

12304 Heart Lake Road, Caledon, Ontario

L7C 2J2 Updated Hydrogeological Investigation and Water Balance Assessment Report

Client: Broccolini Limited Partnership No. 6 2680 Skymark Avenue, Suite 800, Mississauga, Ontario L4W 5L6

Attention: Mr. Ben Wilson

Type of Document: Final

Project Name: 12304 Heart Lake Road, Caledon, Ontario

Project Number: BRM-21004344-D0

EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: 905.793.9800 f: 905.793.0641

Date Submitted: 2022-03-16

Table of Contents

1	Introd	luction 4	Ļ
	1.1	Project Description	4
	1.2	Project Objectives	4
	1.3	Scope of Work	5
	1.4	Review of Previous Reports	6
2	Hydro	geological Setting7	,
	2.1	Regional Setting	7
	2.1.1	Regional Physiography	7
	2.1.2	Regional Geology and Hydrogeology	7
	2.1.3	Existing Water Well Survey	8
	2.2	Site Setting	8
	2.2.1	Site Topography	8
	2.2.2	Local Surface Water Features	8
	2.2.3	Vulnerability Mapping	8
	2.2.4	Local Geology and Hydrogeology	9
3	Result	ts 11	
	3.1	Monitoring Well Details	11
	3.2	Water Level Monitoring	11
	3.3	Hydraulic Conductivity Testing	13
	3.4	Groundwater Quality	13
	3.5	Infiltration Testing	15
4	Wate	r Balance Study 16	5
	4.1	Background Information	16
	4.2	Methodology	16
	4.3	Meteorological Data	17
	4.4	Pre- and Post-Development Site Characteristics	17
	4.4.1	Pre-Development Site Characteristics	17
	4.4.2	Post-Development Site Characteristics	18

1

		Updated Hydrogeological Investigation and Water Balance Assessment Report BRM-21004344-D0 March 16, 2022	
	4.5	Pre-Development Water Balance Estimates	18
	4.5.1	Climate Data Analysis	18
	4.5.2	Infiltration	19
	4.5.3	Pre-Development Water Balance Analysis	19
	4.6	Post-Development Water Balance Estimates	20
	4.6.1	Post-Development Water Balance	20
	4.7	Impact and Proposed Mitigation Measures	21
5	Dewa	tering Assessment	
	5.1	Dewatering Flow Rate Estimate and Zone of Influence	23
	5.2	Cooper-Jacob's Radius of Influence	23
	5.3	Stormwater	23
	5.4	Results of Dewatering Rate Estimates	24
	5.4.1	Construction Dewatering Rate Estimate	24
	5.4.2	Post-Construction Dewatering Rate Estimate	25
	5.5	MECP Water Taking Permits	25
	5.5.1	Short-Term Discharge Rate (Construction Phase)	25
6	Enviro	nmental Impacts	
	6.1	Surface Water Features	27
	6.2	Groundwater Sources	27
	6.3	Geotechnical Considerations	27
	6.4	Groundwater Quality	27
	6.5	Well Decommissioning	28
7	Concl	usions and Recommendations	
8	Limita	tions	
9	Refere	ences	

3

List of Figures

- Figure 1 Site Location Plan
- Figure 2 Surficial Geology
- Figure 3A MECP Water Well Records Map
- Figure 3B Vulnerability Mapping
- Figure 4 Borehole/Monitoring Well Location Plan
- Figure 5 Cross Section A-A
- Figure 6 Groundwater Contour Map
- Figure 7 Existing Land use
- Figure 8 Proposed Land Use
- Figure 9 Existing Slope

List of Appendices

- Figures
- Appendix A MECP WWR Summary Table
- Appendix B Borehole Logs
- Appendix C SWRT Procedures and Results
- Appendix D Laboratory Certificates of Analysis
- Appendix E Infiltration Rate Testing Results
- Appendix F Water Balance Analysis
- Appendix G Construction Dewatering Flow Rate Calculations

1 Introduction

1.1 Project Description

EXP Services Inc. (EXP) was retained by Broccolini Limited Partnership No. 6. (the 'Client') to prepare an Updated Hydrogeological Investigation and Water Balance Assessment Report associated with the proposed development located at 12304 Heart Lake Road, Caledon, Ontario (hereinafter referred to as the 'Site').

The project Site occupies an area of 30.04 hectares (91.52 acres) and is located on the west side of Heart Lake Road, with frontage centered approximately 845 m north of Mayfield Road, in the Town of Caledon, Ontario. Currently two (2) residences, one (1) farmhouse and associated farm buildings are located at the Site.

EXP understands that the proposed development will consist of two (2) single storey slab on grade buildings (Buildings 1 and 2) without basements. Proposed development includes supporting truck loading docks, paved accessways, sewers, and truck and passenger vehicle parking areas. The proposed buildings (Buildings 1 and 2) will have a footprint of approximately 48,656 and 29,830 m², respectively. The Site location plan is shown on Figure 1. The proposed Site Plan for Buildings 1 and 2 is provided in Attachment 1.

EXP completed a Geotechnical Investigation and Phase 1 Environmental Site Assessment in 2021 and thirty (30) boreholes including five (5) monitoring wells covering the total site area were installed as part of the geotechnical investigation. A hydrogeological investigation also was completed for the Site (EXP, November 2021) to cover Phase 1 area of the Site. The pertinent information gathered from the noted investigations is utilized for this updated hydrogeological report.

1.2 Project Objectives

The main objectives of the Updated Hydrogeological Investigation and Water Balance Assessment Report are as follows:

- Establish the local hydrogeological settings within the Site;
- Assess construction dewatering flow rates and potential impacts;
- Assess groundwater quality;
- Conduct a well survey (desktop);
- Develop a site-specific water balance for pre- and post-development conditions using a Thornthwaite-Mather water balance approach and provide water balance deficits between pre- and post-development conditions (desk top study);
- Conduct one (1) year of water level monitoring at the Site; and,
- Prepare a Updated Hydrogeological Investigation and Water Balance Assessment Report.

EXP has prepared the following work program to fulfill the objectives listed above.

[%]ехр.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

- Reviewed available geological information including geological and hydrogeological mapping, source water protection (SGRA, HVA, WHPA etc.);
- Developed and conducted Single Well Response Tests (SWRT) on all five (5) monitoring wells installed during the geotechnical investigation.
- Conducted two (2) rounds of water levels after the well installation and five (5) rounds of water level measurements in all monitoring wells for one (1) year as per conservation authority requirements (bi-monthly measurements) including the installation of three (3) data loggers for continuous groundwater monitoring.

Note: One (1) year bi-monthly water level monitoring program is currently in progress

- Completed four (4) shallow infiltration test by hand auguring to less than one (1) mbgs.
- Collected one (1) groundwater sample from selected shallow monitoring well for laboratory testing of parameters listed in the Regional Municipality of Peel Sanitary and Storm Sewer By-Law and compare the results to the applicable criteria and additional Metals filtered sample.
- Evaluated construction dewatering needs and permitting requirements for temporary water taking and dewatering effluent disposal from regulatory agencies;
- Estimated construction dewatering flow rates and assess potential impacts and recommend mitigation measures;
- Reviewed private water supply wells on site and within 500 m of the property (database searches);
- Evaluated the information collected during the field investigation program, including borehole geological information, SWRT results, infiltration test results, groundwater level measurements and groundwater quality;
- Prepared site plans, cross sections, geological mapping, and groundwater contour mapping for the Site;
- Prepared source water protection and aquifer vulnerability maps;
- Reviewed available past 30 years of climatic data for the Site;
- Mapped existing areas in accordance with topography, soil cover, shallow soil types, and use a Thornthwaite-Mather approach to determine the water balance for pre- and post-development conditions (desk-top);
- Mapped surrounding natural features (desk-top) and review source water protection (HVA, WHPA etc.);
- Provided a pre-development water balance based on existing conditions and climatic data;
- Provided a post-development water balance based on development plans;
- Estimated deficits between pre- and post-development conditions, and identify areas where mitigation measures can be implemented; and,
- Prepared a Updated Hydrogeological Investigation and Water Balance Assessment Report.

The Updated Hydrogeological Investigation and Water Balance Assessment Report was prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04, Toronto and Region Conservation Authority (TRCA), and Ministry of the Environment, Conservation and Parks (MECP).

The Hydrogeological Investigation and Water Balance Assessment Report was prepared to support the Ministry of the Environment, Conservation and Parks (MECP) Environmental Activity and Sector Registry (EASR) in the event that the short-term construction dewatering flow rate exceed the threshold of 50,000 L/day. The assessment of construction dewatering, flow rates was completed using analytical methods.

The scope of work outlined above was made to assess dewatering and did not include a review of Environmental Site Assessments (ESA).

1.4 Review of Previous Reports

The following reports were reviewed as part of this Updated Hydrogeological Investigation and Water Balance Assessment Report:

- EXP Services Inc. (April 14, 2021), Phase 1 Environmental Site Assessment, 12210, 12280 and 12304 Heart Lake Road, Caledon, Ontario, prepared for Broccolini Real Estate Group Ontario Inc.
- EXP Services Inc. (April 21, 2021), Preliminary Geotechnical Investigation, 12304 Heart Lake Road, Caledon, Ontario, prepared for Broccolini Real Estate Group Ontario Inc.
- EXP Services Inc. (September 28, 2021), Detailed Geotechnical Investigation, 12304 Heart Lake Road, Caledon, Ontario, prepared for Broccolini Limited Partnership 6.

Any past and/or future geotechnical, hydrogeological, environmental and risk assessments, and updated development/architectural plans should be provided to update this hydrogeological report prior to submission of permits and approvals by the municipalities and agencies.

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is located within a physiographic region named South Slope. The physiographic landform is known as the Till Plains (drumlinized) and a northwest-southeast esker is located approximately 800 m south of the Site. Heart Lake is located within the area of this esker. In the Site area, the South Slope lies to the southeast of Niagara Escarpment and northwest of Peel Plain (Chapman & Putnam, 2007).

The south slope is the southern slope of the Oak Ridges Moraine, which is also mapped south of the peel plain. For the most part, the south slope rises to the line of contact with the Oak Ridges Moraine at 250 to 300 masl.

2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as clay to silt till derived from glaciolacustrine deposits or shale (Ministry of Northern Development and Mines, 2012). The surficial geology of the Site and surrounding areas is shown on Figure 2.

Based on the available regional geology maps, the subsurface stratigraphy of the Site from top to bottom is summarized in Table 2-1 (TRCA, 2008 and Oak Ridge Moraine Groundwater Program, 2018). The overburden thickness is approximately 65 m.

Stratigraphic Unit	General Description	Top Elevation of Stratigraphic Unit
Halton Till or Equivalent (Aquitard)	This lithologic unit typically consists of sandy silt to clayey silt till interbedded with silt, clay, sand and gravel.	267
Oak Ridges Moraine or Equivalent (Aquifer)	This geology unit mainly consists of interbedded fine-grained sand and silt deposits where coarse-grained sand and gravel along with clay laminae are locally reported.	256
Newmarket Till (Aquitard)	This lithologic unit mainly consist of a massive and dense silty sand unit.	Not Mapped at this location
Thorncliffe Formation (Aquifer)	This geology formation generally consists of glaciofluvial (sand, silty sand) or glaciolacustrine deposits (silt, sand, pebbly silt and clay).	220
Queenston Formation	Bedrock primarily consists of interbedded shale, limestone, dolostone and siltstone. It belongs to the Upper Ordovician, (Ministry of Northern Development and Mines, 2012).	202

Table 2-1: Summary of Subsurface Stratigraphy

Regional groundwater across the area flows east / southeast, towards an un-named tributary of Etobicoke Creek (Oak Ridge Moraine Groundwater Program, 2018). Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

2.1.3 Existing Water Well Survey

Water Well Records (WWRs) were compiled from the database maintained by the Ministry of the Environment, Conservation and Parks (MECP) and reviewed to determine the number of water wells documented within a 500-m radius of the Site boundaries. The locations of the MECP WWRs within 500 m of the Site are shown on Figure 3A. A summary of the WWR is included in Appendix A.

The MECP WWR database indicates that twenty-nine (29) water wells within a 500 m radius from the Site boundary, where four (4) wells are identified onsite (Figure 3A and Appendix A). Well distances are calculated relative to the Site centroid, therefore some distances in Appendix A exceed 500 m. Total of fifteen (15) water supply wells were identified within 500 m search area with two (2) water supply wells identified within the Site boundary.

The database indicates that the offsite wells are at approximately ten (10) m or greater from the Site boundary. All offsite wells were reportedly identified as monitoring and observation wells, test holes, dewatering wells, water supply wells, abandoned and/or listed with unknown use. The closest well to the Site boundary is identified as a water supply well (Well ID No. 4901240).

The reported water levels ranged from depths of 4.6 m to 61.0 meters below ground surface (mbgs).

It is expected that some of the water supply well within 500 m of the Site boundary may be still active.

2.2 Site Setting

2.2.1 Site Topography

The Site is in an agricultural land use setting. The topography is considered relatively flat with a local gradual southwesterly slope towards Etobicoke Creek.

As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 266.8 to 274.1 meters above sea level (masl).

2.2.2 Local Surface Water Features

The Site is within the Etobicoke Creek watershed. No surface water features exist onsite. Two seasonal un-named tributaries are starting immediately east and south of the site. One to the east is a tributary of Etobicoke Creek and the one to the south discharges to Heart Lake. Etobicoke Creek runs approximately 800 m southwest of the Site. Distance to Heart Lake is approximately 1.2 km from the Site boundary to the southeast.

2.2.3 Vulnerability Mapping

The Site is located within the Toronto Source Water Protection Area. MECP Source Protection Information Atlas was reviewed to determine the Wellhead Protection Areas (WHPAs), Highly Vulnerable Aquifers (HVAs), Significant Groundwater Recharge Areas (SGRAs) and Intake Protection Zones (IPZs) related to the Site area.

Well Head Protection Areas (WHPA) – The Site is located outside WHPA Zones Q1/Q2.

Highly Vulnerable Aquifer Areas (HVA) – The Site is located outside HVA areas.

Significant Groundwater Recharge Areas (SGRA) – The entire Site is located outside of SGRA.

Intake Protection Zone (IPZ) – there is no intake protection zone within approximately 10 km from the Site.

Figures 3B shows all the above-mentioned vulnerable areas in relation to the Site location.

*ехр.

2.2.4 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, 2021). They are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for construction design purposes.

The detailed soil profiles encountered in each borehole and the results of moisture content determinations are presented on the attached borehole logs (Appendix B). The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the Updated Hydrogeological Investigation and Water Balance Assessment Report and shall not be interpreted as exact planes of geological change.

The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report. The following is a brief description of the soil conditions encountered during the investigation.

Based on the results of the geotechnical investigation, the general subsurface soil stratigraphy consists of the following units from top to bottom:

Topsoil

Surface cover comprises topsoil ranging in thickness from approximately 125 to 350 mm at all borehole locations. However, the boreholes were advanced in cultivated fields. As such, topsoil thicknesses up to approximately 600 mm associated with typical ploughed fields should be anticipated.

Fill

Fill was encountered following the topsoil in Boreholes 4, 8, 16, 20 to 22, 27 and 30. The fill extends to depths of approximately 1.4 to 2.1 m (~Elevation 268.1 to 273.4 m). The fill constitutes brown clayey silt to sand silt with trace gravel and minor stone fragments and appeared to be reworked on-site parent material. Moisture contents recorded in the fill ranged between approximately 12 and 26 percent. The higher moisture contents recorded in the upper regions of the fill and are likely associated with the transition from recently melted snow in the topsoil overlying the fill.

Clayey Silt Till

A clayey silt till deposit underlies the fill in Boreholes 4, 8, 16, 20 to 22, 27 and 30 and the topsoil at all other borehole locations. The clayey till extends to termination depths of approximately 8.0 to 8.2 m (~Elevation 258.7 to 266.8 m) in Boreholes 3, 5, 6, 10, 11, 14, 16, 17, 21, 25 and 28. The clayey silt till was fully penetrated approximately 4.1 to 7.2 m depth (~Elevation 265.9 to 266.5 m) in the remaining boreholes. The clayey silt till was found to be disturbed in the upper 200 to 300 mm at several borehole locations. The clayey silt till contains trace sand or fine sand seams/pockets, trace gravel and occasional boulder fragments. The clayey silt till is typically brown in colour becoming grey with depth. The consistency of the clayey silt till is generally very stiff to hard. Localized stiff zones were noted at depth in Boreholes 5, 8, 12, 14, 23, 24, 27 and 28, generally consistent with the change in colour from brown to grey. Moisture content of the clayey silt till were recorded at approximately 7 and 18 percent.

Sandy Silt Till

A sandy silt till deposit was intersected below the clayey silt till in Boreholes 1, 2, 4, 7 to 9, 12, 15, 18 to 20, 22 to 24, 26, 27, 29 and 30. The sandy silt till was fully penetrated in Borehole 30 at approximately 7.1 m depth (~Elevation 263.5 m). All other

10

boreholes where the sandy silt till was encountered were terminated in this deposit at depths of approximately 7.8 to 8.2 m (~Elevation 259.0 to 266.0 m). The sandy silt till contains trace clay, silt partings, fine sand seams, trace gravel and occasional boulder fragments. The sandy silt till is grey in colour except for Boreholes 4, 18, 20 and 30 where the deposit is brown. The degree of compactness of the sandy silt till was assessed as dense to very dense. Moisture content of the sandy silt till generally ranges from approximately 6 to 18 percent.

Sandy/Silty Sand

A discontinuous sandy to silty sand deposit follows the clayey silt till in Borehole 13 and the sandy silt till in Borehole 30. These boreholes were terminated in the sand to silty sand deposit at depths of approximately 7.8 to 8.1 m (~Elevation 261.8 to 262.5 m). The sand to silty sand is fine to medium grained and contains trace gravel. The sand to silty sand is brown in colour and exists in a very dense state of compactness. Moisture content of the sand to silty sand was recorded at approximately 10 to 13 percent.

The borehole and monitoring well locations are shown on Figure 4. Geological cross-sections were generated based on the available borehole logs completed as part of the previous and current investigations and shown on Figure 5 (Cross section A-A'). The cross section shows a simplified representation of soil conditions and soil deposits may be interconnected differently than represented. Borehole logs used to generate both cross-sections are provided in Appendix B.

3 Results

3.1 Monitoring Well Details

The monitoring well network was installed as part of the Geotechnical Investigation at the Site. It consists of the following:

• Five (5) shallow overburden monitoring wells (BH/MW 1, BH/MW 9, BH/MW 16, BH/MW 25 and BH/MW 30) were installed;

The diameter of all monitoring wells is 50 mm. All wells were installed with a stick-up protective casing. Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of the Updated Hydrogeological Investigation and Water Balance Assessment Report, static water levels in the monitoring wells installed outside of the existing building were recorded in six (6) monitoring events, from September 29, 2021 to January 12, 2022. A summary of all static water level data as it relates to the elevation survey is given in Table 3-1 below.

The groundwater elevations recorded in the onsite monitoring wells ranged from 261.68 masl (6.73 mbgs at BH/MW 25 on October 7, 2021) to 272.57 masl (2.25 mbgs at BH/MW 16 on January 12, 2022).

The report will need to be updated to include the results of the one-year groundwater level monitoring program.

12

MW ID	Ground Surface Elevation (masl)	Stick Up (m)	Approximate Full Well Depth (mbgs)	MW Bottom Elevation (masl)	Depth	29-Sep-21	7-Oct-21	12-Oct-21	15-Oct-21	12-Nov-21	12-Jan-22		
					mbTOP	4.88	4.88	4.67	4.67	4.04	1.95		
BH/MW 1	273.11	0.64	7.60	265.51	mbgs	4.24	4.24	4.03	4.03	3.40	1.31		
					masl	268.87	268.87	269.08	269.08	269.71	271.80		
				162.38	mbTOP	6.78	6.91	6.95	6.98	7.11	3.12		
BH/MW 9	269.95	9.95 0.99	0.99 7.57		mbgs	5.79	5.92	5.96	5.99	6.12	2.13		
					masl	264.16	264.03	263.99	263.96	263.83	267.82		
	274.82	0.91).91 7.49	267.33	mbTOP	6.39	6.51	6.45	6.47	4.94	3.16		
BH/MW 16					mbgs	5.48	5.60	5.54	5.56	4.03	2.25		
					masl	269.34	269.22	269.28	269.26	270.79	272.57		
		68.41 0.93					mbTOP	6.98	7.66	7.59	7.94	5.54	2.08
BH/MW 25	268.41		0.93 7.55	260.86	mbgs	6.05	6.73	6.66	7.01	4.61	1.15		
					masl	262.36	261.68	261.75	261.40	263.80	267.26		
		57 1.00		262.99	mbTOP	DRY	DRY	DRY	DRY	DRY	DRY		
BH/MW 30	270.57		00 7.58		mbgs	>7.58	>7.58	>7.58	>7.58	>7.58	>7.58		
					masl	<262.99	<262.99	<262.99	<262.99	<262.99	<262.99		

Table 3-1: Summary of Measured Groundwater Elevations

One (1) map was created for the Site to show groundwater contours of the overburden water-bearing zone (Figure 6). Accordingly, the groundwater flow directions in overburden interpreted to be southeast and southwest of the Site.

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. This may also affect the direction and rate of flow. It is recommended to conduct seasonal groundwater level measurements to provide more information on seasonal groundwater level fluctuations.

3.3 Hydraulic Conductivity Testing

Four (4) Single Well Response Tests (SWRT's) were completed on monitoring wells BH/MW 1, BH/MW 9, BH/MW 16, and BH/MW 25 on October 7 and 12, 2021. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths. Please note that SWRT was not possible to conduct for BH/MW 30 since the well was dry during the monitoring period.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C.

A summary of the hydraulic conductivities (K-values) estimated from the SWRTs are provided in Table 3-2.

Monitoring Well	Well Depth	Screen Inter	val (mbgs)	Soil Formation Screened	Estimated Hydraulic
	(mbgs)	from	to		Conductivity (m/s)
BH/MW 1	7.60	4.60 7.60		Clayey Silt Till and Sandy Silt Till	3.1E-06
BH/MW 9	7.57	4.57	7.57	Clayey Silt Till and Sandy Silt Till	4.0E-07
BH/MW 16	7.49	4.49	7.49	Clayey Silt Till	3.3E-07
BH/MW 25	7.55	4.55	7.55	Clayey Silt Till	3.9E-07
	3.1E-06				
	6.3E-07				

Table 3-2: Summary of Hydraulic Conductivity Testing

SWRTs provide K-estimates of the geological formation surrounding the well screens and may not be representative of bulk formation hydraulic conductivity. As shown in Table 3-2, the highest K-value of the tested water-bearing zone is 3.1E-06 m/s, and the geometric mean of the K-values is 6.3E-07 m/s.

3.4 Groundwater Quality

To assess the suitability for discharging pumped groundwater into the sewers owned by the Regional Municipality of Peel / City of Mississauga during dewatering activities, one (1) groundwater sample was collected from monitoring well BH/MW 1 on October 12, 2021, using a peristaltic pump.

Prior to collecting the noted water sample, approximately three (3) standing well volumes of groundwater were purged from the referred well. The samples were collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted for analysis to Bureau Veritas Laboratory, a CALA certified independent laboratory in Mississauga, Ontario. Analytical results are provided in Appendix D.

Table 3-3 summarizes exceedance(s) of the Sanitary (Table 1) and Storm (Table 2) Sewer Use By-Law parameters.

When comparing the chemistry of the collected groundwater samples to the Regional Municipality of Peel Sanitary and Combined Sewer Discharge Criteria (By-Law Number 53-2010, Table 1), there were no parameter exceedances to be reported.

When comparing the chemistry of the collected groundwater samples to the Regional Municipality of Peel Storm Sewer Discharge Criteria (By-Law Number 53-2010, Table 2) the following parameters reported an exceedance: Total manganese and Chloroform

Reporting detection limits (RDLs) were below the Sewer Use By-Law parameter criteria of Tables 1 and 2.

Parameter Units		City of Mississauga / Regional Municipality of Peel Sanitary and Combined Sewer Discharge Limit (Table 1)	City of Mississauga / Regional Municipality of Peel Storm Sewer Discharge Limit (Table 2)	Concentration BH/MW 1 12-Oct-21
Total Manganese (Mn)	μg/L	5,000	50	78
Chloroform	μg/L	40	2	2.8

Table 3-3: Summary of Analytical Results

Bold – Exceeds City of Mississauga / Regional Municipality of Peel Storm Sewer Discharge Limit (Table 2).

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase, as required by the City.

An agreement to discharge into the sewers owned by the City of Mississauga / Regional Municipality of Peel will be required prior to releasing dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

[%]ехр.

3.5 Infiltration Testing

EXP completed four (4) infiltration rate tests (INF 1, INF 9, INF 25 and INF 30) within the Site area on October 7 and 12, 2021. These tests were conducted in proximity of selected monitoring wells: September 7, 2021, at BH/MW 1 (INF 1), BH/MW 9 (INF 9), BH/MW 30 (INF 30) and BH/MW 25 (INF 25).

Infiltration tests were conducted at depths ranged from 0.6 mbgs to 0.9 mbgs. The reported water levels at these monitoring wells are; 4.24 mbgs (BH/MW 1), 5.92 mbgs (BH/MW 9), and <7.58 (BH/MW 30) on October 7, 2021, and 6.66 mbgs (BH/MW 25) on October 12 15, 2021 (Table 3.2).

The stratigraphy of the shallow subsurface comprises a silt/sand with some pebbles. Table 3.5 below shows a summary of field saturated hydraulic conductivity (Kfs) testing and design infiltration rates, as per the Low Impact Development (LID) Stormwater Management Planning and Design Guide, CVC – TRCA, 2010, Appendix G. The estimated field saturated hydraulic conductivities were correlated to infiltration rates based on the relationship provided in Appendix D of the guideline.

Infiltration rate testing locations are shown on Figure 4 and infiltration rate analysis is provided in Appendix E.

Infiltration Test Location/ MW ID	Depth of Hole (mbgs)	Formation tested	Field Saturated Hydraulic Conductivity, Kfs (cm/s)	Infiltration Rate (mm/hr)
INF 1 (BH/MW 1)	0.60	Clayey Silt Till	3.4 x 10 ⁻⁶	19
INF 9 (BH/MW 9)	0.75	Clayey Silt Till	3.5 x 10 ⁻⁶	19
INF 25 (BH/MW 25)	0.90	Clayey Silt Till	2.7 x 10 ⁻⁶	18
INF 30 (BH/MW 30)	0.70	Clayey Silt to Sandy Silt (Fill)	9.0 x 10 ⁻⁶	24
		Geometric Mean	4.12 x 10 ⁻⁶	20
			Design Infiltration Rate*	8 (20/2.5)

Table 3.4: Summary of Infiltration Testing Results

Notes:

*Safety Factor of 2.5 was applied to calculate the design infiltration rate (Low Impact Development (LID) Stormwater Management Planning and Design Guide, CVC – TRCA, 2010, Appendix D).

The estimated design infiltration rate based on percolation rate testing for the Site is 8 mm/hr.

4 Water Balance Study

4.1 Background Information

The current land use of the Site is agricultural. The topography is considered relatively flat with a local gradual southerly slope towards Etobicoke Creek.

EXP understands that the proposed total development will consist of two (2) single storey slab on grade building (Building 1) without basements. Proposed development includes supporting truck loading docks, paved accessways, sewers, and truck and passenger vehicle parking areas. The Site location plan is shown on Figure 1. The proposed Site Plan for Buildings 1 and 2 is provided in Attachment 1.

The surficial geology can be described as clay to silt till derived from glaciolacustrine deposits or shale laminated (Ministry of Northern Development and Mines, 2012). Bedrock is made of shale, limestone, dolostone and siltstone of Queenston Formation.

No surface water features exist onsite. Two water courses start close to west and south Site boundaries. One is a tributary of Etobicoke Creek and the other tributary discharges to Heart Lake. Etobicoke Creek runs approximately 800 m southwest of the Site and the Heart Lake is location approximately 1.2 km southeast of the Site.

The groundwater flow direction is interpreted to be varied from west to south across the Site, towards Etobicoke Creek. Artesian groundwater conditions were not reported during the past monitoring events at the Site.

The Site is located within the Toronto Source Water Protection Area and the Site is located within WHPA Q2, with low vulnerability.

4.2 Methodology

The Thornthwaite water balance (Thornthwaite, 1948; Mather, 1978; 1979) is an accounting method used to analyze the allocation of water among various components of the hydrologic cycle. This methodology was used to complete the preconstruction (existing conditions) and post-development water balance. Inputs to the model are monthly temperature, precipitation, and Site latitude. Outputs include monthly potential and actual evapotranspiration, soil moisture storage, soil moisture storage change, surplus, infiltration, and runoff.

When precipitation (P) occurs, it can either runoff (R) through the surface water system, infiltrate (I) to the water table including an interflow component, or evapo-transpiration (ET) from the earth's surface and vegetation. The difference between total precipitation (P) and the total of evaporation and evapotranspiration (ET) is defined to be the water surplus (S) which is available for both infiltration (recharge to the groundwater system including interflow) and for runoff. When long-term averages of P, R, I and ET are used, no net change in groundwater storage (ST) is assumed. Annually, however, there is a potential for small changes in ST.

The annual water budget can be stated as follows:

 $\mathsf{P} = \mathsf{ET} + \mathsf{R} + \mathsf{I} + \mathsf{ST}$

Where:

P =precipitationET =evapotranspirationR =surface water runoffI =infiltrationST =change in groundwater storage

For this assessment, the Thornthwaite and Mather method was used to estimate average annual infiltration rates.

Infiltration is governed by the surficial soil types, topography, and land cover. If the water table is at surface, as measured in shallow monitoring wells, then the percolation rate of precipitation into the shallow soils is considered negligible.

For ease of calculation, a spreadsheet model was used for the computation. The Thornthwaite and Mather Model is based on the United Stated Geological Survey (USGS) graphical user interface (Thornthwaite Monthly Water-Balance program, 2007).

4.3 Meteorological Data

Meteorological data including average monthly precipitation and average temperatures were obtained from the National Climate Data and Information Archive (Environment Canada) for the Richmond Hill (Station ID No. 6157012) climatic station (elevation 240 masl).

Meteorological data of 30 years from 1977 to 2006 was utilized for the assessment. Summary of input data is provided in Appendix F-1.

4.4 Pre- and Post-Development Site Characteristics

4.4.1 Pre-Development Site Characteristics

The Site is currently an agricultural field. A summary of the existing (pre-development) landscape features is provided in Table 4.1:

Description	Pre-Construction (Existing) (m ²)	Percentage %
Buildings	1,700	0.4
Paved Surfaces	1,800	0.5
Site Area Available for Infiltration (Agricultural lands)	372,700	99.1
Total Site Area	376,200	100.0

Table 4.1: Pre-Development (Existing) Land Use

It should be noted that the areas provided in Table 4.1 above were determined based on a review of available Site plans and these estimates are considered appropriate for estimating the water balance.

18

As evident from the information provided in Table 4.1, under pre-development conditions, approximately 99.1% of the Site area is pervious and available for groundwater infiltration (Figure 7).

4.4.2 Post-Development Site Characteristics

As provided in the draft Site Plan, Table 4.2 provides a summary of the post-development Site characteristics.

Description	Impervious Areas m ²	Pervious Areas available for Infiltration m ²	Total Areas Post-Construction (Proposed) m ²
ROW (roads, sidewalks, parking) paved	65,500	0	65,500
Building roofs (Building 1)	79,800	79,800 0	
Agricultural / Landscaped areas	0	230,900	230,900
Totals	145,300	230,900	376,200
Percentage %	38.6	61.4	100.0

Table 4.2: Post-Development Site Characteristics

Under post-development conditions, the total pervious area is reduced from 99.1% to 61.4% of the total Site area (Tables 4.1 and 4.2).

4.5 Pre-Development Water Balance Estimates

4.5.1 Climate Data Analysis

The mean annual water surplus was calculated by using the Thornthwaite and Mather (1955) method. Monthly average precipitation values were obtained for 30 years (1977 to 2006) from the National Climate Data and Information Archive (Environment Canada) for the Richmond Hill (Station ID No. 6157012).

Moisture storage of 200 mm/year was assumed for soils and considered to be representative of pre-construction Site conditions. The closest latitude to the Site is 44⁰, which was used in the USGS model (2007).

Table 4.3 summarizes the climatic water balance analysis. Appendix F-1 and F-2 provide the model input and output, respectively.

Table 4.3: Summary of Climatic Water Balance Analysis in Pre-Development Conditions

Soil Moisture Storage	Precipitation	Actual ET	Surplus
(mm/yr)	(mm/yr)	(mm/yr)	(mm/yr)
200 mm/yr Silt and Clay	897.38	547.63	322.75

Note: ET = Evapotranspiration

The results of climatic water balance analysis for the Site suggest that a surplus of 322.75 mm/year of water is available for surface runoff and infiltration.

°ехр.

4.5.2 Infiltration

The infiltration is expected to be controlled by soil type, topography, and soil cover type. Surplus water is portioned between runoff and infiltration based on the controlling factors provided by MOE (1995). It is noted that the controlling factors provided by the MOE were used for estimating infiltration factors.

Using this method, a total infiltration factor for the Site was estimated by using the individual sub-factors, which are representative of the topography, soil type and land cover conditions (Figures 2, 7 and 9). Appendix F-3 provides a summary of the sub factors and total factor based on the Site conditions. The infiltration sub-factors were determined for estimating pre-development infiltration rates of the entire Site.

The estimated pre-development total infiltration factor of 0.45 (or 45%) represents the fraction of the water surplus available for infiltration. The complementary fraction of the available water for runoff is 0.55. The infiltration factor is utilized to calculate the amount of annual infiltration (in units of m³/yr) at the Site by multiplying it with the average yearly water surplus estimate and with the Site area available for infiltration.

Applying the infiltration factor of 0.45 and a water surplus of 322.75 mm/yr, the estimated pre-development infiltration rate of the whole Site is 145.24 mm/yr.

In areas with water table at or above surface and areas with shallow bedrock less than approximately 1.0 m below surface, the infiltration rate was considered negligible for existing and proposed grade. However, water level above ground surface or less than 1 m below ground surface were not reported during water level monitoring at this Site.

4.5.3 Pre-Development Water Balance Analysis

The water balance analysis is based on available information on a regional scale and considered representative for the Site. Table 4.4 provides a summary of water balance analysis for the Site.

Location	Total Site Area (m²)	Area Available for Infiltration (m²)	Total Precipitation (m³/yr)	Actual Evapo- transpiration (m³/yr)	Runoff (m³/yr)	Infiltration (m³/yr)
Total Site	376,200	372,700	337,594	216,176	67,288	54,130
F	Percentage of To	otal Precipitation	100.0	64.0	20.0	16.0

Table 4.4: Summary of Overall Pre-Development Water Balance Results

The total property area was used to estimate the annual precipitation volume of the Site (Appendix F-4). As summarized in Table 4.4, the breakdown of the pre-development water balance is as follows: 64.0% of the total precipitation is subject to evapotranspiration, 20.0% to runoff, and 16.0% to infiltration.

The pre-development water balance, on a weighted average depth basis (in mm/year) is as follows:

P (897.38) = ET (574.63) + R (178.86) + I (143.89) + ST (0)

4.6 Post-Development Water Balance Estimates

4.6.1 Post-Development Water Balance

Based on the proposed development drawings, the total area of pervious surfaces under post-development conditions is approximately 230,900 m², representing approximately 61.4% of the total Site area of 376,200 m² (Table 4.2). The remaining 145,300 m² is not available to contribute to infiltration during the post-development stage (approximately 24.0% of the total land area).

Post-development infiltration sub-factors were determined in a similar manner as for estimating infiltration sub-factors for predevelopment Site conditions, both based on the method recommended by MOE (1995). For post-development infiltration subfactors, the landscaped areas were assumed to be consistent with cultivated cover with an infiltration sub-factor of 0.1 (Appendix E-3). The estimated post-development total infiltration factor of 0.45 (or 45.0%).

Table 4-5 presents a summary of the overall post-development water balance assessment.

Table 4.5: Summary of Overall Post-Development Water Balance Forecast

Location	Total Site Area (m²)	Area Available for Infiltration (m ²)	Total Precipitation (m³/yr)	Evapo-transpiration (m³/yr)	Runoff (m³/yr)	Infiltration (m³/yr)
Total Site	376,200	230,900	337,594	132,682	171,377	33,535
	Percentage of ⁻	Total Precipitation	100%	39.30%	50.76%	9.94%

If no remedial measures are implemented to maintain infiltration, it is expected that the annual infiltration volume will be reduced from approximately 54,130 m³/year to 33,535 m³/year in post-development, resulting in a deficit of 20,595 m³/year (Appendix F-4).

Infiltration deficits based on pre- and post-development Site conditions can be utilized to guide mitigation measures under idealized soil and groundwater conditions. If suitable mitigation measures are implemented, it is expected that the unmitigated infiltration deficit of 20,595 m³/year can be maintained under the post-development Site conditions under sound conditions. Reasonable mitigation measures onsite are therefore recommended to maintain the pre-development infiltration under post-development Site conditions.

Under unmitigated post-development conditions, a reduction in annual infiltration volume may occur, as compared to predevelopment conditions. Consequently, water contribution from infiltration to downgradient drainage features would decrease.

4.7 Impact and Proposed Mitigation Measures

Mitigation measures should be implemented to balance the estimated pre-development infiltration rate deficit of 20,595 m³/year (Appendix F-4). To offset the noted deficit, approximately 43% from the available runoff from roof-top water of 47,741 m³/year (in 8 months) would need be infiltrated. This could be accommodated in Low Impact Development (LID) facilities, such as infiltration galleries and enhanced grass swales implemented onsite to maintain the pre-development infiltration rates during the post-development phase.

The existing surface water body (seasonal tributary) may become impacted if the expected water deficit is not balanced (mitigated) during the post-construction phase of the project. By implementing appropriate mitigations measures, negative developmental impacts on the existing surface water drainage features can be reduced and compensated.

As per the CVC guidelines, the invert of the infiltration system needs to be 1.0 m above the highest water level or top of bedrock measured at location of the infiltration system, as a minimum. It should be noted that the at the time of preparation of this report, information on final grades for the proposed development is not available. Therefore, when the final grades for the development are available, updating water balance assessment will be required.

Consideration should be given to assess the extent of potential mounding and on the potential interference of the proposed infiltration system/s with existing and proposed surrounding basements and infrastructures (ex: retaining walls, underground servicing etc.).

The following mitigation measures are proposed to be implemented onsite to maintain the pre-development infiltration rates during the post-development phase:

• Infiltration Galleries

To balance the infiltration deficit in 8 months per year a LID system (infiltration gallery) with a total of approximately 3,400 m² in size would be required. The LID area is based on the estimated design infiltration rate of 8 mm/hr, on the assumption that precipitation is evenly distributed during the year, and bi-weekly volumes from roof will be infiltrated in 48-hour. The infiltration system will need to have a minimum storage of 1,287 m³ to store two weeks of precipitation to meet the pre-development infiltration levels. This means that 380 mm of LID-storage per square meter (m²) exists (Appendix E-2 and F-5).

As per the regulatory requirements, the invert of the infiltration system needs to be 1.0 m above the highest water level or top of bedrock measured at location of the infiltration system, as a minimum.

Consideration should be given to assess the extent of potential mounding and on the potential interference of the proposed infiltration system/s with existing and proposed surrounding basements and infrastructures (ex: retaining walls, underground servicing etc.).

Enhanced Grass Swales and Rain Gardens

To increase the post-development infiltration onsite, enhanced grass swales and / or rain gardens are also recommended where feasible.

These facilities are recommended to be designed to mimic current shallow groundwater (interflow). Where possible, selected areas can also be used as rain gardens to enhance groundwater infiltration.

5 Dewatering Assessment

EXP understands that the proposed development will consist of one (1) single storey slab on grade building without a basement. Proposed development includes supporting truck loading docks, paved accessways, sewers, and truck and passenger vehicle parking areas. The proposed building (Buildings 1) will have a footprint of approximately 42,223 m². The proposed Site Plan for Building 1 is provided in Attachment 1.

Based on ground elevations at borehole locations, there is approximately 7 m difference between highest and lowest ground elevations. Therefore, it is anticipated that cut and fill operations will be required at the Site. EXP Geotechnical (September 28, 2021) Investigation report suggests that the proposed structures can be supported on conventional spread and stripe footings or augered piers founded at depths of 1.0 to 2.0 m below the fill, on the undisturbed native clayey silt till.

Table 4-1 presents the assumptions used to calculate the dewatering rate for the Site.

Input Parameter	Building 1 (Phase 1)	Building 2 (Phase 2)	Units	Notes		
Ground Surface Elevation	266.8 to 274.1	266.8 to 274.1	masl	Approximate elevation based on the borehole logs and Site		
Groundwater elevation	269.0	270.0	masl	The highest recorded groundwater elevation based on the interpreted groundwater elevation within the building area plus 1.0 meter to account for some seasonal fluctuation		
Point Towers/Podiums	0 Towers, 0 Podiums	0 Towers, 0 Podiums	-			
Number of Subgrade Levels	0 Levels	0 Levels	-			
Top of Slab Elevation	not available	not available	masl			
Lowest Footing Elevation	265.3	268.6	masl	Lowest spread and strip footing/sugared Pier elevation recommended by geotechnical report (September 28, 2021)		
Construction Dewatering Elevation Target	264.3	267.6	masl	Assumed to be approximately 1.0 m below the lowest footing elevation		
Bottom Elevation of Water-Bearing Zone	261.3	261.3	masl	Assumed 3 m below lowest target water level		
Footing Excavation Area (Length x Width)	450 (300 x 1.5)	360 (240 x 1.5)	m² (m x m)	Approximate area (length x width) of longest footing for the proposed development		
Hydraulic Conductivity (K)	6.3E-07	6.3E-07	m/s	Geometric Mean K-value for overburden		
Specific Yield	0.05	0.05		Assumed		

Table 4-1 Construction Dewatering Estimate Assumptions

23

5.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit-Forcheimer equation for radial flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$Q_w = \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]}$$

$$r_e = \frac{a+b}{\pi} \qquad \qquad R_o = R_{cj} + r_e$$

Where:

 Q_w = Rate of pumping (m³/sec)

X = Length of excavation (m)

- K = Hydraulic conductivity (m/sec)
- H = Hydraulic head beyond the influence of pumping (static groundwater elevation) (m)
- h = Hydraulic head above the base of aquifer in an excavation (m)
- R₀ = Radius of Influence (m)
- R_{cj} = Cooper Jacob Radius of Influence (m)
- r_e = Equivalent perimeter (m)
- a = Length of the excavation area (m)
- *b* = Width of the excavation area (m)

It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage, resulting in lower seepage rates into the excavation.

5.2 Cooper-Jacob's Radius of Influence

The radius of influence (Rcj) for the construction dewatering was calculated based on Cooper-Jacob equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible.

The estimated radius of influence due to pumping is based on Cooper-Jacob formula as follows:

$$R_{cj} = \sqrt{2.25KDt/s}$$

Where:

Rcj = Estimated radius of influence (m)

D = Aquifer thickness (original saturated thickness) (m)

K = Hydraulic conductivity (m/sec)

S = Storage coefficient

t = Duration of pumping (s)

5.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 15 mm precipitation event was utilized for estimating the stormwater volume. The calculation of the stormwater volume is included in Appendix G.

The estimate of the stormwater volume only accounts for direct precipitation into the excavation. The dimensions of the excavation are considered in the dewatering calculations. Runoff from outside of the excavation's footprint is excluded and it should be directed away from the excavation.

During precipitation events greater than 15 mm (ex: 100-year storm), measures should be taken by the contractor to retain stormwater onsite in a safe manner to not exceed the allowable water taking and discharge limits, as necessary. A two (2) and a one hundred (100) year storm events over a 24-hour period are 57.3 and 125.2 mm, respectively, which would produce 2,419 and 5,286 L of water within Building 1 footprint area.

5.4 Results of Dewatering Rate Estimates

5.4.1 Construction Dewatering Rate Estimate

For this assessment, it was assumed that the proposed construction plans include an excavation without shoring system. EXP should be retained to review the assumptions outlined in this section, should a shoring system be included.

Short-term (construction) dewatering calculations are presented in Appendix G.

Based on the assumptions provided in this report, the results of the dewatering rate estimate can be summarized as follows:

Description	Building 1 (Phase 1) (L/day)	Building 2 (Phase 2) (L/day)	Total (L/day)
Estimated Short Term Dewatering Rate (without safety factor or precipitation)	39,000	22,000	61,000
With Factor of Safety of 1.5 (excluding precipitation) for permit	58,000	33,000	91,000
From Precipitation Event of 15 mm in one day for whole building footprint	630,000	450,000	1,080,000
With Factor of Safety of 2.0 (including precipitation) for designs, and budgeting	688,000	483,000	1,171,000
Radius of Influence from sides of excavation (m)	24	25	

Table 4-2 Summary of Construction Dewatering Rate (Without Basement)

It should be noted that the construction dewatering is required mainly to remove rainwater from the excavation after rainfall events. The MECP regulates the groundwater taking and since the estimated flow rate is less than 50,000 L/day then no MECP water taking permit (EASR or PTTW) is required.

The peak dewatering flow rates does not account for flow from utility beddings and variations in hydrogeological properties beyond those encountered during this investigation. Local dewatering may be required for pits (elevator pits, sump pits, raft) and for localized areas with permeable, soft, or wet soil conditions. Local dewatering is not considered to be part of this assessment, but contractor should be ready to install additional system to manage such conditions. Dewatering estimates should be reviewed once the pit dimensions are available.

All grading around the perimeter of the excavation should be graded away from the excavation and ramp/site access to redirect runoff away from excavation.

The contractor is responsible for the design of the dewatering system to ensure that dry conditions are always maintained within the excavation at all costs.

As shown on Table 4.2, more than 90% of the dewatering volume is expected to be required after rainfall events. As such it is suggested to revise the construction plan to reduce the area of excavation kept open at any given point of time.

5.4.2 Post-Construction Dewatering Rate Estimate

As per preliminary Site drawings, it is our present understanding that the proposed Buildings 1 and 2 will be constructed without basements. Therefore, no long-term dewatering requirements are anticipated for the proposed Building 1.

5.5 MECP Water Taking Permits

5.5.1 Short-Term Discharge Rate (Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50,000 L/day but less than 400,000 L/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with the MECP will be required. If groundwater dewatering rates onsite exceed 400,000 L/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

As of July 1, 2021, an amendment of O. Reg. 63/16 has come into effect and replaced the former subsection 7 (5) such that the water taking limit of 400,000 L/day would apply to groundwater takings of each dewatered work area only, excluding stormwater.

The dewatering estimates including a safety factor and excluding precipitation is stated below. The MECP construction dewatering rate excludes the precipitation amount and is the rate used for the permit application.

Table 4-4: MECP Construction Dewatering Flow Rate

Scenario	Flow Rate Building 1 (Phase 1) (L/day)	Flow Rate Building 2 (Phase 2) (L/day)	Total Flow Rate Buildings 1 & 2 (L/day)
MECP Construction Dewatering Flow Rate with Safety Factor of 1.5 (excluding rainwater collection)	58,000	33,000	91,000

Based on the estimated construction dewatering rates, an EASR from the MECP will be required to facilitate the construction dewatering program of the Site.

A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. Monitoring of both water quantity and water quality must be carried out for the entire duration of the construction dewatering phase. During this phase, the Discharge Plan and the daily water taking records must be available onsite.

The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must also be available at the construction Site during the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since the EASR will need to be updated to reflect these

'exp.

modifications. Altogether, the hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitute the Water Taking Plan which needs to be available onsite during the construction dewatering.

6 Environmental Impacts

6.1 Surface Water Features

The Site is within the Etobicoke Creek watershed. No surface water features exist onsite. Two un-named tributaries are starting immediately east and south of the site. One to the east is a tributary of Etobicoke Creek and the one to the south discharges to Heart Lake. Etobicoke Creek runs approximately 800 m southwest of the Site. Distance to Heart Lake is approximately 1.2 km from the Site boundary to the southeast.

Due to the limited extent of zone of influence and the limited water taking rate, no detrimental impacts on surface water features are expected during construction activities.

6.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the presence and number of water supply wells within a 500 m radius of the Site boundaries. Given that the dewatering zone of influence is limited, no dewatering related impact is expected on the water wells in the area.

However residential water supply wells were identified from distances approximately 10 m away from the site boundary. Therefore, it is recommended to conduct a door-to-door water supply well survey prior to commence the site construction activities.

6.3 Geotechnical Considerations

As per the MECP technical requirement for EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence, etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities, etc.).

A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

6.4 Groundwater Quality

It is our understanding that the potential effluent from the dewatering system during the construction will be released to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the City of Mississauga / Regional Municipality of Peel Sewer Use By-Law.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

For the long-term dewatering discharge to the sanitary sewer system (post-development phase), and based on the water quality test results, the water is suitable to be released without a treatment system.

Dewatering (short and long-term) may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities (short and long-term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

For the long-term dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

An agreement to discharge into the sewers owned by the City of Mississauga / Regional Municipality of Peel will be required prior to releasing dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

6.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

7 Conclusions and Recommendations

Based on the findings of the Updated Hydrogeological Investigation and Water Balance Assessment Report, the following conclusions and recommendations are provided:

- When comparing the chemistry of the collected groundwater samples to the Regional Municipality of Peel Sanitary and Combined Sewer Discharge Criteria (By-Law Number 53-2010, Table 1), there were no parameter exceedances to be reported.
- When comparing the chemistry of the collected groundwater samples to the Regional Municipality of Peel Storm Sewer Discharge Criteria (By-Law Number 53-2010, Table 2) the following parameters reported an exceedance: Total manganese and Chloroform.
- The report will need to be updated to include the results of the one-year by-monthly water level monitoring (manual and continuous) program is completed.
- If no remedial measures are implemented to maintain infiltration, it is expected that the annual infiltration volume will be reduced from approximately 54,130 m³/year to 33,535 m³/year in post-development, resulting in a deficit of 20,595 m³/year.
- To balance the infiltration deficit in 8 months per year a LID system (infiltration gallery) with a total of approximately 3,400 m² in size would be required. The LID area is based on the estimated design infiltration rate of 8 mm/hr, on the assumption that precipitation is evenly distributed during the year, and bi-weekly volumes from roof will be infiltrated in 48-hour. The infiltration system will need to have a minimum storage of 1,287 m³ to store two weeks of precipitation to meet the pre-development infiltration levels. This means that 380 mm of LID-storage per square meter (m²) exists
- Based on the assumptions outlined in this report, the estimated peak MECP dewatering rate for proposed construction (total for Buildings 1 and 2) activities is approximately 91,000 L/day. As the groundwater dewatering flow rate estimate is between 50,000 and 400,000 L/day, an EASR from MECP will be required to facilitate the construction dewatering program for the Site.
- Considering a 15 mm precipitation event over the building footprint, the estimated peak dewatering rate for proposed construction activities is approximately 1,171,000 L/day for Buildings 1 and 2 (groundwater extraction with a factor of 1.5 and precipitation). This volume does not consider the total area of the site which should also be considered as part of the drainage plan prepared by the civil consultant. Approval from the agencies will be required to discharge to the natural environment and/or municipal sewer system.
- The construction dewatering volumes is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this preliminary investigation may significantly influence the discharge volumes.
- It is recommended to conduct a door-to-door well survey prior to commence construction activities at the Site.
- For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.
- For the long-term dewatering discharge to the sanitary sewer system (post-development phase) and based on the water quality test results, the water is suitable to discharge without a treatment system.
- An agreement to discharge into the sewers owned by the City of Mississauga / Regional Municipality of Peel will be required prior to releasing dewatering effluent.

*exp.

- The EASR registration allows construction dewatering discharge of up to 400,000 L/day. A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. The Discharge Plan and monitoring for both water quantity and water quality must be carried at the Site during the entire construction dewatering phase. The daily water taking records must be maintained onsite for the entire construction dewatering phase. The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must always also be available at the construction Site for the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since EASR will need to be updated to reflect these modifications. The hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitutes the Water Taking Plan which needs to be available onsite for the duration of construction dewatering.
- In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning
 of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required
 for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. This report is solely intended for the construction and long-term dewatering assessments. Any changes to the design concept may result in a modification to the recommendations provided in this report.

8 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately, if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of Broccolini Limited Partnership No. 6. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.

Jay Samarakkody, M. Phil., P. Geo. Senior Hydrogeologist Environmental Services

31

Francois Chartier, M. Sc., P. Geo. Discipline manager, Hydrogeology Environmental Services

9 References

Cashman and Preene (2013) Groundwater Lowering in Construction, 2nd Edition.

Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.

EXP Services Inc. (April 14, 2021), Phase 1 Environmental Site Assessment, 12210, 12280 and 12304 Heart Lake Road, Caledon, Ontario, prepared for Broccolini Real Estate Group Ontario Inc.

EXP Services Inc. (April 21, 2021), Preliminary Geotechnical Investigation, 12304 Heart Lake Road, Caledon, Ontario, prepared for Broccolini Real Estate Group Ontario Inc.

EXP Services Inc. (September 28, 2021), Detailed Geotechnical Investigation, 12304 Heart Lake Road, Caledon, Ontario, prepared for Broccolini Limited Partnership 6.

J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.

Ministry of Northern Development and Mines (May 2012). OGS Earth. Retrieved from http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth.

Oak Ridges Moraine Groundwater Program. Accessed to the website (https://oakridgeswater.ca/) dated October 2018.

Figures

Figure 3B - Vulnerability Mapping

Ontario 🕅 © Queen's Printer for Ontario, 2021

Map Created: 10/25/2021 Map Center: 43.71137 N, -79.82875 W

A' А NORTH SOUTH BH/MW1 BH 2 BH 7 BH 6 BH 10 BH/MW 9 BH 13 BH 19 BH 18 **BH/MW 25** EL:273.12 EL:271.65 EL:273.11 EL:273.40 EL:271.58 EL:269.95 EL:269.59 EL:268.71 EL:267.84 EL:268.41 274 -SITE BOUNDARY 274 273 - 273 272 272 271 271 270 270 SITE BOUNDARY-269 269 ПП 268 268 267 267 F 266 - 266 121.1.1.1.1. ANN Sections/BRM-21004344-D0.dwg 7.1. 1. 1. 1. 7. 1. 1. 265 265 264 264 ANN, 263 263 NNN 262 262 -. ? 261.40 261 261 260 260 1 ion/65 Drawings/Water Balance/Cross E_ ₂₅₉ 259 🔳 VERTICAL SCALE: AS SHOWN HORIZONTAL SCALE: 40 80 120 160 <u>200</u> m LEGEND: TITLE AND LOCATION: ROJECT NO .: DWN.: EXP Services Inc. t: +1.905.793.9800 | f: +1.905.793.0641 TOPSOIL **GROUNDWATER ELEVATION (masl)** BRM-21004344-D0 T JA AS MEASURED ON OCTOBER 15, 2021 CROSS SECTION A-A' 1595 Clark Boulevard Brampton, ON L6T 4V1 CLAYEY SILT TILL HYDROGEOLOGICAL INVESTIGATION SCALE: CK: Canada exp AND WATER BALANCE ASSESSMENT SANDY SILT TILL AS NOTED JS www.exp.com 12304 HEART LAKE ROAD SAND CALEDON, ONTARIO DATE: FIG. NO.: • BUILDINGS • EARTH & ENVIRONMENT • ENERGY OCTOBER 2021 5 INDUSTRIAL
 INFRASTRUCTURE
 SUSTAINABILITY

44-D0\60

0043

BRM/BRM-2

EXP Services Inc. 12304 Heart Lake Road, Caledon, Ontario Updated Hydrogeological Investigation and Water Balance Assessment Report BRM-21004344-D0 March 16, 2022

Appendix A – MECP WWR Summary Table

Appendix A MECP Water Well Database Search Results (Water Wells within 500 m of Site Boundary)

4 100584078 753007 11/20/2015 39332 484505 77.7 margin of error: 30 m - 100 m 12304 HEART LAKE RD. CALIDDN 384 Image: Color of		(Water Weils Within 500 m of Site Boundary)																
No. PHID WELL DATE EAST NORTHM LOCATION LACOURACY (A. AL) STRET CONSTRUCTION (MITHOD DEPHID (MITHOD DUM (MITHOD (MITHOD DAMETER (MITHOD LLUSE 20 JUSE PHIAL STATUS 1 1013083 400112 7/10195 59533 484573 7/2119 STATUS Dumelis All status A									On-Site									
Image: 1 1233000 double state 7/15/107 39986 695.477 27.3. Image: derive state Master Supply 4 1005460301 202305 11/26/2013 29352 41/26/2013 29352 41/26/2013 29352 44/26/2013 44/26/2013 44/26/2013 44/26/2013 44/26/2013 44/26/2013 44/26/2013 44/26/2013 44/26/2013 44/26/2013 44/26/2013 44	No.	BH ID	WELL_ID	DATE	EAST83	NORTH83		LOCATION ACCURACY	STREET	СІТҮ	FROM SITE		DEPTH	FOUND (m	DIAMETER	1st USE	2nd USE	FINAL STATUS
3 100863381 721253 11/26/2013 393877 4848433 282.8 margin of error: 10 - m MART LAKE R0. CALEDON 314 Detail S2.4 I D02 Monitoring Other value 4 100564795 225307 11/26/2015 39532 484565 27.2 margin of error: 10 - m 1203 HART LAKE R0. CALEDON 10 7.9 Adardoc Other OFF Site OFF Site OFF Site Interview of the colspan="4">Site Site Site Site Site Site Site Site	1	10316085	4901239	7/24/1965	595558	4845671	273.1	margin of error : 100 m - 300 m			194	Cable Tool	39.0	38.1	17.8	Livestock	Domestic	Water Supply
Image: Note of the second s	2	10318900	4904112	7/16/1973	595598	4845747	273.4	margin of error : 30 m - 100 m			269	Rotary (Convent.)	53.6	50.6	12.7	Domestic		Water Supply
Display Unit of the state Date EASTB NORTHB3 ELEVATION (m ASU) LOCATION ACCURACY STREET CITY DISTANCE FROM STE CONSTRUCTION METHOD WATE (m byg) WATE DAVID (m DATE EASTB NORTHB3 ELEVATION (m ASU) LOCATION ACCURACY STREET CITY DISTANCE FROM STE CONSTRUCTION METHOD WATE (m byg) DATE EASTB NORTHB3 ELEVATION (m ASU) LOCATION ACCURACY STREET CITY DISTANCE FROM STE CONSTRUCTION METHOD WATE (m byg) DATE EASTB NORTHB3 ELEVATION (m ASU) DISTANCE (m ASU) DISTANCE FROM STE CONSTRUCTION METHOD WATE (m byg) DISTANCE (m	3	1004663361	7212525	11/26/2013	595977	4845443	269.6	margin of error : 10 - 30 m	HEART LAKE RD.	Brampton	394	Rotary (Convent.)	52.4		10.2	Monitoring		Observation Wells
No. BH ID VEL, ID DATE EASTB NORTHS CECATION ACCURACY STREET CONSTRUCTION (MENDO) VICTOR (MENDO) VICTOR (MENDO) <	4	1005846795	7255007	11/26/2015	595532	4845655	272.7	margin of error : 30 m - 100 m	12304 HEART LAKE RD.	CALEDON	184			7.9				Abandoned-Other
HD WELLO DATE LEVATION LOATE DATE LEVATION (mbp) DATE Date <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<>									Off-Site									
2 1031c089 4901243 12/19/1961 1931c4 4846309 2720 margin of error : 100 m. 300 m Mater Supply 3 10331c501 490134 11/17/1964 596030 4845503 268.9 margin of error : 100 m. 300 m Mater Supply 5 1031c501 490134 11/17/1964 596702 4845588 270.4 margin of error : 100 m. 300 m Mater Supply 6 1051c512 4901346 12/1/1962 595702 4845588 270.4 margin of error : 100 m. 300 m Mater Supply 7 1031c501 4901346 12/1/1962 595762 4845592 272.7 margin of error : 100 m. 300 m 474 Cable Tool 54.9 51.2 Livestock Domestic Water Supply 7 1031c503 4901345 51/14734 59564 8445692 27.2 margin of error : 100 m. 300 m Atter Supply 474 Cable Tool 54.9 51.2 17.8 Domestic Water Supply 10332052 49004931 51/1/1071/188 584516 84453	No.	BH ID	WELL_ID	DATE	EAST83	NORTH83		LOCATION ACCURACY	STREET	СІТҮ	FROM SITE		DEPTH	FOUND (m	DIAMETER	1st USE	2nd USE	FINAL STATUS
2 1031c089 4901243 12/19/1961 1931c4 4846309 2720 margin of error : 100 m. 300 m Mater Supply 3 10331c501 490134 11/17/1964 596030 4845503 268.9 margin of error : 100 m. 300 m Mater Supply 5 1031c501 490134 11/17/1964 596702 4845588 270.4 margin of error : 100 m. 300 m Mater Supply 6 1051c512 4901346 12/1/1962 595702 4845588 270.4 margin of error : 100 m. 300 m Mater Supply 7 1031c501 4901346 12/1/1962 595762 4845592 272.7 margin of error : 100 m. 300 m 474 Cable Tool 54.9 51.2 Livestock Domestic Water Supply 7 1031c503 4901345 51/14734 59564 8445692 27.2 margin of error : 100 m. 300 m Atter Supply 474 Cable Tool 54.9 51.2 17.8 Domestic Water Supply 10332052 49004931 51/1/1071/188 584516 84453	1	10316086	4901240	5/7/1966	595919	4845528	271.0	margin of error : 100 m - 300 m			338	Cable Tool	53.9	49.7	12.7	Domestic		Water Supply
3 1031601 4901245 8/18/1966 595164 4846070 272.0 margin of error: 100 m - 300 m 446 Cable Tool 39.0 36.9 17.8 Livestock Domestic Water Supply 4 1031601 4901345 5/18/1959 59529 4845588 270.4 margin of error: 100 m - 300 m 446 Cable Tool 50.0 442.2 Livestock Domestic Water Supply 6 10316192 4901345 5/18/1956 4845878 277.7 margin of error: 100 m - 300 m 429 Cable Tool 54.9 52.4 15.2 Livestock Domestic Water Supply Vater Supply 7 10316192 4901345 5/18/19755 4845872 277.5 margin of error: 100 m - 300 m 447 Cable Tool 54.9 52.4 15.2 Livestock Domestic Water Supply Vater Supply 10321152 4904373 11/10/1988 58138 4846371 275.5 margin of error: 130 m 100 m 932 Rotary (Convent) 55.6 14.7 Livestock Water Supply 10321121 490627 3/1/1989 59118 <td< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>117</td></td<>	2																	117
4 10316190 4901344 11/17/1964 596030 8445303 278.9 margin of error: 100 m. 300 m Margin of error: 30 m. 100 m <th< td=""><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>17.8</td><td></td><td>Domestic</td><td></td></th<>	3											0			17.8		Domestic	
S 1031611 4901345 5/28/1959 595924 4845588 270.4 margin of error : 100 m - 300 m Mare Supply 7 10316191 4901347 3/27/1965 595724 484588 272.7 margin of error : 100 m - 300 m 4474 Cable Tool 54.9 51.2 Livestock Domestic Water Supply 7 10316193 4901347 3/27/1965 59576 484592 272.5 margin of error : 100 m - 300 m 614 Rotary (Convent) 27.4 24.4 12.7 Domestic Water Supply 9 1032055 4908481 11/20/1981 595154 484637 275.5 margin of error : 100 m - 300 m 932 Rotary (Convent) 55.6 12.7 Domestic Water Supply 10 1032152 4906937 11/10/1981 596118 484532 26.8.5 margin of error : 100 m - 300 m 546 Boring 5.3 12.7 Domestic Water Supply 10 1032152 490074 31/1989 596118 4845362 26.8.5	4					4845503	268.9				446	Cable Tool	50.0	44.2	10.2			
6 10316192 4901346 12/7/1962 59576 4845878 272.7 margin of error : 100 m : 300 m Mater Supply 7 10316193 4901346 3/27/1965 59576 4845852 274.5 margin of error : 30 m : 100 m Mater Supply 8 10319150 4904365 6/14/1974 595489 4846085 275.2 margin of error : 30 m : 100 m Mater Supply 9 1032055 4905881 11/20/1981 595315 4846373 275.5 margin of error : 30 m : 100 m 934 Rotary (Convent.) 55.2 53.6 12.7 Uvestock Domestic Water Supply 10 10321512 4906991 11/10/1988 596118 484532 268.5 margin of error : 3-10 m 546 Boring 25.3 18.3 76.2 Domestic Water Supply 12 10321637 4907458 6/27/1990 595352 484637 272.8 margin of error: 3-10 m 587 Rotary (Convent.) 7.6 6.0 61.0 15.2 Domestic Water Supply 13 10322017 4907458 6/27/1990 595352	5	10316191		5/28/1959		4845588	270.4				361	Boring	19.8	19.8	76.2	Domestic		
7 10316193 4901347 3/27/1965 595576 4845952 274.5 margin of error : 100 m - 300 m Mater Supply 8 10319150 4904365 6/14/1974 59518 4846685 275.2 margin of error : 100 m - 300 m Mater Supply 9 10320555 4905841 11/20/1981 59513 4846371 275.5 margin of error : 100 m - 300 m Mater Supply 10 10321191 4906627 3/31/1987 595131 4846371 275.5 margin of error : 30 m - 300 m 932 Rotary (Convent.) 50.6 49.1 12.7 Domestic Water Supply Water Supply 11 1032152 4906974 3/1/1989 596118 484362 268.5 margin of error : 3.1 0 m 546 Cable Tool 61.0 61.0 15.2 Domestic Water Supply 13 1032107 490748 6/27/199 59535 484637 272.8 margin of error : 3.0 m 50 SOUTH OF 12506 HEART LAKE ROAD 879 Rotary (Convent.) 61.3 60.3 12.7 Domestic Water Supply 14 100363697 7175428 <t< td=""><td>6</td><td>10316192</td><td></td><td></td><td></td><td>4845878</td><td></td><td></td><td></td><td></td><td>429</td><td>Cable Tool</td><td>54.9</td><td>52.4</td><td>15.2</td><td>Livestock</td><td>Domestic</td><td>Water Supply</td></t<>	6	10316192				4845878					429	Cable Tool	54.9	52.4	15.2	Livestock	Domestic	Water Supply
9 10320555 4905881 11/20/1981 595315 4846371 27.5 margin of error : 100 m - 300 m Partial of error : 100 m - 300 m <td>7</td> <td>10316193</td> <td>4901347</td> <td>3/27/1965</td> <td>595576</td> <td>4845952</td> <td>274.5</td> <td>margin of error : 100 m - 300 m</td> <td></td> <td></td> <td>474</td> <td>Cable Tool</td> <td>54.9</td> <td>51.2</td> <td>17.8</td> <td>Domestic</td> <td></td> <td>Water Supply</td>	7	10316193	4901347	3/27/1965	595576	4845952	274.5	margin of error : 100 m - 300 m			474	Cable Tool	54.9	51.2	17.8	Domestic		Water Supply
10 10321191 4906627 3/31/1987 595315 4846371 27.5 margin of error: 30 nm margin of error: 3.10 m 546 Boring 25.3 18.3 7.62 Domestic Water Supply 12 10321552 4906991 11/10/1988 596118 4843362 268.5 margin of error: 3.10 m 546 Boring 61.0 61.0 61.0 15.2 Domestic Water Supply 13 10322017 4907458 6/27/199 59532 484632 27.6 margin of error: 3.10 m 50 SOUTH OF 12506 HEART LAKE ROAD 879 Rotary (Convent.) 61.3 60.3 12.7 Domestic Livestock Water Supply 14 1003636975 7175428 12/22/2011 59578 484554 27.0 margin of error: 30 m .100 m 1217 PHARTLAKE RO 399 C Notivering and Observation Wells 15 1003630505 7183229 4/9/2012 59578 484554 27.0 margin of error: 30 m .100 m MAYFIELD/HEART LAKE RD CALEDON 856 Boring 6.1 5.1 Monitoring Observation Wells 12	8	10319150	4904365	6/14/1974	595489	4846085	275.2				614	Rotary (Convent.)	27.4	24.4	12.7	Domestic		
10 1032191 490627 3/31/1987 59531 484371 27.5 margin of error: 100 m - 300 m margin of error: 3 - 10 m 546 Boring 25.3 18.3 76.2 Domestic Livestock Water Supply 12 10321552 4906991 11/10/1988 596118 4845362 268.5 margin of error: 3 - 10 m 546 Boring 25.3 18.3 76.2 Domestic Water Supply 13 10322017 4907458 6/27/199 59532 484637 27.6 margin of error: 3 - 10 m 5050UTH OF 12506 HEART LAKE ROAD 879 Rotary (Convent.) 61.3 60.3 12.7 Domestic Livestock Water Supply 14 1003636975 7175428 12/22/2011 59578 484535 27.0 margin of error: 30 m - 100 m 50 SOUTH OF 12506 HEART LAKE ROAD Brampton 77.3 Rotary (Convent.) 7.6 4.6 5.1 Monitoring and Testo HEART LAKE SOUTH SOU	9	10320555	4905881	11/20/1981	595315	4846373	275.5	margin of error : 100 m - 300 m			934	Rotary (Convent.)	55.2	53.6	12.7	Livestock	Domestic	Water Supply
11 10321552 4906991 11/10/198 596118 4845362 268.5 margin of error: $3 \cdot 10 \text{m}$ comparison of error: $3 \cdot 10 \text{m}$	10	10321191	4906627	3/31/1987	595315	4846371	275.5				932	Rotary (Convent.)	50.6	49.1	12.7	Domestic	Livestock	
13 10322017 4907458 6/27/1990 595352 484632 276.0 margin of error : 3 · 10 m 50 SOUTH OF 12506 HEART LAKE ROAD Brampton 773 Rotary (Convent.) 61.3 60.3 12.7 Domestic Livestock Water Supply 14 1003636975 7175428 12/22/2011 595778 4846187 272.8 margin of error : 3 0 m · 100 m 50 SOUTH OF 12506 HEART LAKE ROAD Brampton 773 Rotary (Convent.) 7.6 4.6 5.1 Monitoring and Tot Height Observation Wells 15 100395060 7183229 4/9/2012 59578 4845545 270.0 margin of error : 10 · 00 m MAYFIELD/HEART LAKE RD. CALEDON 856 Boring 6.1 5.1 Monitoring Observation Wells 17 1001840812 713604 7/21/2008 59524 4845052 264.0 margin of error : 10 · 30 m 12267 KENNEDY RD · N. OF MAYFIELD RD. CALEDON 538 HSA 5.0 Monitoring Abandoned-Other 18 11766997 704457 5/15/2007 595757 4845582 266.0 margin of error : 10 · 30 m NW FIELD, MAYFIEL	11	10321552	4906991	11/10/1988	596118	4845362	268.5				546	Boring	25.3	18.3	76.2	Domestic		Water Supply
14 1003636975 717542 12/22/2011 59575 4846187 272.8 margin of error : 30 m · 100 m 50 SOUTH OF 12506 HEART LAKE ROAD Brampton 773 Retary (Convent.) 7.6 4.6 5.1 Monitoring and Test Hole Observation Wells 15 1003950600 7183229 4/9/2012 595978 4845545 270.0 margin of error : 30 m · 100 m 12179 HEARTLAKE RD 399 Not Used Abandoned-Other 16 1004603550 7209474 41544 596300 4845117 262.6 margin of error : 10 · 30 m 12267 KENNEDY RD · N. OF MAYFIELD RD. CALEDON 856 Boring 6.1 S.0 Monitoring Abandoned-Other 18 11766997 7044576 5/15/2007 595757 4845889 272.1 margin of error : 10 · 30 m HEART LAKE RD AT MAYFIELD RD CALEDON 305 Monitoring Abandoned-Other 19 1006033571 7264134 5/4/2016 595157 484588 269.8 margin of error : 30 m · 100 m NW FIELD, MAYFIELD RD	12	10321635	4907074	3/1/1989	596118	4845362	268.5	margin of error : 3 - 10 m			546	Cable Tool	61.0	61.0	15.2	Domestic		Water Supply
14 100363697 7175428 12/22/2011 59575 4846187 272.8 margin of error : 30 m - 100 m 50 SOUTH OF 12506 HEART LAKE ROAD Brampton 773 Rotary (Convent.) 7.6 4.6 5.1 Test Hole Observation Weils 15 1003950600 7183229 4/9/2012 59578 484535 270.0 margin of error : 30 m - 100 m 12179 HEARTLAKE RD 399 Not Used Abandoned-Other 16 1004603550 720947 41544 59630 4845117 262.6 margin of error : 30 m - 100 m MAYFIELD/HEART LAKE RD. CALEDON 856 Boring 6.1 5.1 Monitoring Abandoned-Other 17 1001840812 713604 7/21/208 59575 484588 272.1 margin of error : 10 - 30 m 12267 KENNEDY RD - N. OF MAYFIELD RD CALEDON 538 HSA Monitoring Abandoned-Other 18 11766997 704576 5/12/2007 595757 484588 269.6 margin of error : 30 m - 100 m NW FIELD, MAYFIELD RD CALEDON 435 Boring 6.1 C C C C Obse	13	10322017	4907458	6/27/1990	595352	4846326	276.0	margin of error : 3 - 10 m			879	Rotary (Convent.)	61.3	60.3	12.7	Domestic	Livestock	Water Supply
16 1004603550 7209474 41544 596360 4845117 262.6 margin of error : 30 m - 100 m MAYFIELD/HEART LAKE RD. CALEDON 856 Boring 6.1 5.1 Monitoring Observation Wells 17 1001840812 7113604 7/21/2008 595244 4845062 264.0 margin of error : 10 - 30 m 12267 KENNEDY RD - N. OF MAYFIELD RD. CALEDON 538 HSA Monitoring Abandoned-Other 18 11766997 7044576 5/15/2007 595757 4845889 272.1 margin of error : 30 m - 100 m NW FIELD, MAYFIELD RD. CALEDON 4455 Boring 6.1 5.0 Not Used Observation Wells 19 1006034911 7264134 5/4/2016 595167 4845582 269.8 margin of error : 30 m - 100 m NW FIELD, MAYFIELD RD & HEART LAKE RD CALEDON 305 <td>14</td> <td>1003636975</td> <td>7175428</td> <td>12/22/2011</td> <td>595275</td> <td>4846187</td> <td>272.8</td> <td>margin of error : 30 m - 100 m</td> <td>50 SOUTH OF 12506 HEART LAKE ROAD</td> <td>Brampton</td> <td>773</td> <td>Rotary (Convent.)</td> <td>7.6</td> <td>4.6</td> <td>5.1</td> <td>0</td> <td></td> <td>Observation Wells</td>	14	1003636975	7175428	12/22/2011	595275	4846187	272.8	margin of error : 30 m - 100 m	50 SOUTH OF 12506 HEART LAKE ROAD	Brampton	773	Rotary (Convent.)	7.6	4.6	5.1	0		Observation Wells
17100184081271136047/21/200859524484502264.0margin of error : 10 - 30 m12267 KENNEDY RD - N. OF MAYFIELD RD.CALEDON538HSAImage: Constraint of error : 10 - 30 mAbandoned-Other181176699770445765/15/2007595754845889272.1margin of error : 10 - 30 mHEART LAKE RD AT MAYFIELD RD.CALEDON445Boring6.15.0Not UsedObservation Wells1910060349117264135/4/201659528484558269.6margin of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON305Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON431Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON431Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON372Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON372Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON374Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON372Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON374Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON374Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON374Image: Constraint of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEAR	15	1003950600	7183229	4/9/2012	595978	4845545	270.0	margin of error : 30 m - 100 m	12179 HEARTLAKE RD		399					Not Used		Abandoned-Other
181176699770445765/15/20759575484588927.1margin of error : 10 - 30 mHEART LAKE RD AT MAYFIELD RDCALEDON445Boring6.15.0Not UsedObservation Wells1910063491172641345/4/201659528484538269.6margin of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RDCALEDON30511	16	1004603550	7209474	41544	596360	4845117	262.6	margin of error : 30 m - 100 m	MAYFIELD/HEART LAKE RD.	CALEDON	856	Boring	6.1		5.1	Monitoring		Observation Wells
1910060349172641345/4/201659528484538269.6margin of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEARTLAKE RDCALEDON3051001010	17	1001840812	7113604	7/21/2008	595244	4845062	264.0		12267 KENNEDY RD - N. OF MAYFIELD RD.	CALEDON	538	HSA				Monitoring		Abandoned-Other
20100603573172641355/4/20165951674845586269.8margin of error: 30 m - 100 mNW FIELD, MAYFIELD RD & HEART LAKE RD.CALEDON431Image: Cole of the second secon	18	11766997	7044576	5/15/2007	595757	4845889	272.1	margin of error : 10 - 30 m	HEART LAKE RD AT MAYFIELD RD	CALEDON	445	Boring	6.1		5.0	Not Used		Observation Wells
21100603574072641365/4/20165953404845198266.3margin of error: 30 m - 100 mNW FIELD, MAYFIELD RD & HEARTLAKE RD.CALEDON372Image: Since and sin	19	1006034911	7264134	5/4/2016		4845538	269.6		NW FIELD, MAYFIELD RD & HEARTLAKE RD	CALEDON	305							
22100603580272641375/4/20165952904845403268.6margin of error : 30 m - 100 mNW FIELD, MAYFIELD RD & HEARTLAKE RDCALEDON304Image: Caleboard and the cal	20	1006035731	7264135			4845586	269.8	margin of error : 30 m - 100 m	NW FIELD, MAYFIELD RD & HEART LAKE RD.	CALEDON								
23 1006035815 7264138 5/4/2016 595173 484551 269.1 margin of error : 30 m - 100 m NW FIELD MAYFIELD RD & HEART LAKE RD CALEDON 413 Image: Colored coloredc	21	1006035740	7264136	5/4/2016	595340	4845198	266.3	margin of error : 30 m - 100 m	NW FIELD, MAYFIELD RD & HEARTLAKE RD.	CALEDON	372							
24 11099304 4909283 9/30/2003 595678 4844817 265.0 UTM very unreliable 668 Digging Image: Constraint of the second consecond constraint of the second constraint of t	22	1006035802					268.6	margin of error : 30 m - 100 m	NW FIELD, MAYFIELD RD & HEARTLAKE RD	CALEDON	304							
	23	1006035815	7264138			4845511	269.1	margin of error : 30 m - 100 m	NW FIELD MAYFIELD RD & HEART LAKE RD	CALEDON	413							
25 1004479340 7205656 7/2/2013 595192 4845576 269.7 margin of error : 30 m - 100 m	24	11099304	4909283	9/30/2003	595678	4844817	265.0	UTM very unreliable			668	Digging				Not Used		Abandoned-Other
	25	1004479340	7205656	7/2/2013	595192	4845576	269.7	margin of error : 30 m - 100 m			404							

EXP Services Inc. 12304 Heart Lake Road, Caledon, Ontario Updated Hydrogeological Investigation and Water Balance Assessment Report BRM-21004344-D0 March 16, 2022

Appendix B – Borehole Logs

		of Boreho	ole	1				
Project No.	BRM-210004344-B0			•	Drawing No.		2	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road				Sheet No.	1	of	1
	Caledon, Ontario			Combi	ustible Vapour Reading	Г	7	
Date Drilled:	Mar 18, 2021	Auger Sample			al Moisture		×	
Drill Type:	CME55 Solid Auger Bomb	SPT (N) Value Dynamic Cone Test Shelby Tube		Undrai	and Liquid Limit ined Triaxial at ain at Failure	⊢ €	—С Э)
Datum:	Geodetic	Field Vane Test	S	Penetr	rometer	4	▲	
k ter		SPT (N Valu	le)	Combu	stible Vapour Reading (pp	vm)	Na	tural

		of Borehole	2	
Project No.	BRM-210004344-B0		Drawing No.	3
Project:	Geotechnical Investigation		Sheet No.	_1_of _1_
Location:	12304 Heart Lake Road			
	Caledon, Ontario		Combustible Vapour Reading	a 🗆
Date Drilled:	<u>Mar 17, 2021</u>	Auger Sample 🛛 🖂	Natural Moisture	×
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test Shelby Tube	Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure	—O ⊕
Datum:	Geodetic	Field Vane Test	Penetrometer	A
ater		SPT (N Value)	Combustible Vapour Reading (p	opm) Natural

	ock ock		ELEV.	(E	2			(N Valu			Ľ	2	25	50	75	g (ppm) 5	e	Natur Unit
	Soil/Rock Symbol	Soil Description	m	Depth (m	Shear	20 Streng		60		80 kPa	a		ural Mo berg Lim				Sample	Weig kN/n
		~ 350 mm TOPSOIL over	273.40	0			100			200		1		20	30)		
	77	_CLAYEY SILT TILL: Distrubed in	~273.1		10 Ö									*				20.
	ø / 9	upper ~ 200 mm, fine sand seams, trace gravel, occasional boulder															-14	
	9/9	trace gravel, occasional boulder —fragments, brown, moist, hard				26				>					++++		-77	
	9/9			1		0							<u>^</u>				-12	
	0/10																1	
						22				>			\mathbf{v}				-0	
				2		Y							Λ				-12	
			_			27				>			×				Ľ	22.
	6/6																-12	~~.
	6/.0		_	3														
	6/6					25 O				>			×					23.
	0	1	_														-14	
	9/9																11	
	9/19		-	4													-	
																	1	
		1	-				20										╞	
							Ő						×					22.
		 wet coarse sand layer, trace clay, trace gravel 	-	5													-14	
	0																3	
		– - becoming grey, wet															1	
				6											+++		-	
	6/9			0		3	1			>								
	8/9					C)						×					23.
	8 / 9																11	
	9		~266.3	7													<u> </u> [
		SANDY SILT TILL: silt partings, trace gravel, occasional boulder fragments,																
		gravel, occasional boulder fragments, grey, moist, very dense	_			-									++++		-	
	0 0							5) \			- v						23.
	0 0		~265.3	8													-22	20.
		END OF BOREHOLE																
																	<u> </u> [
																	-	
														#	\ddagger			
												Deti			Wate		Hc	le Ope
												Date			Leve (m))	1	to (m)
•											On (Compl	etion		3.20	0		7.01
5	`` C	exp.																
														1				

		of Borehole	3				
Project No.	BRM-210004344-B0		Ŭ	Drawing No.		4	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	1	_ of	1
	Caledon, Ontario		Comb	ustible Vapour Reading			
Date Drilled:	Mar 17, 2021	Auger Sample 🛛 🖂		al Moisture		×	、 、
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test	Undra	ined Triaxial at		— ⊕	,
Datum:	Geodetic	Field Vane Test		rometer			

		of Boreh	ole	4				
Project No.	BRM-210004344-B0			I	Drawing No.		5	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road				Sheet No.	1	of .	_1_
	Caledon, Ontario			Combi	ustible Vapour Reading	Г	7	
Date Drilled:	Mar 17, 2021	Auger Sample			Il Moisture	×	-	
Drill Type:	CME55 Solid Auger Bomb	SPT (N) Value Dynamic Cone Test Shelby Tube		Undrai	and Liquid Limit ned Triaxial at iin at Failure	⊢	—0 Э	1
Datum:	Geodetic	Field Vane Test	S	Penetr	rometer		•	
ater of		ਿ SPT (N Va	lue)		stible Vapour Reading (pp	m)	Na	itural

		of Borehol	e	5				
Project No.	BRM-210004344-B0		U	U	Drawing No.		6	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road				Sheet No.	1	of	1
	Caledon, Ontario			Comb	istible Vapour Reading	1		
Date Drilled:	Mar 17, 2021	Auger Sample			I Moisture		×	
Drill Type:	CME55 Solid Auger Bomb	SPT (N) Value O Dynamic Cone Test Shelby Tube		Undrai	and Liquid Limit ned Triaxial at in at Failure	<u>ب</u>	—с Э)
Datum:	Geodetic	Field Vane Test	s	Penetr	ometer		A	
ater		C SPT (N Value)		Combu	stible Vapour Reading (pp	vm)	" Na	atural

		of Borehole	6				
Project No.	BRM-210004344-B0		U	Drawing No.		7	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	1	of	1
Date Drilled:	Caledon, Ontario Mar 16-17, 2021	Auger Sample		oustible Vapour Reading al Moisture		□ ×	
Drill Type: Datum:	CME55 Solid Auger Bomb Geodetic	SPT (N) Value	Undra % Str	c and Liquid Limit ained Triaxial at ain at Failure trometer	⊢	C ⊕ ▲)
		5					

		of Borehole	7			
Project No.	BRM-210004344-B0			Drawing No.	8	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	_1_ of	1
	Caledon, Ontario		Combi	ustible Vapour Reading		
Date Drilled:	Mar 16, 2021	Auger Sample 🛛 🖂	Natura	I Moisture	×	
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test Shelby Tube	Undrai	and Liquid Limit ned Triaxial at iin at Failure	⊢(⊕	С
Datum:	Geodetic	Field Vane Test	Penetr	rometer		
-× ate		☐ SPT (N Value)	Combu	stible Vapour Reading (pp	^{m)} N	atural

Ducie of No.	BRM-210004344-B0	of Borehol	е	8	Decesion		0		
Project No.	DRIVI-210004344-D0				Drawing No.		9		
Project:	Geotechnical Investigation				Sheet No.	_1	of	_1	
Location:	12304 Heart Lake Road								
	Caledon, Ontario			Ormh		1	_		
Date Drilled:	Mar 16, 2021	Auger Sample			istible Vapour Reading I Moisture		×		
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test) Ø	Undrai	and Liquid Limit ned Triaxial at	⊢	—(() ()	C	
Datum:	Geodetic	Shelby Tube Field Vane Test	∎ ŧ	% Stra Penetr	in at Failure ometer		▲		
t		SPT (N Value)	-	Combu	stible Vapour Reading (pp	om)	N	atura	

		of Boreho	le	9				
Project No.	BRM-210004344-B0			U	Drawing No.		10	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road				Sheet No.	1	of	1
	Caledon, Ontario			Comb	ustible Vapour Reading	г		
Date Drilled:	Mar 25, 2021	Auger Sample SPT (N) Value (Natura	al Moisture		-)
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test - Shelby Tube		Undra	ined Triaxial at ain at Failure	•	Ð	
Datum:	Geodetic	Field Vane Test	S	Penet	rometer		^	

	Log	of Boreh	ole	10				
Project No.	BRM-210004344-B0				Drawing No.		11	
Project:	Geotechnical Investigation				Sheet No.	1	of _	1
Location:	12304 Heart Lake Road							
	Caledon, Ontario			Combu	stible Vapour Reading	Г	٦	
Date Drilled:	Mar 25, 2021	Auger Sample			Moisture	×	_	
Drill Type:	CME55 Solid Auger Bomb	SPT (N) Value Dynamic Cone Test	0 🛛		and Liquid Limit ned Triaxial at	-	-0	
Datum:	Geodetic	Shelby Tube		% Stra	n at Failure	€	€	
		Field Vane Test	S	Penetro		.	`	

Project No.	вям-210004344-во Log с	of Boreh	ole	11	Drawing No.		12	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road				Sheet No.	1	of _	1
Date Drilled: Drill Type: Datum:	Caledon, Ontario Mar 18, 2021 CME55 Solid Auger Bomb Geodetic	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Natura Plastic Undrai % Stra	istible Vapour Reading I Moisture and Liquid Limit ned Triaxial at in at Failure ometer	∠ × ⊢	—0	

		f Borehole	12				
Project No.	<u>BRM-210004344-B0</u>			Drawing No.		13	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	_1	of	_1
	Caledon, Ontario	_	Comb	ustible Vapour Reading		-	
Date Drilled:	Mar 16, 2021	Auger Sample 🛛	Natura	I Moisture	>		
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test	Undra	and Liquid Limit ned Triaxial at in at Failure	0	—с Ð)
Datum:	Geodetic	_ Field Vane Test S	Peneti	rometer		•	
e		= SPT (N) (elve)	Combu	stible Vapour Reading (pp	om)	NI-	4

Project No.	<u>BRM-210004344-B0</u>	of Borehole	13 Drawing No.	14
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road		Sheet No.	_1_ of _1_
Date Drilled:	<u>Caledon, Ontario</u> Mar 25, 2021	Auger Sample	Combustible Vapour Reading Natural Moisture	a □ ×
Drill Type: Datum:	CME55 Solid Auger Bomb Geodetic	SPT (N) Value O 🖄 Dynamic Cone Test Shelby Tube	Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure Penetrometer	
r te		SPT (N Value)	Combustible Vapour Reading (p	ppm) Natural

		of Borehole	14				
Project No.	BRM-210004344-B0			Drawing No.		15	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	_1	of	_1
	Caledon, Ontario	_	Combu	atible Vapour Pooding			
Date Drilled:	Mar 24, 2021	Auger Sample 🛛	Natura	Combustible Vapour Reading Natural Moisture			
Drill Type:	CME55 Solid Auger Bomb		Undrai	and Liquid Limit ned Triaxial at in at Failure	H	—-C ⊕)
Datum:	Geodetic	Field Vane Test S	Penetr	ometer		A	
ater of		E SPT (N Value)		tible Vapour Reading (pr		n Na	atural

		of Borehole	2 15			
Project No.	BRM-210004344-B0			Drawing No.	16	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	_1_ of	_1
	Caledon, Ontario		Comb	ustible Vapour Reading	П	
Date Drilled:	Mar 17, 2021	Auger Sample 🛛 🕅] Natura	al Moisture	×	_
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test	Undra	and Liquid Limit ined Triaxial at	⊢ ⊕)
Datum:	Geodetic	Shelby Tube Field Vane Test		ain at Failure rometer	▲	
5			Combu	stible Vapour Reading (pr	m)	

Project No.	<u>BRM-210004344-B0</u> LOG C	of Borehole	16 Drawing No.	17
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road		Sheet No	1_of_1_
	Caledon, Ontario		Combustible Vapour Reading	
Date Drilled:	<u>Mar 18, 2021</u>	Auger Sample 🛛 🖂	Natural Moisture	×
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test Shelby Tube	Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure	—_○ ⊕
Datum:	Geodetic	Field Vane Test S	Penetrometer	A
ndwater I/Rock /mbol	Soil Description ELEV	, Ê SPT (N Value)	Combustible Vapour Reading (ppm) 25 50 75 Natural Moisture Content %) Belle Natural Unit Woight

			() e	11				
Project No.	BRM-210004344-B0	of Boreh			Drawing No.		18	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road				Sheet No.	1	of	1
Data Dalla d	Caledon, Ontario	Auger Sample	\boxtimes		stible Vapour Reading Moisture			
Date Drilled: Drill Type:	Mar 17, 2021 CME55 Solid Auger Bomb	SPT (N) Value Dynamic Cone Test Shelby Tube		Plastic Undrain	Moisture and Liquid Limit led Triaxial at n at Failure	H	× —○ ⊕)
Datum:	Geodetic	Field Vane Test	S	Penetro			▲ 	

		of Borehole	18				
Project No.	BRM-210004344-B0		10	Drawing No.		19	
Project:	Geotechnical Investigation			Sheet No.	1	of	1
Location:	12304 Heart Lake Road						
	Caledon, Ontario	_	Combus	tible Vapour Reading		T	
Date Drilled:	Mar 18, 2021	Auger Sample		Moisture	×		
Drill Type:	CME55 Solid Auger Bomb	— SPT (N) Value O ☑ Dynamic Cone Test	Undraine	and Liquid Limit ed Triaxial at	⊢	—0 Э)
Datum:	Geodetic	Shelby Tube Field Vane Test S	% Strain Penetro	n at Failure meter		Ĺ	
Ler.		SPT (N Value)	Combust	ible Vapour Reading (pp	vm)	Na	tural

		of Borehole	19			
Project No.	BRM-210004344-B0		10	Drawing No.	20	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	_1_ of _1	
	Caledon, Ontario	Auger Sample 🛛	Combu	stible Vapour Reading		
Date Drilled:	Mar 22, 2021	Auger Sample 🛛 🖄		Moisture and Liquid Limit	× ⊢0	
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test Shelby Tube		ned Triaxial at n at Failure	\oplus	
Datum:	Geodetic	Field Vane Test	Penetro	ometer		
5			Combus	tible Vapour Reading (pr	om)	

Project No.	<u>BRM-210004344-B0</u>	jо	f Borel	nole	20	Drawing No.		21	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road					Sheet No.	_1	of	_1
Date Drilled	Caledon, Ontario Mar 22, 2021		- Auger Sample			stible Vapour Reading Moisture		□ ×	
Drill Type:	CME55 Solid Auger Bomb		 SPT (N) Value Dynamic Cone Test Shelby Tube 		Undrair	and Liquid Limit ned Triaxial at n at Failure	⊢	—-C)
Datum:	Geodetic		_ Field Vane Test	S	Penetro			A	
ldwater Rock nbol	Soil Description	ELEV.	(표) SPT (N 또 20 40	I Value) 60 80	2	tible Vapour Reading (pp 5 50 75 ural Moisture Content %			atural Jnit

		of Borehole	21	
Project No.	BRM-210004344-B0		Drawing No.	22
Project:	Geotechnical Investigation		Sheet No.	_1_of_1
Location:	12304 Heart Lake Road			
	Caledon, Ontario		Combustible Vapour Reading	a 🗆
Date Drilled:	Mar 22, 2021	Auger Sample	Natural Moisture	×
Drill Type:	CME55 Solid Auger Bomb	SPT (N) Value O 🛛 Dynamic Cone Test Shelby Tube	Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure	⊢O ⊕
Datum:	Geodetic	Field Vane Test	Penetrometer	A
tock bol	EL	EV. E	Combustible Vapour Reading (p 25 50 75	^{opm)} Natural

		of Boreh	ole	22				
Project No.	BRM-210004344-B0				Drawing No.		23	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road				Sheet No.	_1	_ of	_1
	Caledon, Ontario			Combus	stible Vapour Reading			
Date Drilled:	Mar 22, 2021	Auger Sample			Moisture		×	
Drill Type:	CME55 Solid Auger Bomb	SPT (N) Value Dynamic Cone Test Shelby Tube		Undrain	and Liquid Limit ed Triaxial at n at Failure	⊢	—-C)
Datum:	Geodetic	Field Vane Test	S	Penetro	ometer		A	
ol ck		, Ê SPT (N Val	lue)	Combus	tible Vapour Reading (pp	om)	_o Na	atural

		of Borehole	23				
Project No.	BRM-210004344-B0		20	Drawing No.		24	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	1	_ of	_1
	Caledon, Ontario		Combu	stible Vapour Reading			
Date Drilled:	Mar 19, 2021	Auger Sample 🛛 🖂	Natural	Moisture		×	<u>_</u>
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test		Undrair	and Liquid Limit ned Triaxial at n at Failure)
Datum:	Geodetic	Field Vane Test	Penetro	ometer		A	
5			Combus	tible Vapour Reading (pr	m)	.	

		of Boreho		24				
Project No.	<u>BRM-210004344-B0</u>				Drawing No.		25	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road				Sheet No.	1	_ of	_1
	Caledon, Ontario	_		Combi	ustible Vapour Reading	I		
Date Drilled:	Mar 23, 2021	Auger Sample Image: SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test	Natura	l Moisture	× + •			
Drill Type:	CME55 Solid Auger Bomb		Undrai	and Liquid Limit ned Triaxial at in at Failure				
Datum:	Geodetic		S	Penetr	ometer		A	
e		SPT (NL)/alua	\ \	Combu	stible Vapour Reading (pp	vm)	NL	atural

		of Boreho	h	25						
Project No.	BRM-210004344-B0			20	Drawing No.		26			
Project:	Geotechnical Investigation				Sheet No.	_1_	of	_1		
Location:	12304 Heart Lake Road									
	Caledon, Ontario			Combu	stible Vapour Reading	r	7			
Date Drilled:	Mar 23, 2021	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube					Moisture	-	×	
Drill Type:	CME55 Solid Auger Bomb			Undrain	and Liquid Limit ned Triaxial at n at Failure	ا	—с Ә)		
Datum:	Geodetic	Field Vane Test	s	Penetro		4	A			
, te		SPT (N Value	e)	Combus	tible Vapour Reading (pp	om)	Na	atural		

		of Borehole	26				
Project No.	BRM-210004344-B0		20	Drawing No.		27	
Project:	Geotechnical Investigation			Sheet No.	1	of	1
Location:	12304 Heart Lake Road						
	Caledon, Ontario		Combu	stible Vapour Reading	Ε	7	
Date Drilled:	Mar 23, 2021	Auger Sample		Moisture	>		
Drill Type:	CME55 Solid Auger Bomb	— SPT (N) Value O	Undrair	and Liquid Limit ned Triaxial at n at Failure	(—с ∌)
Datum:	Geodetic	Field Vane Test S	Penetro		4	•	
, te		SPT (N Value)	Combus	tible Vapour Reading (pp	vm)	No	atural

		of Borehole	27	
Project No.	BRM-210004344-B0		Drawing No.	28
Project:	Geotechnical Investigation		Sheet No.	_1_ of _1_
Location:	12304 Heart Lake Road			
	Caledon, Ontario		Combustible Vapour Reading	
Date Drilled	: Mar 23, 2021	Auger Sample	Natural Moisture	×
Drill Type:	CME55 Solid Auger Bomb	SPT (N) Value O	Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure	⊢O ⊕
Datum:	Geodetic	Field Vane Test	Penetrometer	A
water ock bol	F	ELEV E SPT (N Value)	Combustible Vapour Reading (p 25 50 75	^{pm)} Natural

		of Borehole	28				
Project No.	BRM-210004344-B0		20	Drawing No.		29	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	1	of _	1
	Caledon, Ontario	_	Combu	stible Vapour Reading		1	
Date Drilled:	Mar 24, 2021	Auger Sample 🛛 🖂		Moisture	×		
Drill Type:	CME55 Solid Auger Bomb	SPT (N) Value O Dynamic Cone Test Shelby Tube	Undrair	and Liquid Limit ned Triaxial at n at Failure	⊢	0)	
Datum:	Geodetic	Field Vane Test	Penetro	ometer		1	
ē		SPT (N Value)	Combus	tible Vapour Reading (pp	om)	Not	ural

		of Borehole	29				
Project No.	BRM-210004344-B0		20	Drawing No.		30	
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road			Sheet No.	1	of	1
	Caledon, Ontario	_	Combu	stible Vapour Reading	Γ	7	
Date Drilled:	Mar 24, 2021	Auger Sample ⊠ ── SPT (N) Value O ∅	Natural	Moisture		×	
Drill Type:	CME55 Solid Auger Bomb	Dynamic Cone Test	Undrair	and Liquid Limit ned Triaxial at n at Failure	€	—С Э)
Datum:	Geodetic	Field Vane Test S	Penetro	ometer	4	▲	
ē		SPT (NL)(alua)	Combus	tible Vapour Reading (pp	om)	No	tural

Project No.	<u>вкм-210004344-во</u> Log с	of Borehole	30 Drawing No.	31
Project: Location:	Geotechnical Investigation 12304 Heart Lake Road		Sheet No.	_1_of_1_
Date Drilled:	Caledon, Ontario Mar 24, 2021	Auger Sample	Combustible Vapour Reading Natural Moisture	a □ ×
Drill Type:	CME55 Solid Auger Bomb	— SPT (N) Value O ☑ _ Dynamic Cone Test Shelby Tube ■	Plastic and Liquid Limit Undrained Triaxial at % Strain at Failure	⊢O ⊕
Datum:	Geodetic	Field Vane Test	Penetrometer Combustible Vapour Reading (p	ppm) Natural

/ater	<u> </u>			Ê		SPT	(N Value	e)			stible Vap 25		ing (ppm) 75	е	Natura
Groundwater	Soil/Rock Symbol	Soil Description	ELEV.	Depth (m	Shoor	20 40 Strength	60	80	kPa	Nat	tural Moist	ture Conte	ent %	Sample	Unit Weiaht
Gro	SS		270.57	De	Snear	Strength 100)	200	кга				30	S	Weight kN/m ³
	· · · · · · · · · · · · · · · · · · ·	~ 250 mm TOPSOIL over	~270.3	0	4										
	х́хх́х	FILL: clayey silt to sandy silt, trace	270.0		Ó							X			
		gravel, brown, moist (reworked parent -	-											-12	
		material)			10										
			_	1	Ö						×			-1/1	22.4
			0000											-12	
		-CLAYEY SILT TILL: fine sand seams -	~269.2												
	0/9	and layers, trace gravel, occasional			14									-7/	~~~~
		boulder fragments, brown, moist, stiff					A								22.6
		to hard	-	2										-111	
	9/9					22									
	0		-			Ő			Á		×				22.4
														-14	
	/11			3											
						33 O			>						00.4
	6/14					$ \Psi $									22.1
			1												
	247														
			~266.5	4											
		SANDY SILT TILL: numerous fine													
ŀ	1	_ sand seams, cohesive layers, trace _ gravel, occasional boulder fragments, _	4												
ŀ	0 0	brown, moist, very dense													23.1
	a a			5											23.
1	0 0														
	р с														
	0 0														
	0 a		-	6										-	
								83/22	9mm }		×				
			_											-14	
	0 0														
	0 0		~263.5	7											
		SILTY SAND, fine to medium		'											
		grained, brown, moist, very dense											1 + + + +		
Ŀ	다만	_ · ·	1						00						
								80/2	80mm)		X			V	
	금리는		~262.5	8										-14	
ļ		END OF BOREHOLE													
														3	
ļ															
														4	
ļ														11	
ļ															
ļ														4	
	I		1	!								Wa	ater		la 0
										Date		Le	vel		le Open to (m)
	_								Or	n Comp	letion		n) Iry		7.62
-	-	exp.							Ma	rch 25,	2021		iry Iry		
5	·F	X()								pril 9, 2			iry		
		-													

EXP Services Inc. 12304 Heart Lake Road, Caledon, Ontario Updated Hydrogeological Investigation and Water Balance Assessment Report BRM-21004344-D0 March 16, 2022

Appendix C – SWRT Procedures and Results

 Data Set:
 E:\BRM\BRM-21004344-D0\50 Input\Field Work\SWRT\Working File\BH 1.aqt

 Date:
 10/08/21
 Time:
 14:55:22

PROJECT INFORMATION

Company: <u>EXP</u> Client: <u>Boccolini Limited Partnership</u> Project: <u>BRM-21004344-D0</u> Location: <u>12304 Heart Lake Rd</u> Test Well: <u>BH 1</u> Test Date: 7 Oct 2021

AQUIFER DATA

Saturated Thickness: 2.95 m

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH 1)

Initial Displacement: <u>1.542</u> m Total Well Penetration Depth: <u>3.</u> m Casing Radius: <u>0.0254</u> m Static Water Column Height: <u>2.95</u> m Screen Length: <u>3.</u> m Well Radius: <u>0.0762</u> m

SOLUTION

Aquifer Model: <u>Unconfined</u>

Solution Method: Hvorslev

K = 3.058E-6 m/sec

y0 = 1.417 m

WELL TEST ANALYSIS

 Data Set:
 E:\BRM\BRM-21004344-D0\50 Input\Field Work\SWRT\Working File\BH 9.aqt

 Date:
 10/08/21
 Time:
 15:20:36

PROJECT INFORMATION

Company: <u>EXP</u> Client: <u>Boccolini Limited Partnership</u> Project: <u>BRM-21004344-D0</u> Location: <u>12304 Heart Lake Rd</u> Test Well: <u>BH 9</u> Test Date: 7 Oct 2021

AQUIFER DATA

Saturated Thickness: 1.65 m

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH 9)

Initial Displacement: <u>1.065</u> m Total Well Penetration Depth: <u>3.</u> m Casing Radius: <u>0.0254</u> m Static Water Column Height: <u>1.65</u> m Screen Length: <u>3.</u> m Well Radius: <u>0.0762</u> m

SOLUTION

Aquifer Model: <u>Unconfined</u>

Solution Method: Hvorslev

K = 3.976E-7 m/sec

y0 = 1.041 m

WELL TEST ANALYSIS

 Data Set:
 E:\BRM\BRM-21004344-D0\50 Input\Field Work\SWRT\Working File\BH 25.aqt

 Date:
 10/14/21
 Time:
 15:06:38

PROJECT INFORMATION

Company: <u>EXP</u> Client: <u>Boccolini Limited Partnership</u> Project: <u>BRM-21004344-D0</u> Location: <u>12304 Heart Lake Rd</u> Test Well: <u>BH 25</u> Test Date: <u>12 Oct 2021</u>

AQUIFER DATA

Saturated Thickness: 0.89 m

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH 25)

Initial Displacement: <u>0.549</u> m Total Well Penetration Depth: <u>3.</u> m Casing Radius: <u>0.0254</u> m Static Water Column Height: 0.89 m Screen Length: 3. m Well Radius: 0.0762 m

SOLUTION

Aquifer Model: Unconfined

K = 3.879E-7 m/sec

Solution Method: Hvorslev

y0 = 0.5248 m

*exp. Single Well Response Test Procedure

A Single Well Response Test (SWRT), also known as a bail test or a slug test, is conducted in order to determine the saturated hydraulic conductivity (K) of an aquifer. The method of the SWRT is to characterize the change of groundwater level in a well or borehole over time.

In order to ensure consistency and repeatability, all **exp** employees are to follow the procedure outlined in this document when conducting SWRTs.

The figure below depicts a schematic of a slug and bail test and the respective water level changes.

Slug Test Procedure

Equipment Required

- Copy of a signed health and safety plan
- Copy of the work program
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data Entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting

Testing Procedure

- 1. Remove cap from well and collect static water level
- 2. Remove waterra tubing/bailer and place in garbage bag. Record static water level measurement again.
- 3. Lower the slug into the well and record the dynamic water level.
- 4. Record the drawdown (for the slug test) at set five (5) second intervals for the first five (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown until 95% recovery is reached. To calculate this value: Find the difference between the dynamic water level and the static water level, then multiply by 95% (.95). Add the resulting value to the dynamic water level.
 - (Static Water Level Dynamic Water Level).95 + Static Water Level = 95% Recovery Value
- 6. Once complete, replace the waterra tubing/bailer and re-secure the well cap.

Note: If the well is deep, more than one slug may be inserted by attaching the slugs to a series.

Slugs must be washed with methanol, then lab grade soap, and then rinsed with de-ionized water after each use.

Based on the recorded observations, the hydraulic conductivity (in m/s) of the aquifer will be determined. In order to determine the hydraulic conductivity; the well diameter, radius of the borehole and length of the screen will also be required.

Bail Test Procedure

Equipment Required

- 20 L (5 gal) Graduated pail
- Stop watch or watch with seconds
- Garbage bags
- Water level meter
- Field sheets/log book
- Latex Gloves
- Bailer and Rope

Procedure

- 1. Remove cap from well and collect static water level.
- 2. If using a **bailer**:
 - a. Affix the rope to the bailer.
 - b. Remove the waterra tubing and place in garbage bag
 - c. Record static water level measurement again.
 - d. Record how much water was removed by either counting the number of full bailers or emptying removed water into a container.
 - e. Quickly lower the bailer into the well and remove.
 - f. Continue this process until the water level will reduce no further.
 - g. Record the dynamic water level.
- 3. If using waterra to bail the water:
 - a. Pump the water into graduated bucket until the water level will reduce no further.
 - b. Record how much water has been removed.
 - c. Record the dynamic water level.
- 4. Record the recovery at set five (5) second intervals for the first (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown/recovery until 95% recovery is reached.
- 6. Once complete, replace any waterra tubing that may have been removed from the well and re-secure the well cap.

EXP Services Inc. 12304 Heart Lake Road, Caledon, Ontario Updated Hydrogeological Investigation and Water Balance Assessment Report BRM-21004344-D0 March 16, 2022

Appendix D – Laboratory Certificates of Analysis

Your P.O. #: ENV-BRM Your Project #: BRM-21004344-D0 Site Location: 12304 HEART LAKE Your C.O.C. #: 828273-06-01

Attention: Francois Chartier

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

Report Date: 2021/10/21 Report #: R6862632 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C1T6332 Received: 2021/10/13, 08:00

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	1	2021/10/15	2021/10/18	CAM SOP-00301	EPA 8270 m
Carbonaceous BOD	1	2021/10/14	2021/10/19	CAM SOP-00427	SM 23 5210B m
Total Cyanide	1	2021/10/15	2021/10/15	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2021/10/16	2021/10/18	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2021/10/15	2021/10/18	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2021/10/20	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2021/10/13	CAM SOP-00552	MOE LSB E3371
Total Nonylphenol in Liquids by HPLC	1	2021/10/15	2021/10/15	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2021/10/15	2021/10/15	CAM SOP-00313	BV Labs Method
Animal and Vegetable Oil and Grease	1	N/A	2021/10/21	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2021/10/20	2021/10/21	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2021/10/15	2021/10/16	CAM SOP-00309	EPA 8082A m
рН	1	2021/10/16	2021/10/18	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2021/10/14	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	1	N/A	2021/10/18	CAM SOP-00464	EPA 375.4 m
Total Kjeldahl Nitrogen in Water	1	2021/10/15	2021/10/18	CAM SOP-00938	OMOE E3516 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2021/10/20	2021/10/21	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2021/10/14	2021/10/18	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2021/10/16	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 14

Your P.O. #: ENV-BRM Your Project #: BRM-21004344-D0 Site Location: 12304 HEART LAKE Your C.O.C. #: 828273-06-01

Attention: Francois Chartier

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2021/10/21 Report #: R6862632 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C1T6332 Received: 2021/10/13, 08:00

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Patricia Legette, Project Manager Email: Patricia.Legette@bureauveritas.com Phone# (905)817-5799

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 14

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				QXK068			QXK068		
Sampling Date				2021/10/12 16:00			2021/10/12 16:00		
COC Number				828273-06-01			828273-06-01		
	UNITS	Criteria	Criteria-2	BH 1	RDL	QC Batch	BH 1 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	150	-	ND	0.50	7633045			
Inorganics		1							
Total Carbonaceous BOD	mg/L	300	15	ND	2	7635932			
Fluoride (F-)	mg/L	10	-	0.24	0.10	7641412			
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	0.64	0.10	7639522			
рН	pН	5.5:10.0	6.0:9.0	7.86		7641415			
Phenols-4AAP	mg/L	1	0.008	ND	0.0010	7636523			
Total Suspended Solids	mg/L	350	15	10	10	7636921			
Dissolved Sulphate (SO4)	mg/L	1500	-	82	1.0	7641373	82	1.0	7641373
Total Cyanide (CN)	mg/L	2	0.02	ND	0.0050	7639849			
Petroleum Hydrocarbons		•							
Total Oil & Grease	mg/L	-	-	ND	0.50	7649903			
Total Oil & Grease Mineral/Synthetic	mg/L	15	-	ND	0.50	7649907			
Miscellaneous Parameters									
Nonylphenol Ethoxylate (Total)	mg/L	0.2	-	ND	0.025	7638828			
Nonylphenol (Total)	mg/L	0.02	-	ND	0.001	7638824			
Metals									
Mercury (Hg)	mg/L	0.01	0.0004	ND	0.00010	7639524			
Total Aluminum (Al)	ug/L	50000	-	370	4.9	7642069			
Total Antimony (Sb)	ug/L	5000	-	ND	0.50	7642069			
Total Arsenic (As)	ug/L	1000	20	1.7	1.0	7642069			
Total Cadmium (Cd)	ug/L	700	8	ND	0.090	7642069			
Total Chromium (Cr)	ug/L	5000	80	ND	5.0	7642069			

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 3 of 14

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				QXK068			QXK068		
Sampling Date				2021/10/12 16:00			2021/10/12 16:00		
COC Number				828273-06-01			828273-06-01		
	UNITS	Criteria	Criteria-2	BH 1	RDL	QC Batch	BH 1 Lab-Dup	RDL	QC Batch
Total Cobalt (Co)	ug/L	5000	-	0.64	0.50	7642069			
Total Copper (Cu)	ug/L	3000	50	2.3	0.90	7642069			
Total Lead (Pb)	ug/L	3000	120	ND	0.50	7642069			
Total Manganese (Mn)	ug/L	5000	50	78	2.0	7642069			
Total Molybdenum (Mo)	ug/L	5000	-	2.9	0.50	7642069			
Total Nickel (Ni)	ug/L	3000	80	1.9	1.0	7642069			
Total Phosphorus (P)	ug/L	10000	-	ND	100	7642069			
Total Selenium (Se)	ug/L	1000	20	ND	2.0	7642069			
Total Silver (Ag)	ug/L	5000	120	ND	0.090	7642069			
Total Tin (Sn)	ug/L	5000	-	ND	1.0	7642069			
Total Titanium (Ti)	ug/L	5000	-	9.6	5.0	7642069			
Total Zinc (Zn)	ug/L	3000	40	ND	5.0	7642069			
Semivolatile Organics		•		•		•	•		
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	ND	2.0	7638687			
Di-N-butyl phthalate	ug/L	80	15	ND	2.0	7638687			
Volatile Organics		•		•		•	•		
Benzene	ug/L	10	2	ND	0.40	7634550			
Chloroform	ug/L	40	2	2.8	0.40	7634550			
1,2-Dichlorobenzene	ug/L	50	5.6	ND	0.80	7634550			
1,4-Dichlorobenzene	ug/L	80	6.8	ND	0.80	7634550			
cis-1,2-Dichloroethylene	ug/L	4000	5.6	ND	1.0	7634550			
trans-1,3-Dichloropropene	ug/L	140	5.6	ND	0.80	7634550			
Ethylbenzene	ug/L	160	2	ND	0.40	7634550			
Methylene Chloride(Dichloromethane)	ug/L	2000	5.2	ND	4.0	7634550			

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 4 of 14

PEEL SANITARY & STORM SEWER (53-2010)

Bureau Veritas ID				QXK068			QXK068		
Sampling Date				2021/10/12 16:00			2021/10/12 16:00		
COC Number				828273-06-01			828273-06-01		
	UNITS	Criteria	Criteria-2	BH 1	RDL	QC Batch	BH 1 Lab-Dup	RDL	QC Batch
Methyl Ethyl Ketone (2-Butanone)	ug/L	8000	-	ND	20	7634550			
Styrene	ug/L	200	-	ND	0.80	7634550			
1,1,2,2-Tetrachloroethane	ug/L	1400	17	ND	0.80	7634550			
Tetrachloroethylene	ug/L	1000	4.4	ND	0.40	7634550			
Toluene	ug/L	270	2	ND	0.40	7634550			
Trichloroethylene	ug/L	400	8	ND	0.40	7634550			
p+m-Xylene	ug/L	-	-	ND	0.40	7634550			
o-Xylene	ug/L	-	-	ND	0.40	7634550			
Total Xylenes	ug/L	1400	4.4	ND	0.40	7634550			
PCBs						•			
Total PCB	ug/L	1	0.4	ND	0.05	7639857			
Microbiological									
Escherichia coli	CFU/100mL	-	200	<10	10	7634654			
Surrogate Recovery (%)						•			
2,4,6-Tribromophenol	%	-	-	67		7638687			
2-Fluorobiphenyl	%	-	-	68		7638687			
2-Fluorophenol	%	-	-	30		7638687			
D14-Terphenyl	%	-	-	91		7638687			
D5-Nitrobenzene	%	-	-	70		7638687			
D5-Phenol	%	-	-	22		7638687			
Decachlorobiphenyl	%	-	-	81		7639857			
4-Bromofluorobenzene	%	-	-	88		7634550			
D4-1,2-Dichloroethane	%	-	-	107		7634550			
D8-Toluene	%	-	-	92		7634550			
No Fill No Exceed	lance			•			•		

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 5 of 14

TEST SUMMARY

Sample ID: B	XKO68 H 1 Vater					Collected: Shipped: Received:	2021/10/12 2021/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
ABN Compounds in Water by	y GC/MS	GC/MS	7638687	2021/10/15	2021/10/18	Anh Lieu	
Carbonaceous BOD		DO	7635932	2021/10/14	2021/10/19	Surleen Ka	iur Romana
Total Cyanide		SKAL/CN	7639849	2021/10/15	2021/10/15	Nimarta Si	ngh

			,,	//	
Carbonaceous BOD	DO	7635932	2021/10/14	2021/10/19	Surleen Kaur Romana
Total Cyanide	SKAL/CN	7639849	2021/10/15	2021/10/15	Nimarta Singh
Fluoride	ISE	7641412	2021/10/16	2021/10/18	Surinder Rai
Mercury in Water by CVAA	CV/AA	7639524	2021/10/15	2021/10/18	Meghaben Patel
Total Metals Analysis by ICPMS	ICP/MS	7642069	N/A	2021/10/20	Arefa Dabhad
E.coli, (CFU/100mL)	PL	7634654	N/A	2021/10/13	Tharmini Sivalingam
Total Nonylphenol in Liquids by HPLC	LC/FLU	7638824	2021/10/15	2021/10/15	Dennis Boodram
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	7638828	2021/10/15	2021/10/15	Dennis Boodram
Animal and Vegetable Oil and Grease	BAL	7633045	N/A	2021/10/21	Automated Statchk
Total Oil and Grease	BAL	7649903	2021/10/20	2021/10/21	Saumya Modh
Polychlorinated Biphenyl in Water	GC/ECD	7639857	2021/10/15	2021/10/16	Sarah Huang
рН	AT	7641415	2021/10/16	2021/10/18	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7636523	N/A	2021/10/14	Deonarine Ramnarine
Sulphate by Automated Colourimetry	KONE	7641373	N/A	2021/10/18	Avneet Kour Sudan
Total Kjeldahl Nitrogen in Water	SKAL	7639522	2021/10/15	2021/10/18	Rajni Tyagi
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	7649907	2021/10/20	2021/10/21	Saumya Modh
Total Suspended Solids	BAL	7636921	2021/10/14	2021/10/18	Sandeep Kaur
Volatile Organic Compounds in Water	GC/MS	7634550	N/A	2021/10/16	Chandni Khawas

Bureau Veritas ID: Sample ID: Matrix:						Shipped:	2021/10/12 2021/10/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Sulphate by Automated C	olourimetry	KONE	7641373	N/A	2021/10/18	Avneet Kou	ur Sudan

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Page 6 of 14

GENERAL COMMENTS

_				
E	Each te	emperature is the a	verage of up to th	ree cooler temperatures taken at receipt
]	Package 1	14.0°C]
R	Revised	Report (2021/10/2	21): Site location a	address has been revised in this CofA.
S	ample	QXK068 [BH 1] : V	/OC Analysis: Due	to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
F	Results	relate only to the	items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: BRM-21004344-D0 Site Location: 12304 HEART LAKE Your P.O. #: ENV-BRM Sampler Initials: TM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7634550	4-Bromofluorobenzene	2021/10/16	102	70 - 130	101	70 - 130	92	%				
7634550	D4-1,2-Dichloroethane	2021/10/16	105	70 - 130	99	70 - 130	106	%				
7634550	D8-Toluene	2021/10/16	107	70 - 130	109	70 - 130	93	%				
7638687	2,4,6-Tribromophenol	2021/10/15	89	10 - 130	83	10 - 130	81	%				
7638687	2-Fluorobiphenyl	2021/10/15	45	30 - 130	50	30 - 130	55	%				
7638687	2-Fluorophenol	2021/10/15	28	10 - 130	38	10 - 130	46	%				
7638687	D14-Terphenyl	2021/10/15	97	30 - 130	92	30 - 130	97	%				
7638687	D5-Nitrobenzene	2021/10/15	57	30 - 130	63	30 - 130	66	%				
7638687	D5-Phenol	2021/10/15	22	10 - 130	27	10 - 130	30	%				
7639857	Decachlorobiphenyl	2021/10/16	89	60 - 130	84	60 - 130	88	%				
7634550	1,1,2,2-Tetrachloroethane	2021/10/16	94	70 - 130	89	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7634550	1,2-Dichlorobenzene	2021/10/16	85	70 - 130	88	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7634550	1,4-Dichlorobenzene	2021/10/16	98	70 - 130	104	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7634550	Benzene	2021/10/16	83	70 - 130	82	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7634550	Chloroform	2021/10/16	91	70 - 130	88	70 - 130	ND, RDL=0.20	ug/L	2.8	30		
7634550	cis-1,2-Dichloroethylene	2021/10/16	92	70 - 130	89	70 - 130	ND, RDL=0.50	ug/L	0.14	30		
7634550	Ethylbenzene	2021/10/16	78	70 - 130	82	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7634550	Methyl Ethyl Ketone (2-Butanone)	2021/10/16	107	60 - 140	96	60 - 140	ND, RDL=10	ug/L	NC	30		
7634550	Methylene Chloride(Dichloromethane)	2021/10/16	106	70 - 130	100	70 - 130	ND, RDL=2.0	ug/L	NC	30		
7634550	o-Xylene	2021/10/16	77	70 - 130	84	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7634550	p+m-Xylene	2021/10/16	82	70 - 130	86	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7634550	Styrene	2021/10/16	72	70 - 130	79	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7634550	Tetrachloroethylene	2021/10/16	83	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7634550	Toluene	2021/10/16	87	70 - 130	89	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7634550	Total Xylenes	2021/10/16					ND, RDL=0.20	ug/L	NC	30		
7634550	trans-1,3-Dichloropropene	2021/10/16	95	70 - 130	80	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7634550	Trichloroethylene	2021/10/16	91	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7635932	Total Carbonaceous BOD	2021/10/19					ND,RDL=2	mg/L	7.8	30	99	85 - 115
7636523	Phenols-4AAP	2021/10/14	94	80 - 120	95	80 - 120	ND, RDL=0.0010	mg/L	NC	20		

Page 8 of 14

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-21004344-D0 Site Location: 12304 HEART LAKE Your P.O. #: ENV-BRM Sampler Initials: TM

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7636921	Total Suspended Solids	2021/10/18					ND, RDL=10	mg/L	2.1	25	100	85 - 115
7638687	Bis(2-ethylhexyl)phthalate	2021/10/16	89	30 - 130	89	30 - 130	ND, RDL=2.0	ug/L	NC	40		
7638687	Di-N-butyl phthalate	2021/10/16	94	30 - 130	94	30 - 130	ND, RDL=2.0	ug/L	NC	40		
7638824	Nonylphenol (Total)	2021/10/16	86	50 - 130	79	50 - 130	ND, RDL=0.001	mg/L	NC	40		
7638828	Nonylphenol Ethoxylate (Total)	2021/10/15	91	50 - 130	74	50 - 130	ND, RDL=0.025	mg/L	NC	40		
7639522	Total Kjeldahl Nitrogen (TKN)	2021/10/18	96	80 - 120	104	80 - 120	ND, RDL=0.10	mg/L	9.9	20	101	80 - 120
7639524	Mercury (Hg)	2021/10/18	94	75 - 125	94	80 - 120	ND, RDL=0.00010	mg/L	NC	20		
7639849	Total Cyanide (CN)	2021/10/15	98	80 - 120	99	80 - 120	ND, RDL=0.0050	mg/L	NC	20		
7639857	Total PCB	2021/10/16	79	60 - 130	82	60 - 130	ND, RDL=0.05	ug/L	NC	40		
7641373	Dissolved Sulphate (SO4)	2021/10/18	NC	75 - 125	102	80 - 120	ND, RDL=1.0	mg/L	0.48	20		
7641412	Fluoride (F-)	2021/10/18	104	80 - 120	102	80 - 120	ND, RDL=0.10	mg/L	1.4	20		
7641415	рН	2021/10/18			102	98 - 103			0.86	N/A		
7642069	Total Aluminum (Al)	2021/10/20	125 (1)	80 - 120	104	80 - 120	ND, RDL=4.9	ug/L	0.77	20		
7642069	Total Antimony (Sb)	2021/10/20	111	80 - 120	108	80 - 120	ND, RDL=0.50	ug/L				
7642069	Total Arsenic (As)	2021/10/20	106	80 - 120	104	80 - 120	ND, RDL=1.0	ug/L				
7642069	Total Cadmium (Cd)	2021/10/20	106	80 - 120	106	80 - 120	ND, RDL=0.090	ug/L	NC	20		
7642069	Total Chromium (Cr)	2021/10/20	100	80 - 120	100	80 - 120	ND, RDL=5.0	ug/L	NC	20		
7642069	Total Cobalt (Co)	2021/10/20	107	80 - 120	105	80 - 120	ND, RDL=0.50	ug/L				
7642069	Total Copper (Cu)	2021/10/20	105	80 - 120	104	80 - 120	ND, RDL=0.90	ug/L	2.4	20		
7642069	Total Lead (Pb)	2021/10/20	104	80 - 120	102	80 - 120	ND, RDL=0.50	ug/L	2.2	20		
7642069	Total Manganese (Mn)	2021/10/20	103	80 - 120	100	80 - 120	ND, RDL=2.0	ug/L				
7642069	Total Molybdenum (Mo)	2021/10/20	103	80 - 120	100	80 - 120	ND, RDL=0.50	ug/L				
7642069	Total Nickel (Ni)	2021/10/20	104	80 - 120	104	80 - 120	ND, RDL=1.0	ug/L	14	20		
7642069	Total Phosphorus (P)	2021/10/20	NC	80 - 120	96	80 - 120	ND, RDL=100	ug/L				
7642069	Total Selenium (Se)	2021/10/20	108	80 - 120	108	80 - 120	ND, RDL=2.0	ug/L				

Page 9 of 14

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: BRM-21004344-D0 Site Location: 12304 HEART LAKE Your P.O. #: ENV-BRM Sampler Initials: TM

			Matrix	Spike	SPIKED	BLANK	Method E	lank	RPD		QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7642069	Total Silver (Ag)	2021/10/20	NC	80 - 120	103	80 - 120	ND, RDL=0.090	ug/L				
7642069	Total Tin (Sn)	2021/10/20	106	80 - 120	105	80 - 120	ND, RDL=1.0	ug/L				
7642069	Total Titanium (Ti)	2021/10/20	101	80 - 120	97	80 - 120	ND, RDL=5.0	ug/L				
7642069	Total Zinc (Zn)	2021/10/20	106	80 - 120	104	80 - 120	ND, RDL=5.0	ug/L	2.2	20		
7649903	Total Oil & Grease	2021/10/21			99	85 - 115	ND, RDL=0.50	mg/L	2.6	25		
7649907	Total Oil & Grease Mineral/Synthetic	2021/10/21			94	85 - 115	ND, RDL=0.50	mg/L	3.8	25		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Metal Analysis: Matrix Spike exceeds acceptance limits, probable matrix interference

Page 10 of 14

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

. Thami

Tharmini Sivalingam, Manager, Food Microbiology Laboratory

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BUREA	NIC	NU	oratories cad, Mississauga, Onti v		L8 Tel (905) 817-57	00 Toll-free 800-56		905) 817-5	/// www.bi	viabs.com		- PRO	DJECT INFO	RMATION:	- a		C1	нийништи T6332	. ()	
		OICE TO:			EYA	Service		-	197		uotation #:		91717		. e.		÷.	ENV-1166		e Order	#:
nparty Narr	#30554 exp Services	/ices Inc		Company	Essential	is Chartier	o ne				0 #.	· E	NV-G	BRM				ENV-1100	ĩ	(()	
ention:	1595 Clark Blvd			Attention	Thabi	SD. Modis	elexp	. cov	n	Pr	roject:	B	RM - 2	10043	44-1	0		COC #:		B28273 Project Manag	ner:
tress	Brampton ON L61	T 4V1			Jeff	rey. Leon	@ exp	. cow)	Pr	roject Name	<u>1</u> :	2304	Heart	, Lak				11.01		
	(905) 793-9800		(905) 793-0641	Tøl:	(905) 7	93-9800 Ext: 2	523 Fax	_			ite #.	T	habiso	Mode	6		LUNNI	C#828273-06-01	1910	Patricia Legel	de
sil:	AP@exp.com; Ka			Email		is.Chartier@ex	p.com	-			ampled By: YSIS REQUI	ESTED (PLE)			01			Tumaround Tim			-
MOE R	EGULATED DRINKING	WATER OR WA	TER INTENDED I	OR HUMAN C	ONSUMPTION	MUST BE										1000	TALLO .	Please provide advanc	e notice for ru	h projects	
		ON THE BY LABS	Other Regulation			structions	cle):	- 10 A	-01-									tandard) TAT: d if Rush TAT is not specified	ŋ:		2
	lation 153 (2011)		Sanitary Sewe				e ciro	ewei	TY	-						Stan	dard TAT	= 5-7 Working days for mos	t tests		
able 1 able 2	Res/Park Medium					FILTER	lease / Cr	um o	400							Plea days	se note : : - contact	standard TAT for certain tests your Project Manager for de	s such as BOD . tails.	and Dioxins/Funans	are > 5
able 3	Agri/Other For RS	C MISA	Municipality		ADDITIO		d.Filtered (ple Metals / Hg /	& St	Seuse					÷		1. Star		Rush TAT (if applies to e		on)	
able		PWQ0	Reg 406 Tab	e	METALS	SAMPLE	ilter	mitan	S		ł						Require		Time R	equired	-
		on Certificate of	Analysis (MAU 2				Field, Filtered (please Metals / Hg / Cr '	nto Sa age	200									ation Number:		b for #)	_
	Include Criteria mple Barcode Label		on) Identification	Date Sampled	Time Sampled	Matrix	ι	Pack	Ste		-					# 01	Bottles		Comments		
Sa	mple parcooe capel			1 .		0.1			/	-							8	PLEASE M	1EET	5 DAT	TA
		BH	1	12/00/21	16:00	GW			V					-			9		,		
			Rei							1 1							с. С	-			
			Por															PLETSE 1	NCLUI	DECO	C
-																		IN CERTIF	ICATE	OF AN	ALL
														_							
+																					
	•																				
							•														
		-						-		+ +			_								
			2																		
-																					
-																					
									-												
				4														on	1 ce		
	* RELINQUISHED BY: (5	Constura/Print)	Date: (Y)	//MM/DD)	Time	RECEIVED	3Y: (Signature	/Print)	-	Date: (YY/M	IM/DD)	Time		jars used and not submitted				atory Use Only	Custody Sea	Yes	No
hat			21/1		1:40 -	8	Tu-1	14	2	22/15	13	08=	00		Time S	ensitive	Tempera	ture (°C) on Recei	Present Intact	Tes V	
hab	00 10000			0710			/ /		•			145		No. of Concession, Name	ACCORD NO.	Statement and	14	11414	White: BV	· · · ·	llow: Clie
	THERWISE AGREED TO IN W DGMENT AND ACCEPTANCE ESPONSIBILITY OF THE REI												ίŢ IS	SAMPLE	S MUST BE	KEPT COOL (UNTIL DELIVE	< 10º C ERY TO E	FROM TIME OF SAMPLIN		Labs	

	D.D.O	ICE TO:			REPOR	T TO:	×					PROJECT INFORMAT	ON:		Laboratory Use C	Only:
	#30554 exp Servic	Service and the service of the servi		FX	P Servi		Inc		-	Quotation #		B91717			BV Labs, Job #:	Bottle Order #:
ny Name:	Central Services	es inc	Company Attention		s Chartier		1.10			P.O. #		ENV -BR	M			
n: s:	1595 Clark Blvd		Address:	That	iso. Modi	se Que	exp.	com		Project:		BRM-2100	4344-DO)	COC #:	828273 Project Manager:
	Brampton ON L6T 4	4V1		Jeff	13-9800 Ext: 2	never	p:co	m		Project Nar	me:	12304 He	art Lake	1111111		
	(905) 793-9800	Fax (905) 793-0641	Tel:		s.Chartier@ex					Site #:		Thabiso	Modise		C#828273-07-01	Patricia Legette
	AP@exp.com; Kare		Email:			(p.com	1		AN			(PLEASE BE SPECIFIC)	1.000		Tumaround Time (TAT) Re	equired:
EREG	SUBMITTED ON	WATER OR WATER INTENDED F	R CHAIN OF C	USTODY	NUSTBE	R#45		m	1		1			Pagular (S	Please provide advance notice fo Standard) TAT:	or rush projects
Inculati	on 153 (2011)	Other Regulation	s S	Special Ins	structions	ircle)		1-4		126		2			ed if Rush TAT is not specified):	V
	Res/Park Medium/Fi			PLEASE	FUTER	ase o Cr VI	-Ser	tar							T = 5-7 Working days for most tests.	
2	Ind/Comm Coarse	Reg 558. Storm Sewer B	ylaw		A RECORDER			the way	5 -					Please note: days - contac	Standard TAT for certain tests such as B ct your Project Manager for details.	OD and Dioxins/Furans are > 5
3	Agri/Other For RSC	MISA Municipality		METALS	SAMPLE	d Filtered (ple Metals / Hg /	1	ani.	TUP	1.5			\$ ¹		ic Rush TAT (if applies to entire subm	
_		Other				Filte	11	S						Date Require	ed: Tim mation Number:	ne Required:
	Include Criteria o	n Certificate of Analysis (Y/N)?		-		Field	1		5					# of Battles	(0	all lab for #)
Sampl	e Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix		Port of	Sto		-				#-or Bottles	Comme	
		0	611		Cul									2	PLETSE INCLU	100
		BH 1	15/Outhor	12:00	GW			-		-				- 6	IN CERTIFICAT	E of ANAUS
		· · A	- 'C - 5	4) F	~											
_		<u>,</u>				17. 11			1							*
	,															
														1		
					×	1.0										
				-			1	-	-							
														_	13-Oct-21 08:00	
		1		1							1			D		
							Δ	dd	1110	ona				+	atricia Legette	
							1	i ci ci	10					.	C1T6332	
							-	-	1	T					0110552	0
														I I	ENW_1166	
*			•											Labor	ratory Use Only	
	RELINQUISHED BY: (Sign	1	1	ime	RECEIVED	3Y: (Signature	/Print)	MA	Date: (YY	2	1	Time # jars us not sub	mitted Time Sensitiv		0.000/0412-0112-0202010	Seal Yes No
1 3	o Modise	21/10	115 14:	45 - "			m	0-	CUL	11216	1 (1-16	-	Ginden	ature (°C) on Recei	

Exceedance Summary Table – Peel Region Sanitary 2010

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary ta applicable regulatory guidel		oses only and should n	ot be considered a compreh	ensive listing or	statement of	conformance to

Exceedance Summary Table – Peel Region Storm 2010

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH 1	QXK068-13	Chloroform	2	2.8	0.40	ug/L
BH 1	QXK068-08	Total Manganese (Mn)	50	78	2.0	ug/L
The exceedance summary table applicable regulatory guidelines		oses only and should not be o	considered a comprehe	nsive listing or	statement of	conformance to

EXP Services Inc. 12304 Heart Lake Road, Caledon, Ontario Updated Hydrogeological Investigation and Water Balance Assessment Report BRM-21004344-D0 March 16, 2022

Appendix E – Infiltration Rate Testing Results

Appendix E-1 Estimate of Field Saturated K

Location: 12304 Heart Lake Rd

Date: 7-Oct-21

Weather: Cloudy

Analyst: TM

Borehole radius (cm): 2.5				
Soil class: Default	12.0	2.074	0.093	0.754

Measurement	Start depth of water (cm)	End depth of water (cm)	Start time (decimal min)	End time (*decimal min)	Elapsed time (min)	Change in head (cm)	Perc test result (min/cm)	Perc test (hr/mm)	mean head (m)
INF 1	37.5	33.9	0.0	102.2	102.17	3.6	28.4	0.0473	0.357
INF 9	48.3	45.3	0.0	57.7	57.73	3.0	19.2	0.0321	0.468
INF 30	43.5	36.6	0.0	63.9	63.88	6.9	9.3	0.0154	0.401
INF 25	60.9	58.2	0.0	47.1	47.10	2.7	17.4	0.0291	0.596

Measurement	H/a (unitless)	2H^2 (m2)	2H/* (unitless)	C (unitless)	Ca2 (m2)	Denom	K _{fs} (mm/hr)	Kfs (cm/sec)	Kfs (m/sec)
INF 1	14.280	0.255	0.060	2.9494	0.00184	0.01495851	0.1	3.4E-06	3.4E-08
INF 9	18.720	0.438	0.078	3.3180	0.00207	0.016617316	0.1	3.5E-06	3.5E-08
INF 30	16.020	0.321	0.067	3.1058	0.00194	0.006009837	0.3	9.0E-06	9.0E-08
INF 25	23.820	0.709	0.099	3.6425	0.00228	0.023572301	0.1	2.7E-06	2.7E-08

Appendix E-2 12304 Heart Lake Rd, Caledon, Ontario BRM-21004344-D0 Low Impact Design (LID) Calculations for Design Infiltration Rate

Test Location	Hydraulic Conductivity (K _{fs}) (cm/s)	Infiltration Rate (IR) (mm/hr)	Discrete Design Infiltration Rate(DIR) (mm/hr)	Percolation Time (min/cm)
INF 1	3.4E-06	19	7	80
INF 9	3.5E-06	19	8	80
INF 25	2.7E-06	18	7	85
INF 30	9.0E-06	24	10	62

Geology Units	Geometric Mean of K _{fs} (cm/s)	Infiltration Rate (I) (mm/hr)*	Ratio of Mean Measured Infiltration Rates	Safety Correction Factor (SCF)
Overlying Geology Unit	4.12E-06	20		
Underlying Geology Unit (1.5 m below the bottom of trench)	4.12E-06	20	1.0	2.5

	Minimum	7	Percolation Time	62
Design Infiltration Rate(DIR) (mm/hr)	Maximum	10		85
	Geometric Mean	8	(min/cm)	82

Note:

Analytical Solutions (CVC and TRCA 2010)

Infiltration Rate (IR) =
$$\left(\frac{K_{fs}}{6x10^{-11}}\right)^{\frac{1}{3.7363}}$$

Design Infiltration Rate (DIR) = $\frac{IR}{SCF}$

Kfs: hydraulic conductivity (cm/sec)

IR: infiltration rate (mm/hr)

DIR: design infiltration rate (mm/hr)

 ${\it SCF}:$ Safety Correction Factor (based on the chart recommended by CVC and TRCA, 2010)

Figure : Approximate relationship between infiltration rate and hydraulic conductivity (LID SWM planning and Design Guide, Appendix C1)

EXP Services Inc. 12304 Heart Lake Road, Caledon, Ontario Updated Hydrogeological Investigation and Water Balance Assessment Report BRM-21004344-D0 March 16, 2022

Appendix F – Water Balance Analysis

Appendix F-1: Model Input

12304 Heart Lake Rd, Caledon, Ontario BRM-21004344-D0

Period	Month	Average Temperature (⁰ C)	Average Precipitation (mm)
1977-2006	1	-6.53	64.18
1977-2006	2	-5.37	53.93
1977-2006	3	-0.30	60.72
1977-2006	4	6.80	71.86
1977-2006	5	13.36	80.25
1977-2006	6	18.40	79.44
1977-2006	7	21.33	82.17
1977-2006	8	20.27	89.08
1977-2006	9	15.80	88.57
1977-2006	10	8.95	70.99
1977-2006	11	3.09	85.61
1977-2006	12	-2.90	70.57

Note:

Station Name	RICHMOND	HILL
Station ID	6157012	
Longitude	-79.45	
Latitude	43.88	
Elevaion	240.0	masl

Appendix F-2: Model Output

12304 Heart Lake Rd, Caledon, Ontario BRM-21004344-D0

Month	PET	Р	P-PET	Soil Moisture	AET	PET-AET	Snow Storage	Surplus
January	8.40	64.18	17.62	195.91	8.34	0.05	64.58	16.73
February	10.27	53.93	27.12	198.02	10.27	0.00	81.15	25.02
March	20.11	60.72	58.55	200.00	20.11	0.00	63.21	56.57
April	38.81	71.86	64.65	200.00	38.81	0.00	31.60	64.65
May	72.80	80.25	23.42	195.49	72.80	0.00	15.64	27.94
June	105.34	79.44	-17.39	170.06	104.68	0.65	7.14	8.70
July	124.90	82.17	-37.05	136.16	117.54	7.34	1.47	4.20
August	99.41	89.08	-8.86	127.97	90.91	8.51	0.00	7.82
September	57.61	88.57	30.96	145.83	56.53	1.08	0.00	14.19
October	29.82	70.99	41.17	169.07	29.59	0.23	0.00	18.16
November	15.41	85.61	69.04	191.17	15.41	0.00	1.16	46.93
December	9.63	70.57	35.69	196.63	9.63	0.00	26.40	30.23
Annual rate (mm/yr)	592.51	897.38			574.63		292.36	322.75

Note:

Station Name	RICHMOND HILL
Station ID	6157012
Longitude	-79.45
Latitude	43.88
Elevaion	240.0 masl

APPENDIX F-3 Average Infiltration Factors

12304 Heart Lake Rd, Caledon, Ontario BRM-21004344-D0

F-3-1. Average Infiltration Factor – Pre Development Conditions

	Un-Mitigated
Category	Weighted Infiltration Factor
Topography/Slope	0.15
Soil Type Glaciolacustrine deposits (Silty to Clayey)	0.20
Cover Cultivated Lands	0.10
Total weighted Infiltration factor	0.45

F-3-2. Average Infilteration Factor – Post Development Conditions Un-Mitigated

	Un-Mitigated
Category	Weighted IInfiltration Factor
Topography/Slope	0.150
Soil Type Glaciolacustrine deposits (Silty to Clayey)	0.20
Cover Landscaped areas	0.10
Total weighted Infiltration factor	0.45

Notes:

Landscaped area considered equivalent to Cultivated Cover Assumed existing and proposed slopes are similar

Appendix F-4 Summary of Pre and Post-Development Water Balance 12304 Heart Lake Rd, Caledon, Ontario

BRM-21004344-D0

F-4-1. Climate Data

ltem	Pre-Development	Post-Development Un-Mitigated
nem	mm/a	mm/a
Precipitation	897.38	897.38
Evapotranspiration	574.63	574.63
Water Surplus	322.75	322.75
Infiltration Rate	145.24	145.24
Runoff	177.51	177.51

F-4-2. Pre-Developed Area Statistics

Open spaces/ Agricultural	372,700	sq.m.
Paved Surfaces	1,800	sq.m.
Existing Buildings	1,700	sq.m.
TOTAL	376,200	sq.m.

F-4-3. Post Development Area Statistics

Commercial Development

Building Roofs	79,800	sq.m.
ROW (roads, sidewalks, parking) - Paved	65,500	sq.m.
Landscaped Areas	230,900	sq.m.
TOTAL	376,200	sq.m.

F-4-4-1. Annual Pre-Development Water Balance

Land Use	Area (sq.m.)	Precipitation (cu.m.)	Actual Evapotranspiration (cu.m.)	Infiltration Rate (cu.m.)	Run-off (cu.m.)
Total Impervious (Buildings and paved surfaces)	3,500	3,141	2,011	0	1,130
Open Spacces/Agricultural Lands	372,700	334,454	214,165	54,130	66,159
TOTAL	376,200	337,594	216,176	54,130	67,289
F	Pre-development Infil	tration Rate mm/a	574.63	143.89	178.86
		100	64	. 1	6 20

Appendix F-4

Summary of Pre and Post-Development Water Balance

12304 Heart Lake Rd, Caledon, Ontario

BRM-21004344-D0

F-4-5-1. Annual Post-Development Water Balance

Landlias	Area	Precipitation	Actual Evapotranspiration	Infiltration Rate	Run-off
Land Use	(sq.m.)	(cu.m.)	(cu.m.)	(cu.m.)	(cu.m.)
Building Roofs	79,800	71,611			71,611
ROW (roads, sidewalks, parking) - Paved	65,500	58,778	0	0	58,778
Landscaped Areas	230,900	207,205	132,682	33,535	40,988
TOTAL	376,200	337,594	132,682	33,535	171,377
Ро	st-development Infil	tration Rate mm/a	352.69	89.1	455.55
		100	39.302	9.934	50.764

F-4-6-1. Comparison of Pre-Development and Post-Development

				Corrected Infiltration Rate for Areas with Shallow
Item	Precipitation	Actual Evapotranspiration	Run-off	Groundwater Table
	(cu.m.)	(cu.m.)	(cu.m.)	(cu.m.)
Pre-Development	337,594	216,176	67,289	54,130
Post Development	337,594	132,682	171,377	33,535
			Pre-development Infiltration Rate	143.9

Pre-development Infiltration Rate

89.1

20,595

Post-development Infiltration Rate Not-Corrected

Deficit Post Development Not-Corrected

APPENDIX F-5 12304 Heart Lake Rd, Caledon, Ontario BRM-21004344-D0 Estimate of Area for Infiltration System

1. Design Infilteration Rate

Item	Value	Unit
Geometric mean of design infiltration rates	8	mm/h
	189.19	mm/day
	0.19	m/day/m ²
	0.38	m/48 hrs/m ²

2. Climate Data

Total precipitation based on weather station records	897.38	mm/yr
Total rain in an eight (8) month precipitation period	598.25	mm/8 months
Based on a 32-week precipitation period	18.70	mm/week
	0.019	m/week

3. Roof and Resulted Runoff Volume

Total roof area	79,800	m ²
Rooftop runoff volume in an eight (8) month precipitation period	47,741	m ³ /year
Total rooftop runoff volume per 2 week	2,984	m ³ /2 week

3. Estimated Deficit Volume

Estimated deficit based on water balance calculations	20,595	m³/yr
Deficit over available water (roof runoff) for infiltration	43%	-
Storage to infiltrate to meet deficit	1,287	m ³ /2 week

Area of infiltration system required to mitigate infiltrate		2
deficit (rounded)	3,400	m²

Note: only roof water to be infiltrated (clean water)

EXP Services Inc. 12304 Heart Lake Road, Caledon, Ontario Updated Hydrogeological Investigation and Water Balance Assessment Report BRM-21004344-D0 March 16, 2022

Appendix G – Construction Dewatering Flow Rate Calculations

APPENDIX G: Short-Term Flow Rate

12304 Heart Lake Road, Caledon ON BRM-21004344-D0

Table G-1: Flow from Construction Dewatering System

Parameters	Symbols	Unit	Building 1	Building 2
Geological Formation	-	-	Glacial Deposit	Glacial Deposit
Ground Elevation	-	mASL	266.8 to 274.1	266.8 to 274.1
Lowest Top Slab Elevation	-	mASL	na	na
Highest Groundwater Elevation	-	mASL	269.0	270.0
Lowest Footing Elevation	-	mASL	265.3	268.6
Dewatering Target Elevation	-	mASL	264.3	267.6
Base of the Water-Bearing Zone	-	mASL	261.3	261.3
Height of Static Water Table Above the Base of the Water-Bearing Zone	н	m	7.7	8.7
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	3.0	6.3
Hydraulic Conductivity	К	m/s	6.3E-07	6.3E-07
Length of Excavation	-	m	300.0	240.0
Width of Excavation	-	m	1.5	1.5
Length of Building		m	300.0	240.0
Width of Building		m	140.0	125.0
Equivalent Radius (equivalent perimeter)	r _e	m	96.0	76.9
Method to Calculate Radius of Influence	-	-	Cooper-Jacob	Cooper-Jacob
Time (30 days)	t	S	2592000	2592000
Specific Yield	Sy		0.05	0.05
Cooper-Jacob's Radius of Influence from Sides of Excavation	Rcj	m	24	25
Radius of Influence	Ro	m	119.76	102.16
Dewatering Flow Rate (unconfined radial flow component)	Q	m³/day	38.8	21.6
Factor of Safety	fs	-	1.5	1.5
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	m³/day	58.3	32.5
Precipitation Event	-	mm/day	15	15
Volume from Precipitation (for whole building footprint)	-	m ³ /day	630.0	450.0
Dewatering Flow Rate Without Safety Factor (including stormwater collection)	-	m ³ /day	670	470
Dewatering Flow Rate With Safety Factor (including stormwater collection)	-	m ³ /day	688.3	482.5

Notes:

mASL - meters above sea level

Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_w = \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]}$$
$$r_e = \frac{a+b}{\pi} \qquad R_o = R_{cj} + r_e$$

(Based on the Dupuit-Forcheimer Equation)

 $R_{cj} = \sqrt{2.25KDt/S}$

Where:

Q = Dewatering Flow Rate without Safety Factor (m^3/s)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

 h_w = Height of target water level above the base of water-bearing zone (m)

Rcj=Cooper Jacob Radius of Influence (m)

R_o=Radius of influence (m)

re=Equivalent perimeter (m)