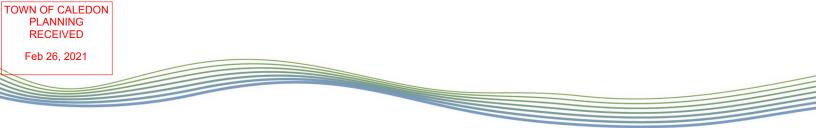


Preliminary Fluvial Geomorphological Assessment and Erosion Hazard Delineation

12892 Dixie Road, Caledon, ON


Prepared for:

Tribal Partners Canada Inc. 201-2700 Steeles Ave West Vaughan, ON L4K 1C8

February 24, 2021 PN20109

> GEO MORPHIX Geomorphology

Earth Science Observations

Report Prepared by:	GEO Morphix Ltd. 36 Main Street North PO Box 205 Campbellville, ON LOP 1B0
Report Title:	Preliminary Fluvial Geomorphological Assessment and Erosion Hazard Delineation 12892 Dixie Road, Caledon, ON
Project Number:	PN20109
Status:	Final
Version:	1.1
First Submission Date:	February 24, 2021
11 /	Josie Mielhausen, M.Sc., Kat Woodrow, M.Sc. Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP February 24, 2021

Table of Contents

TOWN OF CALEDON PLANNING RECEIVED Feb 26, 2021

1	Intro	duction	1
2	Backg	ground Review and Desktop Assessment	1
	2.1	Background Information	1
	2.2	Geology and Physiography	2
	2.3	Reach Delineation	2
	2.4	Historical Assessment	3
3	Wate	rcourse Characteristics	4
	3.1	General Reach Observations	4
	3.2	Rapid Assessment	
4		on Hazard Assessment	
5	Sumn	nary and Recommendations	8
	5.1	Monitoring Plan	9
	5.2	Report Considerations	
6	Refer	ences1	1

List of Tables

Appendices

Appendix A Study Site Map and Reach Delineation

Appendix B Historical Aerial Photographs

Appendix C Photographic Record

Appendix D Field Assessment Sheets

Appendix E Erosion Setback Mapping

1 Introduction

OWN OF CALEDON PLANNING RECEIVED Feb 26, 2021

> GEO Morphix Ltd. was retained to complete a preliminary fluvial geomorphological assessment and erosion hazard delineation at 12892 Dixie Road, in the Town of Caledon, Ontario. The subject site is bounded by Dixie Road to the north/east, Old School Road to the north/west, and privately owned lands to the south. There are five (5) watercourse features within the subject property, including the main branch of the West Humber River which traverses the southwest extent of the property, two tributaries of the West Humber River which traverse through a woodlot at the center of the property, a tributary of the West Humber River which traverses through a wetland at the northeastern extent of the property, and a tributary of the West Humber River which also traverses through a wetland at the northern extent of the property. The preliminary geomorphological assessment was completed to support a proposed 78.9-hectare industrial development, including associated buildings and road networks.

> For the preliminary fluvial geomorphological assessment and erosion hazard delineation, the following activities were completed:

- Review available background reports and mapping (e.g., watershed/subwatershed reporting, geology, and topography) related to channel form and function and controlling factors related to fluvial geomorphology
- Complete watercourse reach delineation through a desktop assessment
- Review of recent and historical aerial photographs of the site to understand historical changes in channel form and function
- Complete rapid geomorphological assessments on a reach basis to document channel conditions and verify the desktop assessment where possible
- Document any areas of significant erosion, collect instream measurements of bankfull channel dimensions, and characterize bed and bank material composition and structure
- Delineate limits of the erosion hazard on a reach basis using field observations

2 Background Review and Desktop Assessment

2.1 Background Information

The subject section of West Humber River is situated within the Toronto and Region Conservation Authority (TRCA) jurisdiction and further, the Humber River watershed. The Humber River watershed originates in the Oak Ridges Moraine, outlets to Lake Ontario, and encompasses approximately 911 square kilometers (TRCA, 2021). The West Humber River specifically originates in Caledon (South Slope) and flows over 45 km (crossing Peel Plain) in Brampton prior to its confluence with the Main Humber River in Toronto (TRCA, 2021).

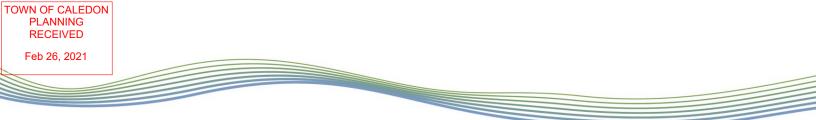
Several stream layer datasets were reviewed to understand existing drainage features on site. The review included data from MNRF's Ontario Hydro Network (OHN) stream layer, Peel Region's stream layer, and the TRCA Regulation Area stream layer. It should be noted that the three layers were generally in agreement, but that several additional features were noted in the TRCA mapping that were not captured in the MNRF or Peel Region layer.

Within the subject property, the main branch of the West Humber River flows generally west to east along the southern extent of the property boundary. This watercourse has a meandering planform with irregular meanders and flows through a confined valley system. Near the center of the subject property, two tributaries of the West Humber River generally flow west to east through a woodlot. These watercourses are straight with few meanders and flow through an unconfined valley system. It should be noted that the MNRF and Peel Region stream layer only showed the southern tributary within the woodlot, but it is assumed that there is a secondary feature slightly to the north within the woodlot based on TRCA's stream mapping. The tributary through the northern extent of the woodlot is a first order stream and is likely characteristic of headwater drainage feature. At the northern extent of the subject property, two tributaries of the West Humber River generally flow northwest to southeast through existing wetland features. These channels are straight with limited sinuosity. The smaller tributary that flows adjacent to Dixie Road in the more central portion of the property was not documented in the MNRF and Peel Region stream layer, but it is assumed that this feature is present based on TRCA's mapping. Given that it is a first order feature with a small drainage area, it is characteristic of a headwater drainage feature.

Additional drainage features on site were observed through a desktop assessment of recent aerial imagery from Google Earth Pro. Recent aerial photographs indicate that there are small headwater drainage features on site that extend through existing agricultural fields. It should be noted that these features are only visible through aerial photograph interpretation and are not included in any available stream layer datasets reviewed through the desktop assessment.

2.2 Geology and Physiography

Geology and physiography act as constraints to channel development and tendency. These factors determine the nature and quantity of the availability and type of sediment. Secondary variables that affect the channel include land use and riparian vegetation. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity.


Within the subject property, the West Humber River and associated tributaries are dominated by the Till Plains (drumlinized) physiographic region of Ontario (Chapman and Putnam, 2007). In terms of surficial geology, the subject lands are characterized by till (OGS, 2010). Soils within these areas include clay to silt-textured clay derived from glaciolacustrine deposits or shale (OGS, 2010). Evidence of till exposure and shale were observed on site during field investigations. Additionally, along the southern extent of the subject property and the downstream extent of the northern tributary, soils were characterized by modern alluvial deposits, including clay, silt, sand, gravel, and organic remains (OGS, 2010). A geotechnical assessment was completed by MTE Consultants (2021) that included borehole analysis across the site. Results of the geotechnical study confirm the presence of modern alluvium materials and various glacial deposits.

2.3 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. Reaches are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This method allows for a meaningful characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity.

Reaches are typically delineated based on changes in the following:

- Channel planform
- Channel gradient
- Physiography
- Land cover (land use or vegetation)
- Flow, due to tributary inputs
- Soil type and surficial geology

Historical channel modifications

Reach delineation follows scientifically defensible methodology proposed by Montgomery and Buffington (1997), Richards et al. (1997), and the Toronto and Region Conservation Authority (2004) as well as others.

Several watercourse layers were reviewed to identify watercourses on site, which included those available through TRCA, Peel Region, and MNRF. Based on the existing channel conditions and the linear extent of the watercourses within the subject property, five (5) reaches were delineated. Further sub-reaches were delineated to identify minor differences in watercourse and/or landscape characteristics within reaches. It is important to note that two (2) reaches were identified as first order features and were only present in the TRCA stream layer data (**Reach/HDF 9** and associated sub-reaches and **Reach/HDF 8** and associated sub-reaches). Given that the two features were observable in aerial photographs, they have been included as part of the desktop assessment. All reaches are graphically defined in **Appendix A**. It should be noted that the watercourse layer included in **Appendix A** is a combination of TRCA and Peel Region linework, which was verified through field observations or confirmed to be the most accurate based on our desktop assessment.

Additional drainage features on site were observed through a desktop assessment of recent aerial imagery from Google Earth Pro. Recent aerial photographs indicate that there are small headwater drainage features on site that extend through existing agricultural fields. It should be noted that these features are only visible through aerial photograph interpretation and are not included in any available stream layer datasets reviewed through our desktop assessment. As such, they have not been included as part of the reach delineation exercise outlined here. We note that a preliminary review of headwater features was completed by WSP Canada in 2020. The results of that assessment are documented in their report (WSP, 2021).

2.4 Historical Assessment

A series of historical aerial photographs were reviewed to determine changes to the channel and surrounding land use and land cover. This information, in part, provides an understanding of the historical factors that have contributed to current channel morphodynamics.

Various aerial photographs and satellite images from 1960 to 2018 were retrieved to complete the historical assessment and inform the erosion hazard delineation. Specifically, aerial photographs from 1960, 1974 (National Air Photo Library), and satellite images from 2005 and 2018 (Google Earth Pro) were reviewed. All historical aerial photographs are provided in **Appendix B** for reference. The watercourse reaches outlined as part of the historical assessment are graphically presented on the map in **Appendix A**.

The aerial photograph from 1960 includes **Reach 6, Reach 9, Reach/HDFs 9a-b**, and **Reach 10.** The subject property and surrounding lands were dominated by agricultural activities with few residential dwellings along Dixie Road and Heart Lake Road. At the subject property and slightly downstream, **Reach 6** was characterized by a meandering planform with tortuous meanders. A valley wall is visible in the aerial photograph, which is indicative of a confined system. The riparian buffer was limited, dominated by grasses with established trees clustered along the southern bank of the channel. **Reach 10** was generally straight with few small meanders. **Reach 10** and **Reach/HDFs 9a-b** flow through a woodlot with headwater channels visible upstream through agricultural fields. Despite being surrounded by woody vegetation, riparian habitat appeared fragmented through the reach. Downstream from the woodlot, **Reach 9** had a generally straight planform with a limited riparian buffer dominated by grasses.

All reaches on the subject property were discernable in the aerial photograph from 1974. There were no changes in land use, land cover, or watercourse characteristics associated with **Reach 6**, **Reach 9**, **Reach/HDFs 9a-b**, or **Reach 10**. Within the subject property and slightly downstream, **Reach 8** was generally straight with limited sinuosity. The riparian buffer was limited to grasses with no large shrub/tree species in close proximity. Immediately upstream from Old School Road, the channel was meandering with irregular meanders, but appeared straightened/ditched further upstream to accommodate agricultural practices. **Reach/HDF 8a-1**, **2**, and **3** were not clearly discernable from the aerial photograph; however, a vegetated change was observed.

Between 1974 and 2018, there were no changes in land use or land cover within and immediately surrounding the subject property. The channel planforms associated with all reaches were unchanged with more established riparian vegetation surrounding the watercourse features. The limited channel adjustments over time, as well as the increase in riparian vegetation surrounding the reaches, indicate that the watercourse features are generally stable. With the natural hazards delineated appropriately, it is expected that the channels will experience limited adjustments in morphodynamics over time.

3 Watercourse Characteristics

3.1 General Reach Observations

Field investigations were completed on November 26, 2020 for **Reaches 6** and **10**, and included the following:

- Descriptions of riparian conditions
- Estimates of bankfull channel dimensions
- Determination of bed and bank material composition and structure
- Observations of erosion, scour, or deposition
- Collection of photographs to document the watercourses, riparian areas and/or valley, surrounding land use, and channel disturbances such as crossing structures

These observations and measurements are summarized below. The descriptions are supplemented and supported with representative photographs, which are included in **Appendix C**. Field sheets, including those completed for rapid assessments, are provided in **Appendix D**.

Due to field conditions on the day of assessment, **Reaches 8** and **9** were excluded from the investigation. To evaluate existing conditions at **Reaches 8** and **9**, a site visit is recommended when weather permits (i.e., spring 2021). Given the nature of **Reach/HDF 9a**, **b**, and **Reach/HDF 8a-1**, **2**, **3** as first order streams with small drainage areas, it is likely that these particular features are headwater channels. As such, they may require a specific assessment following the TRCA/CVC (2014) guidelines for headwater drainage feature evaluation. Although, it should be noted that these features are likely to require protection or conservation status through the TRCA/CVC HDF guidelines given their location within existing woodlot (**Reach/HDF 9a**, **b**) and wetland features (**Reach/HDF 8a-1**, **2**, **3**). The current development plan shows these features as being retained on the landscape in their current location. As such, additional study of these features is likely not required and will not affect current mitigation plans or development constraints.

Reach 6 flows west to east along the southern limit of the subject property. Upstream reaches traverse through agricultural lands and are straightened in several locations. Downstream from the subject property, **Reach 6** flows through an offline pond system and crosses Dixie Road.

Reach 6 was situated within a confined valley setting. The channel exhibited a meandering planform and had a confined sinuosity that ranged from 1.31 - 3.0. The surrounding land use consisted of agricultural land and the channel was in a transitional zone. The riparian buffer zone was approximately 1 to 4 channel widths beyond the watercourse and had continuous coverage. The dominant type of riparian vegetation was established (5 to 30 years) grasses. There was minimal encroachment of vegetation into the channel. The reach had perennial flow with a moderate gradient and moderate entrenchment. Bed material was composed of sand, gravel, and cobble. Riffle features consisted of sand, gravel, and cobbles, while pool features consisted of sand and gravel. Approximately 10% of the reach was occupied by rooted emergent aquatic vegetation, and there was a low density of woody debris present in the cutbank and channel.

Average bankfull width and depth were approximately 1.83 m and 0.78 m, respectively. Average wetted width and depth on the day of assessment were approximately 1.63 m and 0.68 m, respectively. Given the field conditions on the day of assessment, all measurements were estimated. Bank angles ranged from 60° to 90° and consisted of clay/silt, sand, and gravel. Evidence of erosion was observed through 30 to 60% of the channel, with bank undercuts measuring up to 1.5 m in depth. Meander amplitudes were approximately 15 m to 25 m.

Reach 10 flows west to east along the southern portion of the woodlot located in the southcentral portion of the subject property. This reach is characteristic of a low-order stream, and based on our desktop assessment, likely receives hydrological inputs from an intermittent headwater drainage feature slightly upstream. Moving downstream, **Reach 10** exists the woodlot, traverses through the residential property on site, and crosses Dixie Road.

Reach 10 was situated within a partially confined valley setting. The channel exhibited a straight planform and had a low sinuosity that ranged from 1.06 - 1.30. The surrounding land use consisted of agricultural land beyond the woodlot and the channel was in a deposition zone. The riparian buffer zone was approximately 4 to 10 channel widths beyond the watercourse and had continuous coverage. The dominant type of riparian vegetation was established and mature (5 to > 30 years) tree species. There was minimal encroachment of vegetation into the channel. The reach had perennial flow with a moderate gradient and moderate entrenchment. Bed material was composed of clay/silt with no geomorphic units (i.e., riffles or pools) established. Less than 5% of the reach was occupied by rooted emergent aquatic vegetation. However, there was a high density of woody debris present in the cutbank and channel.

Average bankfull width and depth were approximately 2.84 m and 0.44 m, respectively. Average wetted width and depth on the day of assessment were approximately 1.22 m and 0.08 m, respectively. Bank angles ranged from 30° to 90° and consisted of clay/silt. Evidence of erosion was observed through 30 to 60% of the channel, with bank undercuts measuring up to 0.08 m in depth.

3.2 Rapid Assessment

Channel instability was objectively quantified through the application of the Ontario Ministry of the Environment's (2003) Rapid Geomorphic Assessment (RGA). Observations were quantified using an index that identifies channel sensitivity based on evidence of aggradation, degradation, channel widening, and planimetric adjustment. The index produces values that indicate whether a channel is stable/in regime (score <0.20), stressed/transitional (score 0.21-0.40), or adjusting (score >0.41).

The Rapid Stream Assessment Technique (RSAT) was also employed to provide a broader view of the system as it considers the ecological function of the watercourse (Galli, 1996). Observations were made of channel stability, channel scouring or sediment deposition, instream and riparian

habitats, and water quality. The RSAT score ranks the channel as maintaining a poor (<13), fair (13-24), good (25-34), or excellent (35-42) degree of stream health.

These observations and measurements are summarized below. The descriptions are supplemented and supported with representative photographs, which are included in **Appendix C**. Field sheets, including those completed for RGA and RSAT assessments, are provided in **Appendix D**. All RGA and RSAT results for **Reaches 6** and **10** are summarized in **Table 1**.

Reach 6 was assigned an RGA score of 0.15, indicating the reach was in regime. The dominant geomorphological indicator was evidence of widening by the observation of fallen/leaning trees, exposed tree roots, and basal scour on both inside meander bends and riffles through the reach. The secondary geomorphological indicator was evidence of degradation, based on observations of the channel being worn into undisturbed overburden/bedrock. These characteristics influence the delineation of erosion risk in terms of overall channel stability. **Reach 6** had an RSAT score of 27, or *good*. There were two limiting factors, including physical instream habitat and riparian habitat conditions. This was due to the limited geomorphological units, limited diversity in habitat types, and a narrow riparian area of mostly non-woody vegetation. It is important to note that the time of the field investigation (late fall) likely impacted the overall RSAT score in terms of habitat conditions.

Reach 10 was assigned an RGA score of 0.17, indicating the reach was in regime. The dominant geomorphological indicator was evidence of widening by the observation of fallen/leaning trees, occurrence of large organic debris, exposed tree roots, and basal scour through the reach. The secondary geomorphological indicator was evidence of planimetric form adjustment, based on observations of poorly formed and reworked bar formations. These characteristics influence the delineation of erosion risk in terms of overall channel stability. **Reach 10** had an RSAT score of 19, or *fair*. There were two limiting factors, including physical instream habitat and riparian habitat conditions. This was due to the limited geomorphological units, limited diversity in habitat types, and a riparian area predominantly wooded but with major localized gaps. It is important to note that the time of the field investigation (late fall) likely impacted the overall RSAT score in terms of habitat conditions.

		RGA (MOE, 2	2003)		RSAT (Gall	i, 1996)				
Reach	Score	Condition	Dominant Systematic Adjustment	Score	Condition	Limiting Feature(s)				
Reach 6	0.15	In Regime	Widening	27	Good	Physical instream habitat and riparian habitat				
Reach 10	0.17	In Regime	Widening	Widening 19 Fair ⁱⁱ		Physical instream habitat and riparian habitat				
Reach 9			Confirmation	in spring	2021					
Reach/HDF 9a			Confirmation	in spring	2021					
Reach/HDF 9b			Confirmation	in spring	2021					
Reach/HDF 8a-2		Confirmation in spring 2021								
Reach/HDF 8a-3			Confirmation	in spring	2021					
Reach 8b			Confirmation	in spring	2021					

Table 1. Summary of Rapid Assessment Results

OWN OF CALEDON PLANNING RECEIVED Feb 26, 2021

Most watercourses in southern Ontario have a natural tendency to develop and maintain a meandering planform, provided there are no spatial constraints. A meander belt width or erosion hazard assessment estimates the lateral extent that a meandering channel has historically occupied and will likely occupy in the future. This assessment is therefore useful for determining the potential hazard to proposed activities in the vicinity of a watercourse.

When defining the erosion hazard for a watercourse, Ministry of Natural Resources and Forestry (MNRF, 2002) guidelines treat unconfined and confined systems differently. Unconfined systems are those with poorly defined valleys or slopes well outside where the channel could realistically migrate. Confined systems are those where the watercourse is contained within a defined valley, where valley wall contact is possible.

When a meandering channel is confined, erosion of the valley wall needs to be considered. The Ontario Ministry of Natural Resources and Forestry (MNRF) outlines an approach for establishing the erosion hazard for confined valley systems. This approach defines an appropriate erosion setback or toe erosion allowance from the channel bank where the creek is within 15 m from the toe of slope (MNRF, 2002). A toe erosion allowance can be determined in several ways: use of an average annual recession rate; use of a delineated toe erosion allowance in areas where the channel is within 15 m of the toe of slope; or use of soil information and field observations of geomorphic processes (MNRF, 2002).

At the subject property, an erosion hazard assessment was completed for **Reach 6** to identify the extent of possible erosion and delineate a natural hazard limit in support of development at the subject property. **Reach 6** was identified as a confined system with several observations of valley wall contact. As such, the MNRF (2002) approach was implemented for delineating the natural erosion hazard.

Given the scale of the channel and limited migration, erosion rates could not be measured from historical aerial photographs. Since **Reach 6** was within 15 m of the toe of slope (based on the topographic break in slope) through the subject property, a toe erosion allowance was determined to address the erosion hazard. Based on the type of bed and bank material (i.e., clay/silt, tills) and evidence of active erosion, a 5 m toe erosion was deemed appropriate using MNRF (2002) guidelines.

It is important to note that the total erosion hazard for confined valley systems is based on a combined influence of the toe erosion allowance and the stable slope. For confined systems, a stable slope is identified as 3:1 (H:V) or as determined by a study using accepted geotechnical principles (MNRF, 2002). A geotechnical investigation and slope stability analysis was completed for **Reach 6** by MTE Consultants (2021) to identify the stable top of slope. The geotechnical study confirmed that the slope is relatively stable under current conditions. The stable top of slope documented by MTE (2021) includes the 5 m toe erosion allowance, and as such, adequately characterizes the erosion hazard associated with **Reach 6**. The erosion setback delineation is provided in **Appendix E.**

It was determined that **Reach 6** of the West Humber River contains regulated (occupied) Redside Dace habitat, a species classified as endangered both provincially and nationally. As such, to satisfy the requirements of the Provincial Policy for development activities in Redside Dace protected habitat, a 30 m buffer from the toe of slope is also required (MNRF, 2016).

It is understood that a site walk was completed with members of TRCA, Town of Caledon, WSP, and Armstrong Planning on October 27, 2020 to stake the existing limits of natural features on site. This involved staking of the top of bank along the west side of **Reach 8b**. It is our understanding that the agreed upon limit of development in this location is associated with the setback from the staked top of bank. We note that there is outstanding field reconnaissance associated with **Reach 8b**. Given that this reach flows through a highly vegetated wetland feature and has been historically straightened, there is likely limited potential for channel migration. Field reconnaissance will be completed in spring 2021 (or when conditions permit) to confirm existing conditions for the feature.

5 Summary and Recommendations

Five (5) watercourse features, including the main branch of West Humber River and 4 tributaries, traverse the subject property at 12892 Dixie Road in the Town of Caledon, Ontario. The subject property is occupied by agricultural lands, several small wetland features, and a woodlot. The main branch of the West Humber River flows within a confined valley system, whereas the smaller tributaries occupy partially confined and unconfined valley systems.

A preliminary fluvial geomorphological assessment was completed for the property and included a review of previously completed studies, topographic and geology mapping/data, historical aerial photographs, reach delineation, and field reconnaissance to document existing channel conditions.

Field reconnaissance was completed along **Reaches 6** and **10** (**Appendix A**) to document existing channel characteristics. Due to conditions on the day of assessment, **Reaches 8** and **9** were not included in the field investigation. Instead, these features were reviewed through a desktop assessment based on detailed topographic information, recent aerial imagery, and previously collected data from others. The sub reaches of both **Reach 8** and **Reach 9** flow through existing wetland or woodlot features on the property.

Reach/HDF 9a, **b**, and **Reach/HDF 8a-1**, **2**, **3** are first order streams with small drainage areas, and as such, it is likely that these are headwater channels. As such, they may require a specific assessment following the TRCA/CVC (2014) guidelines for headwater drainage feature evaluation. Although, it should be noted that these features are likely to require protection or conservation status through the TRCA/CVC HDF guidelines given their location within existing woodlot (**Reach/HDF 9a**, **b**) and wetland features (**Reach/HDF 8a-1**, **2**, **3**). The current development plan shows these features as being retained on the landscape in their current location. As such, additional study of these features is likely not required and will not affect current mitigation plans or development constraints.

Additional drainage features on site were observed through a desktop assessment of recent aerial imagery from Google Earth Pro. It is understood that a review of headwater channels was completed separately by WSP in 2020 to address features within the areas of active agriculture on site.

Reach 6 was identified as a confined system with several observations of valley wall contact. As such, the MNRF (2002) approach for confined systems was implemented for delineating the erosion hazard. Given that **Reach 6** was within 15 m from the toe of slope within the subject property, a toe erosion allowance was determined. Based on the type of bed and bank material (i.e., clay/silt, tills) and evidence of active erosion, a 5 m toe erosion was deemed appropriate. The 5 m toe erosion allowance was also applied to the stable top of slope (MTE, 2021) to delineate the total erosion hazard.

Reach 6 was also identified as occupied Redside Dace habitat. As such, to satisfy the requirements of the Provincial Policy for development activities in Redside Dace protected habitat, a 30 m buffer is required from the toe of slope (MNRF, 2016).

We note that there is outstanding field reconnaissance associated with **Reach 8b**. It is our understanding that the agreed upon limit of development in this location is associated with the setback from the staked top of bank. Given that this reach flows through a highly vegetated wetland feature and has been historically straightened, there is likely limited potential for channel migration. Field reconnaissance will be completed in spring 2021 (or when conditions permit) to confirm existing conditions for the feature.

5.1 Monitoring Plan

We have also assumed that a level of monitoring would be required for the site, specifically with regards to watercourses where hydrology changes are anticipated as a result of the proposed development. Geomorphological monitoring should include monumented cross section surveys and longitudinal profiles of the channel centre line at each site, channel substrate characterization, installation and documentation of erosion pins, and a collection of monumented photographs. Preconstruction monitoring should be completed prior to development to document baseline conditions. Monitoring should also continue through construction and the post-construction period, ending two-years following build-out of the site.

Results of the geomorphological monitoring should be summarized in annual reports for submission to regulatory agencies that include a comparison of pre- and post-development instream conditions and evaluate any changes in the context of anticipated natural variability in the system. These recommendations for monitoring are preliminary in nature. We have assumed that the monitoring program will be coordinated and finalized through consultation with TRCA and the Town as part of conditions of approval.

5.2 Report Considerations

This report was completed for the sole use of the Client. This report is not intended to be exhaustive in scope and may not address all aspects potentially applicable to the site. Further, this report may not address all aspects which may be of interest to the reader.

The results of analyses presented in this report are based on conditions as they existed during the period of work. The material in the report reflects our best judgement using the information available at the time of report preparation.

It is important to note that seasonality and/or year-to-year conditions can impact observations and interpretation of observations. Further, it should be recognized that the characterization of features, conclusions, and recommendations in this report may be affected over time, as site conditions and regulatory requirements change.

All design details were not known at the time of submission of this report. Refinements or changes to the design could impact our interpretation or recommendations related to the site.

Any use which another party makes of this report, or any reliance on, are the responsibility of such parties. GEO Morphix accepts no responsibility for liabilities incurred by, or damages by another party, as a result of decisions made or actions taken, based on this report.

We trust this report meets your current requirements. Should you have any questions or concerns, please contact the undersigned.

Respectfully submitted,

Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP Director, Principal Geomorphologist

J-Mil

Josie Mielhausen, M.Sc. Junior Environmental Scientist

6 References

TOWN OF CALEDON PLANNING RECEIVED Feb 26, 2021

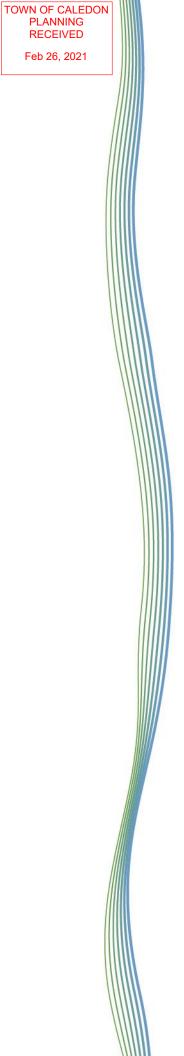
Chapman, L.J. and Putnam, D.F. 2007. Physiography of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 228.

Ministry of Natural Resources and Forestry (MNRF). 2002. Technical Guide – River and Stream Systems: Erosion Hazard Limit.

Ministry of Natural Resources and Forestry (MNRF). 2016. Guidance for Development Activities in Redside Dace Protected Habitat. Version 1.2 Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario. iv+54 pp.

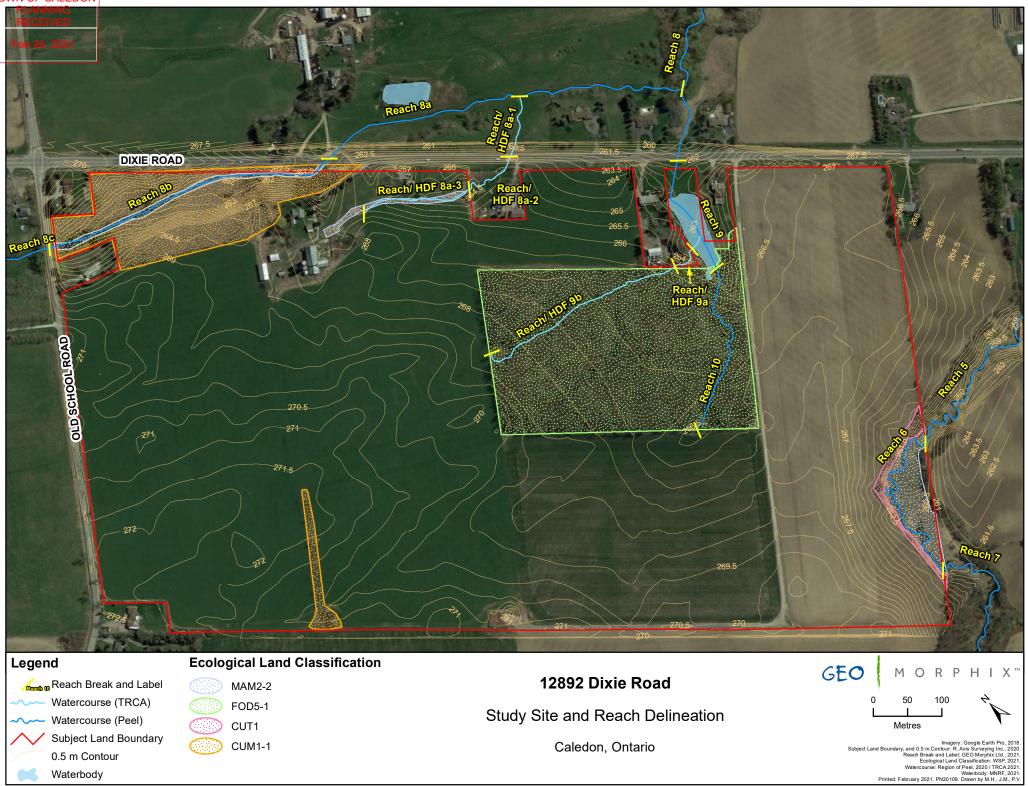
Montgomery, D.R. and J.M. Buffington. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109 (5): 596-611.

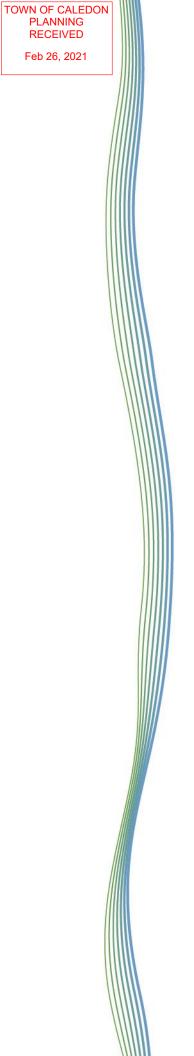
MTE Consultants. 2021. 12892 Dixie Road Proposed Industrial Development: Geotechnical Investigation.

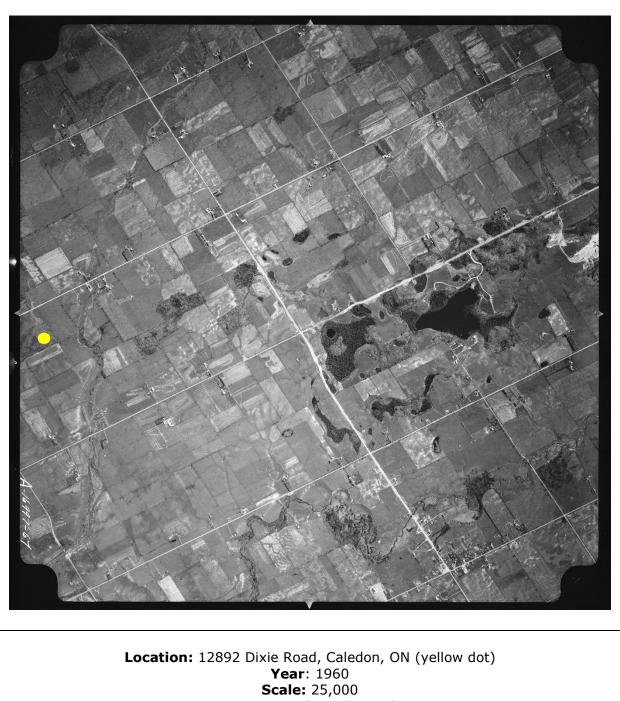

Ontario Geological Survey (OGS). 2010. Surficial geology of Southern Ontario. Ontario Geological Survey. Miscellaneous Release – Data 128-REV.

Richards, C., Haro, R.J., Johnson, L.B. and Host, G.E. 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology, 37: 219-230.

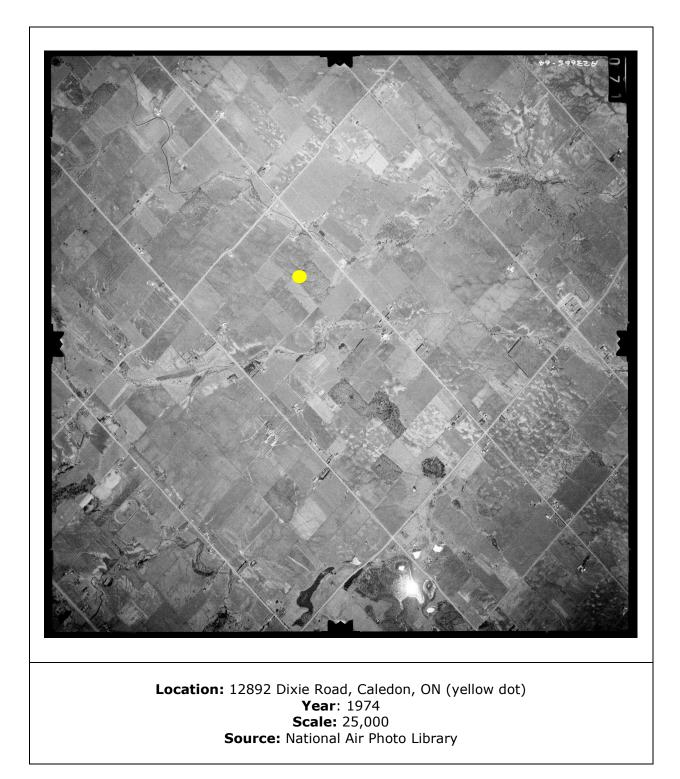
Toronto and Region Conservation Authority. 2004. Belt Width Delineation Procedures.

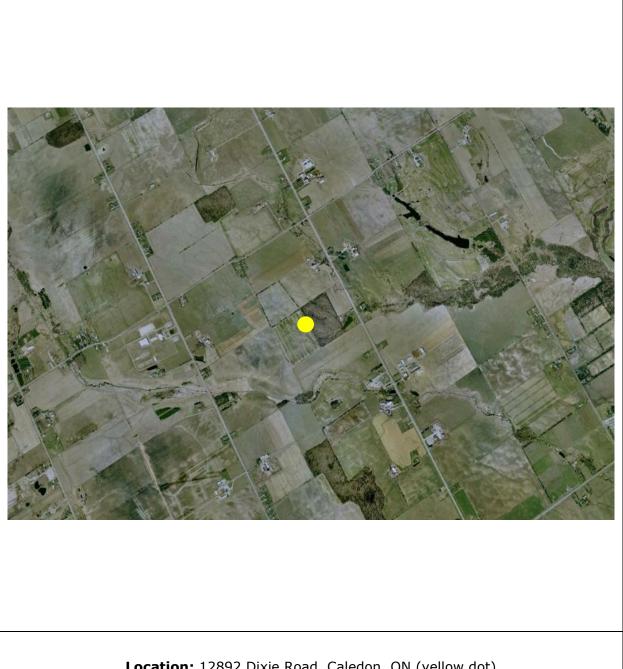

Toronto and Region Conservation Authority and Credit Valley Conservation. January 2014. Evaluation, Classification, and Management of Headwater Drainage Features Guideline.


Watershed Features: Humber River. 2021. <u>https://trca.ca/conservation/watershed-management/humber-river/watershed-features/</u>

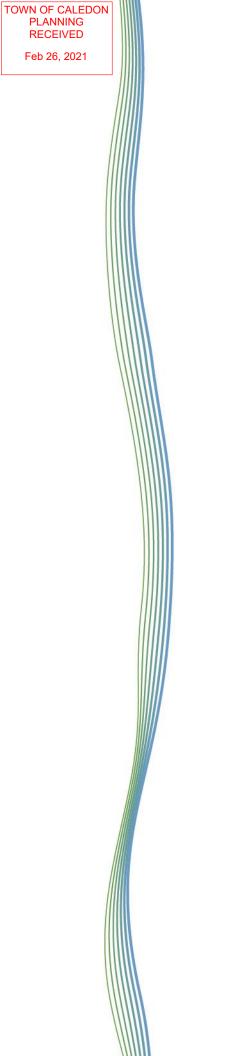

Appendix A Study Site Map and Reach Delineation

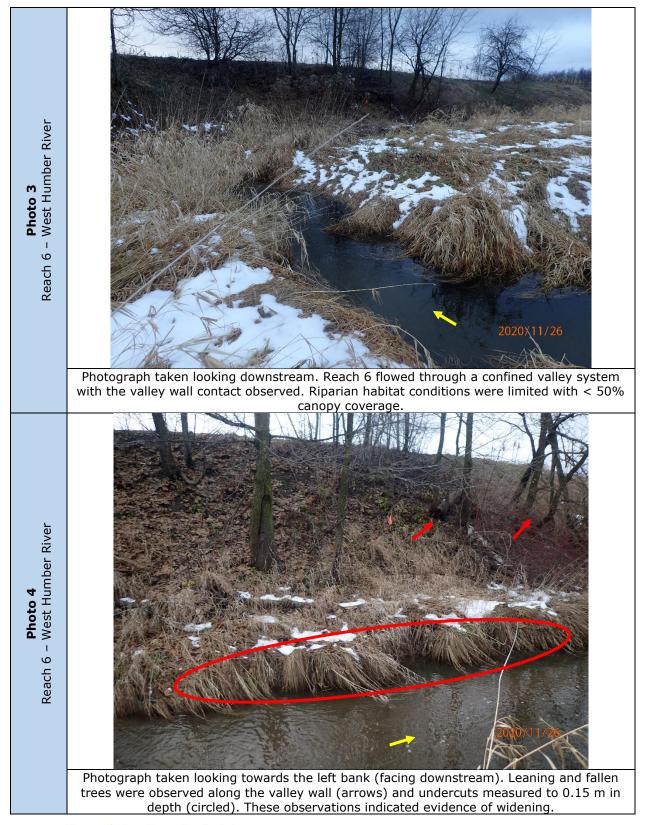
TOWN OF CALEDON

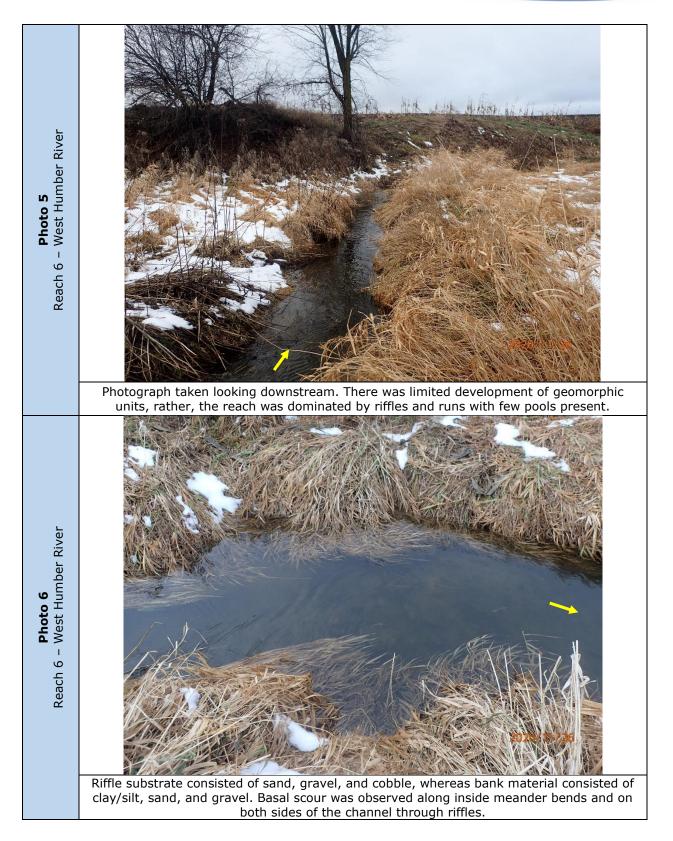


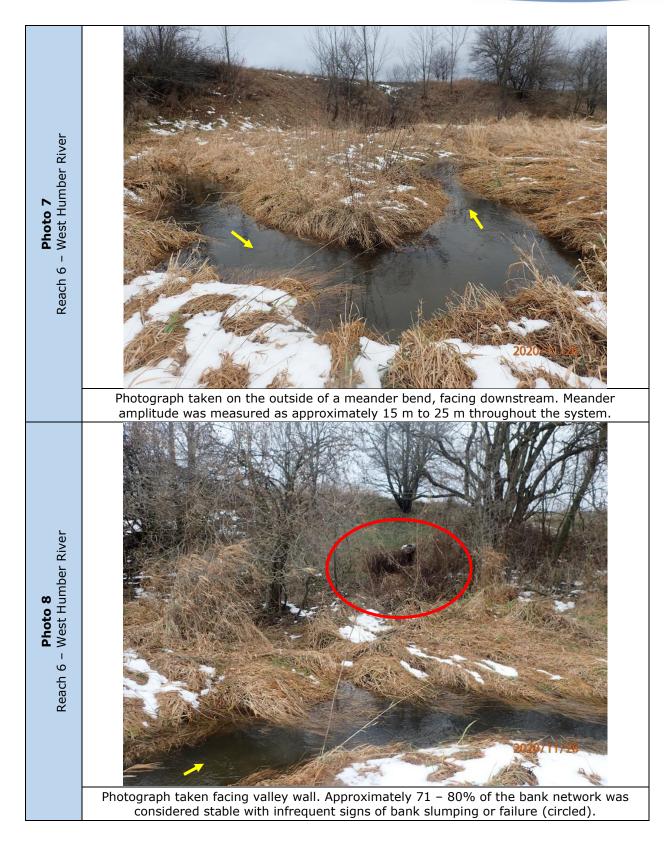


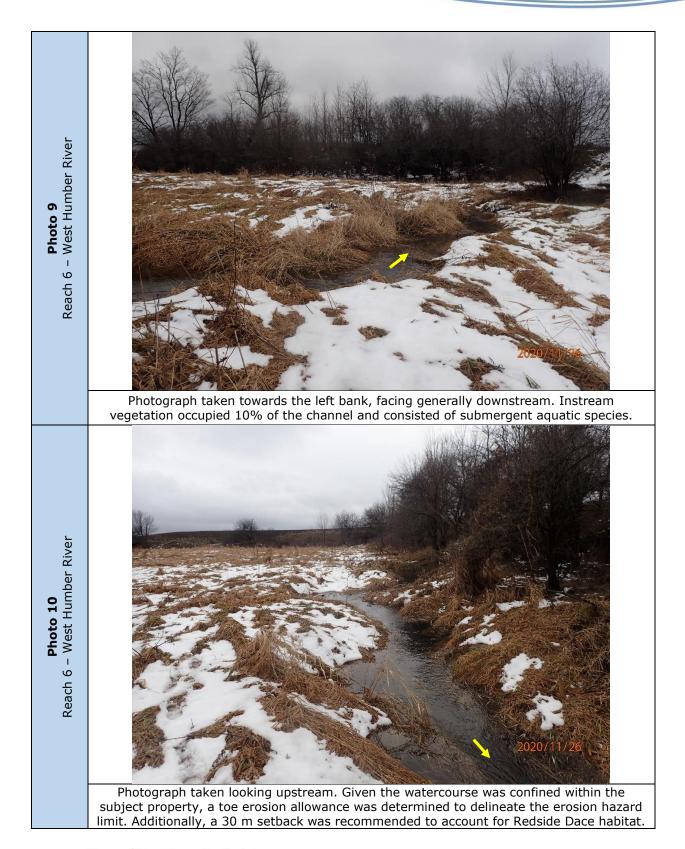
Appendix B Historical Aerial Photographs

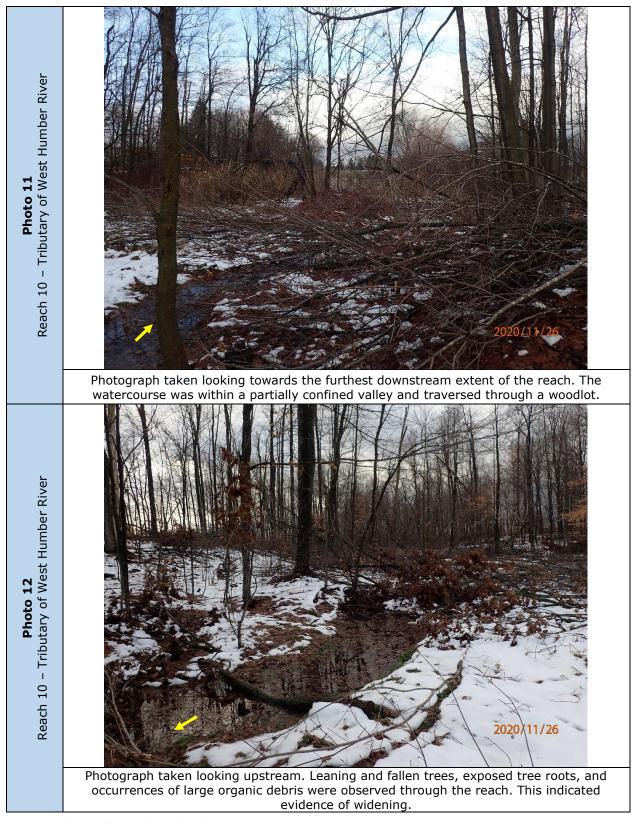

Source: National Air Photo Library

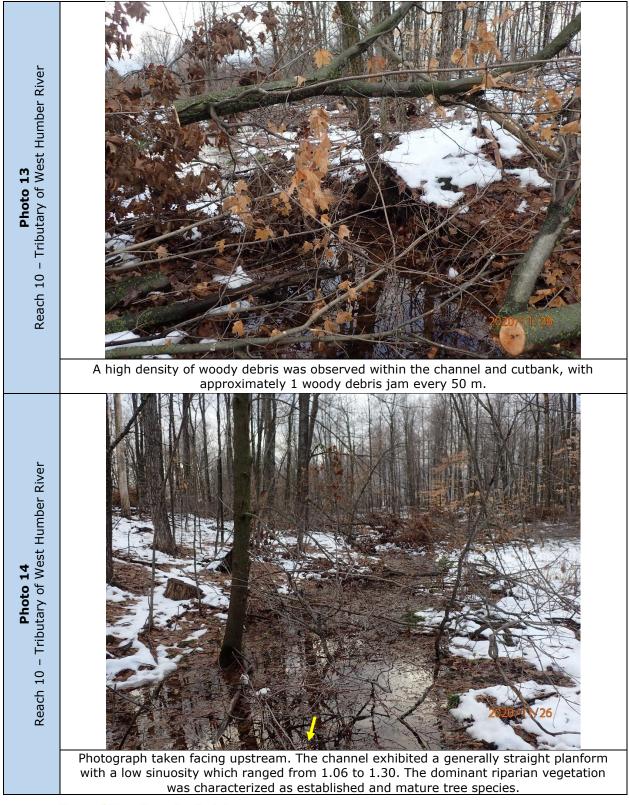

Location: 12892 Dixie Road, Caledon, ON (yellow dot) Year: 2005 Source: Google Earth Pro

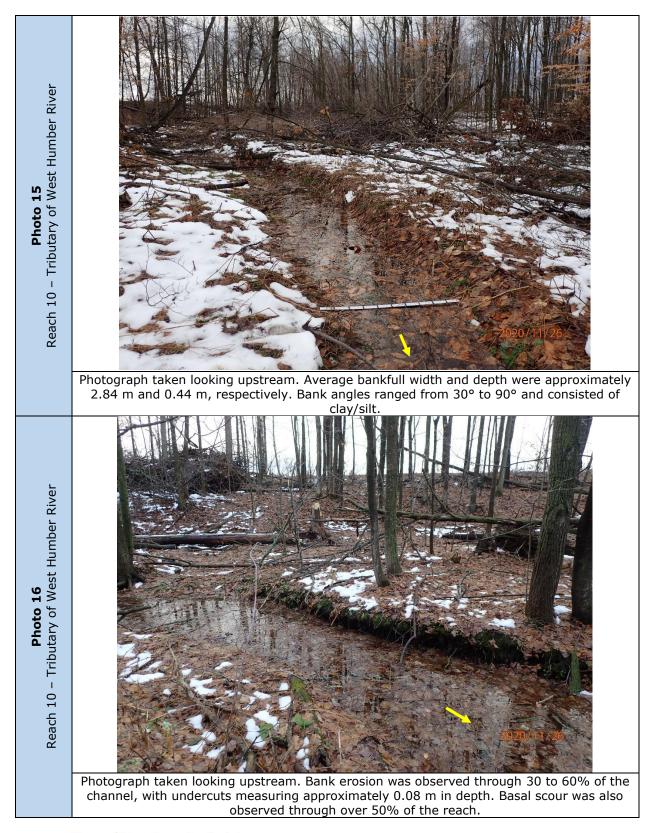


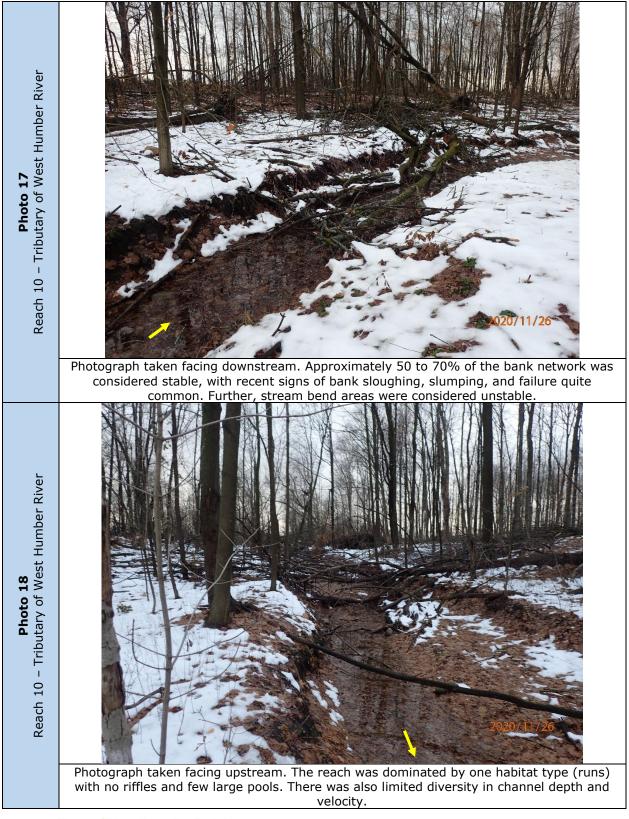


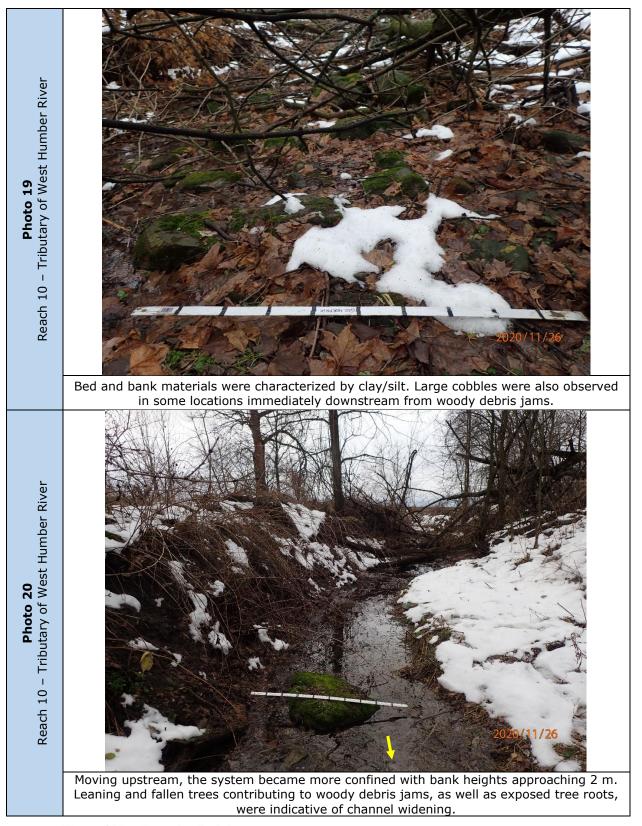

Appendix C Photographic Record

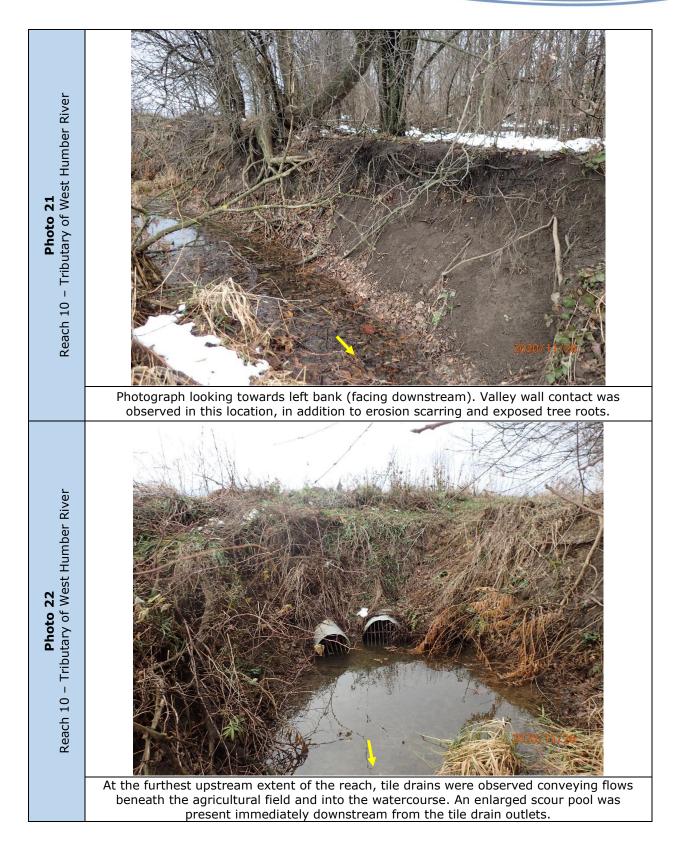


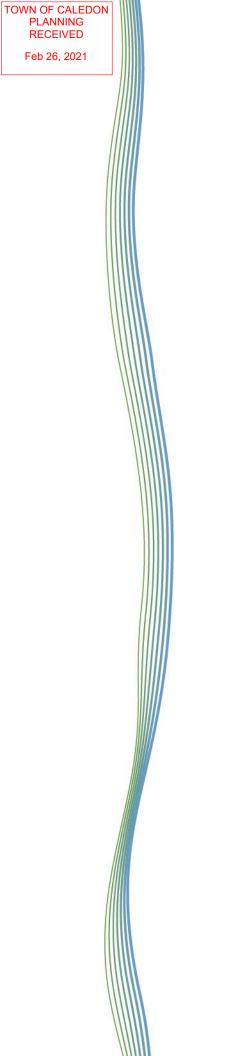












Appendix D Field Assessment Sheets

GEO

MORPHIX

General Site Characteristics

Project Code: PN20109

Date:		301	30-11-36	Stream/Reach:		REACH					
Weath	ner:	OVE	ACAST 11°C	Location:		19893	DIXIE	AD,	CALEDOP		
Field S	Staff:	CV	M 88	Watershed/Subw	vatershed:						
Featur				Site Sketch:		6	步于	1			
xx	Reach break			DOWNSTREAM	60 (X			- 7 -		
	Cross-section		x		2						
\sim	Flow direction Riffle				Q V		1		- N -		
\bigcirc	Pool			DRAIN	533						
CONTRO O	Medial bar			OLIMIN N	N	¥					
	Eroded bank						V	-			
	Undercut bank				X			4			
XXXXXX	Rip rap/stabilization	n/aahi	on		N N						
	Leaning tree	i/ gabi			4	-1					
XX	Fence			/x-		V			9		
	Culvert/outfall				54 1						
$\overline{\bigcirc}$	Swamp/wetland			J N	13/		V	V			
VVV	Grasses			Š (V			6		
G	Tree				NI				1 2		
	Instream log/tree								6		
***	Woody debris			W				2 2	2		
只	Station location			V (m 75% *	6	. 22	¥ ¢ 8			
	Vegetated island			0.5		5	00 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	l	6.1		
Flow T		in an an Albert Statistics for		S T	V AR C	୍ ବ୍	All St. A.	14	à		
H1	Standing water			4		0000		1	Š		
H2	Scarcely perceptible	e flow	J		(n n		1			
HЗ	Smooth surface flow	W		3 24			~	1			
H4	Upwelling				1	V	V		V		
Н5	Rippled			- Q	8-1						
H6	Unbroken standing	wave		č l					S		
H7	Broken standing wa	ave		S I	8 3		w/		2		
H8	Chute			3	3.3		V				
H9	Free fall			5	15						
Substr	ate					V					
S1	Silt	S6	Small boulder	u S				W			
S 2	Sand	S7	Large boulder	5	10/0						
53	Gravel	S 8	Bimodal	**	XXXX	×					
S 4	Small cobble	S 9	Bedrock/till			V V					
S5	Large cobble				83) . V					
Other	D		_		F K						
BM	Benchmark	EP	Erosion pin		5/ 7	67		V			
BS	Backsight	RB	Rebar			1		¥			
DS	Downstream	US	Upstream		G						
WDJ	Woody debris jam	TR	Terrace		660						
VWC	Valley wall contact	FC	Flood chute	UPSTREAM	Y W	- Contraction of the second se	Scale	NT:	5		
BOS	Bottom of slope	FP	Flood plain	Additional Notes	:	-					
TOS	Top of slope	KP	Knick point								

Completed by: <u>68</u> Checked by: _____

TOWN OF CALEDON PLANNING RECEIVED

Feb 26, 2021

Date:	303	0-11-36	Strea	am/Reach:	6				
Weather:	OVE	ACAST 77°C	Loca	tion:	12892	DIXIE	RO,	CALEDON	
Field Staff:	CVI	N 88	Wate	ershed/Subwatersh	ned:			1.01871	
			Geomorph	ic Indicator	Pre	sent?	Factor		
Process	No.	Description		- 2 - se		Yes	No	Value	
	1	Lobate bar		×					
	2	Coarse materials in	riffles embed	lded			×		
Evidence of	3	Siltation in pools	1				Ж	<u>.</u>	
Aggradation	4	Medial bars		×	°/a				
(IA)	5	Accretion on point b	ars				Х		
	6	Poor longitudinal so	rting of bed r	materials			X		
	7	Deposition in the ov		×					
					Sum of indices =	0	(The second	0	
	1	Exposed bridge foot	ing(s)			r3	A		
	2	Exposed sanitary / s	storm sewer	/ pipeline / etc.			X		
	3	Elevated storm sewe	er outfall(s)	¥			X		
	4	Undermined gabion		×					
Evidence of Degradation	5	Scour pools downstr		×	119				
(DI)	6	Cut face on bar form	ns				X		
	7	Head cutting due to	knick point i	migration			X		
	8	Terrace cut through	older bar ma	aterial			X		
	9	Suspended armour	layer visible	in bank	2		×		
	10	Channel worn into u	indisturbed o	verburden / bedrock		×			
	1	T		na na sa	Sum of indices =	1	8	0.11	
	1	Fallen / leaning tree	s / fence pos	sts / etc.	×				
	2	Occurrence of large		X					
	3	Exposed tree roots	×						
Fuidence of	4		sal scour on inside meander bends						
Evidence of Widening	5		asal scour on both sides of channel through riffle						
(WI)	6		flanked gabion baskets / concrete walls / etc.						
	7	Length of basal scou		+	×				
	8		and the second se	ried pipe / cable / etc			×		
	9	Fracture lines along				-	X		
	10	Exposed building for	undation		Sum of indices =		4/A	0.50	
	1	1			Sum of marces -		ч	0.30	
	1	Formation of chute(s)				X		
Evidence of	2	Single thread chann	el to multiple	e channel			×	,,	
Planimetric	3	Evolution of pool-rif	fle form to lo	w bed relief form			×		
Form	4	Cut-off channel(s)					×	01:	
Adjustment (PI)	5	Formation of island(У					
	6	Thalweg alignment					X		
	7	Bar forms poorly for	med / rewor	ked / removed	Constanting the second	+	X		
			r		Sum of indices =	0	7	0	
Additional note	es: 🗯 1	ELEVATED TILE			dex (SI) = (AI+I			10 G F 👹	
DAAINS 1	TOV	DUE TO	Condition	In Regime	In Transition/St			justment	
DEGRADA	1 ~ 1 ~ .	â.	SI score =	₲ 0.00 - 0.20	0.21 - 0.4	0		0.41	

2

Date: Weather: Field Staff:

> Evaluation Category

Channel Stability

Point range

Rapid Stre

2020-11-26	Stream/Reach:		REACH 6	
OVERCAST 11°C	Location:		12892 DIXI	e 80
CVM BB	Watershed/Subwater	rshed:		
 Poor	Fair		Good	Excellent
stable	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	stable • Infreque	of bank network ent signs of bank g, slumping or	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure
unstable • Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) • Bank overhang > 0.8-1.0	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	 Outer bandle m above 1.5 m a for large 	bend areas stable ank height 0.6-0.9 e stream bank (1.2- bove stream bank e mainstem areas) erhang 0.6-0.8 m	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
abundant	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	predomi large, si scarce	tree roots nantly old and naller young roots nt large tree falls am mile	 Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile
highly erodible material • Plant/soil matrix severely	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	generall	1/3 of bank is y highly resistant il matrix or material	 Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material
 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally trapezoidally- shaped 		cross-section is y V- or U-shaped	 Channel cross-section is generally V- or U-shaped
□ 0 □ 1 □ 2	□ 3 □ 4 □ 5	0 6	□ 7 1⊠ 8	□ 9 □ 10 □ 11
 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60- 85% embedded for large mainstem areas) 	59% em	embedded (35- bedded for large m areas)	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
Few, if any, deep pools Pool substrate	Low to moderate number of deep pools	Moderat	e number of deep	High number of deep pools (> 61 cm deep)

Point range	0 0 1 0 2	□ 3 □ 4	0506	5,7 🗆 8
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	 Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand 	• Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	Streambed streak marks and/or "banana"-shaped sediment deposits common	 Streambed streak marks and/or "banana"-shaped sediment deposits uncommon 	 Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition 30-59% sand-silt 	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition <30% sand-silt
· · · · · · · · · · · · · · · · · · ·	 > 75% embedded (> 85% embedded for large mainstem areas) 	• 50-75% embedded (60- 85% embedded for large mainstem areas)	• 25-49% embedded (35- 59% embedded for large mainstem areas)	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)

TOWN OF CALEDON PLANNING RECEIVED

Feb 26, 2021

3030 - 11 - 36	Reach: REACH	Project Code:	PN 20109		
Poor	Fair	Good	Excellent		
 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) Dominated by one babitat 	• Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas)	Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas)	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas) Riffles, runs and pool 		
 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 rew pools present, nines and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good find between filles, runs and pools Relatively diverse velocity and depth of flow 	 habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water) 		
 Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble 		
 Riffle depth < 10 cm for large mainstem areas 	• Riffle depth 10-15 cm for large mainstem areas	• Riffle depth 15-20 cm for large mainstem areas	 Riffle depth > 20 cm for large mainstem areas 		
 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	46 cm deep (61-91 cm for large mainstem areas) with little or no	cm deep (91-122 cm for large mainstem areas) with some overhead	 Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure 		
 Extensive channel alteration and/or point bar formation/enlargement 	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	 Slight amount of channel alteration and/or slight increase in point bar formation/enlargement 	No channel alteration or significant point bar formation/enlargement		
• Riffle/Pool ratio 0.49:1 ; ≥1.51:1	Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1	• Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1	Riffle/Pool ratio 0.9-1.1:1		
 Summer afternoon water temperature > 27°C 	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	 Summer afternoon water temperature < 20°C 		
0 0 1 0 2	□ 3 □ 4	🗭 5 🗆 6	□ 7 □ 8		
 Substrate fouling level: High (> 50%) 	Substrate fouling level: Moderate (21-50%)	Substrate fouling level: Very light (11-20%)	Substrate fouling level: Rock underside (0-10%)		
 Brown colour TDS: > 150 mg/L 	Grey colourTDS: 101-150 mg/L	• Slightly grey colour • TDS: 50-100 mg/L	 Clear flow TDS: < 50 mg/L 		
• Objects visible to depth < 0.15m below surface	• Objects visible to depth 0.15-0.5m below surface	 Objects visible to depth 0.5-1.0m below surface 	 Objects visible to depth 1.0m below surface 		
 Moderate to strong organic odour 	 Slight to moderate organic odour 	 Slight organic odour 	• No odour		
0 0 1 2	□ 3 □ 4	□ 5 🕅 6	□ 7 □ 8		
 Narrow riparian area of mostly non-woody vegetation 	 Riparian area predominantly wooded but with major localized gaps 	 Forested buffer generally > 31 m wide along major portion of both banks 	 Wide (> 60 m) mature forested buffer along both banks 		
 Canopy coverage: <50% shading (30% for large mainstem areas) 	 Canopy coverage: 50- 60% shading (30-44% for large mainstem areas) 	 Canopy coverage: 60-79% shading (45-59% for large mainstem areas) 	 Canopy coverage: >80% shading (> 60% for large mainstem areas) 		
0 1			□ 6 □ 7		
	Poor • Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas)	Poor Fair Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas) Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) Few pools present, riffles and runs dominant, velocity and depth diversity intermediate) Riffle substrate composition: predominantly gravel with high amount of sand Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble Riffle depth < 10 cm for large mainstem areas Riffle depth 10-15 cm for large mainstem areas Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure Riffle/Pool ratio 0.49:1 ; ≥1.51:1 Niffle/Pool ratio 0.49:1 ; ≥1.51:1 Summer afternoon water temperature > 27°C Moderate fouling level: Moderate (21-50%) Brown colour Substrate fouling level: Moderate (21-50%) Brown colour Substrate fouling level: Moderate (21-50%) Moderate to strong organic odour Silight to moderate organic odour 0 1 2 3 4 Narrow riparian area of mostly non-woody vegetation Riprain area pred	Poor Fair Good • Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) • Wetted perimeter 61-85% of bottom channel width (45-65% for large mainstem areas) • Wetted perimeter 61-85% of bottom channel width (45-65% for large mainstem areas) • Dominated by one habitat type (usually runs) and pools dominant, velocity and depth diversity low) and depth diversity low) and pools dominant, velocity and depth diversity low) and pools dominanty gravel with high amount of sand < 5% cobble		

Completed by: _____88___ Checked by: ____

GEO MORPHIX Geomorphology Earth Science Observations

÷.

Feb 26, 202 Reach Characteristics

Project Code: PN 20109

Date:	2020 - 11 - 26	Stream/Reach:	REACH 6				
Weather:	OVERCAST 11°C	Location:	13892 DIXIE	RD. CALE	N DO		
Field Staff:	CVM 60	Watershed/Subwatershed:			Self 2.8 8 30		
UTM (Upstream)		UTM (Downstream)				ana ya kuta na	
Land Use (Table 1) 3	Valley Type (Table 2) Channel Type (Table 3) Channel 13 Channel (Table 3)	Zone Flow Type ble 4) (Table 5)	1 □Groundwater	Evidence:			
Riparian Vegetation		Aquatic/Instream Ve	getation	Water	Quality		
(Table 6) 3	Overage:Channel widthsAge Class (yrs):Encroachmen EncroachmenNone1-4Immature (<5)(TableFragmented4-1012Established (5-30)2Continuous> 10Mature (>30)3	7) Woody Debris	el 🗆 Moderate 🗆		1	Table 16) r (Table 17)	
Channel Characterist	tics						
Sinuosity (Type)	Sinuosity (Degree) Gradient Nur	nber of Channels	Clay/Silt Sand	Gravel Cobb	le Boulder	Parent	Rootlets
(Table 9)	5 (Table 10) 3 (Table 11) 3 (Ta	ble 12) 1 Riffle Substr	ate 🗆 😾				
Entrenchment	Type of Bank Failure Downs's Classification	Pool Substr	ate 🗆 🕱				
(Table 13)	(Table 14) 3/6 (Table 15) C	Bank Materia	I 15⊀ 150				
Bankfull Width (m) EST Bankfull Depth (m) EST	1.50 1.75 2.35 Wetted Width (m) 0.65 0.70 1.00 Wetted Depth (m) EST EST EST	1.20 1.60 2.00 0.55 0.60 0.90	Bank Angle □ 0 - 30 □ 30 - 60 1 60 - 90	Bank Erosion □ < 5% □ 5 - 30% ☑ 30 - 60%	Notes:		
Riffle/Pool Spacing (Pool Depth (m) Velocity (m/s) NOT MEASUR	0.50 Riffle Length (m) Viffle ball / ADV	0.15 Comments:	5-75 D Undercut	□ 60 - 100%			
·FEWING RI	FFLES PRESENT WETTED MEASUREMENTS ESTIMATED		Completed by	88	 Checked b	y:	

Geomorphology Earth Science Observations

General Site Characteristics

Project Code: PN 20109

Date:		306	10-11-2) 6	Stre	Stream/Reach:				RE	REACH 9						
Weath	ier:	OVE	ACAST	1100	Location:				10890 DIXIE ND, CALER				EDO				
Field S	Staff:	CAI	M 88		Wat	tersh	ed/S	Subwat	tersh	ed:							
Featur	es				Site	Sket	ch:			ONLI	NE						
	Reach break				DO	WNS	TRE	MA .		/ 10	NV V					Sec.	
××	Cross-section							-		$\boldsymbol{\lambda}$						R	
	Flow direction									(E)	1	k Y				NI	
\sim	Riffle						HETI	LAND		37.1			MAAI	SM1	TES/	N	
\bigcirc	Pool						ARE	EA				4	саттр	1112		0	1
	Medial bar									1						Y	
#########	Eroded bank															RED A SCORE	
	Undercut bank						0			-	51	ALCONT.	ର)		ARALINES.	
XXXXX	Rip rap/stabilization	n/gabio	on							IN	**	- PR			Q	Surviva a	
	Leaning tree									Δ	2		0			Q	
XX	Fence					~				(7	قن		a c	>			
	Culvert/outfall					0				L	XE	213					And a local distance of the local distance o
\bigcirc	Swamp/wetland									×		-			6	2	
VVV	Grasses									Js'	VC	3					
0	Tree					_	Q			HZ			-		C	Contraction of the second seco	
	Instream log/tree								1	ne		Q	6	8		Q	14
***	Woody debris				•				11		~						3
<u>म</u>	Station location				-	0		- /	1		0	0					DAINEW
	Vegetated island					U		¥¥	1	893		v					3
Flow T							7	h	1				<i>e</i> 4	en la	Q	- in	0
H1	Standing water							1	-	¥ O	70	>	G	3		502	
H2	Scarcely perceptible								4	X	20	0	6			-	3
H3	Smooth surface flow	N				C				ξX						0	AAVEN
H4	Upwelling					v				X	¥11.	-			¢	- Jack	0
H5	Rippled							m		11/2	Ŧ		0	-		1-1-	Si in
H6 H7	Unbroken standing							0		1	18)	w	0		G	2504060
н/ Н8	Broken standing wa Chute	ive									3	-	-			1	ALC: NO.
H9	Free fall									10	=	3			0	P	Calved Services
Substra		······································								D	=	-					- dependence in
Substra	Silt	56	Small bould	for							P					Q	vencion-ray
S2	Sand	50 57	Large bould		4	9		Q		07	7	Q		G	~	V	100000
S3	Gravel	S8	Bimodal								35/	v				+	Shipked 220
S4	Small cobble	S9	Bedrock/til							¥¥)	H						and a state
S5	Large cobble	55								10		~				ଷ	KAS ADDRESS
Other							0			x y		0					
BM	Benchmark	EP	Erosion pin						UX	10				G	2	1 and 10 50 200	and an action of the second se
BS	Backsight	RB	Rebar		~~~		+	\$	ž,	2	G	>					ALC: NO DE CONTRACTOR O
DS	Downstream		Upstream		¢				1	1-		T	neei	NI,	6		10 CONTRACTOR
WDJ	Woody debris jam		Terrace						A REAL PROPERTY.		TILE	008	1845				and and a second se
vwc	Valley wall contact	FC	Flood chute		110	STA	6 8 84		}	171	LIFE	A 6 3 43	Sca	le:	NT	¢	0
BOS	Bottom of slope	FP	Flood plain					otes:	1						0 2 8	2	
			oca piani		mut	annor	141 141	0003.									

Completed by: _____ Checked by: _____

1

Feb 26, 2021

GEO MORPHIX

Rapid Geomorphic Assessment

Project Code: PN20109

Date:	303	0-11-26	Strea	m/Reach:	De: PN3010								
Weather:			Loca		13893 0		8.6						
		ACAST 1100											
Field Staff:	CVA	n 99	wate	rshed/Subwatersh	ed:								
Process			Geomorphi	c Indicator		Pre	sent?	Factor					
	No.	Description			Yes	No	Value						
	1	Lobate bar					X						
	2	Coarse materials in rif	fles embec	ded			Х						
Evidence of	3	Siltation in pools					X						
Aggradation	4	Medial bars					×	013					
(AI)	5	Accretion on point bar		×									
	6	Poor longitudinal sorti	ng of bed r	naterials			×						
	7	Deposition in the over	bank zone			×							
					Sum of indices =	0	4	0					
	1	Exposed bridge footing	g(s)		×	N	A						
	2	Exposed sanitary / sto	rm sewer	/ pipeline / etc.			×						
	3	Elevated storm sewer			· · · · · · · · · · · · · · · · · · ·		x						
	4	Undermined gabion ba		NA									
Evidence of	5	Scour pools downstrea		×	°/8								
Degradation (DI)	6	Cut face on bar forms		x	• 0								
	7	Head cutting due to ki	nick point r	nigration			×						
	8	Terrace cut through ol	and the second second second second				X						
	9	Suspended armour lay					X						
	10	Channel worn into und	listurbed o	verburden / bedrock			×	K					
					Sum of indices =	o	8	0					
	1	Fallen / leaning trees ,	fence pos	ts / etc.		x							
	2	Occurrence of large or	×										
	3	Exposed tree roots	X										
	4	Basal scour on inside		×									
Evidence of	5	Basal scour on both si		X	418								
Widening (WI)	6	Outflanked gabion bas	801	IA									
(111)	7		ength of basal scour >50% through subject reach										
	8	Exposed length of pre-		×	X								
	9	Fracture lines along to					×						
	10	Exposed building foun			8	AIA							
	1				Sum of indices =	rł	4	0.5					
	1	Formation of chute(s)					×						
5	2	Single thread channel	to multiple	channel	1 - 188		X						
Evidence of Planimetric	3	Evolution of pool-riffle					X						
Form	4	Cut-off channel(s)					>	117					
Adjustment	5	Formation of island(s)		×	.14								
(PI)	6	Thalweg alignment ou		X									
	7	Bar forms poorly form				X							
			'		Sum of indices =	1	5	0.10					
				Stability In	dex (SI) = (AI+D		PT)/4 -	0.11					
Additional note	s:			Stability In	dex(31) = (A1+b)	AT WATT		~ **					
Additional note	s:		Condition		In Transition/St		In Adjus						

Completed by: 88 Checked by: _____

Rapid Stream Assessment Technique

Date:	3030-11-36	Stream/Reach:		DEACH 9 13892 DIXIE AD					
Weather:	OVERCAST 1100	Location:							
Field Staff:	CVM BB	Watershed/Subwater	rshed:						
Evaluation Category	Poor	Fair		Good	Excellent				
Channel Stability	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	stable • Infrequ	o of bank network ent signs of bank ng, slumping or	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure 				
	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	unstable • Out • Outer bank height 0.9- 1.2 m above stream 1.5 bank for l		bend areas stable ank height 0.6-0.9 e stream bank (1.2- bove stream bank e mainstem areas) verhang 0.6-0.8 m	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m 				
	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	predom large, s scarce • 2-3 rec	d tree roots inantly old and maller young roots ent large tree falls eam mile	 Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile 				
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	general	1/3 of bank is ly highly resistant bil matrix or material	Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material				
	Channel cross-section is generally trapezoidally- shaped	 Channel cross-section is generally trapezoidally- shaped 		l cross-section is ly V- or U-shaped	Channel cross-section is generally V- or U-shaped				
Point range	0 0 1 0 2	03 🛛 4 0 5	- 6	5 🗆 7 🗆 8	9 10 11				
Channel Scouring/ Sediment Deposition	• > 75% embedded (> 85% embedded for large mainstem areas)	50-75% embedded (60- 85% embedded for large mainstem areas)	59% er	embedded (35- nbedded for large em areas)	Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)				
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition 30-59% sand-silt 		 High number of deep poo (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate compositio <30% sand-silt 				
	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	and/or	bed streak marks "banana"-shaped nt deposits non	 Streambed streak marks and/or "banana"-shaped sediment deposits absent 				
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 		 Fresh, large sand deposit rare or absent from channel No evidence of fresh sediment deposition on overbank 				
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	well-ve	ars small and stable, getated and/or ed with little or no and	 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand 				
Point range	0 0 1 0 2	□ 3 □ 4	5	5 🗆 6	□ 7 □ 8				

Date:	3030-11-36	Reach: DEACH	t 9 Project Code:	PNZOTOS		
Evaluation Category	Poor	Fair	Good	Excellent		
NO RIFFLES Physical Instream	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas)	 Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas) 	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas) 		
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, riffles and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water) 		
	 Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble 		
Habitat	 Riffle depth < 10 cm for large mainstem areas 	• Riffle depth 10-15 cm for large mainstem areas	 Riffle depth 15-20 cm for large mainstem areas 	Riffle depth > 20 cm for large mainstem areas		
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure	Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure	Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure		
	 Extensive channel alteration and/or point bar formation/enlargement 	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	 Slight amount of channel alteration and/or slight increase in point bar formation/enlargement 	 No channel alteration or significant point bar formation/enlargement 		
	• Riffle/Pool ratio 0.49:1 ; ≥1.51:1	• Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1	• Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1	Riffle/Pool ratio 0.9-1.1:1		
NIA	 Summer afternoon water temperature > 27°C 	Summer afternoon water temperature 24-27°C	Summer afternoon water temperature 20-24°C	 Summer afternoon water temperature < 20°C 		
Point range	0 0 1 🛛 2	□ 3 □ 4	□ 5 □ 6	0708		
	 Substrate fouling level: High (> 50%) 	Substrate fouling level: Moderate (21-50%)	• Substrate fouling level: Very light (11-20%)	Substrate fouling level: Rock underside (0-10%)		
	 Brown colour TDS: > 150 mg/L 	• Grey colour • TDS: 101-150 mg/L	 Slightly grey colour TDS: 50-100 mg/L 	Clear flow TDS: < 50 mg/L		
Water Quality	 Objects visible to depth < 0.15m below surface 	• Objects visible to depth 0.15-0.5m below surface	• Objects visible to depth 0.5-1.0m below surface	Objects visible to depth > 1.0m below surface		
	 Moderate to strong organic odour 	 Slight to moderate organic odour 	• Slight organic odour	• No odour		
Point range	0 0 1 2	0304	ጆ 5 □ 6	0708		
Riparian Habitat Conditions	 Narrow riparian area of mostly non-woody vegetation 	 Riparian area predominantly wooded but with major localized gaps 	 Forested buffer generally > 31 m wide along major portion of both banks 	 Wide (> 60 m) mature forested buffer along both banks 		
	 Canopy coverage: <50% shading (30% for large mainstem areas) 	Canopy coverage: 50- 60% shading (30-44% for large mainstem areas)	 Canopy coverage: 60-79% shading (45-59% for large mainstem areas) 	 Canopy coverage: >80% shading (> 60% for large mainstem areas) 		
Point range	001	□ 2 🕵 3	0405	□ 6 □ 7		
Total overall se	core (0-42) = 19	Poor (<13)	air (13-24) Good (25-3	B4) Excellent (>35)		

Completed by: _____ Checked by: _____

TOWN OF CALEDON
PLANNING
RECEIVED

Feb 26, 2021

GEO

Geomorpholog Earth Science Observations

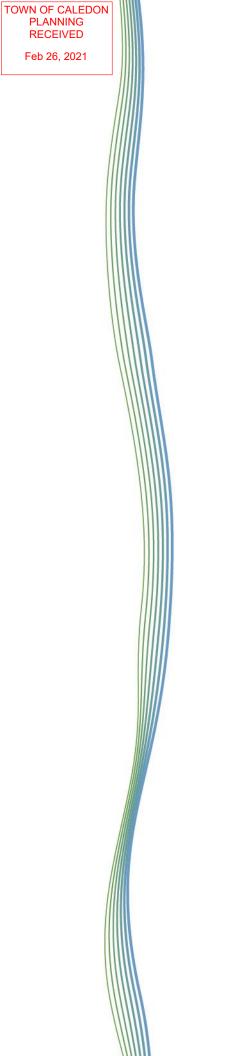
MORPHIX

Reach Characteristics

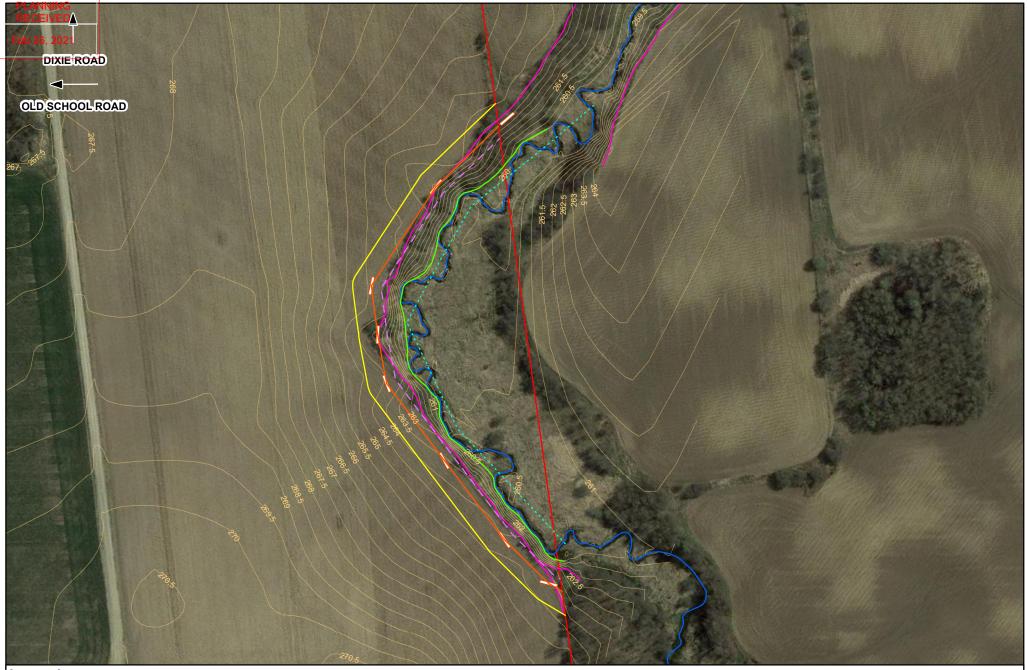
Project Code: PN 20109

Date:	2020-11-26 OVERCAST 11°C CVM BB		Stream/Reach:	REACH 9 10890 DIXIE RD									
Weather:			Location:										
Field Staff:			Watershed/Subwatershed:										
UTM (Upstream)				UTM (Downstream)				11 11					
Land Use (Table 1)	Valley Type (Table 2)	Channel Type (Table 3)	Channel : (Tab	Zone 3 Flow Type ble 4) 3 (Table 5)	Ground	water	E١	vidence:	NONE				
Riparian Vegetation				Aquatic/Instream Ve	Aquatic/Instream Vegetation Water C					Juality			
(Table 6) 1	overage: Channel widths None 1-4 Fragmented 2 Continuous > 1	4 □ Immature (<5) 10 ☑ Established (5-30	Encroachmen (Table)	7) Woody Debris		D: WDJ/50r			1	Table 16) (Table 17)			
Channel Characteris	tics			-					•				
Sinuosity (Type)	Sinuosity (Deg	ree) Gradient	Num	nber of Channels	Clay/Silt	Sand (Gravel	Cobble	Boulder	Parent	Rootlets		
(Table 9)	1 (Table 10)	a (Table 11)	L (Tab	ole 12) 1 Riffle Substr									
Entrenchment	Type of Bank	Failure Downs's Classi	fication	Pool Substr									
(Table 13)	(Table 14)	a (Table 15)		No Bank Material									
Bankfull Width (m)		.04 4.30 Wetter	l Width (m)	0.86 1.30 1.52	Bank /		Bank Er □ < 5%		Notes:				
Bankfull Depth (m) 0.39 0.47 0.57 Wetted Depth (m)		80.0 00.0 80.0			□ 5 – 3 ⊠ 30 –								
Riffle/Pool Spacing	(m) 📢 🗛	% Riffles: 👩 % P	ools: C	Meander Amplitude:	N/A X Un		□ 60 -						
Pool Depth (m)	N/A Riffle	e Length (m) 📢 🛝 U	Indercuts (m)	0.08 Comments:									
Velocity (m/s)	0	o o Wif	fle ball / ADV	Estimated									
STRNDING	WATER												

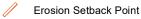
· HIGH AMOUNT OF WOODY DEBRIS


Completed by: _____ Checked by: _____

1


* NO PIFFLES/ POOLS, 100 % PUNS

" UNDERCUT, FALLEN TREES


17

Appendix E Erosion Setback Mapping

Legend

Stable Top of Slope

Toe of Slope

- 5 m Erosion Setback
 - 10 m Erosion Setback Allowance 🔨
- Top of Slope
 Watercourse
 Watercourse Central Tendency
 Subject Land Boundary

0.5 m Contour

12892 Dixie Road

Preliminary Erosion Setback

Caledon, Ontario

Imagery: Google Earth Pro, 2018. Top of Slope, Subject Land Boundary, and 0.5 m Cntours. A wis Surveying Inc., 2020. Erosion Setback Pohl Line / Allowance, Stable Top of Slope, Vaterocurse Central Tendency, and Tee of Slope. (SEO Morphix Ld., 2020. Waterocurse: Region of Ped, 2020. Printed: February 2021. PN20109. Drawn by M.H., J.M., P.V.