

REPORT ON PHASE II ENVIRONMENTAL SITE ASSESSMENT AIRPORT ROAD AND MAYFIELD ROAD CALEDON, ONTARIO

> REPORT NO.: 5552-21-ED REPORT DATE: FEBRUARY 24, 2022

> > PREPARED FOR RICE COMMERCIAL GROUP 25 TIVERTON COURT MARKHAM, ONTARIO L3R 4M8

110 KONRAD CRESCENT, UNIT 16, MARKHAM, ONTARIO L3R 9X2 TEL.: 905-940-8509 FAX: 905-940-8192

Contents

1.0	Executive Summary	1
2.0	Introduction	4
2.1	Objectives	4
2.2	Site Description	4
3.0	Background Information	5
3.1	Physical Setting	5
3.2	Areas of Natural Significance	5
3.3	Past Investigations	5
4.0	Scope of Work	7
4.1	Deviations and Impediments	8
5.0	Investigation method	8
5.1	Field Preparation	8
5.2	Sampling Analysis Plan	8
6.0	Field Investigation	9
6.1	Borehole Drilling	9
6.2	Soil Sampling and Field Screening	9
6.3	Monitoring Well Installation	10
6.4	Groundwater Monitoring and Sampling	10
6.5	Laboratory Analysis	10
6.6	Quality Assurance and Quality Control (QA/QC) Measures	10
6.7	Site Condition Standard Selection	11
7.0	Review and Evaluation	12
7.1	Soil Stratigraphy	12
7.2	Groundwater	13
7.3	Laboratory Analytical Results	13
7.	.3.1 Soil Quality	13
7. 7	 3.2 Groundwater Quality 3.3 ΟΔ/ΟC Results 	14 17
8.0	Discussion of results and recommendations	14
8.1	Summary of Findings	14
8.2	Discussion and Recommendation	16
8.3	Monitoring Well Decommissioning	16
9.0	References	16
10.0	General Statement of Limitation	17

FIGURES

Site Location Map Potential Environmental Concerns Borehole and Monitoring Well Location Plan Soil Exceedance Location Plan Groundwater Exceedance Location Plan Figure No. 1 Figure No. 2 Figure No. 3 Figure No. 4 Figure No. 5

APPENDICES

Appendix A	Borehole Logs
Appendix B	Laboratory Certificate of Analysis

1.0 EXECUTIVE SUMMARY

Toronto Inspection Ltd. was authorized by Rice Commercial Group to conduct a Phase II Environmental Site Assessment (ESA) for the property located at Airport Road and Mayfield Road in Caledon, Ontario (hereinafter referred to as the "Site"). For the purpose of this report, Airport Road is assumed to orient north-south. The work was performed as per *Toronto Inspection Ltd.*'s standard terms and agreement.

The Phase II ESA was conducted in general accordance with the Canadian Standard Association (CSA) Standard Z769-00 reaffirmed 2013, "Phase II Environmental Site Assessment".

The Site is a large piece of land located approximately 300 m southwest of the intersection between Airport Road and Mayfield Road in Caledon, Ontario. The Site is an irregular-shaped property occupied by two farmhouses and associated structures (i.e., barns, sheds, and silos). The Site, which has been historically used for residential and agricultural purposes was developed prior 1954 and it has an approximately area of 371 acres (150 ha).

The objective of this Phase II ESA was to determine the presence or absence of contamination in the subsoil and groundwater with respect to the potentially contaminating activities identified at the Site and surrounding areas. It is understood that the Phase II ESA was commissioned for due diligence purposes for a financial agreement and that this Phase II ESA cannot be used to support the filing of a Record of Site Condition (RSC).

The following report was reviewed as part of this Phase II ESA:

"Report on Phase I Environmental Site Assessment, Airport Road and Mayfield Road, Caledon, Ontario", prepared by *Toronto Inspection Ltd.*, dated June 29, 2021, prepared for Rice Commercial Group.

In summary, based on the records review, the site reconnaissance and the interviews conducted during the Phase I ESA, the identified areas of potential environmental concerns are summarized below:

On-Site sources:

- The Site has been historically used for residential and agricultural purposes; therefore, there is a potential for the usage of pesticides on the property.
- Five (5) Aboveground Storage Tanks (ASTs) were present on the Site at the time of the site reconnaissance. Four were located within the area of 5762 Mayfield Road and one was reported to be inside the basement of the house at 12245 Torbram Road used for heating purposes.
- Oil stains were observed on the ground floor inside a shed located approximately 60 m west of the residential building at 5762 Mayfield Road.
- A farmhouse and associated sheds and barns, once located at the north portion of the Site in 1954, were no longer visible in the 2001 aerial photograph. Since the buildings were demolished, there is a potential for the usage of fill material for the purpose of grading at that portion of the Site.

Off-Site Sources:

- 34 Perdue Road (*Adjacent to the Site to the northeast*) 103910 Canada Inc. was reported as a waste generator of waste oils & lubricants (2011-2020) due to a general automotive repair activity.
- 10 Perdue Road (*Adjacent to the Site to the northeast*) Aecon Materials Engineering Corp was listed as a waste generator of halogenated solvents (2009-2020).
- 43 Perdue Court (*Adjacent to the Site to the northeast*) ATS Container Services Inc. was reported as a waste generator of aromatic solvents and residues (2018-2020).
- 12552 Mayfield Road (*Adjacent to the southwest of Site*) A golf course, Mayfield Golf club, was located adjacent to the Site to the southwest. There is a potential for the usage of pesticides on golf courses.

Based on the findings of the Phase I ESA, it was *Toronto Inspection Ltd.'s* opinion that further environmental investigation, i.e., a Phase II ESA is recommended for the Site.

A summary of the findings of the Phase II ESA conducted at the Site are presented below:

- Drilled seven (7) boreholes ranging in depths from 6.7 m to 13.9 m below grade (bg), shown on Figure No. 3. Borehole location 22BH-2 was conducted as part of Geotechnical Investigation and soil and/or groundwater from this borehole location was not sampled as part of this report.
- Underlying the surface course, fill material underlain by sandy silt till, clayey silt till and shale bedrock was encountered at the Site.
- Measured groundwater levels in the monitoring well ranged from dry to 10.39 m below grade in the monitoring wells.
- Representative or "worst-case" soil samples were collected in laboratory-supplied containers, placed in a cooler and preserved with ice, and shipped with a Chain of Custody to SGS Canada Inc. located in Lakefield, Ontario for laboratory analyses.
- The MECP Table 8 SCS for Residential/Parkland/Institutional/Industrial/Commercial/ Community property use were selected for evaluating sample results.
- A total of seven (7) discrete soil samples were analyzed for the parameter groups of PHCs and VOCs and three (3) discrete soil samples were analyzed for the parameter group of Metals and OCs. The concentrations of PHCs, VOCs, Metals and OCs in the analyzed soil samples at the tested locations met their MECP Table 8 SCS for Residential/Parkland/ Institutional property use with the following exceptions:

22BH-104 SS2

PHC F1 result of 75 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 4330 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 3440 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 1.46 ug/g vs MECP Table 8 SCS of 0.05 ug/g

22BH-104 SS3

PHC F1 result of 46 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 618 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 515 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 0.72 ug/g vs MECP Table 8 SCS of 0.05 ug/g

22BH-104 SS4

PHC F2 result of 365 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 320 ug/g vs MECP Table 8 SCS of 240 ug/g

Dup- A

PHC F1 result of 51 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 814 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 745 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 0.78 ug/g vs MECP Table 8 SCS of 0.05 ug/g

 A total of three (3) groundwater samples were analyzed for the parameter group of PHCs, two (2) groundwater samples were analyzed for the parameter group VOCs, five (5) groundwater samples were analyzed for the parameter group M&Is and four (4) groundwater samples were analyzed for the parameter group of OCs. The concentrations of PHCs, VOCs, M&Is and OCs met the MECP Table 8 SCS for all property uses with the following exception:

22BH-103(MW)

Sodium result of 1870000 ug/L vs MECP Table 8 SCS of 490000 ug/L Chloride result of 5700000 ug/L vs MECP Table 8 SCS of 790000 ug/L

PHC soil impacts were identified in the vicinity of an AST located at 5762 Mayfield Road and were likely a result of a leaking tank or former spill. The PHC soil impacts extended to an approximate depth of 2.3 m below grade. The area of the soil impact is currently unknown. It is recommended that the PHC soil impact to be delineated and remediated at the time of site redevelopment. It is recommended that secondary containment be installed at the locations of the ASTs if they remain in use.

The elevated Sodium and Chloride in the groundwater at monitoring well location 22BH-103(MW) is likely associated the application of de-icing salts in the adjacent properties on Perdue Court and do not pose an environmental risk to the Site.

It should be noted that access was not provided to the building at 12245 Torbram Road, within the storage shed located at 5762 Mayfield Road or the former house/sheds/barn location at the time of this report. As a result, these potential environmental concerns were not investigated. Additionally, no groundwater was present within the monitoring well at 22BH-104(MW) or 22BH-106(MW), therefore groundwater samples were not analyzed from these locations.

If the monitoring wells on-Site are no longer required for further sampling or testing of the groundwater, the wells must be decommissioned as per the requirements of O. Reg. 903 "Wells". It should be noted that the decommissioning of monitoring wells is not part of the current scope of work. *Toronto Inspection Ltd.* would be pleased to assist and arrange to perform this work upon request.

2.0 INTRODUCTION

Toronto Inspection Ltd. was authorized by Rice Commercial Group to conduct a Phase II Environmental Site Assessment (ESA) for the property located at Airport Road and Mayfield Road in Caledon, Ontario (hereinafter referred to as the "Site"). For the purpose of this report, Airport Road is assumed to orient north-south. The work was performed as per *Toronto Inspection Ltd.*'s standard terms and agreement.

2.1 **OBJECTIVES**

The objective of this Phase II ESA was to determine the presence or absence of contamination in the subsoil and groundwater with respect to the potentially contaminating activities identified at the Site and surrounding areas. It is understood that the Phase II ESA was commissioned for due diligence purposes to support a financial transaction and that this Phase II ESA cannot be used to support the filing of a Record of Site Condition (RSC).

2.2 SITE DESCRIPTION

The Site is a large piece of land located approximately 300 m southwest of the intersection between Airport Road and Mayfield Road in Caledon, Ontario. The Site is an irregular-shaped property occupied by two farmhouses and associated structures (i.e., barns, sheds, and silos). The Site, which has been historically used for residential and agricultural purposes was developed prior 1954 and it has an approximately area of 371 acres (150 ha).

Image 1: Aerial image of the Site located to the southwest of the intersection between Airport Road and Mayfield Road, Caledon (Source: Town of Caledon Interactive Map, 2020)

Maps showing the Study Area, the Site Layout and the topographic map are provided in Appendix A.

3.0 BACKGROUND INFORMATION

3.1 PHYSICAL SETTING

The Phase I Study Area is situated within the physiographic region of South Slope, which comprises of till plains (drumlinized). The surficial geology in the area generally consisted of till, comprised from clay to silt-textured till (derived from glaciolacustrine deposits or shale).

Narrow creeks cross the Site in a west-east direction and a non provincially significant wetlands are located at the eastern section of the Site. The on-site creeks and the wetlands are part of the Humber River Watershed.

The inferred groundwater flow is inferred to be in a west-east direction towards the on-site creeks that cross the Site. The Creeks are tributaries of West Humber River, which drains into Lake Ontario over 20 km far from the Site.

3.2 AREAS OF NATURAL SIGNIFICANCE

According to the Ministry of Environment and Forest (MNRF), no ANSI were identified within the Site or the Study Area; however, wetlands and woodland areas were identified at the central-east section of the Site. In addition, a Natural Heritage System and a Greenbelt Land Use Designation was identified at the southeast sections of the Site.

Based on review of the screening map, it appears that the wetlands on the site are not located within the Greenbelt portion of the Site. Nevertheless, please note that the Greenbelt Plan generally requires a Natural Heritage Evaluation (NHE) for any development within the 120 m. Minimum Area of Influence of a Key Natural Heritage Features (KNHFs) and/or Hydrologically Sensitive Feature (HSFs) to delineate and assess the feature(s) and demonstrate no adverse impacts to the ecological integrity of the Greenbelt will result from the proposed development.

3.3 PAST INVESTIGATIONS

The following report was reviewed as part of this Phase II ESA:

"Report on Phase I Environmental Site Assessment, Airport Road and Mayfield Road, Caledon, Ontario", prepared by *Toronto Inspection Ltd.*, dated June 29, 2021, prepared for Rice Commercial Group.

In summary, based on the records review, the site reconnaissance and the interviews conducted during the Phase I ESA, the identified areas of potential environmental concerns are summarized below:

On-Site sources:

- The Site has been historically used for residential and agricultural purposes; therefore, there is a potential for the usage of pesticides on the property.
- Five (5) Aboveground Storage Tanks (ASTs) were present on the Site at the time of the site reconnaissance. Four were located within the area of 5762 Mayfield Road and one was reported to be inside the basement of the house at 12245 Torbram Road used for heating purposes.
- Oil stains were observed on the ground floor inside a shed located approximately 60 m west of the residential building at 5762 Mayfield Road.
- A farmhouse and associated sheds and barns, once located at the north portion of the Site in 1954, were no longer visible in the 2001 aerial photograph. Since the buildings were demolished, there is a potential for the usage of fill material for the purpose of grading at that portion of the Site.

Off-Site Sources:

- 34 Perdue Road (*Adjacent to the Site to the northeast*) 103910 Canada Inc. was reported as a waste generator of waste oils & lubricants (2011-2020) due to a general automotive repair activity.
- 10 Perdue Road (*Adjacent to the Site to the northeast*) Aecon Materials Engineering Corp was listed as a waste generator of halogenated solvents (2009-2020).
- 43 Perdue Court (*Adjacent to the Site to the northeast*) ATS Container Services Inc. was reported as a waste generator of aromatic solvents and residues (2018-2020).
- 12552 Mayfield Road (*Adjacent to the southwest of Site*) A golf course, Mayfield Golf club, was located adjacent to the Site to the southwest. There is a potential for the usage of pesticides on golf courses.

Given the fact that aboveground storage tanks are still present on the Site, it is recommended a secondary containment be placed underneath of the ASTs.

Based on the findings of the Phase I ESA, it is *Toronto Inspection Ltd.*'s opinion that further environmental investigation, i.e., a Phase II ESA is recommended for the Site.

4.0 SCOPE OF WORK

The Phase II ESA was conducted in general accordance with the Canadian Standard Association (CSA) Standard Z769-00 reaffirmed 2013, "Phase II Environmental Site Assessment". Field work and analytical testing were conducted in general accordance with protocols as set out in the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, Revised December 1996, Ministry of Environment and Energy", and "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011".

The scope of work for this Phase II ESA comprised the following:

- Developed a site-specific Sampling Analysis Plan (SAP);
- Ensured all public and private utilities at the Site were located and marked out prior to drilling;
- Drilled seven (7) boreholes ranging in depths from 6.7 m to 13.9 m below grade (bg), shown on Figure No. 3. Borehole location 22BH-2 was conducted as part of Geotechnical Investigation and soil and/or groundwater from this borehole location was not sampled as part of this report;
- Collected soil samples during borehole drilling, and logged the soil samples for visual and olfactory characteristics, and evidence of petroleum hydrocarbon and/or chemical impact;
- Installed groundwater monitoring wells at all borehole locations with the exception of 22BH-102;
- Measured soil headspace vapor concentrations in the soil samples for field screening purposes;
- Submitted representative or "worst case" soil samples for laboratory analyses of Petroleum Hydrocarbons (PHCs), Volatile Organic Compounds (VOCs), Metals and Organochlorine Pesticides (OCs);
- Inspected the monitoring wells for presence of Light Non-Aqueous Phase Liquid (LNAPL);
- Submitted select groundwater samples for laboratory analyses of PHCs, VOCs, Metals and Inorganics (M&Is) and OCs;
- Determined the applicable Site Condition Standards (SCS) from the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 and the Ontario Regulation (O. Reg.) 153/04 "Record of Site Condition Part XV.1 of the Environmental Protection Act"; and
- Prepared a report that evaluated the laboratory analytical results with respect to the SCS and interpreted the findings of the Phase II.

4.1 **DEVIATIONS AND IMPEDIMENTS**

Access was not provided to the building at 12245 Torbram Road, within the storage shed located at 5762 Mayfield Road or the former house/sheds/barn location at the time of this report. As a result, these potential environmental concerns were not investigated. Additionally, no groundwater was present within the monitoring well at 22BH-104(MW) or 22BH-106(MW), therefore groundwater samples were not analyzed from these locations.

5.0 INVESTIGATION METHOD

5.1 FIELD PREPARATION

Prior to drilling at the Site, *Toronto Inspection Ltd.* contacted Ontario One Call to obtain clearance from public utility companies for borehole locations. In addition, *Toronto Inspection Ltd.* contracted a private locating company to clear the borehole locations of any private utilities at the Site.

A site-specific health and safety plan (HASP) was prepared by *Toronto Inspection Ltd.* prior to the field work. The HASP was reviewed by all workers including staff from *Toronto Inspection Ltd.* and subcontractors prior to the commencement of work on the Site.

The borehole and monitoring well locations are shown on Figure 3.

5.2 SAMPLING ANALYSIS PLAN

A Sampling and Analysis Plan (SAP) was developed to, in general, address the potential environmental concerns as identified in the Phase I report. The rationale of the field investigation and laboratory analyses are summarized in Table 5.2-1.

Table 5.2-1: Sampling and Analysis Plan

Sample ID	Potential Environmental Concern	Soil or Groundwater	Sample Depth (m bg)/(Well Screen)	Analyzed Parameters
22BH-101(MW)	To investigate the off-site concerns adjacent to the northeast located at 10 Perdue Road, 34 Perdue Road and 43 Perdue Road and potential pesticide use at the Site.	Groundwater	10.7 – 13.7	PHC, VOC, M&I, OC
22BH-103(MW)	To investigate the off-site concerns adjacent to the northeast located at 10 Perdue Road, 34 Perdue Road and 43 Perdue Road and potential pesticide use at the Site.	Groundwater	10.7 – 13.7	PHC, VOC, M&I, OC
	To investigate the ACT leasted	Soil	0.7	PHC, VOC
22BH-104(MW)	at 5762 Mayfield Road	Soil	1.5	PHC, VOC
	at 57 02 Maylielu Roau.	Soil	2.3	PHC, VOC

	To investigate the AST located at 5762 Mayfield Road and	Soil	0.7	PHC, M&I
2201-103(10100)	potential pesticide use at the Site.	Groundwater	3.1 – 6.1	M&I, OC
22BH-106(MW)	To investigate the AST located at 5762 Mayfield Road.	Soil	0.7	PHC, VOC
	To investigate the off-site	Soil	4.5	M&I, OC
	located at 12552 Mayfield Road.	Groundwater	3.1 – 6.1	M&I, OC

6.0 FIELD INVESTIGATION

6.1 BOREHOLE DRILLING

On January 31, February 1 and February 7, 2022, *Toronto Inspection Ltd.* retained a drilling contractor, with a Ministry of the Environment, Conservation and Parks (MECP) issued license for well installation, to advance seven (7) boreholes at locations shown on Figure No. 3. The boreholes were drilled using a track mounted drill rig. The boreholes were selected, with consideration of buried utility lines at the Site, to assess the potential environmental concerns as indicated in Section 5.2-1 – Sampling and Analysis Plan. It should be noted that borehole location 22BH-2 was conducted in conjunction with a Geotechnical Investigation and was not sampled as part of this investigation.

6.2 SOIL SAMPLING AND FIELD SCREENING

Soil samples were typically obtained at continuous intervals of 0.75 m to the terminating depths of the boreholes. Each of the soil samples were logged in the field for visual and olfactory characteristics, and any evidence of petroleum hydrocarbon and/or chemical impact. Soil headspace vapour concentrations were measured using an RKI Model Eagle 2 portable gas detector equipped with a dual sensor, a photoionization (PID) sensor for detecting VOC gases and a thermal conductivity (TC) sensor for detecting hydrocarbons. The Eagle 2 portable gas detector was set to methane elimination mode and calibrated with hexane (for the TC sensor) and isobutylene (for the PID sensor).

The split spoon sampler was cleaned prior to the collection of each sample. A new pair of nitrile gloves were used to handle each of the soil samples.

Representative or "worst-case" soil samples were collected in laboratory-supplied containers, placed in a cooler and preserved with ice, and shipped with a Chain of Custody to SGS Canada Inc. located in Lakefield, Ontario for laboratory analyses. SGS Canada Inc. is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA).

The borehole logs showing the soil conditions encountered in the boreholes and measured soil headspace vapour concentrations for the soil samples are presented in Appendix A.

6.3 MONITORING WELL INSTALLATION

All boreholes with the exception of 22BH-2 were completed as a monitoring well using 50 mm diameter well screen (No. 10 slot) fitted with 50 mm diameter Schedule 40 PVC riser pipe. The annuli of the monitoring well around the well screen was filled with silica sand to approximately 0.6 m above the well screen. The remainder of the monitoring well was backfilled with bentonite pellets (i.e., hole plug) and activated with distilled water. The monitoring well was completed with a metal casing and stickup cover. Details of the monitoring well construction are provided in the boreholes, in Appendix A.

6.4 GROUNDWATER MONITORING AND SAMPLING

Prior to developing, the monitoring well was measured for groundwater elevation and for the presence of Light Non-Aqueous Phase Liquids (LNAPL) using a HERONTM H.01L Model Oil/Water Interface Meter. The newly installed groundwater monitoring well was developed by purging (using dedicated bailer). A total of three well volumes were purged prior to sampling on February 14, 2022.

Groundwater samples were collected on February 15, 2022, using low-flow techniques by a Geotech[™] model peristaltic low-flow pump with dedicated polyethylene and silicone tubing.

6.5 LABORATORY ANALYSIS

Soil and groundwater samples collected during the Phase II ESA were submitted for laboratory analyses as indicated in the SAP, shown in Table 5.2-1.

6.6 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC) MEASURES

Various quality QA/QC protocols were followed during the Phase II ESA to ensure that representative samples were obtained, and that representative analytical data were reported by the laboratory.

The laboratory Quality Assurance/Quality Control (QA/QC) analyses performed by SGS included method blanks, laboratory duplicates, laboratory control samples (or spike blanks), matrix spikes, surrogate percent recoveries, and the use of laboratory reference materials. No field QA/QC samples were collected as part of this Phase II ESA.

6.7 SITE CONDITION STANDARD SELECTION

The following conditions were considered to determine the applicable Site Condition Standard for the Site.

Condition	Evaluation
Current land use	The current land use is Agricultural.
Proposed land use	Residential/Commercial.
Area of natural significance	The Site is not located within or adjacent to any environmentally significant areas, woodlands, Oak Ridges Moraine, provincially significant wetlands, or areas of natural and scientific interest.
Proximity to surface water body	The closest water body a tributary of the West Humber River which passes through the Site from east to west which feeds to a stormwater management pond located at the east south corner of the Site.
Potable or Non-Potable Ground Water	The Site was provided water through groundwater sources.
Soil pH	Accredited laboratory chemical test results indicated that the soil at the property had a pH value between 5 and 9.
Depth to bedrock	Bedrock was encountered at a depth of approximately 12 m below grade.
Soil texture	Medium to fine textured soils were deemed applicable to the Site.

 Table 6.8-1: Applicable Site Conditions

Based on the above conditions, the MECP Table 8 Generic Site Condition Standards (SCS) for Use within 30 m of a Water Body in a Potable Groundwater Condition as listed in the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 (hereinafter refer to as the "MECP Table 8 SCS") for Residential/Parkland/Institutional/Industrial/Commercial/Community property was determined to be applicable for the Site.

7.0 REVIEW AND EVALUATION

7.1 SOIL STRATIGRAPHY

Ground Surface

Topsoil was encountered at the ground surface at the borehole locations.

Fill

Fill material was contacted beneath the surface cover and extended to depths ranging from 0.4 m to 2.4 m bg. The fill material generally consisted of a dark grey to dark brown clayey to sandy silt, containing some brick fragments and gravel at borehole locations 22BH-104(MW) and 22BH-105(MW) and was very moist.

Sandy Silt Till

A native sandy silt till deposit was encountered below the fill and extended to depths ranging from 4.0 m to 6.7 m below grade. The native deposit was generally compact, brown to greyish brown, grey below 4.0 m to 5.5 m below grade, containing some clay, trace gravel and was moist. Boreholes 22BH-105(MW) and 22BH-107(MW) were terminated in the sandy silt till deposit. The clayey silt deposit was encountered at a depth of 8.5 m below grade at boreholes 22BH-101(MW) and 22BH-103(MW) and extended to 12.0 m below grade.

Clayey Silt Till

A native sandy silt till deposit was encountered beneath the sandy silt till deposit and extended to the terminating depths of the boreholes 22BH-104(MW) and 22BH-106(MW). The native deposit was generally stiff to very stiff, brown, and grey below 5.5 m below grade, containing some sand and trace gravel and was moist. The clayey silt deposit was encountered at a depth of 6.1 m below grade at boreholes 22BH-101(MW) and 22BH-103(MW) and extended to a depth of 8.5 m below grade.

Weathered Shale

Weathered shale bedrock was encountered at boreholes 22BH-101(MW) and 22BH-103(MW) at a depth of 12.0 m below grade. The shale was generally hard, grey, and was very moist to wet.

Field Observations

Olfactory evidence of hydrocarbon soil impacts were identified at borehole location 22BH-104(MW) at depths ranging from surface to approximately 2.3 m below grade.

Soil Vapour Concentrations

Vapor concentrations measured in the soil samples collected during the drilling investigation were measured below 55 parts per million (ppm) with the highest readings recorded at borehole 22BH-4(MW).

7.2 GROUNDWATER

No LNAPL was identified in the monitoring well during groundwater monitoring or sampling. Measured groundwater depths are summarized in Table 7.2-1 below.

Monitoring Well Location	Date Measured	Water Depth (m bg)
21BH-101(MW)	February 14, 2022	5.43
21BH-103(MW)	February 14, 2022	10.39
21BH-104(MW)	February 14, 2022	DRY
21BH-105(MW)	February 14, 2022	3.35
21BH-106(MW)	February 14, 2022	DRY

7.3 LABORATORY ANALYTICAL RESULTS

Copies of the Laboratory Certificates of Analyses showing the results of the analyzed soil and groundwater samples are presented in Appendix B.

7.3.1 SOIL QUALITY

Discrete "worst-case" samples collected from borehole locations were submitted for laboratory analyses. A total of seven (7) discrete soil samples were analyzed for the parameter groups of PHCs and VOCs and three (3) discrete soil sample were analyzed for the parameter group of Metals and OCs. The concentrations of PHCs, VOCs, Metals and OCs in the analyzed soil samples at the tested locations met their MECP Table 8 SCS for Residential/Parkland/ Institutional property use with the following exceptions:

22BH-104 SS2

PHC F1 result of 75 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 4330 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 3440 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 1.46 ug/g vs MECP Table 8 SCS of 0.05 ug/g

22BH-104 SS3

PHC F1 result of 46 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 618 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 515 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 0.72 ug/g vs MECP Table 8 SCS of 0.05 ug/g

22BH-104 SS4

PHC F2 result of 365 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 320 ug/g vs MECP Table 8 SCS of 240 ug/g

<u>Dup- A</u>

PHC F1 result of 51 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 814 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 745 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 0.78 ug/g vs MECP Table 8 SCS of 0.05 ug/g

Analyzed pH values for the soil were within the applicable limits of 7 to 9.

7.3.2 GROUNDWATER QUALITY

A total of three (3) groundwater samples were analyzed for the parameter group of PHCs, two (2) groundwater samples were analyzed for the parameter group VOCs, five (5) groundwater samples were analyzed for the parameter group M&Is and four (4) groundwater samples were analyzed for the parameter group of OCs. The concentrations of PHCs, VOCs, M&Is and OCs met the MECP Table 8 SCS for all property uses with the following exception:

22BH-103(MW)

Sodium result of 1870000 ug/L vs MECP Table 8 SCS of 490000 ug/L Chloride result of 5700000 ug/L vs MECP Table 8 SCS of 790000 ug/L

7.3.3 QA/QC RESULTS

According to the Laboratory Certificates of Analyses from SGS Canada Inc. for the analyzed soil and groundwater samples, the instrument performance/calibration quality criteria and extraction/analysis limits for holdings were met. No QA/QC issues were noted by SGS Canada Inc.

8.0 DISCUSSION OF RESULTS AND RECOMMENDATIONS

8.1 SUMMARY OF FINDINGS

A summary of the findings of the Phase II ESA conducted at the Site are presented below:

- Drilled seven (7) boreholes ranging in depths from 6.7 m to 13.9 m below grade (bg), shown on Figure No. 3. Borehole location 22BH-2 was conducted as part of Geotechnical Investigation and soil and/or groundwater from this borehole location was not sampled as part of this report.
- Underlying the surface course, fill material underlain by sandy silt till, clayey silt till and shale bedrock was encountered at the Site.

- Measured groundwater levels on in the monitoring well ranged from dry to 10.39 m below grade in the monitoring wells.
- Representative or "worst-case" soil samples were collected in laboratory-supplied containers, placed in a cooler and preserved with ice, and shipped with a Chain of Custody to SGS Canada Inc. located in Lakefield, Ontario for laboratory analyses.
- The MECP Table 8 SCS for Residential/Parkland/Institutional/Industrial/Commercial/ Community property use were selected for evaluating sample results.
- A total of seven (7) discrete soil samples were analyzed for the parameter groups of PHCs and VOCs and three (3) discrete soil sample were analyzed for the parameter group of Metals and OCs. The concentrations of PHCs, VOCs, Metals and OCs in the analyzed soil samples at the tested locations met their MECP Table 8 SCS for Residential/Parkland/ Institutional property use with the following exceptions:

22BH-104 SS2

PHC F1 result of 75 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 4330 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 3440 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 1.46 ug/g vs MECP Table 8 SCS of 0.05 ug/g

22BH-104 SS3

PHC F1 result of 46 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 618 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 515 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 0.72 ug/g vs MECP Table 8 SCS of 0.05 ug/g

22BH-104 SS4

PHC F2 result of 365 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 320 ug/g vs MECP Table 8 SCS of 240 ug/g

Dup- A

PHC F1 result of 51 ug/g vs MECP Table 8 SCS of 25 ug/g PHC F2 result of 814 ug/g vs MECP Table 8 SCS of 10 ug/g PHC F3 results of 745 ug/g vs MECP Table 8 SCS of 240 ug/g Xylene Mixture of 0.78 ug/g vs MECP Table 8 SCS of 0.05 ug/g

 A total of three (3) groundwater samples were analyzed for the parameter group of PHCs, two (2) groundwater samples were analyzed for the parameter group VOCs, five (5) groundwater samples were analyzed for the parameter group M&Is and four (4) groundwater samples were analyzed for the parameter group of OCs. The concentrations of PHCs, VOCs, M&Is and OCs met the MECP Table 8 SCS for all property uses with the following exception:

22BH-103(MW)

Sodium result of 1870000 ug/L vs MECP Table 8 SCS of 490000 ug/L

Chloride result of 5700000 ug/L vs MECP Table 8 SCS of 790000 ug/L

8.2 DISCUSSION AND RECOMMENDATION

PHC soil impacts were identified in the vicinity of an AST located at 5762 Mayfield Road and were likely a result of a leaking tank or former spill. The PHC soil impacts extended to an approximate depth of 2.3 m below grade. The area of the soil impact is currently unknown. It is recommended that the PHC soil impact to be delineated and remediated at the time of site redevelopment. It is recommended that secondary containment be installed at the locations of the ASTs if they remain in use.

The elevated Sodium and Chloride in the groundwater at monitoring well location 22BH-103(MW) is likely associated the application of de-icing salts in the adjacent properties on Perdue Court and do not pose an environmental risk to the Site.

8.3 MONITORING WELL DECOMMISSIONING

If the monitoring wells on-Site are no longer required for further sampling or testing of the groundwater, the wells must be decommissioned as per the requirements of O. Reg. 903 "Wells". It should be noted that the decommissioning of monitoring wells is not part of the current scope of work. *Toronto Inspection Ltd.* would be pleased to assist and arrange to perform this work upon request.

9.0 REFERENCES

- Canadian Standard Association (CSA) Standard Z769-00 reaffirmed 2013, CSA-Z769-00 (R2013) "Phase II Environmental Site Assessment";
- Ontario Regulation 153/04, "Records of Site Condition Part XV.1 of the Environmental Protection Act";
- "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", Revised December 1996, Ministry of Environment and Energy;
- "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 9, 2004, amended as of July 1, 2011; and
- "Report on Phase I Environmental Site Assessment, Airport Road and Mayfield Road, Caledon, Ontario", prepared by *Toronto Inspection Ltd.*, dated June 29, 2021, prepared for Rice Commercial Group.

10.0 GENERAL STATEMENT OF LIMITATION

The comments presented in this report are based on the soil and groundwater samples gathered from the borehole/monitoring well locations indicated on the plan of this report. There is no warranty expressed or implied or representations made by *Toronto Inspection Ltd.* that this program has discovered all potential environmental risks or liabilities associated with the subject site.

Although we consider this report to be representative of the subsurface conditions at the subject property in the areas investigated, any interpretation of factual data or unexpected soil conditions which exhibit noticeable discolouration, odour, etc. in areas not investigated in this report, should be discussed in consultation with us prior to any initiation of activity. Our responsibility is limited to an accurate assessment of the soil or groundwater condition prevailing at the locations investigated at the time of the study.

To the fullest extent permitted by law, the client's maximum aggregate recovery against *Toronto Inspection Ltd.*, its directors, employees, sub-contractors and representatives, for any and all claims by Rice Commercial Group for all causes including, but not limited to, claims of breach of contract, breach of warranty and/or negligence, shall be limited to the amount of fees paid by the client.

Any use and/or interpretation of the data presented in this report, and any decisions made on it by the third party are responsibility of the third party. *Toronto Inspection Ltd.* accepts no responsibility for loss of time and damages, if any, suffered by the third party as a result of decisions or actions based on this report.

Any legal actions arising directly or indirectly from this work and/or *Toronto Inspection Ltd.'s* performance of the services shall be filed no longer than two years from the date of Toronto Inspection Ltd.'s substantial completion of the services. *Toronto Inspection Ltd.* shall not be responsible to the client for lost revenues, loss of profits, cost of content, claims of customers, or other special indirect, consequential, or punitive damages.

Yours sincerely,

TORONTO INSPECTION LTD.

Mattlew Pietrzyle

Matthew Pietrzyk, BES, EP Environmental Project Manager

5 11 0 SAJJAD M. N. DIN PRACTISING MEMBER 1519 NTAR

Sajjad Din, PGeo, CET, QP_{ESA} Senior Geoscientist Certified Engineering Technologist

110 Konrad Crescent,	TITLE: On-Site Potential Environmental Concerns
GEO-ENVIRONMENTAL CONSULTANTS	LOCATION: Airport Road and Mayfield Road, Caledon, Ontario
Tel: 905-940 8509 Fax: 905-940 8192 Email : TIL@torontoinspection.com	PROJECT NO. 5552-21-ED DATE : February 2022 FIGURE NO : 2a

Morom			110 Konrad Crescent,	TITLE:	Off-Site Potential	Environme	ntal Concerns		
		CONSULTANTS	Unit 16 Markham, Ontario	LOCATION:	Airport Road and	l Mayfield	Road, Caledon, Ontario	0	
Tel: 905-940 8509	Fax: 905-940 8192	Email : TIL@torontoinspe	ction.com	PROJECT NO.	5552-21-ED	DATE :	February 2022	FIGURE NO:	2b

Project No.	5552-22-GG	Log	of Boreho	ole <u>2</u> 2	<u>2BH-101 (</u>	<u>(MW)</u>
					Dwg No.	2
Project:	Phase II Environmental Site	e Investigat	tion		Sheet No.	_1_ of _1_
Location:	Airport Road and Mayfie	ld Road, (Caledon, Ontario	•		
Date Drilled: Drill Type: Datum:	1/31/22 Track Mounted Drill Rig Geodetic		Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Headspace Reading (ppm) Natural Moisture Plastic and Liquid Limit Unconfined Compression % Strain at Failure Penetrometer	× × ×
g. s M		ELEV.	D E	e	Headspace Reading (ppm) 100 200 300	Natural Unit

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

URE USE BT UTHERS						
Time	Water Level (m)	Depth to Cave (m)				
Feb. 15, 2022	5.43m					

Project No.	5552-22-GG	Log of Borehole 22	<u>2BH-102</u>				
			Dwg No. 3				
Project:	Phase II Environmental S	ite Investigation	Sheet No. <u>1</u> of <u>1</u>				
Location:	Airport Road and Mayfield Road, Caledon, Ontario						
Date Drilled: Drill Type:	2/1/22 Track Mounted Drill Ri	Auger Sample SPT (N) Value Dynamic Cone Test	Headspace Reading (ppm) Natural Moisture Plastic and Liquid Limit Unconfined Compression				
Datum:	Geodetic	Shelby Tube Field Vane Test	% Strain at Failure Penetrometer				

	S			D				N Value			Headsp	ace Rea	ading (p	pm)		Natural
G	MB	Soil Description	ELEV.	EP		20 40 60 80						Moistur	e Conter	nt %		Unit Weight
-	0 L	Ground Surface	235 50	H	Shear	r Streng	gth 10	kPa 0 200			Pa Atterberg Li		% Dry W 3	eignt) 0		kN/m3
		NO SAMPLING		0			::::								:	
		straight drill to 6.1m	-												-	
			-	1											1	
			_												:	
			_	2											:	
															-	
															-	
				3											:	
			-												:	
			-	4											1	
			_												:	
			4	5				· · · · · · · · · · · ·							-	
															-	
		-	000 40													
		 CLAYEY SILT TILL	229.40	6	11							×				
		- stiff, brownish grey	-		FΥ							ſ			-	
		trace sand	-	7											:	
		very moist	_		1										-	
			227.42	8	Ö) <u>ee</u>						<u> </u>				
		END OF BOREHOLE														
		NOTE: Upon completion of drilling:														
		- auger refusal at 8.5m														
		- no free water														
ų																
2																
5																
7-70																
2																
ц р																
<u>ا</u> ک																

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEF

Toronto Inspection Ltd.

ORE USE BI UTHE	-R3	
Time	Water Level (m)	Depth to Cave (m)

Project No.	5552-22-GG	Log of Borehole	<u>22BH-103 (MW)</u>
			Dwg No. <u>4</u>
Project:	Phase II Environmental S	ite Investigation	Sheet No. <u>1</u> of <u>1</u>
Location:	Airport Road and Mayf	ield Road, Caledon, Ontario	
Date Drilled: Drill Type: Datum:	2/1/22 Track Mounted Drill R Geodetic	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test	Headspace Reading (ppm) Natural Moisture X Plastic and Liquid Limit Unconfined Compression % Strain at Failure Penetrometer
s		_ N Value	Headspace Reading (ppm)

۶G	•	S Y		FLEV	P				N Value			10	00 2	200 3	300		Natural Unit
•N	•	B O	Soil Description	m	P	Shear	20 r.St) 4 trenath	0	60 8	0 kPa	Nati Atterb	ural Mois erg Limit	ture Conte s (% Dry \	ent % Veight)		Weight
۰	۰		round Surface	233.00	0			10	0	20	00	1	0	20	30	+	KIN/III3
			straight drill to 6.1m	_				2222	· · · · · · · · · · · ·								
					1											-	
		Γ			Ľ												
		F		1													
		F		-	2												
		F		-													
		\vdash		-	3				<u>19913</u> 19913							-	
				_													
		L			4											:	
				1	5				- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2				· · · · · · · · · · · ·				
		F		-					199119								
				226.90	6	é											
		– - fi	irm to stiff	-		Ψ.								\uparrow		-12	
		b	prownish grey to grey	_	7									/		-	
		- u — - t	race sand race gravel	_										/			
		c	occasional layers of sandy silt		8	L Č)							*			
		- V	ery moist to wet	224.50	ľ				$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	¢	S	ANDY SILT TILL	7			X										
	ſ		compact to very dense	-	9			25						L			
	X	- s	some clay	-				Y.						<u> </u>		14	
		//ti	race gravel	-	10								/				
¥	1	H -		222.61				$\frac{1}{2}$	МБ				- /-			-	
	1			_	11				Ğ_				*				
									<u> </u>							:	
					12											:	
ŀH	11		FATHERED SHALE	220.80	12						Š		*				
Π.		=v	very dense, grey	1												-	
l:H	E	g	ravel sized and platy fragments of	-	13												
5	ŀ	= - v	vet	219.28													
2/17		EN															
ГG			oon completion of drilling:														
99.09		- n	no free water														
-22-(
5552																	
E3 F																	
LGB							:										

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

ORE USE BI UTHE	283	-
Time	Water Level (m)	Depth to Cave (m)
Feb. 15, 2022	10.39m	

Ρ	roject	No.	5552-21-ED	og	0	fΒ	ore	ehc	le	22	<u>2B</u>	H-1	04	· (N	<u>1\</u>	<u>N)</u>
				•								I	Dwg No	. <u>1</u>		-
Ρ	roject	:	Phase II Environmental Site	e Asses	ssi	nent						_ :	Sheet N	No. <u>1</u>	_ 0	of <u>1</u>
Lo	ocatio	n:	5762 Mayfield Road, Caled	don, Or	nta	irio										
												_				
D	ate D	rilled:	2/7/22		_	Auger	Sample				Heads Natura	space Rea al Moistur	ading (ppi e	m)	×	
D	rill Ty	pe:	Track Mounted Drill Rig		_	SPT (N Dynam	l) Value ic Cone T	est	0 🛛		Plastic	c and Liqu	uid Limit	, 	-	
D	atum:		Temporary		_	Shelby Field V	Tube				% Stra	ain at Fail	ure	· ⊗		
:1	•				_				S		I Chet	Tometer		-		
• •G	S Y M		Coll Description	ELEV.	DE			N Value			He 1	eadspace F	Reading (p	pm) 00		Natural Unit
•// •L	• B • O • L	Grou	Ind Surface	m	T H	Shear	20 4 Strength	40 6 00	0 80 20) kPa	Atter	berg Limits	s (% Dry V	nt % /eight) 80		Weight kN/m3
Î		GRA	VEL	99.72	0	-0-6-0-6		56		15ppi	n/<5ppm				忿	
		- <u></u> FILL		-				$\downarrow \square$							\square	
		at the	e top			6 /				51	nnm/30				$\overline{\mathcal{A}}$	
		grave	n clayey to sandy silt with some - el, brick fragments and	1	1	Ø				,,	•	X				
		petro	hydrocarbon odour ise, then loose	-								· · · · · · · · · · · · · · · · · · ·	$\left \right\rangle$			
		- ver	y moist			١.				25pp	m/17ppr ●	n 	×		Ø	
			-	07.60									/			
	ĨĨĨ	-SAN	DY SILT TILL -	- 97.00			7 · · · · · ·	0.010	-2-0-2-0- -3-0-1-0-	15ppi	n/≤5ppm ●	X		 	Ø	
		- con	npact, brown to greyish brown							• • • • • • • •					2	
	ľ.	- trac - moi	st		3		4			5ppm	<5ppm		\mathbf{N}		\square	
	ľ "	_	-	-			Ϋ́			· · · · · · · · · · · ·				· · · · · · · · · ·		
	Yay		_		4											
	le /				1											
	K.	<u> </u>	-	-						· · · · · · · · · · · · · · · · · · ·						
	X,		_		5		\$			20pp	m/<5ppn ●	n	*		Ø	
	10					-0-0-0-0 -0-0-0-0 -0-0-0-0		10010							2	
		CLA	YEY SILT TILL	94.50						· · · · · · · · · · · · · · · · · · ·			/			
		- stiff son	, grey ne sand, trace gravel		6								/			
		- ver	y moist			1	6			15ppi	n/<5ppm				$\overline{\mathcal{A}}$	
		_	-	93.29		<u> </u>	2				•	X			\square	
		END NOT	OF BOREHOLE E:													
		Upor	n completion of drilling: free water													
		- no (cave-in													
123/22																
3PJ 2																
1-ED.0																
52-21																
E3 5£																
LGB																
N	OTE: 1	HE BOR	EHOLE DATA NEEDS INTERPRETATION A	SSISTAN	CE	BY TOF	RONTO IN	ISPECTI	ON LTD.	BEFOR	RE USE	BY OTH	ERS			

Toronto Inspection Ltd.

ORE USE BI UTHE	-R3	-
Time	Water Level (m)	Depth to Cave (m)
Feb. 15, 2022	Dry	

Project No.	5552-21-ED	Log d	of Borehole	22BH-105	<u>5 (MW)</u>
Droject :	Phase II Environmental 9	Sita Accas	smont	Dwg N	No. 1 of 1
Location:	5762 Mayfield Road, Ca	ledon On	tario		
Location.					
Date Drilled: Drill Type:	2/7/22 Track Mounted Drill Rig		Auger Sample SPT (N) Value Dynamic Cone Test	Headspace Reading (pp Natural Moisture Plastic and Liquid Limit Unconfined Compressio	om) ● ★ ►
Datum:	Temporary		Shelby Tube Field Vane Test	 % Strain at Failure Penetrometer 	▲
• • S • G• Y • G• M • L• O • L• O	Soil Description	ELEV.	N Value P 20 40 60 8 T Shear Strength 100 20	Headspace Reading (100 200 Natural Moisture Cont Atterberg Limits (% Dry 0 20	(ppm) 300 ient % Weight) 30 Weight kN/m3
	SOIL	99.72		20ppm/<5ppm	
- Fill - dar - ar - son - trac - ver SAN - cor - bro 5.5m - sor - trac - mo - trac - mo	k grey to dark brown gravelly t, then clayey silt ce topsoil and organics ne brick fragments se y moist IDY SILT TILL npact wun to greyish brown, grey below n ne clay ce gravel ist	99.40 99.40 99.65 96.65		20ppm/<5ppm 20ppm/<5ppm 20ppm/<5ppm 15ppm/<5ppm	
		 93.29	6	10ppm/<5ppm	
END NOT Upor - no	OF BOREHOLE E: n completion of drilling: free water cave-in	33.29			

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

LGBE3 5552-21-ED.GPJ 2/23/22

Time	Water Level (m)	Depth to Cave (m)							
Feb. 15, 2022	3.35m								

F	roject	No.	5552-21-ED	Lo	og (Э [.]	f B	80	re	ehc	ole	<u>22</u>	2BI	- -1	106	<u>) (N</u>	/\	<u>(</u> W
															Dwg No	o. <u>1</u>		
F	roject	:	Phase II Environmental S	Site	Asses	sr	nent								Sheet I	No. <u>1</u>	_ (of <u>1</u>
L	ocatio	n:	5762 Mayfield Road, Cal	ledo	on, Or	nta	irio											
	Date D Drill Ty Datum:	rilled: pe:	2/7/22 Track Mounted Drill Rig Temporary			_ _ _	Auger (SPT (N Dynam Shelby Field V	Samp I) Vali iic Co ^r Tube l'ane T	le ue ne Te	est] - 	Heads Natura Plastic Uncon % Stra Penetr	pace Re I Moistur and Liqu fined Co in at Fail rometer	ading (pp 'e Jid Limit mpression lure	m) n @	× 	l
•	• Y • M		Soil Description		ELEV.	DEP		20	4	0 6	60 8	0	1 Nat	00 2 ural Mois	100 3 ture Conte	00 ent %	$\left \right $	Natural Unit Weight
۰ د	• 0 • L	Grou	und Surface		m 100.00	H H	Shea	r Strer	10 10	0	20	kPa 00	Attert	oerg Limit	3 (% Dry V 20 :	Veight) 30		kN/m3
	<u>`</u> ****	<u>- 275</u>	SOIL 5mm topsoil thickness	_/	99.72		ţ	\$				25pp	m/<5ppn ●		×		Ø	
		- FILL	k grey to dark brown clayey to	ī	99.40													
		- gra	velly sand at the bottom	Н		1	1					20pp	m/<5ppm ●		+		0	
			y moist	╝				$\langle $									Ø	
	l p	- con	npact wn to grevish brown, grev below					ð				10ppn	n/<5ppm ●		*			
	14	5.5m	ne clav	-		2			• • • •								P	
	6	trac	ce gravel	_				10				15ppi	n/≤5ppm		*			
	(y	- 110	101					Ĭ							1		8	
	/o/	_				3		22				20pp	m/<5ppm					
.	ľ g	_		-				Ŷ	• • • • •						<u>}</u>		0	
					96.00	4									<u> </u>			
		- ver	YEY SILT TILL y stiff															
		– - bro - trac	wn, grey below 5.5m ce sand, trace gravel	-				18				20nn	m/<5nnm					
		- mo	ist	_		5		Ф_					•		⊢⊁		0	
									· ; .;. ; · : ::::						/			
		_		-		6			• • • • •					/	1			
		_		4				0				10ppn	n/<5ppm ●	×			0	
		END	OF BOREHOLE		93.29					· · · · · ·		· · · · · ·					f	
		NOT Upor	E: n completion of drilling:															
		- no 1 - ope	free water en cave-in															
23/22																		
PJ 2/2																		
-ED.G																		
52-21																		
E3 55																		
GB								: []]										

	NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION	LTD. BEFORE USE BY OTHER
--	---	--------------------------

Toronto Inspection Ltd.

ORE USE BY OTHE	RS	
Time	Water Level (m)	Depth to Cave (m)
Feb. 15, 2022	Dry	

Proje	ect No.	5552-21-ED	Lo	og o	D	f E	30	ore	eho	ble	<u>22</u>	2Bł	 -1	07	<u>' (N</u>	<u>/\</u>	W)	
				-									[Dwg N	o. <u>1</u>			
Proje	ect:	Phase II Environmental Site Assessment									Sheet No1 of _1							
Loca	ition:	5762 Mayfield Road, Cale	edo	n, On	ta	rio												
Date Drill Datu	Drilled: Type: m:	2/7/22 Track Mounted Drill Rig Temporary			Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test S				Headspace Reading (ppm) Natural Moisture X Plastic and Liquid Limit I Unconfined Compression % Strain at Failure Penetrometer									
	S Y	Soil Description		ELEV. m	Þ		N Value			e		Headspace Reading (ppm) 100 200 300				Natural		
•₩•					Р Т Н	P 20 40 T Shear Strength			60 80 kPa		- Natural Moisture Content Atterberg Limits (% Dry We			nt % Veight)		Weight kN/m3		
<u>7</u>		ound Surface PSOIL		100.00	0		14	1	00		200 5ppm	1 <5ppm	0 2	.0 .	30		-	
	- 275	- 275mm topsoil thickness FILL / REWORKED SOIL - dark grey to dark brown sandy silt - trace topsoil, rootlets - compact - very moist SANDY SILT TILL - compact - brown to greyish brown, grey below 4 0m	-⁄-]9	99.60		6	9							/	<u>×</u>	V		
1	o - dar						Ţ											
	H- cor		Н		1		đ	X			<u> </u>	/<5ppm	X	(V		
ø	SAN																	
1	- bro							288 Ø			5ppm	<5ppm	*					
10	- trac	ce to some clay			2											ľ		
1	mo	ist	_			-2-5-2		25			5ppm	<5ppm_						
1				96.49 				Υ					Î					
					3			25			<5000	/<5nnm	/					
			_					φ					*			V		
		-																
			-			4	· · · · ·										-	
							1											
						2	*				5ppm	<5ppm	ŀ					
			-		5		Í	0000										
	<u> </u>		_													-		
																-		
			-		6													
							Ű				<5ppm	/<5ppm	*					
: H: NI	END	OF BOREHOLE	9	3.29				· · · · · ·										
	NOT Upor	TE: on completion of drilling:					-											
	- no	free water cave-in																
							-											
,22							-											
2/23,																		
J.GPJ							-											
21-E[
5552-																		
3BE3																		
]										<u> ::::</u>	1		

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO Inspection Ltd.

URE USE BY UTHERS								
Time	Water Level (m)	Depth to Cave (m)						
Feb. 15, 2022	3.51m							

FINAL REPORT

CA40125-FEB22 R

5552

Prepared for

Toronto Inspection Ltd.

FINAL REPORT

First Page

CLIENT DETAILS	i	LABORATORY DETAILS				
Client	Toronto Inspection Ltd.	Project Specialist	Maarit Wolfe, Hon.B.Sc			
		Laboratory	SGS Canada Inc.			
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0			
	Markham, ON					
	L3R 9X2. Canada					
Contact	Matt Pietrzyk	Telephone	705-652-2000			
Telephone	905-940-8509	Facsimile	705-652-6365			
Facsimile	905 940 8192	Email	Maarit.Wolfe@sgs.com			
Email	lab@torontoinspection.com	SGS Reference	CA40125-FEB22			
Project	5552	Received	02/09/2022			
Order Number		Approved	02/16/2022			
Samples	Soil (8)	Report Number	CA40125-FEB22 R			
		Date Reported	02/16/2022			

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

 Quality Compliance:
 Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

 nC6 and nC10 response factors within 30% of response factor for toluene: YES
 nC10, nC16 and nC34 response factors within 10% of the average response for the
 three compounds: YES

 C50 response factors within 70% of nC10 + nC16 + nC34 average: YES
 three compounds: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 024209

SIGNATORIES

Maarit Wolfe, Hon.B.Sc

funde

t 705-652-2000 f 705-652-6365 www.sgs.com

FINAL REPORT

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-8
Exceedance Summary	
Holding Time Summary	10-11
QC Summary	12-17
Legend	
Annexes	19

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

MATRIX: SOIL		Sample Number	9	10	11	12	13	14	15	16
		Sample Name	22BH-104 (MW)	22BH-104 (MW)	22BH-104 (MW)	22BH-105 (MW)	22BH-106 (MW)	22BH-107 (MW)	Dup - A	Dup - B
			SS2	SS3	SS4	SS2	SS2	SS6		
L1 = REG153 / SOIL / COARSE - TABLE 2 - Agricultural/Other - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Sample Date	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022
Parameter Unit	s RL	L1	Result	Result	Result	Result	Result	Result	Result	Result
BTEX										
Benzene µg/	g 0.02	0.21	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	
Ethylbenzene µg/	g 0.05	1.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Toluene µg/	g 0.05	2.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Xylene (total) µg/	0.05	3.1	1.46	0.72	< 0.05	< 0.05	< 0.05		0.78	
m/p-xylene µg/	0.05		1.29	0.60	< 0.05	< 0.05	< 0.05		0.66	
o-xylene µg/	g 0.05		0.17	0.12	< 0.05	< 0.05	< 0.05		0.11	
Hydrides										
Antimony µg/	g 0.8	7.5						< 0.8		< 0.8
Arsenic µg/	g 0.5	11						3.8		4.7
Selenium µg/	g 0.7	2.4						< 0.7		< 0.7
Metals and Inorganics										
Moisture Content	no		17.8	21.4	11.1	16.7	17.9	11.4	18.4	11.3
Barium µg/	g 0.1	390						56		52
Beryllium µg/	0.02	4						0.48		0.52
Boron µg/	j 1	120						6		6
Cadmium µg/	g 0.05	1						0.10		0.10
Chromium µg/	g 0.5	160						17		18
Cobalt µg/	g 0.01	22						9.5		11
Copper µg/	g 0.1	140						25		27
Lead µg/	g 0.1	45						7.4		6.0
Molybdenum µg/	g 0.1	6.9						0.2		0.2

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

MATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	22BH-104 (MW)	22BH-104 (MW)	22BH-104 (MW)	22BH-105 (MW)	22BH-106 (MW)	22BH-107 (MW)	Dup - A	Dup - B
				SS2	SS3	SS4	SS2	SS2	SS6		
L1 = REG153 / SOIL / COARSE - TABLE 2 - Agricultural/Other - UNDEFINED			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022
Parameter Un	its RL	L1		Result	Result	Result	Result	Result	Result	Result	Result
Metals and Inorganics (continued)											
Nickel µg	/g 0.5	10)						21		23
Silver µg	/g 0.05	20							< 0.05		< 0.05
Thallium µg	/g 0.02	1							0.13		0.11
Uranium µg	/g 0.00	2 23							0.83		0.54
Vanadium µg	/g 3	86							22		22
Zinc µg	/g 0.7	34)						45		70
Organochlorine Pests (OCs)											
Aldrin µg	/g 0.05	0.0	5						< 0.05		< 0.05
alpha-Chlordane µg	/g 0.02								< 0.02		< 0.02
gamma-Chlordane µg	/g 0.02								< 0.02		< 0.02
Chlordane (total) µg	/g 0.05	0.0	5						< 0.05		< 0.05
o,p-DDD µg	/g 0.02								< 0.02		< 0.02
pp-DDD µg	/g 0.02								< 0.02		< 0.02
DDD (total) µg	/g 0.05	3.3	3						< 0.05		< 0.05
o,p-DDE µg	/g 0.02								< 0.02		< 0.02
pp-DDE µg	/g 0.02								< 0.02		< 0.02
DDE (total) µg	/g 0.05	0.2	6						< 0.05		< 0.05
op-DDT µg	/g 0.02								< 0.02		< 0.02
pp-DDT µg	/g 0.02								< 0.02		< 0.02
DDT (total)	/g 0.05	0.07	'8						< 0.05		< 0.05
Dieldrin µg	/g 0.05	0.0	5						< 0.05		< 0.05

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

MATRIX: SOIL			Sample	e Number	9	10	11	12	13	14	15	16
			Sam	ple Name	22BH-104 (MW)	22BH-104 (MW)	22BH-104 (MW)	22BH-105 (MW)	22BH-106 (MW)	22BH-107 (MW)	Dup - A	Dup - B
					SS2	SS3	SS4	SS2	SS2	SS6		
L1 = REG153 / SOIL / COARSE - TABLE 2 - Agricultural/O	Other - UNDEFINED		Sam	ple Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			San	nple Date	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022
Parameter	Units	RL	L1		Result	Result	Result	Result	Result	Result	Result	Result
Organochlorine Pests (OCs) (continue	ed)											
gamma-BHC	hð\ð	0.01	0.056							< 0.01		< 0.01
Endosulfan I	hð\ð	0.02								< 0.02		< 0.02
Endosulfan II	hð\ð	0.02								< 0.02		< 0.02
Endosulfan (total)	hð/ð	0.04	0.04							< 0.04		< 0.04
Endrin	hð\ð	0.04	0.04							< 0.04		< 0.04
Heptachlor	hð\ð	0.01	0.15							< 0.01		< 0.01
Heptachlor epoxide	hð\ð	0.01	0.05							< 0.01		< 0.01
Hexachlorobenzene	hð\ð	0.01	0.52							< 0.01		< 0.01
Hexachlorobutadiene	hð\ð	0.01	0.012							< 0.01		< 0.01
Hexachloroethane	hð\ð	0.01	0.089							< 0.01		< 0.01
Methoxychlor	hð\ð	0.05	0.13							< 0.05		< 0.05
Pesticides Surrogate												
Surr Decachlorobiphenyl	Surr Rec %									108		118

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

MATRIX: SOIL			\$	Sample Number	9	10	11	12	13	14	15	16
				Sample Name	22BH-104 (MW)	22BH-104 (MW)	22BH-104 (MW)	22BH-105 (MW)	22BH-106 (MW)	22BH-107 (MW)	Dup - A	Dup - B
					SS2	SS3	SS4	SS2	SS2	SS6		
L1 = REG153 / SOIL / COARSE - TABLE 2 - Agricultural/Other - U	NDEFINED			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Sample Date	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022
Parameter	Units	RL	L1		Result	Result	Result	Result	Result	Result	Result	Result
PHCs												
F1 (C6-C10)	µg/g	10	55		75	46	< 10	< 10	< 10		51	
F1-BTEX (C6-C10)	hð/ð	10	55		74	45	< 10	< 10	< 10		50	
F2 (C10-C16)	hð/ð	10	98		4330	618	365	< 10	< 10		844	
F3 (C16-C34)	µg/g	50	300		3440	515	320	< 50	< 50		754	
F4 (C34-C50)	µg/g	50	2800		60	< 50	< 50	< 50	< 50		64	
Chromatogram returned to baseline at nC50	Yes / No	no			YES	YES	YES	YES	YES		YES	
THMs (VOC)												
Bromodichloromethane	µg/g	0.05	1.5		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Bromoform	hð/ð	0.05	0.27		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Dibromochloromethane	µg/g	0.05	2.3		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
VOC Surrogates												
Surr 1,2-Dichloroethane-d4	Surr Rec %	no			100	96	95	102	102		96	
Surr 4-Bromofluorobenzene	Surr Rec %	no			97	94	94	102	96		96	
Surr 2-Bromo-1-Chloropropane	Surr Rec %	no			95	90	92	96	95		90	
Surr TCMX	Surr Rec %	no								96		101

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

IATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	22BH-104 (MW)	22BH-104 (MW)	22BH-104 (MW)	22BH-105 (MW)	22BH-106 (MW)	22BH-107 (MW)	Dup - A	Dup - B
				SS2	SS3	SS4	SS2	SS2	SS6		
= REG153 / SOIL / COARSE - TABLE 2 - Agricultural/C	Other - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	Result	Result
OCs											
Acetone	µg/g	0.5	16	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	
Bromomethane	µg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Carbon tetrachloride	hð\ð	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Chlorobenzene	µg/g	0.05	2.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Chloroform	µg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,2-Dichlorobenzene	µg/g	0.05	1.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,3-Dichlorobenzene	µg/g	0.05	4.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,4-Dichlorobenzene	hð\ð	0.05	0.083	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Dichlorodifluoromethane	µg/g	0.05	16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,1-Dichloroethane	µg/g	0.05	0.47	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,2-Dichloroethane	µg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,1-Dichloroethylene	µg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
trans-1,2-Dichloroethylene	µg/g	0.05	0.084	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
cis-1,2-Dichloroethylene	µg/g	0.05	1.9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,2-Dichloropropane	µg/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
cis-1,3-dichloropropene	hð/ð	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03	
trans-1,3-dichloropropene	µg/g	0.03		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03	
1,3-dichloropropene (total)	hā\ā	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Ethylenedibromide	hð\ð	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
n-Hexane	hð\ð	0.05	2.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Methyl ethyl ketone	hð\ð	0.5	16	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

MATRIX: SOIL			Sample	e Number	9	10	11	12	13	14	15	16
			Sam	ple Name	22BH-104 (MW)	22BH-104 (MW)	22BH-104 (MW)	22BH-105 (MW)	22BH-106 (MW)	22BH-107 (MW)	Dup - A	Dup - B
					SS2	SS3	SS4	SS2	SS2	SS6		
L1 = REG153 / SOIL / COARSE - TABLE 2 - Agricultural/Other - UNDEFINED)		Sam	ple Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sar	mple Date	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022	07/02/2022
Parameter	Units	RL	L1		Result	Result	Result	Result	Result	Result	Result	Result
VOCs (continued)												
Methyl isobutyl ketone	µg/g	0.5	1.7		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	
Methyl-t-butyl Ether	µg/g	0.05	0.75		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Methylene Chloride	µg/g	0.05	0.1		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Styrene	µg/g	0.05	0.7		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Tetrachloroethylene	µg/g	0.05	0.28		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,1,1,2-Tetrachloroethane	µg/g	0.05	0.058		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,1,2,2-Tetrachloroethane	µg/g	0.05	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,1,1-Trichloroethane	µg/g	0.05	0.38		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
1,1,2-Trichloroethane	µg/g	0.05	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Trichloroethylene	µg/g	0.05	0.061		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Trichlorofluoromethane	µg/g	0.05	4		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	
Vinyl Chloride	µg/g	0.02	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	

EXCEEDANCE SUMMARY

				REG153 / SOIL /
				COARSE - TABLE
				2 -
				Agricultural/Other -
				UNDEFINED
Parameter	Method	Units	Result	L1
22BH-104 (MW) SS2				
F1 (C6 to C10)	CCME Tier 1	hð\ð	75	55
F1 (C6 to C10) minus BTEX	CCME Tier 1	hð\ð	74	55
F2 (C10 to C16)	CCME Tier 1	hð\ð	4330	98
F3 (C16 to C34)	CCME Tier 1	hð\ð	3440	300
22BH-104 (MW) SS3				_
F2 (C10 to C16)	CCME Tier 1	hð\ð	618	98
F3 (C16 to C34)	CCME Tier 1	hð\ð	515	300
22BH-104 (MW) SS4				
F2 (C10 to C16)	CCME Tier 1	hð\ð	365	98
E3 (C16 to C34)	CCME Tior 1	ug/g	320	300
		P9/9	020	
Dup - A		руу 		
Dup - A F2 (C10 to C16)	CCME Tier 1	hð\a	844	98

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Metals in Soil - Aqua-regia/ICP	-MS							
Method: EPA 3050/EPA 200.8	Internal ref.: ME-CA-[EN\	/JSPE-LAI	K-AN-005					
22BH-104 (MW) SS2		9	02/07/2022	02/09/2022	02/10/2022	02/11/2022	08/06/2022	02/14/2022
22BH-104 (MW) SS3		10	02/07/2022	02/09/2022	02/10/2022	02/11/2022	08/06/2022	02/14/2022
22BH-104 (MW) SS4		11	02/07/2022	02/09/2022	02/10/2022	02/11/2022	08/06/2022	02/14/2022
22BH-105 (MW) SS2		12	02/07/2022	02/09/2022	02/10/2022	02/11/2022	08/06/2022	02/14/2022
22BH-106 (MW) SS2		13	02/07/2022	02/09/2022	02/10/2022	02/11/2022	08/06/2022	02/14/2022
22BH-107 (MW) SS6	EMS0065-FEB22	14	02/07/2022	02/09/2022	02/10/2022	02/11/2022	08/06/2022	02/14/2022
Dup - A		15	02/07/2022	02/09/2022	02/10/2022	02/11/2022	08/06/2022	02/14/2022
Dup - B	EMS0065-FEB22	16	02/07/2022	02/09/2022	02/10/2022	02/11/2022	08/06/2022	02/14/2022

Moisture

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

22BH-104 (MW) SS2	GCM0137-FEB22	9	02/07/2022	02/09/2022	04/08/2022	02/11/2022
22BH-104 (MW) SS3	GCM0137-FEB22	10	02/07/2022	02/09/2022	04/08/2022	02/11/2022
22BH-104 (MW) SS4	GCM0137-FEB22	11	02/07/2022	02/09/2022	04/08/2022	02/11/2022
22BH-105 (MW) SS2	GCM0137-FEB22	12	02/07/2022	02/09/2022	04/08/2022	02/11/2022
22BH-106 (MW) SS2	GCM0137-FEB22	13	02/07/2022	02/09/2022	04/08/2022	02/11/2022
22BH-107 (MW) SS6	GCM0137-FEB22	14	02/07/2022	02/09/2022	04/08/2022	02/11/2022
Dup - A	GCM0137-FEB22	15	02/07/2022	02/09/2022	04/08/2022	02/11/2022
Dup - B	GCM0137-FEB22	16	02/07/2022	02/09/2022	04/08/2022	02/11/2022

Pesticides

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-018

22BH-104 (MW) SS2		9	02/07/2022	02/09/2022	02/10/2022	02/11/2022	03/19/2022	02/14/2022
22BH-104 (MW) SS3		10	02/07/2022	02/09/2022	02/10/2022	02/11/2022	02/21/2022	02/14/2022
22BH-104 (MW) SS4		11	02/07/2022	02/09/2022	02/10/2022	02/11/2022	02/21/2022	02/14/2022
22BH-105 (MW) SS2		12	02/07/2022	02/09/2022	02/10/2022	02/11/2022	03/19/2022	02/14/2022
22BH-106 (MW) SS2		13	02/07/2022	02/09/2022	02/10/2022	02/11/2022	02/21/2022	02/14/2022
22BH-107 (MW) SS6	GCM0134-FEB22	14	02/07/2022	02/09/2022	02/10/2022	02/11/2022	02/21/2022	02/14/2022
Dup - A		15	02/07/2022	02/09/2022	02/10/2022	02/11/2022	03/19/2022	02/14/2022
Dup - B	GCM0134-FEB22	16	02/07/2022	02/09/2022	02/10/2022	02/11/2022	02/21/2022	02/14/2022

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

22BH-104 (MW) SS2	GCM0146-FEB22	9	02/07/2022	02/09/2022	02/	21/2022	02/15/2022
22BH-104 (MW) SS3	GCM0146-FEB22	10	02/07/2022	02/09/2022	02/	21/2022	02/15/2022
22BH-104 (MW) SS4	GCM0146-FEB22	11	02/07/2022	02/09/2022	02/	21/2022	02/15/2022
22BH-105 (MW) SS2	GCM0146-FEB22	12	02/07/2022	02/09/2022	02/	21/2022	02/16/2022
22BH-106 (MW) SS2	GCM0146-FEB22	13	02/07/2022	02/09/2022	02/	21/2022	02/16/2022
22BH-107 (MW) SS6		14	02/07/2022	02/09/2022	02/	21/2022	02/15/2022
Dup - A	GCM0146-FEB22	15	02/07/2022	02/09/2022	02/	21/2022	02/15/2022
20220216			10 / 19				

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Petroleum Hydrocarbons (F1) (contin	ued)							
Method: CCME Tier 1 Internal ref.:	ME-CA-[ENV]GC-LA	K-AN-010						
Dup - B		16	02/07/2022	02/09/2022			02/21/2022	02/15/2022
Petroleum Hydrocarbons (F2-F4)								
Method: CCME Tier 1 Internal ref.:	ME-CA-[ENV]GC-LA	K-AN-010						
22BH-104 (MW) SS2	GCM0150-FEB22	9	02/07/2022	02/09/2022			02/21/2022	02/14/2022
22BH-104 (MW) SS3	GCM0150-FEB22	10	02/07/2022	02/09/2022			03/19/2022	02/14/2022
22BH-104 (MW) SS4	GCM0150-FEB22	11	02/07/2022	02/09/2022			02/21/2022	02/14/2022
22BH-105 (MW) SS2	GCM0150-FEB22	12	02/07/2022	02/09/2022			02/21/2022	02/14/2022
22BH-106 (MW) SS2	GCM0150-FEB22	13	02/07/2022	02/09/2022			03/19/2022	02/14/2022
22BH-107 (MW) SS6		14	02/07/2022	02/09/2022			03/19/2022	02/14/2022
Dup - A	GCM0150-FEB22	15	02/07/2022	02/09/2022			03/19/2022	02/14/2022
Dup - B		16	02/07/2022	02/09/2022			03/19/2022	02/14/2022
Volatile Organics								
Method: EPA 5035A/5030B/8260C	Internal ref.: ME-CA-	[ENV]GC-	LAK-AN-004					
22BH-104 (MW) SS2	GCM0145-FEB22	9	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022

22BH-104 (MW) SS2	GCM0145-FEB22	9	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022
22BH-104 (MW) SS3	GCM0145-FEB22	10	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022
22BH-104 (MW) SS4	GCM0145-FEB22	11	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022
22BH-105 (MW) SS2	GCM0145-FEB22	12	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022
22BH-106 (MW) SS2	GCM0145-FEB22	13	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022
22BH-107 (MW) SS6		14	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022
Dup - A	GCM0145-FEB22	15	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022
Dup - B		16	02/07/2022	02/09/2022	02/11/2022	02/11/2022	02/21/2022	02/15/2022

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recover	y Limits)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0065-FEB22	ug/g	0.05	<0.05	ND	20	100	70	130	108	70	130
Arsenic	EMS0065-FEB22	µg/g	0.5	<0.5	0	20	98	70	130	106	70	130
Barium	EMS0065-FEB22	ug/g	0.1	<0.1	3	20	106	70	130	95	70	130
Beryllium	EMS0065-FEB22	µg/g	0.02	<0.02	1	20	102	70	130	97	70	130
Boron	EMS0065-FEB22	µg/g	1	<1	1	20	107	70	130	93	70	130
Cadmium	EMS0065-FEB22	ug/g	0.05	<0.05	16	20	100	70	130	109	70	130
Cobalt	EMS0065-FEB22	µg/g	0.01	<0.01	3	20	99	70	130	105	70	130
Chromium	EMS0065-FEB22	µg/g	0.5	<0.5	1	20	98	70	130	105	70	130
Copper	EMS0065-FEB22	µg/g	0.1	<0.1	2	20	98	70	130	103	70	130
Molybdenum	EMS0065-FEB22	µg/g	0.1	<0.1	0	20	100	70	130	99	70	130
Nickel	EMS0065-FEB22	ug/g	0.5	<0.5	3	20	100	70	130	106	70	130
Lead	EMS0065-FEB22	ug/g	0.1	<0.1	2	20	103	70	130	99	70	130
Antimony	EMS0065-FEB22	µg/g	0.8	<0.8	ND	20	99	70	130	100	70	130
Selenium	EMS0065-FEB22	µg/g	0.7	<0.7	ND	20	104	70	130	109	70	130
Thallium	EMS0065-FEB22	µg/g	0.02	<0.02	5	20	101	70	130	101	70	130
Uranium	EMS0065-FEB22	µg/g	0.002	<0.002	1	20	103	70	130	98	70	130
Vanadium	EMS0065-FEB22	µg/g	3	<3	1	20	99	70	130	105	70	130
Zinc	EMS0065-FEB22	µg/g	0.7	<0.7	2	20	98	70	130	109	70	130

Pesticides

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Dup	icate	LC	S/Spike Blank		Ma	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
Aldrin	GCM0134-FEB22	µg/g	0.05	< 0.05	ND	40	89	50	140	83	50	140
alpha-Chlordane	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	88	50	140	83	50	140
Dieldrin	GCM0134-FEB22	µg/g	0.05	< 0.05	ND	40	90	50	140	89	50	140
Endosulfan I	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	92	50	140	85	50	140
Endosulfan II	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	87	50	140	96	50	140
Endrin	GCM0134-FEB22	µg/g	0.04	< 0.04	ND	40	90	50	140	95	50	140
gamma-BHC	GCM0134-FEB22	µg/g	0.01	< 0.01	ND	40	90	50	140	113	50	140
gamma-Chlordane	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	88	50	140	83	50	140
Heptachlor epoxide	GCM0134-FEB22	µg/g	0.01	< 0.01	ND	40	88	50	140	81	50	140
Heptachlor	GCM0134-FEB22	µg/g	0.01	< 0.01	ND	40	87	50	140	80	50	140
Hexachlorobenzene	GCM0134-FEB22	µg/g	0.01	< 0.01	ND	40	91	50	140	79	50	140
Hexachlorobutadiene	GCM0134-FEB22	µg/g	0.01	< 0.01	ND	40	92	50	140	65	50	140
Hexachloroethane	GCM0134-FEB22	µg/g	0.01	< 0.01	ND	40	89	50	140	62	50	140
Methoxychlor	GCM0134-FEB22	µg/g	0.05	< 0.05	ND	40	101	50	140	113	50	140
o,p-DDD	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	86	50	140	84	50	140
o,p-DDE	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	89	50	140	88	50	140
op-DDT	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	83	50	140	87	50	140
pp-DDD	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	84	50	140	88	50	140
pp-DDE	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	91	50	140	88	50	140
pp-DDT	GCM0134-FEB22	µg/g	0.02	< 0.02	ND	40	94	50	140	102	50	140

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	ry Limits
						(%)	Recovery (%)	Low	High	(%)	(%	6) High
F1 (C6-C10)	GCM0146-FEB22	hð\ð	10	<10	23	30	100	80	120	96	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits 6)	Spike Recovery	Recover	y Limits)
						(70)	(%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0150-FEB22	hð\ð	10	<10	ND	30	105	80	120	108	60	140
F3 (C16-C34)	GCM0150-FEB22	µg/g	50	<50	ND	30	105	80	120	108	60	140
F4 (C34-C50)	GCM0150-FEB22	µg/g	50	<50	ND	30	105	80	120	108	60	140

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recover	y Limits 6)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	96	60	130	93	50	140
1,1,1-Trichloroethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	94	60	130	91	50	140
1,1,2,2-Tetrachloroethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	97	60	130	99	50	140
1,1,2-Trichloroethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	90	60	130	92	50	140
1,1-Dichloroethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	92	60	130	89	50	140
1,1-Dichloroethylene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	91	60	130	86	50	140
1,2-Dichlorobenzene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	96	60	130	92	50	140
1,2-Dichloroethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	95	60	130	95	50	140
1,2-Dichloropropane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	94	60	130	93	50	140
1,3-Dichlorobenzene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	96	60	130	91	50	140
1,4-Dichlorobenzene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	97	60	130	89	50	140
Acetone	GCM0145-FEB22	µg/g	0.5	< 0.5	ND	50	91	50	140	113	50	140
Benzene	GCM0145-FEB22	µg/g	0.02	< 0.02	ND	50	91	60	130	89	50	140
Bromodichloromethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	95	60	130	92	50	140
Bromoform	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	95	60	130	91	50	140
Bromomethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	89	50	140	75	50	140
Carbon tetrachloride	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	93	60	130	88	50	140
Chlorobenzene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	94	60	130	91	50	140
Chloroform	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	93	60	130	91	50	140
cis-1,2-Dichloroethylene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	93	60	130	89	50	140

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery		b)	(%)	(%	6)
							(%)	Low	High	(70)	Low	High
cis-1,3-dichloropropene	GCM0145-FEB22	µg/g	0.03	< 0.03	ND	50	94	60	130	88	50	140
Dibromochloromethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	89	60	130	88	50	140
Dichlorodifluoromethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	73	50	140	52	50	140
Ethylbenzene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	93	60	130	91	50	140
Ethylenedibromide	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	90	60	130	92	50	140
n-Hexane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	92	60	130	69	50	140
m/p-xylene	GCM0145-FEB22	µg/g	0.05	< 0.05	2	50	94	60	130	90	50	140
Methyl ethyl ketone	GCM0145-FEB22	µg/g	0.5	< 0.5	ND	50	94	50	140	96	50	140
Methyl isobutyl ketone	GCM0145-FEB22	µg/g	0.5	< 0.5	ND	50	93	50	140	97	50	140
Methyl-t-butyl Ether	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	98	60	130	98	50	140
Methylene Chloride	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	90	60	130	87	50	140
o-xylene	GCM0145-FEB22	µg/g	0.05	< 0.05	25	50	97	60	130	94	50	140
Styrene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	94	60	130	91	50	140
Tetrachloroethylene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	91	60	130	86	50	140
Toluene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	89	60	130	87	50	140
trans-1,2-Dichloroethylene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	92	60	130	88	50	140
trans-1,3-dichloropropene	GCM0145-FEB22	µg/g	0.03	< 0.03	ND	50	90	60	130	86	50	140
Trichloroethylene	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	94	60	130	92	50	140
Trichlorofluoromethane	GCM0145-FEB22	µg/g	0.05	< 0.05	ND	50	92	50	140	84	50	140
Vinyl Chloride	GCM0145-FEB22	µg/g	0.02	< 0.02	ND	50	88	50	140	79	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

CA40202-FEB22 R1

5552

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS	i	LABORATORY DETAILS	3
Client	Toronto Inspection Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Matt Pietrzyk	Telephone	705-652-2143
Telephone	905-940-8509	Facsimile	705-652-6365
Facsimile	905 940 8192	Email	brad.moore@sgs.com
Email	lab@torontoinspection.com	SGS Reference	CA40202-FEB22
Project	5552	Received	02/15/2022
Order Number		Approved	02/24/2022
Samples	Ground Water (4)	Report Number	CA40202-FEB22 R1
		Date Reported	02/24/2022

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 024376

Dichlorodifluoromethane LCS and Matrix Spike; Recovery is outside control limits; the overall quality control for this analysis has been assessed and and was determined to be acceptable.

CR6 RL raised for tag 8 due to sample matrix

SIGNATORIES

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-9
Exceedance Summary	10
QC Summary	11-21
Legend	22
Annexes	23

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

MATRIX: WATER			Sample Numb	er 7	8	9	10
			Sample Nar	ne 22BH-101(MW)	22BH-103(MW)	22BH-105(MW)	22BH-107(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 8 - All 1	Types of Property Uses - U	JNDEFINED	Sample Mat	rix Ground Water	Ground Water	Ground Water	Ground Water
			Sample Da	te 15/02/2022	15/02/2022	15/02/2022	15/02/2022
Parameter	Units	RL	L1	Result	Result	Result	Result
BTEX							
Benzene	µg/L	0.5	5	< 0.5	< 0.5	< 0.5	
Ethylbenzene	µg/L	0.5	2.4	< 0.5	< 0.5	< 0.5	
Toluene	µg/L	0.5	22	< 0.5	< 0.5	< 0.5	
Xylene (total)	µg/L	0.5	300	< 0.5	< 0.5	< 0.5	
m/p-xylene	µg/L	0.5		< 0.5	< 0.5	< 0.5	
o-xylene	µg/L	0.5		< 0.5	< 0.5	< 0.5	
Hydrides							
Antimony	µg/L	0.9	6	< 0.9	< 0.9	< 0.9	< 0.9
Arsenic	µg/L	0.2	25	3.2	3.5	0.9	1.6
Selenium	µg/L	0.04	10	0.33	0.08	0.79	0.45
Metals and Inorganics							
Barium	µg/L	0.02	1000	50.0	222	53.5	136
Beryllium	µg/L	0.007	4	< 0.007	< 0.007	< 0.007	< 0.007
Boron	µg/L	2	5000	275	1370	57	30
Cadmium	µg/L	0.003	2.1	0.021	0.092	0.009	0.009
Chromium	µg/L	0.08	50	0.26	0.96	0.29	0.19
Cobalt	µg/L	0.004	3.8	1.46	2.68	0.650	0.351
Copper	µg/L	0.2	69	6.2	2.6	36.8	6.4
Lead	µg/L	0.09	10	0.11	< 0.09	< 0.09	0.11
Molybdenum	µg/L	0.04	70	19.5	4.31	3.98	3.60
Nickel	µg/L	0.1	100	2.2	2.5	1.8	0.7

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

MATRIX: WATER			Sample Number	7	8	9	10
			Sample Name	22BH-101(MW)	22BH-103(MW)	22BH-105(MW)	22BH-107(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 8 - All T	ypes of Property Uses - U	JNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
			Sample Date	15/02/2022	15/02/2022	15/02/2022	15/02/2022
Parameter	Units	RL	L1	Result	Result	Result	Result
Metals and Inorganics (continued)							
Silver	µg/L	0.05	1.2	0.078	0.085	0.938	0.053
Thallium	µg/L	0.005	2	0.019	0.005	0.027	0.014
Uranium	µg/L	0.002	20	2.77	0.494	7.90	1.31
Vanadium	µg/L	0.01	6.2	0.74	0.38	0.90	0.49
Zinc	µg/L	2	890	10	12	28	10
Na							
Sodium	µg/L	10	490000	126000	1870000	77000	12700
Organochlorine Pests (OCs)							
Aldrin	μg/L	0.01	0.35	< 0.01	< 0.01		< 0.01
a-chlordane	μg/L	0.01		< 0.01	< 0.01		< 0.01
g-chlordane	μg/L	0.01		< 0.01	< 0.01		< 0.01
Chlordane (total)	μg/L	0.02	0.06	< 0.02	< 0.02		< 0.02
o,p-DDD	μg/L	0.05		< 0.05	< 0.05		< 0.05
pp-DDD	μg/L	0.01		< 0.01	< 0.01		< 0.01
DDD (total)	μg/L	0.05	1.8	< 0.05	< 0.05		< 0.05
o,p-DDE	μg/L	0.01		< 0.01	< 0.01		< 0.01
pp-DDE	μg/L	0.01		< 0.01	< 0.01		< 0.01
DDE (total)	μg/L	0.01	10	< 0.01	< 0.01		< 0.01
op-DDT	μg/L	0.01		< 0.01	< 0.01		< 0.01
pp-DDT	µg/L	0.01		< 0.01	< 0.01		< 0.01
DDT (total)	μg/L	0.05	0.05	< 0.05	< 0.05		< 0.05

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

			Sample Numbe	or 7	8	9	10
······································			Sample Nam	e 22BH-101(MW)	22BH-103(MW)	22BH-105(MW)	22BH-107(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 8 - All Types of Prope	rty Uses - l	JNDEFINED	Sample Matr	x Ground Water	Ground Water	Ground Water	Ground Water
			Sample Dat	e 15/02/2022	15/02/2022	15/02/2022	15/02/2022
Parameter	Units	RL	L1	Result	Result	Result	Result
Organochlorine Pests (OCs) (continued)							
Dieldrin	µg/L	0.01	0.35	< 0.01	< 0.01		< 0.01
gamma-BHC	µg/L	0.01	0.95	< 0.01	< 0.01		< 0.01
Endosulfan I	µg/L	0.02		< 0.02	< 0.02		< 0.02
Endosulfan II	µg/L	0.05		< 0.05	< 0.05		< 0.05
Endosulfan (total)	µg/L	0.05	0.56	< 0.05	< 0.05		< 0.05
Endrin	µg/L	0.05	0.36	< 0.05	< 0.05		< 0.05
Heptachlor	µg/L	0.01	0.038	< 0.01	< 0.01		< 0.01
Heptachlor epoxide	µg/L	0.01	0.038	< 0.01	< 0.01		< 0.01
Hexachlorobenzene	µg/L	0.01	1	< 0.01	< 0.01		< 0.01
Hexachlorobutadiene	µg/L	0.01	0.44	< 0.01	< 0.01		< 0.01
Hexachloroethane	µg/L	0.01	2.1	< 0.01	< 0.01		< 0.01
Methoxychlor	µg/L	0.01	0.3	< 0.01	< 0.01		< 0.01
Other (ORP)							
Mercury (total)	µg/L	0.01	0.29	< 0.01	< 0.01	< 0.01	< 0.01
рН	lo unit	0.05		7.73	7.48	7.44	7.61
Chloride	µg/L	1000	790000	81000	5700000	200000	37000
Chromium VI	µg/L	1.0	25	0.5	< 1.0	0.2	0.2
Cyanide (free)	µg/L	2	52	27	< 2	< 2	< 2

SGS	

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

MATRIX: WATER			s	ample Number	7	8	9	10
				Sample Name	22BH-101(MW)	22BH-103(MW)	22BH-105(MW)	22BH-107(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 8 - All Ty	pes of Property Uses - L	INDEFINED		Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
				Sample Date	15/02/2022	15/02/2022	15/02/2022	15/02/2022
Parameter	Units	RL	L1		Result	Result	Result	Result
Pesticides Surrogate								
Surr Decachlorobiphenyl	Surr Rec %				73	100		110
PHCs								
F1 (C6-C10)	μg/L	25	420		< 25	< 25	< 25	
F1-BTEX (C6-C10)	μg/L	25			< 25	< 25	< 25	
F2 (C10-C16)	µg/L	100	150		< 100	< 100	< 100	
F3 (C16-C34)	μg/L	200	500		< 200	< 200	< 200	
F4 (C34-C50)	μg/L	200	500		< 200	< 200	< 200	
Chromatogram returned to baseline at nC50	Yes / No	no			YES	YES	YES	
THMs (VOC)								
Bromodichloromethane	μg/L	0.5	16		< 0.5	< 0.5		
Bromoform	μg/L	0.5	25		< 0.5	< 0.5		
Dibromochloromethane	μg/L	0.5	25		< 0.5	< 0.5		
VOC Surrogates								
Surr 1,2-Dichloroethane-d4	Surr Rec %	no			106	111		
Surr 2-Bromo-1-Chloropropane	Surr Rec %	no			96	97		
Surr 4-Bromofluorobenzene	Surr Rec %	no			86	81		
Surr TCMX	Surr Rec %	no			66	61		66

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

IATRIX: WATER			Sample Number	7	8	9	10	
			Sample Name	22BH-101(MW)	22BH-103(MW)	22BH-105(MW)	22BH-107(MW)	
1 = REG153 / GROUND WATER / COARSE - TABLE 8 - All Types	of Property Uses - U	INDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	
			Sample Date	15/02/2022	15/02/2022	15/02/2022	15/02/2022	
Parameter	Units	RL	L1	Result	Result	Result	Result	
'OCs				1				
Acetone	µg/L	30	2700	55	< 30			
Bromomethane	µg/L	0.5	0.89	< 0.5	< 0.5			
Carbon tetrachloride	µg/L	0.2	0.79	< 0.2	< 0.2			
Chlorobenzene	µg/L	0.5	30	< 0.5	< 0.5			
Chloroform	µg/L	0.5	2.4	< 0.5	< 0.5			
1,2-Dichlorobenzene	µg/L	0.5	3	< 0.5	< 0.5			
1,3-Dichlorobenzene	µg/L	0.5	59	< 0.5	< 0.5			
1,4-Dichlorobenzene	µg/L	0.5	1	< 0.5	< 0.5			
Dichlorodifluoromethane	µg/L	2.0	590	< 2	< 2			
1,1-Dichloroethane	µg/L	0.5	5	< 0.5	< 0.5			
1,2-Dichloroethane	µg/L	0.5	1.6	< 0.5	< 0.5			
1,1-Dichloroethylene	µg/L	0.5	1.6	< 0.5	< 0.5			
trans-1,2-Dichloroethene	µg/L	0.5	1.6	< 0.5	< 0.5			
cis-1,2-Dichloroethene	µg/L	0.5	1.6	< 0.5	< 0.5			
1,2-Dichloropropane	µg/L	0.5	5	< 0.5	< 0.5			
cis-1,3-Dichloropropene	µg/L	0.5		< 0.5	< 0.5			
trans-1,3-Dichloropropene	µg/L	0.5		< 0.5	< 0.5			
1,3-dichloropropene (total)	µg/L	0.5	0.5	< 0.5	< 0.5			
Ethylenedibromide	µg/L	0.2	0.2	< 0.2	< 0.2			
n-Hexane	µg/L	1.0	51	< 1	< 1			
Methyl ethyl ketone	µg/L	20	1800	< 20	< 20			
Methyl Isobutyl Ketone	µg/L	20	640	< 20	< 20			

Client: Toronto Inspection Ltd.

Project: 5552

Project Manager: Matt Pietrzyk

Samplers: Divya by Yourong

MATRIX: WATER			S	ample Number	7	8	9	10
				Sample Name	22BH-101(MW)	22BH-103(MW)	22BH-105(MW)	22BH-107(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 8 - All Typ	pes of Property Uses - U	NDEFINED		Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water
				Sample Date	15/02/2022	15/02/2022	15/02/2022	15/02/2022
Parameter	Units	RL	L1		Result	Result	Result	Result
VOCs (continued)								
Methyl-t-butyl Ether	µg/L	2.0	15		< 2	< 2		
Methylene Chloride	µg/L	0.5	50		< 0.5	< 0.5		
Styrene	µg/L	0.5	5.4		< 0.5	< 0.5		
Tetrachloroethylene (perchloroethylene)	µg/L	0.5	1.6		< 0.5	< 0.5		
1,1,1,2-Tetrachloroethane	µg/L	0.5	1.1		< 0.5	< 0.5		
1,1,2,2-Tetrachloroethane	µg/L	0.5	1		< 0.5	< 0.5		
1,1,1-Trichloroethane	µg/L	0.5	200		< 0.5	< 0.5		
1,1,2-Trichloroethane	µg/L	0.5	4.7		< 0.5	< 0.5		
Trichloroethylene	µg/L	0.5	1.6		< 0.5	< 0.5		
Trichlorofluoromethane	µg/L	5.0	150		< 5	< 5		
Vinyl Chloride	µg/L	0.2	0.5		< 0.2	< 0.2		

9 / 23

EXCEEDANCE SUMMARY

				REG153 /
				GROUND WATER /
				COARSE - TABLE
				8 - All Types of
				Property Uses -
				UNDEFINED
Parameter	Method	Units	Result	L1
2BH-103(MW)				
Sodium	SM 3030/EPA 200.8	μg/L	1870000	490000
Chloride	US FPA 325 2	ua/L	5700000	790000

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	RPD AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Chloride	DIO5053-FEB22	ug/L	1000	<1000	1	20	107	80	120	92	75	125	

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Snike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Pecoven	(%)		Recovery		ó)
						(%)	(%)	Low	High	(%)	Low	High
Cyanide (free)	SKA0151-FEB22	µg/L	2	<2	ND	10	95	90	110	90	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVISKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duplicate		Duplicate LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover (%	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Chromium VI	SKA0156-FEB22	ug/L	1.0	<0.2	ND	20	100	80	120	99	75	125
Chromium VI	SKA0168-FEB22	ug/L	1.0	<0.2	0	20	104	80	120	88	75	125

Mercury by CVAAS

Method: SM 3112/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank			vlatrix Spike / Ref.	
	Reference		Blank	RPD AC		Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0032-FEB22	ug/L	0.01	< 0.01	ND	20	107	80	120	NV	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover (%	y Limits	
						(70)	(%)	Low	High	(%)	Low	High	
Silver	EMS0113-FEB22	ug/L	0.05	<0.05	4	20	97	90	110	79	70	130	
Arsenic	EMS0113-FEB22	µg/L	0.2	<0.2	2	20	94	90	110	92	70	130	
Barium	EMS0113-FEB22	µg/L	0.02	<0.02	2	20	94	90	110	89	70	130	
Beryllium	EMS0113-FEB22	µg/L	0.007	<0.007	ND	20	98	90	110	93	70	130	
Boron	EMS0113-FEB22	µg/L	2	<2	ND	20	98	90	110	98	70	130	
Cadmium	EMS0113-FEB22	µg/L	0.003	<0.003	13	20	93	90	110	98	70	130	
Cobalt	EMS0113-FEB22	µg/L	0.004	<0.004	1	20	94	90	110	92	70	130	
Chromium	EMS0113-FEB22	ug/L	0.08	<0.08	ND	20	92	90	110	91	70	130	
Copper	EMS0113-FEB22	ug/L	0.2	<0.2	3	20	95	90	110	97	70	130	
Molybdenum	EMS0113-FEB22	ug/L	0.04	<0.04	4	20	100	90	110	93	70	130	
Sodium	EMS0113-FEB22	ug/L	10	<0.01	3	20	105	90	110	108	70	130	
Nickel	EMS0113-FEB22	µg/L	0.1	<0.1	ND	20	95	90	110	94	70	130	
Lead	EMS0113-FEB22	ug/L	0.09	<0.01	0	20	97	90	110	91	70	130	
Antimony	EMS0113-FEB22	ug/L	0.9	<0.9	ND	20	103	90	110	92	70	130	
Selenium	EMS0113-FEB22	µg/L	0.04	<0.04	ND	20	96	90	110	92	70	130	
Thallium	EMS0113-FEB22	µg/L	0.005	<0.005	ND	20	90	90	110	86	70	130	
Uranium	EMS0113-FEB22	µg/L	0.002	0.002	4	20	98	90	110	85	70	130	
Vanadium	EMS0113-FEB22	µg/L	0.01	0.001	2	20	95	90	110	91	70	130	
Zinc	EMS0113-FEB22	µg/L	2	0.028	ND	20	92	90	110	95	70	130	
Sodium	EMS0134-FEB22	ug/L	10	<0.01	13	20	102	90	110	110	70	130	

CA40202-FEB22 R1

QC SUMMARY

Pesticides

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
a-chlordane	GCM0270-FEB22	μg/L	0.01	< 0.01	ND	30	106	50	140	102	50	140
Aldrin	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	95	50	140	87	50	140
Dieldrin	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	107	50	140	106	50	140
Endosulfan I	GCM0270-FEB22	ug/L	0.02	< 0.02	ND	30	101	50	140	102	50	140
Endosulfan II	GCM0270-FEB22	ug/L	0.05	< 0.05	ND	30	112	50	140	116	50	140
Endrin	GCM0270-FEB22	ug/L	0.05	< 0.05	ND	30	112	50	140	115	50	140
g-chlordane	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	104	50	140	98	50	140
gamma-BHC	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	89	50	140	95	50	140
Heptachlor	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	91	50	140	88	50	140
Heptachlor epoxide	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	99	50	140	100	50	140
Hexachlorobenzene	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	82	50	140	76	50	140
Hexachlorobutadiene	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	75	50	140	65	50	140
Hexachloroethane	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	76	50	140	67	50	140
Methoxychlor	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	130	50	140	125	50	140
o,p-DDD	GCM0270-FEB22	µg/L	0.05	< 0.05	ND	30	110	50	140	107	50	140
o,p-DDE	GCM0270-FEB22	ug/L	0.01	< 0.01	ND	30	105	50	140	98	50	140
op-DDT	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	116	50	140	106	50	140
pp-DDD	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	114	50	140	112	50	140
pp-DDE	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	108	50	140	99	50	140
pp-DDT	GCM0270-FEB22	µg/L	0.01	< 0.01	ND	30	126	50	140	117	50	140

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recovery Limits		
						(%)	Pecover/	(%)		Recovery	(%	.)	
						(70)	(%)	Low	High	(%)	Low	High	
F1 (C6-C10)	GCM0231-FEB22	µg/L	25	<25	ND	30	96	60	140	96	60	140	

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0220-FEB22	µg/L	100	<100	ND	30	82	60	140	74	60	140
F3 (C16-C34)	GCM0220-FEB22	μg/L	200	<200	ND	30	82	60	140	74	60	140
F4 (C34-C50)	GCM0220-FEB22	μg/L	200	<200	ND	30	82	60	140	74	60	140

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
рН	EWL0286-FEB22	No unit	0.05	NA	0		100			NA		
рН	EWL0296-FEB22	No unit	0.05	NA	0		101			NA		

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recover (%	y Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
Benzene	GCM0231-FEB22	µg/L	0.5	<0.5	ND	30	92	60	130	72	50	140
Ethylbenzene	GCM0231-FEB22	µg/L	0.5	<0.5	ND	30	118	60	130	55	50	140
m/p-xylene	GCM0231-FEB22	µg/L	0.5	<0.5	ND	30	125	60	130	61	50	140
o-xylene	GCM0231-FEB22	µg/L	0.5	<0.5	ND	30	122	60	130	60	50	140
Toluene	GCM0231-FEB22	µg/L	0.5	<0.5	ND	30	99	60	130	64	50	140
1,1,1,2-Tetrachloroethane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	94	60	130	93	50	140
1,1,1-Trichloroethane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	100	60	130	97	50	140
1,1,2,2-Tetrachloroethane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	94	60	130	90	50	140
1,1,2-Trichloroethane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	98	60	130	95	50	140
1,1-Dichloroethane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	99	60	130	96	50	140
1,1-Dichloroethylene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	106	60	130	103	50	140
1,2-Dichlorobenzene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	98	60	130	94	50	140
1,2-Dichloroethane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	99	60	130	95	50	140
1,2-Dichloropropane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	98	60	130	95	50	140
1,3-Dichlorobenzene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	98	60	130	94	50	140
1,4-Dichlorobenzene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	96	60	130	93	50	140
Acetone	GCM0237-FEB22	µg/L	30	<30	ND	30	100	60	130	87	50	140
Benzene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	100	60	130	98	50	140
Bromodichloromethane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	98	60	130	93	50	140
Bromoform	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	94	60	130	90	50	140

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recover (۶	y Limits
						(,,,)	(%)	Low	High	(%)	Low	High
Bromomethane	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	108	50	140	101	50	140
Carbon tetrachloride	GCM0237-FEB22	μg/L	0.2	<0.2	ND	30	101	60	130	98	50	140
Chlorobenzene	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	97	60	130	95	50	140
Chloroform	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	99	60	130	94	50	140
cis-1,2-Dichloroethene	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	98	60	130	95	50	140
cis-1,3-Dichloropropene	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	94	60	130	92	50	140
Dibromochloromethane	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	98	60	130	95	50	140
Dichlorodifluoromethane	GCM0237-FEB22	μg/L	2.0	<2	ND	30	144	50	140	147	50	140
Ethylbenzene	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	100	60	130	98	50	140
Ethylenedibromide	GCM0237-FEB22	μg/L	0.2	<0.2	ND	30	97	60	130	93	50	140
n-Hexane	GCM0237-FEB22	μg/L	1.0	<1	ND	30	101	60	130	102	50	140
m/p-xylene	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	101	60	130	99	50	140
Methyl ethyl ketone	GCM0237-FEB22	ug/L	20	<20	ND	30	100	60	130	94	50	140
Methyl Isobutyl Ketone	GCM0237-FEB22	μg/L	20	<20	ND	30	102	50	140	95	50	140
Methyl-t-butyl Ether	GCM0237-FEB22	μg/L	2.0	<2	ND	30	100	60	130	94	50	140
Methylene Chloride	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	103	60	130	93	50	140
o-xylene	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	102	60	130	100	50	140
Styrene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	100	60	130	97	50	140
Tetrachloroethylene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	99	60	130	95	50	140
(perchloroethylene)												
Toluene	GCM0237-FEB22	μg/L	0.5	<0.5	ND	30	99	60	130	95	50	140

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery (%	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High	
trans-1,2-Dichloroethene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	100	60	130	95	50	140	
trans-1,3-Dichloropropene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	97	60	130	93	50	140	
Trichloroethylene	GCM0237-FEB22	µg/L	0.5	<0.5	ND	30	100	60	130	97	50	140	
Trichlorofluoromethane	GCM0237-FEB22	µg/L	5.0	<5	ND	30	108	50	140	105	50	140	
Vinyl Chloride	GCM0237-FEB22	µg/L	0.2	<0.2	ND	30	116	60	130	111	50	140	

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

FINAL REPORT

CA40202-FEB22 R1

QC SUMMARY

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --