peak Flows Summary

Pre	Pre-Development					
Channe Frank	Peak Flow (L/s)					
Storm Event	Q ₁₀₁					
2 yr	65.63					
5 yr	83.97					
10 yr	102.71					
25 yr	119.79					
50 yr	134.89					
100 yr	150.47					

Storm Event	Peak Flow Rate Post-Development (L/s)					Required (m	. –
	Q_{201}^{1}	Q ₂₀₂ ²	Q _{UC01}	Q _{UC02}	Q TOTAL	201	202
2 yr			4.36	1.14	54.03	57.84	30.14
5 yr			5.58	1.46	55.57	95.65	53.15
10 yr	22.07	26.45	6.83	1.78	57.14	126.21	73.64
25 yr	22.07	20.45	7.96	2.08	58.57	167.00	100.25
50 yr			8.97	2.34	59.84	196.92	120.58
100 yr			10.00	2.61	61.14	229.52	142.79

1. Based on 75mm diameter orifice tube

2. Based on 100 mm diameter orifice tube

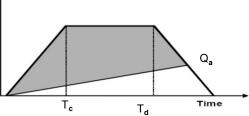
1:\1800\1856 - Wyndham Holdings Inc\5524 - 15728 Airport Rd\Design\Civil_Water\[5524_ Ex_Prop Wtr_San Demand_v3.xlsx]Population Estimates

Modified Rational Calculations - 100-Year Storm Event

CATCHMENT 201

Control Criteria

100 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows


100 yr: Uncontrolled Post-Development Flow

Q_{post} = 206.06 L/s

100 yr: Pre-Development Target

Q_{orifice} = 22.07 L/s

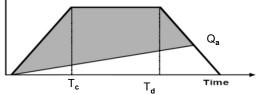
T_d i T_d Q_{uncont} S_d (min)(mm/hr)(sec)(m³/s)(m³)5239.353000.25165.3510196.546000.206110.3915166.899000.175140.9220145.1312000.152162.7225128.4615000.135178.8530115.2818000.121191.0735104.5921000.110200.484095.7524000.002221.535081.9530000.086218.044588.3127000.093213.555081.9530000.086228.676071.6936000.075224.216567.4739000.071226.227063.7442000.067227.687560.4045000.055229.479549.9857000.055229.479549.9857000.052229.1610047.9360000.048227.9011044.2966000.044226.9911542.6769000.042223.3713038.4778000.037216.9615034.0390000.036215.13equired Storage Volume:229.52						
5239.35300 0.251 65.35 10196.54 600 0.206 110.39 15166.89 900 0.175 140.92 20145.13 1200 0.152 162.72 25128.46 1500 0.135 178.85 30115.28 1800 0.121 191.07 35 104.59 2100 0.110 200.48 40 95.75 2400 0.100 207.81 45 88.31 2700 0.093 213.55 50 81.95 3000 0.086 218.04 55 76.47 3300 0.080 221.53 60 71.69 3600 0.075 224.21 65 67.47 3900 0.071 226.22 70 63.74 4200 0.067 227.68 75 60.40 4500 0.067 229.27 85 54.69 5100 0.057 229.27 90 52.23 5400 0.055 229.47 95 49.98 5700 0.052 229.16 100 47.93 6000 0.046 226.99 110 44.29 6600 0.046 225.92 120 41.17 7200 0.043 224.71 125 39.78 7500 0.042 223.37 130 38.47 7800 0.037 216.96 140 36.11 8400 0.038 218.70 145 35.04	T _d	i	T _d	Q _{Uncont}	S _d	
10196.546000.206110.3915166.899000.175140.9220145.1312000.152162.7225128.4615000.135178.8530115.2818000.121191.0735104.5921000.100207.814588.3127000.093213.555081.9530000.086218.045576.4733000.080221.536071.6936000.075224.216567.4739000.071226.227063.7442000.067227.687560.4045000.063228.678057.4048000.055229.1610047.9360000.055229.479549.9857000.052229.1610047.9360000.048227.9011044.2966000.046226.9911542.6769000.045225.9212041.1772000.043224.7112539.7875000.042223.3713038.4778000.039220.3514036.1184000.038218.7014535.0487000.037216.9615034.0390000.036215.13	(min)	(mm/hr)	(sec)	(m³/s)	(m ³)	
15166.89900 0.175 140.9220145.131200 0.152 162.7225128.461500 0.135 178.8530115.281800 0.121 191.0735104.592100 0.100 207.814095.752400 0.093 213.555081.953000 0.086 218.045576.473300 0.080 221.536071.693600 0.075 224.216567.473900 0.071 226.227063.744200 0.067 227.687560.404500 0.063 228.678057.404800 0.055 229.1610047.936000 0.055 229.479549.985700 0.052 229.1610047.936000 0.048 227.9011044.296600 0.046 226.9911542.676900 0.045 225.9212041.177200 0.043 224.7112539.787500 0.042 223.3713038.477800 0.037 216.9614036.118400 0.038 218.7014535.048700 0.037 216.9615034.039000 0.036 215.13	5	239.35	300	0.251	65.35	
20 145.13 1200 0.152 162.72 25 128.46 1500 0.135 178.85 30 115.28 1800 0.121 191.07 35 104.59 2100 0.110 200.48 40 95.75 2400 0.100 207.81 45 88.31 2700 0.093 213.55 50 81.95 3000 0.086 218.04 55 76.47 3300 0.080 221.53 60 71.69 3600 0.075 224.21 65 67.47 3900 0.071 226.22 70 63.74 4200 0.067 227.68 75 60.40 4500 0.055 229.27 85 54.69 5100 0.052 229.16 100 47.93 6000 0.048 227.90 110 44.29 6600 0.044 226.92 120 41.17 7200 0.043 224.71 125 39.78 7500 0.042	10	196.54	600	0.206	110.39	
25 128.46 1500 0.135 178.85 30 115.28 1800 0.121 191.07 35 104.59 2100 0.110 200.48 40 95.75 2400 0.100 207.81 45 88.31 2700 0.093 213.55 50 81.95 3000 0.086 218.04 55 76.47 3300 0.075 224.21 65 67.47 3900 0.071 226.22 70 63.74 4200 0.067 229.27 85 54.69 5100 0.055 229.27 85 54.69 5100 0.055 229.27 90 52.23 5400 0.055 229.47 95 49.98 5700 0.052 229.16 100 47.93 6000 0.048 227.90 110 44.29 6600 0.044 226.99 115 42.67 6900 0.043 224.71 125 39.78 7500 0.042	15	166.89	900	0.175	140.92	2
25 128.46 1500 0.135 178.85 30 115.28 1800 0.121 191.07 35 104.59 2100 0.110 200.48 40 95.75 2400 0.0093 213.55 50 81.95 3000 0.086 218.04 55 76.47 3300 0.080 221.53 60 71.69 3600 0.075 224.21 65 67.47 3900 0.067 227.68 70 63.74 4200 0.063 228.67 80 57.40 4800 0.060 229.27 85 54.69 5100 0.057 229.52 90 52.23 5400 0.055 229.47 95 49.98 5700 0.052 229.16 100 47.93 6000 0.048 227.90 110 44.29 6600 0.046 226.99 115 42.67 6900 0.043 224.71 125 39.78 7500 0.042	20	145.13	1200	0.152	162.72	Discharge
35 104.59 2100 0.110 200.48 40 95.75 2400 0.100 207.81 45 88.31 2700 0.093 213.55 50 81.95 3000 0.086 218.04 55 76.47 3300 0.080 221.53 60 71.69 3600 0.075 224.21 65 67.47 3900 0.067 227.68 75 60.40 4500 0.063 228.67 80 57.40 4800 0.055 229.17 85 54.69 5100 0.057 229.52 90 52.23 5400 0.050 228.63 105 46.03 6300 0.048 227.90 110 44.29 6600 0.046 226.99 115 42.67 6900 0.043 224.71 125 39.78 7500 0.042 223.37 130 38.47 7800	25	128.46	1500	0.135	178.85	
40 95.75 2400 0.100 207.81 45 88.31 2700 0.093 213.55 50 81.95 3000 0.086 218.04 55 76.47 3300 0.080 221.53 60 71.69 3600 0.075 224.21 65 67.47 3900 0.067 227.68 70 63.74 4200 0.063 228.67 80 57.40 4800 0.060 229.27 85 54.69 5100 0.057 229.52 90 52.23 5400 0.055 229.47 95 49.98 5700 0.052 229.16 100 47.93 6000 0.048 227.90 110 44.29 6600 0.048 225.92 120 41.17 7200 0.043 224.71 125 39.78 7500 0.042 223.37 130 38.47 7800 0.040 221.91 135 37.25 8100 0.037	30	115.28	1800	0.121	191.07	
45 88.31 2700 0.093 213.55 50 81.95 3000 0.086 218.04 55 76.47 3300 0.080 221.53 60 71.69 3600 0.075 224.21 65 67.47 3900 0.071 226.22 70 63.74 4200 0.067 227.68 75 60.40 4500 0.063 228.67 80 57.40 4800 0.057 229.27 85 54.69 5100 0.057 229.47 95 49.98 5700 0.052 229.16 100 47.93 6000 0.048 227.90 110 44.29 6600 0.048 225.92 120 41.17 7200 0.043 224.71 125 39.78 7500 0.042 223.37 130 38.47 7800 0.040 221.91 135 37.25 8100 0.037 216.96 140 36.11 8400 0.037	35	104.59	2100	0.110	200.48	
50 81.95 3000 0.086 218.04 55 76.47 3300 0.080 221.53 60 71.69 3600 0.075 224.21 65 67.47 3900 0.071 226.22 70 63.74 4200 0.067 227.68 75 60.40 4500 0.063 228.67 80 57.40 4800 0.055 229.27 85 54.69 5100 0.057 229.52 90 52.23 5400 0.052 229.16 100 47.93 6000 0.050 228.63 105 46.03 6300 0.048 227.90 110 44.29 6600 0.048 226.99 115 42.67 6900 0.043 224.71 125 39.78 7500 0.042 223.37 130 38.47 7800 0.039 220.35 140 36.11 8400 0.038 218.70 145 35.04 8700 0.037	40	95.75	2400	0.100	207.81	
55 76.47 3300 0.080 221.53 60 71.69 3600 0.075 224.21 65 67.47 3900 0.071 226.22 70 63.74 4200 0.067 227.68 75 60.40 4500 0.063 228.67 80 57.40 4800 0.057 229.27 85 54.69 5100 0.057 229.27 90 52.23 5400 0.052 229.16 100 47.93 6000 0.050 228.63 105 46.03 6300 0.048 227.90 110 44.29 6600 0.046 226.99 115 42.67 6900 0.045 225.92 120 41.17 7200 0.043 224.71 125 39.78 7500 0.042 223.37 130 38.47 7800 0.039 220.35 140 36.11 8400 0.038 218.70 145 35.04 8700 0.037	45	88.31	2700	0.093	213.55	
60 71.69 3600 0.075 224.21 65 67.47 3900 0.071 226.22 70 63.74 4200 0.067 227.68 75 60.40 4500 0.063 228.67 80 57.40 4800 0.060 229.27 85 54.69 5100 0.055 229.47 90 52.23 5400 0.052 229.47 95 49.98 5700 0.052 229.16 100 47.93 6000 0.048 227.90 110 44.29 6600 0.046 226.99 115 42.67 6900 0.045 225.92 120 41.17 7200 0.043 224.71 125 39.78 7500 0.042 223.37 130 38.47 7800 0.039 220.35 140 36.11 8400 0.038 218.70 145 35.04 8700 <td>50</td> <td>81.95</td> <td>3000</td> <td>0.086</td> <td>218.04</td> <td></td>	50	81.95	3000	0.086	218.04	
65 71.67 3000 0.071 224.21 65 67.47 3900 0.071 226.22 70 63.74 4200 0.067 227.68 75 60.40 4500 0.063 228.67 80 57.40 4800 0.060 229.27 85 54.69 5100 0.057 229.52 90 52.23 5400 0.052 229.47 95 49.98 5700 0.052 229.16 100 47.93 6000 0.048 227.90 110 44.29 6600 0.046 226.99 115 42.67 6900 0.045 225.92 120 41.17 7200 0.043 224.71 125 39.78 7500 0.042 223.37 130 38.47 7800 0.040 221.91 135 37.25 8100 0.038 218.70 145 35.04 8700 <td>55</td> <td>76.47</td> <td>3300</td> <td>0.080</td> <td>221.53</td> <td></td>	55	76.47	3300	0.080	221.53	
7063.7442000.067227.687560.4045000.063228.678057.4048000.060229.278554.6951000.057229.529052.2354000.055229.479549.9857000.052229.1610047.9360000.050228.6310546.0363000.048227.9011044.2966000.044226.9911542.6769000.043224.7112539.7875000.042223.3713038.4778000.040221.9113537.2581000.038218.7014036.1184000.037216.9615034.0390000.036215.13	60	71.69	3600	0.075	224.21	T _c
7560.4045000.063228.678057.4048000.060229.278554.6951000.057229.529052.2354000.055229.479549.9857000.052229.1610047.9360000.050228.6310546.0363000.048227.9011044.2966000.046226.9911542.6769000.043224.7112539.7875000.042223.3713038.4778000.039220.3514036.1184000.038218.7015034.0390000.036215.13	65	67.47	3900	0.071	226.22	
8057.4048000.060229.278554.6951000.057229.529052.2354000.055229.479549.9857000.052229.1610047.9360000.050228.6310546.0363000.048227.9011044.2966000.046226.9911542.6769000.045225.9212041.1772000.043224.7112539.7875000.042223.3713038.4778000.039220.3514036.1184000.038218.7014535.0487000.036215.13	70	63.74	4200	0.067	227.68	
8554.6951000.057229.529052.2354000.055229.479549.9857000.052229.1610047.9360000.050228.6310546.0363000.048227.9011044.2966000.046226.9911542.6769000.045225.9212041.1772000.043224.7112539.7875000.040221.9113537.2581000.039220.3514036.1184000.037216.9615034.0390000.036215.13	75	60.40	4500	0.063	228.67	
9052.2354000.055229.479549.9857000.052229.1610047.9360000.050228.6310546.0363000.048227.9011044.2966000.046226.9911542.6769000.045225.9212041.1772000.043224.7112539.7875000.042223.3713038.4778000.039220.3514036.1184000.038218.7014535.0487000.036215.13	80	57.40	4800	0.060	229.27	
9549.9857000.052229.1610047.9360000.050228.6310546.0363000.048227.9011044.2966000.046226.9911542.6769000.045225.9212041.1772000.043224.7112539.7875000.042223.3713038.4778000.040221.9113537.2581000.039220.3514036.1184000.037216.9615034.0390000.036215.13	85	54.69	5100	0.057	229.52	
10047.9360000.050228.6310546.0363000.048227.9011044.2966000.046226.9911542.6769000.045225.9212041.1772000.043224.7112539.7875000.042223.3713038.4778000.040221.9113537.2581000.039220.3514036.1184000.038218.7014535.0487000.036215.13	90	52.23	5400	0.055	229.47	
10546.0363000.048227.9011044.2966000.046226.9911542.6769000.045225.9212041.1772000.043224.7112539.7875000.042223.3713038.4778000.040221.9113537.2581000.039220.3514036.1184000.038218.7014535.0487000.036215.13	95	49.98	5700	0.052	229.16	
11044.2966000.046226.9911542.6769000.045225.9212041.1772000.043224.7112539.7875000.042223.3713038.4778000.040221.9113537.2581000.039220.3514036.1184000.038218.7014535.0487000.037216.9615034.0390000.036215.13	100	47.93	6000	0.050	228.63	
11542.6769000.045225.9212041.1772000.043224.7112539.7875000.042223.3713038.4778000.040221.9113537.2581000.039220.3514036.1184000.038218.7014535.0487000.037216.9615034.0390000.036215.13	105	46.03	6300	0.048	227.90	
12041.1772000.043224.7112539.7875000.042223.3713038.4778000.040221.9113537.2581000.039220.3514036.1184000.038218.7014535.0487000.037216.9615034.0390000.036215.13	110	44.29	6600	0.046	226.99	
12539.7875000.042223.3713038.4778000.040221.9113537.2581000.039220.3514036.1184000.038218.7014535.0487000.037216.9615034.0390000.036215.13	115	42.67	6900	0.045	225.92	
13038.4778000.040221.9113537.2581000.039220.3514036.1184000.038218.7014535.0487000.037216.9615034.0390000.036215.13	120	41.17	7200	0.043	224.71	
13537.2581000.039220.3514036.1184000.038218.7014535.0487000.037216.9615034.0390000.036215.13	125	39.78	7500	0.042	223.37	
14036.1184000.038218.7014535.0487000.037216.9615034.0390000.036215.13	130	38.47	7800	0.040	221.91	
145 35.04 8700 0.037 216.96 150 34.03 9000 0.036 215.13	135	37.25	8100	0.039	220.35	
150 34.03 9000 0.036 215.13	140	36.11	8400	0.038	218.70	
	145	35.04	8700	0.037	216.96	
equired Storage Volume: 229.52	150	34.03	9000	0.036	215.13	
	equired St	orage Volume	e:		229.52	

Peak Flow $Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$

Modified Rational Calculations - 100-Year Storm Event

CATCHMENT 202

Control Criteria


100 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

100 yr: Uncontrolled Post-Development Flow

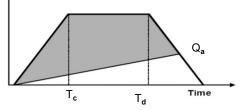
	Q _{post} =	151.06	L/s	
100 yr: Pre-Developm	ent Target			
	Q _{orifice} =	26.45	L/s	

	Storage V	olume Deterr	mination	
T _d	i	T _d	Q _{Uncont}	S _d
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)
5	239.35	300	0.184	43.29
10	196.54	600	0.151	74.76
15	166.89	900	0.128	95.60
20	145.13	1200	0.112	110.04
25	128.46	1500	0.099	120.33
30	115.28	1800	0.089	127.74
35	104.59	2100	0.080	133.11
40	95.75	2400	0.074	136.94
45	88.31	2700	0.068	139.60
50	81.95	3000	0.063	141.35
55	76.47	3300	0.059	142.37
60	71.69	3600	0.055	142.79
65	67.47	3900	0.052	142.73
70	63.74	4200	0.049	142.26
75	60.40	4500	0.046	141.45
80	57.40	4800	0.044	140.34
85	54.69	5100	0.042	138.98
90	52.23	5400	0.040	137.41
95	49.98	5700	0.038	135.64
100	47.93	6000	0.037	133.71
105	46.03	6300	0.035	131.63
110	44.29	6600	0.034	129.43
115	42.67	6900	0.033	127.10
120	41.17	7200	0.032	124.67
125	39.78	7500	0.031	122.15
130	38.47	7800	0.030	119.54
135	37.25	8100	0.029	116.86
140	36.11	8400	0.028	114.10
145	35.04	8700	0.027	111.28
150	34.03	9000	0.026	108.41
quired Storag	je Volume:			142.79

Peak Flow Q_{post} = 0.0028 • C_{post} • i(T_d) • A

Modified Rational Calculations - 50-Year Storm Event

CATCHMENT 201


Control Criteria

50 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

50 yr: Uncontrolled Post-Development Flow

	Storage Volume Determination					
T _d	i	T _d	Q _{Uncont}	S _d		
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)		
5	215.80	300	0.226	57.94		
10	176.19	600	0.185	97.59		
15	149.09	900	0.156	124.13		
20	129.36	1200	0.136	142.88		
25	114.33	1500	0.120	156.62		
30	102.50	1800	0.107	166.94		
35	92.93	2100	0.097	174.81		
40	85.04	2400	0.089	180.86		
45	78.40	2700	0.082	185.52		
50	72.75	3000	0.076	189.09		
55	67.88	3300	0.071	191.80		
60	63.63	3600	0.067	193.81		
65	59.90	3900	0.063	195.24		
70	56.58	4200	0.059	196.19		
75	53.63	4500	0.056	196.72		
80	50.97	4800	0.053	196.92		
85	48.57	5100	0.051	196.81		
90	46.40	5400	0.049	196.45		
95	44.41	5700	0.047	195.85		
100	42.59	6000	0.045	195.07		
105	40.92	6300	0.043	194.10		
110	39.37	6600	0.041	192.98		
115	37.94	6900	0.040	191.72		
120	36.62	7200	0.038	190.34		
125	35.39	7500	0.037	188.84		
130	34.23	7800	0.036	187.24		
135	33.16	8100	0.035	185.55		
140	32.15	8400	0.034	183.77		
145	31.20	8700	0.033	181.92		
150	30.30	9000	0.032	179.99		
Required Sta	orage Volum	e:		196.92		

Peak Flow	
$Q_{post} = 0.0028 \cdot C_{post} \cdot i(T_d) \cdot A$	

Modified Rational Calculations - 50-Year Storm Event

CATCHMENT 202

Control Criteria

50 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

50 yr: Uncontrolled Post-Development Flow

	Storage V				
T _d	i	T _d	Q _{Uncont}	S _d	1
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	215.80	300	0.166	37.86	
10	176.19	600	0.135	65.38]
15	149.09	900	0.115	83.29	
20	129.36	1200	0.099	95.50] t
25	114.33	1500	0.088	104.03	Discharge
30	102.50	1800	0.079	110.06	1
35	92.93	2100	0.071	114.28	
40	85.04	2400	0.065	117.18	
45	78.40	2700	0.060	119.05	
50	72.75	3000	0.056	120.13	
55	67.88	3300	0.052	120.58	
60	63.63	3600	0.049	120.51	
65	59.90	3900	0.046	120.02	1
70	56.58	4200	0.043	119.17	1
75	53.63	4500	0.041	118.02	1
80	50.97	4800	0.039	116.62	1
85	48.57	5100	0.037	115.01	1
90	46.40	5400	0.036	113.20	1
95	44.41	5700	0.034	111.22	1
100	42.59	6000	0.033	109.10	1
105	40.92	6300	0.031	106.86	1
110	39.37	6600	0.030	104.49]
115	37.94	6900	0.029	102.03]
120	36.62	7200	0.028	99.47]
125	35.39	7500	0.027	96.84]
130	34.23	7800	0.026	94.12]
135	33.16	8100	0.025	91.34]
140	32.15	8400	0.025	88.50]
145	31.20	8700	0.024	85.60]
150	30.30	9000	0.023	82.65]
auired St	orage Volume			120.58]

Peak Flow Q_{post} = 0.0028 • C_{post} • i(T_d) • A

Qa

Time

Modified Rational Calculations - 25-Year Storm Event

CATCHMENT 201

Control Criteria

25 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

25 yr: Uncontrolled Post-Development Flow

Q_{post}= 164.05 L/s 25 yr: Unit Flow Rate Target

Q_{orifice} = 22.07 L/s

	Storage V				
T _d	i	T _d	Q _{Uncont}	S _d	1
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	192.71	300	0.202	50.68	
10	156.47	600	0.164	85.19	
15	131.98	900	0.138	107.98	
20	114.29	1200	0.120	123.93	Discharge
25	100.90	1500	0.106	135.50	
30	90.39	1800	0.095	144.10	
35	81.93	2100	0.086	150.58	
40	74.95	2400	0.079	155.49	
45	69.10	2700	0.072	159.20	
50	64.13	3000	0.067	161.97	
55	59.84	3300	0.063	164.00	
60	56.11	3600	0.059	165.42	T _c T
65	52.83	3900	0.055	166.35	1
70	49.92	4200	0.052	166.85	1
75	47.33	4500	0.050	167.00	1
80	45.00	4800	0.047	166.86]
85	42.90	5100	0.045	166.45]
90	40.99	5400	0.043	165.82]
95	39.24	5700	0.041	164.99]
100	37.65	6000	0.039	163.99]
105	36.18	6300	0.038	162.83]
110	34.83	6600	0.037	161.54]
115	33.58	6900	0.035	160.12]
120	32.41	7200	0.034	158.60]
125	31.33	7500	0.033	156.98]
130	30.32	7800	0.032	155.26]
135	29.38	8100	0.031	153.47]
140	28.49	8400	0.030	151.60]
145	27.66	8700	0.029	149.66]
150	26.88	9000	0.028	147.66]
quired St	orage Volume	e:		167.00]

Peak Flow Q_{post} = 0.0028 • C_{post} • i(T_d) • A

Modified Rational Calculations - 25-Year Storm Event

CATCHMENT 202

Control Criteria

25 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

25 yr: Uncontrolled Post-Development Flow

Q_{post}= 120.26 L/s 25 yr: Unit Flow Rate Target

Q_{orifice} = 26.45 L/s

	Storage \	/olume Dete			
T _d	i	T _d	Q _{Uncont}	S _d	1
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	192.71	300	0.148	32.53	
10	156.47	600	0.120	56.29	
15	131.98	900	0.101	71.46	•
20	114.29	1200	0.088	81.61	Discharge
25	100.90	1500	0.078	88.55	
30	90.39	1800	0.069	93.31]
35	81.93	2100	0.063	96.52	
40	74.95	2400	0.058	98.58	
45	69.10	2700	0.053	99.76	
50	64.13	3000	0.049	100.25	
55	59.84	3300	0.046	100.20	
60	56.11	3600	0.043	99.70	
65	52.83	3900	0.041	98.84	1
70	49.92	4200	0.038	97.67	
75	47.33	4500	0.036	96.24	
80	45.00	4800	0.035	94.59	
85	42.90	5100	0.033	92.75	
90	40.99	5400	0.032	90.74	
95	39.24	5700	0.030	88.60	
100	37.65	6000	0.029	86.32	1
105	36.18	6300	0.028	83.93	1
110	34.83	6600	0.027	81.44	1
115	33.58	6900	0.026	78.87	1
120	32.41	7200	0.025	76.21	1
125	31.33	7500	0.024	73.48	1
130	30.32	7800	0.023	70.68	1
135	29.38	8100	0.023	67.82	1
140	28.49	8400	0.022	64.91	1
145	27.66	8700	0.021	61.95	1
150	26.88	9000	0.021	58.94	1
equired St	orage Volum	.		100.25	1

Peak Flow Q_{post} = 0.0028 • C_{post} • i(T_d) • A

Storage $S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

Modified Rational Calculations - 10-Year Storm Event

CATCHMENT 201

Control Criteria

10 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

10 yr: Uncontrolled Post-Development Flow

 $Q_{\text{post}} = 140.66 \quad \text{L/s}$ 10 yr: Unit Flow Rate Target

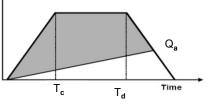
Q_{orifice} = 22.07 L/s

	Storage V	olume Dete	rmination		
T _d	i	T _d	Q _{Uncont}	S _d	
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	169.55	300	0.178	43.40	
10	134.16	600	0.141	71.15]
15	111.40	900	0.117	88.56	
20	95.47	1200	0.100	100.25	Discharge
25	83.68	1500	0.088	108.42	Discharge
30	74.58	1800	0.078	114.26	
35	67.34	2100	0.071	118.47	
40	61.44	2400	0.064	121.47	
45	56.52	2700	0.059	123.58	$ $ $ $ $ $ $ $ Q_a
50	52.37	3000	0.055	124.98	
55	48.81	3300	0.051	125.81	
60	45.72	3600	0.048	126.20	T _c T _d Tim
65	43.01	3900	0.045	126.21	
70	40.63	4200	0.043	125.91	
75	38.50	4500	0.040	125.35	
80	36.60	4800	0.038	124.56	
85	34.88	5100	0.037	123.58	
90	33.32	5400	0.035	122.43	
95	31.91	5700	0.033	121.14	
100	30.61	6000	0.032	119.71	
105	29.42	6300	0.031	118.16	
110	28.32	6600	0.030	116.51	
115	27.31	6900	0.029	114.77]
120	26.37	7200	0.028	112.95]
125	25.49	7500	0.027	111.05	
130	24.68	7800	0.026	109.08]
135	23.91	8100	0.025	107.05]
140	23.20	8400	0.024	104.96]
145	22.53	8700	0.024	102.81]
150	21.89	9000	0.023	100.62]
quired St	orage Volum	e:		126.21	

Peak Flow Q_{post} = 0.0028 • C_{post} • i(T_d) • A Storage S_d = Q_{post} • T_d - Q_{target} (T_d + T_c) / 2

Modified Rational Calculations - 10-Year Storm Event

CATCHMENT 202


Control Criteria

10 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

10 yr: Uncontrolled Post-Development Flow

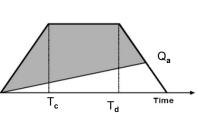
Td	i	Td	Q _{Uncont}	S _d					
(min)	(mm/hr)	(sec)	(m^3/s)	(m ³)					
5	169.55	300	0.130	27.19					
10	134.16	600	0.103	46.00					
15	111.40	900	0.086	57.22					
20	95.47	1200	0.073	64.25					
25	83.68	1500	0.064	68.70					
30	74.58	1800	0.057	71.44					
35	67.34	2100	0.052	72.98					
40	61.44	2400	0.047	73.64					
45	56.52	2700	0.043	73.64					
50	52.37	3000	0.040	73.13					
55	48.81	3300	0.038	72.20					
60	45.72	3600	0.035	70.95					
65	43.01	3900	0.033	69.41					
70	40.63	4200	0.031	67.65					
75	38.50	4500	0.030	65.70					
80	36.60	4800	0.028	63.58					
85	34.88	5100	0.027	61.32					
90	33.32	5400	0.026	58.94					
95	31.91	5700	0.025	56.45					
100	30.61	6000	0.024	53.86					
105	29.42	6300	0.023	51.19					
110	28.32	6600	0.022	48.44					
115	27.31	6900	0.021	45.62					
120	26.37	7200	0.020	42.74					
125	25.49	7500	0.020	39.81					
130	24.68	7800	0.019	36.82					
135	23.91	8100	0.018	33.79					
140	23.20	8400	0.018	30.72					
145	22.53	8700	0.017	27.61					
150	21.89	9000	0.017	24.46					
uired S	toraae Volum	quired Storage Volume: 73.64							

Peak Flow Q_{post} = 0.0028 • C_{post} • i(T_d) • A $\begin{array}{l} \text{Storage} \\ \textbf{S}_{d} = \textbf{Q}_{post} \, \bullet \, \textbf{T}_{d} - \textbf{Q}_{target} \left(\textbf{T}_{d} + \textbf{T}_{c}\right) \end{array}$

Modified Rational Calculations - 5-Year Storm Event

CATCHMENT 201

Control Criteria


5 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

5 yr: Uncontrolled Post-Development Flow:

Q_{post} = 114.99 L/s 5 yr: Unit Flow Rate Target

Q_{orifice} = 22.07 L/s

Storage Volume Determination						
T _d	i	T _d	Q _{Uncont}	S _d		
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)		
5	139.29	300	0.146	33.88		
10	109.68	600	0.115	55.75		
15	90.91	900	0.095	69.22		
20	77.89	1200	0.082	78.12	Dischar	
25	68.29	1500	0.072	84.22	Dischar	
30	60.92	1800	0.064	88.47		
35	55.06	2100	0.058	91.42		
40	50.28	2400	0.053	93.42		
45	46.32	2700	0.049	94.69		
50	42.96	3000	0.045	95.40		
55	40.09	3300	0.042	95.65		
60	37.60	3600	0.039	95.54		
65	35.41	3900	0.037	95.13		
70	33.48	4200	0.035	94.47		
75	31.77	4500	0.033	93.59		
80	30.23	4800	0.032	92.52		
85	28.84	5100	0.030	91.30		
90	27.58	5400	0.029	89.93		
95	26.43	5700	0.028	88.44		
100	25.39	6000	0.027	86.84		
105	24.42	6300	0.026	85.15		
110	23.53	6600	0.025	83.36		
115	22.71	6900	0.024	81.50		
120	21.95	7200	0.023	79.57		
125	21.23	7500	0.022	77.57		
quired Sta	orage Volum	e:		95.65		

Peak Flow							
Q _{post} = 0.0028	• C _{post} • i(I _d) • A						

Modified Rational Calculations - 5-Year Storm Event

CATCHMENT 202

Control Criteria

5 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

5 yr: Uncontrolled Post-Development Flow:

Q _{post} :	= 84.30	L/s
5 yr: Unit Flow Rate Targ	jet	

Q_{orifice} = 26.45 L/s

	Storage \	/olume Dete	ermination		
T _d	i	T _d	Q _{Uncont}	S _d	
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	139.29	300	0.107	20.21	
10	109.68	600	0.084	34.71	
15	90.91	900	0.070	43.04	
20	77.89	1200	0.060	48.03	•
25	68.29	1500	0.052	50.96	Discharge
30	60.92	1800	0.047	52.53	
35	55.06	2100	0.042	53.15	
40	50.28	2400	0.039	53.07	
45	46.32	2700	0.036	52.47	
50	42.96	3000	0.033	51.44	
55	40.09	3300	0.031	50.09	
60	37.60	3600	0.029	48.47	T _c T _d Time
65	35.41	3900	0.027	46.63	d v
70	33.48	4200	0.026	44.60	
75	31.77	4500	0.024	42.42	
80	30.23	4800	0.023	40.09	
85	28.84	5100	0.022	37.65	
90	27.58	5400	0.021	35.11	
95	26.43	5700	0.020	32.48	
100	25.39	6000	0.020	29.77]
105	24.42	6300	0.019	26.98]
110	23.53	6600	0.018	24.13	
115	22.71	6900	0.017	21.23]
120	21.95	7200	0.017	18.27]
125	21.23	7500	0.016	15.27	
equired St	orage Volum	e:	•	53.15	1

Peak Flow Q_{post} = 0.0028 • C_{post} • i(T_d) • A Storage S_d = Q_{post} • T_d - Q_{target} (T_d + T_c) / 2

Modified Rational Calculations - 2-Year Storm Event

CATCHMENT 201

Control Criteria

2 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

2 yr: Uncontrolled Post-Development Flow:

 $\begin{array}{rl} Q_{\text{post}}{=} & 89.87 & \text{L/s} \\ 2 \text{ yr: Unit Flow Rate Target} \\ & & \\ Q_{\text{orffice}}{=} & 22.07 & \text{L/s} \end{array}$

	Storage Vo	olume Dete	rmination		
T _d	i	T _d	Q _{Uncont}	S _d	1
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	114.31	300	0.120	26.02	
10	85.72	600	0.090	40.68	1
15	69.05	900	0.072	48.59]
20	58.06	1200	0.061	53.18] †
25	50.24	1500	0.053	55.83	Discharge
30	44.38	1800	0.047	57.26	11
35	39.81	2100	0.042	57.84	
40	36.14	2400	0.038	57.82	
45	33.13	2700	0.035	57.35	$ \qquad \qquad$
50	30.60	3000	0.032	56.53	
55	28.46	3300	0.030	55.42	
60	26.62	3600	0.028	54.10	T _{c Td} Time
65	25.01	3900	0.026	52.59	1
70	23.60	4200	0.025	50.92	1
75	22.34	4500	0.023	49.13	1
80	21.23	4800	0.022	47.22	1
85	20.22	5100	0.021	45.21	1
equired St	orage Volume	:	•	57.84	1

Storage S_d = Q_{post} • T_d - Q_{target} (T_d + T_c) / 2

Modified Rational Calculations - 2-Year Storm Event

CATCHMENT 202

Control Criteria

2 yr: Control Post-Development Peak Flows to Pre-Development Peak Flows

2 yr: Uncontrolled Post-Development Flow:

Q _{post} =	65.88	L/s
2 yr: Unit Flow Rate Target		
Q _{orifice} =	26.45	L/s

	Storage Vo	olume Dete	ermination		
T _d	i	T _d	Q _{Uncont}	S _d	
(min)	(mm/hr)	(sec)	(m ³ /s)	(m ³)	
5	114.31	300	0.088	14.45	
10	85.72	600	0.066	23.66	
15	69.05	900	0.053	27.92]
20	58.06	1200	0.045	29.74] t
25	50.24	1500	0.039	30.14	Discharge
30	44.38	1800	0.034	29.65]
35	39.81	2100	0.031	28.54	
40	36.14	2400	0.028	26.98	
45	33.13	2700	0.025	25.09	$ \rangle \langle Q_a \rangle$
50	30.60	3000	0.024	22.95	
55	28.46	3300	0.022	20.60	
60	26.62	3600	0.020	18.09	Τ _c Τ _d ^{Tim}
65	25.01	3900	0.019	15.44]
70	23.60	4200	0.018	12.68]
75	22.34	4500	0.017	9.82]
80	21.23	4800	0.016	6.88]
85	20.22	5100	0.016	3.87]
auired St	orage Volume	:		30.14	7

Storage $S_d = Q_{post} \cdot T_d - Q_{target} (T_d + T_c) / 2$

PROJECT: 15728 Airport Road PROJECT No.: 1856-5524 FILE: Orifice Design DATE: 2020.03.02 UPDATE: 3/30/2021 DESIGN: DD CHECK: NRS

Orifice Design Summary - Catchment 201

Orifice Type = Invert Elevation = Diameter of Orifice = Area of Orifice (A) = Orifice Coefficient (Cd) =	Tube 308.05 m 75 mm 0.0044 sq.m 0.820 sq.m
Calculation of Head Centroid Elevation = Water Elevation = Upstream Head*, (h) =	308.09 m 309.98 m 1.89 m
Qa = Actual Controlled Discharge, Qa = Qa = *Head is based upon orifice area @ orifice	(Cd)(A)(2gh)^0.5 0.02207 22.07 L/s e face not Vena Contracta

I:\1800\1856 - Wyndham Holdings Inc\5524 - 15728 Airport Rd\Design\Civil_Water\[5524_Modified Rational.xlsx]2yr Post-to-Pre Storage

PROJECT: 15728 Airport Road PROJECT No.: 1856-5524 FILE: Orifice Design DATE: 2020.03.02 UPDATE: 3/30/2021 DESIGN: DD CHECK: NRS

Orifice Design Summary - Catchment 202

Orifice Type =	Tube	
Invert Elevation =	306.12	m
Diameter of Orifice =	100	mm
Area of Orifice (A) =	0.0079	sq.m
Orifice Coefficient (Cd) =	0.820	
Calculation of Head		
Centroid Elevation =	306.17	m
Water Elevation =	307.03	m
Upstream Head*, (h) =	0.86	m
Qa =	(Cd)(A)(2gh)^0.5	
Actual Controlled Discharge, Qa =	0.02645	cms
Qa =	26.45	L/s
*Head is based upon orifice area @ orifice	face not Vena Co	ntracta

I:\1800\1856 - Wyndham Holdings Inc\5524 - 15728 Airport Rd\Design\Civil_Water\[5524_Modified Rational.xlsx]2yr Post-to-Pre Storage

		Project: 15 Project No.: 18		Road	Date: 2020.03.02 Created By: DD Checked By: NS
		Water Balance V	olume Re	equirement	
Site Area	0.96	ha			
Water Balance criteria is 5		e impervious area Impervious Area: /olume Required:	0.66 33.00	ha m ³	

PROJECT INFORMATION

ENGINEERED	HAIDER NASRULLAH
PRODUCT	647-850-9417
MANAGER:	HAIDER.NASRULLAH@ADS-PIPE.COM
ADS SALES REP:	HASSAN ELMI 416-985-9757 HASSAN.ELMI@ADS-PIPE.COM
	S218278
PROJECT NO:	5216276

ADVANCED DRAINAGE SYSTEMS, INC.

AIRPORT ROAD RETIREMENT RESIDENCE CALEDON, ON

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740. 1.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD 4 IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: 7
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2").
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

- STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2.
- 3 CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2"). 7.
- 8 THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1
- 2 THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. 3.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE"

SC-310 STORMTECH CHAMBER SPECIFICATIONS

1. CHAMBERS SHALL BE STORMTECH SC-310.

- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE OR POLYETHYLENE COPOLYMERS
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418-16a (POLYPROPYLENE). "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD 4 IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.

REQUIREMENTS FOR HANDLING AND INSTALLATION:

- TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
- TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2").
- TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2922 SHALL BE GREATER THAN OR EQUAL TO 400 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8 ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2922 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-310 SYSTEM

- STORMTECH SC-310 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE". 2.
- 3 CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5
- 6. MAINTAIN MINIMUM - 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2"). 7.
- 8 THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-310 & SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

PROPOSED LAYOUT : SYSTEM # 1

PROPOSED ELEVATIONS : SYSTEM # 1

TOP OF STONE:

311.397

309.569

309.416 309.416

309.416

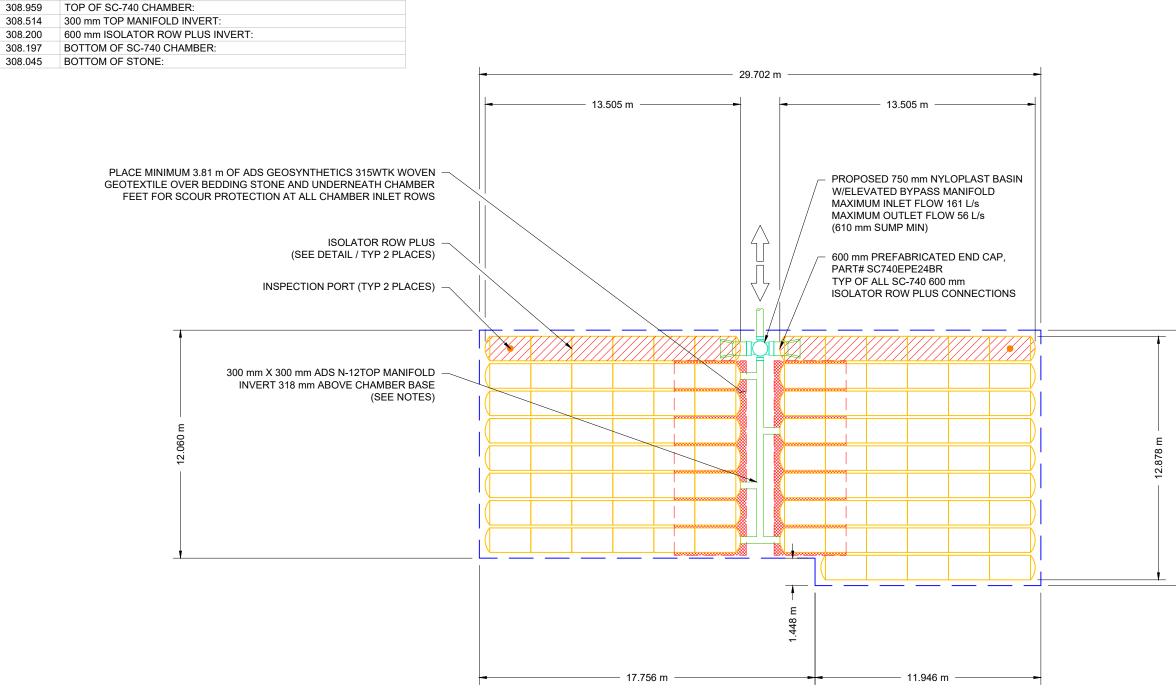
309.111

101	STORMTECH SC-740 CHAMBERS
34	STORMTECH SC-740 END CAPS
152	STONE ABOVE (mm)
152	STONE BELOW (mm)
40	% STONE VOID
239.0	INSTALLED SYSTEM VOLUME (m ³) (PERIMETER STONE INCLUDED)
375.5	SYSTEM AREA (m ²)
86.4	SYSTEM PERIMETER (m)

MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):

MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT): MINIMUM ALLOWABLE GRADE (TOP OF RIGID PAVEMENT):

MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):


MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):

MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECHNICAL NOTE 6.32 FOR MANIFOLD SIZING GUIDANCE.

 DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE / COMPONENTS IN THE FIELD.

 THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN EN SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREA

THE SITE DESIGN ENGINEER MUST REVIEW THE PROXIMITY OF THE CHAMBERS TO THE BUILDING/STRUCTURE. NO FOUNDATION LOADS SHALL BE DESIGN ENGINEER MUST CONSIDER EFFECTS OF POSSIBLE SATURATED SOILS ON BEARING CAPACITY OF SOILS AND SEEPAGE INTO BASEMENTS.

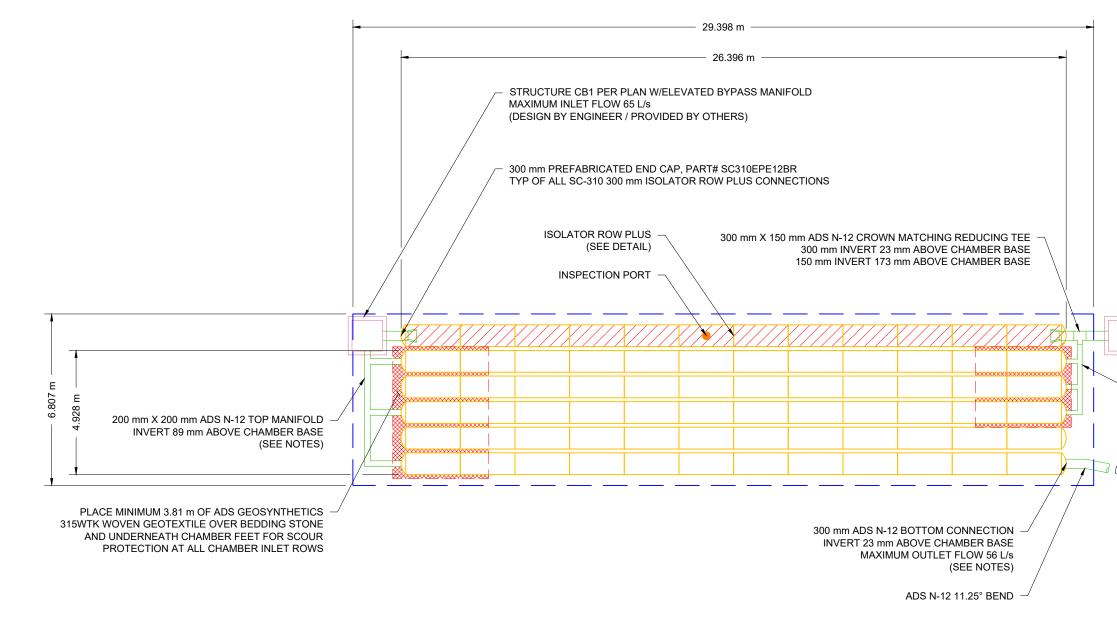
NOTES

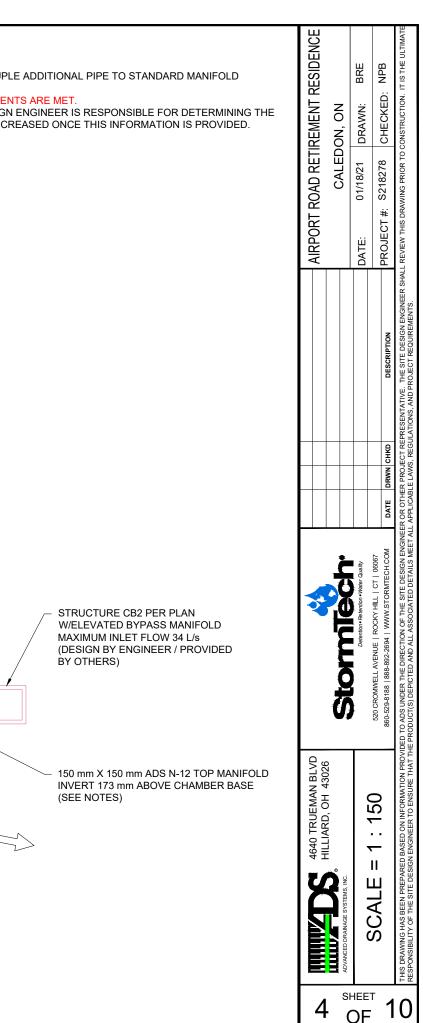
	13.508 m					ADDITIONAL PIPE TO STANDARD MANIFOLD NGINEER IS RESPONSIBLE FOR DETERMINING THE ISED ONCE THIS INFORMATION IS PROVIDED. TRANSMITTED TO THE CHAMBERS. THE SITE
4640 TRUEMAN BLVD					AIRPORT ROAD RETIREMENT RESIDENCE	IREMENT RESIDENC
	StormTech				CALED	CALEDON, ON
	Detention+Patention+Water Quality				DATE: 01/18/21	DRAWN: BRE
SCALE = 1 : 200	520 CROMWELL AVENUE ROCKY HILL CT 06067 860-529-8188 888-892-2694 WWW.STORMTECH.COM	DATE	DRWN CHKD	DESCRIPTION	PROJECT #: S218278	CHECKED: NPB
VING HAS BEEN PREPARED BASED ON INFORMATION PROVID 31LITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGIN E PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ${\ensuremath{\scriptscriptstyle P}}$	NEER OR OTHE ALL APPLICAB	ER PROJECT REPRESE BLE LAWS, REGULATIO	ENTATIVE. THE SITE DESIGN ENGINEE NS, AND PROJECT REQUIREMENTS.	R SHALL REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION. IT IS THE ULTIM
	4640 TRUEMAN BLVD MALON 43026 PRANAGE SYSTEMS. NG. SCALE = 1 : 200 NG HAS BEEN PREPARED BASED ON INFORMATION PROVIN	13.508 m 13.508 m 14.500 m 13.508 m 15.500 m 14.517 m 15.500 m 15.500 m	13.508 m 13.508 m 14.511 m 14.510 m 15.508 m 15.508 m 16.528-1018 108 m 15.508 m 15.508 m 15.508 m	13.508 m 13.508 m 13.508 m 10.508 m	13.508 m 13.508 m 14.1200 m 13.508 m 15.201 m 15.500 m 15.501 m 15.500 m 15.5	

PROPOSED LAYOUT : SYSTEM # 2

72	STORMTECH SC-310 CHAMBERS
12	STORMTECH SC-310 END CAPS
152	STONE ABOVE (mm)
152	STONE BELOW (mm)
40	% STONE VOID
75.0	INSTALLED SYSTEM VOLUME (m ³) (PERIMETER STONE INCLUDED)
200.1	SYSTEM AREA (m ²)
72.4	SYSTEM PERIMETER (m)

PROPOSED ELEVATIONS : SYSTEM # 2


308.941	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):
307.113	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):
306.960	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):
306.960	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):
306.960	MINIMUM ALLOWABLE GRADE (TOP OF RIGID PAVEMENT):
306.655	TOP OF STONE:
306.503	TOP OF SC-310 CHAMBER:
306.270	150 mm TOP MANIFOLD INVERT:
306.185	200 mm TOP MANIFOLD INVERT:
306.120	300 mm ISOLATOR ROW PLUS INVERT:
306.120	300 mm BOTTOM CONNECTION INVERT:
306.097	BOTTOM OF SC-310 CHAMBER:
305.945	BOTTOM OF STONE:


NOTES

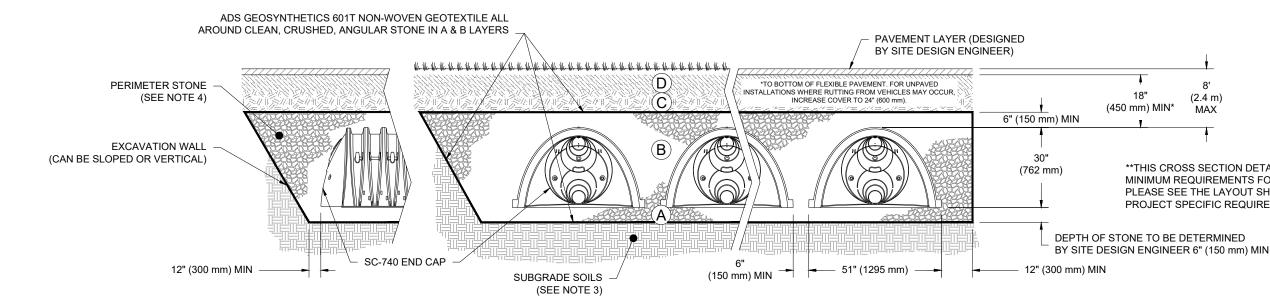
• MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECHNICAL NOTE 6.32 FOR MANIFOLD SIZING GUIDANCE.

DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.

- THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
- THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED.

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	СОМРА
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE INSTALL
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMF THE CHAMBE 6" (150 mm) I WELL GRAI PROCES VEHICLE WE
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE CON


PLEASE NOTE:

THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 1.

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2.

WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3 COMPACTION REQUIREMENTS.

ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 4

NOTES:

- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 1.
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 • LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

PACTION / DENSITY REQUIREMENT

ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.

MPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN n) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR ESSED AGGREGATE MATERIALS. ROLLER GROSS WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).

NO COMPACTION REQUIRED.

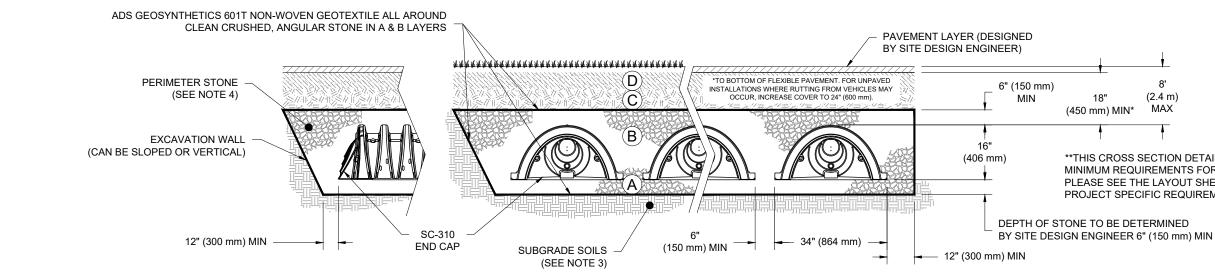
COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3}

**THIS CROSS SECTION DETAIL REPRESENTS MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR PROJECT SPECIFIC REQUIREMENTS.

4640 TRUEMAN BLVD 4640 TRUEMAN BLVD Adda TRUEMAN BLVD Adda TRUEMAN BLVD Adda TRUEMAN BLVD Adda TRUEMAN Adda	I					╞				
	5		4640 TRUEMAN BLVD					AIRPORT ROAD RET	TIREMENT R	ESIDENCE
ADVANCED DRANAGE SYSTEMS, INC. Determion-VARE CARIN E220 CROMMELL AVENUE ROCKY HILL CT 0667 E220 CROMMELL AVENUE ROCKY HILL CT 0667 DATE INPUN (CHKN) DATE I	•									
Determion-Valer Caulty 520 CROMMELL AVENUE ROCKY HLL T 06667 880-5294188 1888-892-2694 1 WWW STORMFECH 0000 0477 Determion-Valer CHICA	sı (ADVANCED DRAINAGE SYSTEMS, INC.							101 , 10	
520 CROMMELL AVENUE ROCKY HILL CT 06067 860-5294188 1888-892-25941 WWW STORMTECH COM PATE INEWN CHKR) DESCRIPTION	HEE DF			Detention • Retention • Water Quality					01/18/21 DRAWN:	BRE
DATE DRWN CHKD DESCRIPTION	T			520 CROMMELL AVENUE ROCKY HILL CT 06067						
	-			860-529-8188 888-892-2694 WWW.STORMTECH.COM	DATE	WN CHKE	DESCRIPTION	PROJECT #: S218278	CHECKED:	NPB
	0	RESPONSIBILITY OF THE SITE DESIGN	IN ENGINEER TO ENSURE THAT THE	RESPONSIBILITY OF THE SIFE TREAMENT OF THE PRODUCTS OFFICE AND ALL ASSOCIATED FAILS RESTALL APPLCABLE LANS, REGULATIONS, AND PROJECT REQUIREMENTS.	. APPLICABLE I	AWS, REC	GULATIONS, AND PROJECT REQUIREMENTS.			

ACCEPTABLE FILL MATERIALS: STORMTECH SC-310 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPA
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS.	N/A	PREPARE INSTALL/
C	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M1451 A-1, A-2-4, A-3 OR AASHTO M431 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMF THE CHAMBE 6" (150 mm) M WELL GRAI PROCESS VEHICLE WE FC
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COM


PLEASE NOTE:

THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 1.

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2.

WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3 COMPACTION REQUIREMENTS.

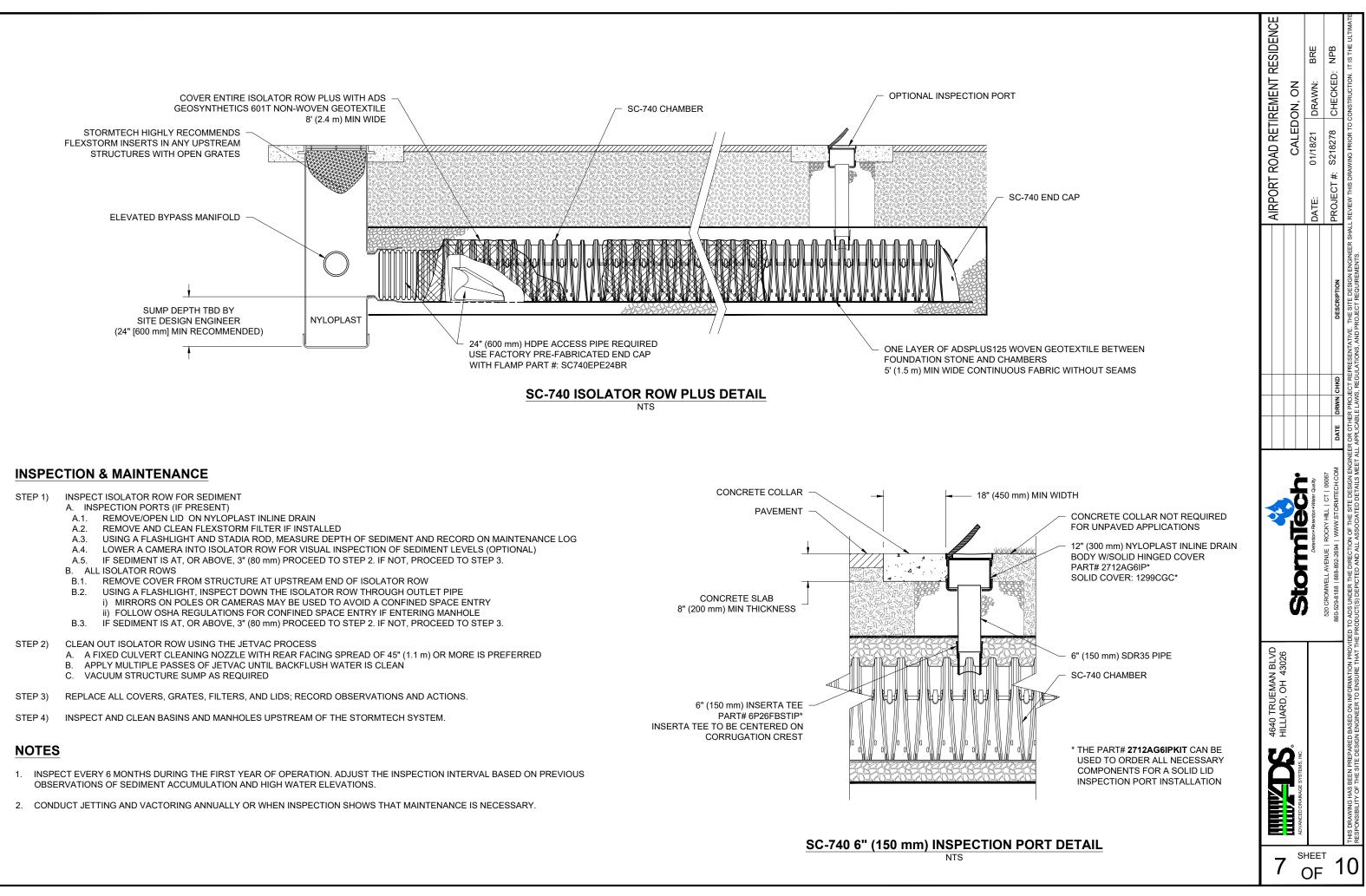
ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 4

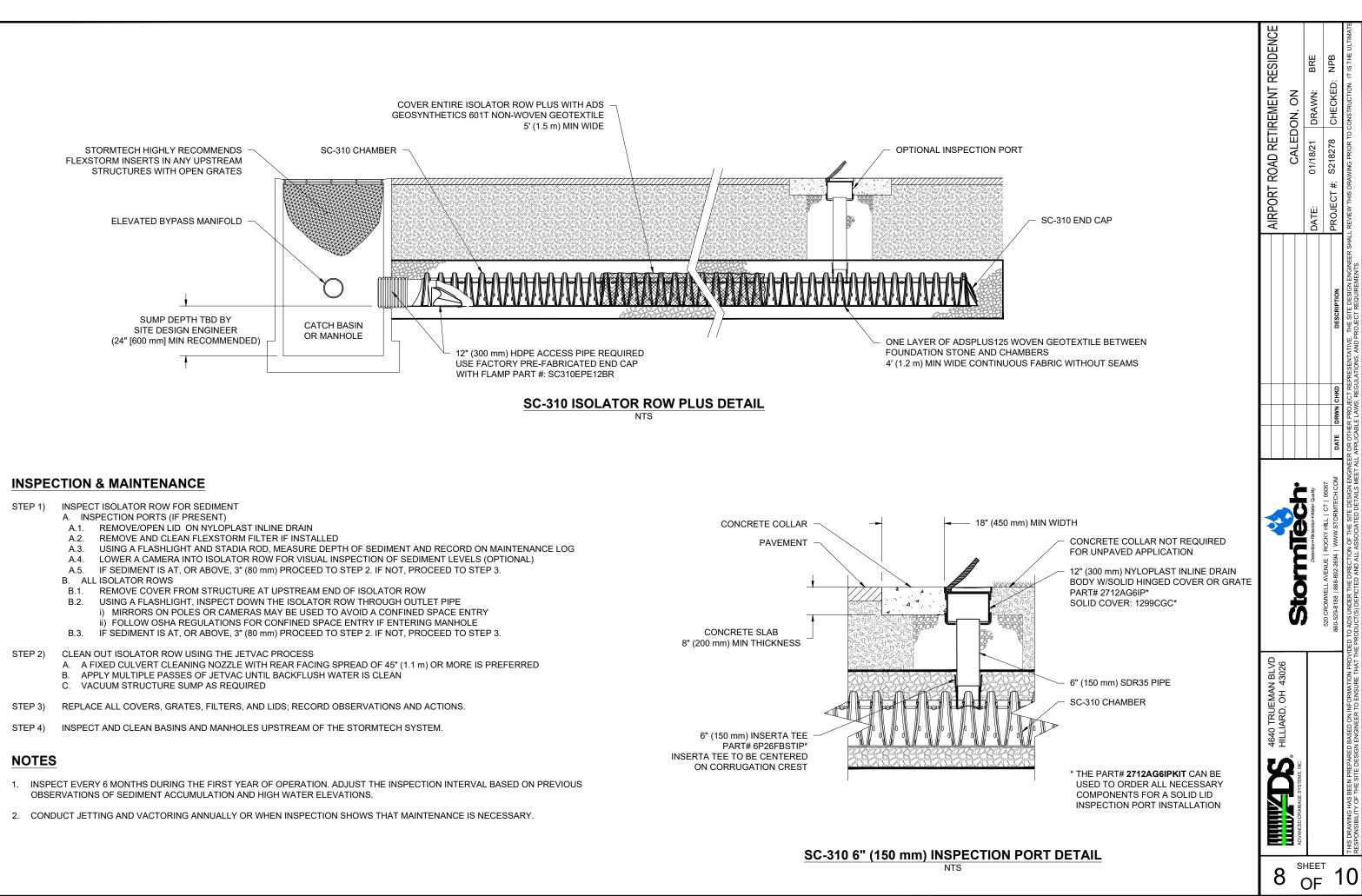
NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418-16a (POLYPROPYLENE), "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS"
- 2. SC-310 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS"
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2922 SHALL BE GREATER THAN OR EQUAL TO 400 • LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

ACTION / DENSITY REQUIREMENT

RE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.

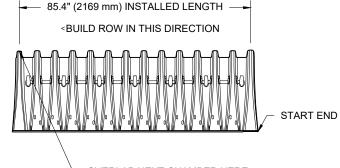

MPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN n) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR ADED MATERIAL AND 95% RELATIVE DENSITY FOR SSED AGGREGATE MATERIALS. ROLLER GROSS VEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).

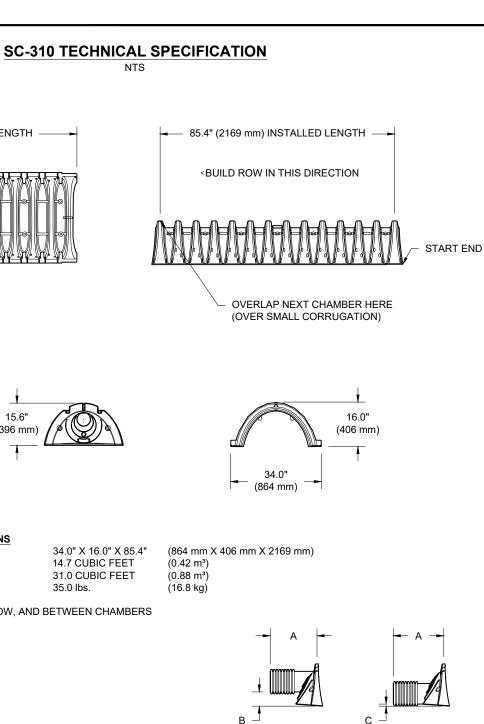

NO COMPACTION REQUIRED.

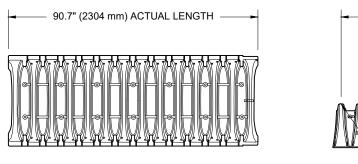
OMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3}

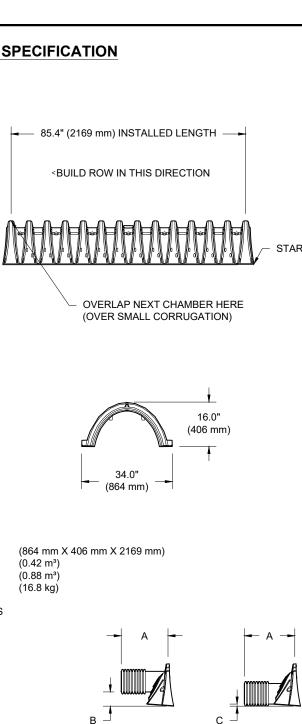
**THIS CROSS SECTION DETAIL REPRESENTS MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR PROJECT SPECIFIC REQUIREMENTS.

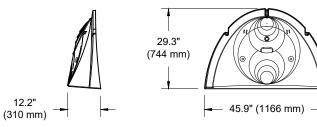
6	464U I KUEMAN BLVD					IKEMENI KEVIDEN
)						
sı (ADVANCED DRAINAGE SYSTEMS, INC.					ON, ON
HEE DF		Detention - Retention - Water Quality			DATE: 01/18/21	01/18/21 DRAWN: BRE
T		520 CROMWELL AVENUE ROCKY HILL CT 06067				
1		860-529-8188 888-892-2694 WWW.STORMTECH.COM	DATE DRWN CHKD	DESCRIPTION	PROJECT #: S218278 CHECKED: NPB	CHECKED: NPB
0	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIA-	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGIN RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENCINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE TED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	TIVE. THE SITE DESIGN ENGINEER SH	ALL REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION. IT IS THE ULTIN

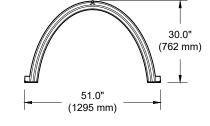



SC-740 TECHNICAL SPECIFICATION


NTS





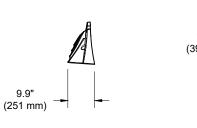

OVERLAP NEXT CHAMBER HERE (OVER SMALL CORRUGATION)

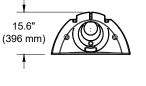
NOMINAL CHAMBER SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* WEIGHT

51.0" X 30.0" X 85.4" (1295 mm X 762 mm X 2169 mm) 45.9 CUBIC FEET (1.30 m³) 74.9 CUBIC FEET (2.12 m³) 75.0 lbs. (33.6 kg)

*ASSUMES 6" (152 mm) STONE ABOVE, BELOW, AND BETWEEN CHAMBERS


PRE-FAB STUB AT BOTTOM OF END CAP WITH FLAMP END WITH "BR" PRE-FAB STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PRE-FAB STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" PRE-CORED END CAPS END WITH "PC"


PART #	STUB	Α	В	С
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.9" (277 mm)	18.5" (470 mm)	
SC740EPE06B / SC740EPE06BPC	0 (150 mm)	10.9 (277 1111)		0.5" (13 mm)
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)	16.5" (419 mm)	
SC740EPE08B / SC740EPE08BPC	0 (200 mm)	12.2 (010 mm)		0.6" (15 mm)
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13.4" (340 mm)	14.5" (368 mm)	
SC740EPE10B / SC740EPE10BPC	10 (230 mm)	13.4 (340 1111)		0.7" (18 mm)
SC740EPE12T / SC740EPE12TPC	12" (300 mm)	14.7" (373 mm)	12.5" (318 mm)	
SC740EPE12B / SC740EPE12BPC	12 (300 mm)	14.7 (070 mm)		1.2" (30 mm)
SC740EPE15T / SC740EPE15TPC	15" (375 mm)	18.4" (467 mm)	9.0" (229 mm)	
SC740EPE15B / SC740EPE15BPC	13 (3/311111)	10.4 (407 1111)		1.3" (33 mm)
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	19.7" (500 mm)	5.0" (127 mm)	
SC740EPE18B / SC740EPE18BPC	10 (400 mm)	19.7 (300 1111)		1.6" (41 mm)
SC740EPE24B*	24" (600 mm)	18.5" (470 mm)		0.1" (3 mm)
SC740EPE24BR*	24" (600 mm)	18.5" (470 mm)		0.1" (3 mm)

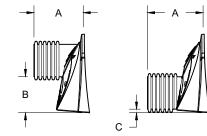
ALL STUBS, EXCEPT FOR THE SC740EPE24B/SC740EPE24BR ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF THE STUB IS FLUSH WITH THE BOTTOM OF THE END CAP. FOR ADDITIONAL INFORMATION CONTACT STORMTECH AT 1-888-892-2694.

* FOR THE SC740EPE24B/SC740EPE24BR THE 24" (600 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 1.75" (44 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

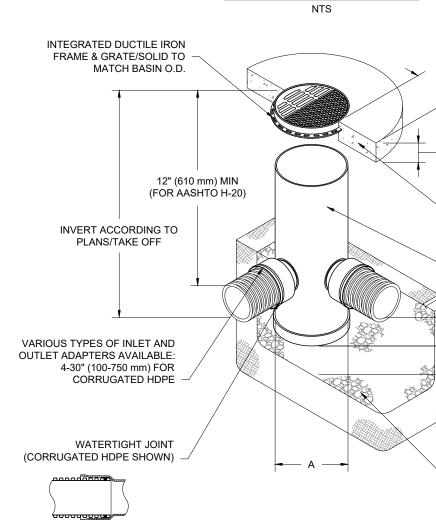
NOMINAL CHAMBER SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH)	34.0" X 16.0" X 85.4"	(8
CHAMBER STORAGE	14.7 CUBIC FEET	(
MINIMUM INSTALLED STORAGE*	31.0 CUBIC FEET	(
WEIGHT	35.0 lbs.	Ò

*ASSUMES 6" (152 mm) ABOVE, BELOW, AND BETWEEN CHAMBERS


PRE-FAB STUB AT BOTTOM OF END CAP WITH FLAMP END WITH "BR" PRE-FAB STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PRE-FAB STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" PRE CORED END CAPS END WITH "PC"

PART #	STUB	A	В	С
SC310EPE06T / SC310EPE06TPC	6" (150 mm)	9.6" (244 mm)	5.8" (147 mm)	
SC310EPE06B / SC310EPE06BPC		9.0 (244 mm)		0.5" (13 mm)
SC310EPE08T / SC310EPE08TPC	8" (200 mm)	11.9" (302 mm)	3.5" (89 mm)	
SC310EPE08B / SC310EPE08BPC		11.9 (302 1111)		0.6" (15 mm)
SC310EPE10T / SC310EPE10TPC	10" (250 mm)	12.7" (323 mm)	1.4" (36 mm)	
SC310EPE10B / SC310EPE10BPC		12.7 (525 1111)		0.7" (18 mm)
SC310EPE12B	12" (300 mm)	13.5" (343 mm)		0.9" (23 mm)
SC310EPE12BR	12" (300 mm)	13.5" (343 mm)		0.9" (23 mm)


ALL STUBS, EXCEPT FOR THE SC310EPE12B ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF THE STUB IS FLUSH WITH THE BOTTOM OF THE END CAP. FOR ADDITIONAL INFORMATION CONTACT STORMTECH AT 1-888-892-2694.

* FOR THE SC310EPE12B THE 12" (300 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 0.25" (6 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

NOTE: ALL DIMENSIONS ARE NOMINAL

							רשה האומה דממתמו א		
9									
)									
si (ADVANCED DRAINAGE SYSTEMS, INC.								
DF			Detention• Retention• Water Quality				DATE: 01/18/21	01/18/21 DRAWN:	BRE
T			520 CROMWELL AVENUE ROCKY HILL CT 06067						
1			860-529-8188 888-892-2694 WWW.STORMTECH.COM	DATE	DATE DRWN CHKD	DESCRIPTION	PROJECT #: S218278 CHECKED: NPB	CHECKED:	NPB
0	THIS DRAWING HAS BEEN PREPAREL RESPONSIBILITY OF THE SITE DESIGI	D BASED ON INFORMATION PROVI N ENGINEER TO ENSURE THAT TH	THIS DRAWNG HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE REPONSIBILITY OF THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE REPONSIBILITY OF THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE REPONSIBILITY OF THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PROVIDED TO ADS UNDER THE DRAVID. THE SITE DESIGN ENGINEER SHALL REVIEW THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	ER OR OTHER L APPLICABLE	R PROJECT RE E LAWS, REGL	PRESENTATIVE. THE SITE DESIGN ENGINEER SHAL JLATIONS, AND PROJECT REQUIREMENTS.	LL REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION.	IT IS THE ULTIMAT

N	YLOPLAST DF	RAIN BASIN				RESIDENCE		BRE	D: NPB
						REMEN	N, ON	DRAWN:	CHECKED:
10 mm) MIN ASHTO H-20					DNS	AIRPORT ROAD RETIREMENT RESIDENCE	CALEDON	DATE: 01/18/21 [PROJECT #: S218278 0
			DESIGNED GIVIN LOCAL SOIL CON LOADING & OTHE FACTORS ADAPTER ANGLE ACCORDING TO I	ETE SLAB MUST BE G CONSIDERATION FO DITIONS, TRAFFIC R APPLICABLE DESIG S VARIABLE 0°- 360° PLANS VARIABLE SUMP DEF ACCORDING TO PLA mm) MIN ON 8-24" (20 254 mm) MIN ON 30" (7	SN PTH NS 0-600 mm),				DESCRIPTION
				N ON 8-24" (200-600 mi MIN ON 30" (750 mm)	n)				DRWN CHKD
	→ A —	-		AL BELOW AND TO SI HALL BE ASTM D2321				E	
			AND BE PLACED U	ISHED STONE OR GR. JNIFORMLY IN 12" (303 ACTED TO MIN OF 909	AVEL 5 mm)	3130 VERONA AVE	BUFORD, GA 30518 PHN (770) 932-2443	FAX (770) 932-2490 www.nyloplast-us.com	
GRADE 7 12-30" (3 DRAIN B DRAINAC FOR COI FOR COI	00-750 mm) GRATES/ 70-50-05 00-750 mm) FRAMES ASIN TO BE CUSTOI GE CONNECTION ST RRUGATED HDPE (A MPLETE DESIGN AN	SOLID COVERS SHALL S SHALL BE DUCTILE IR M MANUFACTURED AC TUB JOINT TIGHTNESS NDS & HANCOR DUAL W ID PRODUCT INFORMAT 710	AND BE PLACED U LIFTS AND COMPA BE DUCTILE IRON PE ON PER ASTM A536 O CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC	JSHED STONE OR GR JNIFORMLY IN 12" (303 ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212	AVEL 5 mm)	(Nyloplast FAX (770) 932-2490	
 8-30" (20 GRADE 7 12-30" (3 DRAIN B DRAINAC FOR COI FOR COI 	0-750 mm) GRATES/ 70-50-05 00-750 mm) FRAMES ASIN TO BE CUSTOI GE CONNECTION ST RRUGATED HDPE (A MPLETE DESIGN AN ER CALL: 800-821-6	S SHALL BE DUCTILE IR M MANUFACTURED AC "UB JOINT TIGHTNESS \DS & HANCOR DUAL W D PRODUCT INFORMA" 710	AND BE PLACED U LIFTS AND COMPA BE DUCTILE IRON PE ON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC FION: WWW.NYLOPL	ISHED STONE OR GR JNIFORMLY IN 12" (303 ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM	AVEL 5 mm)	(Nyloplast FAX (770) 932-2490 www.nyloplast-us.ct	
8-30" (20 GRADE 7 12-30" (3 DRAIN B DRAINAG FOR COI FOR COI TO ORDI	00-750 mm) GRATES/ 70-50-05 00-750 mm) FRAMES ASIN TO BE CUSTOI GE CONNECTION ST RRUGATED HDPE (A MPLETE DESIGN AN	S SHALL BE DUCTILE IR M MANUFACTURED AC TUB JOINT TIGHTNESS ADS & HANCOR DUAL W ID PRODUCT INFORMAT 710 GRATE/S PEDESTRIAN LIGHT	AND BE PLACED U LIFTS AND COMP/ BE DUCTILE IRON PE ON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC FION: WWW.NYLOPL	ISHED STONE OR GR JNIFORMLY IN 12" (303 ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM	AVEL 5 mm)	(Nyloplast FAX (770) 932-2490 www.nyloplast-us.ct	
8-30" (20 GRADE 7 12-30" (3 DRAIN B DRAINAC FOR COI FOR COI TO ORDI A 8" 200 mm) 10"	0-750 mm) GRATES/ 70-50-05 00-750 mm) FRAMES ASIN TO BE CUSTOI GE CONNECTION ST RRUGATED HDPE (A MPLETE DESIGN AN ER CALL: 800-821-6 PART #	S SHALL BE DUCTILE IR M MANUFACTURED AC TUB JOINT TIGHTNESS ADS & HANCOR DUAL W D PRODUCT INFORMA 710 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT	AND BE PLACED U LIFTS AND COMP/ BE DUCTILE IRON PE ON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC FION: WWW.NYLOPL GOLID COVER (STANDARD LIGHT DUTY STANDARD LIGHT	ISHED STONE OR GR. JNIFORMLY IN 12" (30) ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM	AVEL 5 mm)	(Nyloplast Fax (770) 932-2490	
8-30" (20 GRADE 7 12-30" (3 DRAIN B DRAINAG FOR COI FOR COI TO ORDI A 8" (200 mm) 10" (250 mm) 12"	0-750 mm) GRATES/ 70-50-05 00-750 mm) FRAMES ASIN TO BE CUSTOI GE CONNECTION ST RRUGATED HDPE (A MPLETE DESIGN AN ER CALL: 800-821-6 PART # 2808AG	S SHALL BE DUCTILE IR M MANUFACTURED AC "UB JOINT TIGHTNESS ADS & HANCOR DUAL W D PRODUCT INFORMA" 710 GRATE/S PEDESTRIAN LIGHT DUTY	AND BE PLACED U LIFTS AND COMPA BE DUCTILE IRON PE ON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC FION: WWW.NYLOPLA GOLID COVER (STANDARD LIGHT DUTY	ISHED STONE OR GR. JNIFORMLY IN 12" (30) ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM OPTIONS SOLID LIGHT DUTY	AVEL 5 mm)	4640 TRUEMAN BLVD		Nyloplast ^a FAX (770) 932-2490	- -
8-30" (20 GRADE 7 12-30" (3 DRAIN B DRAINAG FOR COI FOR COI TO ORDI A 8" 200 mm) 10" 250 mm) 12" 300 mm) 15"	0-750 mm) GRATES/ 70-750 mm) GRATES/ 70-750 mm) FRAMES ASIN TO BE CUSTOI GE CONNECTION ST RRUGATED HDPE (A MPLETE DESIGN AN ER CALL: 800-821-6 PART # 2808AG 2810AG	S SHALL BE DUCTILE IR M MANUFACTURED AC 'UB JOINT TIGHTNESS \DS & HANCOR DUAL W D PRODUCT INFORMA' 710 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT DUTY PEDESTRIAN	AND BE PLACED U LIFTS AND COMPA BE DUCTILE IRON PE ON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC FION: WWW.NYLOPLA STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD AASHTO	ISHED STONE OR GR. JNIFORMLY IN 12" (303 ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM DPTIONS SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID	AVEL 5 mm)	(Nyloplast FAX (770) 932-2490	- -
8-30" (20 GRADE 7 12-30" (3 DRAIN B DRAINAG FOR COI FOR COI TO ORDI A 8" (200 mm) 10" (250 mm) 12" (300 mm) 15" (375 mm) 18"	0-750 mm) GRATES/ 70-750 mm) GRATES/ 70-50-05 00-750 mm) FRAMES ASIN TO BE CUSTOI GE CONNECTION ST RRUGATED HDPE (A MPLETE DESIGN AN ER CALL: 800-821-6 PART # 2808AG 2810AG 2812AG	S SHALL BE DUCTILE IR MANUFACTURED AC 'UB JOINT TIGHTNESS NDS & HANCOR DUAL W D PRODUCT INFORMA' 710 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT DUTY PEDESTRIAN AASHTO H-10 PEDESTRIAN	AND BE PLACED U LIFTS AND COMPA BE DUCTILE IRON PE ON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC FION: WWW.NYLOPL GOLID COVER (STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD AASHTO H-20 STANDARD AASHTO	ISHED STONE OR GR. JNIFORMLY IN 12" (303 ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM DPTIONS SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID AASHTO H-20 SOLID	AVEL 5 mm)	(Nyloplast FAX (770) 932-2490	- -
8-30" (20 GRADE 7 12-30" (3 DRAIN B DRAINAG FOR COI FOR COI TO ORDI TO ORDI A 8" (200 mm) 10" (250 mm) 12" (300 mm) 15" (375 mm)	0-750 mm) GRATES/ 70-750 mm) GRATES/ 70-50-05 00-750 mm) FRAMES ASIN TO BE CUSTOI GE CONNECTION ST RRUGATED HDPE (A MPLETE DESIGN AN ER CALL: 800-821-6 PART # 2808AG 2810AG 2812AG 2815AG	S SHALL BE DUCTILE IR MANUFACTURED AC 'UB JOINT TIGHTNESS NDS & HANCOR DUAL W D PRODUCT INFORMA' 710 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT DUTY PEDESTRIAN AASHTO H-10 PEDESTRIAN AASHTO H-10 PEDESTRIAN	AND BE PLACED U LIFTS AND COMPA BE DUCTILE IRON PE ON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC FION: WWW.NYLOPLA GOLID COVER (STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD AASHTO H-20 STANDARD AASHTO H-20	ISHED STONE OR GR. JNIFORMLY IN 12" (30) ACTED TO MIN OF 909 R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM DPTIONS SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID AASHTO H-20 SOLID AASHTO H-20 SOLID	AVEL 5 mm)	(Nyloplast FAX (770) 932-2490	

Province:	Ontario	Project Name:	15728 Airport Road	k
City:	Caledon	Project Number:	1856-5524	
Nearest Rainfall Station:	TORONTO LESTER B. PEARSON INT	T'L Designer Name:	Daniel Doherty	
	АР	Designer Company:	Crozier & Associate	25
NCDC Rainfall Station Id:	8733	Designer Email:	ddoherty@cfcrozie	er.ca
Years of Rainfall Data:	44	Designer Phone:	905-875-0026	
Site Name:		EOR Name:		
		EOR Company:		
Drainage Area (ha):	0.96	EOR Email:		
Runoff Coefficient 'c':	0.75	EOR Phone:		
Particle Size Distribution:	CA ETV			
				l Sediment
Target TSS Removal (%):	60.0			Reduction ummary
Required Water Quality Runc	ff Volume Capture (%):			-
Estimated Water Quality Flov	v Rate (L/s):		Stormceptor	TSS Removal
Oil / Fuel Spill Risk Site?	No		Model	Provided (%)
-			EF4	54
Upstream Flow Control?	No		EF6	61
Peak Conveyance (maximum)	Flow Rate (L/s):		EF8	64
Site Sediment Transport Rate	(kg/ha/yr):		EF10	66
· · · · ·			EF12	67
		Berrysended		
			Stormceptor EF	
	Estimated Ne	t Annual Sediment (T	SS) Load Reduct	ion (%):

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

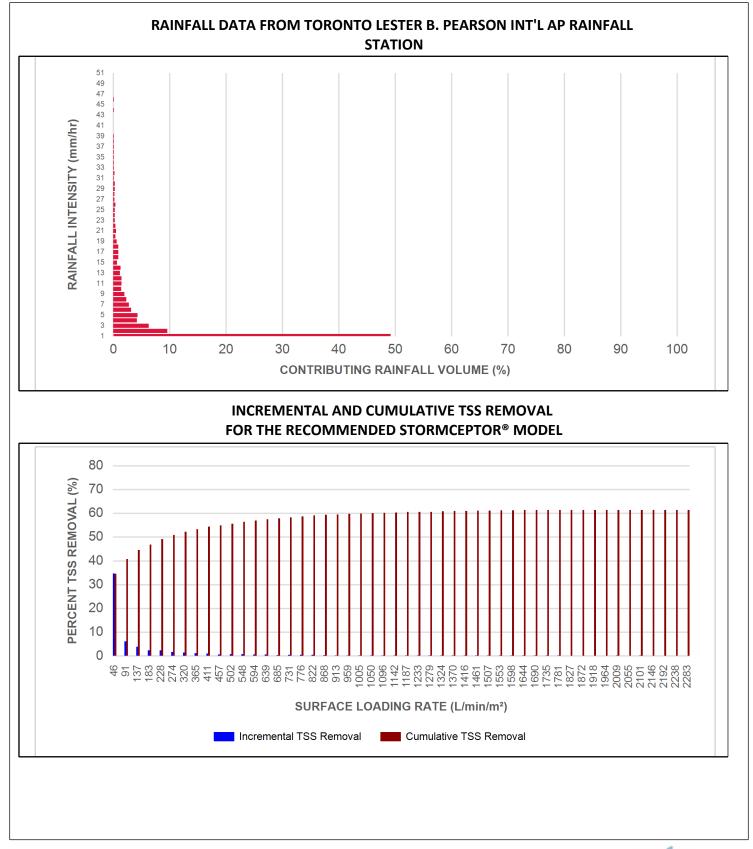
PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dorsont
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

x

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	49.2	49.2	2.00	120.0	46.0	70	34.6	34.6
2	9.6	58.8	4.00	240.0	91.0	63	6.1	40.7
3	6.3	65.1	6.00	360.0	137.0	60	3.8	44.5
4	4.2	69.3	8.01	480.0	183.0	56	2.3	46.8
5	4.3	73.6	10.01	600.0	228.0	53	2.3	49.1
6	3.2	76.8	12.01	721.0	274.0	52	1.7	50.8
7	2.8	79.6	14.01	841.0	320.0	50	1.4	52.2
8	2.3	81.9	16.01	961.0	365.0	49	1.1	53.3
9	2.0	83.9	18.01	1081.0	411.0	48	1.0	54.3
10	1.4	85.3	20.02	1201.0	457.0	48	0.7	54.9
11	1.5	86.8	22.02	1321.0	502.0	47	0.7	55.6
12	1.5	88.3	24.02	1441.0	548.0	47	0.7	56.3
13	1.2	89.5	26.02	1561.0	594.0	46	0.6	56.9
14	1.3	90.8	28.02	1681.0	639.0	46	0.6	57.5
15	0.7	91.5	30.02	1801.0	685.0	46	0.3	57.8
16	0.9	92.4	32.03	1922.0	731.0	45	0.4	58.2
17	0.9	93.3	34.03	2042.0	776.0	45	0.4	58.6
18	0.9	94.2	36.03	2162.0	822.0	45	0.4	59.0
19	0.6	94.8	38.03	2282.0	868.0	45	0.3	59.3
20	0.4	95.2	40.03	2402.0	913.0	44	0.2	59.5
21	0.5	95.7	42.03	2522.0	959.0	44	0.2	59.7
22	0.4	96.1	44.04	2642.0	1005.0	44	0.2	59.9
23	0.3	96.4	46.04	2762.0	1050.0	45	0.1	60.0
24	0.3	96.7	48.04	2882.0	1096.0	45	0.1	60.1
25	0.3	97.0	50.04	3002.0	1142.0	46	0.1	60.3



Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
26	0.4	97.4	52.04	3122.0	1187.0	46	0.2	60.5
27	0.2	97.6	54.04	3243.0	1233.0	47	0.1	60.6
28	0.2	97.8	56.04	3363.0	1279.0	47	0.1	60.6
29	0.3	98.1	58.05	3483.0	1324.0	48	0.1	60.8
30	0.3	98.4	60.05	3603.0	1370.0	49	0.1	60.9
31	0.1	98.5	62.05	3723.0	1416.0	49	0.0	61.0
32	0.2	98.7	64.05	3843.0	1461.0	47	0.1	61.1
33	0.1	98.8	66.05	3963.0	1507.0	46	0.0	61.1
34	0.1	98.9	68.05	4083.0	1553.0	44	0.0	61.2
35	0.1	99.0	70.06	4203.0	1598.0	43	0.0	61.2
36	0.1	99.1	72.06	4323.0	1644.0	42	0.0	61.3
37	0.1	99.2	74.06	4444.0	1690.0	41	0.0	61.3
38	0.1	99.3	76.06	4564.0	1735.0	40	0.0	61.3
39	0.1	99.4	78.06	4684.0	1781.0	39	0.0	61.4
40	0.0	99.4	80.06	4804.0	1827.0	38	0.0	61.4
41	0.0	99.4	82.07	4924.0	1872.0	37	0.0	61.4
42	0.0	99.4	84.07	5044.0	1918.0	36	0.0	61.4
43	0.0	99.4	86.07	5164.0	1964.0	35	0.0	61.4
44	0.1	99.5	88.07	5284.0	2009.0	34	0.0	61.4
45	0.0	99.5	90.07	5404.0	2055.0	33	0.0	61.4
46	0.1	99.6	92.07	5524.0	2101.0	33	0.0	61.4
47	0.0	99.6	94.08	5645.0	2146.0	32	0.0	61.4
48	0.0	99.6	96.08	5765.0	2192.0	31	0.0	61.4
49	0.0	99.6	98.08	5885.0	2238.0	31	0.0	61.4
50	0.0	99.6	100.08	6005.0	2283.0	30	0.0	61.4
				Estimated Net	Annual Sedim	ent (TSS) Loa	d Reduction =	61 %

			Maximum Pip	e Diamete	r / Peak C	onveyance			
Stormceptor EF / EFO	Model D	Diameter	Min Angle Inlet / Outlet Pipes	Max Inle Diame	•	Max Out Diamo	•		nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.


DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

45*-90* 0*-45* 0*-45* 45*-90*

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

x

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

					Poll	utant C	apacity					
Stormceptor EF / EFO	Moo Diam		Depth Pipe In Sump		Oil Vo	lume	Sedi	mended ment nce Depth *	Maxiı Sediment ^v		Maxin Sediment	
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormcentor[®] FF

			Stormeep					
SLR (L/min/m²)	TSS % REMOVAL							
1	70	660	46	1320	48	1980	35	
30	70	690	46	1350	48	2010	34	

Stormceptor[®]

Stormceptor[®]EF Sizing Report

60	67	720	45	1380	49	2040	34
90	63	750	45	1410	49	2070	33
120	61	780	45	1440	48	2100	33
150	58	810	45	1470	47	2130	32
180	56	840	45	1500	46	2160	32
210	54	870	45	1530	45	2190	31
240	53	900	45	1560	44	2220	31
270	52	930	44	1590	43	2250	30
300	51	960	44	1620	42	2280	30
330	50	990	44	1650	42	2310	30
360	49	1020	44	1680	41	2340	29
390	48	1050	45	1710	40	2370	29
420	48	1080	45	1740	39	2400	29
450	48	1110	45	1770	39	2430	28
480	47	1140	46	1800	38	2460	28
510	47	1170	46	1830	37	2490	28
540	47	1200	47	1860	37	2520	27
570	46	1230	47	1890	36	2550	27
600	46	1260	47	1920	36	2580	27
630	46	1290	48	1950	35		

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The <u>minimum</u> sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:

6 ft (1829 mm) Diameter OGS Units:

8 ft (2438 mm) Diameter OGS Units:

10 ft (3048 mm) Diameter OGS Units: 12 ft (3657 mm) Diameter OGS Units: $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing shall be determined using historical rainfall data and a sediment removal performance curve derived from the actual third-party verified laboratory testing data. The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

x

TECHNICAL BULLETIN

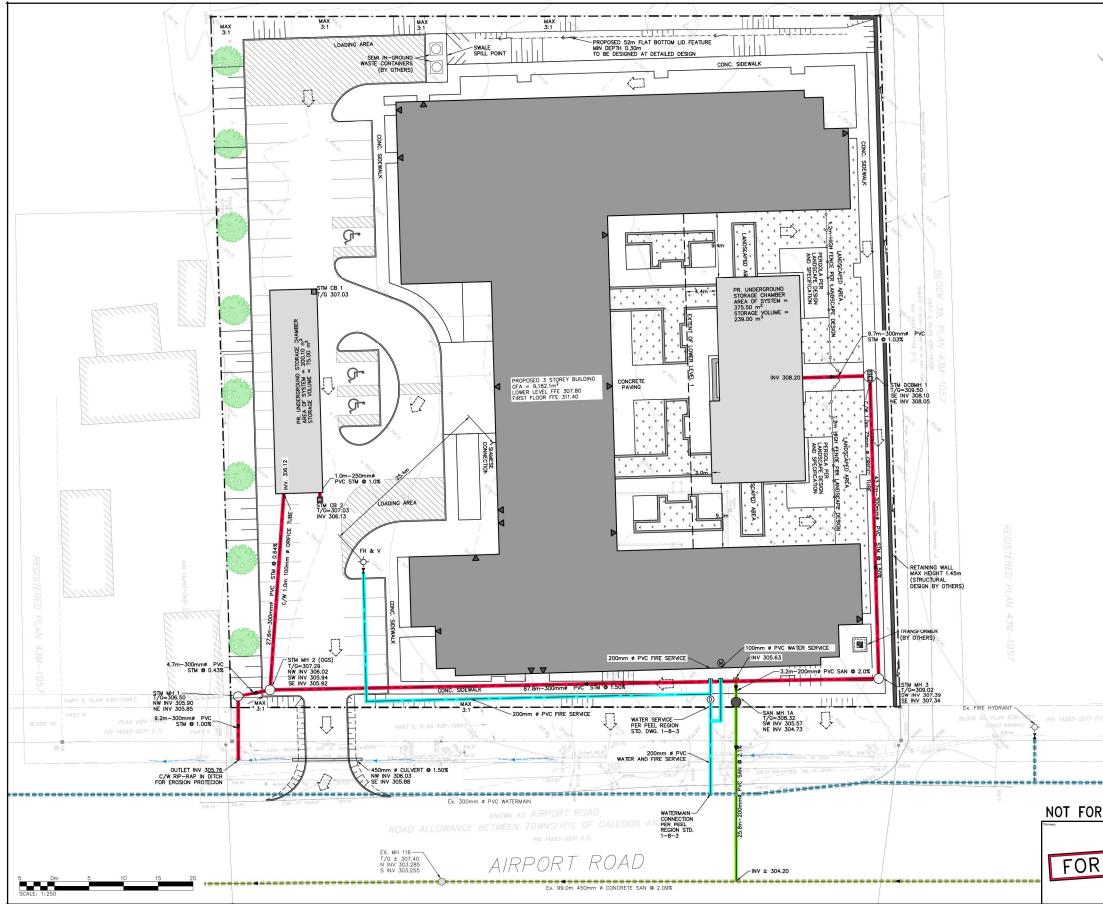
Sizing Stormceptor[®] EF/EFO for Removal of Canadian ETV and Stormceptor Fine Particle Size Distributions

(Issued April 23, 2018)

The Canadian ETV Particle Size Distribution ("ETV PSD", shown in Table 1 below) is reasonably representative of the PSD of particulates found in typical urban stormwater runoff, and was used in sediment removal and scour performance testing of Stormceptor[®] EF/EFO in compliance with the provisions of the Canadian ETV protocol titled *Procedure for Laboratory Testing of Oil-Grit Separators*. Municipalities across Canada are increasingly adopting the sediment removal target of 60% removal of the ETV PSD when sizing an oil-grit separator for pretreatment of stormwater runoff, replacing former sediment removal targets that were based on removal of coarser particle size distributions.

Imbrium Systems supports and recommends adoption of 60% removal of the ETV PSD as a Canada-wide standard for sizing of Stormceptor® EF/EFO. However, it is recognized that in some areas there may continue to be sediment removal targets that are based on removal of coarser particle size distributions. Imbrium engineers have performed extensive sizing analyses to determine the estimated removal efficiency of various coarser PSDs as compared to 60% removal of the ETV PSD. Removal efficiencies were calculated for a wide range of influent flow rates, utilizing Stokes' Law for particle settling and the dimensions and hydraulic capacities of each Stormceptor model size.

Based on these analyses, sizing Stormceptor[®] EF/EFO for 60% removal of the ETV PSD is comparable to sizing for 80% removal of the Stormceptor Fine PSD.

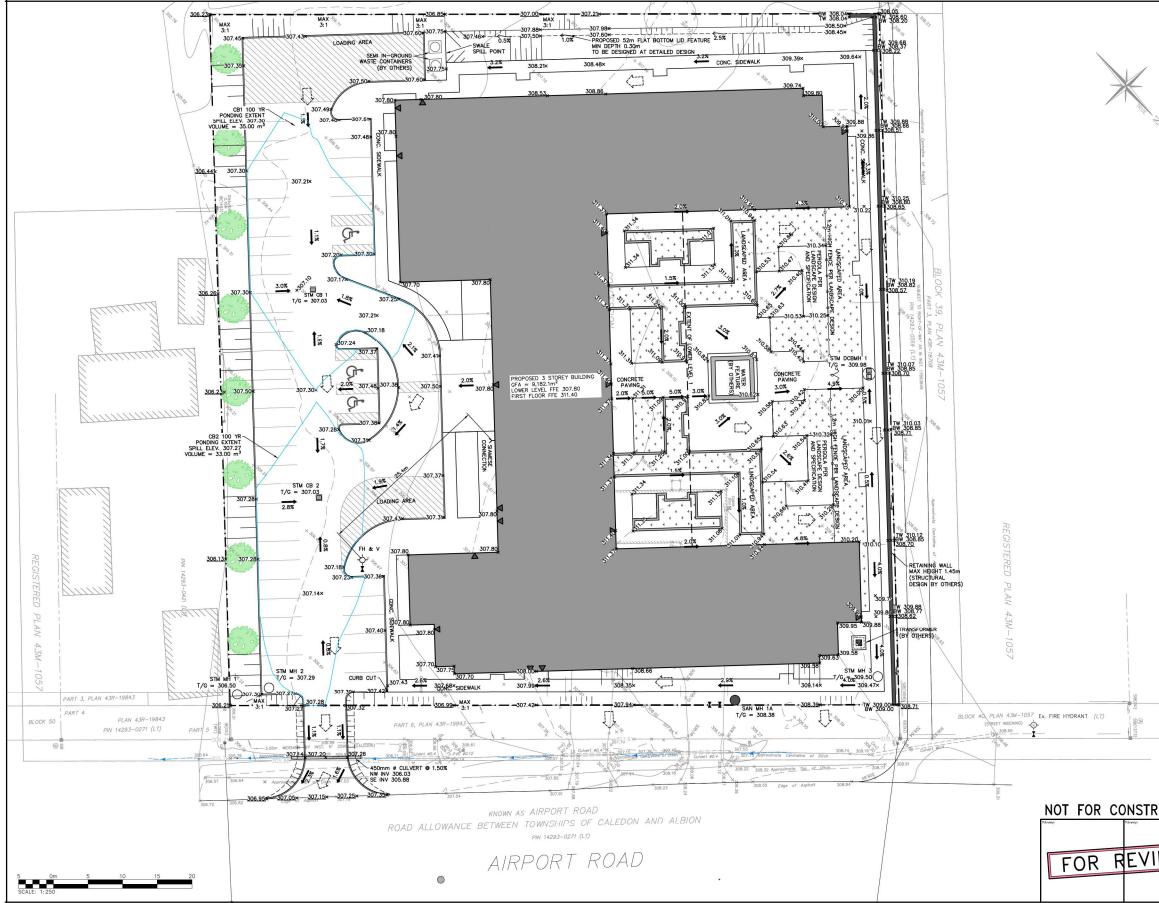


Particle	Percent Less	Particle Size	Deveent
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

Table 1:	Particle Size	Distribution	of Test Sediment
TUDIC I.	i un title Size	Distribution	of rest scunnent

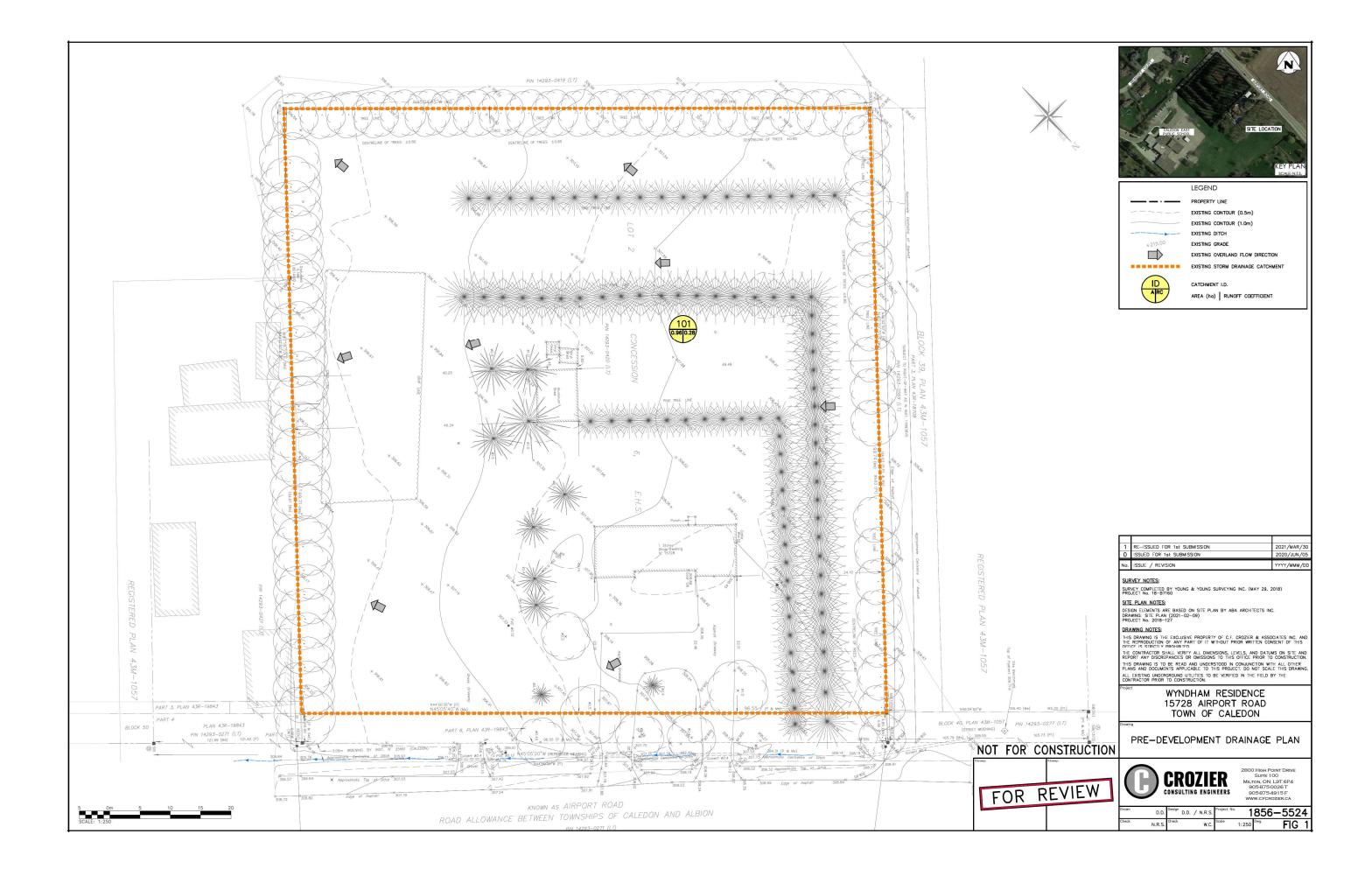
The particle size distribution shown in Table 1 above is the Canadian ETV Particle Size Distribution ("ETV PSD") specified in the Canadian ETV protocol titled *Procedure for Laboratory Testing of Oil-Grit Separators*.

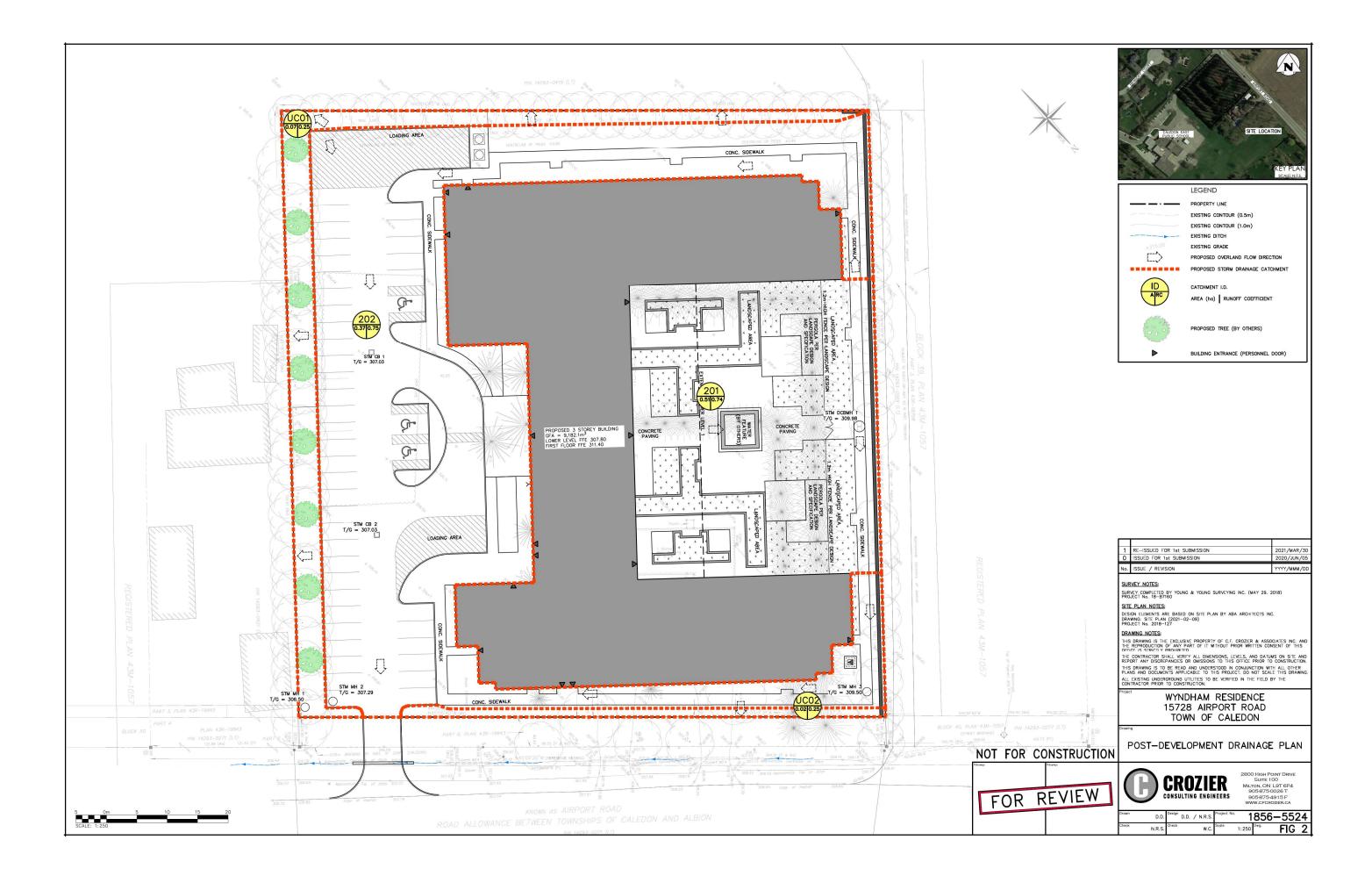
FIGURES

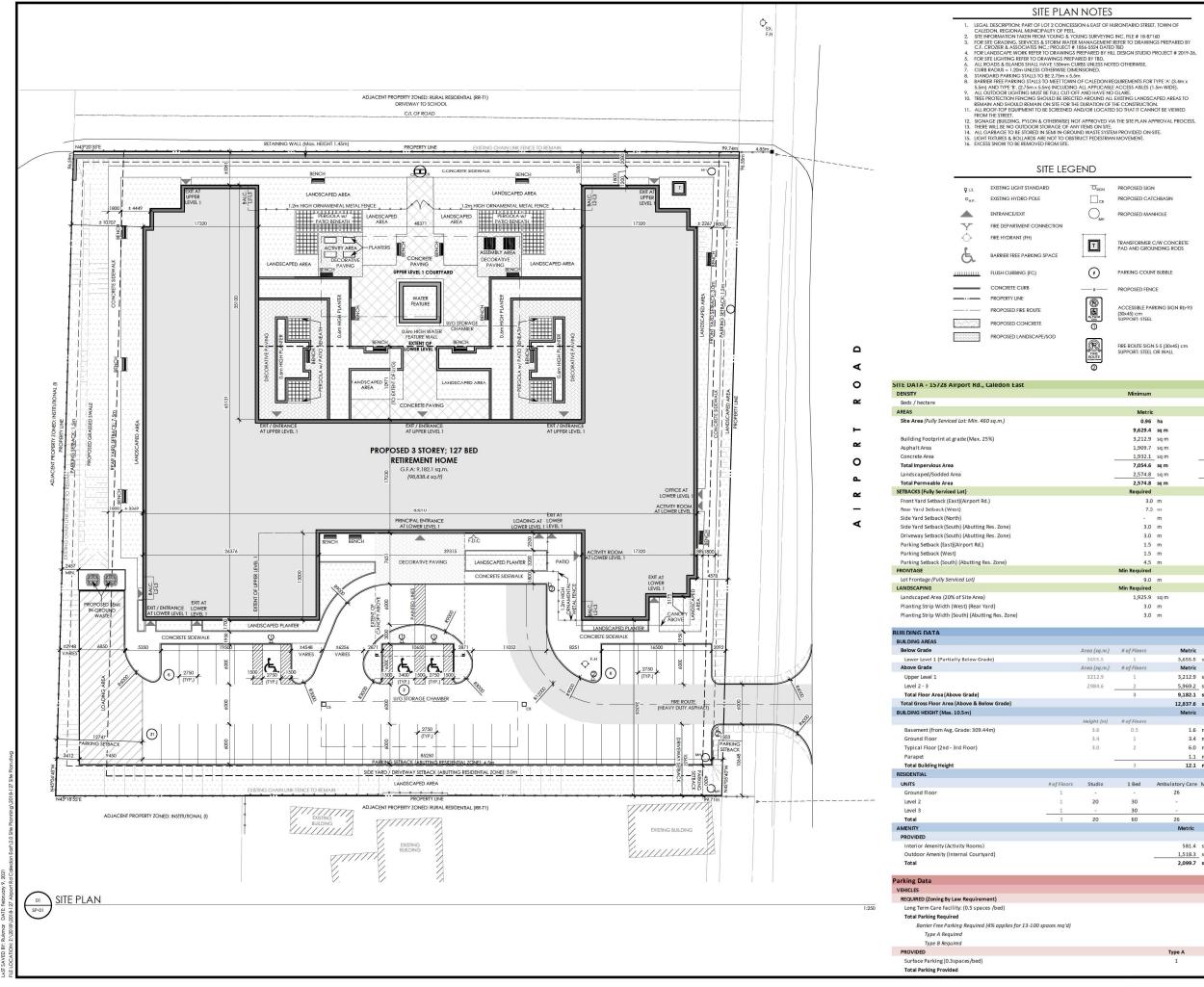


	1 RE-ISSUED FOR 1st SUBMISSION	2021/MAR/30	
	0 ISSUED FOR 1st SUBMISSION	2020/JUN/05	
	No. ISSUE / REVISION	YYYY/MMM/DD	
	SURVEY NOTES:		
	SURVEY COMPLETED BY YOUNG & YOUNG SURVEYING INC. (MAY 29. : PROJECT No. 18-B7160	2018)	
	SITE PLAN NOTES:		
	DESIGN ELEMENTS ARE BASED ON SITE PLAN BY ABA ARCHITECTS INC. DRAWING: SITE PLAN (2021-02-09) PROJECT NO. 2018-127		
	DRAWING NOTES:		
	THIS DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASSO THE REPRODUCTION OF ANY PART OF IT WITHOUT PRIOR WRITTEN CO OFFICE IS STRICTLY PROHIBITED	DCIATES INC. AND	
SiB(Qu)	THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DATU REPORT ANY DISCREPANCIES OR OMISSIONS TO THIS OFFICE PRIOR TO	MS ON SITE AND CONSTRUCTION.	
(LT)	THIS DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION WI PLANS AND DOCUMENTS APPLICABLE TO THIS PROJECT. DO NOT SCAL	TH ALL OTHER	
SH(13)	ALL EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD I CONTRACTOR PRIOR TO CONSTRUCTION.		
	WYNDHAM RESIDENCE		
	15728 AIRPORT ROAD		
	TOWN OF CALEDON		
	Drawing		
	PRELIMINARY SITE SERVICING	PLAN	
R CONSTRUCTION	TREEMINART SHE SERVICING		
Stomp		11	
REVIEW	CONSULTING ENGINEERS 905-875-	4915 F	
	WWW.CFCR	OZIER.CA	
	Drawn D.D. Design D.D. / N.R.S. Project No. 1856	5-5524	
	Check N.R.S. Check W.C. Scale 1:250 Dwg.	C102	
I	N.R.S. W.C. 1:250	CIUZ	

	SITE LOCATION SITE LOCATION KEY PLAN SCALENTS
	LEGEND
	PROPERTY LINE
	EXISTING WATERMAIN & GATE VALVE
*****	EXISTING SANITARY SEWER & MANHOLE
	PROPOSED WATERMAIN & GATE VALVE
- \- -M	PROPOSED FIRE HYDRANT & GATE VALVE
~	PROPOSED SIAMESE CONNECTION
	PROPOSED STORM SEWER & MANHOLE
	PROPOSED SINGLE / DOUBLE CATCHBASIN
	PROPOSED SANITARY SEWER & MANHOLE
	PROPOSED ELECTRICAL TRANSFORMER
•	PROPOSED WATER METER
0	DETECTOR CHECK VALVE IN CHAMBER
TTTTT	PROPOSED SLOPE (4:1 MAX. UNLESS NOTED)
	PROPOSED TREE (BY OTHERS)


N





		1	RE-ISSUED FOR 1st SUBMISSION	2021/MAR/30		
		0	ISSUED FOR 1st SUBMISSION	2020/JUN/05		
		No.	ISSUE / REVISION	YYYY/MMM/DD		
		SUR	VEY NOTES;			
		SURV	EY COMPLETED BY YOUNG & YOUNG SURVEYING INC. (MAY 29. ECT No. 18-B7160	2018)		
		SITE	SITE PLAN NOTES;			
		DRAV	SIGN ELEMENTS ARE BASED ON SITE PLAN BY ABA ARCHITECTS INC. RAWING: SITE PLAN (2021-02-09) ROJECT No. 2018-127			
		DRA	WING NOTES:			
		THE	DRAWING IS THE EXCLUSIVE PROPERTY OF C.F. CROZIER & ASS REPRODUCTION OF ANY PART OF IT WITHOUT PRIOR WRITTEN C SE IS STRICTLY PROHIBITED	SOCIATES INC. AND ONSENT OF THIS		
	SIB(\$U)	THE REPO	CONTRACTOR SHALL VERIFY ALL DIMENSIONS, LEVELS, AND DAT IRT ANY DISCREPANCIES OR OMISSIONS TO THIS OFFICE PRIOR	TO CONSTRUCTION.		
(LT)	1	THIS	DRAWING IS TO BE READ AND UNDERSTOOD IN CONJUNCTION W IS AND DOCUMENTS APPLICABLE TO THIS PROJECT. DO NOT SC	WITH ALL OTHER ALE THIS DRAWING.		
	SHB(1373)		EXISTING UNDERGROUND UTILITIES TO BE VERIFIED IN THE FIELD TRACTOR PRIOR TO CONSTRUCTION.	BY THE		
		Project	WYNDHAM RESIDENCE			
			15728 AIRPORT ROAD			
			15728 AIRPORT ROAD TOWN OF CALEDON			
		Drawing	TOWN OF CALEDON			
		Drawing	TOWN OF CALEDON			
R C	ONSTRUCTION	Drawing	TOWN OF CALEDON	PLAN		
R C	ONSTRUCTION	Drawing	TOWN OF CALEDON	PLAN		
RC		Drawing	TOWN OF CALEDON PRELIMINARY SITE GRADING	POINT DRIVE		
R C	Stamp	Drawing	TOWN OF CALEDON PRELIMINARY SITE GRADING CROZIFR 2800 High Suffer CROZIFR	Point Drive 100 N L9T 6P4		
r ci		(TOWN OF CALEDON PRELIMINARY SITE GRADING CONSULTING ENGINEER POSSOT CONSULTING ENGINEER	Point Drive 100 N L9T 6P4 5-0026 T 5-4915 F		
R C	Stamp	Drawing	TOWN OF CALEDON PRELIMINARY SITE GRADING PRELIMINARY SITE GRADING CONSULTING ENGINEERS 2800 HIGH SUTE MILTON, OF 905877 905877	Point Drive 100 N L9T 6P4 5-0026 T 5-4915 F		

cont	N
A DEMONSTRATION OF THE OWNER OWNER OF THE OWNER	
120. 12	
and to the	
6 18 1	
25 10 /.	
CALEDON EAS	SITE LOCATION
and the second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	KEY PLAN
	SCALE: N.T.S.
	LEGEND
	PROPERTY LINE
	EXISTING CONTOUR (0.5m)
	EXISTING CONTOUR (1.0m)
	EXISTING DITCH
xx	EXISTING FENCE
×215.00	EXISTING GRADE
×215.00	PROPOSED GRADE
×215.00	PROPOSED GRADE (TO MATCH EXISTING)
2.0%	PROPOSED MINOR FLOW DIRECTION
2.0%	PROPOSED GRASSED SWALE
	PROPOSED EXTENT OF 100 YR SURFACE PONDING
	PROPOSED RETAINING WALL
THEFT	PROPOSED SLOPE (4:1 MAX. UNLESS NOTED)
►	BUILDING ENTRANCE (PERSONNEL DOOR)
\Box	PROPOSED MAJOR OVERLAND FLOW DIRECTION
	PROPOSED ELECTRICAL TRANSFORMER
- Ò-	PROPOSED FIRE HYDRANT & GATE VALVE
-<	PROPOSED SIAMESE (FIRE DEPT.) CONNECTION
	PROPOSED TREE (BY OTHERS)
-00	PROPOSED 1.2m HIGH FENCE (BY OTHERS)
(* * * * * * * * * * * * * * * * * * *	PROPOSED LANDSCAPE AREA IN COURTYARD (BY OTHERS)

OSIGN	PROPOSED SIGN
СВ	PROPOSED CATCHBASIN
Э.,	PROPOSED MANHOLE

TRANSFORMER C/W CONCRETE PAD AND GROUNDING RODS

PARKING COUNT BUBBLE

PROPOSED FENCE

ACCESSIBLE PARKING SIGN Rb-93 (30x45) cm SUPPORT: STEEL

FIRE ROUTE SIGN S-5 (30x45) cm SUPPORT: STEEL OR WALL

			ZBL 20	06-50: Institutional (I)
Minimum		Maximum		Provided
				131
Metric		Imperial		%
0.96	ha	2.4	acre	-
9,629.4	sq m	103,653.6	sq ft	100%
3,212.9	sq m	34,584.2	sq ft	33%
1,909.7	sq m	20,556.3	sq ft	20%
1,932.1	sq m	20,797.2	sq ft	20%
7,054.6	sq m	75,937.6	sq ft	73%
2,574.8	sq m	27,715.9	sq ft	27%
2,574.8	sq m	27,715.9	sq ft	27%
Required		Provided		
3.0	m	4.5	m	
7.5	m	10.7	m	
-	m	5.0	m	
3.0	m	26.3	m	
3.0	m	10.6	m	
1.5	m	1.5	m	
1.5	m	12.7	m	
4.5	m	4.5	m	
Min Required		Provided		
9.0	m	96.5	m	
Min Required		Provided		
1,925.9	sq m	4,506.87	sq m	47%
3.0	m	Min. 2.4	m	
3.0	m	4.50	m	

Area (sq.m.)	# of Floors	Metric		Imperial		
3655.5	1	3,655.5	sqm	39,349.0	sq ft	
Area (sq.m.)	# of Floors	Metric		Imperial		
3212.9	1	3,212.9	sq m	34,584.2	sq ft	
2984.6	2	5,969.2	sqm	64,254.3	sq ft	
	3	9,182.1	sq m	98,838.4	sq ft	
		12,837.6	sq m	138,187.5	sq ft	
		Metric		Imperial		
Height (m)	# of Floors					
3.6	0.5	1.6	m	5.0	ft	
3.4	1	3.4	m	11.0	ft	
3.0	2	6.0	m	19.0	ft	
		1.1	m	3.0	ft	
	3	12.1	m	39.0	ft	
Studio	1 Bed	Ambulatory Care	Memory Care	Units/Flr	Beds/Flr	
		26	21	47	47	
20	30	-		50	50	
	30		-	30	30	
20	60	26	21	127	127	
		Metric		Imperial		
		581.4	sq m	6.258.3	sq ft	
		1,518.3	sq m	16,343.1	sq ft	
		2,099.7	sq m	22,601.5	sq ft	
					Spa	es
						64

64 Type A Type B Standard Total: 42 45 2 45

HIS DRAWING IS AN INSTRUMENT OF SERVICE & HE PROPERTY OF ABA ARCHITECTS INC. & CANNO E MODIFIED AND/OR REPRODUCED WITHOUT TH FRUNSION OF ARA APCUTECTS INC.

E CONTRACTOR MUST VERIFY ALL DIMENSI RCHITECT, BEFORE PROCEEDING WITH THE WOR

RAWINGS ARE NOT TO BE SCALED.

No.	REVISIONS		DATE		
01	ISSUED TO CONS		2020.12.08		
02	ISSUED TO CONS	ULTANTS	2021.02.09		
_					
	· · · · · · · · · · · · · · · · · · ·				
_					
_					
_					
KEY N NTS	KEY MAP				
CH	CHRONOLOGY DATE				
CIEVE HIGHGATE HIGHGATE HOLDINGS					
PROJECT NAME					
WYNDHAM RESIDENCE 15728 AIRPORT RD. CALEDON EAST, ON					
DRAWING TITLE					
SITE PLAN					
SCALE		DRAWING NUMBE	R		
	1:250				
PROJEC	IZE 610x914 IT NUMBER 2018-127	SPA	.01		

